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Summary (English)

The overall goal of this thesis is to introduce a systematic approach for analysing
spatial structures in fluid dynamical problems. The approach describes how to
interpret a flow that is already known from experiments or from solving Navier-
Stokes equations analytically or numerically. In other words, we introduce a
detailed method for post-processing of velocity or vorticity fields. A natural
starting point for the analysis of a fluid dynamical problem is to make it clear
what parameters the problem depends on. Under variation of these external
parameters, a flow may undergo some qualitative changes. In this thesis, we
analyse such qualitative changes with tools from bifurcation theory. We mainly
focus on describing the flow structure based on the vortices that are present
in the fluid. In this context, a qualitative change in the flow occurs when a
new vortex is created or destroyed. We apply some well known results from
the field of topological fluid dynamics to analyse the changes in the topology
of the vorticity field - more specifically, we analyse the creation and destruc-
tion of extremal points of vorticity, which we consider to be feature points for
vortices. Furthermore, we ask ourselves how the framework we know from topo-
logical fluid dynamics can be extended to deal with topological changes of other
quantities describing the structure of a flow.

As an example of a different quantity describing the flow structure, we consider
the regions of a fluid where the rotation dominates the strain. These regions are
by the Q-criterion defined as vortices [29]. Since the Q-vortex is defined as a
region instead of a critical point, the framework we know from topological fluid
dynamics can not be directly applied. In this thesis, we extend the framework by
continuing the development of a complete bifurcation theory for Q-vortices. The
theory describes the qualitative changes that may occur when we allow several
parameters to vary. In addition, we analyse a special bifurcation that occurs
only in a flow with a line of symmetry. All our theoretical results are topological
in nature, meaning that we do not distinguish between vortex patterns which
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can be continuously deformed into each other.

The thesis is built around three specific case studies, in which we analyse three
classical fluid mechanical problems using bifurcation theory. In all three cases,
the dynamics of the vortices are simulated on a computer and we obtain a very
accurate description of the flow. The bifurcation theory we develop in this thesis
provides a list of possible vortex bifurcation events. The individual bifurcation
events are analysed along the way when they are observed in one of the three
case studies. The application of our theoretical results leads to the following
main insights into the case studies:

Case I. A vortex convected close to a no-slip wall induces a viscous response
from the boundary layer. The boundary layer may organise itself into secondary
vortex structures which may erupt from the wall. We study this phenomenon
in two dimensions and show that the eruption process can be described as a
sequence of four possible bifurcations of vortices defined by the Q-criterion.
Furthermore, we show that most of these bifurcation events appear to be very
robust to variations in the Reynolds number.

Case II. When several vortices are present in a flow at the same time, they will
naturally interact with each other. We study the simplest possible case where
two vortices interact in a two dimensional flow. By applying the Q-criterion,
we show that two co-rotating vortices merge only if their relative strength ratio
is below a certain threshold. Furthermore, we show that this threshold can
be identified as a bifurcation phenomenon itself. Finally, we show that for
sufficiently small Reynolds numbers, the so-called core growth model can be
used instead of Navier-stokes simulations as a simple, analytically tractable
model with low dimension.

Case III. At a sufficiently high Reynolds number, the flow around a station-
ary cylinder results in the formation of the famous von Kármán vortex street.
When the cylinder starts oscillating transverse to the flow direction, the vortex
shedding pattern becomes significantly more complex. When the amplitude in-
creases the pattern changes from two single vortices (2S mode) to a pair and
a single vortex (P+S mode) being shed per oscillation cycle. In a two dimen-
sional flow, we study the topological changes of the wake pattern when vortices
are defined as extremal points of the vorticity field. We identify four values of
the amplitude that define critical stages in the transition from 2S to P+S wake
mode.



Summary (Danish)

Det overordnede mål med denne afhandling er at introducere en systematisk
tilgang til at analysere rumlige strukturer i fluid dynamiske problemer. Meto-
den beskriver, hvordan man fortolker en strømning, der allerede er kendt fra
eksperimenter eller fra analytiske/numeriske løsninger til Navier-Stokes lignin-
ger. Med andre ord introducerer vi en detaljeret metode til efterbehandling af
hastigheds- eller vorticitetsfelter. Et naturligt udgangspunkt for analysen af et
fluid dynamisk problem er at gøre det klart, hvilke parametre problemet afhæn-
ger af. Under variation af disse eksterne parametre kan en strømning gennemgå
nogle kvalitative ændringer. I denne afhandling analyserer vi sådanne kvalitative
ændringer med værktøjer fra bifurkationsteori. Vi fokuserer primært på at be-
skrive strømningsstrukturen ud fra de hvirvler, der er tilstede i væsken. I denne
sammenhæng sker der en kvalitativ ændring i strømningen, når en ny hvirvel
opstår eller forsvinder. Vi anvender nogle kendte resultater inden for topologisk
fluid dynamik til at analysere ændringerne i topologien af vorticitetsfeltet - mere
specifikt analyserer vi hvordan ekstremumpunkter for vorticitetsfeltet opstår of
forsvinder, da vi anser disse punkter for at være de karakteristiske punkter for
hvirvlerne. Desuden spørger vi os selv, hvordan den teori, vi allerede kender fra
topologisk fluid dynamik, kan udvides til at håndtere topologiske ændringer af
andre størrelser, der også beskriver strukturen i en strømning.

Som et eksempel på en anden størrelse, der beskriver strømningsstrukturen, be-
tragter vi områder i en strømning, hvor rotation er dominerende i forhold til
deformation. Disse områder er ved hjælp af Q-kriteriet defineret som hvirvler
[29]. Da en Q-hvirvel er defineret som et område i stedet for et kritisk punkt,
kan den teori, vi kender fra topologisk fluid dynamik, ikke anvendes direkte. I
denne afhandling fortsætter vi udviklingen af en bifurkationsteori, der kan be-
nyttes til Q-hvirvler. Teorien beskriver de kvalitative ændringer, der kan opstå,
når vi tillader flere parametre at variere. Derudover analyserer vi en særlig bi-
furkation, der kun forekommer i en strømning med en symmetri linje. Alle vores
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teoretiske resultater er topologiske, hvilket betyder, at vi ikke skelner mellem
hvirvelstrukturer, som kontinuerligt kan deformeres til hinanden.

Afhandlingen er bygget op omkring tre specifikke casestudier, hvor vi analyse-
rer tre klassiske fluid mekaniske problemer ved hjælp af bifurkationsteori. I alle
tre tilfælde simuleres hvirvlernes dynamik på en computer, og vi får en meget
nøjagtig beskrivelse af strømningen. Den bifurkationsteori, vi udvikler i denne
afhandling, giver os en liste over de mulige bifurkationer vi kan observere i hvir-
velstrukturen. Vi analyserer de enkelte bifurkationer undervejs, når vi observerer
dem i en af de tre casestudier. Anvendelsen af vores teoretiske resultater fører
til følgende hovedindsigt i tre cases:

Case I. En hvirvel der bevæger sig over en væg forårsager et viskøst respons nær
væggen. Vorticiteten i grænselaget kan løsrive sig fra væggen og danne sekun-
dære hvirvler. Vi studerer dette fænomen i to dimensioner og viser, at processen
kan beskrives som en sekvens af fire mulige bifurkationer når hvirvelstrukturen
er defineret af Q-kriteriet. Desuden viser vi, at de fleste af disse bifurkations-
hændelser ser ud til at være meget robuste over for variationer i strømningens
Reynolds tal.

Case II. Når flere hvirvler er til stede i en strømning på samme tid, vil de na-
turligt interagere med hinanden. Vi studerer det simplest mulige tilfælde, hvor
to hvirvler interagerer i et todimensionalt flow. Ved at anvende Q-kriteriet viser
vi, at to hvirvler med samme rotationsretning kun fusionere, hvis deres relative
styrkeforhold er under en bestemt tærskelværdi. Desuden viser vi, at denne tær-
skelværdi kan identificeres som et bifurkationsfænomen i sig selv. Endelig viser
vi, at for tilstrækkeligt små værdier af Reynolds tal kan den såkaldte core growth
model bruges i stedet for Navier-stokes-simuleringer som en simpel, analytisk
model med et lavt antal frie parametre.

Case III. Ved et tilstrækkeligt højt Reynolds tal opstår von Kármáns berøm-
te hvirvelallé i kølvandet bag en stationær cylinder. Når cylinderen begynder
at oscillere på tværs af strømningsretningen, bliver hvirvelstrukturen betyde-
ligt mere kompleks. Når amplituden øges, ser vi et skift fra to enkelte hvirvler
(2S-mode) til et par, og en enkelt hvirvel (P + S-mode) der dannes i hver oscilla-
tions cyklus. I en todimensionel strømning studerer vi de topologiske ændringer
i kølevandets mønster, når hvirvler defineres som ekstremumspunkter for vor-
ticitetsfeltet. Vi identificerer fire værdier af amplituden, der definerer kritiske
stadier i overgangen fra 2S-mode til P+S-mode.
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We want to make it clear that Paper I is partly based on ideas from my master
thesis [45] and partly based on results that are original work done during the
PhD period. It is specified in chapter 3 which parts of the results originate
from the PhD period. Paper II and Paper III are only based on results that
are original work done during the PhD period. The thesis consist of the three
manuscripts listed above and some additional unpublished work. It also includes
a synopsis stating the relationship between the papers and summarizing the
results.

Lyngby, 04-June-2021

Anne Ryelund Nielsen
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Chapter 1

Motivation

Fluid dynamics is the discipline in physics that deals with the movement of
liquids and gases. Topology is the discipline in mathematics that is concerned
with the properties of a geometric object that are preserved under continuous
deformations. In topological fluid dynamics, we work at the intersection of the
two disciplines by studying the topological structure of a fluid flow - more specif-
ically, we focus on the topological structure of the vortices in a flow. Vortices are
fundamental parts of transitional and turbulent flows. Studying the dynamics
and interactions of vortices helps us understand the behaviour of the compli-
cated flows which may occur in nature or industry. Let us start by considering
some real-life examples of flows where vortices play an important role.

At the tip of an aircraft wing the differences in pressure between the upper
and lower surface of the wing generates a trailing vortex as the aircraft move
through the air, see figure 1.1(a). The counter-rotating pair of tip vortices persist
in the far wake and can represent a potential hazard for a following aircraft. An
aircraft wing with lowered flaps generates a pair of co-rotating vortices at each
wing. This pair of vortices is present in the near wake until the vortices merge
to a single tip vortex [42]. Motivated by the occurence of wing tip vortices, a
pair of straight parallel vortices is one of the elementary vortex configurations
considered in the literature. In the review in [37], they refer to the elementary
problem as the study of vortex pair interactions. During take-off and landing
the tip vortices induce some vorticity in the boundary layer of the ground which
may erupt and form secondary vortices [19]. This is an example of the classical
fluid mechanical problem known as boundary layer eruption.
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(a) (b)

Figure 1.1: (a) A NASA study on wingtip vortices, where the flow around
the aircraft wing is made visible by a technique that uses colored
smoke rising from the ground [44]. (b) A von Kármán vortex street
caused by wind flowing around the Alexander Selkirk Island in the
southern Pacific Ocean [7].

Any object moving in a fluid will affect the structure of the flow around it.
Due to friction between the object and the fluid, a local rotation of the fluid
is induced and vortices are shed at the back of the object and transported
away in the wake behind it. When the object is cylindrical the wake pattern is
known as the von Kármán vortex street - a time-periodic flow in which vortices
are shed, alternately on either side of the cylinder. Vortex shedding and the
von Kármán vortex street are ubiquitous in nature, and occur at all scales; in
arteries where vortices can be generated by a stenosis and in the atmosphere
above an island, see figure 1.1(b). If we allow a cylindrical object to move, the
vortex shedding pattern becomes significantly more complex. When the cylinder
performs forced oscillations transverse to the flow direction, the different vortex
shedding patterns have recently become known as exotic wakes [48, 3].

In this thesis, we consider boundary layer eruption, vortex pair interactions and
exotic wakes as three case studies for the application of our theoretical results.
The solution to any fluid dynamical problem typically involves calculating some
properties of the fluid as functions of space and time. In all three case studies
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we consider an incompressible fluid and the Navier-Stokes equations provide
a physical description of the problem. If an incompressible velocity field u =
(u, v) is known either from experiments or from solving Navier-Stokes equations
analytically or numerically, then we ask the question, how do we interpret this
physical description of a fluid dynamical problem? With the approach we use
in this thesis, we believe that the identification of inherent flow patterns and
how these changes is key to understanding any fluid dynamical problem. This
is where dynamical system theory and in particular bifurcation theory become
useful.

The mathematical subject we call a dynamical system is completely charac-
terised by its present state and some rules determining how a general state
evolve in time. The Navier-Stokes equations are in themselves a dynamical sys-
tem where the state is given by the velocity and pressure fields. From a solution
to Navier-Stokes we can generate several other dynamical systems that describes
the evolution of different structures in the physical space. Bifurcation theory is
the mathematical study of changes in the qualitative or topological structure
of a given family, such as the solutions of a family of differential equations. A
bifurcation occurs in dynamical systems, when a small smooth change made to
the parameter values (the bifurcation parameters) causes a sudden qualitative
or topological change in the systems behaviour.

In this thesis we apply well known results from topological fluid dynamics to
analyse the dynamics of vortices defined as vorticity extrema. In addition, we
expand the theory to include topological changes in the inherent flow pattern de-
fined by the Q-criterion, [29]. Our theory is topological in nature, meaning that
we do not distinguish between flow patterns which can be continuously deformed
into each other. By applying our theory, we therefore obtain a qualitative but
very detailed classification of flow patterns and their bifurcations.

In our studies, we are motivated by a desire to understand the world of fluid
dynamics - more specifically, the evolution of the vortices. We hope that the
field of dynamical system theory can contribute to this understanding.

1.1 Aims and objectives of this thesis

In my master’s thesis [45], we started the investigation on how the approach from
topological fluid dynamics can be generalised to describe structural changes of
vortices defined by theQ-criterion. The results from my master’s thesis include a
complete analysis of the possible bifurcations of the Q-vortices that may occur
in a robust way when a single parameter is varied. In the first part of this
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thesis, we further develop the bifurcation theory for Q-vortices. The first paper
we present is partly based on ideas from my master thesis, and partly based
on results that are original work done during the PhD period. It therefore
introduces the bifurcation theory for Q-vortices from scratch. Within in this
thesis we address the following research questions:

• What are the possible bifurcations of the Q-vortices we may observe when
we allow several bifurcation parameters to vary? and what are the pos-
sible bifurcations of the Q-vortices that may occur in flows with a line of
symmetry?

• How can our overall bifurcation theory for Q-vortices contribute to further
understanding of classical fluid mechanical problems such as boundary
layer eruption and vortex pair interaction?

• How can results from topological fluid dynamics be used to classify exotic
wakes patterns behind an oscillating cylinder? and how can a transition
in the wake pattern be described in terms of topological bifurcations in
the vorticity field?

• How do the topological changes we observe in simulations of the wake
pattern agree with similar experiments with an oscillating cylinder in a
soap film?

1.2 Outline of the thesis

In chapter 2, we give an introduction to the background knowledge that is
needed to understand the results of our research. This includes a brief review of
some fundamental concepts in fluid dynamics. The main part of the chapter is
an introduction to the mathematical framework in topological fluid dynamics.
The simplest possible bifurcation of the streamline pattern is analysed in detail
and the necessary tools from bifurcation theory are introduced along the way.

In chapter 3, we present the results of our first paper: Bifurcation theory for
vortices with application to boundary layer eruption. In this paper we expand
the framework of topological fluid dynamics to include an analysis of topological
changes in a two-dimensional flow, where the vortex structure is described by
the Q-criterion. We apply the theoretical results to analyse the boundary layer
eruption problem. The chapter contains an introduction the content of the
paper in relation to the rest of the thesis, a reprint of the paper itself and some
further perspectives.
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In chapter 4, we present the results of our second paper: Topological bifurcations
of vortex pair interactions. The paper includes a direct continuation of the
theoretical results presented in Paper I together with an application to vortex
pair interactions. In addition, we discuss the applicability of the analytically
traceable core growth model as a replacement for Navier-Stokes simulations.
The chapter contains a reprint of the paper itself and a section that summarises
the content of the paper in relation to the rest of the thesis.

In chapter 5, we present a manuscript for our third paper: Topological bifurca-
tions in the transition from 2S to P+S mode in the wake behind an oscillating
cylinder. In this paper, we show that results form topological fluid dynamics can
give us a detailed description of the transition between different wake patterns
behind an oscillating cylinder. Beside the manuscript itself, the chapter contains
an general introduction to the oscillating cylinder problem and a description of
some state-of-the-art results.

In chapter 6, we present some result from an experimental study conducted
during my external research stay. The physical experiments are performed in
a gravity-driven soap film channel where a thin disk is oscillated. The chapter
includes an introduction to the experimental setup, and a discussion of whether
the conclusions we draw in chapter 5 can be confirmed by the experimental
results.

In chapter 7, we conclude the thesis by giving a brief overview of our results
and some ideas for future work within this research area.
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Chapter 2

Introduction

In this chapter, we want to introduce the background knowledge that is needed
to be able to understand the main results of our research. It is our aim that
the thesis must be understandable to anyone who has a background in either
fluid mechanics or dynamical systems theory. We do not expect the reader to
be an expert in both disciplines. We, therefore, give an introduction to some
basic concept in fluid dynamics, and show how the framework from dynamical
systems theory can be applied to systematically describe structural changes in a
flow. The main part of this introductory chapter is a review of some preliminary
results from topological fluid dynamics. It is on the basis of these results that
our research questions arise.

2.1 Fundamentals of fluid dynamics

In this section, we give a brief introduction to some relevant concepts in fluid dy-
namics. The derivation of all the presented results can be found in any textbook
about fluid dynamics, such as [54], [55] or [35].

The Navier-Stokes equations are the fundamental partial differential equations
that is used to describe the motion of viscous fluids. The derivation Navier–Stokes
equations is based on the mathematical concept of a fluid parcel which is an
amount of fluid that is small enough to be ’infinitesimal’ with respect to the
length scale and large enough to be distinguished from microscopic particles



8 Introduction

such as molecules. By the assumption that a fluid can be considered as a large
collection of fluid parcels and by applying Newton’s second law of motion, one
can derive the Navier-Stokes equations that represent the conservation of mo-
mentum in a fluid,

∂u

∂t
+ u · ∇u =

1

ρ
∇ · (µ(∇u + (∇u)T − 2

3

µ

ρ
(∇ · u)I)− 1

ρ
∇p. (2.1)

At any given time and point, u(x, t) is the velocity field, ρ(x, t) is the density
of the fluid and p(x, t) is the pressure. For a Newtonian fluid the forces acting
on the fluid are proportional to the rates of change of the fluid’s velocity vector,
implying that the dynamic viscosity µ is constant. Although no real fluid can
be assumed to be Newtonian, it is a very common assumption for many liquids
and gases such as water and air. The Navier-Stokes equation (2.1) is always
solved together with the continuity equation,

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)u(x, t)) = 0. (2.2)

While the Navier-Stokes equations represent the conservation of momentum,
the continuity equation represents the conservation of mass. A fluid is said
to be incompressible if the density ρ is constant at any given time and point.
In reality, all fluids are compressible to some extent but in most situations of
general interest a flow can be assumed to be incompressible to a high degree of
accuracy. In these cases the continuity equation in (2.2) simplifies to,

∇ · u = 0. (2.3)

Within this thesis, we will only consider fluid mechanical problems with incom-
pressible newtonian fluids. In such problems the Navier–Stokes equations (2.1)
simplifies to

∂u

∂t︸︷︷︸
(1)

+ (u · ∇)u︸ ︷︷ ︸
(2)

= ν∆u︸︷︷︸
(3)

−1

ρ
∇p

︸ ︷︷ ︸
(4)

, (2.4)

where ν = µ
ρ is called the kinematic viscosity of the fluid. The different terms in

(2.4) correspond to the unsteady acceleration (1), the advective acceleration (2),
the viscous acceleration (3) and the pressure force per unit mass (4). To obtain
a particular solution to (2.3) and (2.4) the equations need to be solved with a
set of boundary conditions and initial conditions. The complicated nature of
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the equations makes it clear that one cannot in general expect to find simple
solutions. Exact solutions to the Navier-Stokes equations are very few and they
are only found in strongly restricted geometries. In the cases where no analytical
solution is known the only options are to perform lab experiments or numerical
approximations.

In any classification of a flow the Reynolds number Re is an important dimen-
sionless quantity. The Reynolds number is the ratio of the advective to the
viscous forces in a particular flow. One can interpret the Reynolds number as
a measure of how lively or sluggish a flow is. By choosing a reference length
L and a reference velocity U , that characterise the magnitudes in a particular
flow, the Reynolds number is defined as,

Re =
advective acceleration
viscous accelaration

=
U2/L

νU/L2
=
UL

ν
. (2.5)

In this thesis, the goal is mainly to be able to analyse the dynamics of vortices in
various fluid mechanical problems. A key concept when analysing the dynamics
of vortices is the vorticity field ω, which can be determined directly from the
velocity field. The vorticity describes the local spinning motion at a point in the
fluid. Mathematically, the vorticity is defined as the curl of the velocity field,

ω = ∇× u. (2.6)

Described other in words, the vorticity at a point is a vector representing how
the velocity vector will change if we move an infinitesimal distance in a direction
that is perpendicular to the velocity vector. As an alternative to the Navier-
Stokes equation (2.4), one can use the vorticity transport equation to describe
the evolution of the vorticity of a fluid parcel as it moves in a incompressible flow.
By taking the curl of Navier-Stokes equation we obtain the vorticity transport
equation,

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω (2.7)

A fluid flow is said to be two-dimensional if the velocity at every point is parallel
to a fixed plane. If we choose a coordinate system such that fixed plane is the
xy-plane it follows that

u(x, y, z, t) =



u(x, y, t)
v(x, y, t)

0


 , (2.8)
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In general, any flow is a three-dimensional problem, but in some cases the ve-
locity field only changes significantly in one or two directions. In these cases,
we can ignore the changes in less significant directions and thereby reduce the
complexity of the problem. In this thesis, we only deal with problems that can
be modelled as being two dimensional. In the analysis of a two-dimensional,
incompressible flow, the definition of a stream function ψ is a very useful math-
ematical tool. For a two-dimensional velocity field defined on a subset U of R2

a stream function, ψ : U → R, is a function satisfying the property

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.9)

By substitution (2.9) into (2.2), we see that a velocity field u always satisfies
the continuity equation when it has an associated stream function ψ,

∇ · u =
∂u

∂x
+
∂u

∂x
=

∂

∂x

∂ψ

∂y
+

∂

∂y

(
−∂ψ
∂x

)
= 0. (2.10)

The existence of a stream function therefore implies that the flow must be
incompressible. Conversely, it can be shown that if a two-dimensional flow is
incompressible then there always exist a stream function. The proof of the latter
follows from Greens Theorem but will be omitted here.

In the case where we consider a two-dimensional flow the expression for the
vorticity field simplifies to

ω = ∇× u =




0
0

∂v
∂x − ∂u

∂y


 , (2.11)

which implies that the vorticity field is equivalent to a scalar function ω. By
the definition in (2.9), it follows that the vorticity of an incompressible flow is
connected to the stream function through following simple relation

ω = −∆ψ. (2.12)

Since ω is orthogonal to u in a two-dimensional flow it follows that ω · ∇u =
0, and the vorticity transport equation (2.7) simplyfies to the following scalar
equation

∂ω

∂t
+ u · ∇ω = ν∇2ω. (2.13)
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2.2 Topological fluid dynamics

In the following chapters, we focus on fluid dynamical problems that occur in
a two-dimensional incompressible flow. Identifying the inherent flow patterns
is the key to understanding of any fluid dynamical problem. Since a fluid flow
is described by a continuous deformation of transported scalar or vector fields,
it is relevant to consider topological ideas to quantify the changes in a flow
field. In the following sections, we assume that an incompressible velocity field
u = (u, v) is known either from experiments or from solving Navier-Stokes
equations analytically or numerically. From a given velocity field the motion
of any fluid parcel can be determined from the following system of ordinary
differential equations

dx(t)

dt
= u(x(t), t). (2.14)

Given a starting point x0 and a starting time t0, the solution x(t; x0, t0) is the
the trajectory of the chosen fluid parcel. If we instead consider the instantaneous
velocity field u(x, t0) calculated for a fixed time t0, another system of ordinary
differential equations may be defined as

dx(s)

ds
= u(x(s), t0). (2.15)

The solution curves to this systems are called streamlines and they are every-
where tangent to the instantaneous velocity field. Starting at the point x0 at
time t0 the solution x(s; x0, t0) determines the path of the streamline passing
through the point x0. Several important topological features of a flow field can
be discerned from the local properties of this system, including vortices, stagna-
tion points and recirculation zones [12]. Since the instantaneous velocity does
not explicitly depend on s, the system in (2.15) is an autonomous dynamical
system. The changes in the streamline structure can therefore be analysed by
applying bifurcation theory on the dynamical system. The study of flow pat-
terns described in terms of the topology of the streamlines is called topological
fluid dynamics. In later studies, the same term has been used when flow patterns
is instead described by the the topology of the vorticity field, see e.g. [27],[1].
In the following sections, we give an introduction to the mathematical methods
that can be used to analyse structural changes in the of the streamline topology
or the vorticity topology.
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2.2.1 Streamline topology

Drawing the streamlines is a practical way of visualising a flow. If we observe
closed or spiralling streamlines it indicates that the fluid is (instantaneously)
moving around a common axis and therefore it is an intuitive way to detect
a vortex in a flow. The notion of a vortex is widely used in fluid dynamics,
but nevertheless there is no precise mathematical definition of a vortex that
is universally accepted. There are many different vortex criteria available in
the literature (see [63] for a review) and it is clear that the structural changes
in a flow are inextricably linked to the way we identify a given flow pattern.
Within this section we focus exclusively on the topology of the streamlines.
The streamlines of a flow are closely related to the stream function ψ. For a
two-dimensional incompressible velocity field u = (u, v) there exist a stream
function ψ satisfying the property in (2.9). The autonomous dynamical system
in (2.15) can therefore be rewritten as

dx(s)

ds
=
∂ψ(x(s), y(s), t0)

∂y

dy(s)

ds
= −∂ψ(x(s), y(s), t0)

∂x
.

(2.16)

where ψ(x, y, t0) is the instantaneous stream function calculated for a fixed time
t0. We see that the dynamical system in (2.16) is completely described by the
scalar function ψ, and it has the structure of a planar Hamiltonian system. We
recall that the trajectories of a Hamiltonian system are simply the level sets of
the Hamiltonian function. Implying that the stream function is constant along
any streamline,

d

ds
ψ(x(s), y(s)) =

∂ψ

∂x

dx

ds
+
∂ψ

∂y

dy

ds
=
∂ψ

∂x

∂ψ

∂y
− ∂ψ

∂y

∂ψ

∂x
= 0. (2.17)

The analysis of a streamline pattern commences by locating the critical points
of the system in (2.16), i.e. the points where ∂xψ = ∂yψ = 0. In the context of
fluid dynamics, these points are traditionally called stagnation points since they
appear when the velocity field is zero, i.e. u = v = 0. The type of critical point
is determined by the eigenvalues of the Jacobian evaluated at a critical point
(further details can be found in e.g. [56],[40]). In our case, where we consider a
two-dimensional autonomous Hamiltonian system, the Jacobian simplifies to

J =




∂u
∂x

∂u
∂y

− ∂v
∂x −∂v∂y


 =




∂2ψ
∂x∂y

∂2ψ
∂y2

−∂2ψ
∂x2 − ∂2ψ

∂x∂y


 =

(
0 1
−1 0

)
·Hψ, (2.18)
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(a) (b)

Figure 2.1: Illustration the streamline pattern in a neighbourhood of a non-
degenerate critical point in a planar Hamiltonian system: (a) a
saddle point, (b) a center.

where Hψ is the Hessian of the stream function. We notice that det(J) =
det(Hψ) and tr(J) = tr(Hψ) = 0, and hence it follows that the eigenvalues of
J are given as

λ1,2 = ±
√
−det(Hψ). (2.19)

Since the dynamical system we are considering is a Hamiltonian system, the
possible types of critical points are therefore limited to the following three cases:

1. For a critical point where det(Hψ) < 0, the eigenvalues are real and satisfy
that λ1 = −λ2. Since both eigenvalues have non-zero real parts the critical
point is said to be hyperbolic.

2. A critical point where det(Hψ) > 0 has non-zero and purely imaginary
eigenvalues satisfying that λ1 = −λ2. Since the eigenvalues are non-zero
and purely imaginary the critical point is said to be elliptic.

3. For a critical point where det(Hψ) = 0, the eigenvalues are both zero and
the critical point is denoted as degenerate.

In the first case the critical point is hyperbolic and we can apply Hartmann-
Grobmans Theorem that states that the topology of a non-linear system can
be determined from the linearised system in a neighbourhood of a hyperbolic
critical point [56],[40]. A critical point where det(Hψ) < 0 is a saddle point for
the linearised system and the same therefore applies to our non-linear system
(2.16), see figure 2.1(a). A saddle point represents a stagnation point in the flow.
Since streamlines cannot intersect each other the stable and unstable manifolds
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are dividing the flow in four regions. If ψ takes the value K at a saddle point,
the dividing streamlines can be found by solving ψ(x, y) = K.

In the second case the critical point in the linearised system is a center, meaning
that trajectories are closed elliptical orbits around the critical point. For a
general non-linear system we cannot conclude that a center in the linearised
system will persists in the non-linear system. In our case where we consider a
Hamiltonian system, we recall, however, that the streamlines of the non-linear
system (2.16) are level curves for the stream function ψ. A local extremum of
the stream function ψ will therefore corresponds to a center in both the non-
linear system and the linearised. A center represents a point of stagnation in the
fluid where nearby fluid particles instantaneously rotate around the stagnation
point, see figure 2.1(b). A streamline center can therefore be interpreted as an
indicator of a vortex. Later we will discuss how this vortex criterion may lead
to ambiguous results.

In the two cases with non-degenerate critical points we have now found that
the topology the non-linear system (2.16) can be deduced from the linearised
system. If a critical point is instead degenerate, it is, as we shall see later,
the higher order derivatives that become decisive for the streamline pattern.
The idea of obtaining a qualitative understanding of a flow by analysing the
streamline topology, and especially the critical points, has been seen in early
studies such as [18] and [17].

So far, we have only considered the instantaneous streamline topology that can
be deduced from the stream function evaluated at a fixed time, i.e. ψ(x, y, t0).
By varying the time t0 (or any other parameter affecting the flow) the structure
of the streamlines might change. P. G. Bakker was the first to use bifurcation
theory to systematically describe these changes of flow patterns (for a review
of his results see [5]). In the following section, we give an introduction to a
mathematical framework that can be used to analyse such bifurcations system-
atically. The necessary tools from the bifurcation theory are introduced along
the way through a complete analysis of the simplest possible bifurcation. In the
analysis, we make use of higher order derivatives of ψ and therefore we make
the following necessary remark.

Remark 2.1 We assume that ψ is a continuous function with continuous
derivatives to the finite order required in our analysis.
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2.2.1.1 Bifurcations in the streamline topology

Often a dynamical system depends on some external parameters. In the context
of fluid dynamics, one could think of the Reynolds number or the aspect ratio
of the geometry. In our case we also consider the time t as a parameter since a
given streamline topology is associated with a fixed time t0. To account for this
dependence, we rewrite our system in (2.16) as follows

dx

ds
=
∂ψ(x, y; p)

∂y

dy

ds
= −∂ψ(x, y; p)

∂x
,

(2.20)

where p ∈ Rn is a vector containing all the possible parameters affecting the
system. An understanding of changes in the streamline structure can be achieved
by applying bifurcation theory to analyse the solutions we obtain by varying
parameters in (2.20). To analyse the structural changes we need to specify
what we mean by a change in the structure. This is done by first defining that
two flow patterns are qualitative alike if their governing Hamiltonian systems
are topological equivalent.

Definition 2.2 Let ψ and ψ′ be two stream functions defined on a open sub-
set of R2. The two corresponding Hamiltonian systems are topological equivalent
if there exist a continuous, bijective map h, whose inverse is also continuous,
that maps the streamlines of the first system onto streamlines of the second
system, preserving the direction of time. If h is only defined in a subset of the
flow domain, the two systems are locally topologically equivalent.

The concept of topological equivalence can be understood by imagining that a
given streamline pattern is printed on a sheet of rubber. Any other streamline
pattern that may appear by stretching or compressing the rubber sheet will then
be topological equivalent to the original pattern. For two topological equivalent
streamline patterns the number of critical points will always be the same as
the bijective mapping will map any critical point into a critical point. Having
specified what we mean by qualitatively alike streamline patterns, we can discuss
whether or not a small perturbation of the parameter values in p will result in a
change in the structure. For any non-critical point the Flow Box theorem gives
us an important result

Theorem 2.3 (The Flow Box theorem) Let H be a Hamiltonian and
let (x0, y0) be a non-critical point of the corresponding Hamiltonian system.
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Then there exist a neighbourhood of (x0, y0) the Hamiltonian system is topolog-
ical equivalent to the constant sytem: ẋ = 0, ẏ = 1.

For a proof see e.g. [38]. Let (x0, y0) be a non-critical point of (2.20) when p =
p0. Then there exist a neighbourhood of (x0, y0) where the system is topological
equivalent to the constant sytem. The continuity of ∂xψ and ∂yψ guarantees
that (x0, y0) will remain non-critical for sufficiently small variations in p0, and
the system will therefore reamin to topological equivalent to the constant sytem
in some neighbourhood of (x0, y0). Which means that the topology of the local
streamline pattern is preserved for sufficiently small variations in the parameter
values p0. To locate any structural changes in the streamline pattern we must
therefore look at the flow pattern close to a critical point. An important tool in
the following bifurcation analysis is the Implicit Function Theorem, which we
will use repeatedly throughout the thesis. It can be found in various textbooks,
here it is stated as given in [40],

Theorem 2.4 (Implicit Function Theorem) Let U be an open set
in Rn × Rk and F ∈ Cr(U,Rn) with r ≥ 1. Suppose there is a point (x0, µ0) ∈
U such that F (x0;µ0) = c and DxF (x0, µ0) is a nonsingular n × n matrix.
Then there are open sets V ⊂ Rn and W ⊂ Rk and a unique Cr function
ξ(µ) : W → V for which x0 = ξ(µ0) and F (ξ(µ);µ) = c.

To locate structural changes in the streamline pattern, we start by considering
the simplest case where the critical point is non-degenerate i.e. either a saddle
point or a center. Let (x0, y0) be a critical point of (2.20) when p = p0.
Without loss of generality, we can assume that critical point is located at the
origin and p0 = 0. We use subscript 0 to denote any function evaluation at
(x, y; p) = (0, 0; 0). As described above, a non-degenerate critical point satisfies
that

∂xψ0 = ∂yψ0 = 0, (2.21)

and
Hψ

0 =

(
∂xxψ0 ∂xyψ0

∂xyψ0 ∂yyψ0

)
is non-singular. (2.22)

It follows from the Implicit Function Theorem that there exist unique local
functions X(p) = x and Y (p) = y for which

X(0) = 0 and Y (0) = 0, (2.23)

and

∂xψ(X(p), Y (p); p) = 0 (2.24)
∂yψ(X(p), Y (p); p) = 0. (2.25)
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The fact that X and Y are local functions means that they are defined for p
in some neighbourhood of 0. The uniqueness of X and Y implies that there is
exactly one critical point in the neighbourhood of (x, y) = (0, 0). Furthermore,
the continuity of Hψ

0 guarantees that det(Hψ
0 ) will not change sign. Hence, it

is not difficult to see that any sufficiently small variation in p will only make
the critical point move slightly, keeping its type. Hence, we say that any non-
degenerate critical point is structurally stable. To locate any structural changes
in the streamline pattern we must therefore look for flow patterns with degen-
erate critical points satisfying that

∂xψ0 = ∂yψ0 = 0 (2.26)

and

Hψ
0 =

(
∂xxψ0 ∂xyψ0

∂xyψ0 ∂yyψ0

)
is singular. (2.27)

The analysis consist of two subcases, either Hψ
0 is the zero matrix or zero is

an eigenvalue of Hψ
0 with geometric multiplicity one. Here we will elaborate on

the latter case which is the simplest degeneracy. Without loss of generality, we
assume that the coordinate system is chosen such that

∂xxψ0 = ∂xyψ0 = 0 and ∂yyψ0 6= 0 (2.28)

In the following analysis the higher order derivatives become decisive for the
streamline pattern. As we will see, the simplest case occurs when

∂xxxψ0 6= 0 (2.29)

From the conditions in (2.26)-(2.29) we want to determine the local structure
of the streamlines close to a degenerate critical point located at the origin when
p = 0. If ψ takes the value K at the degenerate critical point the structure of
the streamlines can be found by solving ψ(x, y,0) = K. A Taylor expansion of
the stream function at the origin simplifies to

ψ(x, y,0) = K+a0,2y
2+a3,0x

3+a2,1x
2y+a1,2xy

2+a0,3y
3+O(‖(x, y)‖4), (2.30)

where

a0,2 =
1

2
∂yyψ0 6= 0

a3,0 =
1

6
∂xxxψ0 6= 0.

(2.31)
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Hence, the structure of the level curve of ψ passing through the degenerate
critical point can be determined by solving the equation

0 = a0,2y
2 + a3,0x

3 + a2,1x
2y + a1,2xy

2 + a0,3y
3 +O(‖(x, y)‖4). (2.32)

To obtain a parametric representation of the streamline, we make a change
of coordinates, y = mx, which is well-defined and invertible for any x 6= 0.
Furthermore we define

F (x,m) = a0,2m
2 + a3,0x+ a2,1xm+ a1,2xm

2 + a0,3xm
3 + · · · . (2.33)

From this definition of F , (2.32) can be rewritten as

0 = x2F (x,m). (2.34)

For any m, x = 0 is a solution with multiplicity two. To obtain a parametric
representation of the rest of the solution curve we must solve F (x,m) = 0. We
notice that F (0, 0) = 0 and as a result of the inequality assumption in (2.29),

∂xF (0, 0) = a3,0 6= 0. (2.35)

Hence, it follows from the Implicit Function Theorem that there exist a unique
local function X(m) = x for which X(0) = 0 and

F (X(m),m) = 0. (2.36)

Form the local function X we can determine a parametric representation of the
level curve given as r(m) = (X(m), Y (m)), where Y (m) = mX(m). By implicit
differentiation of (2.36) we obtain

∂xF (X(m),m)X ′(m) + ∂mF (X(m),m) = 0, (2.37)

which evaluated in m = 0 gives us that X ′(0) = 0 and Y ′(0) = 0. As expected
the origin is a singular point on the level curve of ψ, to classify the the sin-
gularity we compute the second order derivative, which are found by implicit
differentiating (2.37), and evaluating the derivatives in m = 0

∂xF (0, 0)X ′′(0) + ∂mmF (0, 0) = 0. (2.38)
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(a) (b)

Figure 2.2: Illustration of the streamline pattern in a neighbourhood of a de-
generate critical point being: (a) an ordinary cusp singularity, (b)
a rhamphoid cusp singularity.

Implying that

X ′′(0) = −2a0,2
a3,0

6= 0,

Y ′′(0) = 2X ′(0) + 0 ·X ′′(0) = 0

Y ′′′(0) = 3X ′′(0) + 0 ·X ′′′(0) = −6a0,2
a3,0

6= 0.

(2.39)

Since r′′(0) 6= 0, the critical point is a quadratic cusp. There are two possible
types of quadratic cusp singularities: ordinary and rhamphoid, see illustrations
of the two types in figure 2.2. Since r′′′(0) is not parallel to r′′(0), we can
conclude that two streamlines meet at the origin in a ordinary cusp singularity,
as illustrated in figure 2.2(a). Further details can be found in various text
books such as [50]. Having described the qualitative structure of the streamline
pattern exactly at the degenerate critical point we are interested in structural
changes of the pattern that occur at the degenerate critical point when external
parameters are varied. The question that then arises is, what new structures
can we expect after a given perturbation of the system? and is there a way to
classify all possible patterns that appear?

We find the answers by applying tools from bifurcation theory. Let us again
consider the system in (2.20). Let (x, y) = (0, 0) be a degenerate critical point
of the stream function ψ0(x, y), we say that the parametric family of stream
functions ψ(x, y,p) is an unfolding of the degenerate critical point if ψ(x, y,0) =
ψ0(x, y) in a neighbourhood of (0, 0). In other words, the unfolding represents all
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possible changes of the streamline structure that may occur for sufficiently small
changes of p. We start by considering the case where ψ depend on variations in
a single parameter p ∈ R and assume that (x, y) = (0, 0) is a degenerate critical
point when p = 0. Based on the discussion above, the critical point must fulfil

∂xψ0 = 0, ∂yψ0 = 0, ∂xxψ0 = 0, ∂xyψ0 = 0, (2.40)

Together with the following non-degeneracy conditions,

∂yyψ0 6= 0, ∂xxxψ0 6= 0, ∂xpψ0 6= 0. (2.41)

The last condition in (2.41) is introduced to ensure that the degenerate stream-
line pattern changes with variations in p, it will become clear from the analysis
below why it is exactly ∂xpψ0 that is chosen to be non-degenerate. We now
want to investigate what happens to the number and the type of critical points
in a neighbourhood of (0, 0) for sufficiently small changes in p. As we want to
employ the Implicit Function Theorem we consider the following Jacobian

J =
∂(∂xψ, ∂yψ)

∂(y, p)
=

(
∂xyψ ∂xpψ
∂yyψ ∂ypψ

)
. (2.42)

Since det(J0) = ∂yyψ0∂xpψ0 6= 0, J0 is non-singular and it follows from the
Implicit Function Theorem that there exist unique local functions Y (x) = y
and P (x) = p for which

Y (0) = 0 and P (0) = 0, (2.43)

and
∂xψ(x, Y (x), P (x)) = 0

∂yψ(x, Y (x), P (x)) = 0
(2.44)

Let p∗ 6= 0 be sufficiently small. By solving P (x∗) = p∗ we can determine
the x-coordinate(s) of the critical point(s) of ψ(x, y, p∗) in a neighbourhood of
(x, y) = (0, 0). The derivatives of P can be found by implicit differentiation of
(2.44)

J

(
Y ′(x)
P ′(x)

)
=

(
∂xxψ
∂xyψ

)
, (2.45)

which evaluated in x = 0 gives us

(
Y ′(0)
P ′(0)

)
= J−10

(
∂xxψ0

∂xyψ0

)
=

(
0
0

)
. (2.46)
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The second order derivative is found by implicit differentiating (2.45) and eval-
uating the derivatives in x = 0:
(
Y ′′(0)
P ′′(0)

)
= −J−10

((
∂xxxψ0

∂xxyψ0

)
+ 2J ′0

(
Y ′(0)
P ′(0)

))
= −J−10

(
∂xxxψ0

∂xxyψ0

)
(2.47)

where
J ′0 =

(
∂J

∂x
+
∂J

∂y
Y ′(x) +

∂J

∂p
P ′(x)

) ∣∣∣∣
0

=
∂J

∂x

∣∣∣∣
0

. (2.48)

Hence, it follows that

Y ′′(0) =
∂ypψ0∂xxxψ0 − ∂xpψ0∂xxyψ0

∂xpψ0∂yyψ0

P ′′(0) = − ∂xxxψ0

∂xpψ0∂yyψ0
6= 0

. (2.49)

By Taylor expanding P at the origin, we get that

P (x) = − ∂xxxψ0

2∂xpψ0∂yyψ0
x2 +O(x3). (2.50)

For sufficiently small values of p∗, the x-coordinate(s) of the critical point(s)
can be approximated as,

x∗ ≈ ±
√
−p∗ ∂xxxψ0

2∂xpψ0∂yyψ0
. (2.51)

The equation in (2.51) implies that the sign of p∗ changes the number of critical
points. If sign(∂xxxψ0) = sign(∂xpψ0∂yyψ0) there are two critical points when
p∗ < 0 and no critical point when p∗ > 0. In the other case where sign(∂xxxψ0) 6=
sign(∂xpψ0∂yyψ0) there are no critical points when p∗ < 0 and two critical point
when p∗ > 0. As discussed above, the type of critical point is determined by
the sign of det(Hψ) evaluated at the critical point. We notice that

ddet(H(x, Y (x), P (x))

dx

∣∣∣∣
0

= ∂xxxψ0∂yyψ0 6= 0. (2.52)

Since det(Hψ
0 ) = 0, the result in (2.52) implies that the determinant of the

Hessian changes sign when x changes sign. For a sufficiently small value of
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p < 0 p = 0 p > 0

Cusp Bifurcation (a new vortex is created)

Cusp Bifurcation (a vortex is destroyed)

D C S

Figure 2.3: Illustration of the streamline pattern during a cusp bifurcation in
the case where sign(∂xxxψ0) = sign(∂xpψ0∂yyψ0). For increasing
p the streamlines deform to create an ordinary cusp singularity
at the degenerate critical point (D). When increasing p further a
saddle (S) and a center (C) emerge which result in the formation
of a vortex.

p∗ where two critical points located approximately at ±x∗, it follows that one
critical point is a saddle and the other is a center. When p is varied through
p = 0 the center and saddle point coalesce and disappear. The streamline
pattern at a degenerate critical point is called structurally unstable because an
arbitrarily small perturbation in p may lead to different dynamics in the system
(2.20). The change of structure is denoted a cusp bifurcation or a saddle-center
bifurcation. The streamline structure in a neighbourhood of the bifurcation
point is illustrated in figure 2.3.

So far we have only considered a flow pattern depending on a single parameter
p. If we instead consider the case where ψ depends on k parameters, one could
ask how variations in the remaining k − 1 parameters would affect the cusp
bifurcation. Let us assume that p ∈ Rk and that (x, y) = (0, 0) is a degenerate
critical point when p = 0. Again we consider the simplest possible degeneracy
where

∂xψ0 = 0, ∂yψ0 = 0, ∂xxψ0 = 0, ∂xyψ0 = 0, (2.53)

and
∂yyψ0 6= 0, ∂xxxψ0 6= 0, (2.54)

Without loss of generality, we assume that the parameter that satisfies the
required non-degeneracy condition is the first element in the parameter vector
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p, i.e.
∂xp1ψ0 6= 0 (2.55)

To investigate how variations in the remaining parameters q = (p2, . . . , pk) ∈
Rk−1 affect the cusp bifurcation we consider the following Jacobian

J =
∂(∂xψ, ∂yψ, |Hψ|)

∂(x, y, p1)
=




∂xxψ ∂xyψ ∂xp1ψ
∂xyψ ∂yyψ ∂yp1ψ
∂x|Hψ| ∂y|Hψ| ∂p1 |Hψ|


 . (2.56)

Where |Hψ| denotes the determinant of the Hessian matrix of ψ. Evaluated at
(x, y; p) = (0, 0; 0), J simplifies to

J0 =




0 0 ∂xp1ψ0

0 ∂yyψ0 ∂yp1ψ0

∂x|Hψ|0 ∂y|Hψ|0 ∂p1 |Hψ|0


 . (2.57)

Since ∂x|Hψ|0 = ∂xxxψ0∂yyψ0 6= 0, J0 is non-singular and it follows from the
Implicit Function Theorem that there exist unique local functions X(q) = x,
Y (q) = y and P (q) = p1 for which

X(0) = 0, Y (0) = 0 and P (0) = 0 (2.58)

and

∂xψ(X(q), Y (q);P (q),q) = 0 (2.59)
∂yψ(X(q), Y (q);P (q),q) = 0 (2.60)

|Hψ(X(q), Y (q);P (q),q)| = 0 (2.61)

The uniqueness of X,Y and P implies that there is exactly one degenerate crit-
ical point in the neighbourhood of (x, y) = (0, 0). The continuity of ∂xxxψ,
∂yyψ and ∂xp1ψ guarantees that they will remain non-zero for sufficiently small
changes in q. The degenerate critical at (X(q), Y (q);P (q),q) therfore satisfies
the conditions for a cusp bifurcation point, and hence we conclude that any
cusp bifurcation is robust to variations in the remaining k− 1 parameters. The
equation P (q) = p1 defines a surface with dimension k − 1 in the parameter
space on which the cusp bifurcation occur. Since the parameter space has di-
mension k we say that the cusp bifurcation as codimension one. In general,
any bifurcation that occur in a robust way when a single parameter is varied is
referred to as having codimension one. We have now made a complete analysis
of the structural changes near a degenerate critical point satisfying the three
non-degeneracy conditions in (2.41). Any of these non-degeneracy conditions
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may, of course, turn out to be violated. To analyse the structural changes in
one of these cases, we should insist on the violation and turn the relevant non-
degeneracy condition into an additional degeneracy condition. This imposition
provides an additional equation that describes the location of a degenerate crit-
ical point. To fulfil the set of new degeneracy conditions an extra parameter is
require to take on a particular value and the bifurcation that occur when these
parameters are varied is referred to as having codimension two. The purpose of
the analysis in this section was to introduce a general method and the necessary
framework through an example. Therefore, we will not analyse any higher or-
der bifurcations in detail. These results can be found in [26] together with the
analysis of bifurcations in flows with symmetry and flows near a no-slip wall.

The above analysis of the cusp bifurcation is mainly driven by the Implicit
Function Theorem. In many previous studies the possible bifurcations of the
streamline pattern have been investigated systematically using simplifying nor-
mal form transformations [26], [25], [12], [9]. With this approach a normal form
of the stream function is constructed from a truncated Taylor expansion. The
dependence of the parameters p is incorporated in the coefficients of the Taylor
series and the normal form is a simplification of the stream function that is
equivalent up to a coordinate transformation [40]. The non-linear transforma-
tions result in a much simplified stream function which still represents the local
flow qualitatively correct. The advantage of using the normal form approach is
the possibility to find simplified systems which generalises to bifurcations with
higher codimension. A complete analysis with the normal form approach should
include a proof that the truncated normal form is topologically equivalent to the
full normal form. This proof is in some cases very technically demanding and
therefore left out in many previous studies [9]. By using a more direct approach
based mainly on the Implicit Function Theorem, we completely avoid these the-
oretical considerations. Another disadvantage of the normal form approach is
that it is not always clear how the coefficients in the normal form relate to real
physical parameters. With our approach, the requirements for a particular type
of bifurcation are precisely defined in terms of the derivatives of the physical
parameters.

In the original research we are to present in this thesis, we analyse the pos-
sible bifurcation events with an approach similar to the analysis of the cusp
bifurcation that was reviewed earlier in this section. Since we are not going to
use normal form approach, we will not make any further introduction to the
method here. All previous studies focusing on bifurcations in the streamline
pattern contribute to an overall toolbox that can be used to study qualitative
changes in the streamline topology in various flows. Some examples of previous
applications can be found in the following studies [6], [10], [14].
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2.2.2 Vorticity topology

The stream function is not Galilean invariant, and the streamline pattern may
therefore be affected by changing the frame of reference. In order to ensure that
a vortex is visible in the streamlines, it is necessary to choose a frame moving
with the speed of the vortex center. The use of closed or spiral streamlines
as a definition of a vortex will clearly fail in a flow containing several vortices
advecting at different speeds. Among others, Jeong & Hussain [30] argue that
an objective vortex definition must be Galilean invariant. The vorticity field ω
depends only on the derivatives of the velocity field is and hence it is invariant
under any Galilean transformation. It is therefore common to analyse the struc-
ture of the flow field by studying the topology of its vorticity field. We recall
that the vorticity describes the local spinning motion at a point in the fluid
and in the core of a vortex we expect the magnitude of vorticity to attain high
values relative to its environment. Assuming the flow is two-dimensional, the
vorticity is a scalar field. If a critical point of ω is an extremum, it is encircled
by closed level curves, and such a region can be thought of as a vortex core. In
other words, an extremum of vorticity is a so-called feature point for a vortex
[33].

The topology of the scalar vorticity field can be analysed by the exact same
approach as described for the topology of the stream function. Brøns & Bisgaard
were the first to extend the concept of topological fluid dynamics to also include
qualitative studies where the flow pattern is described by the topology of the
vorticity field [11]. This is done by considering the following planar Hamiltonian
system,

dx

ds
=
∂ω(x, y; p)

∂y

dy

ds
= −∂ω(x, y; p)

∂x
,

(2.62)

where ω is now the governing the Hamiltonian function. We see that a critical
point of the dynamical system in (2.62) corresponds to critical point for ω.
Assuming that ω is known either from experiments or from solving Navier-
Stokes equations, the results from the previous section can be applied directly
in the analysis of vorticity topology. A local extremum of the vorticity will thus
correspond to a center in Hamiltonian system (2.62). In general, it is difficult to
explain the physical significance of a saddle point in the vorticity field, but in the
previous section we saw how a saddle point play an important role in the creation
of a new center (i.e. a new vortex) through a cusp bifurcation. As mentioned
above, the cusp bifurcation is the simplest possible topological bifurcation and
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the only one with codimension one. However, all other bifurcations described
for the stream function can also be used directly in the context of vorticity.
Where the level curves of the stream function, in themselves, have a physical
interpretation, we are only interested in the critical points when studying the
topology of the vorticity field. Several studies have already taken advantage of
the framework to study qualitative changes in the vorticity topology. Heil et al.
use the framework to describe the creation of the von Kármán vortex street [27]
and Andersen et al. analyse the interaction of two vortices [1]. In chapter 5 we
apply the framework to analyse the topological bifurcations in the wake of an
oscillating cylinder.

2.2.3 Topology of other inherent flow structures

It is clear that any description of the structural changes in a flow must be inex-
tricably linked to the way we define the flow structure, in particular how a vortex
is defined. In the previous section we described how the framework within topo-
logical fluid dynamics has been extended to include qualitative studies where
flow pattern is described by the topology of the vorticity field. We believe,
however, that the concept could just as well be extended to cover topological
changes of any quantity describing the flow structure. In this project, we mainly
focus on describing the flow structure based on the vortices present in the fluid.
So far we have touched upon two different definitions of vortices: streamline
centers and extremal points of the vorticity field. There are, however, many
other vortex criteria available in the literature (see [63] for a review) and new
ideas are continuously being proposed, e.g. [24] and [64]. By taking a brief
look at the literature, we realise that it is not a trivial task to define a vortex
unambiguously [23]. Most commonly, vortices are defined as regions with closed
or spiralling streamlines, regions with low pressure or regions where the velocity
gradient tensor has complex eigenvalues. In [23], Haller argues that an objec-
tive vortex criteria should not only be Galilean invariant but also rotationally
invariant. As a result, he introduces the MZ criterion, where a vortex is a set
of fluid trajectories along which the strain acceleration tensor is indefinite over
directions of zero strain. Yet there is not a generally accepted definition of a
vortex, but to analyse the structural changes in a flow it is necessary to choose
a precise mathematical definiton. Within this thesis we will not try to evalu-
ate which criterion one should choose. Instead, we will analyse the structural
changes that occur as a result of a specific choice. Besides defining vortices as
vorticity extrema, we will mainly consider the widely used Q-criterion by Hunt
et al.[29]. The Q-criterion locates regions in a flow where the rotation dominates
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the strain, i.e. regions where

Q =
1

2
(‖Ω‖2 − ‖S‖2) > 0. (2.63)

Here S = 1
2 (∇u +∇uT ) is the symmetric strain rate tensor, Ω = 1

2 (∇u−∇uT )

is the skew-symmetric vorticity tensor and ‖X‖ =
√

tr(XXT ). In the two
dimensional setting we consider in this thesis, the Q-criterion is equivalent the
∆-criterion, the λ2-criterion [30] and the λci-criterion [65]. All of these simplify
to the determinant of the velocity gradient being positive, i.e.

Q(x, y) = det (∇u(x, y)) > 0. (2.64)

It is possible to construct a planar Hamiltonian system where Q is the govern-
ing Hamiltonian function, but a Q-vortex is not defined as a critical point of
Q, and the framework we already know from topological fluid dynamics can not
be directly applied in this setting. Instead of a feature point for a vortex, the
Q-criterion defines a vortex as a region. A bifurcation theory for Q-vortices is
presented in Paper I and further developed in Paper II. The overall approach
in these papers is similar to the one presented in section 2.2.1. The topological
changes of the Q = 0 contour curves are analysed by locating structurally un-
stable flow patterns. Since the analysis makes use of higher order derivatives of
Q the following assumption applies throughout the analysis.

Remark 2.5 We assume that Q is a continuous function with continuous
derivatives to the finite order required in our analysis.
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Chapter 3

Bifurcation theory for
vortices with application to

boundary layer eruption

3.1 Introduction

The primary focus of the paper presented in the following section is to develop
a bifurcation theory for Q-vortices. The paper contributes to the field of topo-
logical fluid dynamics and expands the framework by including an analysis of
topological changes in the vortex structure described by the Q-criterion [29].
The topology of a Q-vortex is completely determined by the topology of the
Q = 0 level set, that encircles a vortex region with positive Q-value. In the pa-
per, we develop a bifurcation theory for these level curves. The theory describes
under which conditions we see creation/destruction and merging/splitting of
Q-vortices. It turns out that the critical points again become important in the
analysis. This time, it is the critical points of Q that are located exactly on
the zero level curves that are the key to locate any structural changes. The
main argument in the bifurction analysis is based on the fact that a function
near a non-degenerate critical point can be represented in a convenient way by
an appropriate choice of local coordinates. This result is known as the Morse
lemma and can be found in various textbooks, such as [56]. The Morse lemma
generalises to functions defined on a differentiable manifold of any dimension,
but for the purpose required in this paper, the following version is sufficient.
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Theorem 3.1 (The Morse lemma) Let V ⊆ R2 be open and let F be a
real-valued smooth function on V . If (x0, y0) is a non-degenerate critical point
for F , then there exists a coordinate chart (x̂, ŷ) in a neighbourhood U of (x0, y0)
such that x̂(x0, y0) = 0, ŷ(x0, y0) = 0 and

F (x̂, ŷ) = F (x0, y0)± x̂2 ± ŷ2, (3.1)

where the signs depend on the Hessian matrix, H, of F at (x0, y0) in the follow-
ing way.

F (x̂, ŷ) = F (x0, y0) + x̂2 − ŷ2 if HF
0 is indefinite (3.2)

F (x̂, ŷ) = F (x0, y0) + x̂2 + ŷ2 if HF
0 is positive definite (3.3)

F (x̂, ŷ) = F (x0, y0)− x̂2 − ŷ2 if HF
0 is negative definite. (3.4)

Based on the Morse lemma and the Implicit Function Theorem, we prove that
there are two different types of local changes in the vortex structure that may
occur when the parameter t is varied. We denote these structural changes as
pinching and punching bifurcations. As we want to analyse the flow pattern in
cases where the fluid interact with a structure, we extend the theory to include
bifurcation points located at a no-slip boundary. The boundary condition im-
plies, however, that any point on no-slip wall is a critical point for Q lying on the
zero level curve. To locate any possible bifurcation points we therefore have to
perform a higher order derivative test which result in two different types of local
changes. We denote these structural changes as wall-pinching and wall-punching
bifurcations.

Besides its primary focus on developing a bifurcation theory for Q-vortices,
the paper also contains a substantial analysis of the early stages in boundary
layer eruption. This numerical part of our study shows that there is a single
codimension two point within our parameter range. This codimension two point
correspond to the coalescence of two codimension one bifurcations which are
associated with the creation and subsequent destruction of one of the vortices.
We extend our theory to include this codimension two phenomenon and show
that it occurs at a critical point of Q, where the non-degeneracy condition ∂tQ 6=
0 is violated. In our theoretical description of the phenomenon, we turn the
non-degeneracy condition into an additional degeneracy condition by insisting
on its violation. With an additional degeneracy condition the bifurcation point
will not be robust to variations in other parameters. To represent all possible
changes in the vortex structure, it is therefore necessary to introduce a second
parameter, r, and analyse the parametric family of level curves Q(x, y, t, r) = 0
for sufficiently small variations in (t, r).

The application to the boundary layer eruption problem illustrates how nu-
merical simulations can be interpreted within the framework of our bifurcation
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theory. Boundary layer eruption is a classical fluid mechanical problem where
a large vortex is convected close to a no-slip wall. The vortex induces some
vorticity in the boundary layer, which may erupt and form secondary vortices.
We investigate this process at moderate Reynolds numbers in the range from
Re = 750 to Re = 2250 and show that boundary layer eruption can be described
as sequences of the four possible bifurcations with codimension one. The main
result of the numerical part of the study is a bifurcation diagram showing that
the final outcome of the evolution is the same: two vortices emerge from the
erupting boundary layer for all values of the Reynolds numbers in the consid-
ered range. In addition, the bifurcation diagram makes it clear that most of
the bifurcations seem very robust to variations in Reynolds numbers. The only
exception is the codimension two point that separates the the parameter space
in two regions with distinct evolution of the topology of the vortices. The ro-
bustness of the process and its simple description in terms of bifurcations call
for further studies either with higher Reynolds numbers or a more complex flow
geometry. This is exactly what follows in the chapter 4 where our second paper
is presented. In this paper, the bifurcation theory is further developed to be able
to describe the codimension two phenomenon associated with vortex merging.

3.2 Paper I

The paper in this section is a reprint of the version that has been accepted
for publication in Journal of Fluid Mechanics. The original publication can be
found here:

Nielsen, A. R., Heil, M., Andersen, M., & Brøns, M. (2019). Bifurcation
theory for vortices with application to boundary layer eruption. Journal of Fluid
Mechanics, 865(865), 831–849. https://doi.org/10.1017/jfm.2019.97 [47]

We want to make it clear that the paper is partly based on ideas from my master
thesis [45] and partly based on results that are original work done during the
Ph.D period.

The analysis of the bifurcations with codimension one and the majority of the
simulations are results from the master’s thesis. The extension of the theory
with a codimension two analysis is original work done during the Ph.D period.
The same is true for the entire analysis of the numerical results in the context
of this new theory. All figures and the final wording of the paper are also made
as part of the Ph.D work.
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Abstract

We develop a bifurcation theory describing under which conditions vortices are created
or destroyed in a two dimensional incompressible flow. We define vortices using the
Q-criterion and analyse the vortex structure by considering the evolution of the zero
contours of Q. The theory identifies topological changes of the vortex structure and
classifies these as four possible types of bifurcations, two occurring away from boundaries,
and two occurring near no-slip walls. Our theory provides a description of all possible
codimension-one bifurcations where time is treated as the bifurcation parameter. To
illustrate our results we consider the early stages of boundary layer eruption at moderate
Reynolds numbers in the range from Re = 750 to Re = 2250. By analysing numerical
simulations of the phenomenon we show how to describe the eruption process as sequences
of the four possible bifurcations of codimension one. Our simulations show that there is
a single codimension-two point within our parameter range. This codimension-two point
arises at Re = 1817 via the coalescence of two codimension-one bifurcations which are
associated with the creation and subsequent destruction of one of the vortices that erupt
from the boundary layer. We present a theoretical description of this process and explain
how the occurrence of this phenomenon separates the parameter space into two regions
with distinct evolution of the topology of the vortices.

1. Introduction

Vortices are coherent structures in a fluid flow, and much of basic fluid dynamics re-
search is focused on understanding their dynamics, interaction, creation and destruction.
By our intuitive understanding it might not be difficult to identify a strong vortex in a
flow. It is, however, harder to locate its boundaries and to explain how it was created.
To answer these questions we need a precise mathematical definition of a vortex. There
are many different vortex criteria available in the literature (see Zhang et al. (2018) for
a review) and new ideas are continuously being proposed, e.g. Haller et al. (2016) and
Zhong et al. (2017). Each of these criteria identify different structures as vortices and as
yet there is no generally accepted definition of a vortex. In the present paper we identify
vortices based on the widely used Q-criterion (Hunt et al. 1988). The Q-criterion locates
regions in a flow where the rotation dominates the strain. As a variety of other Galilean-
invariant vortex criteria it is based on a decomposition of the velocity gradient tensor,
∇u. In its general form, Q is defined as the following measure of stretching relative to
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rotation,

Q =
1

2
(‖Ω‖2 − ‖S‖2), (1.1)

where S = 1
2 (∇u +∇uT ) is the symmetric strain rate tensor, Ω = 1

2 (∇u−∇uT ) is the

skew-symmetric vorticity tensor and ‖X‖ =
√

tr(XXT ). The criterion defines a vortex as
a region with positive Q-value. In a two dimensional setting the Q-criterion is equivalent
to other frequently used vortex criteria such as the ∆-criterion, the λ2-criterion (Jeong
& Hussain 1995) and the λci-criterion (Zhou et al. 1999). All of these simplify to the
determinant of the velocity gradient being positive, i.e.

Q(x, y) = det (∇u(x, y)) > 0. (1.2)

In practice it is common to choose a non-zero threshold to identify the vortex bound-
aries. The threshold is ideally chosen such that strong vortices are captured while small
spurious vortices (e.g. those arising as artefacts in data from numerical simulations) are
ignored. Unfortunately, it is very difficult, if not impossible, to determine a suitable
threshold value a priori because the optimal threshold value tends to be problem
dependent (see Chen et al. (2015) and Chakraborty et al. (2005)). In this paper we
therefore consider the Q-criterion with zero threshold as defined in (1.2).

Having established a criterion that identifies vortices in a precise mathematical way,
we employ bifurcation theory to analyse under which conditions vortices are created,
destroyed, merge or split. This is done by considering Q as a function of time, t, which
we treat as the primary bifurcation parameter. The main result of our studies is a
detailed analysis of the creation, destruction or merging of vortices in terms of changes
in the topology of the level set Q = 0. Previous topological studies of bifurcations
of structures in flows have focused on critical points for either the velocity (see e.g.
Brøns 2007; Balci et al. 2015) or the vorticity (Brøns & Bisgaard 2006; Heil et al.
2017). Here we are concerned with bifurcations of curves rather than critical points,
and a different mathematical approach is needed. The overall strategy is, however,
the same: A bifurcation is characterized by a number of degeneracy conditions which
state that certain combinations of derivatives of Q must be zero. These are combined
with non-degeneracy conditions which are inequalities ensuring that certain higher-
order derivatives are non-zero. The degeneracy conditions are equations that make it
possible to locate a bifurcation point. To be able to determine where in space and time a
certain bifurcation occurs, three degeneracy conditions are needed. The non-degeneracy
conditions ensure a certain regularity of the Q function allowing us to employ the Implicit
Function Theorem to determine the properties of the level curve Q = 0 close to the
bifurcation point. The bifurcations obtained in this way are denoted codimension-one
bifurcations. If an additional parameter, such as the Reynolds number Re, is varied, one
of the non-degeneracy conditions may be violated at a given value of that parameter.
Subject to further non-degeneracy conditions, a two-parameter bifurcation diagram can
be established, and the bifurcation is then said to have codimension two. Adding more
parameters, this procedure can then be repeated, but the number of possible bifurcations
and the complexity of the bifurcation diagrams increase rapidly with the codimension.

In the present paper we obtain a complete list of codimension-one bifurcations. There
are four types, Pinching and punching bifurcations occur away from boundaries, while
wall-pinching and wall-punching are bifurcations of vortices attached to a no-slip wall.

To illustrate how our theory can be used, we apply it to the classical fluid mechanics
problem of boundary layer eruption. In this problem a large vortex is convected close to
a no-slip wall. This vortex induces vorticity in the boundary layer which may, or may
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(x∗, y∗)

x = X(y, t∗)x = X(y, t)

Q(X(y, t), y, t) = 0

Q(X(y, t∗), y, t∗) = 0

Figure 1: Illustration of how a small change in time away from t∗ affects the topological
structure of the contour curve, Q = 0, close to a non-critical point (x∗, y∗). Since the
topological structure is unchanged, (x∗, y∗) is not a bifurcation point.

not, erupt and form secondary vortices. This process has previously been studied by
Doligalski & Walker (1984), Obabko & Cassel (2002), Kudela & Malecha (2009) and
Andersen (2013) among others. We consider the early stages of boundary layer eruption
at moderate Re. By tracking the flow structures for fixed Re we show that our approach
allows a rigorous description of the creation of vortices as a series of bifurcations of
the zero contours of Q. The bifurcations are generally of codimension one, but a single
codimension-two point is found. The corresponding value of Re marks a change in the
topology of the vortex pattern, and in an appendix we provide a detailed analysis of this
case.

2. Bifurcations of Q = 0 curves away from boundaries

We start by considering a region of fluid which is not in the vicinity of any boundary.
Our goal is to characterize under which conditions we see topological changes in the local
structure of the zero contour curves of Q. As a starting point we consider a non-critical
point on the zero contour curve, i.e. a point (x∗, y∗, t∗), where

Q(x∗, y∗, t∗) = 0 (2.1)

and

∂xQ(x∗, y∗, t∗) 6= 0 or ∂yQ(x∗, y∗, t∗) 6= 0. (2.2)

In the case where ∂xQ(x∗, y∗, t∗) is non-zero it follows from the Implicit Function
Theorem that there exist a unique local function X(y, t) = x satisfying X(y∗, t∗) = x∗

and Q(X(y, t), y, t) = 0. The uniqueness of X implies that we only have a single
zero contour curve close to (x∗, y∗) at time t = t∗. Furthermore, the continuity of X
guarantees that the zero contour curve will not change its topological structure for
any sufficiently small changes in time, as illustrated in figure 1. We therefore conclude
that (x∗, y∗) cannot be a bifurcation point at time t∗. If we consider the case where
∂xQ(x∗, y∗, t∗) = 0 we can give a completely similar argument based on the fact that
∂yQ(x∗, y∗, t∗) is non-zero. This implies that we must look for critical points of Q to
identify any possible bifurcation points on the zero contour curve.
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For simplicity we choose a coordinate system such that the critical point is located at
(x, y) = (0, 0) at time t = 0 and we use subscript 0 to denote any function evaluation at
(x, y, t) = (0, 0, 0). Based on the discussion above, bifurcation points must fulfil

Q0 = 0, ∂xQ0 = 0, ∂yQ0 = 0. (2.3)

If the Hessian matrix is non-singular at (x, y, t) = (0, 0, 0), it can be used to classify
the type of critical point. Hence we take as the first non-degeneracy condition

HQ
0 =

(
∂xxQ0 ∂xyQ0

∂xyQ0 ∂yyQ0

)
is non-singular. (2.4)

As the second non-degeneracy condition we assume

∂tQ0 6= 0, (2.5)

which will be needed to apply the Implicit Function Theorem later in the analysis.
Based on the above assumptions, we will now show that a bifurcation occurs at

(x, y, t) = (0, 0, 0). Applying that Q0 = 0 and ∂tQ0 6= 0, it follows from the Implicit
Function Theorem that there exist a unique local function T (x, y) = t satisfying that
T0 = T (0, 0) = 0 and Q(x, y, T (x, y)) = 0. The equation t = T (x, y), for a given t, will
therefore determine the zero contour curve of Q at that time. In order to characterize
the topological structure of the contour curves we need some properties of the function
T . By implicit differentiation of Q, we obtain that

∂xT0 = −∂xQ0

∂tQ0
= 0, ∂yT0 = −∂yQ0

∂tQ0
= 0 (2.6)

and the Hessian

HT
0 =

(
∂xxT0 ∂xyT0,
∂xyT0 ∂yyT0

)
= − 1

∂tQ0
HQ

0 . (2.7)

Equation (2.6) shows that (x, y) = (0, 0) is a critical point for T . Since ∂tQ0 is nonzero

and HQ
0 is non-singular, it follows from (2.7) that HT

0 is also non-singular and the critical
point is therefore a saddle point, a local maximum or a local minimum. With these
conditions we can apply the Morse Lemma (Wiggins 2003) on T and conclude that in a
neighbourhood of the critical point there exists a, possibly nonlinear, coordinate change,
x̂ = x̂(x, y), ŷ = ŷ(x, y), such that

x̂(0, 0) = 0, ŷ(0, 0) = 0 (2.8)

and

T (x̂, ŷ) = x̂2 + ŷ2 if HT
0 is positive definite, (2.9a)

T (x̂, ŷ) = −x̂2 − ŷ2 if HT
0 is negative definite, (2.9b)

T (x̂, ŷ) = x̂2 − ŷ2 if HT
0 is indefinite. (2.9c)

These three cases correspond to the critical point being a local maximum, a local
minimum or a saddle point of T . We now consider these cases in separate sections.

2.1. HQ
0 definite: punching bifurcation

First we consider the case where HQ
0 is positive or negative definite. We see from (2.7)

that HT
0 is definite as well. In order to determine if HT

0 is positive or negative definite,
we consider the sign of the trace of HT

0 ,
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(a) (b) (c)

(0, 0)

t = 0 t > 0t < 0

Figure 2: Illustration of the local changes in structure of the Q = 0 contour curve
during a punching bifurcation. The figure shows the forward version where sign(∂tQ0) 6=
sign(tr(HQ

0 )). At the bifurcation value t = 0, (0, 0) is the only point where Q = 0.

sign(tr(HT
0 )) = −sign(∂tQ0)sign(tr(HQ

0 )). (2.10)

In the case where sign(∂tQ0) 6= sign(tr(HQ
0 )), HT

0 is positive definite and it follows
from (2.9a) that in a neighbourhood of (0, 0) there exists a coordinate system (x̂, ŷ) where
the zero contour curve of Q is given by

T (x̂, ŷ) = x̂2 + ŷ2 = t. (2.11)

For t < 0, the right-hand side of (2.11) is negative. In this case there cannot be any
point (x̂, ŷ) close to (0, 0) which is part of the zero contour curve of Q. This situation
is illustrated in figure 2 (a). For t = 0 the only possible solution to this equation is
(x̂, ŷ) = (0, 0). In the original coordinates this solution corresponds to the critical point.
The zero contour curve of Q at t = 0 is therefore only a single point as illustrated in
figure 2 (b). On the other hand, if t > 0, the right-hand side of (2.11) is positive and the
solution curve is a circle with radius

√
t. If t is chosen sufficiently close to 0 we ensure the

circle is contained in the neighbourhood where T is defined. In this case the zero contour
curve of Q is topologically equivalent to the illustration in figure 2 (c). We will denote
this kind of local changes in the structure a punching bifurcation of the contour curve,
since the graph of Q punches through the level Q = 0 at the bifurcation point. From
a physical point of view a punching bifurcation corresponds to a vortex being created
at the bifurcation point. We notice, however, that the result does not tell us anything
about the sign of Q inside the zero contour. A punching bifurcation could therefore also
correspond to the creation of a ”hole” inside a vortex region. It is easy to see that the
two different scenarios are distinguished by the sign of ∂tQ0.

If we instead consider the case where sign(∂tQ0) = sign(tr(HQ
0 )), then HT

0 is negative
definite and there exists a coordinate system (x̂, ŷ) where the zero contour curve of Q is
given as

T (x̂, ŷ) = −x̂2 − ŷ2 = t, (2.12)

or equivalently,

−T (x̂, ŷ) = x̂2 + ŷ2 = −t. (2.13)

We notice that this equation is similar to (2.11) except for the sign of t. The change
of sign gives us the time-reversed dynamics. By an analysis completely similar to the
one above, a punching bifurcation happens at the critical point but in this case the
bifurcation happens ”backwards” meaning that a vortex disappears at the bifurcation
point.
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(a) (b) (c)

t = 0 t > 0t < 0

(0, 0)

(d) (e) (f)

t = 0 t > 0t < 0

Figure 3: Illustration of the local changes in structure of the Q = 0 contour curves during
a pinching bifurcation. The solid lines illustrate the topology in a neighbourhood of the
bifurcation point (0, 0). The dashed lines in Figs. (a-c) show an example of a possible
global structure for the case where the bifurcation results in the splitting of a single
vortex into two; Figs. (d-f) illustrate the case when two vortices merge.

It is worth noting that the above analysis is done in the (x̂, ŷ)-coordinate system.
In the original coordinates the topology is the same but the vortex would instead
approximately be an ellipse. The shape and orientation of this ellipse can be determined
by the eigenvalues and eigenvectors of HQ

0 .

2.2. HQ
0 indefinite: pinching bifurcation

Now we consider the case where HQ
0 is indefinite. Then HT

0 is also indefinite according
to (2.7). It follows from (2.9c) that in a neighbourhood of (0, 0) there exists a coordinate
system (x̂, ŷ) where the zero contour curve of Q is given by

T (x̂, ŷ) = x̂2 − ŷ2 = t. (2.14)

For t < 0, the solution to this equation is a hyperbola with the ŷ-axis as the principal
axis; the zero contour curve of Q is illustrated in figure 3 (a). At t = 0 the solution is
the pair of straight lines given by ŷ = x̂ and ŷ = −x̂ which intersect at (0, 0) as shown
in figure 3 (b). If t > 0, the solution curve is a hyperbola with the x̂-axis as the principal
axis; see figure 3 (c) for a sketch of the zero contour curve of Q. We will denote this kind
of local change in structure a pinching bifurcation of the Q = 0 curve. The dashed lines
in figures 3(a-c) illustrate how the pinching bifurcation can represent a vortex splitting
into two. If the local level curves are connected globally up/down rather than left/right,
the bifurcation represents the merging of two vortices, as shown in figures 3(d-f).
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3. Bifurcations of Q = 0 curves at a no-slip boundary

In this section we consider a region of a fluid where a stationary no-slip boundary is
present. We aim to describe under which conditions the zero contours of Q occur and how
they erupt from that boundary. For simplicity we consider a boundary which coincides
with the x-axis. The theory can easily be generalized to any boundary described by a
smooth curve. We choose the coordinate system such that fluid is present in the region
where y > 0. The imposed no-slip conditions are then given by

u(x, 0, t) = ∂yψ(x, 0, t) = 0,

v(x, 0, t) = −∂xψ(x, 0, t) = 0,

where ψ is the stream function. We notice that the velocities do not change along the
boundary and all the higher order derivatives in the x direction are therefore equal to
zero,

∂xxψ(x, 0, t) = ∂xxxψ(x, 0, t) = ∂xxxxψ(x, 0, t) = · · · = 0, (3.1)

and

∂xyψ(x, 0, t) = ∂xxyψ(x, 0, t) = ∂xxxyψ(x, 0, t) = · · · = 0. (3.2)

Since the Q-value is defined as the determinant of the velocity gradient it can be
expressed in terms of the stream function as

Q(x, y, t) = ∂yyψ(x, y, t)∂xxψ(x, y, t)− ∂xyψ(x, y, t)2. (3.3)

From this expression it is clear that Q(x, 0, t) ≡ 0, implying that any point on a no-slip
boundary will be part of the zero contour curve for Q at any time t. By differentiating
(3.3) and exploiting that the higher order derivatives in (3.1) and (3.2) are zero, we find
that

∂xQ(x, 0, t) = 0, and ∂yQ(x, 0, t) = 0, (3.4)

and

det (HQ(x, 0, t)) = ∂xxQ(x, 0, t)∂yyQ(x, 0, t)− ∂xyQ(x, 0, t)2 = 0. (3.5)

Thus, for any time t, every point on a no-slip boundary is a critical point for Q lying on
the zero contour curve. Since the second derivative test is inconclusive according to (3.5),
we need to perform a higher order derivative test in order to locate possible bifurcation
points. By Taylor’s Theorem with integral remainder, we have for any fixed x and any
fixed t

Q(x, y, t) = Q(x, 0, t) + ∂yQ(x, 0, t)y + Q̃(x, y, t)y2

= Q̃(x, y, t)y2,
(3.6)

where Q̃ is the continuous function defined as

Q̃(x, y, t) =

∫ 1

0

∂yyQ(x, y(1− s), t)s ds. (3.7)

From (3.6) we notice that Q = 0 if y = 0 or if Q̃ = 0. We can therefore determine

the non-boundary part of the line where Q = 0 by finding the zero contour curve of Q̃.
Furthermore, we see that the sign of Q is determined by the sign of Q̃ for y 6= 0. A region
with positive Q̃-value is therefore classified as a vortex region. Hence, we will focus on
the characteristics of Q̃ instead of Q. We are especially interested in finding the zeros of
Q̃ and it is therefore natural to ask under which physical conditions Q̃ actually has zeros
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(0, 0)
y = 0

x = X(y, 0)x = X(y, t)

(X(0, t), 0)

Q̃(X(y, t), y, t) = 0

Q̃(X(y, 0), y, 0) = 0

Figure 4: Illustration of how a small change in time affects the topological structure of the
contour curve, Q̃ = 0, close to a non-critical boundary point (0, 0). Since the topological
structure is unchanged, (0, 0) is not a bifurcation point.

on the boundary. Since

ω(x, 0, t) = −∇2ψ(x, 0, t) = −∂yyψ(x, 0, t), (3.8)

it follows from (3.7) and (3.3) that

Q̃(x, 0, t) =
1

2
∂yyQ(x, 0, t)

=
1

2
∂yyψ(x, 0, t)∂xxyyψ(x, 0, t)− ∂xyyψ(x, 0, t)2

=
1

2
ω(x, 0, t)∂xxω(x, 0, t)− ∂xω(x, 0, t)2.

(3.9)

This shows that Q̃ on the boundary depends only on the vorticity and its derivatives
along the boundary. Hence, bifurcations of Q = 0 at the wall can be expressed in terms of
the vorticity. There is no similar connection between Q and ω away from the boundary.
In the rest of this section we consider zero points of Q̃ on the boundary and prove under
which conditions these correspond to bifurcation points of the zero contour curves of
Q. For simplicity we choose a coordinate system such that zero points are located at
(x, y) = (0, 0) at time t = 0 and, as before, we use the subscript 0 to denote any function
evaluation at (x, y, t) = (0, 0, 0). First we consider a point on the no-slip boundary
satisfying

Q̃0 = 0, (3.10)

∂xQ̃0 6= 0. (3.11)

By the Implicit Function Theorem it then follows that there exists a unique local
function X(y, t) = x satisfying X(0, 0) = 0 and Q̃(X(y, t), y, t) = 0. The continuity of X
implies that, for any fixed t sufficiently close to t = 0, there is a unique curve x = X(y, t),

which intersects the boundary at (x, y) = (X(0, t), 0). Since Q̃ = 0 along this curve, it

follows that for any t sufficiently close to t = 0 the zero contour curve of Q̃ has a unique
intersection with the boundary in a neighbourhood of (x, y) = (0, 0). Figure 4 illustrates

how the zero contour of Q̃ will maintain its intersection with the boundary for sufficiently
small changes in time. To identify possible bifurcation points, we must therefore consider
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(0, 0)

t < 0 t = 0 t > 0

(a) (b) (c)

Figure 5: Illustration of the local changes in structure under a wall-punching bifurcation.
The figure illustrates the forward version where sign(∂tQ̃0) 6= sign(∂yQ̃0). The solid lines
are the visible zero contour curves of Q, while the dotted lines are outside the region
containing the fluid.

a boundary point (x, y) = (0, 0) satisfying that

Q̃0 = 0, ∂xQ̃0 = 0. (3.12)

To characterize bifurcations of codimension one we assume that Q̃ satisfies the simplest
non-degeneracy conditions

∂yQ̃0 6= 0, ∂xxQ̃0 6= 0, and ∂tQ̃0 6= 0. (3.13)

At such a point it follows from the Implicit Function Theorem that there exists a
unique local function Y (x, t) = y such that Y0 = Y (0, 0) = 0 and Q̃(x, Y (x, t), t) = 0.

This implies that for any fixed t sufficiently close to t = 0, the zero contour curve of Q̃
is given by the unique curve y = Y (x, t). By implicitly differentiating Q̃, we obtain that

∂xY0 = −∂xQ̃0

∂yQ̃0

= 0 (3.14)

and

∂tY0 = − ∂tQ̃0

∂yQ̃0

6= 0 ∂xxY0 = −∂xxQ̃0

∂yQ̃0

6= 0. (3.15)

Equations (3.14) and (3.15) show that the local behaviour of Y around (x, t) = (0, 0)

will now depend on the sign of the terms ∂yQ̃0, ∂xxQ̃0 and ∂tQ̃0. In the two sections

below we consider the case where ∂xxQ̃0 and ∂yQ̃0 have the same sign and and the case
where their signs are different. As we will see these cases result in two different types of
bifurcations.

3.1. Wall-punching bifurcation

We first consider the case where

sign(∂xxQ̃0) = sign(∂yQ̃0). (3.16)

Furthermore, we assume that ∂tQ̃0 has the opposite sign of ∂xxQ̃0 and ∂yQ̃0. Then
∂xxY0 < 0 and there is an interval around x = 0 where Y (x, 0) is a strictly concave
function with maximum value in x = 0. The corresponding zero contour curve of Q is
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t < 0 t = 0 t > 0
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Figure 6: Illustration of the local changes in structure under a wall-pinching bifurcation.
The figure illustrates the forward version where sign(∂tQ̃0) 6= sign(∂yQ̃0). The solid
lines are the visible zero contour curves of Q, while the dotted line is outside the region
containing the fluid.

illustrated in figure 5(b). To investigate what happens to the curve for t 6= 0 we apply
the Implicit Function Theorem yet again. By the conditions in (3.14) and (3.15) there
exists a unique function T (x) = t, such that T0 = T (0) = 0 and Y (x, T (x)) = 0 for any
x sufficiently close to 0. By implicit differentiation of Y , we obtain that

∂xT0 = −∂xY0
∂tY0

= 0 and ∂xxT0 = −∂xxY0
∂tY0

> 0.

These conditions imply that T is a strictly convex function with minimum value at
x = 0. Hence, there are no solutions to the equation T (x) = t if t < 0 and two solutions if
t > 0. Since T is a unique function we conclude that in a neighbourhood of x = 0, Y has no
zero points for t < 0 and two zero points for t > 0. These two scenarios are illustrated in
figure 5(a) and 5(c). The structural change we observe corresponds to the zero contour of

Q̃ breaking through the boundary at the bifurcation point (x, y, t) = (0, 0, 0). We denote
this kind of structural change a wall-punching bifurcation. From a physical point of view,
a wall-punching bifurcation corresponds to a vortex being created attached to the wall.
If we instead consider the situation where

sign(∂xxQ̃0) = sign(∂yQ̃0) = sign(∂tQ̃0), (3.17)

an entirely similar argument shows that the wall-punching bifurcation will occur
backwards and describes the case where a vortex disappears through the boundary.

3.2. Wall-pinching bifurcation

So far we have only considered the case where (3.16) is satisfied. If we instead consider
the case where

sign(∂xxQ̃0) 6= sign(∂yQ̃0), (3.18)

Y (x, 0) is strictly convex. From arguments similar to the above it is easy to prove that if

sign(∂tQ̃0) 6= sign(∂yQ̃0), the zero contour curve will intersect the wall in two points for

t < 0 and will pinch off the wall for t > 0, as shown in figure 6. For sign(∂tQ̃0) =

sign(∂yQ̃0) the reverse change occurs. We denote this type of structural change a
wall-pinching bifurcation. From a physical point of view a wall-pinching bifurcation
corresponds to a vortex detaching from or attaching to the wall.
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4. Degeneracies and codimension-two bifurcations

In the previous sections we have provided a complete analysis of all possible bifurcations
of codimension one, i.e. bifurcations that occur at a specific value of the bifurcation
parameter which we chose to be time. Each of the four bifurcations occur under a specific
set of degeneracy conditions (equalities) and non-degeneracy conditions (inequalities).
The non-degeneracy conditions may, of course, turn out to be violated. To determine
under which conditions this occurs we turn the relevant non-degeneracy condition into
an additional degeneracy condition by insisting on its violation. This imposition then
provides an additional equation that allows us to determine particular values of some
additional parameter (e.g. the Reynolds number) at which this degeneracy occurs. Such
points are known as codimension two points because they require two parameters (here
time and the Reynolds number) to take on particular values for the degenerate behaviour
to occur.

For the bifurcations away from boundaries the non-degeneracy conditions (2.4) and
(2.5) require that the Hessian of Q is non-singular and that ∂tQ0 6= 0, respectively. In
Appendix A we analyse the case where the second non-degeneracy condition is broken,
such that the degeneracy conditions are

Q0 = ∂xQ0 = ∂yQ0 = ∂tQ0 = 0. (4.1)

The first non-degeneracy condition is kept, and other conditions will be imposed to allow
the use of the Implicit Function Theorem. We choose this case as it appears in the
application we study below. The analysis shows that close to the codimension-two point
(t0,Re0) there is a bifurcation curve in the (t,Re) parameter plane given by

Re = Re0 + C(t− t0)2 +O(t3), (4.2)

where C is a constant. If C > 0, and Re is slightly larger than Re0, there are punching
bifurcations when the bifurcation curve is crossed, i.e. when t = t0 ±

√
Re− Re0/

√
C +

O(Re−Re0). The first crossing is the creation of a vortex by a punching bifurcation, the
latter is the destruction of a vortex by a backward punching bifurcation. If Re < Re0 the
bifurcation curve is not crossed, and no bifurcations occur near t0.

5. Application to boundary layer eruption

5.1. Problem setup

As a case study we consider a vortex convected close to a no-slip wall. Such a vortex
induces a viscous response from the boundary layer close to the wall. The vorticity in
the boundary layer may organise itself into new vortex structures that erupt from the
surface. This phenomenon is known as boundary layer eruption (Kudela & Malecha
2009), unsteady separation (Williams 1977) or bursting (Robinson 1991). To give a
mathematical formulation of the phenomenon we choose a coordinate system fixed to
the no-slip wall as shown in figure 7. The initial configuration is a Gaussian vortex with
characteristic length c and negative vorticity −ω0 at the vortex center. The Gaussian
vortex is placed at distance d from the wall and an image vortex with opposite vorticity
is placed below the wall. Due to symmetry the velocity field satisfies the non-penetration
condition on the wall. A boundary layer is created when, at t = 0, we impose the no-slip
condition. We non-dimensionalize our problem by choosing the reference length L = d and
the reference velocity U = 1

2ω0c. For our choice of non-dimensionalization the Reynolds
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Figure 7: Initial configuration of the boundary layer eruption problem. A Gaussian vortex
is placed at a distance d from the no-slip wall. c is the characteristic length for the
Gaussian distribution.

number is given by

Re =
LU

ν
=
ω0dc

2ν
, (5.1)

where ν is the kinematic viscosity of the fluid. We specify the initial vortex by the
dimensionless parameter a that represents the ratio between the size of the initial vortex
and the distance to the wall, i.e. a = c

d . In order to be consistent with earlier studies
by Kudela & Malecha (2009) and Andersen (2013) we have chosen the parameter value
a = 0.3. We note that our choice of non-dimensionalization gives us a Reynolds number
that is a scaled version of the Reynolds number, R̂e, used by Kudela & Malecha (2009)

and Andersen (2013). The scaling is Re = 1
2Ω0aR̂e, with Ω0 = 1.25.

5.2. Numerical method

We performed our numerical simulations using the open-source finite element-library
oomph-lib (Heil & Hazel 2006), dicretising the Navier-Stokes equations with LBB-stable
quadrilateral Taylor-Hood (Q2Q1) elements and employing a BDF2 scheme for the time-
integration. The vortex-wall interaction results in a net advection of the initial vortex
in the negative x-direction. To avoid the need for a large computational domain we
performed the computations in a domain that moves steadily with the initial velocity
of the advecting vortex. This allowed us to restrict the computational domain to the
region x ∈ [−3.63, 3.63] and y ∈ [0, 5.13]. The computations were started from an
initial velocity field given by the Gaussian vortex and its mirror image below the y-
axis. During a short initial period we only enforced the non-penetration condition and
then imposed the no-slip condition on the wall to initiate the formation of the boundary
layer. On the remaining boundaries we imposed the velocity associated with the initial
vortex (corrected for the moving frame of reference). To resolve the boundary layer we
decomposed the mesh into two regions: within a thin layer close to the wall we decreased
the distance between the mesh points exponentially towards the wall; a uniform mesh
spacing was used in the rest of the domain. The Q-field and its derivatives were computed
using oomph-lib’s (Heil & Hazel 2006) derivative recovery techniques to obtain smooth
approximations of the required derivatives (see Heil et al. (2017) for details). To confirm
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Numerical results for Re = 2063 at the following time steps (a) t = 11 (b)
t = 48 (c) t = 117 (d) t = 197 (e) t = 256 (f) t = 293 (g) t = 395 (h) t = 464 (i) t = 597.
Each figure shows a zoom in on the region close to the initial vortex, where x ∈ [−2, 1.5].
The vorticity contours with values from −0.3 to 0.3 are colored in blue and red. Regions
with positive Q-value are encircled by white lines which correspond to the zero contour
curves of Q.

that our results were fully converged we recomputed selected cases on refined meshes and
with smaller time steps.

5.3. Numerical results

We simulated the early stages of boundary layer eruption at moderate Reynolds
numbers in the range between Re = 750 and Re = 2250. Figure 8 shows snapshots
from a simulation with Re = 2063. The zero contour curves of Q are drawn on top of the
vorticity field to provide a basis for comparison. Each of the nine subfigures represents a
topological vortex structure observed in the simulation. In figure 8(a) the initial vortex
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Figure 9: Bifurcation diagram of the eruption process. The red dots marked with a letter
correspond to the plots shown in figure 8. The black squares, connected by solid lines,
mark the bifurcation points observed in the simulations. The translucent arrows indicate
in which sequence the bifurcations are encountered in a flow with a given Reynolds
number.

is the only region with positive Q-value. At this early stage the shape of the vortex is
very close to a perfect circle. This is consistent with a result by Elsas & Moriconi (2017),
who showed that a Gaussian vortex will have a positive Q-value in a circular region with
radius r ≈ c

0.89 . For a Gaussian vortex, the radius grows like
√
t, which is identical to the

initial growth rate we found for a vortex generated in a punching bifurcation (see §2).
The overall changes in the vortex structure in figure 8 can be described as eight separate

bifurcations of the zero contour curves. In the time span between (a) and (b) we see an
example of a wall-punching bifurcation that causes a new vortex to form in the boundary
layer. In (c) this new vortex has detached from the wall as the result of a wall-pinching
bifurcation. After another wall-punching bifurcation a second vortex is formed in the
boundary layer, as shown in (d). In the time span between (d) and (e) a punching
bifurcation takes place and a small vortex develops in the part of the boundary layer
with negative vorticity. Between (e) and (f) we observe a pinching bifurcation where the
largest vortex splits into two vortices. In the last three steps, two vortices disappear as a
result of two punching bifurcations and the vortex at the wall detaches via a wall-pinching
bifurcation. The structure shown in figure 8(i) then persists for the rest of the simulated
time span, implying that at this Reynolds number two long-lasting vortices emerge from
the boundary layer. In the course of their formation, several transitional vortex structures
appear and our theory is able give a complete description of the topological changes in
the flow field as a series of bifurcations in the Q-contours.

To illustrate how the formation of the vortices depends on the Reynolds number
we construct a bifurcation diagram of the eruption process (see figure 9). The black
squares in the diagram mark the times at which the various bifurcations are observed
in the simulations. The thick translucent lines trace out the temporal evolution at fixed
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Reynolds numbers. Line I corresponds to the case just discussed (Re = 2063), with the
circular symbols indicating the times at which the snapshots in figure 8 were taken. We
have connected bifurcation points of the same type by solid lines to indicate that we
expect a similar evolution in between the simulations presented in the diagram.

However, the U-shaped curve tracing out the punching bifurcation is an exception.
The bifurcation points on this curve do not satisfy the same non-degeneracy conditions.
The squares on the left branch of the curve mark a forward punching bifurcation where
∂tQ0 > 0 and the squares on the right branch mark a backward punching bifurcation
where ∂tQ0 < 0. This change of sign of ∂tQ indicates the existence of a codimension-two
point (t0,Re0) where ∂tQ0 = 0. According to (4.2) the bifurcation curve close to such
a point is approximately parabolic. Making a least-square fit to a parabola of the four
nearest data points yields the expression

Re = 1817 + 0.0458(t− 312)2, (5.2)

from which we get the estimate of the codimension-two point (t0,Re0) = (312, 1817).
It is important to notice that we have estimated the codimension-two point without

actually solving the equations (4.1) that characterize it. The simulation results are
interpreted within the framework of the bifurcation theory we have developed, and are
consistent with the codimension-two case we have analysed.

In summary, over the range of Reynolds numbers considered in the bifurcation diagram,
the final outcome of the evolution is the same: Two vortices emerge from the erupting
boundary layer and the time at which the various bifurcations occur only changes very
little with Re. The only exception is the co-dimension two phenomenon at Re = 1817
(Line II in figure 9) that separates the parameter space into two regions with distinct
evolution of the topology of the vortices. For Re > 1817, exemplified by Line I in figure 9,
a small vortex appears and disappears again close to the wall. As Re is decreased, its
lifetime diminishes and for Re < 1817, exemplified by Line III, the vortex does not appear
at all.

6. Discussion

Using the Q-criterion we have formulated a theory describing the evolution of vortices
in two-dimensional incompressible flow. The theory is complete in the sense that it
identifies all possible codimension-one bifurcations of the Q = 0 contour curves. Our
theory provides a systematic approach to describing topological changes associated with
the creation/destruction and the merging/splitting of vortices. The possible types of
bifurcations serve as templates that facilitate the construction of a bifurcation diagram.
Despite the fact that the mathematical analysis is technical the results are easy to apply:
A vortex bifurcation event occurs when Q = ∂xQ = ∂yQ = 0 and the type of event
depends only on higher order derivatives of Q. At a no-slip wall y = 0 the corresponding
conditions are Q̃ = ∂xQ̃ = 0, where Q̃ = Q/y2. The degeneracy and non-degeneracy
conditions required to locate and identify each type of bifurcation can therefore be
computed directly from derivatives of the velocity field.

Numerical simulations of boundary layer eruption at moderate Reynolds numbers
showed that all four types of codimension-one bifurcations occur in that flow. We
also observed the occurrence of a codimension-two bifurcation at Re = 1817. It arises
via the coalescence of two codimension-one bifurcations that are associated with the
creation/destruction of a particular vortex. This vortex does not develop for smaller
Reynolds numbers but has an increasing lifespan as the Reynolds number increases above
1817. We were able to infer the existence of the codimension-two point and showed how
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to determine its location using only knowledge about the Q = 0 contour, i.e. without
requiring derivatives of Q. This may be the most important message of the present paper:
Bifurcation theory provides a list of possible vortex bifurcation events. Observations of
changes in the topology of the Q = 0 contour in specific computational or experimental
data can be matched with a bifurcation event which is mathematically well understood,
leading to an interpretation of the data which rests on a solid theoretical basis.

If the Reynolds number is increased beyond the range considered in our case study,
additional codimension-two points are likely to arise. If that is the case it would be useful
to give a complete analysis of all codimension-two cases, as outlined in § 4. Another
important extension would be to generalize the theory to three-dimensional flows. In this
case the zero contours of Q are surfaces in three dimensions. Much of our analysis will
carry over, using the three-dimensional version of the Morse Lemma. In particular, a
vortex bifurcation event will occur when Q = ∂xQ = ∂yQ = ∂zQ = 0.

Finally, we note that the bifurcations in the topology of the Q = 0 curves are much
simpler than those found by Balci et al. (2015) in the topology of the instantaneous
streamlines. When studying the boundary layer eruption process using the latter ap-
proach, a bifurcation diagram of codimension three was needed to describe the eruption
process completely. We therefore believe that the concepts proposed in the present paper
will be helpful for interpreting and classifying vortex interactions in a large range of flows
obtained either numerically or experimentally.

Appendix A. Analysis of a particular codimension-two bifurcation

In this appendix we analyse the codimension-two bifurcation that arises when a forward
and a reverse punching bifurcation coalesce at a particular value of the Reynolds number,
leading to the violation of the non-degeneracy condition ∂tQ0 6= 0.

To identify the time and Reynolds number at which this scenario arises we introduce a
second parameter, r, representing the deviation of the Reynolds number from the value
at which the codimension-two bifurcation occurs. We then choose a coordinate system
such that a bifurcation point is located at (x, y, t, r) = (0, 0, 0, 0) and, as before, we use
subscript 0 to denote evaluation at the bifurcation point. We consider a bifurcation point
that is characterized by the following set of degeneracy conditions

Q0 = 0, ∂xQ0 = 0, ∂yQ0 = 0, ∂tQ0 = 0. (A 1)

The first three of these are simply the conditions (2.3) required for the occurrence of a
punching bifurcation. The final condition ensures that the first of the two non-degeneracy
conditions, equation (2.5), is violated.

We now augment these conditions by the following non-degeneracy conditions

∂rQ0 > 0, ∂ttQ0 < 0 (A 2)

and

HQ
0 =



∂xxQ0 ∂xyQ0 ∂xtQ0

∂xyQ0 ∂yyQ0 ∂ytQ0

∂xtQ0 ∂ytQ0 ∂ttQ0


 is negative definite. (A 3)

Using these conditions we will now show that there is a bifurcation curve r(t) =
Ct2 +O(t3), where C is a positive constant, which separates the (t, r) parameter space
into two regions, one where a vortex is present and one where there is none. Thus, for
a small fixed r > 0, a vortex is created in a punching bifurcation at t ≈ −

√
r/C. The
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vortex disappears again in a reverse punching bifurcation at t ≈
√
r/C – exactly as seen

in figure 9.
We start by observing that, since Q0 = 0 and ∂rQ0 6= 0, it follows from the Implicit

Function Theorem that there exist a unique local function R(x, y, t) = r satisfying that
R0 = 0 and Q(x, y, t, R(x, y, t)) = 0. By implicit differentiation of Q, we obtain that

∂xR0 = −∂xQ0

∂rQ0
= 0, ∂yR0 = −∂yQ0

∂rQ0
= 0, ∂tR0 = − ∂tQ0

∂rQ0
= 0, (A 4)

and the Hessian

HR
0 =



∂xxR0 ∂xyR0 ∂xtR0

∂xyR0 ∂yyR0 ∂ytR0

∂xtR0 ∂ytR0 ∂ttR0


 = − 1

∂rQ0
HQ

0 . (A 5)

Since ∂rQ0 > 0 and HQ
0 is negative definite, it follows from (A 5) that HR

0 is positive
definite. Hence, it follows by Sylvester’s criterion that the upper left 2× 2 corner of HR

0

is also positive definite. The conditions in (A 4) and (A 5), therefore, allow us to apply
the Implicit Function Theorem, this time on the gradient of R. Hence, we conclude that
there exist unique local functions X(t) = x, Y (t) = y satisfying that X0 = 0, Y0 = 0 and

(
∂xR(X(t), Y (t), t)
∂yR(X(t), Y (t), t)

)
= 0. (A 6)

The generalized version of the Morse Lemma depending on parameters (Hörmander
2007) implies that in a neighbourhood of the critical point (x, y) = (0, 0) there exist a,
possibly nonlinear, coordinate change, x̂ = x̂(x, y), ŷ = ŷ(x, y), such that

x̂(0, 0) = 0, ŷ(0, 0) = 0, (A 7)

and

R(x̂, ŷ, t) = R(X(t), Y (t), t) + x̂2 + ŷ2. (A 8)

In the new coordinate system the zero contour curve of Q is therefore given by the
equation,

x̂2 + ŷ2 = r −R(X(t), Y (t), t). (A 9)

The right-hand side of (A 9) determines whether or not there exist any points, suffi-
ciently close to (x̂, ŷ) = (0, 0), which are part of the zero contour curve of Q. The curve
r(t) = R(X(t), Y (t), t), therefore separates the parameter space in two regions one where
a vortex region is present, and one where it is not. We find

r′(t) = ∇R(X(t), X(t), t) · x′(t),
r′′(t) = x′(t)T ·HR(X(t), Y (t), t) · x′(t) +∇R(X(t), Y (t), t) · x′′(t),

where

x(t) =



X(t)
Y (t)
t


 . (A 10)

By (A 4) and (A 5) it follows that ∇R0 = 0 and HR
0 is positive definite. Since x′(t) is

non-zero for all t it follows that

r′(0) = 0,

r′′(0) = x′(0)T ·HR
0 · x′(0) > 0.
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By Taylor expansion of r at t = 0 we get the desired result

r(t) = Ct2 +O(t3), (A 11)

where C =
1

2
x′(0)T ·HR

0 · x′(0) > 0.

We have proved that in a neighbourhood of a codimension-two point the curve r(t) =
Ct2 + O(t3) is a bifurcation curve. The non-degeneracy condition ∂ttQ0 < 0 and the
continuity of ∂tQ implies that ∂tQ is positive on the left branch of the curve and negative
on the right branch. The only point on the curve satisfying the conditions in (A 1) is
therefore the bifurcation point at (x, y, t, r) = (0, 0, 0, 0) and all other points on the curve
must be bifurcation points with codimension one.

By Sylvester’s criterion the upper left 2 × 2 corner of HQ
0 is negative definite when

HQ
0 is negative definite. By continuity, it therefore follows for all other points on the

bifurcation curve that

Q = 0, ∂xQ = 0, ∂yQ = 0, ∂tQ 6= 0, (A 12)

and (
∂xxQ ∂xyQ
∂xyQ ∂yyQ

)
is negative definite. (A 13)

These conditions are identical to the conditions in §2, implying that a punching
bifurcation occurs forward on the left-hand side of the bifurcation curve, where ∂tQ
is positive. In contrast ∂tQ is negative on the right-hand side of the curve and here a
punching bifurcation occurs backward at any point. This is completely consistent with
the behaviour observed in figure 9.
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3.3 Epilogue

In the presented paper, we made a comprehensive description of the early stages
in the eruption process based on the Q-criterion. Further to this, it is natural to
ask what the description would look like for another choice of vortex criterion?
The original work presented in this thesis is based on two different criteria, the
first and second paper are based solely on the Q-criterion while the results in
third paper are based on the vorticity extremum criterion. We notice that Q
can be expressed as

Q = ∂xu∂yv − ∂yu∂xv
= ∂xu∂yv − ∂yu(ω + ∂yu),

(3.5)

indicating that there is no simple connection between the vortices defined as
vorticity extrema and vortices defined by the Q-criterion. A comparison of the
two criteria is possible by applying both of them to the same problem. In a
fourth paper, which is not made as a part of the Ph.D work we study boundary
layer eruption with vortices defined as vorticity extrema [13]. Since the results
in the two papers on boundary layer eruption are based on the same simulations
with different post-processing, we can here make a direct comparison of the two
criteria. In figure 3.1 and figure 3.2 we present two sequence of snapshots from
simulations with Re = 750 and Re = 2063, respectively. In each snapshot, the
vortex structure is marked based on both criteria. The regions with positive Q-
value are encircled by white lines which correspond to the zero contour curves
of Q and the local extrema of vorticity are marked with white squares. In the
time span between the subfigures in each of the two examples, a topological
bifurcation occur in either the vorticity field or the Q = 0 level curves. In
figure 3.1(a) and figure 3.2(a) there is a single local extremum of vorticity inside
a region with positive Q-value, corresponding to the initial vortex. The final
vortex structure within our time span from t = 0 to t = 747 is shown in figure
3.1(i) and figure 3.2(n), respectively. In both examples the two vortex criteria
agree; the initial vortex is preserved and two secondary vortices are formed from
the erupting boundary layer. It is, however, clear that the two criteria do not
agree on the temporary vortices leading to the final stage.

In order to give a complete comparison based on the two studies we compare the
two final bifurcation diagrams which are presented in [47] and [13], respectively.
The two bifurcation diagrams are lined up next to each other in figure 3.3. They
show that in general there is no simple connection between our two choices of
vortex criteria. We see that the size and the shape of the different regions in
the diagrams are highly dependent on the criterion. There are, however, some
similarities. In both cases we observe a more complex vortex structure for higher
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: Numerical results for Re = 750 at the following time steps (a)
t = 11 (b) t = 48 (c) t = 117 (d) t = 203 (e) t = 245 (f) t = 293
(g) t = 453 (h) t = 507 (i) t = 640. Each figure shows a zoom
in on a region close to the initial vortex. The vorticity contours
with values from −0.3 to 0.3 are colored in blue and red. The
regions with positive Q value are encricled by white lines which
corresponds to the zero contour curves of Q. The white squares
correspond to local extrema of vorticity while the black squares
show the location of saddle points.



3.3 Epilogue 53

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 3.2: Numerical results for Re = 2063 at the following time steps (a)
t = 11 (b) t = 48 (c) t = 117 (d) t = 139 (e) t = 160 (f) t = 203
(g) t = 256 (h) t = 293 (i) t = 331 (j) t = 395 (k) t = 464 (l)
t = 496 (m) t = 507 (n) t = 597. The vorticity contours with
values from −0.3 to 0.3 are colored in blue and red. Regions with
positive Q value are encricled by white lines which corresponds to
the zero contour curves of Q.
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Figure 3.3: Bifurcation diagrams of the eruption process. The small black dots
represent our actual observations of bifurcations in the numerical
results. (a) is based on the vorticity extremum criterion and (b)
is based on the Q criterion. The red dots marked with a letter
correspond to the examples shown in figure 3.1 and figure 3.2

Re, and for some of the observed bifurcations the time where the bifurcation
occurs tends to be independent of Re for higher values of Re. Our observations
lead us to the conclusion that the analysis of vortex formation may be highly
dependent on the chosen definition of a vortex. We do, however, see that the
final vortex structure within our time span is the same for both criteria. This
indicates that the two criteria agree on the long-lasting vortex structures that
seem more robust, but they do not agree on the temporary structures leading to
the final stage. To understand how we end up at the same final vortex structure
it is important to be able to analyse the bifurcations that occur on the way.



Chapter 4

Topological bifurcations of
vortex pair interactions

4.1 Introduction

The bifurcation theory formulated in Paper I describes all possible codimension
one bifurcations of the Q = 0 level curves. Furthermore, it includes an anal-
ysis of the codimension two phenomenon that occur when the non-degeneracy
condition ∂tQ 6= 0 is violated at a critical point. The paper presented in the
following section is a direct continuation of the theoretical results presented in
Paper I. In the following paper, we analyse the codimension two phenomenon
that occur when the non-degeneracy condition on the Hessian is violated. This
means that we analyse the structural changes that occur at a degenerate critical
point where HQ is singular with zero as a simple eigenvalue. Since a degen-
erate critical point of Q is the starting point for the bifurcation analysis, the
approach is quite similar to the analysis of the cusp bifurcation of the stream
function ψ which was presented in the introductory section. The degeneracy
conditions in (2.26) and (2.28) also apply to Q but we restrict our analysis to
bifurcations on the Q = 0 level curves. The requirement that Q = 0 acts as an
additional degeneracy condition which means that the bifurcation phenomenon
has codimension two. The result of the analysis is another cusp singularity that
appears on the bifurcation curve instead of the level curve. We prove that the
two branches meeting at the cusp singularity are respectively a pinching bifur-
cation curve and a punching bifurcation curve and therefore the codimension
two point can be considered as a threshold for vortex merging. In the light of
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this theoretical result, we found it natural to apply our bifurcation theory to
study vortex pair interactions and in particular vortex merging.

Studying vortex pair interactions leads to an understanding of the basic dy-
namics in other fluid dynamical problems. The problem is very essential and
therefore very well studied (see among others [41, 20, 53, 8]). Most previous
studies have focused on inviscid interactions of vortex patches but some also
consider vortex merging in a viscous setting. We believe, however, that our
approach can contribute with new insights by giving an accurate mathematical
description of the problem in a viscous setting. We consider the problem in
a two-dimensional setting at low values of Reynolds numbers, i.e. we perform
Navier-Stokes simulations with Re = 10 and Re = 100. The flow is defined
with two point vortices as initial condition and we consider their strength ra-
tio α = Γ1/Γ2 as one out of two the bifurcation parameters in the problem.
The second bifurcation parameter is a non-dimensional time variable σ. For
both values of the Reynolds number we observe a threshold for merging that
corresponds to the analysed codimension two phenomenon.

In this paper, we do not limit ourselves to analyse numerical simulation of
vortex pair interactions. Clearly, the problem we are considering does not have
an explicit analytical solution, so in addition we examine the synthetic flow
predicted by the core growth model [31, 32, 34, 1]. The core growth model
assumes that the vorticity of two initial point vortices diffuses symmetrically as
two isolated Lamb-Oseen vortices and the centers of the vortices move in the
velocity field induced by the other vortex. From this description we achieve a
closed analytical expression for Q depending only on α and σ. Even though
the core growth model is not an exact solution to the Navier-Stokes equations
we argue that a given accuracy can be achieved for sufficiently small values of
Reynolds numbers. In addition to the theoretical contribution, a secondary goal
for the paper is to discuss for which values of Reynolds number it is reasonable
to use the core growth model instead of numerically solving the Navier-Stokes
equation.

By applying the core growth model we introduce a built-in symmetry in the
formulation of the problem. The core growth model has the x-axis as a line
of symmetry, i.e. Q(x, y) = Q(x,−y). We prove that this line of symmetry
lead to a special type of codimension two bifurcation which will not occur in
Navier-Stokes simulations where the symmetry is not expected.

The main result of the paper is a complete topological analysis of merging of
Q-vortices in the core growth model compared with Navier-Stokes simulations
at Re = 10 and Re = 100. Our overall analysis shows that the merging process
can be divided into three different regimes depending on the strength ratio of the
vortices. For sufficiently high strength ratio, the weakest vortex is suppressed
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by the strong vortex, and no merging as such occurs. For lower strength ratios,
there are two different bifurcation sequences leading to merging.

By combining the theoretical results from Paper I and Paper II we have devel-
oped an extensive bifurcation theory for Q-vortices. The theory describes all the
bifurcations with codimension one or two that may occur away from boundaries.
Furthermore, it includes an analysis of the codimension one bifurcations which
may occur at no-slip walls and a special type of codimension two bifurcation
which only occur in models with a line of symmetry.

Numerical simulations of any fluid dynamical problem can only give us infor-
mation that is discretised with respect to the parameters in the problem. The
possible types of bifurcations serve as a template that facilitates the construction
of a bifurcation diagram from the numerical results. We believe that the overall
theory and our general approach can be useful for interpreting and classifying
a wide range of fluid dynamical problems in two dimensions. Depending on the
complexity of the problem, it may be necessary to expand the theory further
with bifurcations of higher codimension.

The bifurcation theory for Q-vortices is general in the sense that can immedi-
ately be applied to other vortex criteria of the same type. By a vortex criterion
of the ‘same type‘, we mean that a vortex is defined as a region encircled by
a contour curve of some scalar valued function. This could be, that a vortex
is defined as a region with vorticity greater than or pressure lower than some
threshold value.

4.2 Paper II

The paper in this section is a reprint of the version that has been accepted
for publication in Journal of Fluid Mechanics. The original publication can be
found here:

Nielsen, A. R., Andersen, M., Hansen, J. S.& Brøns, M. (2021). Topologi-
cal bifurcations of vortex pair interactions. Journal of Fluid Mechanics, 917.
https://doi.org/10.1017/jfm.2021.191 [46]

The paper is only based on results that are original work done during the Ph.D
period.
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Abstract

We investigate vortex pair interactions at low Reynolds numbers. Our analysis is based
on the two-dimensional Q-criterion and we make use of a topological approach to describe
the qualitative changes of the vortex structure. In order to give a complete description
of vortex pair interactions we further develop a general bifurcation theory for Q-vortices
and prove that a threshold for vortex merging may occur when we allow two parameters
to vary. To limit the number of free parameters, we study the interactions with two
point vortices as the initial condition and show that the threshold is a codimension
two bifurcation that appears as a cusp singularity on a bifurcation curve. We apply
the general theory to the analytically tractable core growth model and conclude that a
pair of co-rotating vortices merge only if their strength ratio, α = Γ1/Γ2 is less than
4.58. Below this threshold value, we observe two different regimes in which the merging
processes can be described with different sequences of bifurcations. By comparison with
Navier-Stokes simulations at different Reynolds numbers, we conclude that the merging
threshold varies only slightly for Reynolds numbers up to 100. Furthermore, we observe
an excellent agreement between the core growth model and the numerical simulations for
Reynolds numbers below 10. We therefore conclude that, instead of solving the Navier-
Stokes equation numerically we can, for sufficiently small Reynolds numbers, apply the
core growth model as a simple, analytically tractable model with a low dimension.

1. Introduction

Studying the fundamental interactions of vortices helps us understand the behaviour
of complicated flows which can be encountered in nature. A simple example of an
interaction is two-dimensional vortex merging, which is a well-studied phenomenon in
fluid mechanics. For a general review of dynamics and instabilities of vortex pairs, see
e.g. Leweke et al. (2016). It is sometimes possible to observe vortex merging visually
in experiments and numerical simulations, but it can be difficult to give an accurate
mathematical description of the merging process. Early studies of vortex merging mainly
focus on merging in inviscid fluids where vortices are defined as vortex patches with
constant vorticity (Overman & Zabusky 1982; Dritschel 1985). The jump of vorticity
across vortex boundaries is advected by the velocity field and the problem effectively
becomes one-dimensional. This approach, known as contour dynamics, was originally
proposed by Deem & Zabusky (1978). The conservation of vorticity ensures that the fluid
will be divided into regions of uniform vorticity for all time and, in principle, merging is
never possible. Dritschel (1986) overcomes this issue by applying contour surgery, which
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is an algorithm allowing two contours enclosing the same uniform vorticity to merge
into one if they are close enough together. In this study, we will address the problem
rigorously in a viscous setting. We identify vortices by the widely used Q-criterion (Hunt
et al. 1988). In general, a positive Q-value implies that the local rotation dominates the
strain. In two dimensions, Q simplifies to the determinant of the velocity gradient tensor
∇u and a vortex is therefore defined as a region where

Q(x, y) = det(∇u(x, y)) > 0. (1.1)

In this paper, we present a complete topological analysis of merging of Q-vortices in
the core growth model. The main result of our analysis is that the merging process can be
divided into three different regimes depending on the strength ratio of the vortices. For
sufficently high strength ratio, the weakest vortex is supressed by the strong vortex, and
no merging as such occurs. For lower strength ratios, there are two different bifurcation
sequences leading to merging. The core growth model has previously been used to study
vortex merging by Jing et al. (2012) and Andersen et al. (2019). In the following section
we review the model and show that it allows us to write an analytical expression for Q
depending on two parameters, the strength ratio of the two vortices and the time.

We monitor the vortex interactions by looking for bifurcations of the curves bounding
the vortices, the level curves Q(x, y) = 0. Bifurcations occur when singular points appear
on these curves. An analysis of all possible perturbations of a given degenerate pattern
tells us what we might expect when a given number of parameters are allowed to vary.
When only a single parameter is varied, the bifurcations that occur in a robust way
are referred to as having codimension one. We have already formulated a complete
codimension one theory in earlier studies, see Nielsen et al. (2019) or the brief summary
in § 3. Our previous study includes an analysis of a single codimension two phenomenon,
but as the core growth model has two free parameters, it is necessary to extend the
existing theory with an analysis of another codimension two bifurcation. This further
development of the theory can be found in § 3.1. The core growth model has a built-in
symmetry that may lead to a special type of codimension two bifurcation; this case is
analysed in § 3.2. We compare the results for the core growth model with Navier-Stokes
simulations in § 4.1, and find good agreement for low values of the Reynolds number. An
analysis of the topological structure of vortex pairs is inextricably linked to the way we
choose to define vortices mathematically. There are many definitions of vortices available
in the literature, see Zhang et al. (2018) for a review. To our knowledge, this is the
first study to analyse vortex pair interactions based on the topology of the Q-criterion.
Andersen et al. (2019) have previously studied vortex merging from a topological point
of view with vortices defined as local extrema of vorticity. This method identifies a vortex
by a feature point that does not provide any information about the shape or size of the
vortex. Applying the Q-criterion might therefore provide some opportunities for a more
elaborate analysis. In § 5 we comment on the importance of the vortex criterion.

2. The core growth model

We consider an incompressible fluid in an unbounded two dimensional domain governed
by the Navier-Stokes equations. In terms of the vorticity, the Navier-Stokes equations can
be written as the vorticity transport equation,

∂ω

∂t
= −u · ∇ω + ν∆ω, (2.1)
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where ν is the kinematic viscosity and u is the fluid velocity. One of the very few known
analytic solutions to (2.1) is the Lamb-Oseen vortex (Saffman 1992),

ω(r, θ, t) =
Γ

πσ(t)2
e−r

2/σ(t)2 , uθ(r, θ, t) =
Γ

2πr

(
1− e−r2/σ(t)2

)
, ur(r, θ, t) = 0,

(2.2)
with

σ(t) =
√

4νt. (2.3)

The Lamb-Oseen vortex is the solution corresponding to a single point vortex with
strength Γ as initial condition. The vorticity field ω is initially concentrated at the origin
and diffuses as a Gaussian distribution. For multiple point vortices as initial condition an
analytic solution is not available and one would generally refer to numerical simulations
of the vorticity transport equation. Instead we investigate the synthetic flow predicted by
the core growth model, also known as the multi Gaussian model (Jing et al. 2010; Kim
& Sohn 2012; Andersen et al. 2019). The model assumes that the vorticity of each initial
point vortex diffuses symmetrically as an isolated Lamb-Oseen vortex and the centers of
the Gaussian vortices move in the velocity field induced by the other diffusing vortices.
For two Gaussian vortices, initially centered at (−d, 0) and (d, 0), one can deduce (Kim
& Sohn 2012) that the distance between the centers of the two Gaussian vortices is
conserved and the vortices rotate around the a stationary center of vorticity

(xcv, ycv) =

(
d(Γ2 − Γ1)

Γ1 + Γ2
, 0

)
, (2.4)

with the same time-dependent angular velocity

dφ(t)

dt
=
Γ1 + Γ2

2π(2d)2

(
1− e−(2d)2/σ2

)
. (2.5)

We notice that the angular velocity tends to zero as ν or t increases. By integrating
dφ(t)
dt in time we obtain the direction angle as a function of time

φ(t) =
Γ1 + Γ2

2π(2d)2ν

(
σ2

4
− σ2

4
e−(2d)

2/σ2

+ d2
∫ ∞

(2d)2/σ2

e−s

s
ds

)
. (2.6)

We notice that the angular velocity and the direction angle depend on the total of
vortex strength Γ1 +Γ2 and the distance between the vortices, not on the strength ratio.
The positions of the two Gaussian vortex centers (x1(t), y1(t)), (x2(t), y2(t)) are given by
(2.6), i.e.

(
x1(t)
y1(t)

)
=
(
d− xcv

)(cosφ(t)
sinφ(t)

)
+

(
xcv
0

)
, (2.7)

(
x2(t)
y2(t)

)
= −

(
d+ xcv

)(cosφ(t)
sinφ(t)

)
+

(
xcv
0

)
. (2.8)

Since the core growth model evolves as a superposition of two Lamb-Oseen vortices,
the vorticity field is given as

ω(x, y, t) =
Γ1

πσ2
e−d

2
1/σ

2

+
Γ2

πσ2
e−d

2
2/σ

2

, (2.9)
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where

d21 = (x− x1(t))2 + (y − y1(t))2, (2.10)

d22 = (x− x2(t))2 + (y − y2(t))2. (2.11)

By solving the Poisson equation ω = −∆ψ we obtain the following streamfunction in the
core growth model

ψ(x, y, t) = −Γ1

4π

(
ln
(
d21
)

+

∫ ∞

d21/σ
2

e−s

s
ds

)
− Γ2

4π

(
ln
(
d22
)

+

∫ ∞

d22/σ
2

e−s

s
ds

)
. (2.12)

The core growth model is not an exact solution to the vorticity transport equation in
(2.1). However, by inserting the synthetic flow into the equation, we can evaluate the
error we make when using the core growth model. From (2.7), (2.8), (2.9) and (2.12)
all three terms in the vorticity transport equation can be expressed analytically and by
evaluating the limit as ν →∞ we obtain for a fixed t that

∂tω − ν∆ω + u · ∇ω =
(Γ 2

1 − Γ 2
2 )yd

32π2ν3t3
+O

(
1

ν4

)
as ν →∞, (2.13)

which implies that the core growth model will be accurate for the viscosity going to
infinity, i.e. for the Reynolds number going to zero. This will be confirmed by numerical
computations in § 4.3. The quality of the approximation will necessarily depend on the
value of the fixed t. For a smaller t value, a lower Reynolds number is required to achieve
the given accuracy. Part of the purpose of this study is to establish an upper limit of
the Reynolds number under which it is reasonable to use the core growth model instead
of numerically solving the Navier-Stokes equation. It is worth noting that Gallay (2011)
proved that on a fixed time interval the solution to the vorticity transport equation,
with point vortices as initial conditions, converges uniformly in time to a superposition
of Lamb-Oseen vortices as ν → 0. Since the core growth model has point vortices as the
initial condition, Gallay’s result indicates that the model will be relatively accurate also
in weakly viscous flow. The model has previously been studied for Re >> 1, see Jing
et al. (2012) for an example.

For simplicity the core growth model will be studied in a co-rotating frame, such
that the centers of the Gaussian vortices are fixed at the initial positions. For a given
time t, the transformation from the co-rotating to the initial frame is determined by a
rigid rotation with the angle φ(t) around the center of vorticity. This guarantees that
the topology of the vorticity field, the stream function and hence also the Q-field is
unchanged when studied in the co-rotating frame. To analyse the core growth model
for all possible combinations of vortex strengths and displacements we introduce the
following dimensionless variables (denoted with ∼), x̃ = x/d, ỹ = y/d, ω̃ = ωd2/Γ2,
σ̃ = σ/d, ψ̃ = ψd2/Γ2 and ψ̃ = ψ/Γ2. For simplicity, we are dropping the tildes from now
on. In the co-rotating coordinate system the dimensionless vorticity and streamfunction
for the core growth model become

ω(x, y, α, σ) =
α

πσ2
e−

(x+1)2+y2

σ2 +
1

πσ2
e−

(x−1)2+y2

σ2 , (2.14)

and
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ψ(x, y, α, σ) = − α

4π

(
ln
(
(x+ 1)2 + y2

)
+

∫ ∞
(x+1)2+y2

σ2

e−s

s
ds

)

− 1

4π

(
ln
(
(x− 1)2 + y2

)
+

∫ ∞
(x−1)2+y2

σ2

e−s

s
ds

)
,

(2.15)

where

α =
Γ1

Γ2
, σ2 =

4νt

d2
(2.16)

are the strength ratio of the two vortices and a dimensionless time variable, respectively.
As a result the Gaussian vortices are fixed at (−1, 0), (1, 0). As described in the introduc-
tion we will analyse the topological bifurcations of vortex pair interactions by applying
the Q criterion. Using (2.15) a closed analytical expression for Q in the co-rotating frame
can be directly computed from

Q(x, y, α, σ) =

(
∂2ψ

∂x2

)(
∂2ψ

∂y2

)
−
(
∂2ψ

∂x∂y

)2

. (2.17)

In § 4.1 we will analyse the zero level curves of this function in detail. We notice that the
model has a built-in symmetry. The x-axis is a line of symmetry in the stream function
and hence

Q(x,−y, α, σ) = Q(x, y, α, σ) (2.18)

for all values of x, y, α and σ. Furthermore, it follows from (2.15) that

Q(x, y, α, σ) = αQ(−x, y, 1

α
, σ), (2.19)

which makes it sufficient to investigate the topological bifurcations of the zero level curves
of Q for |α| > 1.

3. Bifurcation theory for Q-vortices

A general characterization of zero level curves ofQmay be applied to any flow situation,
regardless of whether it arises from the core growth model or the Navier-Stokes equations.
Nielsen et al. (2019) show that there are two types of robust one-parameter bifurcations
of the level curves Q = 0, the authors denoted these as a pinching and a punching
bifurcation, see figure 1. The bifurcations occur when

Q = 0, ∂xQ = 0, ∂yQ = 0, (3.1)

under the non-degeneracy conditions

∂tQ 6= 0 (3.2)

and

HQ =

(
∂xxQ ∂xyQ
∂xyQ ∂yyQ

)
is non-singular. (3.3)

Here, t denotes a free parameter. A pinching (punching) bifurcation occurs when HQ is
indefinite (definite), and the direction of the bifurcation depends on the sign of ∂tQ.
A pinching bifurcation is the splitting or merging of two vortices while a punching
bifurcation is the creation or disappearance of a single vortex.
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(a)

(b)

Figure 1: Illustration of the local changes in the structure of the Q = 0 contour curves
during a (a) pinching and a (b) punching bifurcation. The bifurcation states are depicted
in red and green boxes. The dashed lines in (a) show an example of a possible global
structure during a pinching bifurcation. Note that the empty left panel in (b) illustrates
that there are no Q = 0 contour curves.

In general there is no simple connection between the vorticity ω and the Q-value. If we
consider an incompressible fluid at a point (x, y) with ω = 0, we notice, however, that

Q = ∂xu∂yv − ∂yu∂xv = −(∂xu)2 − (∂yu)2.

Since Q 6 0 we conclude that a point with zero vorticity will always be located outside
or on the boundary of a Q-vortex. By continuity it is therefore impossible to have points
with opposite signs of vorticity in the interior of a single vortex. Hence, two vortices can
only merge in a pinching bifurcation if they have the same sign of vorticity in the interior.

3.1. Theoretical description of codimension two bifurcation

A flow may depend on several parameters, such as the Reynolds number or a parameter
that determines the initial geometry. In this section, we consider a flow described as a
smooth system depending on two parameters, t and r. In this setting, the two generic
types of one-parameter bifurcations occur when crossing a one dimensional bifurcation
curve in the (t, r) parameter space. A codimension two point on one of these bifurcation
curves is a point where both parameters are required to take on particular values, so that
one of the non-degeneracy conditions in (3.2) or (3.3) are violated. The codimension two
bifurcation where ∂tQ = 0 is analysed in detail in previous studies (Nielsen et al. 2019).
In this section, we will analyse the other bifurcation phenomenon that occur when HQ is
singular with 0 as a simple eigenvalue. For simplicity we choose a coordinate system such
that the bifurcation point is located at (x, y, t, r) = (0, 0, 0, 0) and the HQ is a diagonal
matrix. We consider a bifurcation point characterized by the following set of degeneracy
conditions

Q0 = 0, ∂xQ0 = 0, ∂yQ0 = 0 (3.4)

and

HQ
0 =

(
∂xxQ0 ∂xyQ0

∂xyQ0 ∂yyQ0

)
=

(
0 0
0 λ

)
, (3.5)

where subscript 0 is used to denote an evaluation at the bifurcation point (x, y, t, r) =
(0, 0, 0, 0) and λ is a nonzero parameter. To characterize the structure of the bifurcation
curves at the bifurcation point we assume some regularity in the form of the following
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set of non-degeneracy conditions

∂tQ0 6= 0, ∂rQ0 6= 0, ∂xxxQ0 6= 0, (3.6)

and that (
∂xtQ0 ∂xrQ0

∂tQ0 ∂rQ0

)
is non-singular. (3.7)

Based on the above assumptions, we will now analyse the structure of the bifurcation
curves in a neighbourhood of the codimension two point. First we consider the following
Jacobian

J =
∂(∂yQ, ∂xQ,Q)

∂(y, t, r)
=



∂yyQ ∂ytQ ∂yrQ
∂xyQ ∂xtQ ∂xrQ
∂yQ ∂tQ ∂rQ


 , (3.8)

which simplifies to

J0 =



λ ∂ytQ0 ∂yrQ0

0 ∂xtQ0 ∂xrQ0

0 ∂tQ0 ∂rQ0


 (3.9)

when it is evaluated at the bifurcation point. Since λ 6= 0 it follows by the non-degeneracy
condition (3.7) that J0 is non-singular. Hence, we can apply the implicit function theorem
to conclude that there exist unique local functions y = Y (x), t = T (x), r = R(x) satisfying

Y (0) = 0, T (0) = 0, R(0) = 0, (3.10)

and

∂yQ(x, Y (x), T (x), R(x)) = 0,

∂xQ(x, Y (x), T (x), R(x)) = 0,

Q(x, Y (x), T (x), R(x)) = 0.

(3.11)

The functions T and R give a parametric representation of the bifurcation curve in the
(t, r) parameter space. The shape of the bifurcation curve is given by the derivatives of
T and R at the bifurcation point x = 0. We now set out to compute these derivatives.
By implicit differentiation of the equations in (3.11), we obtain that

J



Y ′(x)
T ′(x)
R′(x)


 = −



∂xyQ
∂xxQ
∂xQ


 , (3.12)

which evaluated in x = 0, gives us



Y ′(0)
T ′(0)
R′(0)


 = −J−10



∂xyQ0

∂xxQ0

∂xQ0


 =




0
0
0


 . (3.13)

Since (T ′(0), R′(0)) = (0, 0), we have a non-regular point on the bifurcation curve. To
classify the singularity we compute the second order derivatives, which are found by
implicitly differentiating (3.12) and evaluating the derivatives at x = 0:



Y ′′(0)
T ′′(0)
R′′(0)


 = −J−10





∂xxyQ0

∂xxxQ0

∂xxQ0


+ 2J ′0



Y ′(0)
T ′(0)
R′(0)




 = −J−10



∂xxyQ0

∂xxxQ0

0


 ,
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t

r

(t, r) = (T (x), R(x))

Figure 2: Illustration of a bifurcation curve with a cusp singularity at the codimension two
bifurcation point (t, r) = (0, 0) satisfying the assumptions in (3.4)-(3.7). The topological
structures of the Q = 0 contour curves are shown in the figure and the bifurcation states
are depicted in red and green boxes.

where

J ′0 =

(
∂J

∂x
+
∂J

∂y
Y ′(x) +

∂J

∂t
T ′(x) +

∂J

∂r
R′(x)

)

0

=
∂J

∂x

∣∣∣∣
0

.

Hence, it follows that

T ′′(0) = − ∂rQ0∂xxxQ0

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
, (3.14)

R′′(0) =
∂tQ0∂xxxQ0

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
. (3.15)

From the non-degeneracy conditions (3.6) and (3.7) it is clear that T ′′(0) and R′′(0)
are both well-defined and non-zero and hence we have a quadratic cusp at (r, t) = (0, 0)
(see e.g. Rutter (2000)). To determine the order n of the cusp we must find the first
derivatives of order n > 2, such that

T (n)(0)

R(n)(0)
6= T ′′(0)

R′′(0)
= −∂rQ0

∂tQ0
. (3.16)

We will show that this holds already for n = 3, which makes the cusp singularity an
ordinary cusp. By implicitly differentiating (3.12) again we get that



Y ′′′(0)
T ′′′(0)
R′′′(0)


 = −J−10


3J ′0



Y ′′(0)
T ′′(0)
R′′(0)


+



∂xxxyQ0

∂xxxxQ0

∂xxxQ0




 .
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Hence, it follows that

T ′′′(0) =
−∂rQ0A+ ∂xrQ0B

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
, (3.17)

R′′′(0) =
∂tQ0A− ∂xtQ0B

∂xtQ0∂rQ0 − ∂tQ0∂xrQ0
, (3.18)

where

A = 3∂xxrQ0R
′′(0) + 3∂xxtQ0T

′′(0) + 3∂xxyQ0Y
′′(0) + ∂xxxxQ0,

B = 3∂xrQ0R
′′(0) + 3∂xtQ0T

′′(0) + ∂xxxQ0 = −2∂xxxQ0.

The last non-degeneracy condition in (3.6) then implies that B is non-zero, and hence
it follows from (3.7) that at least one of the quantities T ′′′(0) and R′′′(0) must be non-zero
as well. Assume now that R′′′(0) 6= 0 and consider the ratio

T ′′′(0)

R′′′(0)
=
−∂rQ0A+ ∂xrQ0B

∂tQ0A− ∂xtQ0B
. (3.19)

The following argument is completely identical in the case where T ′′′(0) 6= 0 and the
reciprocal (3.19) is considered. We now assume that

T ′′′(0)

R′′′(0)
=
T ′′(0)

R′′(0)
. (3.20)

However, this implies that

∂xrQ0∂rQ0B − ∂tQ0∂xtQ0B = 0, (3.21)

and since B 6= 0 this expression violates the non-degeneracy condition (3.7) and we can
conclude that

T ′′′(0)

R′′′(0)
6= T ′′(0)

R′′(0)
. (3.22)

This argument concludes the proof that we have an ordinary cusp singularity on a
bifurcation curve in the (t, r) parameter space. Since ∂xxxQ0 6= 0, it also follows for
any x sufficiently close to zero that the Hessian HQ is definite when x has one sign,
and indefinite when x has the opposite sign. Hence, the two branches that meet at the
cusp singularity are respectively a punching bifurcation curve and a pinching bifurcation
curve. A sketch of the bifurcation diagram close to the bifurcation point is shown in figure
2. The orientation of the cusp and the type of bifurcation on each of the two branches
will depend on the signs of the non-degenerate quantities in (3.6) and (3.7).

3.2. Codimension two bifurcation in models with symmetry

As discussed in § 2 the core growth model has the x-axis as a line of symmetry, i.e.
Q(x, y, r, t) = Q(x,−y, r, t). This symmetry may lead to a special type of codimension
two bifurcation which only occurs in such models. The reason is that the symmetry
implies, for any set of non-negative integers k, l,m and n, that

∂kx∂
l
y∂

m
t ∂

n
rQ(x, 0, t, r) = 0 if l is an odd number. (3.23)

If we consider a bifurcation point satisfying the degeneracy and non-degeneracy condi-
tions described in § 3.1, it would in general not affect the bifurcation phenomenon if we
make the analysis in a coordinate system where the x- and y-coordinates are interchanged.
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r

t

t = T (0, r)

(t, r) = (T̃ (µ), R̃(µ))

Figure 3: Illustration of a bifurcation diagram in the neighbourhood of a codimension two
point satisfying the symmetry condition (3.23). The solid and dashed curves are sketches
of the two bifurcation curves meeting with a common tangent line at (t, r) = (0, 0). The
topological structures of the Q = 0 contour curves are illustrated in the figure and the
bifurcation states are depicted in red and green boxes. See appendix A for further details
on T, T̃ and R̃.

The symmetry in the core growth model implies, however, that ∂yyyQ, ∂ytQ and ∂yrQ
are all zero at any point on the line of symmetry. The non-degeneracy conditions in (3.6)
and (3.7) will therefore be violated if the codimension two point is located at the line of
symmetry. In Appendix A we analyse this case in detail. The non-degeneracy conditions

∂tQ0 6= 0, ∂rQ0 6= 0 (3.24)

are kept, and other conditions are imposed to ensure a certain regularity (A 5), (A 6). The
analysis in Appendix A shows that two distinct branches of bifurcation curves meet with
a common tangent line at the codimension two point and separates the parameter space
into three different regions. An example of a bifurcation diagram close to the codimension
two point (t, r) = (0, 0) is shown in figure 3. The orientation of the curves and the type of
bifurcation on each part of the branches will depend on the signs of the non-degenerate
quantities.

4. Application to vortex pair interactions

4.1. Topological bifurcations in the core growth model

Elsas & Moriconi (2017) showed that a Gaussian vorticity field has a positive Q-value
in a circular region with radius r ≈ σ/0.89. As described in § 2 the core growth model
evolves as a superposition of two Gaussian vortices, but since Q does not depend linearly
on the flow field bifurcations in the vortex structure can occur. These bifurcations can
be tracked by solving the degeneracy conditions (3.1) with Q is given by the analytical
expression in (2.17). In the case where α > 1, we obtain the bifurcation diagram shown in
figure 4 when the solution is projected onto the (σ, α) parameter plane. The bifurcation
curves separate the parameter plane into four distinct regions. The vortex structure in
each region is illustrated with an example of a Q = 0 contour curve. The color of a
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Figure 4: Bifurcation diagram of the merging process in the core growth model for α > 1.
The bifurcation curves separate the (σ, α) parameter plane into four distinct regions with
different vortex topologies. Crossing a green (red) part of the bifurcation curve results in
a punching (pinching) bifurcation.

bifurcation curve indicates whether a pinching or a punching bifurcation occur when
crossing the curve. The three points (σA, αA) ≈ (1.12, 4.58), (σB , αB) ≈ (0.98, 3.37),
and (σC , αC) ≈ (0.72, 1) mark the places where two bifurcation curves collide. These
points divide the flow into three different α-regimes in which the vortex interactions
occur through different robust processes. The temporal evolution of the merging process
within each of the three regimes are illustrated by the examples in figure 5b,c,d. The
figure also includes the symmetric case where α = 1. The bifurcation states depicted in
the red and green boxes correspond to the vortex structures on the bifurcation curves
in figure 4. The top-down symmetry (2.18) implies that any bifurcations away from the
line of symmetry occur simultaneously in pairs. For all values of α the initial and final
vortex structure are topologically identical but the temporal evolution is quite different.
In the low α-regime, 1 6 α < αA, figure 5a,b, the merging process proceeds in two steps:
first a single vortex with a hole is formed by two simultaneous pinching bifurcations.
Subsequently the hole disappears in a punching bifurcation. In the intermediate α regime,
αB < α < αA, figure 5c, the two vortices merge in a single pinching bifurcation. In the
high α regime, α > αA, figure 5d, no merging as such occurs, but the weakest vortex is
suppressed by the strongest in a punching bifurcation.

When we turn our attention to the common initial vortex structure, we observe two
zero level curves of Q located around the Gaussian vortex centers. In addition we notice
two smaller vortices that were not immediately expected and grow very slowly in size.
For the sake of simplicity, we will only examine them, in the case where α = 1. Due to
the rotational symmetry in this case, they have a fixed location around (x, y) = (0,±1)
and the analytical expression of the Q-field can easily be evaluated

Q(0,±1, 1, σ) =
e−4/σ

2

π2σ2
. (4.1)

It is clear that (x, y) = (0,±1) are singular points of Q in the initial state where σ = 0.
Furthermore, Q(±1, 0, 1, σ) has a positive value for any σ > 0 and therefore the small
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(a) α = 1

(b) α = 2

(c) α = 4

(d) α = 6

σ = 0.65 σ = 0.72 σ = 0.82 σ = 0.89 σ = 1.10

σ = 0.55 σ = 0.57 σ = 0.60 σ = 0.87 σ = 0.89

σ = 0.35 σ = 0.36 σ = 0.60 σ = 0.87 σ = 1.10

σ = 0.42 σ = 0.43 σ = 0.60 σ = 1.04 σ = 1.10

σ = 0.92 σ = 1.10

Figure 5: Evolution of the vortex structure at selected values of α > 1. For each value
of α, all the observed topologies of the Q = 0 contour curves are shown in the order
of evolution. The structurally unstable bifurcation states are depicted in red and green
boxes.

vortices are indeed present from the beginning. Furthermore, we see that the value of Q
increases slower than any power of σ. From the examples in figure 5 we see that the small
vortices merge with the weakest of the two main vortices in two simultaneous pinching
bifurcations that occur when crossing the far left the bifurcation curve in figure 4.

The key to understanding the complete picture of the vortex pair interactions are
the singular points, A, B, C, on the bifurcation curves in figure 4. At these points we
observe bifurcations with higher codimension and the corresponding vortex topologies
are depicted in black boxes. At A there is a critical point on the zero level curve of
Q at (xA, yA) ≈ (0.94, 0). By evaluating HQ precisely at this point, we find that the
degeneracy condition (3.5) is satisfied and we can employ our codimension two theory
in § 3.1. The two parameters t and r are in this case interpreted as t = σ − σA and
r = α − αA. Based on theory, we conclude that the singular point at A is an ordinary
cusp singularity on the bifurcation curve and the two branches that meet at the cusp
singularity are respectively a punching bifurcation curve and a pinching bifurcation curve.
This analysis is completely consistent with the result in figure 4 and leads to the same
conclusion: a pair of co-rotating vortices merge only if their strength ratio α = Γ1/Γ2

is less than αA = 4.58. At B there is a critical point on the zero level curve of Q at
(xB , yB) ≈ (3.91, 0). Since this critical point is located at the line of symmetry and HQ

B

satisfy the degeneracy condition (A 2), we can employ our codimension two theory in
Appendix A. Based on theory, we conclude that two distinct branches of bifurcation
curves meet with a common tangent at the singular point B. Therefore, the point marks
the transition between two regimes where merging proceeds as two different sequences of
bifurcations exactly as shown in figure 4. The last singular point at C is solely due to the
rotational symmetry of order 2 when α = 1 and the point represents a global bifurcation
where four distinct bifurcations are restricted to occur simultaneously.

The bifurcation diagram in figure 4 gives us a complete picture of vortex pair inter-
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Figure 6: Bifurcation diagram of the merging process in the core growth model for α <
−1. The green bifurcation curve separates the (σ, α) parameter plane into two distinct
regions with different vortex topologies. The topological structures are illustrated with
an example of a Q = 0 contour curve within each region. On the bifurcation curve one
of the vortices disappears in a punching bifurcation.

actions when considering two co-rotating vortices. Since it is only possible to show the
diagram for a finite range of α, the upper limit of α = 6 is an arbitrary limit. However,
by increasing α significantly, we conclude that the qualitative picture is the same for
α > 6. The limit where α is increased to infinity corresponds to a single Lamb-Oseen
vortex, and therefore we expect both bifurcation curves to approach σ = 0 for α → ∞.
For all values of α there is only a single vortex left for σ > 1.12. As proven by Gallay &
Wayne (2005) the Lamb-Oseen vortex is an attracting solution for any integrable initial
vorticity field. Therefore, we expect that the final vortex region converges to a circular
region when σ is further increased.

For α < 0 the vortices have opposite signs of vorticity, and as discussed in § 3 they
cannot merge in a pinching bifurcation. This is confirmed by the bifurcation diagram for
α < −1 in figure 6. For all values of α, the only event is the disappearance of the weakest
vortex in a punching bifurcation. When α approaches −1, the time for the punching
bifurcation goes to infinity.

4.2. Navier-Stokes simulations of vortex pair interactions

We want to compare the results of the analytical core growth model with Navier-
Stokes simulations subject to the same initial condition. This is done by solving the
vorticity transport equation (2.1) numerically. Following Andersen et al. (2019) we do
not reparameterize the vorticity transport equation, but control the Reynolds number
directly through the kinematic viscosity, ν. In this study we define the Reynolds number
as an average of the individual vortex Reynolds numbers

Re =
|Γ1|+ |Γ2|

2ν
, (4.2)

which is consistent with earlier studies by Andersen et al. (2019), Meunier et al. (2002)
and Jing et al. (2010). Since our system is isolated the total absolute vorticity
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∫ ∫
|ω|dxdy = |Γ1|+ |Γ2| (4.3)

must be conserved. Therefore, we fix |Γ1| + |Γ2| = 10 in all simulations and control the
Reynolds number by varying ν. The conservation of the total absolute vorticity is also
monitored as a check of the numerical scheme.

As discussed in § 2 we are primarily interested in comparing the models at low values
of Reynolds numbers and we choose to make simulations only for Re 6 100. We restrict
the computational domain to the region where (x, y) ∈ [−9, 9]× [−9, 9]. Since Re 6 100
and we have a simple square domain a finite difference method with an explicit Euler
integrator scheme suffices (Andersen et al. 2019; E & Liu 1996a,b). If the field variable
with index ij is the value at grid point (i, j) we have the iterative scheme

ωn+1
ij (∆tn) = ωnij −

(
unij · (∇ωnij)− ν∇2ωnij

)
∆tn,

∇2ψn+1
ij = −ωn+1

ij , un+1
ij =

∂ψn+1
ij

∂y
, vn+1

ij = −
∂ψn+1

ij

∂x
, (4.4)

where n is the integrator iteration index and ∆tn the time step used by the scheme at
index n. We apply an adaptive time step method, where the error estimator is given by
the supremum of the absolute differences in the vorticity field using ∆tn and ∆tn/2, i.e.
err = sup{|ωnij(∆tn)−ωnij(∆tn/2)|}; the relative maximum tolerance is set to 0.1 %, and

with maximum time step of 10−3 in simulation time units. The spatial derivatives are
approximated by central differences using a 300 × 300 grid with grid spacing ∆x = 0.06,
and we apply periodic boundary conditions. The Poisson problem is solved using the
direct method described in Hansen (2011). We note that this simple scheme has been
tested against higher order schemes as well as for finite size effects etc. (Andersen et al.
2019).

The initial condition for the core growth model is two Dirac-delta distributions located
at (x, y) = (±1, 0). Such an initial condition can not be handled by our mesh-based
method. Therefore, we consider an initial condition with two slightly diffused Gaussian
peaks,

ω0
ij =

α

πσ2
0

e
−

(xi+1)2+y2j

σ20 +
1

πσ2
0

e
−

(xi−1)2+y2j

σ20 , (4.5)

where σ0 = ∆x. From the ω0
ij the stream function ψ0

ij can be found, which also gives the
initial velocity field.

4.3. Topological bifurcations in Navier-Stokes simulations

In figure 7 and figure 8 the topological vortex structure is shown for selected simulations
with Re = 10 and Re = 100, respectively. It is important to make clear that the
simulations are not performed in a co-rotating frame and we therefore expect the two
vortices to rotate relative to each other. In both figures we observe evolution patterns
that are qualitatively similar to the ones observed in the core growth model. For α = 1,
the vortex structure still has a rotational symmetry of order two and for increasing values
of α we observe three different sequences of topological structures describing the merging
process. For the smallest values of α, the process involves forming a vortex with a hole
in it. For intermediate values of α, merging occur as a single pinching bifurcation and
no merging is observed for large values of α where the weakest vortex is suppressed
in a punching bifurcation. Although there are qualitative similarities, it is clear that
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α = 2

σ = 0.55 σ = 0.56 σ = 0.57 σ = 0.86 σ = 0.88 σ = 0.92

α = 4

σ = 0.42 σ = 0.43 σ = 0.44 σ = 1.02

α = 1

σ = 0.65 σ = 0.71 σ = 0.72 σ = 0.89

α = 6

σ = 0.34 σ = 0.35 σ = 0.37 σ = 0.87

Figure 7: Navier-Stokes simulations at Re = 10. The evolution of the vortex structure
is shown at selected values of α > 1. For each value of α, all the structurally stable
topologies of the Q = 0 contour curve are shown in the order of evolution.

the quantitative picture changes with increasing Reynolds numbers. For both values of
Reynolds number there is no line of symmetry in the topological vortex structure. The
bifurcations that occur simultaneously in the core growth model are here observed at
two distinct values of σ. We notice that the symmetry is only slightly broken in the case
of a low Reynolds number.

For each of the two selected Reynolds numbers, we have performed simulations with
more than 30 different values of 1 6 α 6 6. From each simulation, we have marked the
observed bifurcation points in the (σ, α) parameter plane and constructed the bifurcation
curves shown as the solid lines in figure 9a,b. The color of the bifurcation curves again
indicates the type of bifurcation. For the purpose of comparison the bifurcation curves in
the core growth are drawn as dashed lines in the background of the bifurcation diagrams.
In both cases, we observe that the codimension two point at B has disappeared. However,
this was expected as we do not have a line of symmetry in the Navier-Stokes simulations.
With the disappearance of B, a new codimension two point D has arisen in both cases.
Since a pinching and a punching bifurcation curve meet at D they must form another cusp
singularity. The break of symmetry causes the global bifurcation point at C to separate
into two singular points C1, C2 where rotational symmetry of order 2 is preserved. The
codimension two point at A is preserved as a cusp singularity but the exact location
varies slightly. By recalling that the cusp singularity represents the merging threshold,
we conclude that for Re = 100 vortex merging is only observed if the strength ratio,
α = Γ1/Γ2 is less than αA = 4.05.

Overall, we observe the same topological structures as seen in the core growth model.
Only the bifurcations that were restricted by the built-in symmetry are qualitatively
changed. The codimension two points still divide the flow into three different α regimes:
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α = 1.2

σ = 0.59 σ = 0.62 σ = 0.65 σ = 0.68 σ = 0.69 σ = 0.79

α = 3

σ = 0.43 σ = 0.48 σ = 0.51 σ = 0.82

α = 1

σ = 0.58 σ = 0.64 σ = 0.67 σ = 0.78

α = 5

σ = 0.35 σ = 0.37 σ = 0.40 σ = 0.85

Figure 8: Navier-Stokes simulations at Re = 100. The evolution of the vortex structure
is shown at selected values of α > 1. For each value of α, all the structurally stable
topologies of the Q = 0 contour curve are shown in the order of evolution.

1 6 α < αD, αD 6 α < αA and α > αA. The examples in figure 7 and 8 are chosen to
illustrate the temporal evolution of the merging process within each of the three regimes.

We notice that the small vortices growing around the infinitely degenerate critical
points are also present in the Navier-Stokes simulations. Therefore, we conclude that
they are not just mathematical artifacts that exist in the core growth model due to a
forced symmetry. They, on the other hand, have a significant impact on the observed
topological structures. When the small vortices merge with the weaker of the two main
vortices, its structure is deformed in a manner that enables the subsequent formation
of the interesting vortex structure with a hole inside it. One could argue that the small
vortices are artifacts due to the Q-criterion. In practice it is common to choose a non-
zero threshold to identify the vortex boundaries. The threshold is ideally chosen such that
strong vortices are captured while small spurious vortices are ignored. Unfortunately, it
is very difficult, if not impossible, to determine a suitable threshold value a priori because
the optimal threshold value tends to be problem dependent (see Chen et al. (2015) and
Chakraborty et al. (2005)). From the present study it is also clear that the infinitely
degenerate critical points out of which the small vortices grow have an effect on the
shape of the vortices and we have therefore chosen to stick with the original Q-criterion
as it is defined in (1.1).

5. Discussion

With a topological approach, we revisited the vortex merger problem. The final state
of an interacting pair of vortices is known (Gallay & Wayne 2005) to be a single Lamb-
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(b) Re = 100.

Figure 9: Bifurcation diagrams of the merging process in Navier-Stokes simulations with
(a) Re = 10 and (b) Re = 100. The solid curves are the bifurcation curves in the Navier-
Stokes simulations. The bifurcation curves in the core growth model are drawn as dashed
lines for comparison.

Oseen solution. The focus of our studies has therefore been to elucidate the dynamics
that take place as the system evolves into the Lamb-Oseen solution. Based on the Q-
criterion, we have completed a mathematical description that tells us which topological
bifurcations we can expect when two parameters are allowed to vary. It has proven to be
useful to identify the codimension two points as they organize the bifurcation diagram
and divide it into different regimes where different sequences of bifurcations form the
merging process. The possible types of bifurcations found from theory also serve as a
template that facilitate the construction of a bifurcation diagram for a specific value of
Reynolds number. As an example, we know that a pinching and a punching bifurcation
curve form a cusp singularity where they meet. Therefore, it is possible to accurately
construct the bifurcation curves in figure 9 based on a finite number of Navier-Stokes
simulations.

One of the main objectives in this study was to investigate vortex pair interactions
using the core growth model. The major advantage of the model is the possibility to
determine an analytical expression for Q in the co-rotating frame. With this expression
the topology of the Q = 0 contour curves was easily studied with a precision that made
it possible to depict the structurally unstable bifurcation states in figure 5. The utility
of the model was examined by comparing it with Navier-Stokes simulations. Except
for the bifurcations that were restricted by the built-in symmetry in the core growth
model, we observe the same topological structures in the Navier-Stokes simulations. For
Reynolds numbers up to at least 100, the qualitative picture was the same. Furthermore,
we observe an excellent quantitative agreement with simulations for Reynolds numbers
below 10. Thus, depending on the purpose, there are good opportunities to use core
growth model instead of solving the Navier-Stokes equation with low Reynolds numbers.

Most previous studies have focused on symmetric merging of two identical vortices or,
to a lesser extent, asymmetric merging with a few examples of different strength ratios,
see, among others, Melander et al. (1988), Meunier et al. (2002), Dritschel (1995). In
two recent studies by Jalali & Dritschel (2018, 2020) the general inviscid interactions of
vortex patches is studied with many examples over a wide parameter space including
ratio of sizes and vorticity. Our study is not the first that attempts to describe all
interaction scenarios in terms of different flow regimes. Dritschel & Waugh (1992) identify
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five different flow regimes to characterize the inviscid interaction of two differently sized
vortex patches with equal uniform vorticity. These different flow regimes were based
on the “efficiency” of the vortex interactions, which was quantified by computing the
ratio of the final to initial circulation for each of the vortices. Trieling et al. (2005)
show that similar flow regimes can be used to characterize the inviscid interactions of
two-dimensional vortices with a continuous vorticity distributions. They notice, however,
that the regime boundaries are highly sensitive to the vorticity profile.

It is beyond the scope of this work to study the immediate change in the circulation
within the zero level curves of Q during a merging process. A comparison between the
initial and long term asymptotic state is, however, possible. We recall that a Gaussian
vorticity field has a positive Q-value in a circular region with radius r ≈ σ/0.89 (Elsas &
Moriconi 2017). The circulation within the Q = 0 level curve of a Gaussian vortex can
therefore be directly computed as

∫ σ/0.89

0

ω(r)2πrdr =

∫ σ/0.89

0

Γ

πσ2
e−r

2/σ2

2πrdr ≈ 0.72Γ, (5.1)

where Γ is the total circulation. Thus, the Q = 0 curve expands at a rate that makes the
circulation constant within the Q-vortex. For sufficiently small values of σ the vorticity
field of each of our two initial vortices can be assumed to be Gaussian distributed.
Therefore, before any interaction, the circulation of the vortices must equal 0.72Γ1 and
0.72Γ2, respectively. Since the long time asymptotic state of interacting vortices is a single
Gaussian vortex with total circulation Γ1 + Γ2, no matter how the transient dynamics
evolve, the circulation of the final vortex must equal 0.72(Γ1+Γ2). Hence, the circulation
of the initial vortices is completely transferred to the final surviving vortex. Therefore,
merging of viscous Q-vortices is always completely efficient, and is complete merging in
the sense of Dritschel & Waugh (1992).

Brandt & Nomura (2010) use some of the same terms as Dritschel & Waugh (1992)
to describe the flow regimes in a viscous setting at Re = 5000. All viscous interactions
between vortices will eventually result in a single vortex, and therefore only three of the
inviscid regimes are considered to occur: complete merger, partial merger and straining
out. Brandt & Nomura (2010) specify three times that are important in the merging
process, tcr,1, tcr,2 and tde,2. For vortex i, tcr,i indicates the time where the vortex no
longer diffuses as a single Gaussian vortex, i.e., the time where the square of the core
radius no longer grows linearly. tde,2 is the time characterizing the destruction of the
weaker vortex 2. The weaker vortex is considered to be destroyed when its core vorticity
no longer dominates the imposed strain rate field. This is the case when the Q-value is
very small at the maximum point of vorticity for the weaker vortex.

Brandt & Nomura (2010) distinguish between two main regimes, depending on the
order of tcr,2 and tde,2. For large values of α, the weak vortex disappears before it gets
close to the strong vortex. This is denoted straining-out by Brandt & Nomura (2010)
and characterized by tde,2 < tcr,2. In our setting, this corresponds to the weakest vortex
disappearing in a punching bifurcation. If tcr,2 < tde,2 the two vortices interact before the
weak one disappears. This is denoted merging, and occurs when α is close to 1. We detect
merging in this sense when the two Q = 0 curves merge in a pinching bifurcation. In both
classifications the latter regime is further subdivided. If tcr,2 ≈ tcr,1 (complete merger)
Brandt & Nomura (2010) find detrainment of vorticity from both vortices and mutual
entrainment of the core into a single vortex. If tcr,2 < tcr,1 (partial merger) there is
detrainment from both vortices, but the weaker vortex is destroyed. In our classification,
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there is a regime where a hole is created inside the merged vortex, and one where there
is not.

Hence, there are many similarities between the classification by Brandt & Nomura
(2010) and the one we propose on the basis of Q alone, even if the flows are studied at very
different Reynolds numbers. In the present study the physics is dominated by diffusion,
and convection plays a very small role. In particular, there is no significant filamentation
of vorticity (Andersen et al. 2019), and denoting the high α regime where the weak vortex
disappears in a punching bifurcation straining-out does not reflect the actual dynamics.
However, for higher Reynolds numbers, filamentation will also be detected by the shape
of the Q = 0 contours. A first indication is visible for α = 3 in figure 8. The transition to
regimes with straining-out and detrainment as Reynolds number is increased can possibly
be characterized by further bifurcations in the Q = 0 contours. From figure 9 we see that
the point D moves to lower values of α as Re is increased. We expect that the regime
with a vortex with an inner hole may be very small or disappear completely for higher
values of Re.

The approach that is common to the studies of Dritschel & Waugh (1992), Trieling et al.
(2005) and Brandt & Nomura (2010) provides no information about the topological vortex
structure during the merging process and it does not define merging as a bifurcation that
occurs at a specific time. With our approach, we have the opportunity to connect the
process to a rigorous mathematical theory and we avoid a number of choices, such as to
define what the core radius is. By using the core growth model we have mapped out all
vortex pair interactions with a bifurcation diagram being valid for any choice of vortex
strengths with a ratio |α| = |Γ1/Γ2| 6 6. To our knowledge, a similar bifurcation diagram
has only been established once before in a recent study by Andersen et al. (2019). Their
results are based on vortices being defined as local extrema of vorticity. Both studies
agree that the core growth model matches well with Navier-Stokes simulations for low
Reynolds numbers. It is, however, clear that the choice of vortex criterion is crucial to the
analysis. While the Q-criterion provides information on the physical extent of a vortex,
the vorticity criterion only tells us whether or not a feature point for the vortex exists.
With the vorticity criterion, it is impossible to distinguish between vortex merging and
what we see in this study as suppression of the weakest vortex. Therefore, the threshold
for merging and the observed vortex structure with a hole inside are both completely
new results that have provided new insights into the intermediate evolution of vortex
merging.

Our study has only focused on mapping out all vortex pair interactions with point
vortices as initial condition. Inspired by Folz & Nomura (2017) it would be an obvious
continuation of our study to consider two Gaussian vortices with different sizes as
initial condition and analyse the effect of differing the vortex area versus the vorticity
amplitude. By introducing yet another parameter, the possibility of bifurcations with a
higher codimension also arises. It is therefore possible that such a study will require new
theoretical considerations.
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Appendix A. A theoretical description of codimension two
phenomena in a symmetric model

In this appendix we analyse the codimension two bifurcation which is briefly discussed
in § 3.2. We consider a flow with symmetry such that Q(x, y, r, t) = Q(x,−y, r, t). For
any set of non-negative integers k, l,m and n it then follows that

∂kx∂
l
y∂

m
t ∂

n
rQ(x, 0, t, r) = 0 if l is an odd number. (A 1)

The special codimension two bifurcation will only occur on the line of symmetry,
y = 0, since the conditions in (A 1) only applies at the line of symmetry. For simplicity
we analyse the phenomenon in a coordinate system where the bifurcation point is located
at (x, y, t, r) = (0, 0, 0, 0) and, as before, we use subscript 0 to denote evaluation at the
bifurcation point. We consider a bifurcation point that is characterized by the following
set of degeneracy conditions

Q0 = 0, ∂xQ0 = 0, ∂yQ0 = 0, (A 2)

combined with the non-degeneracy condition in (3.3) being violated such that

HQ
0 =

(
∂xxQ0 ∂xyQ0

∂xyQ0 ∂yyQ0

)
=

(
λ 0
0 0

)
, (A 3)

for some λ 6= 0. In this section we prove that if the bifurcation point also satisfies the
following non-degeneracy conditions

∂tQ0 6= 0, ∂rQ0 6= 0, (A 4)

∂xyyQ0
∂xtQ0∂rQ0 − ∂xrQ0∂tQ0

∂xxQ0∂tQ0
− ∂yytQ0

∂rQ0

∂tQ0
+ ∂yyrQ0 6= 0 (A 5)

and

−3
(∂xyyQ0)2

∂xxQ0
+ ∂yyyyQ0 6= 0, (A 6)

then two distinct branches of bifurcation curves meet tangentially at (t, r) = (0, 0), as
illustrated in figure 3.

We begin the proof by considering the following Jacobian

J =
∂(∂xQ,Q)

∂(x, t)
=

(
∂xxQ ∂xtQ
∂xQ ∂tQ

)
, (A 7)

which simplifies to

J0 =

(
λ ∂xtQ0

0 ∂tQ0

)
(A 8)

when it is evaluated at the bifurcation point. Since λ 6= 0 it follows from the non-
degeneracy condition (A 4) that J0 is non-singular. Hence, we can apply the implicit
function theorem to conclude that there exist unique local functions x = X(y, r), t =
T (y, r) satisfying

X(0, 0) = 0, T (0, 0) = 0 (A 9)

and

∂xQ(X(y, r), y, T (y, r), r) = 0, Q(X(y, r), y, T (y, r), r) = 0. (A 10)

Since Q, and hence also ∂xQ, are symmetric functions in y, it follows that
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∂xQ(X(−y, r),−y, T (−y, r), r) = ∂xQ(X(−y, r), y, T (−y, r), r) = 0,

Q(X(−y, r),−y, T (−y, r), r) = Q(X(−y, r), y, T (−y, r), r) = 0.
(A 11)

By comparing the expressions in (A 10) and (A 11) and based on the uniqueness of X and
T we can conclude thatX and T are also symmetric functions in y, i.e.X(−y, r) = X(y, r)
and T (−y, r) = T (y, r). In order to give a parametric representation of the bifurcation
curves we must solve the equation

∂yQ(X(y, r), y, T (y, r), r) = 0 (A 12)

for y in terms of r. It follows from (A 1) that

∂yQ(X(0, r), 0, T (0, r), r) = 0, (A 13)

for any r. It follows that there exists a branch of bifurcation points which will remain on
the line of symmetry y = 0. The curve, t = T (0, r), gives us a parametric representation of
this branch in the (t, r) parameter space. Since T is a continuously differentiable function
the slope of the tangent at r = 0 can be determined by implicit differentiating (A 10),
yielding

∂rT0 = −∂rQ0

∂tQ0
. (A 14)

In figure 3 this branch of bifurcation points is illustrated by the dashed green curve.
We expect, however, that there are other solutions of (A 12), where the bifurcation points
are leaving the line of symmetry. Since Q is a symmetric function in y, ∂yQ must be an
antisymmetric function in y. Hence, a Taylor expansion of the left hand side of (A 12)
based at (y, r) = (0, 0) has the form

∂yQ(X(y, r), y, T (y, r), r) = Ayr +By3 + Cyr2 +O(4), (A 15)

where the terms of order 4 (or higher) contains only odd powers of y. The coefficients A,B
and C can be expressed solely in terms of derivatives of Q evaluated at the bifurcation
point. Only A and B will play a role and are given in (A 16) and (A 17). We assume they
are non-zero, and that is exactly the non-degeneracy conditions in (A 5) and (A 6).

A = ∂xyyQ0
∂xtQ0∂rQ0 − ∂xrQ0∂tQ0

∂xxQ0∂tQ0
− ∂yytQ0

∂rQ0

∂tQ0
+ ∂yyrQ0 6= 0, (A 16)

and

B = −3
(∂xyyQ0)2

∂xxQ0
+ ∂yyyyQ0 6= 0. (A 17)

To obtain a parametric representation of the second branch of the bifurcation curve, we
put r = µy and define

F (y, µ) =
∂yQ(X(y, µy), y, T (y, µy), µy)

y2
. (A 18)

From this definition we notice that F (−y,−µ) = −F (y, µ). Therefore, F has the following
Taylor expansion based at (y, r) = (0, 0),

F (y, µ) = Aµ+By +O(3). (A 19)
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Since F (0, 0) = 0 and ∂yF (0, 0) = B 6= 0, the implicit function theorem establishes the
existence of a unique solution y = Y (µ) satisfying that Y (0) = 0,

F (Y (µ), µ) = 0, (A 20)

and hence

F (−Y (−µ), µ) = −F (Y (−µ),−µ) = 0. (A 21)

By comparing the expressions in (A 20) and (A 21) and based on the uniqueness of
Y we conclude that Y is an odd function. From the definition of Y it is clear that
(y, r) = (Y (µ), µY (µ)) is a solution to the equation in (A 12). A second branch of
bifurcation points in the (t, r) parameter space can therefore be determined by the
parametric equations

t = T̃ (µ) = T (Y (µ), µY (µ)), (A 22)

r = R̃(µ) = µY (µ). (A 23)

It follows from the definitions of T and Y that T̃ (0) = 0 and R̃(0) = 0. Furthermore, we
see that

T̃ (−µ) = T (Y (−µ),−µY (−µ)) = T (−Y (µ), µY (µ)) = T (Y (µ), µY (µ)) = T̃ (µ) (A 24)

and

R̃(−µ) = −µY (−µ) = µY (µ) = R̃(µ). (A 25)

Since both T̃ and R̃ are even functions, it follows that R̃′(0) = T̃ ′(0) = 0 and it is clear
that (t, r) = (0, 0) must be a singular point on the curve. The parameter values µ > 0

and µ < 0 correspond to the two branches on either side of the singular point. Since T̃
and R̃ are even functions it is clear that the two branches must coincide and (t, r) = (0, 0)
is in fact an endpoint of the parametric curve as illustrated in figure 3. The tangent to
the curve is not well-defined at the endpoint but we notice that the limiting tangent
direction can be computed as

lim
µ→0

(
T̃ ′(µ)

R̃′(µ)

)
=
T̃ ′′(0)

R̃′′(0)
(A 26)

if R̃′′(0) 6= 0. Thus, we must compute the second order derivatives of T̃ and R̃ at µ = 0.
By implicit differentiating (A 20) we obtain

Y ′(0) = −A
B
6= 0, (A 27)

implying that

T̃ ′′(0) = 2Y ′(0)∂rT0 = −2A∂rQ0

B∂tQ0
6= 0, (A 28)

R̃′′(0) = 2Y ′(0) = −2A

B
6= 0. (A 29)

Summing up we get that

lim
µ→0

(
T̃ ′(µ)

R̃′(µ)

)
=

2A∂rQ0

B∂tQ0

−2A

B

= −∂rQ0

∂tQ0
, (A 30)
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which implies that both branches of the bifurcation curve share a common tangent line
in (t, r) = (0, 0) as illustrated in figure 3. The orientation of the bifurcation curves and
the type of bifurcation on each part of the branches will depend on the signs of the
non-degenerate quantities.
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Chapter 5

Topological bifurcations in
the transition from 2S to
P+S mode in the wake

behind an oscillating
cylinder

5.1 Introduction

In the paper presented in this chapter, we revisit the two-dimensional flow past
an oscillating cylinder. To the best our knowledge, we are the first to analyse
this classical fluid mechanical problem with an approach from topological fluid
dynamics. Instead of analysing the flow with the theory we have developed for
the Q-criterion in our first two papers, we study the qualitative changes in the
vorticity topology as described in section 2.2.2. We have chosen this approach
because it previously has been used in a comprehensive study of the flow past
the stationary cylinder [27].

In general, the flow past an oscillating object has been the subject of an extensive
amount of research. The research has mainly been motivated by the practical
problem of vortex-induced vibrations (VIV). Vortex-induced vibrations occur as
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(a) (b)

Figure 5.1: A non-dimensionalised frequency-amplitude map of the vortex
synchronisation patterns from two previous studies. (a) the ex-
perimental results from Williamson and Roshko (1988) where a
cylinder is towed sinusoidally in a water tank at 300 < Re < 1000
[58], and (b) the numerical results from Leontini et al. (2006) were
two-dimensional simulations where conducted at Re = 100 [36].

a result of the time-dependent forces associated with the formation of a wake
of vortices behind a so-called bluff body. VIV are relevant to a wide range
of applications, including the construction of deepwater risers for extraction of
ocean oil [60], the design of wind turbine blades [28], and the optimisation of
energy harvesting from vibrating cables [2]. See Williamson and Govardhan
(2004) for a comprehensive review of VIV [59]

The flow past a circular cylinder is considered a basic case for flows with more
complex geometries, and it contributes to the understanding of vortex-induced
vibrations in general bluff bodies. The VIV phenomenon is a fascinating feed-
back between body motion and vortex motion. Previous studies has emphasised
how forced cylinder oscillations can be important in understanding and predict-
ing VIV, see for example [43]. With this approach, the cylinder moves with a
prescribed frequency f and amplitude A in a flow with a specified inflow ve-
locity U . Although much of the underlying motivation for forced oscillation
studies is related to vortex-induced vibrations, there is a extensive amount of
research that focuses solely on the forced oscillations and the resulting wake
structure. Williamson and Roshko (1988) conducted an extensive experimental
study of the wake structure behind a cylinder over a large range of frequency
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and amplitude values [58]. A similar two-dimensional computational study was
conducted by Leontini et al. (2006) [36]. Some main results of the two studies
by are summarised in figure 5.1 showing two frequency-amplitude maps of the
observed wake patterns. In both diagrams they use a symbolic code of letters
and numbers to describe vortex patterns such as P+S, 2S, and 2P, where S
denote a single vortex, and P denote a pair of counter-rotating vortices.

It is common to the two studies that the wake mode is determined only by visual
inspection. It is therefore not clearly defined when a vortex is actually present in
the computed vorticity field or in the flow visualisation using aluminium parti-
cles. An accurate quantification of the topology, including a vortex definition, is
required to analyse the flow with a topological fluid dynamics approach. In the
paper presented in the following section, we focus on the primary synchroination
region where the flow is periodic and the cylinder oscillates with a frequency
that is similar to its Strouhal frequency fSt. At four different frequency values
we give a complete topological description of the transition from 2S to P+S
mode in a two-dimensional flow with Re = 100. This is done by keeping track
of the vorticity extrema and monitoring cusp bifurcations in the vorticity field
during a complete oscillation cycle. This process is repeated for simulations
where the amplitude is varied. During our studies, we found a bistable region
where different initial conditions resulted in two different types of wake pat-
tern for the exact same parameter values. This bistable region turned out to
be completely consistent with results of a very recent paper by Matharu et al.
(2021) [39]. They compute the time periodic solutions with a space-time dis-
cretisation and show that the break in symmetry is due to a subcritical pitchfork
bifurcation of the Navier-Stokes equations. It is the fact that the bifurcation
is subcritical that causes the bistable region where multiple solutions to occur.
Our research has been conducted simultaneously with the research presented
by Matharu et al. (2021). We have therefore decided to write the following
paper as a natural continuation of their findings. In the paper, we describe how
the symmetry-breaking pitchfork bifurcation identified Matharu et al.(2021) is
important in the topological transition from 2S to P+S mode, but it cannot
explain all the structural changes we observe. Furthermore, we argue that we
need to extend the usual symbolic coding of wake patterns to be able to describe
the vortex structure accurately but also to understand the topological changes
in the transition.

5.2 Paper III

The paper in this section is an unpublished manuscript which will be submitted
for publication after minor revisions.
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Abstract

We explore the two-dimensional flow past a cylinder undergoing forced transversal
oscillations with the aim of elucidating the topology of the wake under variation of the
amplitude. In particular, we study the change from two single vortices (2S mode) to a pair
and a single vortex (P+S mode) being shed per period. Matharu et al. (J. Fluid Mech.
918 (2021), A21) showed that a dynamical symmetry-breaking pitchfork bifurcation
occurs in this transition. We show that in addition to this bifurcation a number of
topological bifurcations in the vorticity field occur, both on the (anti-)symmetric 2S
branch and the asymmetric P+S branch. Hence, the transition is a process taking
place over an interval of forcing amplitudes rather than a single bifurcation event. The
topological bifurcations are cusp bifurcations where an extremum of vorticity is created
or destroyed. To describe the effect of the topological bifurcations we introduce an
extended symbolic classification of the wake modes to account for the spatial variations
of the vortex patterns that occur in the transition process. We identify four values of the
amplitude that define critical stages in the transition, and obtain a complete qualitative
picture of the transition from 2S to P+S mode.

1. Introduction

In the analysis of any fluid mechanical problem it is a natural starting point to make
it clear what parameters the problem depends on. Under variation of these external
parameters, a flow may undergo some changes which can be understood using bifurcation
theory. A bifurcation occurs when a smooth change in the parameter values causes a
sudden qualitative or topological change in a dynamical system. In this paper, we draw
our attention to the classical fluid mechanical problem of the flow past a circular cylinder
undergoing forced oscillations. The problem is characterised by three non-dimensional
parameters: the amplitude, A, the wavelength, λ and the Reynolds number, Re. The
problem is considered a basic case for bluff bodies with more complex geometries, and it
contributes to the understanding of vortex-induced oscillations. In a landmark and much-
cited paper Williamson & Roshko (1988) experimentally studied the forced transverse
cylinder problem. Their paper was the first to provide a comprehensive study of the
differnet flow regimes that occur when varying the wavelength λ and the amplitude A of
the cylinder oscillations. They identified several vortex shedding patterns more complex
than the well-known von Kármán vortex street behind a stationary cylinder. In later
studies, these complicated wake patterns have become known as exotic wakes (Aref et al.
2006; Ponta & Aref 2006). Williamson & Roshko (1988) introduced a terminology to
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Cusp bifurcation (a new vortex is created)

Cusp bifurcation (a vortex is destroyed)

D E S

Figure 1: Illustration of the vorticity topology during a cusp bifurcation. The bifurcation
parameter p is assumed to take the value zero at the bifurcation point. As p increases,
the level curves of the vorticity deform to create an ordinary cusp singularity at the
degenerate critical point (D). When p increases further a saddle (S) and an extremum
(E) emerge which result in the formation of a vortex.

characterise the vortex pattern in these exotic wakes. They use a symbolic code of letters
and numbers to describe vortex patterns such as P+S, 2S, and 2P, where S denotes a
single vortex, and P denote a pair of vortices of opposite signs. A pattern such as P+S
is one where a pair of vortices and a single vortex are shed in each oscillation cycle.
Adopting this natation, the von Kármán vortex street is referred to as a 2S wake. In §4
we argue that an extended classification is needed to give a complete description of the
vortex structure in the wake and to understand the topological changes that leads to a
change in the wake pattern.

The 2S wake preserves a spatio-temporal Z2 symmetry Blackburn et al. (2005), which
means that if the flow is evolved forward in time by half a period, and is reflected spatially
about the wake centerline, then the original wake pattern is recovered. In terms of the
vorticity field, it means that

ω(x, y, t) = −ω(x,−y, t+ 1/2), (1.1)

when the period of cylinder oscillations is normalised to one. On the contrary, it is
clear that a P+S wake pattern cannot satisfy the same (anti-)symmetry condition as it
alternates between a single vortex or a pair of vortices being shed in every half period. In
a very recent paper by Matharu et al. (2021) the two-dimensional flow past a transversely
oscillating cylinder is revisited. They consider the fundamental lock-in region where the
cylinder oscillates with exactly the Strouhal frequency of the cylinder. With a space-time
approach they were able to show that the loss of symmetry is due to a subcritical pitchfork
bifurcation. In the present paper, we re-examine the two-dimensional flow around the
oscillating cylinder with the aim of elucidating the topological changes of the flow field
that occur in the transition from 2S to P+S mode. In order to be able to describe the
topological changes, we need a clear definition of the topological structure of a given
wake. Here, we analyse the topology of the flow field in terms of the vorticity field ω.
Since we consider a two-dimensional flow, ω is a scalar field whose topology is described
by the level curves and the critical points at which ∂xω = ∂yω = 0. The type of a critical
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point is determined by the determinant of the Hessian matrix

|Hω| = ∂xxω∂yyω − (∂xyω)2. (1.2)

If |Hω| > 0 the critical point is an extremum point and if |Hω| < 0 it is a saddle point.
An extremum point in the vorticity field is encircled by closed level curves, and such a
region is often identified as a vortex. In this study we choose a vortex criterion where the
existence of an extremum of vorticity is a so-called feature point for a vortex (Kasten
et al. 2016). Extremum points and saddle points are both robust, which means that they
persist as they are advected with the flow; see Brøns & Bisgaard (2010) for a derivation of
their equations of motion. To locate any topological changes of the vorticity field we must
therefore locate the degenerate critical points where |Hω| = 0. Under generic assumptions
on higher-order derivatives of ω it can be shown (Brøns 2007) that the simplest possible
change in the topology is a cusp bifurcation (also known as a saddle-centre bifurcation).
The level curves and the critical points of the vorticity field during a cusp bifurcation
is illustrated in figure 1. The bifurcation parameter named p could be any parameter
on which the problem depends. In our case the cusp bifurcation could occur as a result
of variations in either A, λ or Re. As we shall see, the symmetry-breaking subcritical
pitchfork bifurcation cannot itself explain all the topological changes we observe in the
transition from 2S to P+S mode. It is therefore necessary to emphasise that bifurcations
can occur at two different levels in fluid dynamical problems: at a dynamical level or at
a topological level.

At a dynamical level, we consider the Navier-Stokes equations as a dynamical system
and the bifurcations occur in an infinite-dimensional function space of velocity fields.
In this case a fixed point corresponds to a steady flow and a limit cycle to a periodic
flow. A classical example of a dynamical bifurcation is the supercritical Hopf bifurcation
that occur when the steady flow past a stationary cylinder loses its stability to a time-
periodic solution at Re ≈ 46 (see, e.g. Dusek et al. (1994); Noack & Eckelmann (1994)).
At a topological level, we consider a family of flow fields that are already available
from solving Navier-Stokes equations at different parameter values. Bifurcations at a
topological level are not associated with any loss of stability, but result in changes of
the topology of the streamlines or the vorticity level curves in the physical space. An
example of a topological bifurcation is the creation of the two symmetric recirculation
zones in the flow past a stationary cylinder when Re ≈ 5 (see, e.g. Brøns et al. (2007)).
Bifurcations can occur at both levels, but in general they are not related. Heil et al. (2017)
show that the formation of the famous Kármán-vortex street is a result of both types of
bifurcations that occur at two distinct values of Reynolds numbers. As mentioned above
the transition from a steady to a time-periodic flow is a dynamical bifurcation, however,
it turns out that the transition of the shear layer into individual vortices is a topological
bifurcation of the vorticity field.

The symmetry-breaking subcritical pitchfork bifurcation that occur in the transition
from 2S to P+S mode is another example of a dynamical bifurcation. In §5 we prove
that in this specific problem the existence of a dynamical bifurcation will under cer-
tain conditions lead to a particular type of topological bifurcation. By monitoring the
structural changes of the vorticity field we show that the transition is a result of a
sequence of topological bifurcations where some of them occur while the wake remains
(anti-)symmetrical.
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Figure 2: Sketch of the problem setup and the boundary conditions, all expressed in non-
dimensional variables. The setup is described by a Cartesian coordinate system where
the origin is located at the centre of the cylinder at t = 0.

2. Problem setup

We study the two-dimensional flow past a transversely oscillating cylinder in a finite
channel. The cylinder is prescribed to move at particular values of frequency f and
amplitude A for a specified inflow velocity U . Instead of the frequency the wavelength
λ = U/f as a equivalent parameter. The wavelength correspond to the length of sine
wave trajectory along which the cylinder travels relative to the fluid. Figure 2 shows a
sketch of the setup in the frame moving with the horizontal velocity of the cylinder, U .
We non-dimensionalise the velocity field u by rescaling with U . All lengths including
the amplitude A and the wavelength λ are non-dimensionalised on the diameter of the
cylinder, D. The pressure p is scaled on the associated viscous scale, µU/D, where µ is
the dynamic viscosity of the fluid, and time is scaled on the advective timescale, D/U .
The flow (in the moving frame of reference) is then governed by the non-dimensional
Navier-Stokes equations

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇2u and ∇ · u = 0, (2.1)

where the Reynolds number is Re = ρUD/µ, with ρ being the density of the fluid. In
the moving frame of reference we use a Cartesian coordinate system, in which the center
of the cylinder is located at

xcyl(t) = 0, ycyl(t) = A sin(2πt/λ). (2.2)

On the surface of the moving cylinder we impose the no-slip condition

u = 0, v = (2πA/λ) cos(2πt/λ). (2.3)

We also impose the boundary conditions

u = 1, v = 0, at x = −Linlet and at y = ±H/2, (2.4)

corresponding to a uniform inflow and a no-slip condition relative to the moving channel
walls. Furthermore we allow the outlet to remain (pseudo-)traction free i.e.

(
−p+ ∂u/∂x
∂v/∂x

)
=

(
0
0

)
at x = Loutlet. (2.5)
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Linlet Loutlet

H

Figure 3: Illustration of the mesh we have used. The thicker lines is the base mesh and
the thinner lines show the mesh after 4 uniform refinements. In the actual simulations
the computational domain was uniformly refined 5 times in the central region marked
with a red box but 3 times outside this region.

Throughout our study, we fix the Reynolds number to be 100. With this Reynolds
number at the corresponding flow in a physical experiment is two-dimensional (Griffin
1971). We have chosen the exact value of Re = 100 to be able to directly compare with
the recent study by Matharu et al. (2021) and an earlier study by Leontini et al. (2006).

Our aim is to find time-periodic solutions of (2.1)-(2.5). For a given solution
u(x, y, t;A, λ) the corresponding vorticity field can be computed as

ω(x, y, t;A, λ) = ∇× u(x, y, t;A, λ). (2.6)

To investigate topological bifurcation in the vorticity field, simulations have been
performed at four different values of the wavelength: λ = 5.5, 6.0851, 6.5 and 6.7. The
value λst = 6.0851 is chosen so that

T/Tst = λstSt = 1, (2.7)

where T is the period of the imposed cylinder oscillations and Tst is the period at which
vortices are shed in the same flow past a stationary cylinder, i.e. the Strouhal period.
The Reynolds number of Re = 100 corresponds to the Strouhal number St = 0.164335
when using the Reynolds-Strouhal number relationship given by Williamson (1988). The
wavelength λst = 6.0851 therefore corresponds to the cylinder oscillating exactly with
the Strouhal frequency fst and the results for λ = λst can be compared directly with the
studies by Matharu et al. (2021). Having selected the value of the two free parameters, Re
and λ, we monitor the cusp bifurcations in the vorticity field during a complete oscillation
and repeat this as the amplitude is varied.

3. Numerical method

We performed our numerical simulations using the open-source finite-element library
oomph-lib (Heil & Hazel 2006). The Navier-Stokes equations were spatially discretised
with quadrilateral Taylor-Hood elements, within which the velocities and the pressure
are represented by quadratic and piecewise linear polynomials, respectively. For the time-
integration of the problem we employ the second-order accurate BDF2 scheme with 320
time steps per period of the imposed oscillations. The simulations were performed on
a computational domain with dimensions H = 20, Linlet = 10 and Loutlet = 70. The
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mesh was built from a coarse base mesh and uniformly refined 5 times. The base mesh
is shown with thicker lines in figure 3. In the square central box the nodal positions in
the mesh are updated for every time step according to the imposed cylinder oscillations.
The annular region with unit radius is surrounding the cylinder hole is made rigid so
no compression occurs in this part of the mesh as the cylinder oscillates. To reduce the
computational cost some of our simulations were performed on a mesh where only the
central down stream region and the square central box (marked with a red box in figure
3) were uniformly refined 5 times while the remainder was refined only 3 times. Upon
comparison of mesh types we find no qualitative difference in the vorticity topology.

The simulations are initiated by computing the steady solution with a fixed cylinder
at Re = 0. We use this result as an initial guess to compute the solution for a slightly
higher Reynolds number and continue in this manner until we reach Re = 100. This
solution is used as an initial condition for the oscillating cylinder simulations where
the amplitude of the oscillations are gradually increased in the first two periods. The
time-periodicity of the solution was assessed by computing the L2-norm of the change
in the velocity components over one period of the cylinder oscillation. We consider the
simulations as converged to periodic solutions when the relative change in the L2-norm
of the velocity components drops below 10−6. We have chosen this threshold value by
comparing with simulations where the relative change has instead dropped below 10−8.
In the cases examined, we observe no topological difference between the two associated
vorticity fields, at least not to the level of precision at which we keep track of the cusp
bifurcation points. To meet our convergence criterion, we had to run the simulations
between 50 and 2000 periods.

To compute the vorticity field and its derivatives we need the derivatives of the velocity
field. As the solution between the elements are only required to be continuous, these
derivatives might be discontinuous. To compute smooth approximations of the required
derivatives we use oomph-lib’s derivative recovery techniques (see Heil et al. (2017) for
details). As mentioned in the introduction we consider an extremum of vorticity as a
feature point for a vortex. The extrema (and saddle points) are located as the intersection
point between the nullclines ∂ω/∂x = 0 and ∂ω/∂y = 0.

4. An extended classification of wakes with topological variations
downstream

When characterising a wake pattern, it is common to use the terminology introduced
by Williamson & Roshko (1988). However, because their classification method assumes
that the entire wake can be classified as a single type of pattern, it is expected that, once
formed, all vortices are translated downstream without any change in the topology. In
this section, we will argue that a more detailed classification is necessary to be able to
describe the vortex structure accurately but also to understand the topological changes
in the transition from 2S to P + S. Two snapshots of different vorticity fields are shown
in figure 4. The vorticity fields are computed for an oscillating cylinder with the same
wavelength but different amplitudes A. The feature points for vortices, i.e. the vorticity
extrema, are marked with black dots. For A = 0.80, we see that two single vortices
are shed in each oscillation cycle, and this structure is preserved when the vortices are
advected downstream. Therefore, we classify the wake pattern as a full 2S wake. For
a larger amplitude A = 1.110 we similarly see a P+S wake pattern that is translated
downstream. In these examples the terminology introduced by Williamson & Roshko
(1988) is fully sufficient for classifying the wake pattern. However, this is not always the
case. Figure 5 shows four snapshots of the vorticity field for A = 1.085, a value between
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Figure 4: Snapshots of the vorticity field computed for λ = 6.0851 and (a) A = 0.80,
(b) A = 1.110. All extrema of vorticity are marked with black dots. The black curves
encircle a set of vortices that are shed in a single oscillation cycle. Note that part of the
computational domain is shown.

the cases in figure 4. From the number of vorticity extrema we conclude that two pairs
of vortices are shed during one oscillation cycle, suggesting that vortex shedding pattern
looks like a 2P mode in the near wake. One of the vortices in each pair is much weaker
than the other, and it quickly disappears. In figure 5 the black curves highlights a set of
vortices that are shed during an oscillation cycle. In the first snapshot, the highlighted
vortices consist of two pairs of vortices. Figure 5(b) shows the vorticity field in the last
time step before one of the highlighted vortices disappears via a cusp bifurcation with
a saddle point. Exactly half a period later, a second cusp bifurcation occurs, and the
set of highlighted vortices then consists of two single vortices. The snapshot in figure
5(d) shows the last time step before the second cusp bifurcation occurs. Despite the fact
that we observe topological bifurcations as the vortices move downstream, the spatio-
temporal Z2 symmetry is preserved throughout the process. Therefore, we conclude that
the bifurcations do not occur as a result of symmetry breaking.

In order to describe the topological variations of the vorticity field downstream, we
introduce an extended classification where we write down the observed types of wake
patterns and indicate with a superscript n ∈ N how long the pattern persists. If the
pattern exists for more than n − 1 periods but less than n periods, we designate the
superscript n. In the example in figure 5(b) the vortices that originate from the same
cycle are grouped together with dashed and dotted lines. A dashed line indicates that the
group consists of two pairs of vortices while a dotted line indicates that the group consists
of two single vortices. We observe that three groups with a 2P pattern are present in
the vorticity field just before the first of the two weaker vortices disappears. Hence, we
conclude that the vortices in a 2P group move downstream for between two and three
periods before any topological bifurcation occur. The wake in figure 5 therefore has a
(2P)3(2S)∞ vortex pattern. Here ∞ denotes that no further bifurcations are observed.
Also, we do not address the changes in the wake structure that occur far downstream.
It is well-known the primary vortex street breaks down into a nearly parallel shear flow
of Gaussian profile at a certain downstream distance, before a secondary vortex street
of larger scale may appear further downstream (Karasudani & Funakoshi (1994)). Note,
that in the extended classification, the standard 2S and P+S wakes are denoted (2S)∞

and (P+S)∞, respectively.
Figure 6 shows a snapshot of a vorticity field computed for an oscillating cylinder with
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Figure 5: Four snapshots of a vorticity field computed for λ = 6.0851 and A = 1.085.
The noted times indicate when the snapshots were taken during a period of cylinder
oscillations that is normalized to one. All extrema of vorticity are marked with black
dots and saddle points are marked with white dots. The black curves highlight how
the vortices that are shed in one oscillation cycle move downstream during a period
of oscillation. The vortices that originate from the same cycle are grouped together in
(b). A dashed line indicates that the group consists of two pairs of vortices while a
dotted line indicates that the group consists of two single vortices. Note that part of the
computational domain is shown.

λ = 6.7 and A = 1.140. This vorticity field is an example of another wake pattern with
topological variations downstream. The snapshot is taken at the last time step before
the weaker vortex in the lower pair disappears in a cusp bifurcation. Since this is the
only topological bifurcation that occur, the wake is classified as mode (2P)2(P+S)∞. One
could argue that the wake patterns in figure 5 and figure 6 are really just 2S and P+S
modes, and the extra vortices that our classification detect in the shear layers have no
significant impact. But as we will see in §5, it is precisely these vortices that become
important when describing the topological development from a 2S to a P+S wake.
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Figure 6: A snapshot of a vorticity field computed for λ = 6.7 and A = 1.140. All extrema
of vorticity are marked with black dots and saddle points are marked with white dots.
The snapshot is taken at the last time step before the cusp bifurcation occur. The vortices
that originate from the same cycle are grouped together. A dashed line indicates that
the group consists of two pairs of vortices while a dash-dotted line indicates that the
group consists of a pair of and a single vortex. Only part of the computational domain
is shown.

5. Topological bifurcations of the vorticity field at the
symmetry-breaking pitchfork bifurcation point

As mentioned in the introduction, a very recent paper by Matharu et al. (2021) shows
that the break in symmetry that occur in the transition from 2S to P+S mode is due to
a dynamical bifurcation, namely a subcritical pitchfork bifurcation. As described, the 2S
wake pattern preserves a spatio-temporal (anti-)symmetry condtion, where the vorticity
field satisfies that

ω(x, y, t) = −ω(x,−y, t+ 1/2). (5.1)

Matharu et al. (2021) analyse simulations with increasing amplitude values and eval-
uate whether the (anti-)symmetry condition is satisfied by measuring the difference
between ω(x, y, t) and −ω(x,−y, t+ 1/2) as

ε =
1

2
‖ω(x, y, t) + ω(x,−y, t+ 1/2)‖. (5.2)

A sketch of their resulting bifurcation diagram is shown in figure 7. At A = A2,
a subcritical pitchfork bifurcation that occurs, creating two branches of asymmetric
periodic solutions ω+, ω−. Each of these subsequently gain stability in fold bifurcations
at A = A1. The stable branch associated with ε = 0 corresponds to time periodic
solutions where the wake pattern satisfies the (anti-)symmetry condition (5.1). The 2S
wake pattern shown in figure 4(a) is an example of a stable solution that clearly satisfies
that ε = 0. At the two outer branches in the pitchfork the (anti-)symmetry condition is
broken, meaning that ε 6= 0. However, as the pitchfork is symmetrical, a solution on the
positive branch ω+ has a conjugate solution on the negative branch ω− satisfying

ω+(x, y, t) = −ω−(x,−y, t+ 1/2) (5.3)

The P+S wake pattern shown in figure 4(b) is an example of a wake pattern on the
stable part of the outer branch of the pitchfork. We notice that the physical setup is
completely symmetrical around the centerline and there is nothing to indicate why the
pair of vortices appear below the centerline. Hence, there must exist a conjugate time-
periodic solution where the pair of vortices are instead shed above the centerline. The
history of the cylinder motion determines entirely which of the two conjugate solutions
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Figure 7: A sketch of the bifurcation diagram illustrating the subcritical pitchfork
bifurcation at A = A2 and secondary fold bifurcations at A = A1. In the specific case
where the cylinder oscillates with λ = 6.0851, Matharu et al. (2021) determined the
bifurcation parameter values to be A1 ≈ 1.0680 and A2 ≈ 1.0855.

a simulation converges to. By reversing the initial motion of the cylinder, we obtain the
solution belonging to the opposite branch in the bifurcation diagram. These conjugate
solutions correspond to the two solutions on the outer branch of the pitchfork satisfying
the condition in (5.3).

In this section, we will analyse the topological bifurcation of the vorticity field that
occurs as a direct result of the dynamical bifurcation. As a starting point for the analysis,
we introduce a parameter σ moving along the outer branches in the bifurcation diagram
as illustrated in figure 8(a). For the sake of simplicity we let σ = 0 correspond to the
(anti-)symmetric vorticity field located at the pitchfork bifurcation point. Since the two
outer branches correspond to the two conjugate solutions it follows that

ω(x, y, t;σ) = −ω(x,−y, t+ 1/2;−σ). (5.4)

We start by considering a non-degenerate critical point in the vorticity field corresponding
to σ = 0, i.e. a point (x∗, y∗, t∗) satisfying

∂xω(x∗, y∗, t∗, 0) = 0,

∂yω(x∗, y∗, t∗, 0) = 0,

|Hω(x∗, y∗, t∗, 0)| 6= 0.

The implicit function theorem ensures that the critical point is preserved for sufficiently
small values of |σ|. Furthermore, the continuity of Hω guarantees that |Hω| will not
change sign, which means that a critical point identified as a vortex will persist. In the
case where all critical points in the (anti-)symmetric vorticity field are non-degenerate,
all vortices persist when the symmetry is broken and no topological bifurcations occur
as a direct result of the dynamical bifurcation.

If, on the other hand, we assume that the (anti-)symmetric vorticity field at σ = 0 has
topological variations downstream, then there exist a cusp bifurcation point (x∗, y∗, t∗)
satisfying
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Figure 8: (a) A bifurcation diagram illustrating the subcritical pitchfork bifurcation. The
branches of stable and unstable solutions are represented by thick lines and dashed lines,
respectively. (b) Thwe bifurcation diagram in a neighbourhood of (x, σ) = (x∗, 0). Two

different cusp bifurcation curves are parameterised by X̂ and X̃.

∂xω(x∗, y∗, t∗, 0) = 0,

∂yω(x∗, y∗, t∗, 0) = 0,

|Hω(x∗, y∗, t∗, 0)| = 0,

tr(Hω(x∗, y∗, t∗, 0)) 6= 0.

To characterise the topological changes that occur at σ = 0 we need to assume some
regularity at the cusp bifurcation point (x∗, y∗, t∗). First we consider the following
Jacobian

J∗ =



∂xxω ∂xyω ∂xtω
∂xyω ∂yyω ∂ytω
∂x|Hω| ∂y|Hω| ∂t|Hω|



∣∣∣∣∣∣
(x∗,y∗,t∗,0)

. (5.5)

If the determinant of J∗ is non-zero, i.e.

(
−
∣∣∣∣
(
∂xxω ∂xyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂ytω +

∣∣∣∣
(
∂xyω ∂yyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂xtω
)∣∣∣∣

(x∗,y∗,t∗,0)

6= 0, (5.6)

then we can apply the implicit function theorem. Based on the above assumptions, we will
now analyse the structure of the bifurcation curves in a neighbourhood of the pitchfork
bifurcation point. From applying the implicit function theorem we conclude that there
exist unique local functions x = X̂(σ), y = Ŷ (σ), t = T̂ (σ) satisfying

X̂(0) = x∗, Ŷ (0) = y∗, T̂ (0) = t∗, (5.7)

and

∂xω(X̂(σ), Ŷ (σ), T̂ (σ), σ) = 0,

∂yω(X̂(σ), Ŷ (σ), T̂ (σ), σ) = 0,

|Hω(X̂(σ), Ŷ (σ), T̂ (σ), σ)| = 0.

(5.8)

The functions X̂, Ŷ and T̂ give a parametric representation of the bifurcation curve. The
shape of the bifurcation curve is given by the derivatives of X̂, Ŷ and T̂ at the bifurcation
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point σ = 0. By implicit differentiating the equations in (5.8) we obtain the following
system of equations,

J∗



X̂ ′(0)

Ŷ ′(0)

T̂ ′(0)


 =



∂xσω(x∗, y∗, t∗, 0)
∂yσω(x∗, y∗, t∗, 0)
∂σ|Hω(x∗, y∗, t∗, 0)|


 . (5.9)

Since J∗ is non-singular the explicit expressions of X̂ ′(0), Ŷ ′(0) and T̂ ′(0) are well-
defined as a combination of the elements in the Jacobian and the right-hand side of (5.9).
Instead computing the explicit expressions, we consider a second bifurcation point that
is a necessary result of the (anti-)symmetry when σ = 0. From the condition in (5.4) it
follows that

∂xω(x∗,−y∗, t∗ + 1/2, 0) = −∂xω(x∗, y∗, t∗, 0) = 0

∂yω(x∗,−y∗, t∗ + 1/2, 0) = ∂yω(x∗, y∗, t∗, 0) = 0

|Hω(x∗,−y∗, t∗ + 1/2, 0)| = |Hω(x∗, y∗, t∗, 0)| = 0

tr(Hω(x∗,−y∗, t∗ + 1/2, 0)) = −tr(Hω(x∗, y∗, t∗, 0)) 6= 0.

and

(
−
∣∣∣∣
(
∂xxω ∂xyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂ytω +

∣∣∣∣
(
∂xyω ∂yyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂xtω
)∣∣∣∣

(x∗,−y∗,t∗+1/2,0)

=

(
−
∣∣∣∣
(
−∂xxω ∂xyω
∂x|Hω| −∂y|Hω|

)∣∣∣∣ ∂ytω +

∣∣∣∣
(
∂xyω −∂yyω
∂x|Hω| −∂y|Hω|

)∣∣∣∣ (−∂xtω)

)∣∣∣∣
(x∗,y∗,t∗,0)

=

(
−
∣∣∣∣
(
∂xxω ∂xyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂ytω +

∣∣∣∣
(
∂xyω ∂yyω
∂x|Hω| ∂y|Hω|

)∣∣∣∣ ∂xtω
)∣∣∣∣

(x∗,y∗,t∗,0)

6= 0.

As expected we can therefore conclude that (x∗,−y∗, t∗ + 1/2) is a cusp bifurcation
point satisfying all the same conditions as (x∗, y∗, t∗). By an argument completely

similar to the above, there exists functions x = X̃(σ), y = Ỹ (σ) and t = T̃ (σ) that
provide a parametric representation of a bifurcation curve through the point (x, y, t, σ) =
(x∗,−y∗, t∗ + 1/2, 0). By implicit differentiation we obtain the following system of equa-
tions



∂xxω ∂xyω ∂xtω
∂xyω ∂yyω ∂ytω
∂x|Hω| ∂y|Hω| ∂t|Hω|






X̃ ′(0)

Ỹ ′(0)

T̃ ′(0)


 =



∂xσω
∂yσω
∂σ|Hω|




∣∣∣∣∣∣∣
(x∗,−y∗,t∗+1/2,0)

, (5.10)

which by the (anti-)symmetry condition (5.4) can be rewritten as,



−∂xxω ∂xyω −∂xtω
∂xyω −∂yyω ∂ytω
∂x|Hω| −∂y|Hω| ∂t|Hω|






X̃ ′(0)

Ỹ ′(0)

T̃ ′(0)


 =




∂xσω
−∂yσω
−∂σ|Hω|




∣∣∣∣∣∣∣
(x∗,y∗,t∗,0)

. (5.11)

By comparing with the system of equations in (5.9), we note that the sign of some
elements in the Jacobian and the right-hand side is the only thing that differs. Hence
it is easy to show that the parametric representations of the two bifurcation curves are
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related in the following way,

X̃ ′(0) = −X̂ ′(0),

Ỹ ′(0) = Ŷ ′(0),

T̃ ′(0) = −T̂ ′(0).

There are no conditions on the derivatives of ω that make us expect that the explicit
expressions of X̂ ′(0), Ŷ ′(0) and T̂ ′(0) are zero. Therefore we assume that this is not the
case in general. In figure 8(b) the two parametric representations of the x-coordinates of
the bifurcation curves are illustrated in a neighbourhood of (x, σ) = (x∗, 0). As shown
in the figure, the x-coordinates of the cusp bifurcation points separates as σ is increased
(or decreased) from zero. It is therefore only in the (anti-)symmetric vorticity field
where the two cusp bifurcations occur at the same distance downstream. As soon as
the symmetry is broken, one of the cusp bifurcation points moves upstream and the
other moves downstream.

We remind ourselves that Matharu et al. (2021) only consider the case where the
cylinder oscillates exactly with the Strouhal frequency, i.e. λ = 6.0851. It is therefore
a possibility that the break in symmetry for other frequency values will instead occur
as a result of a supercritical pitchfork bifurcation. Although we have chosen to depict a
subcritical bifurcation in the sketches within this section, the analysis does not depend
on the critically of the bifurcation.

6. Numerical results

With the numerical method described in §3 we perform simulations where the cylinder
oscillates with an amplitude in the range 0.8 6 A 6 1.2 and with one of the four selected
wavelengths λ = 5.5, 6.0851, 6.5 and 6.7. In each simulation we keep track of the vorticity
extrema during a complete oscillation cycle, and each time we observe a cusp bifurcation,
we write down the coordinate set of the bifurcation point (x∗, y∗, t∗). It is not possible to
plot a bifurcation diagram where all three coordinates are depicted as a function of the
bifurcation parameter A. Since we are interested in describing the topological variations
downstream, the x-coordinates of the bifurcation points are the most meaningful to
depict. For each of the four selected wavelength values we perform simulations with more
than 30 different amplitude values and we mark the cusp bifurcation points in the (x,A)
parameter plane. The constructed bifurcation diagrams are presented in figure 9(c)-(j).
From Matharu et al. (2021) we know that a bistable region with three stable solutions
exists for λ = 6.0851, however, only two of the solutions are qualitatively different. To
resolve both of these solutions, we construct two different bifurcation diagrams for each
of the four wavelengths. To construct the diagrams in the left column, we use a solution
obtained for A < A1 as initial condition for the solution at a larger A, as illustrated
in figure 9(a). The diagrams in the right column are constructed in a similar way but
from simulations where the amplitude value is decreased, as illustrated in figure 9(b).
In all four cases, the bifurcation diagrams in the left and right columns differ in a small
region, implying that a bistable region exists for all the four wavelengths. In other words,
the bifurcation remains subcritical. The red lines at A1 and A2 mark the lower and
upper limits of the bistable regions. In this specific case where the cylinder oscillates with
λ = 6.0851 we found that A1 ≈ 1.0775 and A2 ≈ 1.0925. These values are comparable to,
but not exactly the same as, those determined by Matharu et al. (2021), i.e. A1 ≈ 1.0680
and A2 ≈ 1.0855. The small difference may be due to the difference in the numerical
method used and the fact that we use different lengths of the domain. As expected,
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each pair of bifurcation diagrams are identical outside the bistable region. When A is
increased (or decreased), we recall that the solutions obtained for A < A2 (or A < A1)
satisfy the (anti-)symmetry condition (5.1). This implies that two cusp bifurcations occur
with exactly half a period in between at the same downstream position at bifurcation
points marked in the (x,A) parameter plane.

As illustrated in figure 3 we use a non-uniformly refined mesh in the region close to the
cylinder, but our method of computing the derivatives of the vorticity is only accurate
on a uniform mesh. Therefore, we can not resolve the cusp bifurcations that occur for
x < 5 where the vortices are initially created. We only show the region for x < 40, as no
topological bifurcations are observed beyond that limit.

The four pairs of bifurcation diagrams in figure 9 are qualitatively very similar. We
start by considering the case where the cylinder oscillates with exactly the Strouhal
frequency, i.e. λ = 6.0851, and explain in details the corresponding pair of bifurcation
diagrams in figure 9(e) and (f). The bifurcation curves and the upper/lower limits of
the bistable region separate the (x,A) parameter plane into three different regions. The
labels indicate whether a specific part of the wake has a 2S, 2P or a P+S topology. Let
us describe the transition we observe for increasing amplitude values, as illustrated in
figure 9(e). For amplitude values below the dashed blue line we observe a 2S pattern
that persists in the downstream wake and hence we classify the wake mode as (2S)∞.
At the dashed blue line, a degenerate critical point appears (at x ≈ 16) and immediate
disappears. As a consequence of the (anti-)symmetry condition in (5.1) a degenerate
critical point also appears half a period later at the same downstream position. For
amplitude values above the dashed blue line, we observe two cusp bifurcations every half
period, which means that two additional vortices are created and subsequently destroyed
in each period. Because these vortices persist for less than a period, we classify the wake
pattern as as (2S)2(2P)1(2S)∞. As we increase the amplitude past the dashed blue line,
the first cusp bifurcation point moves upstream and eventually out of the domain we
consider. This implies that the two extra vortices in the 2P groups are created further
upstream and hence they persist longer. When they persist for more than an entire period
the local pattern changes from (2P)1 to (2P)2 and when the amplitude increases further
it changes again to a (2P)3 pattern. For A = 1.05 the extra vortices in the 2P groups
are created outside our domain and they move downstream for between two and three
periods before they disappear in a cusp bifurcation. We therefore classify the topological
structure of the wake as (2P)3(2S)∞. At an amplitude of A = A2, we observe a jump from
one solution branch to another accompanied by a discontinuous change in the topology
to a wake that we classify as (P+S)1(2P)1(P+S)∞. This discontinuity is due to the jump
from one solution branch to another. As we increase the amplitude further and reach the
dashed green line the two cusp bifurcation points that bound the 2P region merge and
disappear. For amplitude values above this dashed green line, we observe a P+S pattern
that persists in the downstream wake. Hence we classify the wake mode as (P+S)∞.

For decreasing amplitude values the transition form (P+S)∞ to (2S)∞ is illustrated in
figure 9(f). The transition is essentially the reverse of the process described above. The
only difference is that the discontinuous change in the topology occurs at A = A1 and
hence the (P+S)n(2P)m(P+S)∞ patterns exist only above that value of A. The remaining
three pairs of bifurcation diagrams in figure 9 are constructed from simulations where
the wavelength is either decreased or increased from λ = 6.0851. In all four cases we
observe similar wake patterns with the same topological transitions. In general, we only
observe a (2S)∞ pattern below the dashed blue lines and we only observe a (P+S)∞ above
the dashed green lines. For amplitude values in the range between these boundaries, an
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(f) λ = 6.0851, decreasing A.
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(i) λ = 6.7, increasing A.

5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

(j) λ = 6.7, decreasing A.

Figure 9: (a)-(b) A sketch of the dynamical bifurcation diagram illustrating one of the
solution branches in the subcritical pitchfork bifurcation. The solid black lines highlight
the section of the solution curve that we explore with the simulations obtained by either
increasing or decreasing the amplitude from a previous simulation. (c)-(j) Four pairs of
bifurcation diagrams constructed from simulations with different wavelengths. The black
dots, connected by solid lines, mark the topological bifurcation points observed in the
simulations. The red lines at A1 and A2 indicate the upper and lower limits of the bistable
region. The dashed blue line indicates the limit below which we observe a (2S)∞ pattern.
The dashed green line indicates the limit above which we observe a (P+S)∞ pattern.

alternative description of the wake pattern is required due to the observed topological
variations in the downstream wake.

In previous studies, the transition between different wake modes are typically marked
with a single critical boundary, indicating that there is a sharp change from one mode
to another. Due to the discontinuous jump in the vorticity topology, it is natural that
the transition has been interpreted in this way in studies where the overall pattern is
determined from visual inspection. In figure 10(a), we show a region of the parameter
space explored by Leontini et al. (2006). The sharp boundary that the authors used to
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Figure 10: (a) A region of the parameter space explored by Leontini et al. (2006). The solid
black lines are the boundaries of the primary synchronization region and the boundary
defining the transition from 2S to P+S, as identified by Leontini et al. (2006). Four
characteristic amplitude values are marked with colors corresponding to the colors in
figure 9; the red dots indicate the upper and lower limits of the bistable region, the
blue dots indicate the limit below which we observe a (2S)∞ pattern and the green dots
indicate the limit above which we observe a (P+S)∞ pattern. (b) A close-up of the grey
region in (a).

demarcate the transition between the 2S and P+S wake mode is drawn with a solid black
line. In our search for a complete topological description of the transition, we have found
that four characteristic amplitude values play an important role: the limit below which
we observe (2S)∞, the upper and lower limits of the bistable region and the limit above
which we observe (P+S)∞. Since the results of Leontini et al. (2006) also derive from
simulations at Re = 100, they should be directly comparable to ours. In figure 10(a) we
have marked the four characteristic amplitude values for each of our wavelength values
(or equivalently the corresponding frequencies). The colored dots, connected by solid or
dashed lines, defines a region of the parameter space in which the transition occur. It is
only above and below all these lines that we can classify the pattern as a full P+S or 2S
pattern.

Since the symmetry-breaking pitchfork bifurcation at A2 is subcritical, we do not
observe a continuous evolution of the vorticity field in the transition from 2S to P+S. This
is because part of the continuous evolution takes place along the unstable solution branch.
However, based on the theoretical considerations in §5, we can still give a complete
qualitative picture of the topological changes in the transition from 2S to P + S. We
introduce a parameter γ that moves from the stable (anti-)symmetric branch onto the
unstable outer branch when reaching the pitchfork bifurcation point at A = A2, see
figure 11(a). In figure 11(b) we illustrate the (x, γ) parameter plane in the case where
λ = 6.0851. The solutions for γ < γA2 and γ > γA1 lie on the stable branches and
are topologically described by the preceding analysis of the numerical simulations. The
bifurcation curves drawn as solid lines in figure 11(b) are therefore identical to those
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Figure 11: (a) A sketch of the dynamical bifurcation diagram near A = A2

reparameterised by the parameter γ. (b) A bifurcation diagram in the (x, γ) parameter
plane. The black dots, connected by solid lines, mark the bifurcation points observed
in the simulations with λ = 6.0851. The dashed lines in the range γA2

< γ < γA1
are

examples of how the bifurcation curves could possibly evolve along the unstable solution
branch.

shown in figure 9(e) and (f). The time-periodic solutions in the region γA2 < γ < γA1 lie
on the unstable branch. Based on the result in §5, we know that as soon as the symmetry
is broken at γ = γA2

, one of the cusp bifurcation points moves upstream and the other
moves downstream. These points correspond to the two dashed black curves in figure
11(b) that split up at γ = γA2

. In the time-periodic solutions in the region γ > γA1
,

we only observe a single cusp bifurcation point that corresponds to the destruction of
a vortex. Since this point has moved upstream, the second cusp bifurcation must have
moved rapidly downstream and disappeared from our domain within the unstable region.
The bifurcation curves drawn as dashed lines in figure 11(b) are therefore a qualitatively
correct illustration of expected topological changes in the unstable region.

With this extended bifurcation diagram we have complete qualitative picture of the
topological changes in the transition from 2S to P+S. A significant part of the transition
is invisible since the topological changes take place along the unstable branch. Although
the dynamical symmetry-breaking bifurcation identified by Matharu et al. (2021) is a key
component of the transition, it alone cannot provide the complete topological picture

7. Discussion

We have investigated the topological changes of the vorticity field in the transition
from 2S to P+S wake mode. Based on numerical simulations, we have shown that the
transition cannot be fully described with a single critical boundary. Instead of a sharp
change from one mode to another, we determine a range of amplitude values where
the corresponding wake has a mixed pattern with topological variations downstream.
We show that the symmetry-breaking pitchfork bifurcation identified by Matharu et al.
(2021) plays an important role in the transition, but at the same time it does not provide
the complete description, as topological changes occur even before this bifurcation point.
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In general, the transition can be described as follows: through a continuous evolution of
the vorticity field, a 2P-like pattern arises in near wake. The extra two vortices that we
detect in the shear layers arise through cusp bifurcations and move downstream for up
to three periods before disappearing again in two reverse cusp bifurcations. We prove
that the topological role of the pitchfork bifurcation is to relax the condition that these
two cusp bifurcations must occur with a temporal spacing of exactly half a period. The
breaking of symmetry allows one of the cusp bifurcations to move rapidly downstream,
implying that one of the extra vortices persist in the downstream wake. As the second
cusp bifurcation moves upstream the 2P-like pattern in the near wake disappears and
the wake has a clear P+S structure. Since the symmetry-breaking pitchfork bifurcation
is subcritical, a significant part of the continuous evolution of the vorticity field takes
place along the unstable solution branch. This part of the evolution is not visible in our
simulations, but based on the theoretical considerations in §5 we are still able to give a
complete qualitative picture of the continuous transition from 2S to P + S. In all the
cases we have examined the bistable region is very narrow. For higher values of λ, for
other values of Re, or for other shapes of the oscillating body, the pitchfork bifurcation
may change from subcritical to supercritical. In that case, the qualitative description will
be the same and the entire continuous evolution will be visible in the simulations.

In all four cases that we have examined, the bistable region is so narrow that the
criticality of the pitchfork bifurcation may change form subcritical to supercritical when
the wavelength increases further, the Reynolds number changes or the shape of the
cylinder changes. If it turns out that there are some parameter values where the transition
is supercritical, then the qualitative description will be the same and the entire continuous
evolution will be visible in the simulations.

Generally, it is clear that the topological structure of a given wake pattern must
depends on the way we identify vortices. In most previous studies, including those of
Leontini et al. (2006) and Williamson & Roshko (1988), the wake mode is determined
simply by visual inspection. It is therefore not clearly defined when a vortex is actually
present in a given flow visualisation. It is clear that the topological description of
the transition must be inextricably linked to the way we choose to define vortices
mathematically, see e.g. Nielsen et al. (2021). A mathematical definition of a vortex
forms the basis of a topological analysis of how a given vortex pattern arises. In
this study we consider extremal points of to vorticity be feature points for vortices
and by monitoring the vorticity extrema and saddle points, it is possible to define
exactly where in the downstream wake a vortex disappears. In general, a topological
approach always requires a global knowledge of the flow field, regardless of which vortex
identification method is used. In a recent study, Colvert et al. (2018) use a completely
different approach where the flow pattern is classified only on the basis of local vorticity
measurements. They train a neural network to uncover the salient features of different
wake types and aim to distinguish wake types are not readily recognizable by visual
inspection.
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Chapter 6

Numerical and experimental
comparison of the flow past

an oscillating cylinder

The work presented in this chapter was mainly conducted during my external
research stay with professor Mark Stremler at the Department of Biomedical En-
gineering and Mechanics at Virginia Tech. Mark Stremler and his Ph.D student
Emad Masroor had prior to my visit developed an experimental setup consist-
ing of a gravity-driven flowing soap film channel. The soap film experiments
we present in this chapter were all performed in close collaboration with Emad
Masroor. In section 6.1.1 we give an introduction to this experimental setup
which is very similar to the setup described in [61]. In section 6.2 we compare
some selected soap film experiments with numerical simulations performed at
the exact same parameter values.

6.1 Introduction to soap film experiments

When soap is added to water, the solution can form thin membranes, with
typical thickness of order ∼ 5µm. If we consider a flow that takes place on a
spatial scale L that is much larger than the thickness of the soap film, the system
provides a good approximation to a two-dimensional flow in many respects.
Based on the assumption on the length scale, one can show that the equations
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Figure 6.1: Flow visualisation of the wake behind the disk oscillating with
amplitude A = 1mm and frequency f = 25.8Hz.

describing the motion in a flowing soap film are analogous to the two-dimensional
incompressible Navier–Stokes equations if the typical flow velocity U is very
small compared to the elastic wave velocity ve (or, equivalently, the elastic
Mach number Me = U/ve � 1) [15, 4]. Soap film systems are therefore well
established as a useful tool for investigating two-dimensional flows and have
been used by several different research groups for analysing the wake structure.
Couder & Basdevant showed more than three decades ago that an oscillating
cylinder can generate a 2P wake in a soap film [16]. Schnipper et al. conducted
an extensive parametric analysis of the flow past a flapping foil and observed
a variety of wake structures with up to 46 vortices per oscillation period [51].
Yang & Stremler found experimental values of critical spacing between tandem
cylinders and showed a good agreement with two-dimensional simulations [62].
Conducting experiments with a flow past an oscillating cylinder in a gravity-
driven soap film can be considered as a complement to the three-dimensional
experimental work of Williamson & Roshko [58]. The soap film experiments are
ideal for comparison with two-dimensional computational studies.

6.1.1 Experimental setup

A schematic overview of the experimental setup is shown in figure 6.2. The
soap solution consisting of 1.5% soap mixed in water is continually pumped into
the top reservoir to maintain a constant level throughout each experiment. The
soap film is developed between two nylon wires (with diameter 1mm) and the
volumetric flow rate out of the reservoir is controlled by a valve at the outlet.

In the experiments presented in this chapter, we oscillate a very thin disk instead
of an acrylic cylinder which was used in [61]. We choose the disk instead of the
cylinder to reduce the size of the meniscus surrounding the cylinder/disk. Since
the meniscus is towed with the cylinder it may result in a small region close
to the cylinder where the third dimension cannot be neglected. We use a disk
with diameter D = 4mm and thickness ∼ 75µm which is attached to a metal
rod so that the disk penetrated the soap film at a 90◦ angle. The oscillating
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motion is driven by a Scotch-yoke mechanism converting the circular motion of
the shaft of a motor to a sinusoidal translation of the disk. The frequency of the
oscillation is changed by varying the amount of power provided to the motor
and the amplitude of the oscillation is changed by using yokes with different
eccentricities.

A monochromatic light source is placed perpendicular to the flowing soap film
as illustrated in figure 6.2. The oscillation of the disk causes variations in the
thickness of the soap film. Since the monochromatic light is reflected off the
top and the bottom surfaces of the soap film an interference patterns is caused
by variations in the thickness. The reflected patterns of light are recorded with
a high-speed camera positioned near the light source. We document the wake
pattern by recording a 10 seconds videos with 200 frames per second. Each
frame has an image resolution of 2352 × 400 pixels. An example of a frame is
shown in figure 6.1. It is important to keep in mind that the observed scalar
field of light intensity is caused by variations in the thickness of the soap film,
it does not measure the flow field itself. An obvious question arises in this con-
text: How is the thickness field correlated to the velocity field? There is no
exact theoretical connection between the two fields but Rivera et al. [49] try to
answer the question by preforming instantaneous experimental measurements of
the velocity, vorticity, and thickness fields of turbulent flowing soap films using
a modified particle image velocimetry (PIV) technique. They found that the
observed thickness and vorticity fields are strongly coupled. In a recent study
by Gillissen et al. [22] they develop a mathematical method for reconstructing
the velocity field from the soap film visualisation within 10% of PIV measure-
ments. Although there is no direct mathematical connection, it is clear that the
thickness field must be closely related to the flow field itself. In conclusion, we
can trust that a vortex region exists in the two-dimensional flow of the soap film
when we observe a region where the thickness of the soap film is significantly
increased.

6.1.2 Parameter estimation

As described in chapter 5, the oscillating cylinder problem can be characterised
by the following three dimensionless parameters: the normalised oscillation am-
plitude A∗ = A/D; the frequency ratio f∗ = f/fSt; and the Reynolds number
Re = UD/ν, where ν is the kinematic viscosity of the fluid and U is the back-
ground flow speed. In some studies, the wavelength ratio, λ∗ = λ/D is used
instead of f∗.

The oscillation amplitude A was determined by measuring the distance from the
motor’s rotation axis to the center axis of the disk. In the experimental setup we
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Figure 6.2: A schematic of the experimental setup (adapted from [61]).
The translucent blue area represents the (approximately) two-
dimensional region with flowing soap film.
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had a total of nine different yokes available, corresponding to the amplitude val-
uesA ∈ {1.0mm, 1.5mm, 2.0mm, 2.5mm, 3.0mm, 3.5mm, 4.0mm, 4.5mm, 5.0mm}.
The corresponding normalised amplitude values were calculated asA∗ = A/4mm.

The oscillation frequency was changed by varying the amount of power provided
to the motor. The corresponding frequency value, f , was determined by using
a Fast Fourier Transform (FFT) on the frame region containing the oscillating
disk. The natural frequency of vortex shedding from a stationary cylinder/disk,
fSt, depends on the background flow speed of the soap film, U . It was not
possible to control the background flow speed precisely enough by varying the
valve at the outlet. As a result, fSt varies from experiment to experiment. To
determine fSt in a given experiment, we recorded a 10 seconds video of the
flow past the stationary disk right before starting the oscillations. The vortex
shedding frequency of the stationary disk was then estimated by using a FFT on
a small frame region containing a part of the wake pattern. By assuming that
fSt remain constant when the disk is oscillated immediately after the recording
of the stationary disk, the frequency ratio was computed as f∗ = f/fSt.

In a flowing soap film, the viscosity ν depends strongly on the thickness of the
film [52]. For the very thin films generated in soap film experiments, the thick-
ness is difficult to measure and hence it is difficult to calculate the Reynolds
number accurately enough. For the results presented in this chapter, we esti-
mate the Reynolds number by following the approach suggested in [21]. First
we determine the Strouhal number St = fStD/U , and then we estimate the
Reynolds number using an empirically-known relationship between Re and St.
We have already described how we find the value of fSt, but to calculate the
Strouhal number we also need to determine the background flow speed U .

The background flow speed in a flowing soap film is often measured directly
using Particle Tracking Velocimetry (PTV), where particles are seeded in the
soap film solution and the individual particles are tracked. Since the seeded
particles become visible in the soap film visualisation, we found it impractical to
measure the flow speed when conducting the oscillation experiments. Instead we
conducted a series of 55 experiments with a stationary disk, where we estimated
both the flow speed and the vortex shedding frequency in a soap film solution
seeded with 10µm-diameter hollow glass spheres. The flow speed was estimated
by identifying the particles in successive video frames and computing the average
distance travelled by these particle per unit time. The 55 data points from the
experiments in our system are shown in the coordinate system in figure 6.3.
U and fSt are clearly correlated and we found that the relationship can be
represented by the linear fit

U = (0.0168m)fSt + (0.1138m/s), (6.1)
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Figure 6.3: Data points representing the estimated vortex shedding frequency
fSt and background flow speed U in a series of 55 experiments
with a stationary disk with diameter D = 4mm. The solid line is
the linear fit given in (6.1).

with correlation coefficient R2 = 0.9136. For the oscillation experiments, we
determine the vortex shedding frequency fSt as described above and estimate
the background flow speed using the relationship in (6.1). We calculate the
Strouhal number St = fStD/U and then we estimate the Reynolds number by
using the empirically-known St−Re relationship from [57]

St = 0.2731− 1.1129√
Re

+
0.4821

Re
. (6.2)

In the numerical study presented in presented in Paper III we describe the
problem in terms of the the wavelength ratio, λ∗ = λ/D instead of f∗. Having
determined the frequency ratio and the Strouhal number, λ∗ can be directly
determined as,

λ∗ =
λ

D
=

U

fD
=

U

f∗fStD
=

1

f∗St
. (6.3)



6.2 Results 113

0.511.5
0

0.2

0.4

0.6

0.8

1

1.2

0.511.5
0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.4: Region of the parameter space explored by Leontini et al. (2006)
for (a) Re = 100 and (b) Re = 300. The two maps of the flow
regimes are redrawn using data from [36]. The red dots marked
with a letter correspond to the selected soap film experiments
shown in figure 6.5 (a)-(d).

6.2 Results

In this section, we want to investigate how the transition from 2S to P+S mode
appears in soap film experiments. As described above, we have only a limited
number of amplitude values available in our experimental setup. Furthermore,
it is not possible to keep either the oscillation frequency or the Reynolds number
constant when we are varying the amplitude. Therefore, it is in no way possible
to carry out experiments which can be compared directly with the computa-
tional results presented in chapter 5. Instead, we have chosen to present some
selected soap film experiments that clearly belong to different flow regimes and
confirm that some wake patterns in the transition from 2S to P+S mode have
topological variations downstream. We have selected four experiments with in-
creasing amplitude values; A∗ = 0.25, 0.375, 0.75, and 0.875 and comparable
frequency values in the range 0.878 ≤ f∗ ≤ 1.028. To make it probable that
the our two-dimensional flow would resemble the corresponding flow in a three-
dimensional setup, we have tried to obtain a Reynolds number that is as low as
possible in our soap film experiments. In the selected experiments, the Reynolds
numbers are within the range 149.2 ≤ Re ≤ 161.3. To our knowledge, there is
no comprehensive numerical study of the wake patterns available for Re ≈ 150.
For comparison, the four selected soap experiments are therefore marked on
top of the (A∗, f∗) parameter spaces corresponding to numerical studies with
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(a) Re = 100 and (b) Re = 300 (see figure 6.4). The two phase diagrams are
redrawn using data from Leontini et al. (2006) [36]. They clearly show that
the transition from 2S to P+S wake mode occurs at a lower amplitude value
when the Reynolds number increases. For simulations with Re ≈ 150 we there-
fore expect that the transition is somewhere in between the two cases. This is
confirmed by our own numerical simulation in figure 6.6.

To present the results from our soap film experiments, we have selected a snap-
shot of each of the four experiments, which we consider to be a representative
visualisation of the wake pattern. The four snapshots are shown in figure 6.5
(a)-(d) and the corresponding parameter values are noted in the caption of the
figure. The wake pattern in figure 6.5(a) has a clean 2S structure with no vari-
ations down stream. The experiment presented in figure 6.5(d) is an example
of a P+S wake pattern, in which three vortices are shed per oscillation cycle
and persist downstream. The very small additional vortices appearing in some
oscillation cycles are not part of a regular pattern and we ignore these when we
classify the wake pattern as P+S mode. In general, the P+S wakes we observe
in the experiments were not as regular as the 2S wake patterns. In the two most
extreme cases; (a) and (d), the observed wake structure agree well with our
prior expectations based on the comparison with numerical results in figure 6.4.
From the results in chapter 5, we expect a ’mixed’ wake pattern somewhere in
the transition from the case in (a) to the case in (d). The experiments in (b) and
(c) have been selected to show some representative examples of the intermediate
wake patterns with topological variations downstream. In both cases two pairs
of vortices are shed per oscillation cycle resulting in a 2P wake pattern in the
near wake. In (b) each pair consists of a weak and a strong vortex, the two
weaker vortices does not persist downstream which result in a 2S wake pattern
in the mid/far wake. This type of pattern is denoted as a ’weak 2P’ mode in
the studie described in [61]. In (c), one of the secondary vortices persist in the
downstream wake, resulting in a P+S pattern in the mid/far wake.

It is important to keep in mind that the repeatable wake patterns in soap film
experiments are not completely periodic. In the experiments we observe that the
soap film is quite sensitive to perturbations and would often become significantly
distorted in the mid/far wake. The selected snapshots are considered to be a
visualisation of the flow, which is representative for the pattern we see in the
majority of the recorded video. Furthermore, we have no way of detecting
exactly how far downstream in the wake the secondary vortices disappear. One
could therefore argue that it is too detailed to use our extended classification
when specifying the type of wake pattern in the soap film experiments. If we
were to try anyway, we would classify the four wakes patterns in 6.5 (a)-(d) as
(2S)∞, (2P)3(P+S)2(2S)∞, (2P)3(P+S)∞ and (P+S)∞, respectively.

As mentioned, it has not been possible to carry out a comprehensive study of the
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transition from 2S to P+S mode with the available experimental setup. How-
ever, although we can not directly compare with the results in chapter 5, the
few examples we have presented here are consistent with the main conclusions.
We see that the change in wake structure does not occur as a single abrupt
change but we observe a ’transition zone’ where the wake has topological varia-
tions downstream. The transition is therefore not as simple as indicated by the
boundaries in figure 6.4, and the experiments confirm that an extended clas-
sification of the wake pattern is needed to describe the topological variations
downstream. We still expect that the break in symmetry occur as a result of a
pitchfork bifurcation somewhere in the transition zone. However, this assump-
tion has not been possible to confirm solely on the basis of our experiments.

One of the advantages of performing numerical simulations rather than exper-
iments is that the parameter values always can be selected with a desired ac-
curacy. We have used this opportunity to make a direct comparison between
the four selected soap film experiments and numerical simulations performed at
the exact same parameter values. The simulations were performed with the nu-
merical method described i Paper III. A single snapshot from each simulation is
shown in figure 6.6 (a)-(d) and the corresponding parameter values are noted in
the caption of the figure. Even though we only show a single snapshot here, we
know the entire periodic development of the wake and we can classify the wake
pattern by monitoring the cusp bifurcations in the vorticity field as described
in Paper III. The wake pattern in figure 6.6(a) has a clear 2S structure with
no variations downstream and we would classify the pattern as (2S)∞. In the
second example in (b) we see that two weaker vortices are formed in the ’tail’ of
vorticity behind the two main vortices, however, these quickly disappear again
and we classify the pattern as (2S)2(2P)1(2S)∞. The simulation represented
by the snapshot in (c) has a wake pattern where two pairs of vortices are shed
per oscillation cycle. The two weaker vortices does not persist downstream but
they reappear in the ’tail’ of vorticity behind the main vortices, resulting in a
(2P)2(2S)2(2P)∞ wake pattern. The last example in (d) show a wake pattern
where the main vortices forms a P+S structure that persist down stream. Just
like in the corresponding soap film experiment, we observe some small extra
vortices. Since we are sure that the simulation is fully converged to a periodic
solution, these extra vortices are actually a part of the ’true wake pattern’. If we
were to use our classification method rigorously, the pattern would be therefore
be classified as (P+S)1(P+2S)2(P+S)1(P+2S)2(P+S)∞.

When we compare the patterns in figures 6.5 and figure 6.6, we see many similar-
ities especially in the most extreme cases; (a) and (d). In the two intermediate
cases; (b) and (c), we observe topological variations downstream in the soap
film experiments as well as in the numerical simulations but the final classifica-
tions turn out to be very different. This is because the computed vorticity fields



116Numerical and experimental comparison of the flow past an oscillating
cylinder

satisfy the (anti-)symmetry condition,

ω(x, y, t) = −ω(x,−y, t+ 1/2), (6.4)

as described in Paper III. This (anti-)symmetry is not structurally stable and an
arbitrary perturbation of the soap film system could easily break the symmetry
slightly. This is exactly what we see in the example in figure 6.5 (b) where one
of the weaker vortices disappears before the other. We first see a clear break
of symmetry in the last example where A∗ = 0.875, and we therefore believe
that the expected symmetry-breaking pitchfork bifurcation occurs for parameter
values somewhere between example (c) and (d).
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(a)

(b)

(c)

(d)

Figure 6.5: Visualisations of the wake behind the oscillating disk in soap film
experiments with the following parameter values:
(a) A∗ = 0.250, f∗ ≈ 1.010 (or λ∗ ≈ 5.27) and Re ≈ 161.3.
(b) A∗ = 0.375, f∗ ≈ 0.891 (or λ∗ ≈ 6.06) and Re ≈ 149.2.
(c) A∗ = 0.750, f∗ ≈ 1.028 (or λ∗ ≈ 5.20) and Re ≈ 155.9.
(d) A∗ = 0.875, f∗ ≈ 0.878 (or λ∗ ≈ 6.06) and Re ≈ 159.5.
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(a)

(b)

(c)

(d)

Figure 6.6: Snapshots of the vorticity field computed for following parameter
values:
(a) A∗ = 0.250, λ∗ = 5.27 and Re = 161.3.
(b) A∗ = 0.375, λ∗ = 6.06 and Re = 149.2.
(c) A∗ = 0.750, λ∗ = 5.20 and Re = 155.9.
(d) A∗ = 0.875, λ∗ = 6.06 and Re = 159.5.



Chapter 7

Summary and future work

In this thesis, we have described a systematic approach for analysing spatial
structures in fluid dynamical problems at a great level of detail. Although the
two vortex criteria we have used in our studies are very different, the overall
approach is the same; the structural changes are identified as topological bifur-
cations of a quantity describing the flow structure. We therefore believe that a
similar approach can be applied when the flow structure is defined in a different
way. Numerical simulations of a fluid dynamical problem can only give us in-
formation that is discretized with respect to the parameters in the problem. In
order to construct a bifurcation diagram describing a given problem, it is there-
fore necessary to know the possible structural changes that may occur when a
given number of parameters are varied. A bifurcation theory, like the one we
developed for the Q-criterion, provides a list of the possible vortex bifurcation
events and hence it facilitate the construction of a bifurcation diagram.

In this thesis, we have focused on developing theory and applying the results to
some relatively simple case studies. An obvious opportunity for future studies
would be to use our approach to analyse fluid dynamical problems that are
more complex and depends on more external parameters. Depending on the
complexity of the problem, it may be necessary to expand our theory to include
bifurcations of higher codimension.

Another obvious research question is to consider fluid dynamical problems in
three dimensions. In a three-dimensional flow, the vorticity field is a vector field
and it is therefore not meaningful to identify vortices as extremal points of the
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vorticity field. A natural generalisation would be to consider the maxima of the
magnitude of the vorticity field |ω|. Jeong & Hussain [30] discuss, however, that
this definition can be misleading when a vortex is present in a three dimensional
a shear flow.

In contrast to the vorticity criterion, the Q-criterion is three-dimensional in its
general form and it is therefore easier to generalize our bifurcation theory for
Q-vortices to three-dimensional flows. In this case the zero contours of Q are
surfaces in three dimensions and the three-dimensional version of the Morse
Lemma should be applied in the analysis. A three dimensional bifurcation
theory for Q-vortices would also be directly applicable for vortices defined by
the ∆-criterion, the λ2-criterion [30] or any other criterion that define a vortex
as a region where some scalar valued function is positive.

There is no simple connection between vortices defined as extremal points of
vorticity and vortices defined by the Q-criterion. In this thesis, we do not try to
answer the question of how to define a vortex in a flow. Instead, we introduce
an approach for giving a detailed analysis of the vortex structure once a specific
criterion has been selected. The results in section 3.3 illustrate that a topological
description of a fluid dynamical problem may be highly dependent on the chosen
definition of a vortex.
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