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Abstract/Resumé

Abstract

In this thesis, we study pseudo-differential operators on a real-analytic manifold,
which is either compact Riemannian, or a Lie group with a bi-invariant metric.
Our aim is to obtain algebras of such operators, acting on real-analytic functions,
but preserving a tube domain into which the functions extend holomorphically.
The tube domain, contained in a complexification, is known as a ”Grauert tube”.
We show that all the operators commuting with the Laplacian have this property,
and in so doing, we make use of the Poisson transform introduced by Stenzel [56].
The transform is derived from a special case of a claim by Boutet de Monvel in [3],
which was proved only recently by Stenzel [55] and Zelditch [65] in different ways.
We demonstrate that the same would be true of many other real-analytic operators,
if Boutet de Monvel’s claim holds in general, and briefly discuss approaches to it.
Finally, in the setting of operators on a Lie group carrying a bi-invariant metric,
without using the transform, we obtain a non-trivial algebra with this property.
This algebra is determined by a subspace of the global matrix-valued symbols,
which was introduced by Ruzhansky, Turunen and Wirth [49].

Resumé

I denne afhandling undersøger vi pseudo-differentialoperatorer p̊a reel-analytiske
mangfoldigheder, som enten er kompakt Riemmanske, eller Lie grupper med en bi-
invariant metrik. Vores mål er at finde algebraer af s̊adanne operatorer som virker
p̊a reel-analytiske funktioner, men ogs̊a bevarer et ”rør” i en kompleksificering af
mangfoldigheden som funktionerne kan udvides ind i. Dette rør kaldes et ”Grauert
rør”. Vi viser at alle operatorer som kommuterer med Laplace operatoren har denne
egenskab, og til dette anvender vi Poisson transformationen, introduceret af Stenzel
i [56]. Denne transformation er udledt af et specielt tilfælde af en p̊astand af Boutet
de Monvel [3], som kun for nylig er blevet bevist af Stenzel [55] og Zelditch [65] p̊a
forskellige måder. Vi demonstrerer at det samme ville være sandt for mange andre
reel-analytiske operatorer, hvis Boutet de Monvel’s p̊astand holder generelt. Til
sidst, i tilfældet af operatorer p̊a en Lie gruppe med bi-invariant metrik, s̊a finder
vi en ikke-triviel algebra med egenskaben, uden at bruge Poisson transformationen.
Denne algebra er bestemt af et underrum af de globale matrix-symboler, som blev
introduceret af Ruzhansky, Turunen og Wirth i [49].
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Symbols and Abbreviations

Symbol Description

ON Orthonormal.
ONB Orthonormal basis.
DCT Dominated convergence theorem.
MCT Monotone convergence theorem.
FTT Fubini-Tonelli theorem.
RLL Riemann-Lebesgue lemma.
FID Fourier integral distribution(s).
FIO Fourier integral operator(s).
PHG Poly-homogeneous.
w.r.t. with respect to.
N Natural numbers.
N0 Natural numbers with zero.
Z Integers.
R Real numbers.
C Complex numbers.
Sn The n-sphere.
Tn The n-torus.
B(x, r) Ball of radius r about x ∈ Rn.
1K Characteristic function for K.
C∞(Rn) Smooth functions on Rn.
C∞0 (Rn) As above, with compact support.
S(Rn) The Schwartz functions on Rn.
D′(Rn) Distributions on Rn.
E ′(Rn) As above, with compact support.
S ′(Rn) Tempered distributions on Rn.
L2(Rn) Standard L2-functions on Rn.
Hs(Rn) Order s ∈ R Sobolev space on Rn.
[·, ·] The commutator bracket.
|α| Size of a multi-index α ∈ Nn0 .
∂αx The composition ∂α1

x1
· · · ∂αnxn .

xα The product xα1
1 · · ·xαnn .

ad∂xj u The commutator [∂xj , u].

adxju The commutator [xj , u].
adα∂xu adα1

∂x1
◦ · · · ◦ adαn∂xnu.

adαxu adα1
x1
◦ · · · ◦ adαnxnu.

∧ Wedge product of exterior forms.
⊗ Tensor product (various).

M Typically a smooth manifold.
dΦx Differential of a map Φ at x.
Ω1
M 1-density bundle over M .

Ω
1/2
M

1
2 -density bundle over M .

G Typically a Lie group.
g Left-invariant vector fields on G.

(Or the Lie algebra of G.)
L, R The regular representations of G.

Left L and Right R.
ad Adjoint representation of g.
Ad Adjoint representation of G.
Ĝ The unitary dual of G.
Mat(Ĝ) Matrix-valued sequences on Ĝ.

S ′(Ĝ) Tempered sequences on Ĝ.
Tr Hilbert-Schmidt trace functional.

(Ordinary trace on matrices.)
∆G A Laplacian on the Lie group G.

(Relative to a bi-invariant metric.)
∆GC Induced Laplacian on GC.
(∆G)C Holomorphic ”lift” of ∆G to GC.

dξ Dimension of ξ in [ξ] ∈ Ĝ.

λξ Eigenvalue of [ξ] ∈ Ĝ w.r.t. ∆G.

〈ξ〉 The function (1 + |ξ|2)
1
2 on Rn.

The function (1 + |λξ|2)
1
2 on G.

MC Bruhat-Whitney complexification
of a real-analytic manifold M .

GC Universal group complexification
of G (real-analytic structure).

Mε The Grauert tube of radius ε > 0
of MC when M is compact.

Gε The Grauert tube of radius ε > 0
of GC when G is compact.

Pε The Poisson transform on Mε.
Fixed tube with radius ε > 0.

Ct Segal-Bargmann transform on GC.
Evaluated at fixed time t > 0.
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vi Symbols and Abbreviations

N Typically a Kähler manifold.
J An almost complex structure.
Θ A Jacobian factor associated to Φ

in the decomposition of GC.
Ωp,q(N) Differential forms of type (p, q).
T ∗p,qN (p, q) cotangent tensor bundle.
T p,qN (p, q) tangent tensor bundle.
O(N) Holomorphic functions on N .
C(M) Continuous functions on M .
Cm(M) The Cm-functions on M .
Cω(M) Real-analytic functions on M .
C∞(M) Smooth functions on M .
C∞0 (M) As above, with compact support.
D′(M) Distributions on M .
E ′(M) As above, with compact support.
L2(M) Square-integrable functions on M .

(Fixed smooth positive 1-density.)
Hs(M) Order s ∈ R Sobolev space on M .
Hs
K(M) As above, but supported in K.
Os(∂N) A space of order s ∈ R traces.
supp The support.
supp0 As above, in the zero-section.
〈u, ϕ〉 Action of a distribution u on ϕ.
u⊗ v Tensor product of distributions.
Φ∗ Pullback by Φ.
Φ∗ Pushforward by Φ.
K(P ) Schwartz kernel of P .
P ∗ Adjoint (formal, Hilbert) of P .
dom(P ) The domain of P .
σ(P ) The spectrum of P .
I Identity operator.
dξ Integration w.r.t. measure on Rn.

(Standard Lebesgue measure.)
d̄ξ (2π)−ndξ.
dµ Integration w.r.t. measure µ.
F Fourier transformation.
FG Fourier transformation on G.

∆ Laplacian (various).
∆g Laplacian (relative to metric g).
U(H) Unitary operators H → H.
U(m) Dimension m unitary group.
u(m) The Lie algebra of U(m).
Sd Order d ∈ R local symbols on Rn.

Order d ∈ R matrix-symbols on G.
(The type is always (1, 0)).

Op(p) Operator associated to a symbol p.
(On a compact Lie group, or Rn.)

HL2(N) Holomorphic L2 -functions.
HHs(Mε) Holomorphic Sobolev spaces.
B(X,Y ) Bounded operators X → Y .
F (X,Y ) Fredholm operators X → Y .
Mat(m,C) m×m matrices.
K ⊂⊂ U Means ”K compact in U”.
WF Wavefront set.
sing supp The singular support.
cone supp The conic support.
ess supp The essential support.
Diff(M) Differential operators on M .
Diffd(M) As above, of order d ∈ N.
Ψ(M) Pseudo-differential operators.
Ψd(M) As above, of order d ∈ R.
Ψd

phg(M) As above, but also PHG.

C∞(X,Ω
1
2 ) Smooth 1

2 -density sections.

C∞0 (X,Ω
1
2 ) Smooth 1

2 -density sections.

D(X,Ω
1
2 ) 1

2 -density distributions.

DΓ(X,Ω
1
2 ) As above, with WF in Γ.

EΓ(X,Ω
1
2 ) And with compact support.

L2(X,Ω
1
2 ) The L2 1

2 -density sections.
I(X,Λ) FID associated to Λ.
Id(X,Λ) As above, of order d ∈ R.
Idphg(X,Λ) As above, but also PHG.
I(X,Y ;C) FIO associated to C.
Id(X,Y ;C) As above, of order d ∈ R.
Idphg(X,Y ;C) As above, but also PHG.
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Introduction

In the engineering sciences, one sometimes finds mathematical problems of a deeper kind.
These problems can not be approached by the basic tools of calculus, matrices or the like.
Instead, stronger mathematical tools must be invoked, often just to gain understanding,
before a numerical scheme, or an algorithm, can be fashioned to approximate a solution.
The study of inverse problems, and their regularization, is a prototypical example of this.
Here, an operator-theoretic analysis of the inverse problem precedes algorithm synthesis,
and the scheme that is ultimately implemented is just a finite-dimensional approximation
of something that really takes place in infinite-dimensional (Banach) spaces of functions.
Another source of such problems are numerical schemes for solving boundary problems,
where convergence and stability are the main issues to be addressed by a deeper analysis.
Many advanced schemes do not have well-understood convergence or stability properties,
but rely on benchmarking and rules of thumb instead.

The actual starting point for this thesis was the so-called interior source point methods.
This is an umbrella term for a class of methods applicable to scattering-type problems,
and includes direct acoustic and electromagnetic (analytic elliptic) scattering problems.
They are also applicable to inverse scattering, via reconstruction of scatterer near-field,
as a step in the Kirsch-Kress decomposition technique [7]. These methods are fairly new,
and are quite efficient, but have a notable flaw that limits their applicability in general.
Their stability and convergence depend on a piece information about the actual solution:
A region outside of the problem domain into which the true solution extends analytically.
The sources must be placed ”near” true singularities [63, 9, 37].

Inspired by these recent advances, we ask a simple, and essentially classical, question.
Suppose that we are given a Dirichlet boundary value problem for an elliptic operator,
where the operator, boundary and boundary data are all understood to be real-analytic.
How far outside the problem domain can solutions to the Dirichlet problem be extended?
The topic of analyticity of solutions to PDE problems goes back by more than a century,
but it is still being actively researched. See the survey by Khavinson and Lundberg [38].
Of course, at this point, our question is rather vague, so we illustrate with an example:
Let Ω ⊂ R2 be a bounded and simply-connected domain with real-analytic boundary ∂Ω.
Suppose that g0 ∈ Cω(∂Ω) extends to a real-analytic function on a neighbourhood of Ω.
We seek a solution u ∈ C2(Ω) ∩ C0(Ω) to{

∆u = 0 in Ω,

u|∂Ω = g0.

It is then well-known [38] that there always exists a unique solution u ∈ C2(Ω) ∩ C0(Ω),
and this u is real-analytic in Ω, extending analytically to an open subset containing Ω.
Concretely, in the metric of R2, how big is this neighbourhood?

1



2 Complexifications, Pseudo-Differential Operators, and the Poisson Transform

It turns out that our question is extremely difficult to answer, even for very simple Ω.
So far, most concrete results require Ω to be an ellipse [38]. This is not very satisfactory.
But then again, why should we expect the solution to reveal its full domain of existence?
Coming from an engineering point of view, maybe we could ask a more humble question.
Is there a way to get an estimate of a collar neighbourhood of ∂Ω into which u extends?
A crude approach would be to follow the constants in estimates of all derivatives of u,
which yield a convergence radius for a power series expansion around each point on ∂Ω.
However, ∂Ω is not a half-plane, so we must ”flatten” it locally using real-analytic charts,
and thus we are also forced to supply information about all the derivatives of this chart.
Needless to say, not only does the level of complexity in doing all these estimates explode,
but the final convergence radii may still be uselessly small.

Recently, a seemingly promising alternative was explored by Karamehmedović [37].
The idea is to solve a Cauchy problem near ∂Ω instead. Let g1 ∈ Cω(∂Ω) be some function.
We seek a domain U ⊂ R2, containing ∂Ω, and a solution ũ ∈ Cω(U) to

∆ũ = 0 in U,

ũ|∂Ω = g0,

∂ν ũ|∂Ω = g1,

where ν is the interior unit normal to ∂Ω, and ∂ν |∂Ω is the normal derivative operator.
Now, by the Cauchy-Kovalevskaya theorem [38], the above problem is uniquely solvable,
and we must conclude that ũ coincides with u on U if the boundary data is g1 = ∂νu|∂Ω.
But if we knew g1, then U could be ”enlarged” by using the so-called Zerner’s theorem.
This approach gives more freedom, but we need to know something about g1.

To explain how it works, we take a closer look at the Cauchy-Kovalevskaya theorem.
Let D(0, R) be the open disc of radius R > 0 centred at 0 in C. If δ > 0, we put

ΩR,δ = D(0, R)n−1 ×D(0, Rδ),

where n ∈ N is the dimension in the following version of the theorem.

Theorem 1.0.1 (Cauchy-Kovalevskaya [31]). Let d ∈ N and put β = (0, · · · , 0, d) ∈ Nn0 .
Suppose {aα}|α|≤d and f are bounded holomorphic functions on ΩR,δ with aβ = 1, and

2(2ne)d
∑
α 6=β

Rd−|α|δd−αn||aα(z)| ≤ 1 for all z ∈ ΩR,δ.

Then there is a unique holomorphic solution u in ΩR
2 ,δ

to{∑
|α|≤m aα∂

α
z u = f in ΩR

2 ,δ
,

∂jznu|zn=0 = 0 for j < d,

where u 7→ ∂jznu|zn=0 is the jth normal derivative with respect to the zn = 0 hyperplane.

The above has a reformulation where zn = 0 is replaced by an analytic hypersurface.
It is obtained by simply applying the above after a biholomorphic change of coordinates,
and then returning by the same transformation.
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Let P be a complex-analytic differential operator of order d ∈ N on an open U ⊂ Cn,
and let S ⊂ U be a complex hypersurface (co-dimension one complex submanifold) in U .
The operator P has the form

P =
∑
|α|≤d

aα(−i∂z)α,

where {aα}|α|≤d are now holomorphic functions on U , but which need not be bounded.
Associated to P there is the principal symbol p defined by

p(z, ζ) =
∑
|α|=d

aα(z)ζα for all (z, ζ) ∈ U × Cn.

Instances of the following results can be found in the standard text by Hörmander [31].
The corollary is just Cauchy-Kovalevskaya at S, the other is known as Zerner’s theorem.
In both, f is a holomorphic function on U , and {gj}d−1

j=0 are holomorphic functions on S.

Corollary 1.0.1. Let Φ : U → Cn be a biholomorphism with Φ(S) given by zn = 0.
Suppose, if en = (0, · · · , 0, 1) ∈ Cn, that

p(z, (dΦz)
ten) 6= 0 for all z ∈ S.

Then there is an open U0 ⊃ S in U and a unique holomorphic u on U0 solving{
Pu = f in U0,

ρju = gj for j < d,

where ρju = ∂jzn(u ◦ Φ−1) ◦ Φ|S is the holomorphic trace on S with respect to Φ.

Now if S is a real C1 hypersurface, it is locally the zero set of a real C1 function ψ:
Near any z0 ∈ S, there exists such a ψ, with dψz0 6= 0, and ψ(z) = 0 if and only if z ∈ S.
In that case, we say that z0 ∈ S is non-characteristic w.r.t. P if

p(z0, ∂ψz0) 6= 0,

and S is non-characteristic for P if it is so at every point.

Theorem 1.0.2 (Zerner [65]). Let U0 ⊂ U be open, and u a holomorphic solution to

Pu = f in U0.

Suppose that z0 ∈ ∂U0 ∩U and that ∂U0 is C1 and non-characteristic at this z0 w.r.t. P .
Then u continues analytically on to a neighbourhood of z0 inside U .

Thus, if we have a continuum of such neighbourhoods, u will ”bleed” through them,
but may still be obstructed by the possible occurrence of some non-characteristic points.
Of course, the larger the initial U0, the easier it is to expand by using Zerner’s theorem.
We want to apply this locally near a complex surface (∂Ω)C ⊂ C2 with ∂Ω = (∂Ω)C ∩R2,
but to do so, we need to know whether g0 and g1 even extend holomorphically to (∂Ω)C,
and, once we have that, we can get a U0 containing a piece of (∂Ω)C.
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The idea of Karamehmedović [37] was to estimate how far ∂νu|∂Ω extends into (∂Ω)C.
If g0 extends holomorphically to some domain in (∂Ω)C, what can we say about ∂νu|∂Ω?
The answer should be hidden in the Dirichlet-to-Neumann (DN) map

Λ : g0 7→ ∂νu|∂Ω,

which is a pseudo-differential operator. In the above case, Λ ∈ Ψ1(∂Ω). See Grubb [15].
It can be formed from the constituent parts of another operator, the Calderón projector.
This is a matrix of pseudo-differential operators, which, in turn, is formed from the PDE,
and the Cauchy trace operator (more generally, boundary differential operators) on ∂Ω.
In his paper [37] Karamehmedović obtained some explicit local mapping properties of Λ,
and managed to answer the question locally wherever ∂Ω is a piece of a straight line.
Combined with Zerner’s theorem, this gives a way to estimate the domain of existence,
but without determining u. The result is explicit, and depends only on knowledge of g0,
and how far g0 extends holomorphically into (∂Ω)C near the linear pieces.

It was basically done by showing that the Calderón projectors have analytic symbols.
This type of pseudo-differential symbol was first introduced by Boutet de Monvel in [2],
and [37] essentially reuses these symbols, but introduces some unnecessary technicalities.
The technicalities appear to be caused by Boutet de Monvel’s failure to write out details,
and, especially, details surrounding the convergence of some ”contour deformed” integrals.
Unfortunately, [37] does not cite subsequent improvements to [2] by Trèves [61] either.
So to correct this state of affairs, we will now improve and simplify the first part of [37],
which is just filling out details from the paper [2], and is not the subject of this thesis.
However, it was the starting point. Therefore, we consider it important to include it here,
and it will lead us to the questions we actually seek to answer.

In the following, B(x, r) denotes the open ball with center at x ∈ Rn and radius r > 0,
and Op(p) is the (unique) pseudo-differential operator associated to a symbol p on Rn.

If f : U → C is the restriction of a holomorphic function f̃ : UC → C to U = UC ∩ Rn,
where UC ⊂ Cn is open, we say that f extends holomorphically to UC.

Theorem 1.0.3. Fix R > 0 and ε > 0, and let p ∈ Sd(Rn×Rn) be a symbol with d ∈ R.
Assume p|B(0,r0)×Rn extends holomorphically into (B(0, r0) + iB(0, δ0))×Wε, where

Wε = {ζ ∈ Cn | |Im ζ| < ε|Re ζ|} ∩ {ζ ∈ Cn | |Re ζ| > R},

and satisfies

sup
(x,ζ)∈K×Wε

〈Re ζ〉−d|p(x, ζ)| <∞ for any K ⊂⊂ B(0, r0) + iB(0, δ0)

Let u ∈ C∞0 (Rn). Suppose that u|B(0,r) extends holomorphically into B(0, r) + iB(0, δ).
Choose r > r′ > 0 and δ ≥ δ′ > 0 so that

δ′

r − r′
< ε.

Then Op(p)u|B(0,min{r′,r0}) extends similarly into B(0,min{r′, r0}) + iB(0,min{δ′, δ0}).
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Proof. A deformation of Rn × Rn into Cn × Cn allows us to continue Op(p)u explicitly.
It is done by dividing the oscillatory integral into two parts, and applying Stokes’ theorem.

Take χ2 ∈ C∞0 (Rn) with χ2(ξ) = 1 for ξ ∈ B(0, 2R) but χ2(ξ) < 1 for ξ 6∈ B(0, 2R).
Furthermore, let χ1 ∈ C∞0 (B(0, r)) be a cutoff such that χ1(y) = 1 whenever y ∈ B(0, r′′),
where r > r′′ > r′ > 0 and δ ≥ δ′ > 0 are chosen so that

δ′

r − r′
<

δ′

r′′ − r′
< ε.

Now let σ : [0, 1]× Rn × Rn → Cn × Cn be defined by

(t, y, ξ) 7→ (w, ζ) =
(
y − itδ′χ1(y)(1− χ2(ξ))

ξ

|ξ|
, ξ − it δ

′(1− χ1(y))

r′′ − r′
(1− χ2(ξ))|ξ| y

|y|

)
,

and put

C(t) = σ({t} × Rn × Rn) for all t ∈ [0, 1].

The above ensures that pullbacks by σ, or σ(t, ·, ·) at t ∈ [0, 1], yield convergent integrals.
Under the σ deformation, if χ2(ξ) = 0 and |Re (x)| < r′, we get

Re (i(x− w) · ζ) = −ξ ·
(

Im (x) + tδ′χ1(y)
ξ

|ξ|

)
+ t

δ′(1− χ1(y))

r′′ − r′
|ξ| y
|y|
· (Re (x)− y)

≤ −|ξ|
( ξ
|ξ|
· Im (x) + tδ′χ1(y) + t

δ′(1− χ1(y))

r′′ − r′
(
|y| − |Re (x)|

))
≤ −|ξ|

(
− |Im (x)|+ tδ′χ1(y) + t

δ′(1− χ1(y))

r′′ − r′
(
|y| − |Re (x)|

))
≤ −|ξ|

(
tδ′ − |Im (x)|

)
.

Take x ∈ B(0, r′) + itB(0, δ′), and fix ρ > 2R and 1 ≥ t2 > t1 ≥ 0. Put

Q(ρ) = (t1, t2)× Rn × (B(0, ρ) \B(0, 2R)),

and note then that σ is injective on Q(ρ), and

σ(Q(ρ)) ⊂ Cn ×Wε for all ρ > 2R.

In the following, we use notation dw = dw1 ∧ · · · ∧ dwn and d̄ζ = (2π)−ndζ1 ∧ · · · ∧ dζn.
Define for (w, ζ) ∈ Cn ×Wε the 2n-form

µx = G(w, ζ) dw ∧ d̄ζ = eiζ·(x−w)p(x, ζ)u(w) dw ∧ d̄ζ,

where σ∗µx is smooth and compactly supported in Q(ρ), and

dµx =

n∑
j=1

∂wj
[
eiζ·(x−w)p(x, ζ)u(w)

]
dwj ∧ dw ∧ d̄ζ.

Then σ∗dµx vanishes on Q(ρ) by holomorphy in y ∈ B(0, r) and reality in w if y 6∈ B(0, r).
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Using the above, we can now, without any convergence issues, apply Stoke’s theorem.
Thus, by Stokes’ theorem for manifolds with corners applied to Q(ρ), we get

0 =

∫
Q(ρ)

σ∗dµx =

∫
Q(ρ)

d(σ∗µx) =

∫
∂Q(ρ)

σ∗µx.

Also, by the above estimate, there is some C > 0 such that

|(G ◦ σ)(t, y, ξ) det d(y,ξ)σ(t, y, ξ)| ≤ Ce−|ξ|(tδ
′−Im (x))〈ξ〉d1supp(u)(y),

which guarantees existence of
∫
C(t) µx when t > 0. If t = 0, it is meaningful if p ∈ S−∞,

but x must then have zero imaginary part. The aim is to show equivalence with t = 1.
Let σρ : [t1, t2]× Rn × Sn−1 → Cn × Cn be defined by

(t, y, ω) 7→
(
y − itδ′χ(y)ω, ρ

[
ω − it δ

′(1− χ(y))

r′′ − r′
y

|y|

])
.

Again, by the estimate, if x ∈ B(0, r′), we get C ′ > 0 such that

|(G ◦ σρ)(t, y, ω) det(dσρ)(t, y, ω)| ≤ C ′e−ρtδ
′
〈ρ〉d1supp(u)(y),

and since σ(t, y, ξ) = (y, ξ) for ξ ∈ B(0, 2R), σ∗µx vanishes on (t1, t2)× Rn × ∂B(0, 2R).
Therefore, combining integrals of opposite orientation, and using the DCT, we get∫
C(t2)

µx −
∫
C(t1)

µx = lim
ρ→∞

∫ t2

t1

∫
Rn

∫
ξ∈∂B(0,ρ)

(σ∗µx)(t, y, ξ)

= lim
ρ→∞

∫ t2

t1

∫
Rn

[ ∫
ω∈Sn−1

[(G ◦ σρ) det(dσρ)](t, y, ω) volSn−1(ω)
]
dy dt,

where the integrand is compactly supported in y, and is bounded as above for all ρ > R.
It follows that the limit is zero, and we conclude that

∫
C(t2)

µx =
∫
C(t1)

µx if x ∈ B(0, r′).

Pick t0 ∈ (0, 1) so that C(t0) ⊂ Cn ×W 1
2
. Using the DCT, we then get

Op(p)u(x) = lim
λ→0

∫
Rn

∫
Rn
eiξ·(x−y)[e−λ

2ξ·ξp(x, ξ)]u(y) dy d̄ξ

= lim
λ→0

∫
C(t0)

eiζ·(x−w)[e−λ
2ζ·ζp(x, ζ)]u(w) dw ∧ d̄ζ

=

∫
C(t0)

eiζ·(x−w)p(x, ζ)u(w) dw ∧ d̄ζ

=

∫
C(1)

eiζ·(x−w)p(x, ζ)u(w) dw ∧ d̄ζ,

which makes sense, because if λ ∈ R, we have

|e−λ
2ζ·ζ | ≤ e−λ

2(|Re ζ|2−|Im ζ|2) ≤ e− 1
2λ

2|Re ζ|2 if |Im ζ| < 1

2
|Re ζ|.

But now the last integral extends holomorphically in x to the right open set.
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Note that for those y 6∈ B(0, r) the function u in µx may fail to extend holomorphically.
But this is not an issue, as the contour deformation then only happens in the ζ-variable.

Corollary 1.0.2. Let u ∈ E ′(Rn) and u|B(0,r) extend, as before, into B(0, r) + iB(0, δ).
Then Op(p)u|B(0,min{r′,r0}) extends similarly into B(0,min{r′, r0}) + iB(0,min{δ′, δ0}).

Proof. Take χ ∈ C∞0 (B(0, r)) such that χ(y) = 1 for y ∈ supp(χ1). Then χu is smooth.
Let σξ : [0, 1]× Rn → Cn be defined by

(t, ξ) 7→ ζ = ξ − it δ
′(1− χ1(y))

r′′ − r′
(1− χ2(ξ))|ξ| y

|y|
,

and put Cξ(1) = σξ({1} × Rn). As before, if χ2(ξ) = 1 and |Re (x)| < r′, we have

Re (i(x− y) · ζ) ≤ −|ξ|(tδ′(1− χ1(y))− Im (x)).

Taking ϕ ∈ C∞0 (B(0, r′)), we get

〈Op(p)u, ϕ〉 = 〈Op(p)(χu), ϕ〉+ 〈Op(p)((1− χ)u), ϕ〉

= 〈Op(p)(χu), ϕ〉+

∫
Rn

〈
u(y),K(x, y)

〉
ϕ(x) dx,

where the kernel K : B(0, r′)× Rn → C is smooth, rapidly decaying in y uniformly in x.
It has the form

K(x, y) = lim
λ→0

∫
Rn
ei(x−y)·ξ[e−λ

2ξ·ξ(1− χ)(y)p(x, ξ)] d̄ξ

=

∫
Cξ(1)

ei(x−y)·ζ(1− χ)(y)p(x, ζ) d̄ζ,

which extends holomorphically in x for each y to the stated open set.

Note the obstruction that ε > 0 places on extensions near analytic singularities of u.
This is embodied in the condition

δ′

r − r′
< ε.

Corollary 1.0.3. Suppose that ε > 0 can be made arbitrarily large (independent of R).
Then Op(p)u|B(0,min{r,r0}) extends, as before, into B(0,min{r, r0}) + iB(0,min{δ, δ0}).

Among other things, the above theorem removes the topology on the symbols in [37],
and reduces the situation to symbols defined by Boutet de Monvel [2] and Trèves [61].
However, the whole approach has a massive weakness not addressed by Karamehmedović.
There is no easy way to construct parametrices with symbols in the same analytic class,
and thus no easy way to generalize the approach taken in [37] via the Calderón projectors.
It only works in [37] because the geometry of the setup is extremely simple - a half-plane.
Trèves overcame this by replacing the analytic symbols with pseudo-analytic amplitudes,
which have weaker conditions imposed on them - analyticity is replaced by an estimate.
These amplitudes are equivalent to analytic amplitudes up to an exponential error term,
where the decay rate constrains the domain of extension. But this constant is not explicit,
and there seems to be no way to determine or estimate it.
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The consequence is that the results above, and also those in [37], are mostly useless.
Only in the case of constant coefficients and a planar boundary are they of any real use.
The parametrices constructed by Trèves are not helpful for the above mentioned reasons.
Although, in principle, it should be possible to follow the estimates obtained by Trèves,
and get a lower bound on the convergence radii preserved by the various operators there.
But the usefulness of this approach is questionable at best, because of the difficulty level.
In that case, estimating derivatives of u would probably be easier.

All these difficulties prompted us to search the recent literature for a better approach,
and, perhaps, a modern, well-developed, and tangible framework for asking our questions.
It turns out that there is one. In (∂Ω)C there are special domains, called Grauert tubes,
and these provide an invariant way to measure how far an extension ”reaches” into (∂Ω)C.
These domains (∂Ω)ε are parametrized by ε > 0 up to a possibly finite maximum εmax > 0.
On each (∂Ω)ε there are natural Hilbert spaces of holomorphic functions, HHs((∂Ω)ε),
which mirror Hs(∂Ω), the Sobolev spaces, for each s ∈ R. Our question then crystallizes:
If Rε : O((∂Ω)ε) → Cω(∂Ω) : f 7→ f |∂Ω is the operator restricting functions onto ∂Ω,

then we ask for an ε > 0 and a Λ̃ such that the following diagram commutes:

HHs((∂Ω)ε) HHs−1((∂Ω)ε)

Hs(∂Ω) Hs−1(∂Ω)

Λ̃

Rε Rε

Λ

In particular, what we are asking here is; if g0 extends to (∂Ω)ε is the same true of Λg0?
This is just an abstract generalization of the question raised by Karamehmedović in [37].
However, Λ is a special pseudo-differential operator associated to the Dirichlet problem,
and it is unknown if there are non-trivial operators satisfying a diagram like this at all.
Instead of considering the DN map, we simply ask if such non-trivial operators even exist.
Are there many? Do they form an algebra? Does it contain non-identity elliptic elements?
If so, are there parametrices for these elliptic elements that also belong to this algebra?
Can we somehow characterize them by their symbols? None of this concerns the DN map,
but the hope is that there are enough such operators that the DN map is one of them.
Another question is the size of ε. Can we put a lower bound on ε where any of this holds?
This is the most important (and most difficult) problem.

In light of recent research by Stenzel, Zelditch and others, there are a few answers.
Our questions are connected to the Poisson transform Pε, introduced by Stenzel in [56],
which is based on an old theorem/conjecture by Boutet de Monvel [3] about propagators.
Only very recently did proofs (by Zelditch [65] and Stenzel [55]) of a special case appear.
In fact, we will find that the algebra generated by the Laplacian has the right properties,
but the size of ε is constrained by the unknown existence radius of the Poisson transform.
The full conjecture in [3] remains unproven. If it were true, the Laplacian is not special,
and there are very many such operators preserving holomorphically extendible functions.
More precisely, any elliptic real-analytic differential operator P would generate domains,
like (∂Ω)ε, via the holomorphic extension of the Hamiltonian flow of its principal symbol,
and operators commuting with P would satisfy a commutative diagram like the one above,
where the holomorphic functions now live on these domains instead.
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Our questions are global (on the whole manifold, not just in a chart) from the outset.
There are two reasons for this. The first is just compatibility with the recent literature,
but the second is that we seek characterizations in terms of simpler intrinsic properties,
like the principal symbol, or algebraic relations, that can be verified or manipulated easily.
In this way, we hope to obtain results on the existence and plurality of such operators,
and ways to construct them. But it should be said that there are few explicit examples,
because pseudo-differential operators are mainly a tool for proving abstract theorems,
and their defining formulas are very forbidding when it comes to explicit calculations.
The textbooks by Hörmander [33, 34] and Trèves [61, 60] also lack examples.

However, there is an easy way to see that such global operators should exist on Rn.
The idea is to use exact quantization, which is available because Rn has a group structure.
Let Rnε = {z ∈ Cn | |Im (z)| < ε} be the tube neighbourhood of radius ε > 0 about Rn.
Suppose p ∈ Sd(Rn × Rn) extends holomorphically in the first variable to Rnε , and

sup
(z,ξ)∈K×Rn

〈ξ〉d|p(z, ξ)| <∞ for any K ⊂⊂ Rnε ,

and that u ∈ S(Rn) extends to Rnε in such a way that

max
|α|≤N

sup
z∈Rnε
〈Re (z)〉N |∂αz u(z)| <∞ for all N ∈ N0.

In that case, if z ∈ Rnε , we can write

Op(p)u(z) = lim
λ→0

∫
Rn

∫
Rn
ei(z−y)·ξ[e−λ

2ξ·ξp(z, ξ)]u(y) dy d̄ξ

=

∫
Rn
eiRe (z)·ξp(z, ξ)

[ ∫
Rn
e−iy·ξu(y + i Im (z)) dy

]
d̄ξ,

where y 7→ y + iIm (z) is justified by an analytic continuation argument in the first line.
Using the DCT, we see that we can take Wirtinger derivatives through the last integrals,
and therefore, Op(p)u has the sort of property we seek; it extends holomorphically to Rnε .
Of course, it fails completely if u ∈ C∞0 (Rn). There is no way the above can be localized.
This leads us to look for such pseudo-differential operators on a compact Lie group G,
where, like on Rn, a global quantization is available. It turns out to be modestly fruitful,
and we will find a non-trivial subalgebra of Ψ(G) with all the properties that we desire.
The next step would be to see if some of this transfers to homogeneous spaces.

Without doubt, the mathematics involved in these questions is difficult to understand,
and requires a lot of background. Especially in basic real, complex and functional analysis.
We assume basic familiarity with local distributions and pseudo-differential operators.
The book by Shubin [51] is sufficient. Beyond this, differential topology and geometry,
and some basic knowledge of Lie groups, symplectic and Kähler geometry, is necessary.
This can be acquired by reading basic parts of Lee [41], Warner [40] and Moroianu [44].
Elementary representation theory will appear later in the analysis on compact Lie groups.
A good reference for this would be Folland [13]. The theory used for the Poisson transform,
and the Boutet de Monvel theorem, can be found in the treatises by Hörmander [33, 34].
See also the articles by Hörmander [27] and Hörmander and Duistermaat [30].
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Finally, a few words about conventions, notation, and basic definitions (already used).
See also Symbols and Abbreviations. By a manifold we always mean without boundary,
and when a manifold has a boundary, we will explicitly call it a manifold-with-boundary.
The manifold topology is always required to be second-countable (then it is paracompact).
A submanifold is understood to be embedded, that is, it carries the subspace topology,
and an atlas of slice charts. An immersion is said to give rise to an immersed submanifold.
Let n,N, k ∈ N and d ∈ R. Let V ⊂ Rn be open, and α ∈ NN0 and β ∈ Nn0 multi-indices.
The Hörmander amplitudes Sd(V × RN ) consist of a ∈ C∞(V × RN ) such that

sup
(x,θ)∈V×RN

〈θ〉|α|−d|∂βx∂αθ a(x, θ)| <∞,

and these form a separating family of semi-norms, making Sd(V × RN ) a Frechet space.
The PHG amplitudes a ∈ Sdphg(V × RN ) are Hörmander amplitudes with

sup
(x,θ)∈V×RN

〈θ〉|α|−d−k
∣∣∣∂βx∂αξ (a(x, θ)−

k−1∑
j=0

χ(θ)ad−j(x, θ)
)∣∣∣ <∞,

where ad−j ∈ C∞(V × (RN \ 0)) are functions satisfying

ad−j(x, tθ) = td−jad−j(x, θ) for all (x, θ) ∈ V × RN and t > 0,

and χ ∈ C∞(Rn) is any cutoff such that

χ(θ) =

{
1 if |θ| ≥ 1,

0 if |θ| ≤ 1
2 .

The functions ad−j are not symbols, but they are uniquely determined by a if it is PHG.
In the Euclidean setting, if p ∈ Sd(V × Rn), we write

Op(p)u(x) =

∫
Rn
eix·ξp(x, ξ)Fu(ξ) d̄ξ for any x ∈ Rn,

where we use the notation d̄ξ = (2π)−ndξ for the scaled Lebesgue measure.

Author comments: This research monograph documents a lot of background theory,
and, in the final chapter, my poor attempts to approach the questions in the introduction.
Many threads in the text do not lead anywhere, and are regurgitations of known theory.
I made attempts to reach out to established researchers, but was met with little interest.
In the course of writing, I made contributions to two articles not related to this research,
but they are not included here. One article is now published [6], the other is on arxiv [36].
To be clear, only the very last chapter contains a few sparse original ideas.
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Functions and Distributions

In this section we construct and define the most important spaces that will be used later.
Most important of all are the distributions, and their classification in terms of regularity,
which is captured by Sobolev spaces of arbitrary real order, both positive and negative.
Other spaces will appear as the text proceeds, but those presented here are ubiquitous.
Also, we introduce the wavefront set, which plays a central role in microlocal analysis,
and show how it is changed by some operations on distributions.

Why do so many different spaces occur in the theory of PDE, and what is their use?
The different subspaces of the mother space of distributions exist to classify regularity.
This could be in terms of differentiability, growth, decay and/or strength of singularities.
They can often be equipped with more structure than the mother space of distributions,
which is much too large to be given anything beyond variations of the weak*-topology.
On the other hand, the space of C∞0 -functions is much too small for many applications.
The path to a rich analysis is through the spaces in between - the middle way, as it were.
By far, the most important example of such spaces ”in between” are the Sobolev spaces,
which are Hilbert spaces, and make available the powerful tools of functional analysis.
Applications include existence, uniqueness and regularity for many boundary problems,
and spectral analysis, eigenvalue asymptotics, and the index theory of elliptic operators.
We will mainly be concerned with the L2-Sobolev spaces as defined by e.g. Shubin [51],
and assume prior familiarity with pseudo-differential operators on just smooth functions.
The first five sections of the first chapter of Shubin’s book [51] would be enough.

A useful notion of distributions requires an identification for the ordinary functions.
On Rn it is provided by the ”Du Bois-Reymond lemma”. It appears, for example, in [15].
But on a smooth manifold X, we need to integrate globally to get a similar identification.
Of course, if X were orientable, we could just integrate with respect to a volume n-form,
but there is no reason to assume this. We can use the 1 and 1

2 -density bundles instead,
which we denote (customarily suppressing the subscript), respectively, by

Ω1
X and Ω

1
2

X

These are smooth complex line bundles over X, described in [41] under different notation,
and it is shown in [41] that any smooth 1-density section can be integrated invariantly.
The smooth sections of these bundles are denoted, respectively, by

C∞(X,Ω1) and C∞(X,Ω
1
2 ),

and, in the PDE literature, the various spaces are often defined using 1
2 -density sections.

11
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Let X and Y be two smooth (real) manifolds, not necessarily compact or connected.
The density bundles are trivial [41], so we fix a smooth positive 1-density ω0 ∈ C∞(X,Ω1),
and we can form a measure locally equal to a smooth function times Lebesgue measure.
To this end, fix a partition of unity {χj}j∈N subordinate to charts κj : Uj → Rn of X,
where {Uj}j∈N is a locally finite cover of X, suppχj ⊂ Uj , and each Uj is precompact.
Declare S ⊂ X to be measurable in X if κj(Uj ∩ S) is a Borel set in Rn for any j ∈ N.
The collection of these form the Borel σ-algebra as generated by the manifold topology,
and integration of any ω ∈ C∞(X,Ω1) is performed by∫

S

ω =
∑
j∈N

∫
κj(Uj∩S)

(κ−1
j )∗(χjω).

This leads to a positive Borel measure µ0, defined on such S ⊂ X, by setting

µ0(S) =

∫
S

ω0,

and integration of Borel measurable f : X → C is then performed by∫
S

f dµ0 =

∫
S

fω0 =
∑
j∈N

∫
κj(Uj∩S)

(κ−1
j )∗(χjfω0).

which follows by taking an approximating simple monotone sequence and using the MCT.
Starting this way allows us to circumvent issues with defining L2-spaces of sections later.
One checks that these definitions are all independent of the charts and partition of unity,
and measures induced by any such 1-densities all have the same null-sets.

Now that we have a measure fixed by the 1-density ω0, we can define L2-spaces on X.
Construct compact subsets {Ki,j}(i,j)∈N2 such that

Ki,j ⊂ κj(Uj) and Ki,j ⊂ K◦i+1,j for each (i, j) ∈ N2,

which exhaust the charts in the sense that we have ∪i∈NKi,j = κj(Uj) for each chart κj .

Definition 2.0.1. Let L2(X,ω0) consist of a.e. equal measurable u : X → C such that

||u||L2(X,ω0) =
(∫

X

|u|2ω0

) 1
2

<∞.

Also, we let L2
loc(X,ω0) consist of those [u] with [1Ku] ∈ L2(X,ω0) for every K ⊂⊂ X.

This latter space is given the countable, separating family semi-norms

L2
loc(X,ω0)→ [0,∞) : [u] 7→

(∫
Ki,j

|u|2ω0

) 1
2

.

In the usual way, L2(X,ω0) becomes a Banach space, and L2
loc(X,ω0) a Frechet space.

Of course, L2(X,ω0) is also a Hilbert space with the natural inner product

L2(X,ω0)× L2(X,ω0)→ C : (u, v) 7→ (u, v)L2(X,ω0) =

∫
X

uv ω0.
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The spaces C∞(X), C∞(X,Ω1) and C∞(X,Ω
1
2 ) are all isomorphic once ω0 is fixed.

But let us equip C∞(X,Ω
1
2 ) with the appropriate topology. Put

Sk = ∪j≤kκ−1
j (∪i≤kKi,j) for each k ∈ N,

and let τj : Ω
1
2 |Uj → C be the vector trivialization that is associated to κj for each j ∈ N.

These induce local trivializations of sections

Φj : C∞(Uj ,Ω
1
2 )→ C∞(κj(Uj)) : u 7→ Φj(u) = τj ◦ u ◦ κ−1

j .

Definition 2.0.2. Give C∞(X,Ω
1
2 ) the countable, separating family semi-norms

C∞(X,Ω
1
2 )→ [0,∞) : u 7→ max

|γ|≤k
sup
x∈Ki,j

|∂γΦj(u|Uj )(x)|.

Recall that uniform convergence of the derivatives implies differentiability of the limit.
It follows that C∞(X,Ω

1
2 ) is a Frechet space when given the above semi-norms.

Definition 2.0.3. The spaces of compactly supported functions are topologized as follows:
Denote by a subscript K ⊂⊂ X those u, or [u] with representative u, so that supp(u) ⊂ K.

1. Give C∞Sk(X,Ω
1
2 ) the subspace topology to get continuous inclusions

C∞S1
(X,Ω

1
2 ) ↪→ C∞S2

(X,Ω
1
2 ) ↪→ · · · ↪→ C∞0 (X,Ω

1
2 ),

and give the inductive limit Frechet (LF) topology to

C∞0 (X,Ω
1
2 ) =

∞⋃
k=1

C∞Sk(X,Ω
1
2 ).

2. Give L2
Sk

(X,ω0) the subspace topology to get continuous inclusions

L2
S1

(X,ω0) ↪→ L2
S2

(X,ω0) ↪→ · · · ↪→ L2
comp(X,ω0),

and give the inductive limit Frechet (LF) topology to

L2
comp(X,ω0),=

∞⋃
k=1

L2
Sk

(X,ω0).

The topologies are independent of the choice of charts and the exhaustion {Sk}∞k=1,

Let L2
loc(X,Ω

1
p ) consist of a.e. equal sections of the form uω

1/2
0 for some [u] ∈ L2(X,ω0).

This leads to a well-defined linear bijective correspondence

L2
loc(X,ω0)→ L2

loc(X,Ω
1
2 ) : [u] 7→ [uω

1
2
0 ],

which defines some remaining spaces via the diagram

L2
comp(X,ω0) L2(X,ω0) L2

loc(X,ω0)

C∞0 (X,Ω
1
2 ) L2

comp(X,Ω
1
2 ) L2(X,Ω

1
2 ) L2

loc(X,Ω
1
2 )

∼= ∼= ∼=
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Note that elements of Lpcomp(X,ω0) ⊂ Lploc(X,ω0) are independent of the choice of ω0.
The same is true of Lp(X,ω0) when X is compact, hence for the spaces of L2-sections.

There is a canonical pairing, 〈·, ·〉, of the L2
loc and L2

comp sections of Ω
1
2 . It is given by

L2
loc(X,Ω

1
2 )× L2

comp(X,Ω
1
2 ) : (u1, u2) 7→ 〈u1, u2〉 =

∫
X

u1u2.

Definition 2.0.4. Give C∞ and C∞0 the locally convex topologies in the above definitions.
The spaces of distributions are the topological duals (themselves given the weak*-topology):

E ′(X,Ω 1
2 ) = (C∞(X,Ω

1
2 ))′,

D′(X,Ω 1
2 ) = (C∞0 (X,Ω

1
2 ))′,

and with continuous identification ι : L2
loc(X,Ω

1
2 ) ↪→ D′(X,Ω 1

s ) given by

L2
loc(X,Ω

1
2 )× C∞0 (X,Ω

1
2 ) : (f, ϕ) 7→ 〈ι(f), ϕ〉 =

∫
X

fϕ.

Injectivity of the identification follows from the Du Bois-Reymond lemma chart-wise.
All the local facts about distributions on open subsets of Rn extend to the global setting.

C∞0 (X,Ω
1
2 ) C∞(X,Ω

1
2 )

E ′(X,Ω 1
2 ) D′(X,Ω 1

2 )

ι ι

Proposition 2.0.1. The space C∞0 (X,Ω
1
2 ) is weak*-dense in D′(X,Ω 1

2 ).

The (local) notion of tensor product of distributions extends to the manifold setting.
This is recorded in the following theorem.

Theorem 2.0.1. Given u ∈ D′(X,Ω 1
2 ) and v ∈ D′(Y,Ω 1

2 ), then〈
u(x), 〈v(y), χ(x, y)〉

〉
=
〈
v(y), 〈u(x), χ(x, y)〉

〉
for any χ ∈ C∞0 (X × Y,Ω 1

2 ).

The two equivalent actions on χ define a distribution u⊗ v ∈ D′(X × Y,Ω 1
2 ).

Finally, this leads us to the central theorem in the analysis of PDE, the kernel theorem.
It applies to the broad class of continuous linear operators of the form

A : C∞0 (Y,Ω
1
2 )→ D′(X,Ω 1

2 ).

Theorem 2.0.2. There is a unique distribution K(A) ∈ D′(X × Y,Ω 1
2 ) such that

〈Aψ,ϕ〉 = 〈K(A), ϕ⊗ ψ〉 for any (ϕ,ψ) ∈ C∞0 (X,Ω
1
2 )× C∞0 (Y,Ω

1
2 ).

This distribution uniquely defines A.

If suppK(A) → X : (x, y) 7→ x and suppK(A) → Y : (x, y) 7→ y are proper maps,
then both A and K(A) are said to be properly supported.
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2.1 The Wavefront Set

The simplest question one could ask about a distribution is where it fails to be smooth,
and this leads to the (in the local case, well-known) notion of (smooth) singular support.
In the global setting, if X is a smooth manifold of dim(X) = n, it is defined analogously.

That is, if u ∈ D′(X,Ω 1
2 ), we write x 6∈ sing supp(u) if and only if

u|U ∈ C∞(U,Ω
1
2 ) for some open U ⊂ X with x ∈ U,

where ”∈” is understood in the sense of the identification established in previous section.
The study of singularities, using the cotangent bundle, is known as microlocal analysis,
and the tools have applications to the study of the operators themselves, via the kernel.
Microlocal analysis revolves around the wavefront set (also called the singular spectrum).
It is a set that encodes location and ”direction” in which a distribution fails to be regular.
There are several types. For example, measuring the failure to be C∞, Cω or Hs regular.
An extensive treatment is given by Hörmander [31, 32] of types ”between” C∞ and Cω.
We consider only C∞ regularity.

But now let X ⊂ Rn be open, and let u ∈ D′(X) be an arbitrary distribution in X.
Henceforth, πx : X × (Rn \ {0}) → X : (x, ξ) 7→ x is the projection onto the first factor.
We define WF(u) for such X and u first, and then globalize later.

Definition 2.1.1. Let (x0, ξ0) ∈ X × Rn. Put (x0, ξ0) 6∈ WF(u) if the following holds:
There is an open cone ξ0 ∈ Γ ⊂ Rn \ {0}, and χ ∈ C∞0 (X) with χ(x0) 6= 0 so that

sup
ξ∈Γ
〈ξ〉k|F(χu)(ξ)| <∞ for each k ∈ N.

Otherwise (x0, ξ0) ∈WF(u) when ξ0 6= 0.

Example 2.1.1. Put x = (x′, xn). Let u ∈ L1
loc(Rn) be the unit step along xn at xn = 0.

In this case, we have

sing supp(u) = {x ∈ Rn |xn = 0} 6= ∅,

and

F(χu)(ξ) =

∫ ∞
0

e−ixnξnFx′χ(ξ′, xn) dxn for all ξ ∈ Rn,

where we get rapid decay near ξ0 ∈ Rn \ {0} as long as ξ′0 6= 0. This shows that

WF(u) = {(x, ξ) |xn = 0, ξ′ = 0}.

A basic fact about WF(u) is that it generalizes sing supp(u) and respects restrictions.
This is provable within the scope of a few pages.

Proposition 2.1.1. If U ⊂ X is open, then

πxWF(u) = sing supp(u) and WF(u|U ) = WF(u) ∩ π−1
x (U).
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Proof. Suppose first that u ∈ E ′(Rn) and that the estimates hold with χu replaced by u.
That is, there is an open cone Γ containing ξ0 ∈ (Rn \ {0}) such that

sup
ξ∈Γ
〈ξ〉k|Fu(ξ)| <∞ for each k ∈ N.

Now Fu is entire with at most degree N ∈ N0 polynomial growth in the real directions.
This means that there is a constant c > 0 such that

sup
ξ∈Rn

〈ξ〉−N |Fu(ξ)| ≤ c.

Choose 0 < ε < 1 so small that there exists a conic neighbourhood Γε of ξ0 in Rn \ {0},
which has the property that

ξ − η ∈ Γ if |η| ≤ ε|ξ| and ξ ∈ Γε.

The point here is that ϕu satisfies similar estimates, but with ξ ∈ Γε, when ϕ ∈ C∞0 (X).
Observe that since |ξ − η| ≥ (1− ε)|ξ| when |η| ≤ ε|ξ|, we get∫

B(0,ε|ξ|)
|Fϕ(η)||Fu(ξ − η)| d̄η ≤ ck〈ξ〉−k||Fϕ||L1(Rn),

and because |ξ − η| ≤ (ε−1 + 1)|η| when |η| ≥ ε|ξ|, we can estimate

|F(ϕu)(ξ)| = 1

(2π)n
|(Fϕ ∗ Fu)(ξ)|

≤ ck〈ξ〉−k||Fϕ||L1(Rn) +

∫
Rn\B(0,ε|ξ|)

|Fϕ(η)||Fu(ξ − η)| dη

≤ ck〈ξ〉−k||Fϕ||L1(Rn) + c

∫
Rn\B(0,ε|ξ|)

|Fϕ(η)|〈ξ − η〉N 〈εξ〉−k〈η〉k dη

≤ Ck〈ξ〉−k
[
||Fϕ||L1(Rn) +

∫
Rn\B(0,ε|ξ|)

|Fϕ(η)|〈η〉N+k dη
]
.

This shows that

sup
ξ∈Γε

〈ξ〉k|F(ϕu)(ξ)| ≤ Ck
∫
Rn
〈η〉N+k|Fϕ(η)| dη.

As a consequence, we may multiply χu by a smooth cutoff with support contained in U ,
and still get similar estimates for ξ ∈ Γε. Hence WF respects restrictions.

Now for the other identity. The ”⊂” inclusion is trivial. So assume x0 6∈ πxWF(u).
Cover Sn−1 by open cones {Γj}Mj=1 with associated χj ∈ C∞0 (X) such that

sup
ξ∈Γj

〈ξ〉k|F(χju)(ξ)| <∞ for each k ∈ N.

In this case, given any ξ0 ∈ Γj , there is some Γε containing ξ0 such that

sup
ξ∈Γε

〈ξ〉k
∣∣∣F( M∏

r=1

χru
)

(ξ)
∣∣∣ ≤ Ck ∫

Rn
〈η〉Nj+k

∣∣∣F( M∏
r 6=j

χr

)
(η)
∣∣∣ dη,

and by compactness of Sn−1, we get rapid decay. Thus x0 6∈ sing supp(u).
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Turning to distributions on a smooth manifold X, there are many ways to define WF.
One is to use pseudo-differential operators, another to test against waves on the manifold.
The latter approach is simpler. Let now u ∈ D′(X,Ω 1

2 ).

Definition 2.1.2. Let (x0, ξ0) ∈ T ∗X \ 0. Put (x0, ξ0) 6∈ WF(u) if the following holds:
Given any p ∈ N and any real f ∈ C∞(X × Rp), then two conditions hold:

1. There is some a0 ∈ A with dxf(x0, a0) = ξ0.

2. There is an open U0 ×A0 3 (x0, a0) so that if ϕ ∈ C∞0 (U0,Ω
1
2 ), we have

sup
a∈A0

|〈u(x), e−iτf(x,a)ϕ(x)〉| = Oτ→∞(τ−N ) for any N ∈ N.

Otherwise (x0, ξ0) ∈WF(u) when ξ0 6= 0.

If X is an open set in Rn, we verify that this is consistent with the earlier definition.
Only local computations are required, and we may disregard Ω

1
2 .

Proof. Suppose that (x0, ξ0) 6∈WF(u). So there is an open cone Γ about ξ0 in Rn \ {0},
and a cutoff χ ∈ C∞0 (X) equal to 1 in a neighbourhood U ⊂ X of x0, such that

sup
ξ∈Γ
〈ξ〉k|F(χu)(ξ)| <∞ for each k ∈ N.

This can be achieved, for example, by the arguments in the proof of Proposition 2.1.1.
Take ϕ ∈ C∞0 (U0) with U0 ⊂ U open, and write

〈u(x), e−iτf(x,a)ϕ(x)〉 =

∫
Rn

∫
Rn
ei(x·ξ−τf(x,a))ϕ(x)F(χu)(ξ) dx d̄ξ

= τn
∫
Rn

[ ∫
Rn
eiτ(x·ξ−f(x,a))ϕ(x) dx

]
F(χu)(τξ) d̄ξ.

Since dxf(x0, a0) = ξ0, we can choose U0 and A0 ⊂ Rp such that

|dxf(x, a)− ξ| ≥ ε > 0 for all (x, a) ∈ U0 ×A0 and ξ 6∈ Γ.

In this situation, we define the operator

L =
ξ − dxf(x, a)

|ξ − dxf(x, a)|2
· dx,

and integrate by parts k ∈ N times to get the estimates∣∣∣ ∫
Rn
eiτ(x·ξ−f(x,a))ϕ(x) dx

∣∣∣ ≤ τ−k ∫
Rn
|(Lt)kϕ(x)| dx ≤ Ckτ−k〈ξ〉−k.

Combining this with rapid decay of F(χu) in Γ, and the Paley-Wiener-Schwartz theorem,
then we obtain the right asymptotic. The other direction is trivial.

Therefore, WF(u) is a closed cone in T ∗X \0, with the same rules as in the local case.
That is, if π : T ∗X → X is the bundle projection, and U ⊂ X is open, then

π(WF(u)) = sing supp(u) and WF(u|U ) = WF(u) ∩ π−1(U).
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2.1.1 Operations on Distributions

Many operations on ordinary functions have extensions to the setting of distributions,
both locally and globally, provided that the wavefront sets of the arguments are aligned.
The most important such operations are pullbacks and pushforwards by a smooth map,
which, for example, can be used to obtain the kernel of a composition of two operators.
This is used by Hörmander and Duistermaat [30] to describe propagation of singularities.

Let X, Y and Z be three smooth manifolds. If u ∈ D′(X,Ω 1
2 ), we put

supp0(u) = {(x, 0) ∈ T ∗X |x ∈ supp(u)}.

Proposition 2.1.2. If u ∈ D′(X,Ω 1
2 ) and v ∈ D′(Y,Ω 1

2 ), then

WF(u⊗ v) ⊂ (WF(u)×WF(v)) ∪ (WF(u)× supp0(v)) ∪ (supp0(u)×WF(v)).

Proof. Use the Paley-Wiener-Schwartz theorem and the definition of WF(u⊗ v).

Definition 2.1.3. If Γ ⊂ T ∗X \ 0 is a non-empty closed cone, we define

D′Γ(X,Ω
1
2 ) =

{
u ∈ D′(X,Ω 1

2 )
∣∣∣WF(u) ⊂ Γ

}
.

(It is easily checked that this is a subspace.) It is equipped with additional semi-norms.

Let f ∈ C∞(X × Rp) be real, ϕ ∈ C∞0 (X,Ω
1
2 ), and A ⊂ Rp compact, such that

(x, dxf(x, a)) 6∈ Γ when (x, a) ∈ suppϕ×A.

Then for each N ∈ N, we also equip D′Γ(X) with the semi-norm

D′Γ(X,Ω
1
2 )→ [0,∞) : u 7→ sup

(τ,a)∈[1,∞)×A
τN
∣∣∣〈u(x), e−iτf(x,a)ϕ(x)

〉∣∣∣,
which is the smallest constant in the τN -asymptotics for this test wave.

These spaces make precise the idea of wavefront sets aligned relative to a closed cone.
The following can be found in Duistermaat [10] or Hörmander [31].

Proposition 2.1.3. The space C∞0 (X,Ω
1
2 ) is sequentially dense in D′Γ(X,Ω

1
2 ).

Theorem 2.1.1. Let Φ : Y → X be smooth, and Γ ⊂ T ∗X \ 0 a non-empty closed cone.
Suppose that N∗Φ ∩ Γ = ∅, where N∗Φ is the set of (x, ξ) ∈ T ∗X \ 0 such that

x = Φ(y) and dΦtyξ = 0 for some y ∈ X.

Then Φ∗ extends to Φ∗ : D′Γ(X,Ω
1
2 )→ D′Φ∗Γ(Y,Ω

1
2 ), where Φ∗Γ is the closed cone

Φ∗Γ =
{

(y, dΦtyξ) ∈ T ∗Y \ 0
∣∣∣ (Φ(y), ξ) ∈ Γ

}
.

This extension is unique, sequentially continuous, and has the property that

supp (Φ∗u) ⊂ Φ−1(suppu) for any u ∈ D′Γ(X,Ω
1
2 ).



Functions and Distributions 19

The transpose of the pullback Φ∗ is the pushforward Φ∗. It is more easily understood.
This map also has an extension. If v ∈ D′(Y,Ω 1

2 ), it is just given by

〈(Φ∗v)(x), ϕ(x)〉 = 〈v(y), (Φ∗ϕ)(y)〉 for any ϕ ∈ C∞0 (X,Ω
1
2 ).

Proposition 2.1.4. Let Φ : Y → X again be a smooth map, as in the above theorem.
The pushforward Φ∗v is defined for v ∈ D′(Y,Ω 1

2 ) if Φ : supp(v) → X is a proper map.

This extension is sequentially continuous v 7→ Φ∗v ∈ D′(X,Ω
1
2 ), and

WF(Φ∗v) ⊂ { (Φ(y), ξ) ∈ T ∗X \ 0 | (y, (dΦy)tξ) ∈WF(v) }.

Proof. Take (x0, ξ0) ∈ T ∗X \ 0, and let f ∈ C∞(X × Rp) be real with dxf(x0, a0) = ξ0.

Observe that if ϕ ∈ C∞0 (X,Ω
1
2 ) and τ > 0, then

〈(Φ∗v)(x), e−iτf(x,a)ϕ(x)〉 = 〈v(y), e−iτf(Φ(y),a)(Φ∗ϕ)(y)〉,

where we have

dxf(Φ(y0), a0) ◦ dΦy0 = (dΦy0)tξ0 if x0 = Φ(y0).

It is clear that Φ∗ is sequentially continuous for such distributions.

Definition 2.1.4. Let A : C∞0 (Y,Ω
1
2 )→ D′(X,Ω 1

2 ) be a continuous and linear operator.
The wavefront relation of A is the set

WF′(A) =
{

((x, ξ), (y, η)) ∈ T ∗X \ 0× T ∗Y \ 0
∣∣∣ ((x, y), (ξ,−η)) ∈WF(K(A))

}
.

Furthermore, we write

WF′X(A) = {(x, ξ) ∈ T ∗X \ 0 | ∃y ∈ Y : ((x, y), (ξ, 0)) ∈WF(K(A))},
WF′Y (A) = {(y, η) ∈ T ∗Y \ 0 | ∃x ∈ X : ((x, y), (0,−η)) ∈WF(K(A))}.

Theorem 2.1.2. Momentarily, we denote

πK : X × Y × Z → X × Z : (x, y, z) 7→ (x, z),

∆K : X × Y × Z → X × Y × Y × Z : (x, y, z) 7→ (x, y, y, z).

Consider two continuous and linear operators

A : C∞0 (Y,Ω
1
2 )→ D′(X,Ω 1

2 ) and B : C∞0 (Z,Ω
1
2 )→ D′(Y,Ω 1

2 ).

If A and B are properly supported, and WF′Y (A) ∩WF′Y (B) = ∅, then

K(A ◦B) = (πK)∗(∆K)∗(K(A)⊗K(B)).

This is the kernel of A ◦B, when A ◦B is defined. It has the following properties:

1. suppK(A ◦B) ⊂ suppK(A) ◦ suppK(B).

2. WF′(A ◦B) ⊂WF′(A) ◦WF′(B)∪ (WF′X(A)× 0T∗Z)∪ (0T∗X ×WF′Z(B)).

In particular, if Γ is a closed cone in T ∗Y \ 0 with WF′Y (A) ∩ Γ = ∅, then

WF′(Au) ⊂WF′(A) ◦WF(u) ∪WF′X(A) if u ∈ E ′Γ(Y,Ω
1
2 ).





3

Operators on Manifolds with More Structure

The structure of a compact manifold M influences the structure of Ψ(M) defined on it.
If the underlying manifold M carries a Riemannian metric (or just an affine connection),
then there is an isomorphism Sd(T ∗M)/S−∞(T ∗M)→ Ψd(M)/Ψ−∞(M) for each d ∈ R.
This stronger symbol map is obtained by Sharafutdinov in [50] via the exponential map.
The situation is even better for Lie groups, where, like Rn, there is an exact quantization,
but the symbols on the cotangent bundle must be replaced with matrix-valued functions,
which live on the group and its equivalence classes of irreducible unitary representations.
Let ε > 0. Consider Tn = (R/2πZ)n, which is embedded within

Tnε = (Rε/2πZ)n,

where Rε is the strip {z ∈ C | |Im (z)| < ε} in C, with 2πZ ⊂ R acting on the real part.
The irreducible unitary representations of Tn are one-dimensional, parametrized by Zn,
and are for each k ∈ Zn just given by the complex exponential

ek : Tn → C : x 7→ eik·x

If A ∈ Ψd(Tn), we define a ”symbol” p(x, k) = ek(x)∗(Aek)(x) for all (x, k) ∈ Tn × Zn.
By a Fourier expansion of u ∈ C∞(Tn), which converges in C∞(Tn), we have

Au(x) =
∑
k∈Z

eik·xp(x, k)

∫
Tn
u(y)e−ik·y dy for all x ∈ Tn.

This represents A point-wise in terms of p. Let us try to put a global condition on p.
Suppose x 7→ p(x, k) is real-analytic, extending holomorphically to z ∈ Tnε for each k ∈ Z,
and that p also satisfies

sup
z∈Tnε
〈k〉−d|p(z, k)| <∞.

In that case, if u ∈ Cω(Tn) extends to Tnε , then

Au(z) =
∑
k∈Zn

eik·zp(z, k)

∫
Tn
e−ik·yu(y) dy

=
∑
k∈Zn

eik·Re (z)p(z, k)

∫
Tn
e−ik·yu(y + i Im (z)) dy.

It follows that Au extends holomorphically to Tnε if u does. This is the property we seek.
Of course, we have to address whether there are non-trivial p satisfying the requirements.
In light of this observation, we are inspired to look for algebras of operators on Lie groups,
and their homogeneous spaces, as a step towards a better understanding of the situation.
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3.1 Ψ(M) for a Compact Riemannian Manifold M

To get a good start, we begin by recalling the basic theory of pseudo-differential operators.
We assume M is a compact, smooth Riemannian manifold with metric g from the outset,
and we fix (arbitrarily) a smooth positive 1-density ω0 on M to make things much simpler.

In that case, Ω
1/2
M is just removed from the notation. Put n = dim(M).

Definition 3.1.1. Let P : C∞(M) → C∞(M) be any continuous and linear operator.
Then we write P ∈ Ψd(M) for d ∈ R if the following holds:

1. sing suppK(P ) ⊂ {(x, x) ∈M ×M |x ∈M}.
2. Given any chart κ : U → Rn of M , and φ, ψ ∈ C∞0 (U), we have

(κ−1)∗(φPψ)κ∗ = Op(p) for some p ∈ Sd(κ(U)× Rn).

Also, we write P ∈ Ψd
phg(M) if the above holds with p ∈ Sdphg(κ(U)× Rn) instead.

Definition 3.1.2. Let d ∈ R. Define Sd(T ∗M) by pulling back Sd(Rn × Rn) to T ∗M .
That is, write p ∈ Sd(T ∗M) if the following holds:

1. p ∈ C∞(T ∗M)

2. Given any chart κ : U → Rn of M , we have

(dκt)∗p ∈ Sd(κ(U)× Rn).

The local pseudo-differential operators and symbols are preserved by diffeomorphisms.
So the above definitions are meaningful. See Shubin [51] or Hörmander [33].

To illustrate what is meant, consider a symbol p ∈ Sd(V ×Rn) for some open V ⊂ Rn.
Then, if Φ : V → V ′ is a diffeomorphism onto an open set V ′ ⊂ Rn, we have

(dΦt)∗p ∈ Sd(V ′ × Rn),

and so Sd(T ∗M) is well-defined, because the transition maps of T ∗M are of this form.
Likewise, suppose that Op(p) ∈ OpSd(V × Rn) is a properly supported operator on V .
It acts on u ∈ C∞0 (V ) pointwise in x ∈ V in the usual way by

Op(p)u(x) =

∫
Rn
eix·ξp(x, ξ)Fu(ξ) d̄ξ.

But the coordinate-transformed operator is

(Φ−1)∗Op(p)Φ∗ = Op(pΦ),

where Op(pΦ) is properly supported on V ′, pΦ is related to p by

pΦ − (dΦt)∗p ∈ Sd−1(V ′ × Rn),

and pΦ vanishes outside a compact subset of V ′ in the first variable if p does so for V .
The same is true if Sd and Sd−1 are replaced by the spaces Sdphg and Sd−1

phg , respectively.
This justifies the definition (and is a special case of general results about FIO [27]).
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Pseudo-differential operators are closed under compositions and formal L2-adjoints.
This is an elementary fact. See e.g. Shubin [51].

Theorem 3.1.1 (Shubin [51]). Let d, d1, d2 ∈ R be arbitrary. The following holds:

1. If A ∈ Ψd1(M) and B ∈ Ψd2(M), then AB ∈ Ψd1+d2(M).

2. If A ∈ Ψd(M), then A has a formal L2-adjoint A∗ ∈ Ψd(M).

Then Ψ(M) = ∪d∈RΨd(M) forms a ∗-algebra under composition and formal L2-adjoints.
The classical operators form a ∗-subalgebra:

1. If A ∈ Ψd1

phg(M) and B ∈ Ψd2

phg(M), then AB ∈ Ψd1+d2

phg (M).

2. If A ∈ Ψd
phg(M), then A has a formal L2-adjoint A∗ ∈ Ψd

phg(M).

Attached to each space there is the principal symbol map

σd : Ψd(M)/Ψd−1(M)→ Sd(T ∗M)/Sd−1(T ∗M),

which takes any equivalence class [P ] of operators to some class [p] = σd([P ]) of symbols.
It is the unique map with the following two properties:

1. σd is a linear isomorphism.

2. Given any chart κ : U → Rn of M , and φ, ψ ∈ C∞0 (U), we have

(κ−1)∗(φPψ)κ∗ − (φ ◦ κ−1)Op((dκt)∗p)(ψ ◦ κ−1) ∈ OpSd−1(κ(U)× Rn).

It also has the following ∗-isomorphism properties:

1. If A ∈ Ψd1(M) and B ∈ Ψd2 , then σd1+d2
([AB]) = σd1

([A])σd2
([B]).

2. If A ∈ Ψd(M), then σd([A
∗]) = σd([A]).

Finally, if P ∈ Ψd
phg(M), there is a unique function pd ∈ C∞(T ∗M \ 0) such that

1. pd(x, tξ) = tdpd(x, ξ) for any (x, ξ) ∈ T ∗M \ 0 and t > 0.

2. (1− χ)pd ∈ σd([P ]) if χ ∈ C∞0 (B∗M) equals 1 near the zero section.

The unique pd obtained from a P ∈ Ψd
phg(M) is called the classical principal symbol.

Any operator P ∈ Ψ(M) dualizes to act on u ∈ D′(M) by setting

〈Pu, ϕ〉 = 〈u, P ∗ϕ〉 for all ϕ ∈ C∞(M),

which is compatible with the natural identification L1(M) ↪→ D′(M) when u ∈ C∞(M).
In this way, A extends by duality to a weak∗-continuous operator

P : D′(M)→ D′(M),

and restrictions of this extension are called (bounded or unbounded) realizations of P .
Also, P ∗ denotes both the formal L2-adjoint on C∞(M) (which is not a Hilbert adjoint),
but also Hilbert adjoints when P is realized as an operator between two Hilbert spaces.
This abuse is often seen in the literature. We use it with clarification, if necessary.



24 Complexifications, Pseudo-Differential Operators, and the Poisson Transform

An important notion when dealing with symbols/operators is that of asymptotic sums.
The main result here is encapsulated in the following theorem.

Theorem 3.1.2. Let dj → −∞ as j →∞. The following holds:

1. If pj ∈ Sdj (T ∗M), then there is a p ∈ Smaxj≥0 dj (T ∗M) such that

p−
k−1∑
j=0

pj ∈ Smaxj≥k dj (T ∗M) for each k ∈ N.

2. If Pj ∈ Ψdj (M), then there is a P ∈ Ψmaxj≥0 dj (M) such that

P −
k−1∑
j=0

Pj ∈ Ψmaxj≥k dj (M) for each k ∈ N.

A sequence of operators {Pj}∞j=0 in the situation above is said to be asymptotic to P .

In that case, we write P ∼
∑∞
j=0 Pj . Similarly for symbols {pj}∞j=0, we write p ∼

∑∞
j=0 pj .

Definition 3.1.3. An A ∈ Ψd(M) is elliptic if there is a B ∈ Ψ−d(M) such that

AB − I ∈ Ψ−∞(M) and BA− I ∈ Ψ−∞(M).

Theorem 3.1.3 (Shubin [51]). Let d ∈ R. The following are equivalent:

1. A ∈ Ψd(M) is elliptic.

2. σd([A]) is invertible.

Proof. Applying the isomorphism σd to the definition of ellipticity, we see that (1)⇒ (2).
To see (2)⇒ (1), take the inverse [b0] to σd(A), and write [B0] = σ−d([b0]).

Left: Put R = I − B0A. Define Bj = RjB0 for j ∈ N0 and Ψ−d(G) 3 B ∼
∑∞
j=0Bj .

Then for any N ∈ N, we have

Ψ−N (M) 3
(
B −

N−1∑
j=0

Bj

)
A−RN

= BA−
N−1∑
j=1

Rj(I −R)−RN = BA− I.

Right: Put R = I−AB0. Define Bj = B0R
j for j ∈ N0 and Ψ−d(G) 3 B ∼

∑∞
j=0Bj .

Then for any N ∈ N, we have

Ψ−N (M) 3 A
(
B −

N−1∑
j=0

Bj

)
−RN

= AB −
N−1∑
j=0

(I −R)Rj −RN = AB − I.

In either case, we have used Theorem 3.1.2.
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The operators Ψ0(M) turn out to have bounded realizations on L2(M) back to itself.
This is the content of the following theorem:

Theorem 3.1.4 (Shubin [51]). Let P ∈ Ψ0(M) with any principal symbol p ∈ S0(T ∗M).

1. If P is restricted to L2(M), it realizes a bounded linear operator

P |L2(M) : L2(M)→ L2(M).

2. If P is realized as above, then it is compact if

lim
k→∞

sup
|ξ|≥k

[
sup
x∈M
|p(x, ξ)|

]
= 0.

At this point, we make a slight jump in the theory to significantly reduce complexity.
It is convenient to simply ”download” the following:

Theorem 3.1.5 (See e.g. Shubin [51]). Write ∆ for the Laplacian with respect to g.
There is a one-parameter group {(I −∆)

s
2 }s∈R ⊂ Ψ(M) of invertible operators:

1. (I −∆)
s
2 ∈ Ψs(M) is formally self-adjoint for each s ∈ R.

2. If s ∈ 2Z, then (I −∆)
s
2 coincides with the corresponding power of I −∆.

Definition 3.1.4. Define for any s ∈ R the Sobolev space

Hs(M) =
{
u ∈ D′(M)

∣∣∣ (I −∆)
s
2u ∈ L2(M)

}
,

and let it be equipped with the inner product

(u, v)Hs(M) = ((I −∆)
s
2u, (I −∆)

s
2 v)L2(M) for any u, v ∈ Hs(M).

Here the definition makes it clear that all the Sobolev spaces must be Hilbert spaces.
The operator (I −∆)

s
2 : Hs(M)→ L2(M) is automatically an isometry.

Theorem 3.1.6 (Shubin [51]). Let s ∈ R and m ∈ N0. The following holds:

1. The canonical pairing extends to a separately continuous dual pairing

Hs(M)×H−s(M)→ C : (u, v) 7→
∫
M

[(I −∆)
s
2u] [(I −∆)−

s
2 v]ω0.

2. If s′ > s, the inclusion Hs′(M) ↪→ Hs(M) is well-defined and compact.

3. If s > n
2 +m, then ι−1 : Hs(M)→ Cm(M) is well-defined and compact.

The Hs-spaces on M are related to those on Rn (defined using the Fourier transform).
Given any chart κ : U → Rn of M , we have a linear homeomorphism

Hs
K(M)→ Hs

κ(K)(R
n) : u 7→ (κ−1)∗u if K ⊂⊂ U,

where Hs
K(M) = {u ∈ Hs(M) | supp(u) ⊂ K} is closed.
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In Theorem 3.1.6 above, the third point is known as the Sobolev embedding theorem.
It states that s > n

2 +m Sobolev regularity forces identification with Cm(M) functions.
Combining this with the structure theorem for E ′(Rn), we have that

∩s∈RHs(M) = C∞(M) and ∪s∈R Hs(M) = D′(M),

which we can use to characterize Ψ−∞(M) in terms of how these operators act on D′(M).
Of course, Ψ−∞(M) is the set of operators with smooth kernel, by Definition 3.1.1.

Theorem 3.1.7. The following are equivalent:

1. P ∈ Ψ−∞(M).

2. P : C∞(M)→ C∞(M) is linear and continuous, and extends to

P |Hs(M) ∈ B(Hs(M), C∞(M)) for every s ∈ R.

Proof. We begin by showing (1) ⇒ (2). If P ∈ Ψ−∞(M), then P ∗ ∈ Ψ−∞(M) as well.
Therefore, taking u ∈ Hs(M) and testing Pu against ϕ ∈ C∞(M), we see that

〈Pu, ϕ〉 =
〈
u(y),

∫
M

K(P ∗)(y, x)ϕ(x)ω0(x)
〉

=

∫
M

〈
u(y),K(P ∗)(y, x)

〉
ϕ(x)ω0(x),

where the integrals converge as Riemann sums in C∞(M), so the interchange is allowed.
Hence Pu is smooth. So if D ∈ Diffm(M) for some m ∈ N0, we can estimate

sup
x∈M
|D(Pu)(x)|2 = sup

x∈M

∣∣∣〈u(y), DxK(P ∗)(y, x)
〉∣∣∣2

≤ sup
x∈M

[ ∫
M

|(I −∆y)−
s
2DxK(P ∗)(y, x)|2 ω0(y)

]
||u||2Hs(M),

where we have brought forth (I −∆y)
s
2 onto u, and used the Cauchy-Schwarz inequality.

To prove (2)⇒ (1), note that δy ∈ H−
n
2−1(M) if δy is the unit point measure at y ∈M .

Therefore, M → C∞(M) : y 7→ Pδy is well-defined. If x ∈M is fixed, we see that

Dy[Pδy(x)] = (PD∗δy)(x),

which follows from y → δy being in Cm(M,H−
n
2−1−m(M)) and the hypothesis on P .

Hence M ×M → C : (x, y) 7→ Pδy(x) is in C∞(M ×M), and we can write

〈Pψ,ϕ〉 =
〈
P ∗ϕ(y), ψ(y)

〉
=
〈〈
δy(x), P ∗ϕ(x)

〉
, ψ(y)

〉
=
〈〈
Pδy(x), ϕ(x)

〉
, ψ(y)

〉
= 〈Pδy(x), (ϕ⊗ ψ)(x, y)〉,

which means that K(P )(x, y) = Pδy(x), so K(P ) is smooth.
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3.1.1 Spectral Properties

When realized on the Sobolev spaces, the operators Ψ(M) possess a rich spectral theory.
The elliptic self-adjoint operators of strictly positive order are especially well-understood.
Operators of this type have only countable point spectrum, accumulating only at infinity,
and the eigenspaces are finite dimensional. See also Shubin [51].

Theorem 3.1.8. Let d, s ∈ R, and let P ∈ Ψd(M) with formal L2-adjoint P ∗ ∈ Ψd(M).
Then P realizes a bounded linear operator

P |Hs(M) : Hs(M)→ Hs−d(M).

If P is also elliptic, it also has the following properties:

1. P |Hs(M) ∈ F (Hs(M), Hs−d(M)).

2. kerP |Hs(M) = kerP ⊂ C∞(M).

3. indP |Hs(M) = dim kerP − dim kerP ∗.

Proof. Observe that

(I −∆)
s−d

2 P (I −∆)−
s
2 ∈ Ψ0(M).

Therefore, by L2-boundedness, if u ∈ Hs(M), we have

||Pu||Hs−d(M) ≤
∣∣∣∣∣∣[(I −∆)

s−d
2 P (I −∆)−

s
2

]∣∣∣∣∣∣
B(L2(M))

||u||Hs(M).

Next, let P be elliptic with Q ∈ Ψ−d(M) so that PQ − I and QP − I are in Ψ−∞(M).
But these are bounded into C∞(M), which is compactly embedded in any Sobolev space.
Therefore P |Hs(M) is Fredholm, because Q can be realized as the operator

Q|Hs−d(M) : Hs−d(M)→ Hs(M),

which is an almost inverse, since the residuals are compact by Theorems 3.1.7 and 3.1.6.
To see that kerP |Hs(M) ⊂ C∞(M), take u ∈ Hs(M) with Pu = 0, and write

u = (I −QP )u ∈ C∞(M).

Finally, we compute the Hilbert adjoint operator of P |Hs(M) expressed via P ∗ explicitly.
The expression will imply the formula for indP |Hs(M) in terms of the formal adjoint.
Taking u, v ∈ C∞(M), we have

(Pu, v)
H
s−d

2 (M)
= ((I −∆)

s−d
2 Pu, (I −∆)

s−d
2 v)L2(M)

= ((I −∆)
s
2u, (I −∆)−

s
2P ∗(I −∆)s−dv)L2(M)

=
(
u,
[
(I −∆)−sP ∗(I −∆)s−d

]
v
)
Hs(M)

,

and so, by density, the Hilbert adjoint is

(P |Hs(M))
∗ = (I −∆)−sP ∗(I −∆)s−d|Hs(M),

which has kernel in C∞(M) of the same dimension as ker(P ∗).



28 Complexifications, Pseudo-Differential Operators, and the Poisson Transform

The notion of a spectrum makes sense for unbounded operators on a Hilbert space.
Here we are mainly concerned with H = L2(M) as the model space.

Definition 3.1.5. Let T : dom(T ) ⊂ H → H be an unbounded linear operator on H.
Define for λ ∈ C the translation

Tλ = T − λI : dom(T )→ H.

The spectrum σ(T ) are those λ ∈ C that fail to satisfy one of the following:

1. Tλ is injective.

2. Tλ has dense range.

3. Tλ has bounded inverse.

Our aim is now to understand the spectrum of unbounded realizations of P ∈ Ψ(M).
If d > 0 and P ∈ Ψd(M), we realize P on L2(M) as

P : Hd(M) ⊂ L2(M)→ L2(M).

In fact, if P is also elliptic, this realization is closed, and is both minimal and maximal.
To see this, take u ∈ L2(M) and a sequence (uk)∞k=1 in Hd(M) such that

uk → u and Puk → f in L2(M) as k →∞,

and note that

Puk → Pu and Puk → f in D′(M) as k →∞.

Therefore Pu = f ∈ L2(M). Because P is assumed elliptic, u ∈ Hd(M). So it is closed.
In this case, P − λI always has closed range if λ 6∈ σ(P ), hence is surjective.

Lemma 3.1.1. If P is elliptic as above, then

ker(P ∗ − λI) = ker(P − λI) = {0} if and only if λ 6∈ σ(P ).

Proof. Observe that λ 6∈ σ(P ) is equivalent to P −λI : Hd(M)→ L2(M) being bijective,
because (P − λI)−1 : L2(M) → L2(M) is then bounded by the closed graph theorem.
However, since d > 0, we also have

P − λI ∈ F (Hd(M), L2(M)) for all λ ∈ C,

and bijectivity is equivalent to the kernel and co-kernel being zero.

Lemma 3.1.2. Let d ∈ R. If A ∈ Ψd(M) is elliptic and invertible, then A−1 ∈ Ψ−d(M).

Proof. Choose some parametrix B ∈ Ψ−d(M), and then write A−1 = B −A−1(AB − I).
Now A−1 is continuous by the open mapping theorem (for Frechet spaces), and

A−1(AB − I)|Hs(M) ∈ B(Hs(M), C∞(M)) for any s ∈ R,

and so A−1 differs from B by a remainder in Ψ−∞(M).
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Now we can show the main properties of elliptic self-adjoint operators of positive order.
The existence of an L2 ONB of eigenfunctions will be especially important later.

Theorem 3.1.9. Let d > 0, and let A ∈ Ψd(M) be both formally self-adjoint and elliptic.
Then A realizes a (true) self-adjoint unbounded linear operator

A : Hd(M) ⊂ L2(M)→ L2(M).

Furthermore, A has eigenfunctions {φk}∞k=0 with the following properties:

1. The corresponding eigenvalues {λ}∞k=0 are real, and |λk| → ∞ as k →∞.

2. The system {φk}∞k=0 ⊂ C∞(M) is an ONB for L2(M).

3. The spectrum σ(A) coincides with {λk}∞k=0.

Proof. Using that A = A∗, we have

||(A− λI)u||2L2(M) ≥ |Im (λ)|2||u||2L2(M) for all u ∈ C∞(M),

and by Lemma 3.1.1, σ(A) ⊂ R, because the above implies

ker(A− λI) = ker(A∗ − λI) = {0} if Im (λ) 6= 0.

Similarly, we have that

ker(A− λI) 6= {0} if λ ∈ σ(A) ⊂ R.

But σ(A) 6= R. Otherwise, {ker(A − λI)}λ∈R are non-zero mutually orthogonal spaces,
which would imply that L2(M) admits an uncountable set of mutually orthogonal vectors.
However, this is impossible, because L2(M) is separable. So there exists a λ0 ∈ R \ σ(A).
In that case, since A − λ0I ∈ Ψd(M) is elliptic, it maps C∞(M) bijectively onto itself.
Then Lemma 3.1.2 implies that

(A− λ0I)−1 ∈ Ψ−d(M) and ((A− λ0I)−1)∗ = (A− λ0I)−1,

which extends by continuity to a compact self-adjoint operator on L2(M) since d > 0.
Now we can apply the spectral theorem to

Rλ0
= (A− λ0I)−1|L2(M) : L2(M)→ L2(M),

and obtain an ONB for L2(M) of eigenfunctions {φk}∞k=0 with eigenvalues {µk}∞k=0 ⊂ R.
There is no zero eigenvalue, because ker(A − λ0I) = {0}, but they tend to 0 as k → ∞.
Note that φk ∈ C∞(M), because A is elliptic of order d > 0, and

Aφk = (λ0 + µ−1
k )φk,

which also means that φk is an eigenfunction of A with the eigenvalue λk = λ0 + µ−1
k .

But then |λk| → ∞ as k →∞, and we have {λk}∞k=0 = σ(A) since {φk}∞k=0 is complete.
The unbounded realization is self-adjoint, because

A = R−1
λ0

+ λ0I.
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Without the self-adjointness condition, the situation becomes a bit more complicated.
But it is still well-understood.

Corollary 3.1.1. If A is not self-adjoint, then either σ(A) = C or σ(A) is discrete.

Proof. Suppose that σ(A) 6= C. Pick λ0 ∈ C \ σ(A), and write

A− λ0I : Hd(M) ⊂ L2(M)→ L2(M),

which is linear and unbounded on L2(M), but has compact inverse defined on all L2(M).
Then, if λ ∈ C \ {λ0}, we can write

A− λI = −(λ− λ0)
[
(A− λ0I)−1 − (λ− λ0)−1I

]
(A− λ0I),

and this implies

λ ∈ σ(A) if and only if λ 6= λ0 and (λ− λ0)−1 ∈ σ((A− λ0I)−1).

But σ((A− λ0I)−1) has only 0 as an accumulation point, so σ(A) has none.

The eigenvalues of certain P ∈ Diffd(M) with d ∈ N have well-known asymptotics.
Associated to such P is a unique pd ∈ σd([P ]), polynomial in each ξ ∈ T ∗xM of degree d.
It coincides with the classical principal symbol. Let P be formally self-adjoint, and

pd(x, ξ) > 0 if (x, ξ) ∈ T ∗M \ 0.

In this case, P is elliptic by Theorem 3.1.3, and turns out to be semi-bounded from below.
This, in turn, means that the eigenvalues are bounded from below.

Theorem 3.1.10 (Shubin [51]). If P and pd are as above, there is C > 0 such that

(Pu, u) ≥ −C(u, u) for all u ∈ C∞(M).

Denote by NP (λ) the number of eigenvalues, counted with multiplicity, below λ ∈ R.
It turns out that NP (λ) grows asymptotically like λ

n
d , to first order determined by pd.

The formulations below can be found in Shubin [51].

Theorem 3.1.11 (Shubin [51]). If P and pd are as above, then

NP (λ)− 1

(2π)n

[ ∫
M

[ ∫
S∗xM

pd(x, ξ)
−nd

n
volS∗xM (ξ)

]
ω0(x)

]
λ
n
d = Oλ→∞(〈λ〉

n−1
d )

This result is also known as Weyl’s (global) asymptotic law for the eigenvalues of P .
It will be useful later, when studying operators Ψ(G), where G is a compact Lie group.
The dimensions of the irreducible representations of G are controlled by it.

Corollary 3.1.2 (Shubin [51]).

N∆(λ)− 2

n!
λ
n
2 = Oλ→∞(〈λ〉

n−1
2 )
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Later, the Poisson transform will draw upon two basic ideas from functional calculus.
It will be necessary to take powers and exponentials of elliptic A ∈ Ψd

phg(M) with d > 0.
The technique requires that σ(A) 6= C is contained inside a sector in C with vertex at 0.
By a closed sector Λ in C, we mean a set of the form

Λ = ∪θ∈[θ1,θ2]e
iθR for some θ1, θ2 ∈ [0, 2π] with θ1 ≤ θ2,

and for ε > 0 we introduce the associated set

Λε = Λ ∩ {λ ∈ C | |λ| ≥ ε },

which is Λ with the open ε-disc at 0 removed.

Let a be the classical principal symbol of A, non-zero on T ∗M \ 0 since A is elliptic.
The spectral requirement of A is implied by the following condition on a:

Definition 3.1.6. The operator A is said to be parameter-elliptic w.r.t. Λ if

a(x, ξ)− λ 6= 0 for all (x, ξ) ∈ T ∗M \ 0 when λ ∈ Λ.

Theorem 3.1.12 (Shubin [51]). Suppose that the above A is parameter-elliptic w.r.t. Λ.
Then the following holds:

1. There is an ε > 0 such that σ(A) ⊂ C \ Λε, and

(A− λI)−1 ∈ Ψ−dphg(M) for all λ ∈ Λε.

2. Given any s ∈ R and l ∈ [0, d], we have the resolvent estimate

sup
λ∈Λε

|λ|1− l
d ||(A− λI)−1||B(Hs(M),Hs+l(M)) <∞.

These estimates allow us to create new operators out of A via a functional calculus.
It requires functions holomorphic on a certain domain in the resolvent set.

Theorem 3.1.13. Let A ∈ Ψd
phg(M), the sector Λ and ε > 0 be as in Theorem 3.1.12.

Suppose that Λ′ is a closed sector in C with R > 0 such that the following holds:

1. Λ′R contains σ(A) \ {0} in its interior.

2. Λε contains Γ = ∂Λ′R except for some disc about the origin.

Let f : Λ′R → C be holomorphic, continuous up to Λ′R, and

sup
λ∈Λ′R

|λ|−r|f(λ)| <∞ for some r < 0.

Then ”the function f of A”, defined below, is a well-defined continuous linear operator.
Converging in C∞(M), it is given by the Riemann integral

f(A) : C∞(M)→ C∞(M) : u 7→ 1

2πi

∫
Γ

f(λ)(λI −A)−1u dλ,

where Γ is viewed as a counter-clockwise contour about σ(A) \ {0}.
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Proof. Using Theorem 3.1.12, if k ∈ N we get some Ck > 0 such that∫
Γ

|f(λ)| ||(λI −A)−1u||Hk(M) |dλ| ≤ Ck
(∫

Γ

1

|λ|1−r
|dλ|

)
||u||Hk(M),

and so the Riemann integral converges absolutely in the norm of Hk(M) for any k ∈ N.
By the Sobolev embedding theorem, it converges in C∞(M), and f(A) is continuous.

Even if f satisfies the required estimate with r ≥ 0 growth, f(A) can still be defined.
Let f−k(λ) = f(λ)λ−k for all λ ∈ Λ′R, with k ∈ N chosen (arbitrarily) so that r < k.
Then f−k is decaying of order r − k, and we can define f(A) by

f(A) = f−k(A)Ak.

To see that it makes sense, observe that

f−k(A)Au =
1

2πi

∫
Γ

f(λ)

λk
(λI −A)−1Audλ

=
1

2πi

∫
Γ

f(λ)

λk−1
(λI −A)−1u− f(λ)

λk
Iu dλ = f−k+1(A)u,

where the last integral term vanishes, because the integrand is holomorphic inside Λ′R.
Therefore, if k > k′ ∈ N, we have

f−k(A)Ak = f−k(A)Ak−k
′
Ak
′

= f−k+k−k′A
k′ = f−k′(A)Ak

′
,

which shows that it is independent of the choice of k.

In case A ∈ Ψd
phg(M) is also formally self-adjoint, f(A) can be expressed in a basis.

Let σ(A) = {λk}∞k=0 ⊂ R have the corresponding ON eigenbasis {φk}∞k=0 for L2(M).

Corollary 3.1.3. If A is also formally self-adjoint, then

f(A)u =

∞∑
k=0

f(λk)(u, φk)φk,

where the sum converges in the topology of C∞(M).

Proof. Using the continuity on C∞(M), we compute

f(A)u =
1

2πi

∫
Γ

f(λ)λ−k(λI −A)−1Ak
[ ∞∑
k=0

(u, φk)φk

]
dλ

=

∞∑
k=0

(u, φk)
[ 1

2πi

∫
Γ

f(λ)

λ− λk
dλ
]
φk

=

∞∑
k=0

f(λk)(u, φk)φk.
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As an example, let A ∈ Ψd
phg(M) be formally self-adjoint with no negative eigenvalues.

Let A be parameter-elliptic w.r.t. a sector with angles [π−θ0, π+θ0] for some θ0 ∈ (0, π).
In that case, f can be a power of any z ∈ C, with logarithmic branch cut along (−∞, 0],
and the contour of integration Γ = ∂Λ′R a keyhole opening out along the branch cut,
where the hole is so small that it encircles no other eigenvalue of A than possibly 0 ∈ C.
That is, take R > 0 so small that

Λ′R = ∪θ∈[π−θ0,π+θ0]e
iθ[R,∞) ⊃ σ(A) \ {0}.

Then, for any k ∈ N0 with Re (z)− k < 0, we can unambiguously define

fz(A) : C∞(M)→ C∞(M) : u 7→ 1

2πi

∫
Γ

λz−k(λI −A)−1Aku dλ.

A straightforward computation shows that {fz(A)}z∈C is a group under composition.
Take w ∈ C and k′ ∈ N0 with Re (w)− k′ < 0 and form fw(A) with another contour Γ′.
Using the FTT and Cauchy integral theorem, we calculate

fz(A)fw(A)u =
1

(2πi)2

∫
Γ

λz−k(λI −A)−1Ak
[ ∫

Γ′
µw−k

′
(µI −A)−1Ak

′
u dµ

]
dλ

=
1

(2πi)2

∫
Γ

∫
Γ′
λz−kµw−k

′
( (λI −A)−1 − (µI −A)−1

µ− λ

)
Ak+k′u dµ dλ

=
1

2πi

∫
Γ′

[ 1

2πi

∫
Γ

λz−k

λ− µ
dλ
]
µw−k

′
(µI −A)−1Ak+k′u dµ

=
1

2πi

∫
Γ′
µw+z−k′−k(µI −A)−1Ak+k′u dµ,

where Γ′ is a slightly bigger keyhole contour about Γ, and we have used that

1

(2πi)2

∫
Γ

λz−k
[ ∫

Γ′
µw−k

′ 1

µ− λ
dµ
]
(λI −A)−1Ak+k′u dλ = 0.

This shows that

fz(A)fw(A)u = fw+z(A)u,

and provided that z is not zero or a negative integer, we have

fz(A)u =

∞∑
k=0

(u, φk)
[ 1

2πi

∫
Γ

λz−k

λ− λk
dλ
]
λkφk

=

∞∑
k=0

λzk(u, φk)φk.

However, if A is invertible, we also have

fz(A) = Az if z ∈ Z.

It is therefore customary to write Az for fz(A) for all z ∈ C, even if A is not invertible.
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Many operators can be made out of A in this manner from particular choices of f .
Later, we will need some built out of Az with Re (z) > 0, where A may not be invertible,
but is parameter elliptic w.r.t. to a sector with angles [θ0, 2π − θ0] for some θ0 ∈ (0, 1

2π),
and is of course still assumed to be formally self-adjoint with no negative eigenvalues.
Namely, the family {e−tAz}t∈(0,∞) of continuous linear operators

e−tA
z

: C∞(M)→ C∞(M) : u 7→ e−tA
z

u,

which are defined explicitly by

e−tA
z

u =
1

2πi

∫
∂Λ′R

e−tλ
z

(λI −A)−1u dλ+
1

2πi

∫
RS1

(λI −A)−1u dλ,

where RS1 is oriented counter-clockwise, with R > 0 chosen so that

Λ′R = ∪θ∈[−θ0,θ0]e
iθ[R,∞) ⊃ σ(A) \ {0},

and ∂Λ′R is oriented counter-clockwise relative to σ(A)\{0}, lying in the right half-plane.
This last term is necessary in order to have

e−tA
z

u =

∞∑
k=0

(u, φk)
1

2πi

[ ∫
∂ΛR

e−tλ
z

λ− λk
dλ+

∫
RS1

1

λ− λk
dλ
]
φk =

∞∑
k=0

e−tλ
z
k(u, φk)φk,

which implies that the limit t→ 0+ exists in C∞(M) and equals u.

It turns out that the operators Az are actually always pseudo-differential operators.
Their symbols can also be calculated explicitly in terms of a. See Shubin [51].

Theorem 3.1.14 (Shubin [51]. Some statements are contained in the exercises therein).
Let A ∈ Ψd

phg(M) with d > 0 be, as above, an elliptic and formally self-adjoint operator.
Additionally, let a be its classical principal symbol, and assume that

σ(A) ⊂ [0,∞).

Let θ0 ∈ (0, π) be fixed. The following holds:

1. If A is parameter-elliptic w.r.t. ∪θ∈[π−θ0,π+θ0]e
iθ[0,∞), then

Az ∈ Ψ
Re (z)d
phg (M) for any z ∈ C.

2. (C,+)→ Ψ(M) : z 7→ Az is a group ∗-homomorphism (Az = (Az)∗).

3. The classical principal symbol of Az is precisely az.

Let z ∈ C with Re (z) > 0 and θ0 ∈ (0, 1
2π) be fixed. The following also holds:

1. If A is parameter-elliptic w.r.t. ∪θ∈[θ0,2π−θ0]e
iθ[0,∞), then

e−tA
z

∈ Ψ−∞(M) for any t ∈ (0,∞).

2. ([0,∞),+)→ Ψ(M) : t 7→ e−tA
z

is a semi-group homomorphism.

The one-parameter group in Theorem 3.1.5 can be taken to be the powers of I −∆.
This may seem circular, but it can be reached by another definition of the Sobolev spaces.
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3.1.2 Beal’s Theorem

This subsection is dedicated to Beal’s theorem, the commutator characterisation of Ψ(M).
It characterizes Ψ(M) fully in terms of boundedness of commutators on Sobolev spaces,
and allows us to determine if an operator belongs to Ψ(M) without local computations.
This theorem can be found, for example, in the book by Ruzhansky and Turunen [48],
and is useful for identifying pseudo-differential operators on homogeneous spaces.

Lemma 3.1.3. Let A : C∞0 (Rn) → C∞0 (Rn) be any continuous and linear operator.
Suppose that A = ψAφ for some φ, ψ ∈ C∞0 (Rn). Put eξ : Rn → C : x 7→ eix·ξ for ξ ∈ Rn.
Then A = Op(a) for a unique a ∈ C∞(Rn × Rn) with the following properties:

1. a(x, ξ) = (e−ξAeξ)(x) for all (x, ξ) ∈ Rn × Rn.

2. There is some k ∈ N0 such that

sup
(x,ξ)∈Rn×Rn

〈ξ〉−k|a(x, ξ)| <∞.

Proof. Continuity of A gives some k ∈ N0 and C,C ′ > 0 such that

sup
x∈Rn

|(e−ξAeξ)(x)| ≤ C max
|α|≤k

sup
x∈Rn

|ψ(x)∂αx (φ(x)eix·ξ)| ≤ C ′〈ξ〉k.

If u ∈ C∞0 (Rn), then the Riemann sums of φu =
∫
Rn φeξFu(ξ) d̄ξ converge in C∞0 (Rn),

and we can use continuity to take A through the integral to get the representation.

Theorem 3.1.15. Let d ∈ R, and let P : C∞(M) → C∞(M) be continuous and linear.
The following are equivalent:

1. P ∈ Ψd(M).

2. If s ∈ R and {Dj}∞j=0 ⊂ Diff1(M) are arbitrary, then{
P0 = P ∈ B(Hs(M), Hs−d(M))

Pk = [Pk−1, Dk−1] ∈ B(Hs(M), Hs−d+
∑k−1
j=0 (1−deg(Dj))(M)) for each k ∈ N.

Proof. By the symbolic calculus and mapping properties of Ψ(M), we obtain (1) ⇒ (2).
The converse is the interesting part. Note that if φ, ψ ∈ C∞(M), we have

[ψPφ,D] = ψ[P,D]φ+ ψP [φ,D] + [ψ,D]Pφ if D ∈ Diff1(M).

In particular, if φ and ψ have disjoint supports, then

ψPφ = ψ[P, χ]φ = ψ[[P, χ], χ]φ = · · · ,

where χ ∈ C∞(M) equals 1 on a neighbourhood of supp(φ) but supp(χ) ∩ supp(ψ) = ∅.
Thus, if (2) holds, we have that ψPφ is bounded from any Sobolev space into C∞(M),
and so, in this case, ψPφ has smooth kernel by the characterization in Theorem 3.1.7.
Given any chart κ : U → Rn of M , and φ, ψ ∈ C∞0 (U), it remains to show that

A = (κ−1)∗(φPψ)κ∗ = Op(a) for some a ∈ Sd(κ(U)× Rn).
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To do this, we need to show that a of A from Lemma 3.1.3 belongs to Sd(κ(U)×Rn).
By the symbol a ∈ C∞(κ(U)× Rn), we mean the function

a(x, ξ) = e−ix·ξAx(eix·ξ) for all (x, ξ) ∈ κ(U)× Rn.

If {Cj}∞j=0 ⊂ Diff1(Rn) is arbitrary, put Dj = χκ∗Cj(κ
−1)∗, and{

A0 = A,

Ak = [Ak−1, Ck−1] for each k ∈ N,

where χ ∈ C∞0 (U) is now a cutoff equal to 1 on a neighbourhood of supp(φ) ∪ supp(ψ).
Note that the hypothesis (2) holds even if we start with P0 = φPψ, regardless of φ and ψ.
This can be seen by using (2) and applying induction to the above commutator identity.
Then, with P0 = ψPφ, we have κ∗Ak(κ−1)∗ = Pk, because

κ∗Ak(κ−1)∗ = [κ∗Ak−1(κ−1)∗, Dk−1],

and so Ak is bounded between Sobolev spaces on Rn of the same order as Pk is on M .
Using the above, if N 3 m > n

2 and α, β ∈ Nn0 , we get a C > 0 such that

|∂βx∂αξ a(x, ξ)|2 ≤
[ ∫

Rn

∣∣∣ ∫
Rn
e−ix·η∂βx∂

α
ξ a(x, ξ) dx

∣∣∣ dη]2
≤
(∫

Rn
〈η〉−2m dη

)∫
Rn
〈η〉2m

∣∣∣ ∫
Rn
e−ix·η∂βx∂

α
ξ a(x, ξ) dx

∣∣∣2 dη
≤ C

∑
|γ|≤m

∫
Rn
|∂β+γ
x ∂αξ a(x, ξ)|2 dx

= C
∑
|γ|≤m

∫
Rn
|(adβ+γ

∂x
adα−xA)(χeξ)(x)|2 dη

≤ C
[ ∑
|γ|≤m

||adβ+γ
∂x

adα−xA||2B(Hd−|α|(Rn),L2(Rn))

]
||χeξ||2Hd−|α|(Rn),

where eξ(x) = eix·ξ, the bracketed term is finite, and

||χeξ||2Hd−|α|(Rn) =

∫
Rn
〈η〉2(d−|α|)|F(χeξ)(η)|2 dη

=

∫
Rn
〈η + ξ〉2(d−|α|)|Fχ(η)|2 dη

≤ 2|d−|α||
[ ∫

Rn
〈η〉2|d−|α|||Fχ(η)|2 dη

]
〈ξ〉2(d−|α|).

Note that we here have

〈η + ξ〉2(d−|α|) ≤ 2|d−|α||〈ξ〉2(d−|α|)〈η〉2|d−|α||,

and because Fχ is a Schwartz function, the last bracketed term above is certainly finite.
Thus (2)⇒ (1) as well.
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3.2 Ψ(G) for a Compact Lie Group G

To start everything off, we need some tools from harmonic analysis on topological groups.
Only the essential tools needed to study Ψ(G) when G is a Lie group are presented here.
See Folland [13], Faraut [12] or Ruzhansky and Turunen [48] for more details.

Let G be a compact Hausdorff topological group with neutral/identity element e ∈ G.
Then G and its closed subgroups each have a unique bi-invariant probability measure,
which is a Radon measure on the Borel sigma algebra of the group; the Haar measure.
On G we denote the Haar measure by dx, and on a closed subgroup H ⊂ G we write dh.
Also, we always give the coset (homogeneous) space G/H the natural quotient topology.
The usual Lebesgue spaces Ls(G) are defined for s ≥ 1 with respect to this Haar measure,
and L1(G) is given the usual Banach ∗-algebra structure.

Theorem 3.2.1 (Folland [13]). The following holds:

1. Any irreducible unitary representation of G must be finite-dimensional.

2. Any unitary representation of G is a direct sum of irreducible ones.

The set of all unitary equivalence classes of irreducible unitary representations ξ is Ĝ.
It is customary to let dξ = dim(ξ) <∞ denote the dimension of ξ, and write

ξij : G→ C : x 7→ (ξ(x)ej , ei)L2(G),

where {ej}
dξ
j=1 is some arbitrary fixed orthonormal basis of the representation space of ξ.

These belong to C(G) ⊂ L2(G) due to continuity of ξ in the strong operator topology.

The elements of Ĝ are the building blocks for most global analysis on a Lie group.
Basically, this is because they lead to a sort of ”Fourier expansion” of L2(G) functions,
which generalizes the elementary Fourier series of periodic functions on R.

Theorem 3.2.2 (Peter-Weyl and Schur orthogonality theorems. See either [13] or [12]).
Given any irreducible unitary representation ξ of G, define

Eξ = span{
√
dξ ξij}

dξ
i,j=1,

where ξij are the matrix elements relative to an ONB of the representation space of ξ.
Then the following holds:

1. Eξ depends only on the class [ξ].

2. If [ξ] 6= [η] are elements of Ĝ, then Eξ and Eη are orthogonal in L2(G).

3. {
√
dξ ξij}

dξ
i,j=1 is an orthonormal basis for Eξ in L2(G) for any [ξ] ∈ Ĝ.

The set span ∪[ξ]∈Ĝ Eξ is a dense ∗-subalgebra of C(G), and

L2(G) =
⊕

[ξ]∈Ĝ

span{
√
dξ ξij}

dξ
i,j=1.
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A slightly more general version is provided by Folland [13], with two different proofs.
Let us collect the immediate consequences:

Corollary 3.2.1 (Folland [13]). The following are equivalent:

1. G is a Lie group.

2. G has a faithful finite-dimensional representation.

The decomposition of L2(G) can be rephrased in terms of the Peter-Weyl expansion.
Given f ∈ L1(G), we shall (with some abuse) write

FGf(ξ) =

∫
G

f(x)ξ(x)∗ dx for all [ξ] ∈ Ĝ.

Corollary 3.2.2. If f ∈ L2(G), then

f =
∑

[ξ]∈Ĝ

dξTr[ξFGf(ξ)] in L2(G).

In particular, we obtain a Parseval identity from the orthonormality of {
√
dξξij}

dξ
i,j=1.

Given f, g ∈ L2(G), we compute directly

(f, g)L2(G) =
∑

[ξ]∈Ĝ

∑
[η]∈Ĝ

dξdη

∫
G

Tr(ξ(x)FGf(ξ))Tr(η(x)FGg(ξ)) dx

=
∑

[ξ]∈Ĝ

dξTr(FGg(ξ)∗FGf(ξ)),

where the Hilbert-Schmidt inner product appears in the last expression.

This suggests that we define Lebesgue spaces Ls(Ĝ) of ”Ls matrix sequences” on Ĝ,
where the individual matrices are measured using the Hilbert-Schmidt (the trace) norm.

Write Mat(Ĝ) for those functions a : Ĝ→ ∪[ξ]∈ĜMat(dξ,C) such that a([ξ]) ∈ Mat(dξ,C),

and write a(ξ). We assume always that a representative ξ has been fixed in each class [ξ].
The appropriate Banach spaces (with the obvious norms) are

Ls(Ĝ) =
{
a ∈ Mat(Ĝ)

∣∣∣ ( ∑
[ξ]∈Ĝ

d
2− s2
ξ Tr(a(ξ)∗a(ξ))

s
2

) 1
s

<∞
}
,

L∞(Ĝ) =
{
a ∈ Mat(Ĝ)

∣∣∣ sup
[ξ]∈Ĝ

d
− 1

2

ξ

√
Tr(a(ξ)∗a(ξ)) <∞

}
,

which for s = 2 is equipped with

(a, b)L2(Ĝ) =
∑

[ξ]∈Ĝ

dξTr(b(ξ)∗a(ξ)) for any a, b ∈ L2(Ĝ),

and this also makes L2(Ĝ) into a Hilbert space.
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Note that while L2(G) ⊂ L1(G), the same is not true in general for the spaces on Ĝ.

Given a ∈ L2(Ĝ), we shall (meaningfully, by orthonormality) write

F−1
G a =

∑
[ξ]∈Ĝ

dξTr[ξa(ξ)] in L2(G),

where F−1
G a is also well-defined uniformly convergent for a ∈ L1(Ĝ), hence in C(G) then.

To see this, take a ∈ L1(Ĝ) and write

||F−1
G a||C(G) ≤

∑
[ξ]∈Ĝ

dξ|Tr[ξa(ξ)]|

=
∑

[ξ]∈Ĝ

d
3
2

ξ

√
Tr(a(ξ)∗a(ξ)) = ||a||L1(Ĝ),

where we use that dξ = Tr(ξ∗ξ) and

|Tr[ξa(ξ)]|2 ≤ Tr(ξ∗ξ)Tr(a(ξ)∗a(ξ)),

and it is then automatic that F−1
G : L1(Ĝ) → C(G) is well-defined and also continuous.

Sometimes we will drop the subscript G from FG and F−1
G .

Theorem 3.2.3. The transforms FG and F−1
G are unitary and inverses on the L2-spaces.

FG : L2(G)→ L2(Ĝ) and F−1
G : L2(Ĝ)→ L2(G).

Furthermore, given any f, g ∈ L1(G), the following holds:

1. FG(f ∗ g) = FGgFGf .

2. FG(f∗) = (FGf)∗.

Proof. The above Parseval identity and Theorem 3.2.2 combine to the first statement,
which is purely a consequence of the way that L2(Ĝ) and the transform FG are defined.
Using the FTT and left invariance, we compute

FG(f ∗ g) =

∫
G

[ ∫
G

f(y)g(y−1x) dy
]
η(x)∗ dx

=

∫
G

∫
G

f(y)g(y−1x)η(x)∗ dx dy

=

∫
G

∫
G

g(x)f(y)η(yx)∗ dx dy = FGgFGf,

and likewise

FG(f∗) =

∫
G

f(x−1)η(x)∗ dx

=

∫
G

f(x)η(x) dx = (FGf)∗.
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There exists a canonical continuous and linear projection ΠG/H : C(G) → C(G/H).
Let π : G → G/H be the natural quotient. Then π∗ : C(G/H) → C(G) is an isometry.
This π∗ will make the word ”projection” meaningful.

Definition 3.2.1. If f ∈ C(G), then we put

ΠG/Hf(xH) =

∫
H

f(xh) dh for all xH ∈ G/H.

Clearly, ΠG/Hf ∈ C(G/H), by left-invariance, since G/H has the quotient topology.
Also, ΠG/H is the projection map onto C(G/H), viewed as a closed subspace of C(G).
More precisely, we have

1. ||ΠG/Hf ||C(G/H) ≤ ||f ||C(G) for any f ∈ C(G).

2. ΠG/H(g ◦ π) = g for any g ∈ C(G/H).

Theorem 3.2.4 (Folland [13]). Let the space G/H have the natural quotient topology.
Then there is a unique G-invariant positive Radon measure µ on G/H such that∫

G

f(x) dx =

∫
G/H

∫
H

f(xh) dh dµ(xH) for any f ∈ C(G).

Proof. Because ΠG/H is surjective, the formula completely determines µ, so it is unique.
The functional C(G/H) → C : g 7→

∫
G

(g ◦ π)(x) dx is linear, G-invariant and bounded.
Since it is clearly also positive, the Riesz representation theorem provides the desired µ.
To see that it has the right property, note that

0 =

∫
G

∫
H

(f −ΠG/Hf ◦ π)(xh) dh dx

=

∫
H

[ ∫
G

(f −ΠG/Hf ◦ π)(xh) dx
]
dh =

∫
G

(f −ΠG/Hf ◦ π)(x) dx,

and put g = ΠG/Hf to get∫
G

f(x) dx =

∫
G

(ΠG/Hf ◦ π)(x) dx =

∫
G/H

ΠG/Hf(xH) dµ(xH).

Corollary 3.2.3. If s <∞, then

||ΠG/Hf ||Ls(G/H,µ) ≤ ||f ||Ls(G) for any f ∈ C(G).

Proof. Using the Hölder inequality with 1
s + 1

t = 1 when 1 < s <∞, we compute∫
G/H

∣∣∣ ∫
H

f(xh) dh
∣∣∣s dµ(xH) ≤

∫
G/H

[ ∫
H

|f(xh)|s dh
][ ∫

H

1t dh
] s
t

dµ(xH)

=

∫
G/H

∫
H

|f(xh)|s dh dµ(xH),

and the case s = 1 is similar.
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Corollary 3.2.4. If s <∞, then

||g||Ls(G/H,µ) = ||g ◦ π||Ls(G) for any g ∈ C(G/H).

Proof. Applying the above Theorem 3.2.4 to |g|s, we get∫
G/H

|g(xH)|s dµ(xH) =

∫
G

(|g|s ◦ π)(x) dx.

Henceforth suppressing µ, the space Ls(G/H) is isometrically embedded into Ls(G),
and we may view it as a closed subspace. Thus we can make sense of FG on L1(G/H).
In particular, if g ∈ L1(G/H), we have

FG(g ◦ π)(ξ) =

∫
G/H

g(xH)
[ ∫

H

ξ(xh)∗ dh
]
dµ(xH) for all [ξ] ∈ Ĝ,

and this might motivate us to define {[ξ] ∈ Ĝ |
∫
H
ξ(h) dh 6= 0} as the ”dual” of G/H.

However, we stop here. See Connolly [8] for more in this direction.

Finally, we record a few easily proved properties of FG and the Peter-Weyl expansion.
Write Lx and Rx for the usual left and right regular representations at x ∈ G, respectively.

L : G→ U(L2(G)) and R : G→ U(L2(G)).

Proposition 3.2.1. Let [ξ] ∈ Ĝ. The following statements hold:

1. Let j ∈ {1, · · · , dξ}. Then the subspace span{ξij}
dξ
i=1 is invariant under L,

and restricted to this space, L is equivalent to ξ under

(c1, · · · , cdξ) 7→
dξ∑
j=1

ciξij .

2. Let i ∈ {1, · · · , dξ}. Then the subspace span{ξij}
dξ
j=1 is invariant under R,

and restricted to this space, R is equivalent to ξ under

(c1, · · · , cdξ) 7→
dξ∑
i=1

cjξij .

Furthermore, given any f ∈ L2(G) with x ∈ G fixed, the following holds:

1. FG(Lxf)(ξ) = FGf(ξ)ξ(x−1).

2. FG(Rxf)(ξ) = ξ(x)FGf(ξ).

Finally, FG and F−1
G are bounded on the L1-spaces in the following way:

1. ||FGf ||L∞(Ĝ) ≤ ||f ||L1(G) for all f ∈ L1(G).

2. ||F−1
G a||L∞(G) ≤ ||a||L1(Ĝ) for all a ∈ L1(Ĝ).
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Henceforth G is a compact (not necessarily connected) Lie group with Lie algebra g.
It is always given a bi-invariant metric induced from an Ad invariant inner product on g.
Let ∆G = ∆ be the associated Laplacian (quadratic Casimir), and put n = dim(G).

Theorem 3.2.5 (Faraut [12]). The following holds:

1. Any eigenspace of −∆ is of the form span{
√
dξ ξij}

dξ
i,j=1 for some [ξ] ∈ Ĝ.

2. The eigenvalues {λξ}[ξ]∈Ĝ are non-negative, countable, increasing to ∞.

It follows immediately that ξij ∈ C∞(G) for each [ξ] ∈ Ĝ by the ellipticity of −∆.
Also, since (I −∆)

s
2 has kernel in L2(G×G) for s < −n2 , it is Hilbert-Schmidt, and∑

[ξ]∈Ĝ

d2
ξ〈ξ〉2s <∞ when s < −n

2
,

where the eigenvalues of (I −∆)
1
2 are 〈ξ〉 = (1 + λ2

ξ)
1
2 . They serve to count the classes.

In fact, the dimensions are controlled by this function.

Proposition 3.2.2.

dξ = O(〈ξ〉n2 ).

Proof. The dimension of the eigenspace of (1−∆)
1
2 corresponding to 〈ξ〉 is precisely d2

ξ ,
and the statement follows from Corollary 3.1.2, the Weyl asymptotics∑

〈ξ〉≤λ

d2
ξ − Cλn = Oλ→∞(λn−1),

where C > 0 is an intrinsic constant.

Analogous to the space of Schwartz functions on Rn, we define a sequence space S(Ĝ).
Let us first take d ∈ R, k, l ∈ Z and define auxiliary weighted L2 spaces

Sd(Ĝ) =
{
a ∈ Mat(Ĝ)

∣∣∣ ∑
[ξ]∈Ĝ

dξ〈ξ〉2dTr(a(ξ)∗a(ξ)) <∞
}
,

which are equipped with the inner products

(a, b)Sd(Ĝ) =
∑

[ξ]∈Ĝ

dξ〈ξ〉2dTr(b(ξ)∗a(ξ)) for any a, b ∈ Sd(Ĝ),

and give S(G) = ∩k∈ZSk(Ĝ) the Frechet topology generated by the collection of norms.
Note that S(G) is sequentially dense in every Sk(G) by truncating the sequences in Sk(G).
Let us equip each space with the pairing

S−k(G)× Sk(G)→ C : (a, b) 7→ 〈a, b〉 =
∑

[ξ]∈Ĝ

dξTr(a(ξ)b(ξ)).

The Riesz representation theorem and denseness of S(G) implies S ′(G) ∼= ∪k∈ZSk(Ĝ).

This is understood in the above pairing, which extends to S ′(Ĝ)× S(Ĝ).
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Now we will show that S(G) is the right space for FG when it is restricted to C∞(G).
It mirrors the Schwartz functions in view of the following mapping properties:

Proposition 3.2.3. The transforms FG and F−1
G restrict to linear homeomorphisms:

FG : C∞(G)→ S(Ĝ) and F−1
G : S(Ĝ)→ C∞(G).

Proof. Observe that if N ∈ N0, f ∈ C∞(G) and [ξ] ∈ Ĝ, then

〈ξ〉NFGf(ξ) =

∫
G

f(x)(I −∆)
N
2 ξ(x)∗ dx

=

∫
G

(I −∆)
N
2 f(x)ξ(x)∗ dx = FG(I −∆)

N
2 f(ξ),

and combining with the Parseval identity, we get∑
[ξ]∈Ĝ

dξ〈ξ〉2NTr(FGf(ξ)∗FGf(ξ)) = ||(I −∆)
N
2 f ||2L2(G).

But any semi-norm of C∞(G) is controlled by a Sobolev norm of some fixed order N ∈ N0,
and compactness ensures the L2-norm of C(G) functions is bounded by the sup-norm.
The equality implies that they restrict to isometries

FG : HN (G)→ SN (Ĝ) and F−1
G : SN (Ĝ)→ HN (G).

Therefore the statement follows immediately.

Corollary 3.2.5. The Peter-Weyl expansion of f ∈ C∞(G) is convergent in C∞(G).

Proof. It follows from the above that the expansion must converge in every Sobolev norm.
The Sobolev embedding theorem then implies that it converges in C∞(G).

The space S ′(Ĝ) is naturallly equipped with the weak∗ topology in the above pairing.
However, it is also possible to equip this space with a natural inductive limit topology,
which comes from the sequence of embeddings · · · ↪→ Sk(Ĝ) ↪→ Sk−1(Ĝ) ↪→ · · · ↪→ S ′(Ĝ).

Proposition 3.2.4. If a ∈ Sk(Ĝ) and Sl(Ĝ), then ab ∈ Sk+l(Ĝ), and

||ab||Sk+l(Ĝ) ≤ ||a||Sk(Ĝ)||b||Sl(Ĝ)

Proof. Using that dξ ≥ 1, we apply Cauchy-Schwarz to estimate

||ab||Sk+l(Ĝ) ≤
∑

[ξ]∈Ĝ

dξ〈ξ〉k+l
√

Tr(a(ξ)∗a(ξ))
√

Tr(b(ξ)∗b(ξ))

≤
[ ∑

[ξ]∈Ĝ

dξ〈ξ〉2kTr(a(ξ)∗a(ξ))
] 1

2
[ ∑

[ξ]∈Ĝ

dξ〈ξ〉2lTr(b(ξ)∗b(ξ))
] 1

2

.

Corollary 3.2.6. The pointwise matrix-product of elements in S ′(Ĝ) is again in S ′(Ĝ).
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This means that we have a well-defined product S ′(Ĝ)×S ′(Ĝ)→ S ′(Ĝ) : (a, b) 7→ ab.
In fact, it has the following pleasant property:

Corollary 3.2.7. The bilinear product is separately continuous in the weak∗-topology.

It remains to extend FG and F−1
G to the distributions D′(G) and S ′(Ĝ), respectively.

The right dualization is obtained by observing how they interact with the dual pairings.
Note that if f ∈ C∞(G) and a ∈ S(Ĝ), then

〈FGf(ξ), a(ξ)〉 =
∑

[ξ]∈Ĝ

dξTr
([ ∫

G

f(x)ξ(x)∗ dx
]
a(ξ)

)
=

∫
G

f(x)
[ ∑

[ξ]∈Ĝ

dξTr(ξ(x−1)a(ξ))
]
dx = 〈f(x),F−1

G a(x−1)〉.

This motivates the next definition. Note that the transforms are still mutual inverses,
and are continuous in the weak∗-topologies on D′(G) and S ′(G).

Definition 3.2.2. Overloading notation, we extend FG and F−1
G by duality as follows:

1. Define FG : D′(G)→ S ′(Ĝ) : f 7→ FGf by

〈FGf(ξ), a(ξ)〉 = 〈f(x),F−1
G a(x−1)〉 for all a ∈ S(Ĝ).

2. Define F−1
G : S ′(Ĝ)→ D′(G) : a 7→ F−1

G a by

〈F−1
G a(x), f(x−1)〉 = 〈a(ξ),FGf(ξ)〉 for all f ∈ C∞(G).

Many identities valid for the smooth functions on G can be extended to distributions.
Let us demonstrate how separate continuity is used to do this.

Proposition 3.2.5.

FG(u ∗ v) = FGvFGu for any u, v ∈ D′(G).

Proof. Convolution D′(G) × D′(G) → D′(G) : (u, v) 7→ u ∗ v is separately continuous.
Take {uj}∞j=1 and {vk}∞k=1 in C∞(G) so that

uj → u and vj → v in D′(G) as j →∞.

Then, we can write

FG(u ∗ v) = lim
k→∞

FG(u ∗ vk)

= lim
k→∞

lim
j→∞

FG(uj ∗ vk)

= lim
k→∞

lim
j→∞

FGvkFGuj

= lim
k→∞

FGvkFu = FGvFGu.
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3.2.1 The Exact Operator Calculus

By Corollary 3.2.1, there exists a faithful representation ρ : G→ U(m) for some m ∈ N.
Now ρ, being continuous, is automatically smooth. It is a closed map by the compactness.
It follows that ρ is an embedding onto the closed subgroup ρ(G) in the relative topology,
which is a Lie subgroup of U(m). Therefore G identifies with a closed subgroup of U(m).
Because U(m) ∼= O(2m) ∩GL(m,C) ⊂ GL(2m,R) by representing C with real matrices,
we may assume that ρ : G→ O(2m). Let us choose a complement to dρ(g) in gl(2m,R).
Then, by the inverse function theorem, there is an open V ⊂ GL(2m,R) with ρ(G) ⊂ V ,
and a neighbourhood U of 0 in the complement, giving a diffeomorphism

G× U → V : (g, Y ) 7→ ρ(g) exp(Y ),

which in turn gives a smooth ”projection” map

% : V → G : ρ(g) exp(Y ) 7→ g,

and this % absorbs G from the left, that is, x%(y) = %(ρ(x)y) when x ∈ G and y ∈ V .
Choose a cutoff χ ∈ C∞0 (V ) equal to 1 on a ρ(G)-invariant neighbourhood of ρ(G) in V .
Note that χ(ρ(x)y) = χ(ρ(x)) = 1 for x ∈ G and y in this neighbourhood.

Proposition 3.2.6. Any u ∈ C∞(G) has a global Taylor series expansion in N ∈ N,
with the sums running over α ∈ Nm×m0 , given by

u(x) =
∑
|α|<N

1

α!
dα(x−1)∂α[χ(u ◦ %)](I) +

∑
|α|=N

N

α!
dα(x−1)Rα(x) for all x ∈ G.

where χ ∈ C∞0 (V ) is the above cutoff for ρ(G), and

Rα(x) =

∫ 1

0

(1− t)N−1∂α[χ(u ◦ %)](I + t(ρ(x)− I)) dt.

Proof. Taylor expand χ(u ◦ %) at I evaluated in ρ(x) ∈ ρ(G) ↪→ GL(2m,R) to get

u(x) =
∑
|α|<N

1

α!
(ρ(x)− I)α∂αx [χ(u ◦ %)](I) +

∑
|α|=N

N

α!
(ρ(x)− I)αRα(x),

where dα(x−1) = (ρ(x)− I)α.

It will be convenient to define two families of operators δαξ and δαx associated to dα.

Definition 3.2.3. Let δαx be differential operators acting on u ∈ C∞(G) by

δαxu(x) = ∂αy
[
χ(u ◦ %)(ρ(x)y)

]∣∣
y=I

for all x ∈ G,

and define ”difference operators” δαξ acting on S ′(Ĝ) by

δαξ = FdαF−1.
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Before developing the symbolic calculus using the above global Taylor series expansion,
we need to be able to move δαξ through integrals when the argument depends on a variable.
This is due the remainder term in the expansion, where there is an integral over t ∈ [0, 1].
It is possible to do this because of the following lemma:

Lemma 3.2.1. If a ∈ S ′(Ĝ), then

δαη a(η) =
∑

[ξ]∈Ĝ

dξ

∫
G

dα(y)Tr(ξ(y)a(ξ))η(y)∗ dy for all [η] ∈ Ĝ.

Proof. Let us test δαη a against the element in S(G) equal to I at [η] ∈ Ĝ and zero else,
and truncate a(ξ) up to 〈ξ〉 ≤ k for a k ∈ N. Then if N ∈ N is large enough, we get

δαη a(η) = lim
k→∞

∫
G

dα(y)
[ ∑
〈ξ〉≤k

dξTr(ξ(y)a(ξ))
]
η(y)∗ dy

=
∑

[ξ]∈Ĝ

dξ〈ξ〉−2N

∫
G

Tr
(
ξ(y)a(ξ)

)
(1−∆)N [dα(y)η(y)∗] dy,

where a trace norm estimate and dξ = O(〈ξ〉n2 ) shows absolute convergence.

The difference operators δαξ satisfy a Leibniz-type product rule on sequences in S ′(Ĝ).
It was first observed by Ruzhansky, Turunen and Wirth [49]. Again, this will be needed.
Let us put

dij(x) = deij (x) = ρij(x
−1)− δij for all x ∈ G,

where eij is the m×m matrix with 1 at the i, j entry and zero else.

Lemma 3.2.2 (Ruzhansky, Turunen and Wirth [49]).

δ
eij
ξ (ab) = δ

eij
ξ (a)b+ aδ

eij
ξ (b) +

m∑
k=1

δeikξ (a)δ
ekj
ξ (b) for any a, b ∈ S ′(Ĝ).

Proof. Since the product S ′(Ĝ) × S ′(Ĝ) → S ′(Ĝ) : (a, b) 7→ ab is separately continuous,

and S(Ĝ) is sequentially dense in S ′(Ĝ), it suffices to show that it holds for a, b ∈ S(Ĝ).
This is Corollary 3.2.7 and the remarks before it. Now, if x, y ∈ G, we have

dij(x) = dij(xy
−1) + dij(y) +

m∑
k=1

dkj(xy
−1)dik(y),

and so if we multiply by F−1b(xy−1)F−1a(y), and integrate in y, we get

dijF−1(ab) = (dijF−1b) ∗ F−1a+ F−1b ∗ (dijF−1a) +

m∑
k=1

(dkjF−1b) ∗ (dikF−1a),

and finally applying F gives the result.
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Let P : C∞(G)→ C∞(G) be linear and continuous in the Frechet topology of C∞(G).
The Peter-Weyl expansion of u ∈ C∞(G) converges in this topology, so we have

Pu(x) =
∑

[ξ]∈Ĝ

dξTr(ξ(x)p(x, ξ)Fu(ξ)) for all x ∈ G.

where p(x, ξ) = ξ(x)∗(Pξ)(x) is a ”matrix-symbol” of P . It clearly defines P uniquely,
and we write P = Op(p). The map p 7→ Op(p) is called the operator quantization map.

Because only [ξ] ∈ Ĝ matters in the expansion, we can view p as a mapping

p : G× Ĝ→
⋃

[ξ]∈Ĝ

Mat(dξ,C).

Proposition 3.2.7.

sup
(x,[ξ])∈G×Ĝ

〈ξ〉−k||p(x, ξ)|| <∞ for some k ∈ N0.

Proof. Using the Sobolev embedding, we get some N ∈ N0 and CN > 0 such that

sup
x∈G
||ξ(x)∗(Pξ)(x)|| ≤ dξ max

i,j
sup
x∈G
|Pξij(x)|

≤ CNdξ max
i,j
||(I −∆)

N
2 ξij ||L2(G) = CN

√
dξ〈ξ〉N ,

and the Weyl asymptotic dξ = O(〈ξ〉n2 ) gives the estimate.

Definition 3.2.4. Let d ∈ R. Put Xβ = Xβ1

1 ◦ · · · ◦ Xβn
n for β ∈ Nn0 if {Xj}nj=1 ⊂ g.

Write p ∈ Sd(G× Ĝ) = Sd of order d ∈ R, if the following holds:

1. p ∈ C∞(G;S ′(Ĝ)).

2. Given any ordered basis X = (X1, · · · , Xn) of g, we have

sup
(x,[ξ])∈G×Ĝ

〈ξ〉|α|−d||δαξXβ
x p(x, ξ)|| <∞ for any α ∈ Nm×m0 and β ∈ Nn0 .

The space Sd is given the Frechet topology induced by the above collection of semi-norms.
Finally, if {pj}∞j=0 is a sequence with pj ∈ Sdj and dj → −∞ as j →∞, we write

p ∼
∞∑
j=0

pj if p−
k−1∑
j=0

pj ∈ Smaxj≥k dj for each k ∈ N.

These matrix-symbols are called the Hörmander symbols.

The symbols characterizing operators in Ψ(G) are precisely the Hörmander symbols.
This of course seems natural, but was in fact only recently established:

Theorem 3.2.6 (Ruzhansky, Turunen and Wirth [49]). If d ∈ R, then

P ∈ Ψd(G) if and only if P = Op(p) for some p ∈ Sd.
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As with the usual symbols on T ∗G, we write S−∞ = ∩d∈RSd for the residual symbols.
The characterization guarantees asymptotic summability of symbols:

Corollary 3.2.8. If {pj}∞j=0 is as above, there exist p ∈ Smaxj≥0 dj with p ∼
∑∞
j=0 pj.

Proof. Using Theorem 3.1.2 and the characterization of Ψ(G), we get a P such that

Ψmaxj≥0 dj (G) 3 Op(p) = P ∼
∞∑
j=0

Op(pj) for some p ∈ Smaxj≥0 dj ,

and the asymptotic for p follows by applying the characterization again.

The important fact about Ψ(G) is that it admits a symbol calculus in terms of ∪d∈RSd.
It is isomorphic, via quantization, to ∪d∈RSd with a certain algebraic structure.

Definition 3.2.5. Let d1, d2 ∈ R. Given any two symbols p ∈ Sd1 and q ∈ Sd2 , define:

1. Pointwise in (x, [η]) ∈ G× Ĝ a symbol p� q by

(p� q)(x, η) =
∑

[ξ]∈Ĝ

dξ

∫
G

Tr
(
ξ(y−1x)p(x, ξ)

)
η(x−1y)q(y, η) dy.

2. Pointwise in (x, [η]) ∈ G× Ĝ a symbol p† by

p†(x, η) =
∑

[ξ]∈Ĝ

dξ

∫
G

Tr
(
ξ(y−1x)p(y, ξ)∗

)
η(x−1y) dy.

Note that both the sums in the above definition are uniformly absolutely convergent.
To see this, do entry-wise integration by parts with I −∆y to summon powers of 〈ξ〉−1.
Then the sums are dominated by convergent sums scaling with 〈η〉, independently of x,
which is because p and all of its derivatives in x grow polynomially in 〈ξ〉 at a fixed rate.
It remains to show that p� q and p† are Hörmander symbols.

Theorem 3.2.7. Let d1, d2 ∈ R. Then the following holds:

1. The map Sd1 × Sd2 → Sd1+d2 : (p, q) 7→ p� q is well-defined, and

p� q ∼
∞∑
N=0

∑
|α|=N

1

α!
δαξ (p)δαx (q).

2. The map Sd1 → Sd1 : p 7→ p† is well-defined, and

p† ∼
∞∑
N=0

∑
|α|=N

1

α!
δαξ δ

α
x (p∗).

Both mappings are continuous with respect to the Frechet topologies on the symbol spaces,
and, in particular, take bounded sets to bounded sets.
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Proof. Let us expand p(xy−1, ξ) and q(xy−1, ξ) in y−1 ∈ G with (x, [ξ]) ∈ G × Ĝ fixed.
Taking N ∈ N and using Proposition 3.2.6, labelling remainders Rpα and Rqα, we get

p(xy−1, ξ) =
∑
|α|<N

1

α!
dα(y)δαx p(x, ξ) +

∑
|α|=N

N

α!
dα(y)Rpα(x, ξ),

q(xy−1, ξ) =
∑
|α|<N

1

α!
dα(y)δαx q(x, ξ) +

∑
|α|=N

N

α!
dα(y)Rqα(x, ξ),

where the remainders are

Rpα(x, ξ) =

∫ 1

0

(1− t)N−1Dα
xp(%(I + t(ρ(x)− I)), ξ) dt,

Rqα(x, ξ) =

∫ 1

0

(1− t)N−1Dα
x q(%(I + t(ρ(x)− I)), ξ) dt,

and Dα are differential operators on G, depending on t and x, acting on the first entry.
They arise from the partial derivatives, and contain the cutoff χ, in Proposition 3.2.6.
Using the bi-invariance of the Haar measure, we compute

(p� q)(x, η) =
∑

[ξ]∈Ĝ

dξ

∫
G

Tr
(
ξ(y)p(x, ξ)

)
η(y)∗q(xy−1, η) dy

=
∑
|α|<N

1

α!
δαη p(x, η)δαx q(x, η) +

∑
|α|=N

N

α!
δαη p(x, η)Rqα(x, η),

p†(x, η) =
∑

[ξ]∈Ĝ

dξ

∫
G

Tr
(
ξ(y)p(xy−1, ξ)∗

)
η(y)∗ dy

=
∑
|α|<N

1

α!
δαη δ

α
x [p(x, η)∗] +

∑
|α|=N

N

α!
δαηR

p
α(x, η)∗,

and estimates follow by Lemma 3.2.2, taking δαξ through the integrals using Lemma 3.2.1.

Explicitly, if {Xj}nj=1 is an ordered basis of g, and α, γ ∈ Nm×m0 and β ∈ Nn0 , then

||Xβ
x δ

γ
ηR

q
α(x, η)|| ≤

∫ 1

0

(1− t)N−1||Xβ
x [Dα

x (δγη q)(%(I + t(ρ(x)− I)), η)]|| dt

≤ Cqα,β,γ〈η〉
d2−|γ|

∫ 1

0

(1− t)N−1 dt,

||Xβ
x δ

γ
η δ
α
ηR

p
α(x, η)∗|| ≤

∫ 1

0

(1− t)N−1||Xβ
x [Dα

x (δγ+α
η p)(%(I + t(ρ(x)− I)), η)]∗|| dt

≤ Cpα,β,γ〈η〉
d1−|γ|−|α|

∫ 1

0

(1− t)N−1 dt,

where Cpα,β,γ and Cqα,β,γ are sums of finitely many semi-norms of p and q, respectively,
and Dα is locally a sum of products of {Xj}nj=1, with coefficients depending on t and x.
The integral is well-defined because χ is zero whenever %(I + t(ρ(x)− I)) is not defined.
This shows well-definedness, continuity, and the asymptotics.
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Next, we do the computations to show that p� q and p† are indeed the right symbols.
Let p and q be symbols of Hörmander type.

Proposition 3.2.8.

Op(p)Op(q)u = Op(p� q)u for any u ∈ C∞(G).

Proof. By the DCT and the FTT, computing pointwise in x ∈ G, we get

Op(p)Op(q)u(x) =
∑

[ξ]∈Ĝ

dξTr(ξ(x)p(x, ξ)FOp(q)u(ξ))

=
∑

[ξ]∈Ĝ

dξTr
(
ξ(x)p(x, ξ)

∫
G

[ ∑
[η]∈Ĝ

dηTr(η(y)q(y, η)Fu(η))
]
ξ(y)∗ dy

)
=
∑

[ξ]∈Ĝ

dξ

∫
G

[ ∑
[η]∈Ĝ

dηTr(η(y)q(y, η)Fu(η))
]
Tr(ξ(x)p(x, ξ)ξ(y)∗) dy

=
∑

[ξ]∈Ĝ

∑
[η]∈Ĝ

dηdξ

∫
G

Tr(ξ(y−1x)p(x, ξ))Tr(η(y)q(y, η)Fu(η)) dy

=
∑

[η]∈Ĝ

dηTr(η(x)(p� q)(x, η)Fu(η)).

Proposition 3.2.9.

(Op(p)u, v)L2(G) = (u,Op(p†)v)L2(G) for any u, v ∈ C∞(G).

Proof. Again, by the DCT and the FTT, we get

(Op(p)u, v)L2(G) =

∫
G

[ ∑
[ξ]∈Ĝ

dξTr(ξ(y)p(y, ξ)Fu(ξ))
]
v(y) dy

=
∑

[ξ]∈Ĝ

dξTr
([ ∫

G

ξ(y)p(y, ξ)v(y) dy
]
Fu(ξ)

)
=

∫
G

u(x)
[ ∑

[ξ]∈Ĝ

dξ

∫
G

Tr(ξ(x−1y)p(y, ξ))v(y) dy
]
dx

=

∫
G

u(x)
[ ∑

[ξ]∈Ĝ

∑
[η]∈Ĝ

dξdη

∫
G

Tr(ξ(x−1y)p(y, ξ))Tr(η(y)Fv(η)) dy
]
dx

=

∫
G

u(x)
[ ∑

[η]∈Ĝ

dηTr(η(x)p†(x, η)Fv(η))
]
dx.

Note the repeated use of uniform dominated convergence to justify the interchanges,
which are carefully performed in each step.
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The calculus allows us to reformulate ellipticity entirely in terms of the global symbol.
An operator Op(p) with p ∈ Sd and d ∈ R will be elliptic if and only if p is:

Proposition 3.2.10. Let q0 ∈ S−d. The following holds:

1. If q0p− 1 ∈ S−1, then there is a qL ∈ S−d such that qL � p− 1 ∈ S−∞.

2. If pq0 − 1 ∈ S−1, then there is a qR ∈ S−d such that p� qR − 1 ∈ S−∞.

Additionally, if both left and right parametrices exist, then qL − qR ∈ S−∞.

Proof. Note q0 � p− q0p ∈ S−1 in the left case and p� q0 − pq0 ∈ S−1 in the right case.
Either way, we write r for the residual 1− q0 � p or 1− p� q0 in S−1.

Left: Put r = 1 − q0 � p. Define the sequence of symbols qj = r�j � q0 for j ∈ N0.
Then put q ∼

∑∞
j=0 qj with q ∈ S−d, and

S−N 3
(
q −

N−1∑
j=0

qj

)
� p− r�N

= q � p−
N−1∑
j=0

r�j � (1− r)− r�N = q � p− 1.

Right: Put r = 1− p� q0. Define the sequence of symbols qj = q0 � r�j for j ∈ N0.
Then put q ∼

∑∞
j=0 qj with q ∈ S−d, and

S−N 3 p�
(
q −

N−1∑
j=0

qj

)
− r�N

= p� q −
N−1∑
j=0

(1− r)� r�j − r�N = p� q − 1.

As this holds for every N ∈ N, we have obtained inverses in the left and right cases.
If both left qL and right qR parametrices exist, then

qL − qR = qL � (1− p� qR)− (1− qL � p)� qR ∈ S−∞,

and similarly, any other inverse differs from either one by S−∞.

Therefore p ∈ Sd is called elliptic if it has a two-sided inverse q0 ∈ S−d modulo S−1.
A necessary and sufficient condition for existence is the following:

Theorem 3.2.8 (Ruzhansky, Turunen and Wirth [49], and Ruzhansky and Wirth [47]).

A symbol p ∈ Sd is elliptic in Sd if and only if there is a finite F ⊂ Ĝ such that:

1. p(x, ξ) is invertible for all (x, [ξ]) ∈ G× (Ĝ \ F ).

2. The family of inverses satisfy

sup
(x,[ξ])∈G×(Ĝ\F )

〈ξ〉d||p(x, ξ)−1|| <∞.
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Lemma 3.2.3. Let {pY }j∈J be bounded in Sd, each point-wise invertible as a matrix.
Suppose that J is a compact space, x-derivatives of pY are continuous in (x, Y ), and

sup
Y ∈J

sup
(x,[ξ])∈G×Ĝ

〈ξ〉d||pY (x, ξ)−1|| <∞.

Then {p−1
Y }Y ∈J is a bounded set in S−d, and has the same continuity property.

Proof. Bounds on the g derivatives in x can be established by the standard Leibniz rule.
It suffices to get estimates with δαξ . By Lemma 3.2.2, we have

δ
eij
ξ (p−1

Y ) +

m∑
k=1

p−1
Y δeikξ (pY )δ

ekj
ξ (p−1

Y ) = −p−1
Y δ

eij
ξ (pY )p−1

Y ,

which is a linear system for (δ
eij
ξ (p−1

Y ))i,j with the system matrix (δijI + p−1
Y δ

eij
ξ (pY ))i,j .

By the bound on p−1
Y , the system matrix is close to the identity for large enough 〈ξ〉,

and can be inverted with norm uniformly bounded by 2, always independent of x and Y .
Using the continuity hypothesis for the remaining [ξ], we get Ceij > 0 such that

||δeijξ (p−1
Y )(x, ξ)|| ≤ Ceij 〈ξ〉−d−1.

Suppose this holds with eij replaced by α ∈ Nm×m0 with |α| = k and 〈ξ〉−d−1 by 〈ξ〉−d−k.
The Leibniz-like rule in Lemma 3.2.2 can be applied repeatedly to

δ
eij
ξ δαξ (pY p

−1
Y ) = 0,

which gives a sum of terms of the form δβξ (pY )δγξ (p−1
Y ) with |β|, |γ| ≤ k + 1 ≤ |β| + |γ|.

The leading terms here are, just as before, of the form pY δ
eij
ξ δαξ (p−1

Y ) with |α| = k ∈ N,

while the remaining terms have coefficients that can be estimated uniformly by 〈ξ〉d−k.
Similar to k = 1, it can be solved for δ

eij
ξ δαξ (p−1

Y ), and we get Cα+eij > 0 so that

||δeijξ δαξ (p−1
Y )(x, ξ)|| ≤ Cα+eij 〈ξ〉−d−k−1,

and the lemma follows by induction on k.

Using this, we can prove the characterization of elliptic symbols in the above theorem.
It is a simple application of the lemma with J = {0}:

Proof. Suppose that p ∈ Sd is elliptic. So there exists a q0 ∈ S−d with pq0 − 1 ∈ S−1.
Then (pq0)(x, ξ) is invertible for 〈ξ〉 ≥ R > 0, independent of x ∈ G. So is p, and

||p(x, ξ)−1|| ≤ ||q0(x, ξ)||
∣∣∣∣(p(x, ξ)q0(x, ξ))−1

∣∣∣∣ ≤ C〈ξ〉−d,
where C > 0, and the inequality holds for [ξ] ∈ Ĝ except the finite set with 〈ξ〉 < R.

Conversely, put χF (ξ) = 1F ([ξ])Idξ for all [ξ] ∈ Ĝ. So χF ∈ S−∞, the lemma gives

(χF + (1− χF )p)−1 ∈ S−d,

and therefore p ∈ Sd is elliptic.
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Let us investigate how Ψ(G/H) relates to Ψ(G) and to the symbolic calculus on G.
To do so, we need the following theorem. It can be found in Connolly [8].

Theorem 3.2.9. There is a metric on G/H such that π∗ intertwines ∆G/H and ∆G.
That is, ∆Gπ

∗ = π∗∆G/H on C∞(G/H), where ∆G/H is the Laplacian of this metric.

As a consequence, the eigenfunctions of ∆G/H must be closely related to those of ∆G.

Observe that if ξij are the components of [ξ] ∈ Ĝ, with eigenvalue λξ, then

π∗∆G/HΠG/Hξij = π∗ΠG/H∆Gξij = λξπ
∗ΠG/Hξij ,

and conversely, any eigenfunction of ∆G/H pulls back via π to an eigenfunction of ∆G.

Hence the eigenspaces of ∆G/H are span{ΠG/Hξij}
dξ
i,j=1 with associated eigenvalue λξ.

Therefore, if s ∈ R is arbitrary, we have

(I −∆G)
s
2π∗ = π∗(I −∆G/H)

s
2 on C∞(G/H),

which also shows that ΠG/H : C∞(G) → C∞(G/H) is (well-defined and) continuous.
This we see by taking u ∈ C∞(G) and calculating pointwise in x ∈ G to get

(I −∆G)
s
2π∗ΠG/Hu(x) =

∑
[ξ]∈Ĝ

dξ〈ξ〉sTr
(
ξ(x)

∫
G

∫
H

u(yh)ξ(y)∗ dh dy
)

=
∑

[ξ]∈Ĝ

dξ〈ξ〉sTr
(∫

H

ξ(xh)
[ ∫

G

u(y)ξ(y)∗ dy
]
dh
)

=

∫
H

(I −∆G)
s
2u(xh) dh.

Lemma 3.2.4. The pullback map extends as an isometric map π∗ : Hs(G/H)→ Hs(G).

Proof. Observe that if f ∈ C∞(G/H), we have

||π∗f ||Hs(G) = ||(I −∆G)
s
2π∗f ||L2(G)

= ||π∗(I −∆G/H)
s
2 f ||L2(G)

= ||(I −∆G/H)
s
2 f ||L2(G/H),

which implies that π∗ extends to an isometry of Hs(G/H) into Hs(G)

Lemma 3.2.5. The projection extends as a continuous map ΠG/H : Hs(G)→ Hs(G/H).

Proof. Observe that if u ∈ C∞(G), we have

||π∗ΠG/Hu||Hs(G) = ||(I −∆G)
s
2π∗ΠG/Hu||L2(G)

= ||π∗ΠG/H(I −∆G)
s
2u||L2(G)

≤ ||(I −∆G)
s
2u||L2(G),

and the result follows from the previous lemma.
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Lemma 3.2.6. If d ∈ R, then

π∗ΠG/HP ∈ Ψd(G) for any P ∈ Ψd(G).

Proof. The characterization of Ψ(G) gives a Hörmander symbol p ∈ Sd with P = Op(p).
In view of this, if u ∈ C∞(G), we can write

π∗ΠG/HOp(p)u(x) =
∑

[ξ]∈Ĝ

dξTr
(
ξ(x)

[ ∫
H

ξ(h)p(xh, ξ) dh
]
Fu(ξ)

)
for all x ∈ G,

and hence π∗ΠG/HOp(p) = Op(q), where

q(x, ξ) =

∫
H

ξ(h)p(xh, ξ) dh for all (x, [ξ]) ∈ G× Ĝ,

It remains to show that q ∈ Sd. Let α, β ∈ Nn0 and observe that

δαξ q(x, ξ) =
∑

[η]∈Ĝ

dη

∫
G

dα(y)Tr
(
η(y)

[ ∫
H

η(h)p(xh, η) dh
])
ξ(y)∗ dy

=
∑

[η]∈Ĝ

dη

∫
H

∫
G

dα(y)Tr(η(yh)p(xh, η))ξ(y)∗ dy dh

=
∑

[η]∈Ĝ

dη

∫
H

ξ(h)
[ ∫

G

dα(y)Tr(η(y)p(xh, η))ξ(y)∗ dy
]
dh

=

∫
H

ξ(h)δαξ p(xh, ξ) dh.

Furthermore, if (X1, · · · , Xn) is an ordered basis of right-invariant vector fields on G,
then Xβ

x can be taken through the integral, and we get estimates

〈ξ〉|α|−d||δαξXβ
x q(x, ξ)|| ≤

∫
H

||ξ(h)||
[
〈ξ〉|α|−d||δαξXβ

x p(xh, ξ)||
]
dh.

It follows that q ∈ Sd, because any vector field can be expressed in this basis.

Theorem 3.2.10 (Ruzhansky and Turunen [48]). If d ∈ R, then

ΠG/HPπ
∗ ∈ Ψd(G/H) for any P ∈ Ψd(G).

Proof. We show that the conditions of the characterization in Theorem 3.1.15 are satisfied.
Since π : G → G/H is a surjective submersion, smooth vector fields X on G have lifts.

That is, there is a (generally not unique) vector field X̃ on G/H such that X̃π∗ = π∗X.

Thus, if g ∈ C∞(G) and X is a smooth vector field with lift X̃, we compute

[X,ΠG/HPπ
∗] = ΠG/H [X̃, (π∗ΠG/HP )]π∗,

[g,ΠG/HPπ
∗] = ΠG/H [π∗g, (π∗ΠG/HP )]π∗,

and these have the right boundedness properties by Lemma 3.2.4, 3.2.5 and 3.2.6.
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Combining all the above results, we obtain a ”lifting calculus” from Ψ(G/H) to Ψ(G).
It is based on the notion of a lift of an operator. Let d ∈ R.

Definition 3.2.6. A lift of A ∈ Ψd(G/H) is an operator Ã ∈ Ψd(G) that projects to A:

1. π∗ΠG/HÃ = Ã.

2. ΠG/HÃπ
∗ = A.

Theorem 3.2.11 (Ruzhansky and Turunen [48], Ruzhansky, Turunen and Wirth [49]).

Suppose that A ∈ Ψ(G/H) lifts to Ã and B ∈ Ψ(G/H) lifts to B̃. Then:

1. ÃB̃ is a lift of AB.

2. Ã∗ is a lift of A∗.

Furthermore, if Ã is also elliptic, the following holds:

1. Ã has a parametrix Q̃ such that π∗ΠG/HQ̃ = Q̃.

2. A is elliptic with parametrix Q = ΠG/HQ̃π
∗.

Proof. Of course, ΠG/HÃB̃π
∗ = ΠG/HÃπ

∗ΠG/HB̃π
∗ = AB, and π∗ΠG/HÃB̃ = ÃB̃.

Take f, g ∈ C∞(G/H) and u, v ∈ C∞(G), and compute

(Af, g)L2(G/H) =

∫
G/H

[ ∫
H

Ã(f ◦ π)(xh) dh
]
g(xH) dµ(xH)

=

∫
G/H

f(xH)

∫
H

Ã∗(g ◦ π)(xh) dh dµ(xH) = (f,ΠG/HÃ
∗π∗g)L2(G/H),

and also

(Ãu, v)L2(G) =

∫
G

[ ∫
H

Ãu(xh) dh
]
v(x) dx

=

∫
G

u(x)
[ ∫

H

Ã∗v(xh) dh
]
dx = (u, π∗ΠG/HÃ

∗v)L2(G).

Hence ΠG/HÃ
∗π∗ = A∗ and π∗ΠG/HÃ

∗ = Ã∗ hold, which shows that Ã∗ is a lift of A∗.

Finally, suppose that Ã is an elliptic operator in Ψ(G). Let Q̃0 be any parametrix to Ã.

Then Q̃0Ã− ÃQ̃0 ∈ Ψ−∞(G), and π∗ΠG/HQ̃0Ã− ÃQ̃0 ∈ Ψ−∞(G), and so

π∗ΠG/HQ̃0Ã− I ∈ Ψ−∞(G).

Thus we can take Q̃ = π∗ΠG/HQ̃0, which is valid as both a left and a right parametrix:

AQ− I = ΠG/HÃπ
∗ΠG/HQ̃π

∗ − I = ΠG/H(ÃQ̃− I)π∗ ∈ Ψ−∞(G/H),

QA− I = ΠG/HQ̃π
∗ΠG/HÃπ

∗ − I = ΠG/H(Q̃Ã− I)π∗ ∈ Ψ−∞(G/H),

and this completes the proof.

Theorem 3.2.12 (Ruzhansky and Turunen [48]). If d ∈ R, then

P ∈ Ψd(G/H) has a lift P̃ ∈ Ψd(G).
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3.2.2 Functional Calculus of Matrix-Symbols

In the Lie group setting, a functional calculus is available for the matrix-symbol algebra,
and relies also on a sort of parameter-ellipticity, invented by Wirth and Ruzhansky [47].
Let Λ be a closed sector in C, and let p ∈ Sd be a matrix-symbol with d ≥ 0.

Definition 3.2.7. The symbol p is said to be parameter-elliptic w.r.t. Λ if

1. p(x, ξ)− λI is invertible for all (x, [ξ]) ∈ G× Ĝ when λ ∈ Λ.

2. The family of inverses satisfy the estimates

sup
λ∈Λ

sup
(x,[ξ])∈G×Ĝ

(〈ξ〉d + |λ|)||(p(x, ξ)− λI)−1|| <∞.

The inequality ensures that such p has its spectra bounded uniformly away from 0.
Thus there is a disc of radius R > 0 containing no eigenvalues of p(x, ξ).

Theorem 3.2.13 (Wirth and Ruzhansky [47]). Let p be parameter-elliptic w.r.t. Λ.
Suppose that Λ′ is a closed sector in C with R > 0 such that the following holds:

1. Λ′R contains the union of all spectra of p in its interior.

2. Λ contains Γ = ∂Λ′R except for some disc about the origin.

Let f : Λ′R → C be holomorphic, continuous up to Λ′R, and

sup
λ∈Λ′R

|λ|−r|f(λ)| <∞ for some r < 0.

Then ”the function f of p” denoted f(p), defined below, is a well-defined symbol in Srd.

f(p) =
1

2πi

∫
Γ

f(λ)(λI − p)−1 dλ,

where Γ is viewed as a counter-clockwise contour about the union of all the spectra of p.
Also, if J is compact, {pY }Y ∈J ⊂ Sd bounded and uniformly parameter-elliptic w.r.t Λ,
and the x-derivatives of pY are continuous in (x, Y ), then {f(pY )}Y ∈J is bounded in Srd.

Of course, the above theorem can be extended to work for r ≥ 0 by the usual trick.
In particular, f can be the power of any z ∈ C, with branch cut along (−∞, 0].

Lemma 3.2.7 (Wirth and Ruzhansky [47]). Let p consist of positive-definite matrices.
Suppose that they together satisfy

sup
(x,[ξ])∈G×Ĝ

〈ξ〉d||p(x, ξ)−1|| <∞.

Then p is parameter-elliptic w.r.t. (−∞, 0], and pz ∈ SRe (z)d.

Proof. The hypothesis implies that the spectrum of 〈ξ〉−dp(x, ξ) is in [ 1
c , c] for a c > 0.

Since p(x, ξ)− λI is normal, the spectral radius theorem gives

||(p(x, ξ)− λI)−1|| ≤
(1

c
〈ξ〉d + |λ|

)−1

for any λ ∈ (−∞, 0],

and we then have pz ∈ SRe (z)d by the above theorem.
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Using the above theorem, we prove a variant of the Calderon-Vaillancourt theorem.
It is a modified version of the one found in Ruzhansky and Wirth [47].

Lemma 3.2.8. Let d ∈ R and {pY }Y ∈J ⊂ Sd be a set bounded in the topology of Sd.
Suppose that J is a compact space, and that x-derivatives of pY are continuous in (x, Y ).
Then Op(pY ) : Hs(G)→ Hs−d(G) are bounded uniformly in Y ∈ J for any s ∈ R.

Proof. By the continuity of the symbolic product, it suffices to prove the case s = d = 0.
But in this case, there is some C > 1 such that

sup
(x,[ξ])∈G×Ĝ

||pY (x, ξ)|| ≤ C − 1,

which ensures that C2I − p∗Y pY ≥ 1
c > 0. By Lemma 3.2.7, we have

qY =
√
C2I − p∗Y pY ∈ S

0,

and because of Theorem 3.2.13, the set {qY }Y ∈J ⊂ S0 must be a bounded subset of S0.

Forming the product q†Y � qY , we then get

q†Y � qY − (C2I − p†Y � pY ) = rY ∈ S−1,

and {rY }Y ∈J ∈ S−1 is of course also bounded in S−1, by continuity of the product.
Combining this, we can for any u ∈ C∞(G) estimate

||Op(pY )u||2L2(G) = (u,Op(pY )∗Op(pY )u)L2(G)

= C2||u||2L2(G) − ||Op(qY )u||2L2(G) − (u,Op(rY )u)L2(G)

≤ C2||u||2L2(G) + ||u||L2(G)||Op(rY )u||L2(G),

where Op(rY ) : L2(G) → L2(G) is bounded uniformly in Y ∈ J , as we shall see next.
Apply induction in k ∈ N to get

||Op(rY )u||2
k

≤ ||u||2
k−1

||Op(r†Y � rY )2k−1

u||.

Then, eventually, {(r†Y � rY )�2k−1}Y ∈J ⊂ S−
n
2−1, and this subset is bounded in S−

n
2−1.

Therefore, for such a fixed k, we define

wY = (r†Y � rY )�2k−1

if 2k >
n

2
+ 1

and estimate the L2-norm∫
G

|Op(wY )u(x)|2 dx ≤
(∫

G

∑
[ξ]∈Ĝ

dξ|Tr(wY (x, ξ)∗wY (x, ξ))| dx
)
||u||2L2(G)

≤
(∫

G

∑
[ξ]∈Ĝ

d2
ξ ||wY (x, ξ)||2 dx

)
||u||2L2(G)

≤ (C ′)2
( ∑

[ξ]∈Ĝ

d2
ξ〈ξ〉2(−n2−1)

)
||u||2L2(G),

where ||wY (x, ξ)|| ≤ C ′〈ξ〉−n2−1 holds with uniform constant C ′ > 0.
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Lemma 3.2.9 (Wirth and Ruzhansky [47]). Suppose that a ∈ Mat(Ĝ), and

sup
[ξ]∈Ĝ

〈ξ〉−d||a(ξ)|| <∞.

Then, if q ∈ C∞(G), there is a C > 0, depending only on n, such that

sup
[ξ]∈Ĝ

〈ξ〉−d||(FqF−1a)(ξ)|| ≤ C||q||
Cd|d|e+d

n
2
e(G)

[
sup

[ξ]∈Ĝ
〈ξ〉−d||a(ξ)||

]
.

Proof. Let us define A : Hd(G)→ L2(G) : u 7→ u ∗ F−1a, convolution by F−1a ∈ D′(G)
On the Fourier side it is u 7→ aFu. By the Parseval identiy, A is well-defined, and

||A|| = sup
[ξ]∈Ĝ

〈ξ〉−d||a(ξ)||.

Denote by Mf the multiplication by f ∈ C∞(G). Put qy(x) = q(x−1y) for all x, y ∈ G.
Again, F(AMqxu) = (FqF−1a)Fu, and by Sobolev embedding, we estimate∫
G

|(AMqxu)(x)|2 dx ≤
∫
G

sup
y∈G
|(AMqyu)(x)|2 dx

≤ C
∫
G

∫
G

|(I −∆y)
1
2 d

n
2 eAMqyu(x)|2 dy dx

= C

∫
G

∫
G

|AM
(I−∆y)

1
2
dn

2
eqy
u(x)|2 dx dy

≤ C
[ ∫

G

||M
(I−∆y)

1
2
dn

2
eqy
||2B(Hd(G)) dy

]
||A||2B(Hd(G),L2(G))||u||

2
Hd(G),

and so we get

sup
[ξ]∈Ĝ

〈ξ〉−d||FqF−1a(ξ)|| ≤ C sup
y∈G
||M

(I−∆y)
1
2
dn

2
eqy
||
[

sup
[ξ]∈Ĝ

〈ξ〉−d||a(ξ)||
]
.

The proof is completed by using that ||Mf ||B(Hd(G)) ≤ C ′||f ||Cd|d|e(G).

In a similar way, if p is an operator symbol satisfying mild bounds on the derivatives,
then one can show L2-boundedness of Op(p) using the same type of argument.

Proposition 3.2.11 (Ruzhansky and Turunen [48]. Ruzhansky, Turunen and Wirth [49]).
Let P : C∞(G)→ C∞(G) be continuous and linear with matrix-symbol p such that

sup
(x,[ξ])∈G×Ĝ

||(I −∆x)
1
2 d

n
2 ep(x, ξ)|| <∞.

Then P extends to a bounded operator P : L2(G)→ L2(G), and

||P ||B(L2(G)) ≤ C sup
(x,[ξ])∈G×Ĝ

||(I −∆x)
1
2 d

n
2 ep(x, ξ)||,

where C is a dimensional constant independent of A.
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Finally, we will show how to form explicit asymptotic sums of Hörmander symbols.
Let X = (X1, · · · , Xn) be a basis of g, and let β ∈ Nn0 and α ∈ Nm×m0 be multi-indices.
Take an approximate identity {ψε}ε>0 ⊂ C∞(G) for the convolution product ∗ on G.
That is, if f ∈ L2(G), we have

||ψε ∗ f − f ||L2(G) → 0 as ε→ 0,

and same is true of f ∈ Hs(G) in the Hs(G)-norm for any s ∈ R.

It will be necessary to use the following lemma, based on Ruzhansky and Wirth [47].
Some differences appear in the argument presented here.

Lemma 3.2.10. Let p ∈ Sd with d ∈ R. Put R(x) = F−1
ξ [p(x, ξ)] ∈ D′(G) for any x ∈ G.

Then we have that

R ∈ C∞(G,H−d−d
n
2 e(G)).

Proof. Moving derivatives under F−1
ξ , we see that R ∈ C∞(G,D′(G)) in the weak*-sense.

Using the Parseval identity, if x ∈ G, we have

||R(x)||H−d−k(G) =
∑

[ξ]∈Ĝ

dξ〈ξ〉−2d−2dn2 eTr
(
p(x, ξ)∗p(x, ξ)

)
≤
∑

[ξ]∈Ĝ

d2
ξ〈ξ〉−2dn2 e

[
〈ξ〉−d||p(x, ξ)||

]2
,

and G→ H−d−d
n
2 e(G) : x 7→ R(x) is differentiable, the Xβ derivatives are just

Xβ
xR(x) = F−1

ξ [Xβ
x p(x, ξ)],

which we see by a similar estimate with a difference quotient.

Theorem 3.2.14. Let {pj}∞j=0 be a sequence with p ∈ Sdj and dj ↘ −∞ as j → ∞.

Then we can construct p ∼
∑∞
j=0 pj by setting

p(x, ξ) =

∞∑
j=0

pj(x, ξ)(I −Fψεj (ξ)) for all (x, [ξ]) ∈ G× Ĝ,

where the sum converges absolutely in C∞(G,FH−d0−dn2 e(G)).

Proof. Define the distributions Rj(x) = F−1
ξ [pj(x, ξ)] for any x ∈ G as in Lemma 3.2.10.

Then we have

Rj ∈ C∞(G,H−dj−d
n
2 e(G)).

Pick {εj}∞j=0 such that

sup
x∈G
||Xβ

xRj(x)− ψεj ∗ (Xβ
xRj(x))||

H−dj−d
n
2
e(G)

<
1

2j+1
when |β| ≤ j.
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But these estimates imply that the sum defining p is uniformly absolutely convergent.
To see this, take N ∈ N0 so large that dj ≤ d0 for j ≥ N , and estimate

sup
x∈G

∞∑
j≥N

||Xβ
xRj(x)− ψεj ∗Xβ

xRj(x)||
H−d0−d

n
2
e(G)
≤
∞∑
j≥N

1

2j+1
≤ 1,

where we use that the inclusion H−dj−d
n
2 e(G) ↪→ H−d0−dn2 e(G) has exactly unit norm.

In particular, p is well-defined, and the sum in p converges in C∞(G,FH−d0−dn2 e(G)).
To see the asymptotic property, define rN by

rN (x, ξ) =

∞∑
j=N

pj(x, ξ)(I −Fψεj (ξ)),

and so, if k ∈ N, we have

p(x, ξ)−
k−1∑
j=0

pj(x, ξ) =

N−1∑
j=k

pj(x, ξ)−
N−1∑
j=k

pj(x, ξ)Fψεj (ξ) + rN (x, ξ),

where the first term is in Sdk , and the second is smoothing by the product rule for δαξ .
It remains to estimate the rN term. So doing, we are free to make N arbitrarily large.
Using Lemma 3.2.9 and the Parseval identity, we get

〈ξ〉|α|−dk ||δαξXβ
x rN (x, ξ)|| ≤ Cα,β

[
sup

[ξ]∈Ĝ
〈ξ〉|α|−dk ||Xβ

x rN (x, ξ)||
]

≤ Cα,β
[ ∞∑
j=N

||Xβ
xRj(x)− ψεj ∗Xβ

xRj(x)||H|α|−dk (G)

]
≤ Cα,β ,

where N is chosen so that dN + dn2 e < dk − |α|, we use that

〈ξ〉|α|−dk ||Xβ
x rN (x, ξ)|| ≤

∞∑
j=N

〈ξ〉|α|−dk ||Xβ
x pj(x, ξ)(I −Fψεj (ξ))||

≤
∞∑
j=N

∣∣∣∣∣∣F−1
ξ

[
Xβ
x pj(x, ξ)(I −Fψεj (ξ))

]∣∣∣∣∣∣
H|α|−dk (G)

,

and Cα,β > 0 are some constants.
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Complexifications of Real-Analytic Manifolds

Questions about ”holomorphic extensions” of functions on a real-analytic manifold M
are meaningless without a notion of enveloping manifold, where such extensions can live.
The prototypical example is that of the (complex-valued) real-analytic functions on Rn,
which naturally extend into connected neighbourhoods of Rn in Cn via series expansion.
However, if we are given any real-analytic manifold M , there is no clear analogue of Cn.
In this case, we may try to complexify the transition functions and patch them together.
Although rough, this idea turns out to work. It leads to the Bruhat-Whitney theorem,
and this is the starting point for the study of complexifications.

Definition 4.0.1. Let Y be a complex manifold with the (almost) complex structure J .
A real-analytic submanifold X of Y is totally real in Y if 2 dimRX = dimR Y , and

Jx(TxX) ∩ TxX = {0} for any x ∈ X.

Theorem 4.0.1 (Bruhat and Whitney [62]. See also Leichtnam, Golse and Stenzel [54]).
Let M be a real-analytic manifold. The following holds:

1. There is a complex manifold MC and a real-analytic embedding ι : M →MC,
where ι(M) is totally real in MC, and dimRMC = 2 dimM .

2. There is a unique anti-holomorphic involution on an open subset W ⊂MC,
where ι(M) ⊂W , and all points of ι(M) are fixed by the involution.

3. Let M ′C be another such manifold, ι′ a totally real embedding of M in M ′C.
Then there are open U ⊂ MC and U ′ ⊂ M ′C with ι(M) ⊂ U and ι′(M) ⊂ U ′,
and a biholomorphism κ : U → U ′ such that ι′ = κ ◦ ι.

U ′

M U

ι′

ι

κ

Here the third point states that the germ of the complexification about M is unique,
while the other two state that M in MC looks like Rn in Cn locally:

Proposition 4.0.1. Let Y be a complex manifold, X a real-analytic submanifold of Y .
Then the following are equivalent:

1. X is totally real in Y .

2. There is a holomorphic chart ϕ : U → Cn of Y about any x ∈ X such that

X ∩ U = {y ∈ U | Imϕ(y) = 0} and Reϕ : X ∩ U → Rn is a chart of X.

61
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It follows that we have an analogue of the principle of unique analytic continuation.
This we see by locally reducing to the model case of Rn in Cn.

Corollary 4.0.1. Let Z be a complex manifold, X also connected and totally real in Y .
If f : X → Z is real-analytic, there is a unique holomorphic fC : W → Z with fC|X = f ,
where W ⊃ X is a connected open subset of Y containing X.

On a real-analytic manifold M there can be real-analytic objects beyond functions.
For example, vector fields, differential forms, metrics, or even some higher order tensors.
It is natural to ask if these somehow extend holomorphically into a complexification MC,
where MC carries the (almost) complex structure J , and ι(M) is totally real inside MC.
Let us illustrate how this happens. We always identify M with ι(M).

Proposition 4.0.2. Let T be any real-analytic section of (T ∗M)⊗k for some k ∈ N.
There is a neighbourhood W ⊂MC of M , and a unique holomorphic section TC of T ∗k,0W ,
which extends T in the sense that at any point x ∈M we have

(TC)x

(Ix − iJx
2

ξ1, · · · ,
Ix − iJx

2
ξk

)
= Tx(ξ1, · · · , ξk) for any ξ1, · · · , ξk ∈ TxM.

It has the following additional properties:

1. If T is symmetric/anti-symmetric, then so is TC.

2. If T is non-vanishing, then W can be chosen so that TC is non-vanishing.

Proof. Using total reality, pick a holomorphic chart ϕ : U → Cn of MC about x ∈ M ,
which makes M ↪→MC look like the inclusion of Rn in Cn, and write

T |U∩M =

n∑
j1,··· ,jk=1

Tj1,··· ,jk dReϕj1 ⊗ · · · ⊗ dReϕjk .

The components Tj1,··· ,jk : U ∩M → C are real-analytic, and extend by Corollary 4.0.1.
Let (TC)j1,··· ,jk : UC → C be their extension to UC ⊂ U with UC ∩M = U ∩M , and

TC|UC =

n∑
j1,··· ,jk=1

(TC)j1,··· ,jk dϕj1 ⊗ · · · ⊗ dϕjk .

This can be done for a collection of such charts, forming a locally finite covering of M .
Since the compatibility relations between coefficients in different charts are real-analytic,
and depend only on the transition functions, they extend at least as far as the coefficients.
Also, any identity imposed on the coefficients continues by uniqueness to the extension,
and therefore symmetry/anti-symmetry of the coefficients is preserved upon continuation.
Hence the (TC)|UC join together uniquely to a holomorphic section.

Corollary 4.0.2. Suppose that M has a real-analytic metric g, with Laplacian ∆ = ∆g.
Then there is an open neighbourhood W of M in MC such that gC|W is non-degenerate.
If f : W → C is holomorphic, ∆(f |M ) has a unique holomorphic extension ∆Cf to W .
In a holomorphic chart ϕ = (z1, · · · , zn) : U → Cn as above, it is given by

(∆Cf)|U∩W =
1√

det gC

n∑
i=1

∂

∂zi

( n∑
j=1

(gC)ij
√

det gC
∂f

∂zj

)
.
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A rudimentary distance measure exists for MC when M is compact and Riemannian.
It is obtained by holomorphically extending the map exp : TxM → M at every x ∈ M ,
which is real-analytic if both the manifold and the Riemannian metric are real-analytic.
Using local trivializations, we get an ε > 0 so that at each x ∈M , it extends to

expx : {ξ ∈ TxM ⊗R C |
√
gx(ξ, ξ) < ε} →MC,

where gx has been extended (in the natural way) to a sesquilinear form on TxM ⊗R C.
But then we may construct a ”tubular neighbourhood” T εM of the zero section in TM ,
and consider the ”imaginary time” exponential map on this special tube neighbourhood.
That is, we put

T εM = {(x, ξ) ∈ TM |
√
gx(ξ, ξ) < ε},

and on this set consider the map

(x, ξ) 7→ expx(iξ).

Proposition 4.0.3 (Leichtnam, Golse and Stenzel [54]. See also Lempert and Szöke [42]).
There is an ε0 > 0 such that for all ε ∈ (0, ε0) the following holds:

1. The map Φ below is real-analytic diffeomorphism onto its image Mε in MC:

Φ : T εM →MC : (x, ξ) 7→ expx(iξ).

2. The map π below is a real-analytic fibration with totally real fibers in Mε:

π : Mε →M : expx(iξ) 7→ x.

Proof. Using the standard identification T(x,ξ)TM ∼= TxM ⊕ Tξ(TxM) at (x, ξ) ∈ TM .
Evaluated at (x, 0) ∈ T εM , the differential of Φ is

(dΦ)(x,0)(δx, δξ) = δx+ Jδξ for any (δx, δξ) ∈ TxM ⊕ TxM.

It follows that dΦ has full rank on the zero section in T εM , because M is totally real.
Therefore, by the compactness of M , Φ is a diffeomorphism for ε0 > 0 small enough.
Consequently, π is equal to Φ−1 followed by the tangent bundle projection TM → M .
Then, we see that at any x ∈M ⊂Mε, we have

Txπ
−1(x) = ker dπx = JxTxM,

and by continuity, for z in a neighbourhood in Mε of each such x, we also get

Tzπ
−1(x) ∩ Jz(Tzπ−1(x)) = ker dπz ∩ Jz(ker dπz) = {0},

whence by compactness, there is an ε0 > 0 such that all fibers of π are totally real.

Corollary 4.0.3. Shrinking ε0, then for all ε ∈ (0, ε0) the following also holds:

1. g extends to a non-degenerate, symmetric holomorphic section of T ∗2,0Mε.

2. If it exists, volg extends to a non-vanishing holomorphic (n, 0)-form on Mε.

The extension is unique in either case.
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4.1 Complexifications of Riemannian Manifolds

If we wish to measure how far an extension of a function f ∈ Cω(M) reaches into MC,
then we will need a coordinate-invariant notion of distance inside this enveloping space.
It is natural to ask for a metric on MC such that inclusion map M ↪→MC is an isometry,
but there are in general many choices [42]. Guillemin and Stenzel [16] build a special one.
They turn Mε into a Kähler manifold for ε > 0 small enough.

Before we proceed, we make a few basic observations. Let N be a complex manifold.
The Dolbeault lemma, the ∂-analogue of the Poincaré lemma for N , implies the following:
A real ω ∈ Ω1,1(N) is closed if and only if any x ∈ N has a neighbourhood U such that

ω|U = i∂∂ρ for some ρ ∈ C∞(U).

On the other hand, if ρ ∈ C2(N), we associate i∂∂ρ ∈ Ω1,1(N) with the Levi form Lev(ρ).
In any local holomorphic coordinates (zj) : U → Cn, it is defined by

Lev(ρ)|U =

n∑
i,j=1

∂2ρ

∂zi∂zj
dzi ⊗ dzj ,

and it is checked that these patch together to a smooth section Lev(ρ) of T ∗1,0N ⊗ T ∗0,1N .
The function ρ is said to be strictly plurisubharmonic if the Levi form is positive-definite.

Now we define the notion of a Kähler manifold. We tacitly extend all tensors C-linearly.
An easily readable introduction to Kähler manifolds can be found in Moroianu [44].

Definition 4.1.1. A Kähler manifold is a manifold N with complex structure tensor J .
It carries a Riemannian metric h, and a symplectic form ω, compatible with J via

h(JX, Y ) = ω(X,Y ) for all X,Y ∈ C∞(N,TN).

The symplectic form ω above is a real form ω ∈ Ω1,1(N). It is called the Kähler form.
A function ρ for ω in some chart U as above is said to be a local Kähler potential for ω.
In local holomorphic coordinates (zj) : U → Cn, we have

ω|U =

n∑
i,j=1

h
( ∂

∂zi
,
∂

∂zj

)[
(J∗dzi)⊗ dzj + (J∗dzi)⊗ dzj

]
= i

n∑
i,j=1

h
( ∂

∂zi
,
∂

∂zj

)
dzi ∧ dzj ,

and shrinking U , if necessary, we also have

h
( ∂

∂zi
,
∂

∂zj

)
=

∂2ρ

∂zi∂zj
for some ρ ∈ C∞(U),

which means that Lev(ρ) is somehow ”half” of h.
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4.1.1 Grauert Tube Construction

The construction by Guillemin and Stenzel creates ”tubes” about the core M in MC.
Each tube carries a Kähler potential ρ, measuring distance in the imaginary directions.
We go through the existence part of their construction.

Theorem 4.1.1 (Guillemin and Stenzel [16]. See alternatively Lempert and Szöke [42]).
On an open W ⊃M in MC there is a real-analytic solution ρ : W → [0,∞) of{

(i∂∂
√
ρ)∧n = 0 in W \M,

Lev(ρ)|M = 1
2g,

where W is invariant under the unique conjugation on MC, and so carries its restriction.
The solution has the following properties:

1. ρ is invariant under the conjugation on W .

2. ρ is strictly plurisubharmonic on W .

3. ρ|M = 0 and dρ|M = 0.

Actually, ρ is unique. This fact is not proved in [16, 17], but is in Stenzel’s thesis [57].
When W is given the Kähler form i∂∂ρ, Lev(ρ)|M = 1

2g forces M ↪→W to be isometric.

This is because if h is the (real) Hermitian metric associated with i∂∂ρ, then

Lev(ρ)|M =
1

2
h|M .

Proof. Let V be a neighbourhood of the diagonal in M ×M on which distance is defined.
That is, on this neighbourhood V , the geodesic distance function r : V → [0,∞) exists,
and we may take V to be invariant under reflections M ×M →M ×M : (p, q) 7→ (q, p).
Take (p, q) ∈ V . Put exp−1

q p = v ∈ TqM . By the Gauss lemma, we have

|v|q = |dv expq(v)v|p,

and, if p 6= q, we can apply it one more time to calculate the x-derivative of r in (p, q).
That is, taking u ∈ TpM , we compute

(dxr)(p, q)u = gq

( v

|v|q
, dx[exp−1

q (x)]u
)

= |v|−1
q gp(dv expq(v)v, u) = gp

( dv expq(v)v

|dv expq(v)v|p
, u
)
,

where we have used r(p, q) = | exp−1
q p|q. It follows that (dxr)(p, q) is a unit covector.

Varying q ∈ Vp \ {p} for a neighbourhood Vp of p with {p} × Vp ⊂ V , we get a map

Vp \ {p} → S∗pM : q 7→ (dxr)(p, q),

and q 7→ (dxr)(p, q) is not of full rank; it maps an open set into the unit cosphere in T ∗pM .

So, in any coordinates (xi) and (yj) about p and q, respectively, we must have

det
( ∂2r

∂yj∂xi

)n
i,j=1

(p, q) = 0.
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The idea is to extend r2 to an open VC ⊂MC×MC containing the diagonal of M×M .
It extends to such a unique holomorphic r2

C : VC → C because r2 is real-analytic on V .
Let MC →MC : z 7→ z be the unique anti-holomorphic involution we know exists on MC.
By considering M component-wise, we may take VC to be connected, with VC ∩M = V ,
and also invariant under both reflection (z, w) 7→ (w, z) and conjugation (z, w) 7→ (z, w).
Since r is real and symmetric, this gives

r2
C(z, w) = r2

C(w, z) and r2
C(z, w) = r2

C(z, w) if (z, w) ∈ VC.

Note that (r2
C)−1(0) is a complex hypersurface in VC. Thus VC \ (r2

C)−1(0) is connected,
and the two square roots of r2

C are holomorphic on this set. Take (z, w) ∈ VC \ (r2
C)−1(0).

If (zi) and (wj) are holomorphic coordinates about z and w, respectively, then

det
(∂2

√
±r2

C
∂zi∂wj

)n
i,j=1

(z, w) = 0.

Choose a small neighbourhood W of M in MC such that (z, z) ∈ VC whenever z ∈ W .
Let ϕ = (ϕi) : U → Cn be holomorphically extended geodesic coordinates about z0 ∈M ,
and with U ⊂W invariant under the involution on W . If p, q ∈M ∩ U , we have

r2(p, q) =

n∑
i,j=1

gij(z0)(ϕi(p)− ϕi(q))(ϕj(p)− ϕj(q)) +R(p, q),

where R is real-analytic with extension RC, and R(z0, z0) = 0 and (dxdyR)(z0, z0) = 0.
This formula extends to U . So if z, w ∈ U , we get

r2
C(z, w) =

n∑
i,j=1

gij(z0)(ϕi(z)− ϕi(w))(ϕj(z)− ϕj(w)) +RC(z, w),

r2
C(z, z) =

n∑
i,j=1

gij(z0)(ϕi(z)− ϕi(z))(ϕj(z)− ϕj(z)) +RC(z, z),

where r2
C(z, z) is strictly negative for z ∈W \M , if the neighbourhood W is small enough.

By possibly shrinking W , we may put

√
ρ : W → i[0,∞) : z 7→ i

√
−1

4
r2
C(z, z),

and (by abuse ϕ = (zi)) see that

Lev(ρ)|W∩U =
1

2

n∑
i,j=1

[
gij(z0) +

1

2

∂2RC

∂zi∂zj

]
dzi ⊗ dzj ,

which implies that dρ|M = 0, Lev(ρ)|M = 1
2g, and ρ is strictly plurisubharmonic on W .

In the geodesic coordinates, it is valid to put w = z for z ∈ (W ∩ U) \M to get

det
( ∂2√ρ
∂zi∂zj

)n
i,j=1

(z, z) = 0,

and therefore (i∂∂
√
ρ)∧n = 0 holds on W \M .
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Now let W be as above, and pick ε0 > 0 so small that Mε ⊂ W whenever ε ∈ (0, ε0).
The imaginary time exponential Φ maps to W , and Mε carries the Kähler potential ρ|Mε

,
where the strict plurisubharmonicity of ρ ensures that ω = i∂∂ρ is always a Kähler form.
This gives each of the ”tubes” Mε the structure of a Kähler manifold.

Corollary 4.1.1.

(ρ ◦ Φ)(x, ξ) = −|ξ|2x for any (x, ξ) ∈ T εM.

Proof. Observe that

r2(expx(ξ), expx(−ξ)) = 4|ξ|2x,

which extends holomorphically from ξ ∈ T εxM to those ξ ∈ TxM ⊗R C with gx(ξ, ξ) < ε2.
The unique holomorphic extension evaluated in iξ for ξ ∈ T εxM then gives

4(ρ ◦ Φ)(x, ξ) = r2
C(expx(iξ), expx(−iξ)) = −4|ξ|2x,

and this is exactly the desired equality.

There is an alternative form of the (Monge-Ampere) equation for
√
ρ in Theorem 4.1.1.

Using the 2-form ω, we construct the unique vector field Ξ on W induced by −Im ∂ρ.
That is, we put i(Ξ)ω = −Im ∂ρ. It leads to an equivalent equation for ρ.

Corollary 4.1.2 (Stenzel [16]). On W \M , we have

(i∂∂
√
ρ)∧n = 0 if and only if Ξρ = 2ρ.

Proof. It will follow from expressing (∂∂
√
ρ)∧n in terms of derivatives of ρ instead of

√
ρ.

Observe that on W \M , we have

ρ
√
ρ∂∂
√
ρ =

1

2
ρ∂∂ρ− 1

4
(∂ρ ∧ ∂ρ),

and also

0 = i(Ξ)(dρ ∧ ω∧n) = (Ξρ)ω∧n − dρ ∧ i(Ξ)(ω∧n),

where we used the product rule, and the anti-derivation property of the interior product.
Combining the above observations, we get

(∂∂
√
ρ)∧n =

( 1

2
√
ρ

)n
(∂∂ρ)∧n − n

4ρ
√
ρ

( 1

2
√
ρ

)n−1

(∂ρ ∧ ∂ρ) ∧ (∂∂ρ)∧(n−1)

=
( −i

2
√
ρ

)n(
ω∧n +

n

2ρ
dρ ∧ Im ∂ρ ∧ ω∧(n−1)

)
=
( −i

2
√
ρ

)n(
ω∧n − n

2ρ
dρ ∧ (i(Ξ)ω ∧ ω∧(n−1))

)
=
( −i

2
√
ρ

)n(
ω∧n − 1

2ρ
dρ ∧ i(Ξ)(ω∧n)

)
=
( −i

2
√
ρ

)n(
1− 1

2ρ
Ξ(ρ)

)
ω∧n,

which is zero if and only if Ξρ = 2ρ, because ω∧n is non-vanishing.
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The Grauert tubes relative to MC are those Mε contained in the neighbourhood W .
They are the images of T εM under the imaginary time exponential map.

Definition 4.1.2. The Grauert tube of radius ε ∈ (0, ε0) is the image Mε ⊂W of

Φ : T εM →MC : (x, ξ) 7→ expx(iξ).

Besides each Mε carrying a Kähler potential, Φ is a symplectomorphism onto Mε.
This is meant relative to the canonical symplectic structure on TM coming from T ∗M .
In fact, even more is true. The canonical 1-form corresponds exactly to −Im ∂ρ under Φ,
and pullback via Φ to T εM of the structure on Mε yields a unique structure on T εM ,
where the Kähler form Φ∗(i∂∂ρ) exactly equals the canonical symplectic 2-form on T εM .
This was a main result of both Guillemin and Stenzel [16] and Lempert and Szöke [42].
Of course, T ∗M and TM are here naturally identified via g.

Theorem 4.1.2 (Lempert and Szöke [42]. See also Golse, Leichtnam and Stenzel [54]).
Let ε ∈ (0, ε0). The following holds:

1. The 1-form Φ∗(−Im ∂ρ) is the canonical 1-form on T εM .

2. The 2-form Φ∗(i∂∂ρ) is the canonical symplectic 2-form on T εM .

There is a complex structure on T εM such that Φ : T εM → Mε is a biholomorphism.
This structure is unique, independent of MC, and has the following properties:

1. The map T εM → T εM : (x, ξ) 7→ (x,−ξ) is anti-holomorphic.

2. If γ : R→M is any geodesic on M , it produces a holomorphic map

{(t, s) ∈ C | |s| < ε} →Mε : (t, s) 7→ expγ(t)(is dγ(t))

3. It admits a real-analytic Kähler potential

% : T εM → R : (x, ξ) 7→ −|ξ|2x.

4. Relative to this structure, Φ : T εM →Mε is a Kähler isomorphism.

The structure is said to be adapted, and T εM is a Bruhat-Whitney complexification of M ,
which is a Kähler manifold such that the symplectic structure is the canonical structure.

Give Mε the complex structure from MC, and the symplectic structure from T εM .
According to the above, these are compatible; T εM is Kähler, with potential

% = Φ∗ρ,

and we automatically have

Mε = {z ∈MC | − i
√
ρ(z) < ε}.

In this way, we may view T εM as a particular Bruhat-Whitney complexification of M ,
where the complex structure comes from the exponential map extended relative to MC,
and T εM is an open subset with Cω boundary inside a compact real-analytic manifold.
The latter fact can be obtained by just one-point compactifying each of the fibers of TM ,
which results in a sphere bundle over M containing T εM as such a subset.
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4.1.2 Examples of Grauert Tubes

In general, it is impossible to obtain
√
ρ explicitly. However, simple examples do exist.

The most important being the sphere. Those below are discussed by Zelditch [65].

Example 4.1.1 (Torus Tn). Equip the n-torus Tn ∼= Rn/Zn with the usual flat metric.
The Bruhat-Whitney complexification is

TnC ∼= Cn/Zn.

The complexified geodesic at ([z], ξ) ∈ TnC × Cn ∼= TTnC is

t 7→ [z + tξ],

and the Grauert tube function is

√
ρ : TnC → i[0,∞) : [z] 7→ i|Im (z)|.

Example 4.1.2 (Sphere Sn). Equip the n-sphere Sn with the induced metric from Rn.
The Bruhat-Whitney complexification is

SnC =
{

(z1, · · · , zn+1) ∈ Cn+1
∣∣∣ n+1∑
j=1

z2
j = 1

}
.

The complexified geodesic at (z, ξ) ∈ TSnC ∼= {(z, ξ) ∈ T ∗Cn+1 | ξ · z = 0} is

t 7→ cos(t
√
ξ · ξ)z +

sin(t
√
ξ · ξ)√

ξ · ξ
ξ,

and the Grauert tube function is

√
ρ : SnC → i[0,∞) : z 7→ i

2
cosh−1(|z|2).

Example 4.1.3 (Hyperbolic space Hn). Equip Hn with the (n, 1) Lorentz metric (·, ·)L.
This is an example of a non-compact manifold that admits an analogous construction.
The Bruhat-Whitney complexification is

HnC =
{

(z1, · · · , zn+1) ∈ Cn+1
∣∣∣ − z2

n+1 +

n∑
j=1

z2
j = −1

}
.

According to Kan and Daowei [35], the Grauert tube of Hn in HnC is not an ”entire” tube.
Rather, it is the Re (zn+1) > 0 component of

Hnπ√
2

= {z ∈ HnC | |Re (z)|2 + |Im (z)|2 < 1},

and if cos−1 takes values in [0, π), the analogous Grauert tube function is

√
ρ : Hnπ√

2
→ i

[
0,

π√
2

)
: z 7→ i√

2
cos−1(|Re (z)|2 + |Im (z)|2).
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4.2 Complexifications of Lie Groups

Any Lie group G naturally carries a real-analytic structure. See for example Warner [40].
It admits a complexification GC, which, in fact, can be taken to be a complex Lie group.
Here the prototypical (compact) example is the unitary group U(m) of dimension m ∈ N,
which is embedded as a totally real Lie subgroup inside the complex Lie group GL(m,C).
Also, GC can be made to satisfy a universal property that fixes it up to biholomorphism.
We shall go through the construction. Let g be the (real) Lie algebra of G.

Theorem 4.2.1. Let G be a connected real Lie group with almost complex structure J .
The following are equivalent:

1. (G, J) is a complex Lie group.

2. The Lie bracket is J-linear, and J commutes with left translations.

Proof. Let us show (1)⇒ (2). By hypothesis, J commutes with left and right translation.
Thus, J defines an automorphism of g, and it commutes with the adjoint representation.
In particular, if X,Y ∈ g and t ∈ R, we have

exp(t ad(Y ))JX = Ad(exp(tY ))JX

= JAd(exp(tY ))X = J exp(t ad(Y ))X,

and then, taking the derivative in t at t = 0, we get ad(Y )JX = Jad(Y )X, as desired.
Now, we show (2)⇒ (1). If the Lie bracket is J-linear, then if X,Y ∈ g, we have

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

= [X,Y ] + J2[X,Y ] + J2[X,Y ]− J2[X,Y ] = 0,

and so, by the Newlander-Nirenberg theorem, G admits a complex structure inducing J .
Again, we have

Ad(exp(Y ))JX = exp(ad(Y ))JX

= J exp(ad(Y ))X = JAd(exp(Y ))X,

and since G is connected, this actually implies that J commutes with Ad(g) for all g ∈ G.
It follows that it commutes with right translations

dRg(JX) = dLgAd(g−1)(JX) = JdRg(X),

and thus, left and right multiplication by a fixed g ∈ G is holomorphic as a map G→ G.
This means G × G → G : (g, h) 7→ gh is separately holomorphic, and hence also jointly.
Since this map is a submersion, its pre-image of {e} is a complex submanifold of G×G.
But it is just the graph of G→ G : g 7→ g−1. So inversion is also holomorphic.

Corollary 4.2.1. Let H be a real Lie subgroup H ↪→ G of a complex Lie group (G, J).
If the Lie algebra of H is closed under J , then H is a complex Lie subgroup of G.

Proof. The almost complex structure J on TG restricts to TH and the above applies.
Since J |TH already commutes with right translations, connectedness is not required.
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4.2.1 Universal Complexification

Let us assume that G is a real Lie group, which is given its natural real-analytic structure,
and G is not necessarily compact nor connected.

Definition 4.2.1. A universal complexification of G is a set GC and a map ι : G→ GC.
The set GC is a complex Lie group, and ι : G→ GC is a real Lie group homomorphism.

GC

G H

φC
ι

φ

If φ : G → H is a real Lie group homomorphism from G to some complex Lie group H,
then there is a unique holomorphic homomorphism φC : GC → H such that φ = φC ◦ ι.

Theorem 4.2.2. If G is connected, then it admits a universal complexification.

Proof. Let π : G̃→ G be a universal Lie group covering of G, where G̃ has Lie algebra g̃,
and G̃C a simply-connected complex Lie group with the complex Lie algebra g̃C = g̃⊗RC.
Take ι̃ : G̃ → G̃C to be the real homomorphism induced by g̃ ↪→ g̃ ⊗R C : X̃ 7→ X̃ ⊗R 1.
Let H be a complex Lie group with Lie algebra h, and φ : G→ H a real homomorphism.
Then d(φ ◦ π) : g̃ → h extends canonically to a Lie algebra homomorphism of g̃C into h,
and is thus the differential of a unique holomorphic homomorphism

φ̃C : G̃C → H with φ ◦ π = φ̃C ◦ ι̃.

Let K be the intersection of every ker(φ̃C) of such homomorphisms φ (up to equivalence).

It follows that K is closed and normal, G̃C/K is a complex Lie group, and ι̃(ker(π)) ⊂ K.

So if πK : G̃C → G̃C/K is the natural quotient, we have

φ ◦ π = φC ◦ (πK ◦ ι̃),

where φC : G̃C/K → H is the holomorphic homomorphism obtained by factoring out K.

Let us therefore put GC = G̃C/K. The inverse of the natural isomorphism G→ G̃/ ker(π),
which comes from π, can be composed with πK ◦ ι̃ on the right after factoring out ker(π).
This gives a continuous homomorphism ι : G → GC with the right property; φ = φC ◦ ι,
and φC is always unique because φ̃C is unique.

In fact, the connectedness assumption can be removed by a more involved argument.
See Neeb [45] or Hochschild [26].

Theorem 4.2.3 (Neeb [45]). Any Lie group G admits a universal complexification.

Corollary 4.2.2. There exists a unique anti-holomorphic involution, GC → GC : z 7→ z,
which has the property of being an endomorphism that restricts to the identity on ι(G).

Proof. Give H = GC the conjugate complex structure (the abstract group is unchanged).
Applying the universal property to ι : G→ H = GC gives the map.

Corollary 4.2.3. If ξ : G → GL(m,C) is a representation of G of dimension m ∈ N,
then there is a unique holomorphic representation ξC : GC → GL(m,C) so that ξ = ξC ◦ ι.
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The universal property ensures that the pair (GC, ι) is unique up to biholomorphisms,
and we say that it is a complexification of G if the homomorphism ι : G→ GC is injective.
It is standard that compact G admit a complexification. See e.g. Hall [18].

Theorem 4.2.4. If G is compact, it has a complexification (GC, ι) with Lie algebra gC.
This complexification has the following properties:

1. The homomorphism dι : g→ gC maps g onto a totally real subspace of gC.

2. The homomorphism ι : G→ GC is a real-analytic embedding of G into GC.

3. The image ι(G) is totally real, and is a maximal compact subgroup of GC.

4. If G is connected, then so is GC.

Proof. By Corollary 3.2.1 G is isomorphic to a closed subgroup of U(m) for some m ∈ N.
So we may take G ⊂ U(m) and g ⊂ u(m). Polar decomposition gives a map

Φ : U(m)× u(m)→ GL(m,C) : (g,X) 7→ exp(iX)g,

and we may put

GC = {exp(iX)g | (g,X) ∈ G× g}.

The map Φ is a known diffeomorphism. Thus GC is a closed submanifold of GL(m,C),
and we get the complexification by taking ι to be the inclusion, and gC = g⊕ ig.

Lemma 4.2.1. The (matrix) tangent spaces are of the form TzGC = zgC for any z ∈ GC.

Proof. Write z = exp(iX)g, and note that dΦ(g,X)(gY, 0) = exp(iX)gY ∈ zgC if Y ∈ g.
Next, fix δX ∈ g, and put γs(t) = η−1(s, t)∂sη(s, t), where η is given by

η : R× R→ GC : (s, t) 7→ Φ(g, t(X + sδX)).

Then η−1∂tη runs in gC, and γ0 solves{
∂tγ0 = ∂s(η

−1∂tη) + [γ0, η
−1∂tη] in gC,

γ0(0) = 0.

It follows that γ0(t) ∈ gC for all t ∈ R, and

dΦ(g,X)(0, δX) = ∂sη(0, 1) = zγ0(1) ∈ zgC,

which together with the first observation implies the lemma.

Lemma 4.2.2. The map gC → gC : Z 7→ zZz−1 is well-defined and injective if z ∈ GC.

Proof. Write z = exp(iX)g, put γ(t) = exp(itX)g for all t ∈ R, and{
∂t(γ

−1Zγ) + [γ−1∂tγ, γ
−1Zγ] = 0 in gC,

γ−1(0)Zγ(0) ∈ gC.

As a consequence, we deduce that γ−1(t)Zγ(t) ∈ gC for all t ∈ R. Therefore z−1Zz ∈ gC,
and since conjugation is clearly injective, we see that zZz−1 ∈ gC holds as well.
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Once we show that GC is a real Lie subgroup of GL(m,C), it is a complex subgroup.
This is because its Lie algebra is closed under the almost complex structure on GL(m,C),
which is just given by TzGL(m,C)→ TzGL(m,C) : Z 7→ z(iz−1Z) for any z ∈ GL(m,C).
But TeGC = g⊕ ig, so this is clear.

Lemma 4.2.3. The manifold GC is a complex Lie subgroup of GL(m,C).

Proof. Let us take two generic elements z = exp(iX)g ∈ GC and w = exp(iY )h ∈ GC,
and form paths α(t) = exp(itX)g, β(t) = exp(itY )h and η(t) = α(t)β(t)−1 for all t ∈ R.
An easy computation shows that

η−1∂tη = β(α−1∂tα− β−1∂tβ)β−1,

which implies η(t)−1∂tη(t) ∈ gC for all t ∈ R, because conjugation takes gC back to itself.
Therefore GL(m,C)→ TGL(m,C) : z 7→ z(η(t)−1∂tη(t)) is tangent to GC for any t ∈ R.
It follows that η runs in GC, because GC is closed in GL(m,C), and γ = η solves{

∂tγ = γη−1∂tη in GL(m,C),

γ(0) ∈ G.

In particular, zw−1 ∈ GC.

Lemma 4.2.4. The subgroup G is maximally compact in GC.

Proof. Let H ⊂ GC be a subgroup containing G properly. Take z = exp(iX)g ∈ H \ G.
Then X 6= 0 and exp(iX) is self-adjoint and positive-definite with a non-unit eigenvalue.
Therefore {exp(ikX)}∞k=1 ⊂ H \G can not have a convergent subsequence in GL(m,C),
and so H can not be compact.

Lemma 4.2.5. The pair (GC, ι) is a universal complexification of G.

Proof. Let φ : G → H be a real Lie group homomorphism into a complex Lie group H.
Recall that such φ are automatically real-analytic. By the above, G is totally real in GC.
Then φ extends uniquely to a holomorphic φC : U → H on an open U ⊂ GC with G ⊂ U .
Since φC is holomorphic on U , but a homomorphism on G, the extension satisfies

φC(zw) = φC(z)φC(w) for all z, w ∈ U0,

where U0 is a connected neighbourhood of the identity component G0 with U0U0 ⊂ U .
Pick a symmetric open V of 0 ∈ g with the property that

exp(iX)U0 ∩ U0 6= ∅ and exp(iX) ∈ U0 if X ∈ V,

and for k ∈ N0 consider

exp(ikX)U0 → H : z 7→ φC(exp(iX))kφC(exp(−ikX)z).

These join together to a unique continuation on the component of GC that contains G0.
It follows by translating that φC extends to all of GC, and is a homomorphism.

Finally, by construction, GC is connected if G is, having just as many components.
Combining the results above completes the theorem.
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4.2.2 Cartan Polar Decomposition

The diffeomorphism that was constructed above is known as the Cartan decomposition.
Henceforth G is assumed to be compact.

Corollary 4.2.4. Let (GC, ι) be the complexification of G in the proof of Theorem 4.2.4.
Then GC is diffeomorphic to G× g via

G× g→ GC : (g,X) 7→ exp(iX)ι(g).

Theorem 4.2.5 (Hall [18]). Let H ⊂ G be a closed subgroup. The following holds:

1. The complexification HC identifies naturally with a closed subgroup of GC.

2. The manifold G/H has a natural real-analytic embedding in GC/HC.

Note that GC/HC always admits a complex structure. See the references in Hall [18].
It is the unique one making the natural action holomorphic. That is, the action

GC ×GC/HC → GC/HC : (w, zHC) 7→ wzHC.

This is the assumed structure in the second point, given the first point.

Proof. Let (HC, ιH) and (GC, ιG) be complexifications (ιH and ιG are both embeddings).
If ι : H → G is the natural inclusion, we obtain ιC : HC → GC such that

ιC ◦ ιH = ιG ◦ ι.

The injectiveness of the derivatives of ιH and ιG together imply that dιC is also injective.

HC

H G GC

ιC

ι

ιH

ιG

Observe that ιC(exp(iY )ιH(h)) = exp(i dιC(Y ))ιG(h) holds for any h ∈ H and Y ∈ h,
where h is the Lie algebra of H. Therefore, by the Cartan decomposition, ιC is injective.
It also follows from this that ιC(HC) is closed in GC, and that ιC(HC) ∩ ιG(G) = ιG(H).

G GC

G/H GC/ιC(HC)

ιG

πH πιC(HC)

κ

Therefore κ : G/H → GC/ιC(HC) : gH 7→ ιG(g)ιC(HC) is a well-defined injective map,
and is real-analytic, because of the natural quotients πH and πιC(HC) in the above diagram.
The quotients intertwine left multiplication and left actions, so if g ∈ G, we have

ker(dπH)g = span{(dι(X))g |X ∈ h} = ker d(πιC(HC) ◦ ιG)g,

and hence dπιC(HC) ◦ dιG = dκ ◦ dπH forces dκ to be injective. Thus κ is an immersion.
Because G/H is compact, it is actually an embedding.
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In addition, we may observe that the embedding constructed above is totally real.
This follows from the neat relation between the kernels in the proof.

Corollary 4.2.5. The natural embedding G/H ↪→ GC/HC is totally real.

Proof. Overloading notation, J denotes the almost complex structures of GC and GC/HC.
Since ιG : G→ GC is totally real, then by the proof above, if g ∈ G, we have

ker(dπιC(HC))ιG(g) = JιG(g)(dιG)g(ker(dπH)g)⊕ (dιG)g(ker(dπH)g).

Suppose that Xg, Yg ∈ TgG are some tangent vectors such that

Jκ(gH)dκgH((dπH)g(Xg)) = dκgH((dπH)g(Yg)).

Then, because πιC(HC) is holomorphic, we have

JιG(g)(dιG)g(Xg)− (dιG)g(Yg) ∈ ker(dπιC(HC))ιG(g).

It follows that Xg, Yg ∈ ker(dπH)g.

Proposition 4.2.1. The quotient GC/ι(G) is simply-connected.

Proof. Let γ : [0, 1] → GC/ι(G) be a continuous loop. It lifts via the natural quotient,
which is a proper surjective submersion, and the lift is continuous. So, we get

γ(t) = exp(iX(t))ι(G) for all t ∈ [0, 1],

where [0, 1]→ g : t 7→ X(t) is continuous, and a loop by uniqueness of the decomposition.
But g is simply connected, so it is homotopic to X(0). Thus γ is homotopic to γ(0).

Furthermore, GC retains the property of unimodularity that G automatically enjoys.
It follows from the fact that the modular function extends holomorphically.

Proposition 4.2.2. The complexification GC is unimodular.

Proof. Using the universal property, Ad : G → Aut(g) extends to Ad : GC → Aut(gC).
Therefore, if the compact group G is connected, then

det Ad(g) = 1 for all g ∈ GC,

and the non-connected case follows by translation from the identity component.

The complexification GC is, properly understood, the maximal Grauert tube of G.
Given an Ad(G)-invariant inner product on g, the tubes in GC are easily described:

Proposition 4.2.3 (Hall [19]). The Grauert tube function
√
ρ of G is defined on all GC.

It is simply given by

√
ρ : GC → i[0,∞) : exp(iX)g 7→ i|X|g,

and the tube Gε, of any radius ε ∈ (0,∞), is just

Gε =
{

exp(iX)
∣∣ |X|g < ε

}
G.
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Analogous to Corollary 4.2.4, we have the map (x, ξ) 7→ expx(iξ) in the general setting.
It coincides with the Lie exponential, and motivates the notion of an entire tube.

Definition 4.2.2. Let MC be a (choice of) Bruhat-Whitney complexification of (M, g).
Then MC is called entire if expx extends holomorphically to TxM ⊗R C for each x ∈M .

Finally, there is a result relating integration on GC to G × g via the Corollary 4.2.4.
Identify G with ι(G) ⊂ GC. Then gC = g⊕ Jg, where J is the complex structure on GC.
Any Ad(G)-invariant inner product (·, ·)g on g extends to gC by setting

(X1 + JY1, X2 + JY2)gC = (X1, X2)g + (Y1, Y2)g for all X1, X2, Y1, Y2 ∈ g,

which is real-valued, and Ad(G)-invariant (not Ad(GC)), by holomorphy of multiplication.
It determines a left-invariant metric on GC, which in turn determines a measure dz.
Similarly, let dx be the measure on G induced by the chosen inner product on g.

Theorem 4.2.6 (Hall [19]). If f ∈ Cc(GC), then∫
GC

f(z) dz =

∫
G

[ ∫
g

f(exp(iX)g)
dX

Θ(X)2

]
dg,

where Θ : g→ (0,∞) is the Ad(G)-invariant function defined by

1

Θ(X)2
= det

( sin ad(X)

ad(X)

)
for all X ∈ g.

Let a be a maximal abelian subalgebra of g. Pick positive roots R+ for a relative to gC.
Restricted to a, the function Θ is also expressed by

Θ(X) =
∏
α∈R+

α(X)

sinh(α(X))
for all X ∈ a.
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Fourier Integral Operators

Almost all the operators that are encountered in the studty of PDE are instances of FIO.
The class of FIO contains solution operators to many hyperbolic systems (propagators),
but also trace operators, pseudo-differential operators and more. See e.g. Duistermaat [10].
It turns out that they provide a unified geometric framework for describing operators,
where the singular structure of the kernel is encoded by a conic Lagrangian submanifold.
This can be exploited using techniques of microlocal analysis to obtain precise descriptions
of the trajectories of singularities propagated by solution operators to hyperbolic systems.
In fact, we will later see that eit

√
−∆ is related to our questions of holomorphic extension.

This operator is the half-wave propagator, the solution operator to{(
∂
∂t − i

√
−∆

)
u = 0 on R×M,

u|t=0 = u0 ∈ C∞(M),

where u ∈ C∞(R×M), and M is a compact Riemannian manifold with its Laplacian ∆.
This is a prototypical example of an FIO, and is perhaps also one of the most important.
If X and Y are (smooth) manifolds, a general FIO is a continuous linear operator

A : C∞(Y,Ω
1
2 )→ D′(X,Ω 1

2 ),

and hence is defined uniquely by its kernel K(A), which must locally be of a certain form.
It is described by a collection of phase functions that are defined locally on T ∗(X×Y )\0,
and which patch together to parametrize a certain closed conic Lagrangian submanifold.
Usually, the phases are real-valued and positively homogeneous in the cotangent variable,
but they can also be complex-valued (just as long as the imaginary part is non-negative).

It turns out that eit
√
−∆ becomes such an FIO upon Wick rotation t 7→ it for small t,

and all functions in the image then extend holomorphically into a complexification of M .
The resulting operator, which is called Pε, will become a central object of study later.
Because of this, we have included this chapter, with special focus on FIO.

The theory of FIO with real phase is due to Hörmander and Duistermaat [27, 30].
Later, Melin and Sjöstrand expanded this work to the theory of complex phase FIO [43],
and then Sjöstrand finally developed a theory of ”Cauchy Integral Operators” in [52],
which was used to study propagation of analytic singularities in the complex domain.
However, Sjöstrand’s operators in [52] are not complex phase FIO in the original sense.
The theory is given a modern exposition in the final volume of Hörmander’s series [34].
It is without doubt a very powerful tool, but also very difficult to learn.
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5.1 Real and Complex Phase FIO

The construction of FIO begins with the definition of regular real and complex phases,
which enter into the local oscillatory integrals that are the whole foundation of the theory.
They form parametrizations of conic Lagrangian submanifolds of the cotangent bundle,
and the microlocal properties of FIO are determined by these. Let n,N ∈ N.

A phase function φ is a special smooth function on a conic subset of Rn × RN \ {0}.
The word ”conic” means invariance under (x, θ) 7→ (x, tθ) for any t ∈ (0,∞).

Definition 5.1.1. Let N ∈ N be fixed, and let Γ ⊂ Rn × RN \ {0} be an open conic set.
A real-valued φ ∈ C∞(Γ) is said to be a regular real phase if the following holds:

1. φ has no critical points.

2. φ is positively homogeneous of degree 1 in the second variable.

3. {d(x,θ)∂θjφ(x, θ)}Nj=1 is R-linearly independent for each (x, θ) ∈ Γφ, where

Γφ = {(x, θ) ∈ Γ | dθφ(x, θ) = 0}.

There is an analogue in the complex case where we always take φ to be real-analytic.
A more general situation is described by Melin and Sjöstrand in [43].

Definition 5.1.2. Let N ∈ N be fixed, and let Γ ⊂ Rn × RN \ {0} be an open conic set.
A (complex) φ ∈ Cω(Γ) is said to be a regular complex phase if the following holds:

1. φ has no critical points.

2. φ is positively homogeneous of degree 1 in the second variable.

3. φ extends holomorphically to φC on an open cone ΓC containing Γ, where

ΓC ⊂ Cn × CN \ {0} and ΓC = ΓC.

4. {d(x,θ)∂θjφC(x, θ)}Nj=1 is C-linearly independent for each (x, θ) ∈ Γφ, where

Γφ = {(x, θ) ∈ ΓC | dθφC(x, θ) = 0}.

Furthermore, φ is said to be of positive type if Imφ ≥ 0.

In either case, by the implicit function theorem, Γφ is a submanifold of dimension n.
It is a complex submanifold for complex φ, by the holomorphic version of the theorem.
In the real case, we put

Γφ → Λφ ⊂ Rn × Rn \ {0} : (x, θ) 7→ (x, dxφ(x, θ)),

and in the complex case, we similarly put

Γφ → Λφ ⊂ Cn × Cn \ {0} : (x, θ) 7→ (x, dxφC(x, θ)).
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The subsets Λφ, being the images of the mappings above, are of course always conic.
Let us show that they are immersions, and that Λφ is real (or complex) Lagrangian.

Lemma 5.1.1. Let φ be a regular phase function. The following holds:

1. If φ is real, Λφ is an immersed Lagrangian submanifold.

2. If φ is complex, Λφ is an immersed complex Lagrangian submanifold.

Proof. Assume that φ is a real phase function. The argument for complex phase is similar.
Take any point (x, θ) ∈ Γφ, and suppose that

(δx, dxdxφ(x, θ)δx+ dθdxφ(x, θ)δθ) = (0, 0) for some (δx, δθ) ∈ T(x,θ)Γφ.

Then δx = 0 and (dθdxφ)(x, θ)δθ = 0. The tangent vector must satisfy

dxdθφ(x, θ)δx+ dθdθφ(x, θ)δθ = 0,

which implies

dθ(d(x,θ)φ)(x, θ)δθ = 0.

Thus δθ = 0 by regularity. It follows that the differential is injective, so Λφ is immersed.
In order for Λφ to be Lagrangian, the canonical 1-form must vanish

dxφ(x, θ)δx = 0 for all (δx, δθ) ∈ T(x,θ))Γφ.

However, we have dθφ(x, θ) = 0 by construction, and φ(x, θ) = 0 holds by homogeneity.
The tangent vectors are therefore forced to satisfy

dxφ(x, θ)δx+ dθφ(x, θ)δθ = 0,

which shows what we want. In the complex case, just replace φ by φC in the calculations,
and take the tangent vectors out of the (1, 0) holomorphic tangent space.

In the complex case, we will often need to isolate the ”real part” of the sets Λφ or Γφ.
These are defined by

(Λφ)R = Λφ ∩ (Rn × Rn \ {0}) and (Γφ)R = Γφ ∩ (Rn × RN \ {0}).

Theorem 5.1.1 (Melin and Sjöstrand [43]. The notation used here is slightly different).
If φ is a regular complex phase of positive type, then (Λφ)R is precisely the image of (Γφ)R.

The ”regular” part of the above definitions of phase functions is not always required.
It is possible to have degenerate phases, satisfying only the first two points.

Definition 5.1.3. Let N ∈ N be fixed, and let Γ ⊂ Rn × RN \ {0} be an open conic set.
A φ ∈ C∞(Γ) is said to be a (general) phase function if the following holds:

1. φ has no critical points.

2. φ is positively homogeneous in the second variable.

As before, it is of positive type if Imφ ≥ 0.
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A phase function allows us to define special distributions called oscillatory integrals.
In the literature, these are often abusively treated as actual integrals, but they are not.
The following theorem shows exactly how they are formed.

Theorem 5.1.2. Let N ∈ N be fixed, and let Γ ⊂ Rn × RN \ {0} be an open conic set.
Assume that

1. φ is a (general) phase of positive type on Γ.

2. a ∈ Sd(Rn × RN ) is an amplitude of order d ∈ R.

3. χ ∈ C∞0 (RN ) equals 1 in a neighbourhood of the ball {θ ∈ RN | |θ| ≤ 1}.

Then the limit below exists, and the map defines a continuous linear functional:

Iφ(a) : C∞0 (Rn)→ C : ϕ 7→ lim
ε→0

∫
Rn

∫
RN

eiφ(x,θ)χ(εθ)a(x, θ)ϕ(x) dx dθ.

In addition, the following holds:

1. The limit is independent of the choice of χ.

2. The distribution Iφ(a) ∈ D′(Rn) is supported in the base of Γ.

Proof. Using a cutoff in θ near 0, we may assume that a(x, θ) vanishes whenever |θ| ≤ 1.
Since φ has no critical points in Γ, we can define

L =
1

i

d(x,θ)φ

|d(x,θ)φ|2
· d(x,θ) on Γ,

and away from θ = 0, coefficients in the transposed operator Lt define symbols in (x, θ).
Consequently, if k ∈ N, it lowers the order

|(Lt)k(χ(εθ)a(x, θ)ϕ(x))| ≤ Ck〈θ〉d−k max
|α|≤k

sup
y∈Rn

|∂αy ϕ(y)|,

where Ck > 0 is a constant depending on k but not |ε| ≤ 1. It holds especially for ε = 0.
This is because φ is positively homogeneous in θ, and a(x, θ) is assumed zero for |θ| ≤ 1.
Then, if d− k < −N , we can integrate by parts and use the DCT to get

Iφ(a)ϕ = lim
ε→0

∫
RN

∫
Rn
eiφ(x,θ)aε(x, θ)ϕ(x) dx dθ

= lim
ε→0

∫
RN

∫
Rn
eiφ(x,θ)(Lt)k(χ(εθ)aε(x, θ)ϕ(x)) dx dθ

=

∫
RN

∫
Rn
eiφ(x,θ)(Lt)k(a(x, θ)ϕ(x)) dx dθ,

which shows existence, and independence of both χ and k ∈ N, as long as d − k < −N .
Finally, the map is a continuous functional, because

|Iφ(a)ϕ| ≤ Ck
[ ∫

supp(ϕ)

∫
RN
〈θ〉d−k dθ dx

]
max
|α|≤k

sup
x∈Rn

|∂αxϕ(x)|,

and thus Iφ(a) ∈ D′(Rn), with supp Iφ(a) contained in the base of Γ.
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The above distribution Iφ(a) is the so-called oscillatory integral attached to φ and a.
Its microlocal properties are controlled by Λφ and ess supp(a).

Theorem 5.1.3. In extension of Theorem 5.1.2, the following holds:

1. If φ is a real phase, then

WF Iφ(a) ⊂ Λφ.

2. If φ is a complex phase of positive type, then

WF Iφ(a) ⊂ (Λφ)R.

Proof. As before, by a cutoff in θ near 0, we can make a(x, θ) = 0 provided that |θ| ≤ 1.
Pick any (x0, ξ0) 6∈ Λφ. We can choose ϕ ∈ C∞0 (Rn) with ϕ(x0) = 1 such that:

1. There is a closed cone Γ0 ⊂ RN \ {0} (possibly empty), where

{(x, θ) ∈ Γ ∩ (supp(ϕ)× RN \ {0}) | dθφ(x, θ) = 0} ⊂ supp(ϕ)× Γ0.

2. There is a closed cone Γξ ⊂ RN \ {0} containing ξ0, where

dxφ(x, θ) 6∈ Γξ if (x, θ) ∈ supp(ϕ)× Γ0.

Using a conic cutoff in θ, we may then assume that cone supp(a) ⊂ supp(ϕ) × Γ0 holds.
This is because dθφ(x, θ) 6= 0 holds for (x, θ) ∈ cone supp(a) ⊂ supp(ϕ)× (RN \ {0}) \Γ0,
and integration by parts with |dθφ|−2dθφ · dθ on this set gives a convergent integral in θ.
On the other hand, |dxφ(x, θ) − ξ| ≥ C(|ξ| + |θ|) if (x, θ) ∈ supp(ϕ) × Γ0 and ξ ∈ Γξ0 ,
where C > 0 depends only on the cones and ϕ. So we can for ξ ∈ Γξ0 define

Lξ =
1

i

dxφ− ξ
|dxφ− ξ|2

· dx on supp(ϕ)× Γ0.

The Leibniz rule gives a constant Ck > 0 independent of ε ≤ 1 such that

|(Ltξ)k(χ(εθ)a(x, θ)ϕ(x))| ≤ Ck
〈θ〉d

(|ξ|+ |θ|)k
max
|α|≤k

sup
y∈Rn

|∂αy ϕ(y)|.

Then, if N ′ ∈ N and k > d+N +N ′, we can integrate by parts and use the DCT to get

〈Iφ(a)(x), e−ix·ξϕ(x)〉 = lim
ε→0

∫
RN

∫
Rn
ei(φ(x,θ)−x·ξ)χ(εθ)a(x, θ)ϕ(x) dx dθ

= lim
ε→0

∫
RN

∫
Rn
ei(φ(x,θ)−x·ξ)(Ltξ)

k(χ(εθ)a(x, θ)ϕ(x)) dx dθ

=

∫
RN

∫
Rn
ei(φ(x,θ)−x·ξ)(Ltξ)

k(a(x, θ)ϕ(x)) dx dθ,

where the last integral is absolutely convergent, and

sup
ξ∈Γξ0

〈ξ〉N
′
|〈Iφ(a)(x), e−ix·ξϕ(x)〉| ≤ Ck sup

ξ∈Γξ0

∫
|θ|≥1

〈ξ〉N ′〈θ〉d

(|ξ|+ |θ|)k
dθ <∞.

Therefore (x0, ξ0) 6∈WF Iφ(a).
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The connection between Λφ and Iφ(a) is revealed by the following cornerstone theorem.
This is the theorem on the invariance of phase - the theory of global FIO rests on it.

Definition 5.1.4. The notation Iφ(a) is used for distributions as in Theorem 5.1.2.

Theorem 5.1.4 (Hörmander [27], Melin and Sjöstrand [43]. See also Duistermaat [10]).

Let N, Ñ ∈ N be fixed, and let Γ ⊂ Rn × RN and Γ̃ ⊂ Rn × RÑ be two open conic sets.
Let φ ∈ C∞(Γ) and φ̃ ∈ C∞(Γ̃) be regular real phases with the properties:

1. There is a point (x0, ξ0) ∈ Λφ ∩ Λφ̃ 6= ∅ such that

ξ0 = dxφ(x0, θ0) = dxφ̃(x0, θ̃0) with (x0, θ0) ∈ Γφ and (x0, θ̃0) ∈ Γ̃φ̃.

2. There is an open set U containing (x0, ξ0) such that

Λφ ∩ U = Λφ̃ ∩ U.

Then there exists an open cone Γ′ ⊂ Γ, containing (x0, θ0), with the following property:
Given any d ∈ R and

a ∈ Sd(Rn × RN ) with (x0, θ0) ∈ cone supp(a) ⊂ Γ′,

then there is an open cone Γ̃′ ⊂ Γ̃ such that Iφ(a) = Iφ̃(ã), where

ã ∈ Sd+N−Ñ
2 (Rn × RÑ ) with (x0, θ̃0) ∈ cone supp(ã) ⊂ Γ̃′.

The same is true if φ ∈ Cω(Γ) and φ̃ ∈ Cω(Γ̃) are regular complex phases of positive type,
but where we ask for (x0, ξ0) ∈ (Λφ)R ∩ (Λφ̃)R 6= ∅ to hold in the first condition instead.
Also, the same holds if each space of symbols above is replaced by its PHG analogue.

In order to globalize in the complex case, we must complexify the cotangent bundle.
Let X be a real-analytic manifold, and XC a Bruhat-Whitney complexification of X.
Then T ∗1,0XC \ 0 is holomorphically symplectic, and complexifies T ∗X \ 0 via

T ∗X \ 0 ↪→ T ∗1,0XC \ 0 : (x, ξ) 7→
(
x,

1

2
(Ix − iJx)∗ξ

)
.

Definition 5.1.5. Let ΛC ⊂ T ∗1,0XC \ 0 be any conic complex Lagrangian submanifold.
The real part ΛR of ΛC is defined by

ΛR = ΛC ∩
1

2
(I − iJ)T ∗X \ 0.

It is customary to say that ΛC is closed if ΛR is closed (see the conventions used in [43]).
Also, ΛC is said to be positive if every point of ΛR is contained in a Λφ of the form

Γφ → Λφ ⊂ ΛC : (x, θ) 7→ dκtC(x, dxφC(x, θ)),

where φ is some regular complex phase of positive type on an open cone Γ ⊂ κ(U)×RN ,
and κC : UC → Cn is the holomorphic extension to XC of a chart κ : U → Rn of X.
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5.1.1 The Global Calculus

The local result on the invariance of phase in oscillatory integrals leads to global FIO,
where the local pieces Λφ parametrize a global conic Lagrangian submanifold.

Let X, Y and Z be three smooth manifolds of dimension nX , nY and nZ , respectively.
The class of Fourier Integral Distributions (FID) is defined in the following way:

Definition 5.1.6. Let Λ be any fixed closed conic Lagrangian submanifold of T ∗X \ 0.

An order d ∈ R FID u ∈ Id(X,Λ) is a u ∈ D′(X,Ω 1
2 ) of the form

〈u, ϕ〉 =
∑
j∈N

Iφj (aj)(Φj(ϕ|Uj )) + 〈v, ϕ〉 for all ϕ ∈ C∞0 (X,Ω
1
2 ),

where {Uj}j∈N are precompact charts of X forming a locally finite cover of the base of Λ.
The chart maps κj : Uj → RnX enter into the remaining components:

1. v ∈ C∞(X,Ω
1
2 ).

2. Φj : C∞(U,Ω
1
2 )→ C∞(κ(U)) is the trivialization that is induced by κj.

3. Each φj ∈ C∞(Γj) is a real phase on an open conic set Γj ⊂ κj(Uj)×RNj .
It must be regular, inducing a diffeomorphism

Γφj → Λφj ⊂ Λ : (x, θ) 7→ dκtj(x, dxφj(x, θ)),

where Λφj is open in Λj.

4. Each aj is an amplitude defined on κj(Uj) × RNj with cone supp aj ⊂ Γj.
It may be rapidly decaying, but must satisfy

aj ∈ Sd−
Nj
2 +

nX
4 (κj(Uj)× RNj ),

where d ∈ R is the order of u.

Also, put u ∈ Idphg(X,Λ) if the above holds with aj ∈ S
d−

Nj
2 +

nX
4

phg (κj(Uj)× RNj ) instead.

Thus u looks like Iφ(a), with φ parametrizing Λ locally, near points in X under Λ.
The definition is independent of the charts by Theorem 5.1.4, and the form of WF Iφ(a).
In general, Λ may have multiple rays in T ∗X \ 0 emanating from the same base point,
and several φj may be needed to parametrize Λ near such a point.

Let Λ be any closed conic Lagrangian (embedded) submanifold of T ∗(X × Y ) \ 0.
Associated to Λ is a set C, defined by

C = Λ′ =
{

((x, ξ), (y, η)) ∈ T ∗X × T ∗Y
∣∣∣ (x, y, ξ,−η) ∈ Λ

}
.

Definition 5.1.7. If A : C∞0 (Y,Ω
1
2 )→ D′(X,Ω 1

2 ) is continuous and linear, we write

A ∈ Id(X,Y ;C) if K(A) ∈ Id(X × Y,Λ) for d ∈ R.

The analogous space of real phase PHG FIO is denoted Idphg(X,Y ;C).
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On the other hand, there is a notion of complex phase FID, using the same notation.
The difference is that X, Y and Z are real-analytic when dealing with complex phases,
and we always consider closed conic positive complex Lagrangian submanifolds instead.
So fix Bruhat-Whitney complexifications XC, YC and ZC, of X, Y and Z, respectively.
This avoids the technicalities of almost analytic extensions in [43].

Definition 5.1.8. Let ΛC be a closed conic positive Lagrangian submanifold of T ∗1,0XC\0.

An order d ∈ R FID u ∈ Id(X,ΛC) is a u ∈ D′(X,Ω 1
2 ) of the form

〈u, ϕ〉 =
∑
j∈N

Iφj (aj)(Φj(ϕ|Uj )) + 〈v, ϕ〉 for all ϕ ∈ C∞0 (X,Ω
1
2 ),

where {Uj}j∈N are locally finite and precompact charts of X that cover the base of ΛR.
The chart maps κj : Uj → RnX enter into the remaining components:

1. v ∈ C∞(X,Ω
1
2 ).

2. Φj : C∞(U,Ω
1
2 )→ C∞(κ(U)) is the trivialization that is induced by κj.

3. Each φj ∈ Cω(Γj) is a complex phase on an open cone Γj ⊂ κj(Uj)×RNj .
It must be positive and regular, inducing a diffeomorphism

Γφj → Λφj ⊂ ΛC : (x, θ) 7→ d(κj)
t
C(x, dx(φj)C(x, θ)),

where Λφ is open in ΛC, and (κj)C is the holomorphic extension of κj.

4. Each aj is an amplitude defined on κj(Uj) × RNj with cone supp aj ⊂ Γj.
It may be rapidly decaying, but must satisfy

aj ∈ Sd−
Nj
2 +

nX
4 (κj(Uj)× RNj ),

where d ∈ R is the order of u.

Also, put u ∈ Idphg(X,ΛC) if the above holds with aj ∈ S
d−

Nj
2 +

nX
4

phg (κj(Uj)×RNj ) instead.

The notation Id(X,ΛC) makes no distinction between real and complex phase FID.
Given Λ or ΛC (with the subscript C) it should be clear from the context what is meant,
and as before, Theorems 5.1.4 and 5.1.3 apply, so Id(X,ΛC) is independent of the charts.
The holomorphic diffeomorphisms need not cover all of ΛC, only parametrize it near ΛR.
In the complex case, only the germ of ΛC about ΛR really matters.

Let now ΛC be a closed conic positive Lagrangian submanifold of T ∗1,0(XC × YC) \ 0.
Analogous to the real case, we associate to ΛC a set CC, defined by

CC = Λ′C =
{

((x, ξ), (y, η)) ∈ T ∗1,0XC × T ∗1,0YC
∣∣∣ (x, y, ξ,−η) ∈ Λ

}
.

Definition 5.1.9. If A : C∞0 (Y,Ω
1
2 )→ D′(X,Ω 1

2 ) is continuous and linear, we write

A ∈ Id(X,Y ;CC) if K(A) ∈ Id(X × Y,ΛC) for d ∈ R.

The analogous space of complex phase PHG FIO is denoted Idphg(X,Y ;CC).
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It is implicit in the above and [10, 27] that it is necessary to ”cut” cones of frequencies.
By this we mean using an amplitude to isolate a cone (e.g. where Theorem 5.1.4 applies).
The construction is simple. Pick χ0 ∈ C∞0 (R) such that

χ0(t) =

{
1 if |t| ≥ 1,

0 if |t| ≤ 1
2 .

Suppose that Γ′ is an open cone with closure lying in an open cone Γ ⊂ V × (RN \ 0),
where V ⊂ Rn is open, and the closure of Γ′ may or may not have compact base in V .
Let χ ∈ C∞(V × SN−1) equal 1 on Γ′ ∩ (V × SN−1) but 0 off Γ ∩ (V × SN−1), and

a(x, θ) = χ0(|θ|)χ(x,
θ

|θ|
) for any (x, θ) ∈ Rn × RN ,

which is then a symbol a ∈ S0
phg(V × RN ) with cone supp(a) ⊂ Γ.

The wavefront set of an FID is by their very definition contained inside Λ (or ΛC).
Let Λ and ΛC be submanifolds as in the above definitions, and let d ∈ R.

Proposition 5.1.1. The following holds:

1. If u ∈ Id(X,Λ), then

WF(u) ⊂ Λ.

2. If u ∈ Id(X,ΛC), then

WF(u) ⊂ ΛR.

Proof. Apply Theorem 5.1.3 to the individual oscillatory integrals making up u.

It is customary to talk about C instead of Λ, because of the wavefront relation for A.
By this we mean the relation between wavefront sets in the following proposition.

Proposition 5.1.2. Let A ∈ Id(X,Y ;C) be a real phase FIO attached to the set C = Λ′.
Then if Γ ⊂ T ∗Y \ 0 is a closed cone with Γ ∩WF′X(A) = ∅, we have

WF(Au) ⊂
[
C ◦WF(u)

]
∪WF′X(A) if u ∈ E ′Γ(Y,Ω

1
2 ).

Proof. Combine Proposition 5.1.1 and Theorem 2.1.2.

In many applications, A is a propagator, so A and C depend on a parameter t ∈ [0,∞),
and the relation shows how singularities in the initial data are carried by C.

Definition 5.1.10. Let C and CC be obtained from Λ and ΛC as C = Λ′ and CC = Λ′C.
Then C is said to be a homogeneous canonical relation from T ∗Y to T ∗X if

C ⊂ T ∗X \ 0× T ∗Y \ 0,

and likewise for CC if this is true of ΛR, and CC is said to be a positive if ΛC is positive.
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The homogeneous canonical relations are important because they are well-behaved.
They map smooth functions to smooth functions continuously, and extend by duality.

Theorem 5.1.5 (Hörmander [27]). Let A ∈ Id(X,Y ;C). The following holds:

1. If Λ ∩ (T ∗X × 0Y ) = ∅, then A restricts to a continuous linear operator

A : C∞0 (Y,Ω
1
2 )→ C∞(X,Ω

1
2 )

2. If Λ ∩ (0X × T ∗Y ) = ∅, then A extends to a continuous linear operator

A : E ′(Y,Ω 1
2 )→ D′(X,Ω 1

2 )

The same holds if X and Y are real-analytic, A ∈ Id(X,Y ;CC), and Λ is replaced by ΛR.

Note that the hypotheses of (1) and (2) hold if C is a homogeneous canonical relation.

Proof. By the decomposition of K(A), it suffices to consider A : C∞0 (RnY ) → D′(RnX ),
where K(A) = Iφ(a), φ is a regular real (or complex positive) phase on an open cone Γ,
and we may assume that cone supp (a) ⊂ Γ. The amplitude is of order d − N

2 + nX+nY
4 .

In the local picture, the hypothesis of (1) ensures that

d(y,θ)φ(x, y, θ) 6= 0 when (x, y, θ) ∈ Γ,

and, in that case, we can form the differential operator

L =
1

i

d(y,θ)φ

|d(y,θ)φ|2
· d(y,θ) on Γ.

Take ψ ∈ C∞0 (RnX ) and ϕ ∈ C∞0 (RnY ), and integrate by parts to get

〈Iφ(a), ψ ⊗ ϕ〉 = lim
ε→0

∫
RN

∫
RnX

∫
RnY

eiφ(x,y,θ)aε(x, y, θ)ψ(x)ϕ(y) dy dx dθ

=

∫
RnX

ψ(x)
[ ∫

RN

∫
RnY

eiφ(x,y,θ)(Lt)k(a(x, y, θ)ϕ(y)) dy dθ
]
dx,

which means Aϕ is the bracketed term, independent of k ∈ N, if k > d + N
2 + nX+nY

4 .
Then, by the DCT, derivatives of any order go through the integrals, so Aϕ is smooth.
In particular, if α ∈ NnX0 and K ⊂⊂ RnX is compact, we get

sup
x∈K
|∂αxAϕ(x)| ≤

∑
β≤α

(
α

β

)∫
RN

∫
RnY
|∂βx [eiφ(x,y,θ)]∂α−βx (Lt)k(a(x, y, θ)ϕ(y))| dy dθ

≤ C max
|β|≤k

sup
y∈RnY

|∂βyϕ(y)|,

when k > |α| + d + N
2 + nX+nY

4 . So A is continuous between the respective topologies.
The second point (2) follows from (1). This is because we can put

〈Au,ψ〉 = 〈u,Atψ〉 if u ∈ E ′(RnY ),

where the transpose At satisfies the first condition (swap x and y).



Fourier Integral Operators 87

The FIO, like pseudo-differential operators, admit formal L2 (or even L2
loc)-adjoints.

However, the associated homogeneous (positive) canonical relation C (or CC) is changed.
It turns out to be natural to define the adjoint canonical relation

C† =
{

((y, η), (x, ξ)) ∈ T ∗Y \ 0× T ∗X \ 0
∣∣∣ ((x, ξ), (y, η)) ∈ C

}
,

and, if X and Y are real-analytic, its Hermitian analogue

C†C =
{

((y, η), (x, ξ)) ∈ T ∗1,0YC \ 0× T ∗1,0XC \ 0
∣∣∣ ((x, ξ), (y, η)) ∈ CC

}
,

where (x, ξ) 7→ (x, ξ) is the conjugation on T ∗1,0XC relative to T ∗X.

The result on real and complex phase adjoints can be found in Hörmander [27, 28].
But the complex case is given extremely brief treatment in [28].

Theorem 5.1.6 (Hörmander [27, 28]). If A ∈ Id(X,Y,C), then A∗ exists, and

A∗ ∈ Id(Y,X,C†).

The same holds if X and Y are real-analytic, A ∈ Id(X,Y ;CC), with C† replaced by C†C.
Finally, it also holds if each space of FIO above is replaced by its PHG analogue.

Proof. By the decomposition of K(A), we just need to find the formal adjoint of Iφ(a),
where φ is a regular real (or complex positive) phase parametrizing a Λφ in Λ (or ΛC).
Take u ∈ C∞0 (RnY ) and v ∈ C∞0 (RnX ). By the FTT and DCT, we have

(Iφ(a)u, v)L2(RnX ) =

∫
RnX

[
lim
ε→0

∫
RN

∫
RnY

eiφ(x,y,θ) χ(εθ)a(x, y, θ)u(y) dy dθ
]
v(x) dx

= lim
ε→0

∫
RnY

∫
RN

∫
RnX

eiφ(x,y,θ) χ(εθ)a(x, y, θ)u(y)v(x) dx dθ dy

=

∫
RnY

u(y)
[

lim
ε→0

∫
RN

∫
RnX

e−iφ(x,y,θ) χ(εθ)a(x, y, θ)v(x) dx dθ
]
dy,

where χ ∈ C∞0 (RN ) is a real-valued cutoff equal to 1 in some neighbourhood of 0 ∈ Rn.
Then the formal adjoint exists, because

(Iφ(a)u, v)L2(RnX ) = (u, Iφ†(a)v)L2(RnY ),

and φ†(y, x, θ) = −φ(x, y, θ) is a regular real (or complex positive) phase associated to it.
So, if φ is real, we have that Γφ† = Γφ, and φ† parametrizes

Γφ† → Λφ† : (y, x, θ) 7→
(

(y, x),−dy,xφ(x, y, θ)
)
,

which, after accounting for the minus, corresponds exactly to Λ′φ† = (Λ′φ)†, as required.
On the other hand, if φ is complex, its holomorphic extension parametrizes

Γφ† → Λφ† : (y, x, θ) 7→
(

(y, x),−dy,xφC(x, y, θ)
)
,

which corresponds to Λ′φ† = (Λ′φ)†, because Γφ† is obtained by conjugating Γφ.
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Perhaps the most important property of FIO is their (global) composition calculus.
A composition of FIO is an FIO if their homogeneous canonical relations are compatible.
This is a classical result due to Hörmander [27] (real) and Melin-Sjöstrand (complex) [43].
In order to formulate it, we need to define the real diagonal subset

∆1,2 = T ∗X × diag(T ∗Y )× T ∗Z,

and, if X, Y and Z are real-analytic, its complexified analogue

(∆1,2)C = T ∗1,0XC × diag(T ∗1,0YC)× T ∗1,0ZC,

which clearly contains ∆1,2 in this case.

The FIO composition calculus is contained in the following theorem. Let d1, d2 ∈ R.
Let C1 and C2 be two such relations from T ∗Y to T ∗X and T ∗Z to T ∗Y , respectively,
and, in the real-analytic case, let (C1)C and (C2)C be their positive analogues.

Theorem 5.1.7 (Hörmander [27], Melin and Sjöstrand [43]. See also Duistermaat [10]).
Suppose that A ∈ Id1(X,Y ;C1) and B ∈ Id2(Y, Z;C2) are two properly supported FIO.
Assume that the following holds:

1. C1 × C2 intersects ∆1,2 transversally.

2. The natural projection below is injective and proper:

(C1 × C2) ∩∆1,2 → T ∗X \ 0× T ∗Z \ 0.

Then C1 ◦ C2 has the structure of a homogeneous canonical relation from T ∗Z to T ∗X,
and the composition of A and B satisfies

A ◦B ∈ Id1+d2(X,Z;C1 ◦ C2).

However, if X, Y and Z are real-analytic, a similar result holds in the complex case.
Suppose that A ∈ Id1(X,Y ; (C1)C) and B ∈ Id2(Y,Z; (C2)C) are properly supported FIO.
Assume that the following holds:

1. (C1)C × (C2)C intersects (∆1,2)C transversally at ((C1)R × (C2)R) ∩∆1,2.

2. The natural projection below is injective and proper:

((C1)R × (C2)R) ∩∆1,2 → T ∗X \ 0× T ∗Z \ 0.

Then (C1)C ◦ (C2)C is a homogeneous positive canonical relation going from T ∗Z to T ∗X.
It has the property that

((C1)C ◦ (C2)C)R = (C1)R ◦ (C2)R,

and the composition of A and B satisfies

A ◦B ∈ Id1+d2(X,Z; (C1)C ◦ (C2)C).

Finally, everything still holds if each space of FIO above is replaced by its PHG analogue.
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The structure of the FIO simplifies greatly when the canonical relation C is a graph.
That is, C is of the form

C = {(γ(y, η), (y, η)) | (y, η) ∈ T ∗Y \ 0},

where the map γ : T ∗Y \0→ T ∗X \0 is a (fiber-wise) homogeneous symplectomorphism.
This type of C is called a canonical graph.

Henceforth, X and Y are compact, and we fix smooth positive 1-densities on them.
As the simplest example, C = diag(T ∗X \ 0), and Theorem 5.1.4 implies

Id(X,X, diag(T ∗X \ 0)) = Ψd(X).

Then any FIO from X to itself can be left and right composed with elements of Ψ(X),
and the result is still an FIO with the same canonical relation. Only the order is changed.

Theorem 5.1.8 (A variant of the Egorov theorem. See Hörmander [34] or Treves [60]).
Let C arise from the graph of γ. Given A ∈ Id(X,Y,C) and d0 ∈ R, then

A∗PA ∈ Ψd0+2d(Y ) for any P ∈ Ψd0(X).

The following holds:

1. If σ2d([A
∗A]) = [a] and σd0

(P ) = [p], then

σd0+2d(A
∗PA) = [(p ◦ γ)a].

2. If P and A∗A are elliptic, then so is A∗PA.

The same holds if X, Y and the map γ are real-analytic, and A ∈ Id(X,Y ;CC) instead,
where CC arises from the graph of the holomorphic extension of γ.

An example of natural FIO are the solution operators to certain hyperbolic systems.
These have canonical relations arising from graphs of Hamiltonian flows:

Theorem 5.1.9 (Treves [60], Hörmander [34], alternatively Shubin [51] for simplicity).
Let P ∈ Ψ1

phg(X) be formally self-adjoint and elliptic with classical principal symbol p.
Assume that p is positive on T ∗M \ 0. (This automatically guarantees that P is elliptic.)
Then given any u0 ∈ C∞(X), there is a unique solution u ∈ C∞(R×X) to{

∂
∂tu(t, x) = iPxu(t, x) for all (t, x) ∈ R×X,
u|{0}×X = u0.

The map C∞(X)→ C∞(X) : u0 7→ u(t, ·) is a continuous linear operator

eitP ∈ I0
phg(X,X,Ct) for any t ∈ R,

where Ct is the graph of the Hamiltonian flow γt generated by making p the Hamiltonian.
In particular, by dualizing, we have

WF(eitPu0) ⊂ γt(WF(u0)) if u0 ∈ D′(X).
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5.1.2 Boundedness on L2 and Sobolev Spaces

Finally, we turn to the question of bounded extensions of FIO on L2 and Sobolev spaces.
The situation is then much more complicated than that for pseudo-differential operators,
but it is possible to get bounded realizations in some easy special cases.

Definition 5.1.11. Let C be a (real) homogeneous canonical relation from T ∗Y to T ∗X.
Consider the left/right natural projections:

C

T ∗X \ 0 T ∗Y \ 0

The following nomenclature is adopted:

1. C is non-degenerate if both projections have maximal rank everywhere.

2. C is a local canonical graph if both projections are local diffeomorphisms.

Let now C be a non-degenerate homogeneous canonical relation as in Definition 5.1.11.
In general, if nX > nY , the left projection is an immersion, and the right is a submersion.
The property of being a local canonical graph is only possible if nX = nY .

Proposition 5.1.3 (Hörmander [27]). Let C, defined above, be a local canonical graph.
Then any A ∈ I0(X,Y ;C) realizes a bounded linear operator

A : L2(Y )→ L2(X).

Proof. The idea is to break C into small pieces that are graphs of symplectomorphisms.
So if c0 = ((x0, ξ0), (y0, η0)) ∈ C, we obtain an open conic subset Γc0 of C containing c0,
and a symplectomorphism γ : Γ(y0,η0) → Γ(x0,ξ0) such that γ(y0, η0) = (x0, ξ0), and

C ∩ Γc0 = {(γ(y, η), (y, η)) | (y, η) ∈ Γ(y0,η0)},

where Γ(y0,η0) is an open cone about (y0, η0) and Γ(x0,ξ0) is an open cone about (x0, ξ0).
Using sufficiently small charts and amplitude cutoffs, A decomposes into a finite sum

A =

N∑
j=1

Aj +R with Aj ∈ I0(X,Y ;Cj) and K(R) ∈ C∞(X × Y ),

where Cj arises from a symplectomorphism γj from a closed cone in T ∗Y \ 0 to T ∗X \ 0.
Then, we have

||Au||2L2(X) ≤
N∑
j=1

(A∗jAju, u)L2(Y ) + ||Ru||2L2(X)

≤
[ N∑
j=1

||A∗jAj ||2B(L2(Y )) + ||R||2B(L2(X),L2(Y ))

]
||u||2L2(X),

where A∗jAj ∈ Ψ0(Y ), because the adjoint of Cj is the graph of the inverse map.
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Just like for pseudo-differential operators, it leads to realizations on Sobolev spaces.
Put smooth metrics on X and Y and form their Laplacians ∆X and ∆Y , respectively.

Corollary 5.1.1 (Duistermaat [10]). Let C be exactly as before, a local canonical graph.
Then, if s, d ∈ R, any A ∈ Id(X,Y ;C) realizes a bounded linear operator

A : Hs(Y )→ Hs−d(X).

Proof. By the real phase composition calculus, we have that

(I −∆X)
s−d

2 A(I −∆Y )−
s
2 ∈ I0(X,Y ;C),

where C is unchanged, and Proposition 5.1.3 applies.





6

Transforms and Holomorphic Function Spaces

Complexifying a compact real-analytic Riemannian manifold (M, g) gives a manifold MC,
where holomorphic extensions of f ∈ Cω(M) exist on neighbourhoods of M inside MC.
But how do holomorphic functions on such neighbourhoods relate to functions on M?
Using the heat propagator e

t
2 ∆ on M , we can generate many real-analytic functions,

and it turns out (see the paper [54]) that all of these extend to the same Grauert tube.
This idea leads to the Segal-Bargmann (holomorphically extended heat kernel) transform,
which answers the question partially for compact Lie groups and homogeneous spaces.
It maps L2(M) onto a holomorphic ”heat-kernel weighted L2-space” on the entire tube,
and restrictions of functions from this space are of the form e

t
2 ∆u for some u ∈ L2(M).

The resulting correspondence with L2(M) is unitary. See Hall [18, 21] and Stenzel [58].
On Rn the Segal-Bargmann transform is for f ∈ C∞(Rn) and t > 0 given by

Ctf(z) =
1

(2πt)
n
2

∫
Rn
e−

(z−x)2

2t f(x) dx for all z ∈ Cn.

The Segal-Bargmann transform has been studied extensively by Hall and collaborators,
where the underlying manifold is either a Lie group, or symmetric space of complex type.
In these cases, analysis of the transform is facilitated by Lie group representation theory,
which has no analogue for Riemannian manifolds. See [18, 19, 21, 23, 24, 25, 20, 59].
Although the general Riemannian case is less understood, the transform is still injective,
and Golse, Leichtnam and Stenzel [54] are able to obtain some explicit inversion formulae.
However, there is no general Hilbert space structure on the image that makes it unitary,
because, according to Stenzel [56], this depends on existence of an entire Grauert tube.
In order to overcome this limitation, Stenzel introduces the Poisson transform [55, 56],
which is a complex-phase FIO, and so has well-understood Sobolev mapping properties.
On Rn this transform is for f ∈ C∞(Rn) and ε > 0 given by

Pεf(z) =

∫
Rn

∫
Rn
e−i((z−y)·ξ−iε|ξ|)f(x) dx d̄ξ for all z ∈ Rnε .

The Poisson transform, as defined by Stenzel [56], is at this time a very recent invention.
But the theory surrounding it has been applied in great profusion by Zelditch and others.
Applications include nodal hypersurfaces of eigenfunctions, quantum ergodicity/limits,
and complex geodesics and pluripotential theory on Grauert tubes. See [65, 64, 67, 66].
See [22] for an introduction to the Segal-Bargmann transform in mathematical physics.

Understanding these transformations is a step towards answering the above question.
They reveal the link between holomorphic functions on Mε and their restrictions to M ,
and we hope that this may eventually shed light on the bigger, more involved question:
When does a P ∈ Ψ(G) preserve spaces of f ∈ Cω(M) that extend to Mε?
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6.1 The Poisson Transform

In order to begin, we need some very basic results from the theory of complex manifolds.
If N is a Kähler manifold, it is automatically orientable by the virtue of being symplectic.
In fact, if N has Kähler metric h with associated Kähler form ω, we have

volh =
1

n!
ω∧n,

and with this, we get the formal L2-adjoints of the Dolbeault operators

∂∗ = − ∗ ∂̄ ∗ and ∂̄∗ = − ∗ ∂∗,

where ∗ is the Hodge star operator relative to volh, and d = ∂ + ∂̄ is the splitting of d.
On a Kähler manifold, they are tied via the so-called Kähler identities to

∆h = dd∗ + d∗d,

where d∗ is the formal L2-adjoint of d relative to volh. It sends k-forms back to k-forms.
Of course, on 0-forms it it is just the usual scalar Laplacian ∆h, so there is no confusion.
We record two theorems that we will need. They appear in [44] and [29], respectively.

Theorem 6.1.1 (See Moroianu [44]).

1

2
∆h = ∂∂∗ + ∂∗∂ = ∂̄∂̄∗ + ∂̄∗∂̄.

The above implies that holomorphic functions on N are harmonic with respect to ∆h.
This is because ∂̄∗ vanishes on scalars, and holomorphic functions are annihilated by ∂̄.
Another fact that will become important is the following:

Theorem 6.1.2. If f ∈ O(N) and K ⊂⊂ N , there is a CK > 0 such that

sup
z∈K
|f(z)|2 ≤ CK

∫
M

|f |2 ω∧n.

Consequently, L2-convergence implies locally uniform convergence for O(N) functions.
In particular, the set of L2-holomorphic functions on N is a closed subspace of L2(N).
Here L2(N) is always relative to the positive measure induced by volh.

The most important special case is of course when N is the interior of the tube Mε.
Then h is the Kähler metric coming from the Kähler potential on a slightly larger tube,
and we obtain a volume on ∂Mε by contracting volh with the outward unit normal field.
It also arises from the pullback of h onto ∂Mε from this larger tube that contains Mε,
and then ∂Mε carries a metric which induces a Laplacian on it.

In this way, we get Sobolev spaces on ∂Mε of any order s ∈ R relative to this structure.
The same ideas work if (N,h) is a compact smooth Riemannian manifold-with-boundary.
On the manifold (M, g), we use the notation ∆ = ∆g for the Laplacian associated to g.
This ∆ is different from the Kähler Laplacian ∆h on Mε (or N).
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The formulation in Stenzel’s papers [55, 56] features a special space denoted Os(∂Mε).
It appears in Boutet de Monvel’s theorem, and requires a bit of theory to understand.
Specifically, we need the solution operator to the Dirichlet Laplace problem on Mε.

Assume therefore now that (N,h) is a smooth Riemannian manifold-with-boundary.
In all our cases, N is the closure of an open subset N◦ in a compact smooth manifold,
where N = N◦ t ∂N , the topological boundary ∂N is a co-dimension one hypersurface.
This ”enveloping manifold” Ñ carries a metric coinciding with h on N .

Definition 6.1.1. Given any s ∈ R, we define the Hs-extendible distributions

H̄s(N◦) = {u|N◦ ∈ D′(N◦) |u ∈ Hs(Ñ)},

and equip this space with the norm

||v||H̄s(N◦) = inf
u|N◦=v

||u||Hs(Ñ) if v ∈ H̄s(N◦).

These spaces of s ∈ R extendible distributions are ingredients in the following theorem.
It states that the Dirichlet problem for ∆h on N is uniquely solvable in them:

Theorem 6.1.3 (Boutet de Monvel [4]. See also Grubb [15] for a better explanation).
Let s ∈ R. There are bounded, linear, and mutually inverse bijections

Kγ : Hs− 1
2 (∂N)→ H̄s(N◦) ∩ ker (∆h|H̄s(N◦)),

γ0 : H̄s(N◦) ∩ ker (∆h|H̄s(N◦))→ Hs− 1
2 (∂N).

If f ∈ Hs− 1
2 (∂N), they together uniquely solve{

∆h(Kεf) = 0 in N,

γ0(Kεf) = f on ∂N.

The operator γ0 acts as the restriction operator onto ∂N for any function smooth on N ,
and Kγ is a Poisson operator (see [15]), restricting to a continuous linear map

Kγ : C∞(∂N)→ C∞(N).

Relative to fixed positive 1-densities on N and ∂N , it has the following properties:

1. Kγ admits a unique formal L2-adjoint K∗γ .

2. K∗γKγ ∈ Ψ−1
phg(∂N) has classical principal symbol positive on T ∗N \ 0.

In the case that (N◦, h) is Kähler, we can use the above theorem to define Os(∂N).
Naturally, the boundary ∂N carries the Riemannian structure induced from N .

Definition 6.1.2. In the above setting, if (N◦, h) is Kähler, we put

Os(∂N) = γ0{u ∈ H̄s+ 1
2 (N◦) ∩ C∞(N◦) | ∂(u|N◦) = 0 } ⊂ Hs(∂N).

By the continuity of Kγ , and γ0Kγ = I, we have that Os(∂N) is closed in Hs(∂N).
It consists of the ”boundary values” on ∂N of holomorphic functions on N◦.
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6.1.1 Boutet de Monvel’s Continuation Theorem

Choose ε0 > 0 such that Mε exists as a Grauert tube about (M, g) whenever ε ∈ (0, ε0).
Every eigenfunction of −∆ belongs to Cω(M), because −∆ is real-analytic and elliptic.
In fact, all of them extend holomorphically to Mε:

Theorem 6.1.4 (Zelditch [65]). Let φ be any eigenfunction of the Laplacian ∆ on M .
Then φ extends holomorphically on to any Mε with ε < ε0.

Proof. Let r be the geodesic distance on a neighbourhood V of the diagonal in M ×M .
Recall that, in the construction of the Grauert tubes, we had

gp((dxr)(p, q), (dxr)(p, q)) = 1 for all (p, q) ∈ V,

which we can extend holomorphically, and evaluate meaningfully in (z, z) for all z ∈Mε.
But in any holomorphic chart (zi) of Mε, this just says that

n∑
i,j=1

(gC)ij
∂
√
ρ

∂zi
∂
√
ρ

∂zj
= 1.

Therefore the Cω-boundary ∂Mε is non-characteristic for (the principal symbol of) ∆C,
and Zerner’s theorem applies to locally extend φ beyond ∂Mε as long as ε < ε0.

Of course, extensions for different eigenvalues are not a priori orthogonal in L2(Mε).
But they will form a Schauder basis for HL2(Mε) when ε > 0 is small enough.

Definition 6.1.3.

HL2(Mε) = L2(Mε) ∩ O(Mε).

The extensions turn out to be related (via their growth) to the Poisson propagator.
Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λk ≤ · · · be the eigenvalues of −∆, counted with multiplicity,
and let {φk}∞k=0 be a corresponding real-valued ONB for L2(M) of eigenfunctions for −∆.
Then the Poisson propagator is defined for t > 0 by

e−t
√
−∆ : C∞(M)→ C∞(M) : u 7→

∞∑
k=0

e−t
√
λk(u, φk)φk,

where the sum converges in C∞(M), and the kernel Pt(·, ·) = P (t, ·, ·) is

Pt =

∞∑
k=0

e−t
√
λkφk ⊗ φk in D′(M ×M),

which converges in the space of distributions, and is easily read off from the above series.
In fact, we see that P ∈ Cω((0,∞)×M ×M), since it solves( ∂2

∂t2
+

1

2
(∆x + ∆y)

)
P = 0,

which is elliptic with real-analytic coefficients. So P must be real-analytic in all variables.
Therefore Pt also extends holomorphically to Mε ×Mε for some ε > 0.
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All of the above is tied together by the following theorem, which is difficult to prove.
It expresses the extension of the Poisson propagator as a complex-phase FIO.

Theorem 6.1.5 (Boutet de Monvel [3, 5]. See Stenzel [55, 56] and Zelditch [64, 65]).
There is an ε′0 ∈ (0, ε0) such that for any ε ∈ (0, ε′0), the following holds:

1. The map x 7→ Pε(x, y) extends holomorphically to Mε for each fixed y ∈M .

2. The kernel Pε|∂Mε×M induces a complex-phase PHG FIO Sε of order −n−1
4 .

3. Sε defines a homeomorphism Sε : Hs(M)→ Os+n−1
4 (∂Mε) for any s ∈ R.

Here Sε ∈ I
−n−1

4

phg (∂Mε,M ;Cε) is well-defined as an operator Sε : C∞(M) → C∞(∂Mε).
The positive homogeneous canonical relation Cε arises from the graph of

T ∗M \ 0→ T ∗(∂Mε) \ 0 : (x, ξ) 7→ |ξ|x
ε
α(x,ξ),

where the cotangent vector α(x,ξ) is

α(x,ξ) = (ι∗∂Mε
Im ∂ρ)expx(iε|ξ|−1

x ξ]).

The classical principal symbol of S∗ε Sε ∈ Ψ
−n−1

2

phg (M) is T ∗M → [0,∞) : (x, ξ) 7→ |ξ|−
n−1

2
x .

Choose now ε′0 < ε0 so that the above Boutet de Monvel theorem continuation holds.
Pick ε ∈ (0, ε′0), let h be the Kähler metric on the closure of Mε, and take s ∈ R.

Definition 6.1.4. If f ∈ Hs−n+1
4 (M), define Pεf to be the extension of e−ε

√
−∆f to Mε.

Suppose that Kε is the Poisson operator solving the Dirichlet problem for ∆h on Mε.
By Theorem 6.1.3 it is a linear homeomorphism

Kε : Hs− 1
2 (∂Mε)→ H̄s(Mε) ∩ ker(∆h|H̄s(Mε)),

and so, by Theorem 6.1.5, Pε = KεSε realizes a linear homeomorphism

Pε : Hs−n+1
4 (M)→ KεOs−

1
2 (∂Mε).

In the special case that s = 0, we have

KεO−
1
2 (∂Mε) = HL2(Mε).

This is because holomorphic functions on Mε are automatically harmonic for ∆h on Mε,
and therefore HL2(Mε) ⊂ KεH

− 1
2 (∂Mε). But γ0HL

2(Mε) = O− 1
2 (∂Mε) by definition.

So it follows that Kε : O− 1
2 (∂Mε) → HL2(Mε) is a well-defined linear homeomorphism.

The composite Pε : L2(M)→ HL2(Mε) is the Poisson transform defined by Stenzel [56].
Summarizing, we have the following result:

Theorem 6.1.6 (Stenzel [56]). The map Pε : H−
n+1

4 (M) → HL2(Mε) is well-defined.
Furthermore, it is a linear homeomorphism.

Definition 6.1.5. The map Pε is called the Poisson transform.
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An operator between Hilbert spaces has both a left and a right polar decomposition.
That is, if H1 and H2 are Hilbert spaces and A ∈ B(H1, H2), then

A = PLUL = URPR,

where the operators UL ∈ B(H1, H2) and UR ∈ B(H1, H2) are both partial isometries,
and PL ∈ B(H2) and PR ∈ B(H1) are positive operators on H2 and H1, respectively.
These can be chosen uniquely such that

ker(UR) = ker(PR) and img(UL) = img(PL).

Also, UR is an isometry if A is injective with dense range.

This decomposition can be applied to the Poisson transform in the case that s = 0.
Using functional calculus, we can form the ”right positive part” of Pε as follows:

Corollary 6.1.1 (Stenzel [56]). There is a well-defined, positive operator

Qε = (S∗ε (K∗εKε)Sε)
− 1

2 ∈ Ψ
n+1

4

phg (M),

where K∗ε is understood to be the formal L2-adjoint of Kε as is stated in Theorem 6.1.3.
It has the property that (KεSε)Qε extends to a unitary map

PεQε : L2(M)→ HL2(Mε).

Proof. Using Theorems 6.1.3 and 6.1.5 and the Egorov theorem, we get

S∗ε (K∗εKε)Sε ∈ Ψ
−n+1

2

phg (M),

which is then elliptic, and its classical principal symbol is strictly positive on T ∗M \ 0.
So by Theorem 3.1.14 it is meaningful to take powers of it. We show that it is invertible.
Now, if we view Pε as a bounded map into L2(Mε), we can form its Hilbert adjoint P∗ε .

Then P∗εPε : H−
n+1

4 (M)→ H−
n+1

4 (M) is injective with dense range, and

P∗εPε|C∞(M) = (I −∆)
n+1

4 S∗ε (K∗εKε)Sε ∈ Ψ0(M).

But this shows that P∗εPε is a Fredholm operator on H−
n+1

4 (M), and must be bijective.
Therefore we have a bijective and continuous, hence invertible, operator

S∗ε (K∗εKε)Sε : C∞(M)→ C∞(M).

It follows that Qε is well-defined, elliptic and invertible. It is clearly positive on C∞(M).
Taking any u ∈ C∞(M), we have

||(KεSε)Qεu||2L2(Mε)
= ((KεSε)

∗(KεSε)Qεu,Qεu)L2(M)

= (Q−1
ε u,Qεu)L2(M)

= ||u||2L2(M),

and so (KεSε)Qε extends to a unitary map PεQε : L2(M)→ HL2(Mε).
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6.1.2 Holomorphic Fourier Expansions

The Fourier series of the restriction of a function from HL2(Mε) extends naturally to Mε.

This is a consequence of the fact that Pε is bounded from H−
n+1

4 (M) onto HL2(Mε),

and that it takes each φk to its extension φ̃k on Mε multiplied by e−ε
√
λk .

Theorem 6.1.7 (Stenzel [56]). If f ∈ HL2(Mε), then

f =

∞∑
k=0

(f |M , φk)L2(M)φ̃k in HL2(Mε).

Proof. Using that Pε is surjective, we obtain u ∈ H−n+1
4 (M) such that f |M = e−ε

√
∆u.

Observe that if k ∈ N0, we have

Pε(φk) = e−ε
√
λk φ̃k,

and also

(f |M , φk)L2(M) = 〈e−ε
√

∆u, φk〉 = e−ε
√
λk〈u, φk〉.

Now,
∑N
k=0〈u, φk〉φk converges to u ∈ H−n+1

4 (M) in the norm of H−
n+1

4 (M) as N →∞.
Therefore, we may combine the above to get

f = Pεu = lim
N→∞

Pε
( N∑
k=0

〈u, φk〉φk
)

= lim
N→∞

N∑
k=0

eε
√
λk(f |M , φk)L2(M)Pε(φk)

= lim
N→∞

N∑
k=0

(f |M , φk)L2(M)φ̃k,

where the limit is taken in L2(Mε).

Although the theorem looks simple and somehow standard, it is a quite recent result.
In fact, the boundedness property of Pε is key here, and this is highly non-trivial to prove.
See also Lebeau [39] for another approach.

Proposition 6.1.1 (Stenzel [56]). The map HL2(Mε)→ L2(M) : f 7→ f |M is bounded.
Furthermore, it is injective with dense range.

Proof. The full eigenspace span{φk}∞k=0 is dense in L2(M), and M is totally real in Mε.
Thus Rε must be injective (O(Mε) is determined by restrictions to M) with dense range.
Finally, by Theorem 6.1.2, we get

||f |M ||2L2(M) ≤
(∫

M

ω0

)
sup
x∈M
|f(x)|2

≤
(∫

M

ω0

)
CM ||f ||2L2(Mε)

,

where CM > 0 is a constant, and ω0 is a fixed positive 1-density on M .
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Henceforth the ”restriction map onto M” is the map Rε above in Proposition 6.1.1.
It is understood both on HL2(Mε), but also as a map

Rε : O(Mε)→ Cω(M) : f 7→ f |M .

There is a close relationship between the transform (PεQε)−1 and the restriction map Rε.
Under certain circumstances, the two differ by a factor of a positive operator

RεPεQε = P : L2(M)→ L2(M),

which we can express explicitly in terms of the (Schauder) basis {φ̃k}∞k=0 for HL2(Mε).
It turns out to be equivalent to the existence of

{φk}∞k=0 such that {φ̃k}∞k=0 is orthogonal in HL2(Mε).

According to Stenzel [56], it is unlikely that this very nice property could hold in general,
but Stenzel [56] gives an example where it does hold. No counterexamples are known yet.
To prove these statements, we need the following lemma.

Lemma 6.1.1. Let A,B ∈ Ψ(M) be of positive order, formally self-adjoint, and elliptic.
If [A,B] = 0, then there exists an ONB for L2(M) of joint eigenfunctions for A and B.
Additionally, if A and B commute with complex conjugation, they can be made real-valued.

Proof. Realized as unbounded operators on L2(M), both become closed and self-adjoint,
where the domain is exactly the Sobolev space corresponding to the order of the operator.
The eigenspaces {Eλ}λ∈σ(A) for A are mutually orthogonal, and we have

Eλ ⊂ C∞(M) and dimEλ <∞ for each λ ∈ σ(A),

where their orthogonal sum is ⊕
λ∈σ(A)

Eλ = L2(M).

If B commutes with A on C∞(M), then Eλ is invariant under B, that is B(Eλ) ⊂ Eλ.
Consequently, B|Eλ : Eλ → Eλ is finite-dimensional self-adjoint, and B|Eλ diagonalizes.
Thus Eλ decomposes into an orthogonal sum of finite-dimensional eigenspaces for B|Eλ ,
and these consist of eigenfunctions for A with eigenvalue λ. This shows the first statement.
Given the extra condition, each Eλ can be spanned by real-valued eigenfunctions of A,
and B|Eλ becomes a real symmetric matrix that diagonalizes via a real orthogonal matrix.
In this case, Eλ decomposes via real-valued eigenfunctions for both A and B.

The claims above are encapsulated in the next proposition, which we shall now prove.
It makes use of holomorphic Fourier expansions.

Theorem 6.1.8 (Stenzel [56]). The following are equivalent:

1. The unitary part of P−1
ε is the unitary part of Rε.

2. e−ε
√
−∆Qε : L2(M)→ L2(M) is a positive operator.

3. [e−ε
√
−∆,Qε] = 0.

4. There is a choice of {φk}∞k=0 such that {φ̃k}∞k=0 is orthogonal in HL2(Mε).
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Proof. The easiest way is to show the circle of implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).

(1) ⇒ (2). e−ε
√
−∆Qε : L2(M) → L2(M) is bounded and injective with dense range.

This follows from Proposition 6.1.1, because it equals Rε(PεQε) by the definition of Pε.
It then has a unique polar decomposition

e−ε
√
−∆Qε = PU with Rε = PU(PεQε)−1,

and so it is positive if and only if (PεQε)−1 is the unitary part of Rε.

(2) ⇒ (3). On L2(M), the operator e−ε
√
−∆Qε is positive, in particular self-adjoint.

Then, since Qε and e−ε
√
−∆ are symmetric on L2(M), their Hilbert adjoints are

Q∗ε |C∞(M) = Qε(I −∆)−
n+1

4 |C∞(M),

(e−ε
√
−∆)∗|C∞(M) = (I −∆)+n+1

4 e−ε
√
−∆|C∞(M),

and therefore, by the above, we get

e−ε
√
−∆Qε|C∞(M) = (e−ε

√
−∆Qε)∗|C∞(M)

= (Qε)∗(e−ε
√
−∆)∗|C∞(M)

= Qεe−ε
√
−∆|C∞(M).

(3) ⇒ (4). Applying Lemma 6.1.1 to Qε and e−ε
√
−∆, we obtain a joint eigenbasis.

That is, a joint ON eigenbasis {φk}∞k=0 with eigenvalues {ηk}∞k=0 ⊂ (0,∞) given for Qε.
If l 6= k (eigenvalues may be equal), then by Corollary 6.1.1, we have

0 = (φk, φl)L2(M) = ((PεQε)φk, (PεQε)φl)HL2(Mε)

= (e−ε
√
λkηkφ̃k, e

−ε
√
λlηlφ̃l)HL2(Mε).

(4)⇒ (1). Take such an ON eigenbasis {φk}∞k=0 with orthogonal extensions {φ̃k}∞k=0.
Taking any f ∈ HL2(Mε), then, with series convergence in L2(M), we have

Rεf =

∞∑
k=0

1

||φ̃k||

(
f,

φ̃k

||φ̃k||

)
φk and P−1

ε f =

∞∑
k=0

eε
√
λk

||φ̃k||

(
f,

φ̃k

||φ̃k||

)
φk,

which is meaningful, because there is a C > 0 such that

C ≤ ||Pεφk|| = e−ε
√
λk ||φ̃k||.

Immediately, this implies that the unitary part of P−1
ε must be the unitary part of Rε.

The unitary part is just the abstract change of basis

HL2(Mε)→ L2(M) : f 7→
∞∑
k=0

(
f,

φ̃k

||φ̃k||

)
φk.

This concludes the proof.
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The example due to Stenzel considers a compact Lie group G with Lie subgroup H.
It says that tubes of G/H are well-behaved if constructed from certain types of metric.
Let π : G→ G/H be the natural projection in the following proposition.

Proposition 6.1.2 (Stenzel [56]). Suppose that G acts only by isometries on M = G/H,
and that G is given a left-invariant metric such that ∆Gπ

∗ = π∗∆ holds on C∞(M).
Then the statements of Theorem 6.1.8 hold for ε > 0 small enough.

Proof. The Riemannian measure on G is left-invariant. Therefore it is a multiple of dx.
The action by isometries is a real-analytic map

G×G/H → G/H : (x, yH) 7→ x · yH = xyH,

and it therefore extends to a holomorphic map Gε ×Mε → Mε for some small ε > 0.
By the tube construction, it preserves the Kähler potential, and thus the Kähler metric.
Observe that if φλ is an eigenfunction of ∆G/H with eigenvalue λ, we have

∆G(π∗φλ) = π∗(∆φλ) = λπ∗φλ.

So π∗φλ is an eigenfunction of ∆G with eigenvalue λ. Let λ 6= µ be different eigenvalues.
Using the orthogonality, and bi-invariance of dx, then if y ∈ G is fixed, we get

0 =

∫
G

(π∗φλ)(x)(π∗φµ)(x) dx

=

∫
G

(φλ ◦ π)(xy)(φµ ◦ π)(xy) dx

=

∫
G

φλ(x · yH)φµ(x · yH) dx,

and since G acts by isometries, the above identity extends from yH ∈ G/H to any z ∈Mε.
It follows from the FTT that

(φ̃λ, φ̃µ)HL2(Mε) =

∫
G

[ ∫
Mε

φ̃λ(x · z)φ̃µ(x · z)ω∧n(z)
]
dx

=

∫
Mε

[ ∫
G

φ̃λ(x · z)φ̃µ(x · z) dx
]
ω∧n(z) = 0,

where φ̃λ and φ̃µ are bounded on Mε, so the interchange is justified.

The above is not artificial; it occurs in ”nature” by way of the following proposition.
Although the types of allowed geometries are still rather restricted.

Proposition 6.1.3 (Bergery and Bourguignon [1]). Suppose that G/H carries a metric.
If G acts by isometries, then it admits a left-invariant metric so that the following holds:

1. π : G→ G/H is a Riemannian submersion with totally geodesic fibers.

2. π∗ intertwines ∆G/H and ∆G. That is, ∆Gπ
∗ = π∗∆G/H on C∞(G/H).

The above theorem is somewhat related and similar to Theorem 3.2.9 in certain ways.
But that theorem gives G/H a metric rather than G.

Corollary 6.1.2. In Proposition 6.1.3, (PεQε)−1 is the unitary part of Rε.
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6.2 The Segal-Bargmann Transform

On a compact Lie group G, the Segal-Bargmann transform has a very tractable structure.
We shall go through the steps as they are presented in Hall’s paper [18] on the subject.
Fix an orthonormal basis {Xj}nj=1 for g carrying an Ad(G)-invariant inner product (·, ·)g.
It is well-known [8] that

∆G =

n∑
j=1

X2
j ,

where ∆G is the Laplacian with respect to the (·, ·)g-induced bi-invariant metric on G.
It is independent of the choice of {Xj}nj=1, depending only on the inner product on g.
This Laplacian extends to an operator (∆G)C on holomorphic functions on GC (or Gε).
If u ∈ O(GC) (or u ∈ O(Gε)), and z = exp(iY )x with x ∈ G, we can write

(∆G)Cu(z) =
∑

[ξ]∈Ĝ

dξTr(−λξξ(z)Fu(ξ))

=
∑

[ξ]∈Ĝ

dξTr
(
− λξξ(x)

∫
G

u(exp(iY )y)ξ(y)∗ dy
)
,

which converges absolutely uniformly for Y in compact subsets of g (or {Y ∈ g | |Y |g < ε}).
Thus (∆G)Cu is well-defined and holomorphic on GC (or Gε). It is clearly bi-G-invariant.
It is bi-GC-invariant for u ∈ O(GC). To see left-invariance, take w ∈ G, note that

Tr
(
ξ(w−1x)

∫
G

u(y)ξ(y)∗ dy
)

= Tr
(
ξ(x)

∫
G

u(w−1y)ξ(y)∗ dy
)
,

and both sides are holomorphic in w ∈ GC, hence equal. The right-invariance is similar.
The expansion leads to a rudimentary calculus of (∆G)C acting on holomorphic functions.
If f ∈ C0(C) has no more than polynomial growth, then we can replace −λξ with f(−λξ).
For example, if s ∈ R, we form (I−(∆G)C)

s
2 by replacing −λξ with 〈ξ〉s in the expansion.

We will also need the following lemma.

Lemma 6.2.1. If [ξ] ∈ Ĝ, then

||dξ(X)|| ≤
√
λξ|X|g for all X ∈ g.

Proof. Write X ∈ g as X =
∑n
k=1(X,Xk)gXk. Note that dξ(X) ∈ u(dξ) is skew-adjoint.

If u is any vector in the representation space of ξ, then we have

||dξ(X)u|| ≤
n∑
k=1

|(X,Xk)g| ||dξ(Xk)u||

≤ |X|g
[ n∑
k=1

(dξ(Xk)u, dξ(Xk)u)
] 1

2

=
√

(−dξ(∆G)u, u)|X|g =
√
λξ|X|g||u||,

where we have used that dξ(∆G) = −λξI (by definition of λξ).
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6.2.1 Holomorphic Peter-Weyl Expansions

Using the Cartan decomposition, fix the left G-invariant Grauert tubes {Gk}∞k=1 in GC.
Of course, each Gk is pre-compact, and

G1 ⊂ · · · ⊂ Gk ⊂ Gk+1 ⊂ · · · ⊂ ∪∞k=1Gk = GC.

Definition 6.2.1. Let HL2(GC, µ) be all the L2(GC, µ) holomorphic functions on GC.
Here µ is a left Haar measure on GC scaled by a strictly positive left G-invariant weight.

The sup-norm on any compact subset is bounded by the L2-norm by Theorem 6.1.2.
Therefore HL2(GC, µ) is always a closed subspace of L2(GC, µ).

Theorem 6.2.1 (Hall [18]). If f ∈ HL2(GC, µ), then

f =
∑

[ξ]∈Ĝ

dξTr[ξFGf(ξ)] in HL2(GC, µ).

Proof. Observe that the map G → C : x 7→ f(xz) is smooth on G for any fixed z ∈ GC.
Then for each x ∈ G and k ∈ N we get uniform convergence over z ∈ Gk of

f(xz) =
∑

[ξ]∈Ĝ

dξTr
(
ξ(x)

∫
G

f(yz)ξ(y)∗ dy
)

=
∑

[ξ]∈Ĝ

dξTr
(
ξ(xz)

∫
G

f(y)ξ(y)∗ dy
)
,

where we make use of the holomorphy of f on GC, and that G is totally real inside GC.
If [ξ], [η] ∈ Ĝ are inequivalent, we have that

0 =

∫
Gk

[ ∫
G

Tr
(
ξ(x)[ξ(z)A]

)
Tr
(
η(x)[η(z)B]

)
dx
]
dµ(z)

=

∫
G

∫
Gk

Tr(ξ(xz)A)Tr(η(xz)B) dµ(z) dx

=

∫
Gk

Tr(ξ(z)A)Tr(η(z)B) dµ(z),

where A and B are endomorphisms of the representation spaces of ξ and η, respectively.
It follows from this orthogonality that∑

[ξ]∈Ĝ

d2
ξ

∫
Gk

∣∣∣Tr
(
ξ(z)

∫
G

f(y)ξ(y)∗ dy
)∣∣∣2 dµ(z) = ||f |Gk ||2L2(Gk,µ) <∞,

and the terms in the above series increase with k, so the MCT allows us to take k →∞.
Thus each term is in HL2(GC), and the series converges in L2(GC).

Contained in the above is of course the fact that each term in the sum is in L2(GC, µ).
This is interesting in its own right.

Corollary 6.2.1. If f ∈ HL2(GC, µ), then

Tr[ξFGf(ξ)] ∈ HL2(GC, µ) for each [ξ] ∈ Ĝ.
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6.2.2 Hall’s Isometry and Inversion Theorems

Associated to (·, ·)g there is the Ad(G)-invariant extended inner product (·, ·)gC on gC,
and with respect to this, a bi-G-invariant (by definition, and using Ad) operator

∆GC =

n∑
j=1

X2
j +

n∑
j=1

(JXj)
2,

which is the left GC-invariant Laplacian for the left GC-invariant metric induced by (·, ·)gC .
It is also very important to note that the operators (∆G)C and ∆GC are not the same.
The former is only defined on holomorphic functions (”holomorphic extension” of ∆G),
while the latter acts on D′(GC). The difference is essentially that of

(∆R)C =
d2

dz2
versus ∆RC =

∂2

∂x2
+

∂2

∂y2
.

Both Laplacians ∆G and ∆GC are independent of {Xj}nj=1, and depend only on (·, ·)g.
Fix the left Haar measure dz on GC so it coincides with the Riemannian volume measure.
In this setup, we have the following central theorem on heat kernels:

Theorem 6.2.2 (Hall [18], Stein [53], Nelson [46]. See also Gangolli [14] and Hall [19]).
Let δe be the unit point measure at the identity e ∈ G ⊂ GC.

1. There exists a solution ρ ∈ C∞((0,∞)×G) (where ρt = ρ(t, ·)) to{
∂
∂tρ(t, x) = 1

2 (∆G)xρ(t, x) for all (t, x) ∈ (0,∞)×G,
limt→0 ρt = δe in D′(G).

2. There exists a solution µ ∈ C∞((0,∞)×GC) (where µt = µ(t, ·)) to{
∂
∂tµ(t, z) = 1

4 (∆GC)zµ(t, z) for all (t, z) ∈ (0,∞)×GC,

limt→0 µt = δe in D′(GC).

Here the solution ρ to the first system above is unique, while µ is in general not unique.
But if we put νt(z) =

∫
G
µt(xz) dx for all z ∈ GC, then for t > 0 we obtain the following:

1. ρt is strictly positive, real-valued,
∫
G
ρt(x) dx = 1, and

ρt(x) =
∑

[ξ]∈Ĝ

dξe
− 1

2 tλξTr ξ(x) for all x ∈ G.

2. µt can be taken non-negative, real-valued,
∫
GC
µt(z) dz = 1, and

νt(exp(iY )x) =
e−|τ |

2t

(πt)
n
2

Θ(Y )e−
|Y |2
t for all (x, Y ) ∈ G× g.

Here τ is half of the sum of the positive roots for some maximal abelian subalgebra of g.
The number n is the dimension of G.
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In the following we will make extensive use of ρt, µt and νt as in Theorem 6.2.2.
Henceforth we fix these functions at a particular time t > 0.

Lemma 6.2.2 (Hall [18]). If ε > 0, then

sup
z∈Gε

|Tr ξ(z)| ≤ dξeε
√
λξ for any [ξ] ∈ Ĝ.

Proof. Let z ∈ Gε decompose as z = exp(iY )x where x ∈ G and Y ∈ g with |Y |g < ε.
Since ξ(x) is unitary, and i dξ(Y ) is self-adjoint, we get from Lemma 6.2.1 that

||ξ(z)|| = ||ξ(exp(iY ))ξ(x)||

= || exp(i dξ(Y ))|| ≤ e||i dξ(Y )|| ≤ e
√
λξ|Y |g ,

and so, we get

sup
z∈Gε

|Tr ξ(z)| ≤ dξ sup
z∈Gε

||ξ(z)|| ≤ dξeε
√
λξ .

Corollary 6.2.2. The heat kernel ρt has a unique holomorphic extension to all of GC.
It is given by the locally uniformly convergent sum

ρt(z) =
∑

[ξ]∈Ĝ

dξe
− t2λξTr ξ(z) for all z ∈ GC.

Proof. Taking ε = k ∈ N and using dξ = O(〈ξ〉n2 ), we get C > 0 such that

|dξe−
t
2λξTr ξ(z)| ≤ d2

ξe
k
√
λξ− t2λξ

≤ C(1 + λ2
ξ)

n
2 ek
√
λξ− t2λξ ,

and it follows that we have uniform convergence in all z ∈ Gk of the above defined series.
Hence it converges to a holomorphic function on all of GC.

This corollary allows us to define the (generalized) Segal-Bargmann transform on G.
It is essentially just e

t
2 ∆G followed by analytic continuation.

Definition 6.2.2. If f ∈ L2(G), let Ctf be the holomorphic extension of f ∗ ρt to GC.
The map L2(G) 3 f 7→ Ctf is the (generalized) Segal-Bargmann transform on G.

Lemma 6.2.3 (Hall [18]. See also Nelson [46]). The following holds.

1. If ξ is any finite-dimensional representation of G, then∫
G

ξ(x)ρt(x) dx = exp
( t

2
dξ(∆G)

)
.

2. If ξC is any finite-dimensional representation of GC, then∫
GC

ξC(z)µt(z) dz = exp
( t

4
dξC(∆GC)

)
.
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Proof. To see that the first point is true, we simply differentiate ξ(ρt) with respect to t,
and then obtain a differential equation that can only be solved by the right hand side.
Doing this, we get

d

dt
ξ(ρt) =

1

2
ξ(∆Gρt) =

1

2

n∑
j=1

∫
G

ξ(x)X2
j ρt(x) dx

=
1

2

n∑
j=1

(∫
G

ξ(x)ρt(x) dx
)
dξ(Xj)

2

=
1

2
ξ(ρt)dξ(∆G),

and this leads to {
d
dtξ(ρt) = 1

2ξ(ρt)dξ(∆G) for all t ∈ (0,∞),

limt→0 ξ(ρt) = I,

which of course has the unique solution exp( t2dξ(∆G)). This establishes the first point.
Now, to see that the second point holds, we do the same, but avoid convergence issues.
Using the explicit expression for νt in Theorem 6.2.2, we see that

sup
t∈(0,T ]

∫
GC

||ξC(z)||µt(z) dz ≤ C sup
t∈(0,T ]

∫
g

e||dξC|| |Y |
[νt(exp(iY ))

Θ(Y )2

]
dY <∞,

where | · |g refers to the norm on g, extended to gC, and C > 0 is independent of T > 0.
Multiplying a left G-invariant cutoff onto ξC, a similar estimate shows limt→0 ξC(µt) = I.
Also, if f ∈ C∞0 (GC), then by the FTT, we furthermore have

sup
t∈(0,T ]

∫
GC

||ξC(z)|| |(µt ∗ f)(z)| dz <∞.

Using that GC is unimodular, there is a right-invariant differential operator A on GC,
which corresponds to ∆GC , such that ∆GCµt ∗ f = µt ∗Af and ξC(Af) = dξC(∆GC)ξC(f).
Combining all the above with this fact (checked by a computation), we get

d

dt

[
ξC(µt)

]
ξC(f) =

d

dt

[
ξC(µt ∗ f)

]
=

1

4
ξC(∆GCµt ∗ f)

=
1

4
ξC(µt)dξC(∆GC)ξC(f).

Thus if f is positive with small support near e ∈ GC, then ξC(f) is invertible, and{
d
dtξC(µt) = 1

4ξC(µt)dξC(∆GC) for all t ∈ (0,∞),

limt→0 ξC(µt) = I,

which has the unique solution exp( t4dξC(∆GC)).
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The Segal-Bargmann transform is unitary from ordinary to holomorphic L2-spaces.
This is the most important property of Ct.

Theorem 6.2.3 (Hall [18]). The transform Ct : L2(G) → HL2(GC, νt) is well-defined.
Furthermore, it is a surjective isometry.

Proof. Take [ξ], [η] ∈ Ĝ and endomorphisms A and B of the spaces of ξ and η, respectively.
It follows from the definition of ρt, and analytic continuation in z ∈ GC, that∫

G

Tr(ξ(x)A)ρt(x
−1z) dx = e−

t
2λξTr(ξ(z)A).

It suffices to show isometricity on functions of the form G → C : x 7→ Tr(ξ(x)A) only.
This is because their span is dense in L2(G) by Theorem 3.2.2. In that case, we have∫

G

Tr(ξ(x)A)Tr(η(x)B)ρt(x) dx = Tr
[( ∫

G

(ξ ⊗ η)(x)ρt(x) dx
)

(A⊗B)
]

= Tr
[

exp
( t

2
d(ξ ⊗ η)(∆G)

)
(A⊗B)

]
,

where η is the contragredient of η, and

d(ξ ⊗ η)(∆G) = −(λξ + λη) +
1

2
d(ξ ⊗ η†)(∆GC),

and η† is the anti-holomorphic representation given by η† : GC → GL(dη,C) : z 7→ η(z).
To see the above identity, we note that dη(∆G) = −ληI, and write

d(ξ ⊗ η†)(∆GC) =

n∑
j=1

[(
dξ(Xj)⊗ I + I ⊗ dη†(Xj)

)2

+
(
dξ(JXj)⊗ I + I ⊗ dη†(JXj)

)2]
=

n∑
j=1

[(
dξ(Xj)⊗ I + I ⊗ dη(Xj)

)2

+
(
i dξ(Xj)⊗ I − I ⊗ i dη(Xj)

)2]
= 2(λξ + λη) + 2

n∑
j=1

(
dξ(Xj)⊗ I + I ⊗ dη(Xj)

)2

,

Using this, we continue the computation to get

Tr
[

exp
( t

4
d(ξ ⊗ η†)(∆GC)

)
(A⊗B)

]
= Tr

[( ∫
GC

[ξ(z)⊗ η(z)]µt(z) dz
)

(A⊗B)
]

=

∫
GC

Tr(ξ(z)A)Tr(η(z)B)µt(z) dz,

and finally multiplying by e−
t
2 (λξ+λη) shows isometry as a map L2(G, ρt)→ L2(GC, µt).

Since Ct commutes with the left regular representation, we also have

||Ctf ||2L2(GC,νt)
=

∫
G

∫
GC

|Ctf(y−1z)|2µt(z) dz dy =

∫
G

∫
G

|f(y−1x)|2ρt(x) dx dy,

where an interchange of integrals and
∫
G
ρt(y) dy = 1 gives the desired isometry property.

It is surjective because of the holomorphic Peter-Weyl expansion.
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Also, there is a characterization the image of any order s ≥ 0 Sobolev space under Ct.
It is given in terms of the aptly named holomorphic Sobolev spaces.

Definition 6.2.3. Let s ∈ R. Define

HHs(GC, νt) = {u ∈ O(GC) | (I − (∆G)C)
s
2u ∈ HL2(GC, νt)}.

These inherit the Hilbert space structure by just forcing (I − (∆G)C)
s
2 to be unitary.

Note then that if s′ > s ≥ 0, we have

HHs(GC, νt) ⊂ HHs′(GC, νt),

which can be seen by writing (I− (∆G)C)
s
2 out in its holomorphic Peter-Weyl expansion.

Theorem 6.2.4 (Hall and Lewkeeratiyutkul [20]). (Slightly more general.) Let s ≥ 0.
Then Ct : Hs(G)→ HHs(GC, νt) is a well-defined surjective isometry.

Proof. Observe first that [(I−∆G)
s
2 , e

t
2 ∆G ] = 0, both understood as operators on C∞(G).

But Ct is just e
t
2 ∆G |L2(G) followed by holomorphic extension. This implies that

(I − (∆G)C)
s
2 Ct|Hs(G) = Ct(I −∆G)

s
2 |Hs(G),

and it follows that

Ct(Hs(G)) ⊂ HHs(GC, νt).

As an unbounded operator into L2(G) with the domain Hs(G), (I−∆G)
s
2 is self-adjoint,

and hence so is Ct(I −∆G)
s
2 C−1
t : Ct(Hs(G)) → HL2(GC, νt), by the L2-unitarity of Ct.

The latter operator coincides with

Ct(I −∆G)
s
2 C−1
t |Ct(Hs(G)) = (I − (∆G)C)

s
2 |Ct(Hs(G)),

and if this extends symmetrically to HHs(GC, νt), maximality forces domains to coincide.
To see that this is the case, take f, g ∈ HHs(GC, νt), and use Theorem 4.2.6 to get

((I − (∆G)C)
s
2 f, g)L2(GC,νt) =

∫
GC

[(I − (∆G)C)
s
2 f ](z)g(z)νt(z) dz

=

∫
g

[ ∫
G

(I −∆G)
s
2 (fY )(x)(gY )(x) dx

]νt(exp(iY ))

Θ(Y )2
dY

=

∫
g

[ ∫
G

(fY )(x)(I −∆G)
s
2 (gY )(x) dx

]νt(exp(iY ))

Θ(Y )2
dY,

where we write fY (x) = f(exp(iY )x) and gY (x) = g(exp(iY )x) for any (x, Y ) ∈ G × g,
and use that for such holomorphic functions f on GC, we have

[(I − (∆G)C)
s
2 f ](exp(iY )x) = (I −∆G)

s
2 (fY )(x).

This we may apply again to gY to recombine the integrals above and get the symmetry.
It is an isometry because Ct intertwines (1−∆G)

s
2 and (1− (∆G)C)

s
2 on Hs(G).
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The following result shows that HHs(GC, νt) captures a growth condition at infinity.
It is rather lengthy to prove, so we refer to Hall and Lewkeeratiyutkul [20].

Theorem 6.2.5 (Hall and Lewkeeratiyutkul [20]). Let s = 2k for some number k ∈ N.
The space HHs(GC, νt) consists exactly of those f ∈ HL2(GC, νt) satisfying∫

g

∫
G

|f(exp(iY )x)|2
[
(1 + |Y |2)s

νt(exp(iY ))

Θ(Y )2

]
dx dY <∞.

Finally, we prove the simplest inversion formula for Ct in terms of ρt and the sets Gk.
There are others, but these would require yet more theory.

Theorem 6.2.6 (Hall [18]). The map C−1
t : HL2(GC, νt)→ L2(G) has an explicit form.

It is given by the L2-limit

C−1
t g = lim

k→∞
C−1
t (1Gkg) for any g ∈ HL2(GC, νt),

where the cut-off is

C−1
t (1Gkg)(x) =

∫
Gk

g(z)ρt(x−1z)νt(z) dz for a.e x ∈ G.

Proof. Note that Ct : L2(G) → L2(GC, νt) is an isometry, so its adjoint is a left inverse.
Taking f ∈ L2(G), we see that

(Ctf, 1Gkg)L2(GC,νt) =

∫
Gk

[ ∫
G

f(x)ρt(x
−1z) dx

]
g(z)νt(z) dz

=

∫
G

f(x)
[ ∫

Gk

g(z)ρt(x−1z)νt(z) dz
]
dx,

and letting k →∞ gives the formula.

The limit above is unavoidable, since it is not possible to directly replace Gk by GC.
In fact, GC → C : z 7→ ρt(x

−1z) can never belong to L2(GC, νt) regardless of x ∈ G.
Otherwise, there must exist some f ∈ L2(G) such that its restriction to G equals f ∗ ρt,
but this gives an identity for the convolution, which is impossible.



7

Operators Preserving ε-Extendible Functions

In this chapter, we use the theory from the previous chapters to investigate our question.
Let (M, g) be a compact real-analytic Riemannian manifold with Grauert tubes {Mε}ε<ε0 .

If P ∈ Ψ(M), we seek a P̃ such that the following diagram commutes:

H1 H2

C∞(M) C∞(M)

P̃

Rε Rε

P

where H1, H2 ⊂ O(Mε) are some holomorphic function spaces, Rε is the restriction map.
That is, we seek necessary or sufficient conditions for the existence of such an operator,
and we would also like the two function spaces H1 and H2 above to be Hilbert spaces.
This would make the machinery of functional analysis available in any further analysis.
An operator P with this property will be called (by slight abuse of language) ε-extendible.
The next question is then, if P is also elliptic, does it admit an ε-extendible parametrix,
and if so, is it possible to somehow construct this parametrix from P?

7.1 Algebras of ε-Extendible Operators

Let Gε be the tube of radius ε > 0 about a compact (possibly disconnected) Lie group G,
which has the Lie algebra g, always carrying a fixed Ad(G)-invariant inner product (·, ·)g.
It is possible to define order s ∈ R ”holomorphic Sobolev spaces” on Gε, as follows:

Definition 7.1.1. Let s ∈ R. Define

HHs(Gε) = {u ∈ O(Gε) | (I − (∆G)C)
s
2u ∈ HL2(Gε)}.

Of course, these are Hilbert spaces given the inner product inherited from L2(Mε).
That is, we put

(u, v)HHs(Gε) = ((I − (∆G)C)
s
2u, (I − (∆G)C)

s
2 v)L2(Mε) if u, v ∈ HHs(Gε).

The space HHs(Gε) is different from HHs(GC, νt). It may contain non-entire functions,
and it is defined with respect to the finite volume measure dz on Gε with no weight.
Unfortunately, the above definition does not carry over easily to Grauert tubes Mε of M .
How should we even define (I −∆C)

s
2 , analogous to (I − (∆G)C)

s
2 , on Mε when s 6∈ 2N0?

One way to overcome this problem is to use the Poisson transform.

111
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7.1.1 On a Compact Riemannian Manifold M

Choose ε′0 < ε0 so that the Boutet de Monvel theorem holds for ε ∈ (0, ε′0). Put n = dimM .
It will be necessary to use the following lemma repeatedly.

Lemma 7.1.1. Let d, d′ ∈ N and let P ∈ Diffd(M) be elliptic and formally self-adjoint.
Assume that P has classical principal symbol p positive on T ∗M \ 0, and

σ(P ) ⊂ [0,∞).

Then, if A ∈ Ψd′(M) with d′ ∈ R and [A,P ] = 0, the following holds:

1. [A,P
1
d ] = 0.

2. [A, e−εP
1
d ] = 0.

Proof. By hypothesis, P is parameter-elliptic w.r.t. any closed sector inside C \ (0,∞).
Therefore the two operators are defined, given appropriate contours in the complex plane.
That is, we can choose R > 0 so that if u ∈ C∞(M), we have

P
1
du =

1

2πi

∫
ΓR

λ
1−d
d (λI − P )−1Pudλ,

and

e−tP
1
d u =

1

2πi

∫
Γ′R

e−tλ
1
d (λI − P )−1u dλ+

1

2πi

∫
RS1

(λI − P )−1u dλ,

where λ 7→ λ
1−d
d is defined using the principal logarithm with branch cut along (−∞, 0],

and ΓR and Γ′R are keyhole contours, RS1 encircles no eigenvalues other than possibly 0.
The commutators are easily calculated to be

[A,P
1
d ]u = A

( 1

2πi

∫
ΓR

λ
1−d
d (λI − P )−1Pudλ

)
− P 1

dAu

=
1

2πi

∫
ΓR

λ
1−d
d

[
A(λI − P )−1P − (λI − P )−1PA

]
u dλ = 0,

and also

[A, e−εP
1
d ]u = A

( 1

2πi

∫
Γ′R

e−ελ
1
d (λI − P )−1u dλ

)
− e−εP

1
dAu+ 0

=
1

2πi

∫
Γ′R

e−ελ
1
d
[
A(λI − P )−1 − (λI − P )−1A

]
u dλ = 0.

In the above lemma, I +P is always invertible, and (I +P )s is defined for any s ∈ R.
Of course, in that case, A also commutes with any such power:

[A, (I + P )s] = 0.
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Our approach is to indirectly define spaces as images under Pε of any order s ∈ R.
These will coincide with the holomorphic Sobolev spaces on Gε when M = G.

Definition 7.1.2.

HHs(Mε) = PεHs−n+1
4 (M).

Using the inverse P−1
ε , the image space is made to inherit the Hilbert space structure.

It is equipped with the induced inner product

(u, v)HHs(Mε) = (Pε(I −∆)
s
2P−1

ε u,Pε(I −∆)
s
2P−1

ε v)L2(Mε) if u, v ∈ HHs(Gε),

and Pε : Hs−n+1
4 (M)→ HHs(Mε) is automatically a bounded isomorphism in this way.

This is clear from

||Pεu||HHs(Mε) = ||Pε(I −∆)
s
2u||L2(Mε)

≤ ||Pε||
B(H−

n+1
4 (M),HL2(Mε))

||u||
Hs−

n+1
4 (M)

.

Let us show that if M = G and ∆ = ∆G the definition agrees with that for Lie groups.

Proof. Take any u ∈ C∞(G), and for any z ∈ Gε write

Pε(I −∆G)
s
2u(z) =

∑
[ξ]∈Ĝ

dξTr(Pεξ(z)F(I −∆G)
s
2u)

=
∑

[ξ]∈Ĝ

dξTr
(
〈ξ〉sξ(z)

∫
G

u(x)e−ε
√
λξξ(x)∗ dx

)
=
∑

[ξ]∈Ĝ

dξTr
(
〈ξ〉sξ(z)

∫
G

(e−ε
√
−∆u)(x)ξ(x)∗ dx

)
,

where we use that the Peter-Weyl expansion of u converges in the topology of C∞(G),
and thus the first sum converges in HL2(Gε), hence uniformly on compact subsets of Gε.
This shows that

Pε(I −∆G)
s
2u = (I − (∆G)C)

s
2Pεu,

which, on the left hand side, must extend to u ∈ Hs−n+1
4 (M) just by using the continuity.

To see equality for u ∈ Hs−n+1
4 (M), pick {uk}∞k=1 ⊂ C∞(M) such that

uk → u in H−
n+1

4 (M) as k →∞,

and note that

(I − (∆G)C)
s
2Pεuk → (I − (∆G)C)

s
2Pεu uniformly on K ⊂⊂ Gε as k →∞,

while the same type of convergence is implied by HL2-convergence on the left hand side.

Therefore, the limits agree as merely holomorphic functions on Gε when u ∈ Hs−n+1
4 (M).

It follows that the definitions agree, justifying the notation.
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The first interesting result in this section follows from the construction of Pε itself.
Those operators commuting with ∆ preserve ε-extendible functions:

Proposition 7.1.1. Suppose that d′ ∈ R and A ∈ Ψd′(M) commutes with ∆ on C∞(M).
Then if s ∈ R the following diagram commutes and consists of bounded operators:

HHs(Mε) HHs−d′(Mε)

Hs(M) Hs−d′(M)

PεAP−1
ε

Rε Rε

A

Proof. By the construction, RεPε|
Hs−

n+1
4 (M)

= e−ε
√
−∆|

Hs−
n+1

4 (M)
holds for any s ∈ R,

and so by Lemma 7.1.1, if u ∈ C∞(M) this implies

RεPεAu = e−ε
√
−∆Au = Ae−ε

√
−∆u = ARεPεu,

which then extends by continuity to all u ∈ Hs(M). Therefore the diagram commutes.
As a special case, if u ∈ HHs(Mε), we have

(I −∆)
s
2Rεu = RεPε(I −∆)

s
2P−1

ε u,

and we obtain the estimates

||Rεu||Hs(M) ≤ ||(I −∆)−
s
2 ||B(Hs(M),L2(M))||(I −∆)

s
2Rεu||L2(M)

≤ ||(I −∆)−
s
2 ||B(Hs(M),L2(M))||Rε||B(L2(Mε),L2(M))||u||HHs(Mε).

Therefore the Rε are also bounded in the diagram

Proposition 7.1.2. Suppose that d′ ∈ R. Let {ηk}∞k=0 be a sequence of complex numbers.

If there is a C > 0 with |ηk| ≤ C〈λk〉d
′

for all k ∈ N0, we can meaningfully define

A : C∞(M)→ C∞(M) : u 7→
∞∑
k=0

ηk(u, φk)L2(M)φk.

Then A is continuous, [A,∆] = 0, and the conclusion of Proposition 7.1.1 holds.

Proof. Taking any s ∈ R and u ∈ Hs(M), we have

||Au||2
Hs−d′ (M)

=

∞∑
k=0

〈λk〉2(s−d′)|ηk|2|(u, φk)|2

≤ C
∞∑
k=0

|((I −∆)−
s
2u, φk)|2 = C||u||2Hs(M),

and so by the Sobolev embedding theorem, A is continuous from C∞(M) to itself.

Corollary 7.1.1. ∆ admits a parametrix satisfying the above diagram.

Proof. Put ηk = 1
λk

when λk 6= 0 and zero otherwise.
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The continuation theorem was announced by Boutet de Monvel in the old paper [3].
But no proof was provided. Only the case of the Laplacian was fully proved in [55, 65].
To our knowledge, the general statement in [3] remains unproven at the time of writing.
It will imply that the above results have analogues for other elliptic differential operators,
where the Grauert tubes are replaced by other neighbourhoods MΦ

ε of M in MC.

Let d ∈ N and let P ∈ Diffd(M) be real-analytic with classical principal symbol p.
Suppose that P is formally self-adjoint, elliptic and that p is always positive on T ∗M \ 0.
Then P is semi-lower bounded, and we assume that this P has no negative eigenvalues.
In that case, p generates a real-analytic complete Hamiltonian flow ϕt : T ∗M → T ∗M .
This flow satisfies

(πxϕtd−1)(x, ξ) = (πxϕ1)(x, tξ) for all (x, ξ) ∈ T ∗M and t ∈ R,

where πx is the cotangent bundle projection

πx : T ∗M →M : (x, ξ) 7→ x.

Conjecture 7.1.1 (Boutet de Monvel [3]. The statement here is slightly more special).

Let Pε denote the kernel of e−εP
1
d , and put

Φx(ξ) = (πxϕ1)(x, ξ) for any (x, ξ) ∈ T ∗M.

Then there is a maximal ε0 > 0 such that for any ε ∈ (0, ε0) the following holds:

1. The map Φx extends holomorphically to

Φx : {ξ ∈ T ∗xM ⊗R C | |p(x, ξ)| 1d < ε} →MC.

2. The extended Φx combine into a real-analytic diffeomorphism

Φ : {(x, ξ) ∈ T ∗M | p(x, ξ) 1
d < ε} →MΦ

ε ⊂MC : (x, ξ) 7→ Φx(iξ).

3. The image MΦ
ε is open in MC with (orientable) Cω-boundary ∂MΦ

ε .

This image MΦ
ε generalizes the Grauert tube construction in the following sense:

1. MΦ
ε admits a unique Kähler structure such that Φ is a symplectomorphism.

2. MΦ
ε admits a global Kähler potential for this structure.

3. All eigenfunctions of P extend holomorphically to MΦ
ε .

Then there is a maximal ε′0 ∈ (0, ε0] such that for any ε ∈ (0, ε′0) the following holds:

1. The map x 7→ Pε(x, y) extends holomorphically to MΦ
ε for each fixed y ∈M .

2. The kernel Pε|∂MΦ
ε ×M induces a complex-phase PHG FIO Sε of order −n−1

4 .

3. Sε defines a homeomorphism Sε : Hs(M)→ Os+n−1
4 (∂MΦ

ε ) for any s ∈ R.

Assuming this conjecture to be true, we make a second conjecture in extension of it.
The existence radius of Sε should be proportional to that of the eigenfunctions:

Conjecture 7.1.2. The above conjecture holds with
ε′0
ε0
∈ (0, 1] independent of P .
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Let us momentarily assume that just the first (and most plausible) conjecture holds.
Pick ε ∈ (0, ε′0), let h be the Kähler metric on the closure of MΦ

ε , and take s ∈ R.

Definition 7.1.3. If f ∈ Hs−n+1
4 (M), define Wεf to be the extension of e−εP

1
d f to MΦ

ε .

Suppose that Kε is the Poisson operator solving the Dirichlet problem for ∆h on MΦ
ε .

By Theorem 6.1.3 it is a linear homeomorphism

Kε : Hs− 1
2 (∂MΦ

ε )→ H̄s(MΦ
ε ) ∩ ker(∆h|H̄s(MΦ

ε )),

and Wε = KεSε realizes a well-defined linear homeomorphism

Wε : Hs−n+1
4 (M)→ KεOs−

1
2 (∂MΦ

ε ).

Definition 7.1.4. Let s ∈ R. Define

HHs(MΦ
ε ) =WεH

s−n+1
4 (M).

Note that I + P ∈ Ψd(M) is invertible, and the inverse always belongs to Ψ−d(M).
So each space is a Hilbert space with the inner product induced by the norm

||u||HHs(MΦ
ε ) = ||Wε(I + P )

s
dW−1

ε u||L2(MΦ
ε ) if u ∈ HHs(MΦ

ε ),

and, automatically, Wε becomes a bounded isomorphism onto this space.

Proposition 7.1.3. Suppose that d′ ∈ R and A ∈ Ψd′(M) commutes with P on C∞(M).
Then if s ∈ R the following diagram commutes and consists of bounded operators:

HHs(MΦ
ε ) HHs−d′(MΦ

ε )

Hs(M) Hs−d′(M)

WεAW−1
ε

Rε Rε

A

Proof. As in Proposition 7.1.1,RεWε|
Hs−

n+1
4 (M)

= e−εP
1
d |
Hs−

n+1
4 (M)

holds for any s ∈ R,

and so by Lemma 7.1.1, if u ∈ C∞(M) this implies

RεWεAu = e−εP
1
dAu = Ae−εP

1
d u = ARεWεu,

which then extends by continuity to all u ∈ Hs(M). Therefore the diagram commutes.
In particular, if u ∈ HHs(Mε), we have

(I + P )
s
dRεu = RεWε(I + P )

s
dW−1

ε u,

and so we get

||Rεu||Hs′ (M) ≤ ||(I + P )−
s′
d ||B(Hs′ (M),L2(M))||(I + P )

s′
d Rεu||L2(M)

≤ ||(I + P )−
s
d ||B(Hs′ (M),L2(M))||Rε||B(L2(MΦ

ε ),L2(M))||u||HHs′ (MΦ
ε ),

which shows that the Rε are bounded in the diagram
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The most interesting implication of the above is the existence of special parametrices.

Let d′ ∈ N and suppose that A ∈ Diffd
′
(M) is real-analytic, elliptic and formally normal.

In that case, let a be the classical principal symbol of A, and put

P = A∗A ∈ Ψd
phg(M) with d = 2d′,

which then has the unique classical principal symbol p = |a|2, always positive on T ∗M \0.
This P is elliptic, formally self-adjoint, and can not have negative eigenvalues.

Theorem 7.1.1. Let MΦ
ε and Wε be obtained from Conjecture 7.1.1 with ε ∈ (0, ε0).

Then A has a parametrix B ∈ Ψ−d
′
(M) so that if s ∈ R the diagram below commutes:

HHs(MΦ
ε ) HHs−d′(MΦ

ε )

Hs(M) Hs−d′(M)

WεBW−1
ε

Rε Rε

B

Proof. If A is invertible, the inverse commutes with P on C∞(M), and so we are done.
Assume therefore that A is not invertible. But then 0 is necessarily an eigenvalue of P .
The spectrum of P consists of eigenvalues. Let it be {ηk}∞k=0, counted with multiplicity.
Using now Theorem 3.1.12,

∫
Γ

1
λ (λI − P )−1 dλ converges in B(Hk(M)) for every k ∈ N,

where Γ is a circle lying outside the spectrum of P , enclosing 0 but no other eigenvalues.
By the Sobolev embedding theorem, the integral converges in the topology of C∞(M),
and we obtain a continuous operator

B : C∞(M)→ C∞(M) : u 7→ − 1

2πi

∫
Γ

1

λ
(λI − P )−1A∗u dλ.

The theorem follows if we show that B is a parametrix commuting with P on C∞(M).
Take u ∈ C∞(M), and use the formal normality of A to write

[P,B]u = − 1

2πi
P
(∫

Γ

1

λ
(λI − P )−1A∗u dλ

)
−BPu

= − 1

2πi

∫
Γ

1

λ

[
P (λI − P )−1A∗ − (λI − P )−1A∗P

]
u dλ = 0.

So, if {ψk}∞k=0 is an ON eigenbasis associated to {ηk}∞k=0, we have

ABu = BAu = − 1

2πi

∫
Γ

1

λ
(λI − P )−1Pudλ

=
[ 1

2πi

∫
Γ

1

λ
dλ
]
u− 1

2πi

∫
Γ

(λI − P )−1
[ ∞∑
k=0

(u, ψk)L2(M)ψk

]
dλ

= Iu−
∞∑
k=0

(u, ψk)L2(M)

[ 1

2πi

∫
Γ

1

λ− ηk
dλ
]
ψk,

where the remainder operator is simply the projection onto the finite-dimensional kernel.
It follows that B ∈ Ψ−d

′
(M), and that it is a parametrix for A.
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7.1.2 On a Compact Lie Group G

It is possible to form a subalgebra of Ψ(G) with the desired properties for any ε > 0.
That is, operators with bounded extensions between holomorphic Sobolev spaces on Gε,
and with an analogous notion of, and confditions for, ellipticity within the subalgebra.
We will show that the subalgebra is at least non-trivial. Let d ∈ R.

Definition 7.1.5. Define Sdε to be those p ∈ Sd satisfying the following two conditions:

1. The map G → Mat(dξ,C) : x 7→ p(x, ξ) is real-analytic for every [ξ] ∈ Ĝ.
Each of these extend holomorphically to Gε.

2. Write pY (x, ξ) = p(exp(iY )x, ξ) for every (x, [ξ]) ∈ G × Ĝ when |Y |g < ε.
Then {pY }|Y |g<ε is a bounded subset of Sd.

Take p ∈ Sdε . Let us adopt the notation pY as it is appears above in the second point.
If u ∈ Cω(G) extends to Gε, then since G is totally real in GC, we have

Op(p)u(exp(iY )x) =
∑

[ξ]∈Ĝ

dξTr(ξ(exp(iY )x)pY (x, ξ)Fu(ξ))

=
∑

[ξ]∈Ĝ

dξTr
(
ξ(x)pY (x, ξ)

∫
G

u(exp(iY )y)ξ(y)∗ dy
)
,

where the sum is uniformly absolutely convergent on x ∈ G and Y ∈ g with |Y | ≤ r < ε.
This gives us the following simple result.

Proposition 7.1.4. If u ∈ Cω(G) extends holomorphically to Gε, then so does Op(p)u.

Theorem 7.1.2. Let d1 ∈ R and d2 ∈ R. If p ∈ Sd1
ε and q ∈ Sd2

ε , then p� q ∈ Sd1+d2
ε .

Proof. If [η] ∈ Ĝ is fixed, then p(x, η) extends holomorphically in x ∈ G to z ∈ Gε via

(p� q)(z, η) =
∑

[ξ]∈Ĝ

dξ

∫
G

Tr
(
ξ(y)p(z, ξ)

)
η(y)∗q(zy−1, η) dy,

and, if |Y |g < ε, this also shows that

(p� q)Y (x, η) = (p� q)(exp(iY )x, η)

= (pY � qY )(x, η).

Then, because {pY }|Y |g<ε ⊂ Sd1 and {pY }|Y |g<ε ⊂ Sd2 are bounded sets by definition,

and the symbolic product is continuous, {(p�q)Y }|Y |g<ε must be a bounded set in Sd1+d2 .

This shows that p� q ∈ Sd1+d2
ε .

It follows from the above that Ψε(G) = ∪d∈ROpSdε is actually a subalgebra of Ψ(G).
The holomorphic extension of Op(p)u can also be expressed in terms of {Op(pY )}|Y |g<ε.
In fact, with x and Y as above, we have

Op(p)u(z) = Op(pY )(Lexp(iY )u)(x) if z = exp(iY )x ∈ Gε.
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Next, we prove the holomorphic mapping property using the Cartan decomposition.
It mirrors precisely the standard Sobolev mapping property of Ψ(G).

Proposition 7.1.5. If p ∈ Sdε and s ∈ R, then Op(p) : HHs(Gε)→ HHs−d(Gε) exists.
That is, there is a unique bounded operator making the diagram below commute:

HHs(Gε) HHs−d(Gε)

Hs(G) Hs−d(G)

Õp(p)

Rε Rε

Op(p)

Proof. Of course, (I −∆G)
s
2 ∈ Ψs

ε(G) for all s ∈ R, so it is enough to prove s = d = 0.
But then we just use the boundedness of {pY }|Y |g<ε and Lemma 3.2.8 to write∫

Gε

|Op(p)u(z)|2 dz =

∫
|Y |g<ε

[ ∫
G

|[Op(p)u](exp(iY )x)|2 dx
] dY

Θ(Y )2

≤ C
∫
|Y |g<ε

[ ∫
G

|u(exp(iY )x)|2 dx
] dY

Θ(Y )2

= C

∫
Gε

|u(z)|2 dz,

where C > 0 is a constant.

Let us make a very simple observation. Take p ∈ Sd1
ε and q ∈ Sd2

ε for some d1, d2 ∈ R.
But (p� q)Y = pY � qY so {pY � qY − pY qY }|Y |g<ε ⊂ Sd1+d2−1 is always a bounded set,
and we must have

p� q − pq ∈ Sd1+d2−1
ε .

It does not appear possible to include more terms, because these involve the δx operator,
which contains a cutoff, so higher order terms may not extend holomorphically.

Before we show that each Sdε is non-trivial, we show our claim about elliptic elements.
To this end, we must expand some theory from the functional calculus of matrix symbols.
Let us reuse X, α, β and {ψε}ε>0 ⊂ C∞(G) from that section. Also, we put

gε = {Y ∈ g | |Y | < ε}

Lemma 7.1.2. Let p ∈ Sdε for d ∈ R, and R(z) = F−1
ξ [p(z, ξ)] ∈ D′(G) for any z ∈ Gε,

where (x, Y ) 7→ p(exp(iY )x, ξ) has been extended by continuity to x ∈ G and all |Y | ≤ ε.
It is alternatively viewed as a map

G× gε → D′(G) : (x, Y ) 7→ R(exp(iY )x) = R(x, Y ).

Then, we have

R ∈ C∞(G× gε, H
−d−dn2 e(G))

Proof. The proof is the same as for Lemma 3.2.10, but just with a parameter |Y |g ≤ ε.
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Lemma 7.1.3. Suppose {pj}∞j=0 is a sequence with p ∈ Sdjε and dj ↘ −∞ as j → ∞.

Then we can construct p ∈ Sd0
ε with p ∼

∑∞
j=0 pj such that

p−
k−1∑
j=0

pj ∈ Sdkε for each k ∈ N.

Proof. The proof mimics that of Theorem 3.2.14, making use of uniform convergence.
Construct Rj from pj like just as in Lemma 7.1.2. Then Rj ∈ C∞(G×gε, H

−dj−dn2 e(G)).
Pick {εj}∞j=0 such that

sup
(x,Y )∈G×gε

||Xβ
xRj(x, Y )− ψεj ∗ (Xβ

xRj(x, Y ))||
H−dj−d

n
2
e(G)

<
1

2j+1
when |β| ≤ j.

Take N ∈ N0 with −dj − dn2 e ≥ 0 for j ≥ N , and observe that

||pj(z, ξ)(1−Fψεj (ξ))||2 ≤ ||Rj(x, Y )− ψεj ∗ (Rj(x, Y ))||2L2(G)

≤ ||Rj(x, Y )− ψεj ∗ (Rj(x, Y ))||2
H−dj−d

n
2
e(G)

<
1

4j+1
,

where the estimates are uniform in z = exp(iY )x for (x, Y ) ∈ Gε × gε and [ξ] ∈ Ĝ.
Consequently, we have

∞∑
j=N

||pj(z, ξ)(1−Fψεj (ξ))|| < 1.

It follows that p ∈ Sd0
ε if we put

p(z, ξ) =

∞∑
j=0

pj(z, ξ)(1−Fψεj (ξ)) for any (z, [ξ]) ∈ Gε × Ĝ,

which converges absolutely uniformly (in matrix norm) on z ∈ Gε for each fixed [ξ] ∈ Ĝ,
and x 7→ pY (x, ξ) is differentiable, where Xβ

x falls onto pj(exp(iY )x, ξ) under the sum.
The semi-norm estimates on pY are obtained exactly as in the proof of Theorem 3.2.14:
Let rN denote the sum starting at j = N . Take k ∈ N, and write

p(z, ξ)−
k−1∑
j=0

pj(z, ξ) =

N−1∑
j=k

pj(z, ξ)−
N−1∑
j=k

pj(z, ξ)Fψεj (ξ) + rN (z, ξ),

where the first term is in Sdkε , and the second belongs to S−∞ε by the product rule for δαξ .

It suffices to show that rN ∈ Sdk for large N ∈ N0. But this is clear, because

〈ξ〉|α|−dk ||δαξXβ
x (rN )Y (x, ξ)|| ≤ Cα,β

[
sup

[ξ]∈Ĝ
〈ξ〉|α|−dk ||Xβ

x (rN )Y (x, ξ)||
]

≤ Cα,β
[ ∞∑
j=M

||Xβ
xRj(x, Y )− ψεj ∗Xβ

xRj(x, Y )||H|α|−dk (G)

]
,

where N is chosen so that dN + dn2 e < dk − |α|, and Cα,β > 0 is a constant.
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The above means that we can sum symbols in the {Sdε }d∈R classes asymptotically.
This allows us to construct parametrices in S−dε for elliptic symbols in Sdε .

Proposition 7.1.6. Let q0 ∈ S−dε . The following holds:

1. If q0p− 1 ∈ S−1
ε , then there is a qL ∈ S−dε such that qL � p− 1 ∈ S−∞ε .

2. If pq0 − 1 ∈ S−1
ε , then there is a qR ∈ S−dε such that p� qR − 1 ∈ S−∞ε .

Finally, if both left and right parametrices exist, then qL − qR ∈ S−∞ε .

Proof. This is proved exactly as in Proposition 3.2.10, but using Lemma 7.1.3 instead.

Left: Put r = 1 − q0 � p. Define the sequence of symbols qj = r�j � q0 for j ∈ N0.
Then put q ∼

∑∞
j=0 qj with q ∈ S−dε , and write

S−Nε 3
(
q −

N−1∑
j=0

qj

)
� p− r�N = q � p− 1.

Right: Put r = 1− p� q0. Define the sequence of symbols qj = q0 � r�j for j ∈ N0.
Then put q ∼

∑∞
j=0 qj with q ∈ S−dε , and write

S−Nε 3 p�
(
q −

N−1∑
j=0

qj

)
− r�N = p� q − 1.

In either case, it holds for any N ∈ N, and therefore the residual must be in S−∞ε .
The last statement is clear.

Proposition 7.1.7. The space Sdε contains non-trivial symbols for each d ∈ R.

Proof. By the Segal-Bargmann transformation,HL2(GC, νt) must be infinite-dimensional.
Therefore so is the space of the restrictions of these functions to Gε, and hence also O(Gε).
Let Sdinv be the symbols of degree d ∈ R bi-invariant operators on G (depend only on [ξ]).
Then, we have that

O(Gε′)|Gε ⊗ Sdinv ⊂ Sdε when ε′ > ε,

and this space is infinite-dimensional, the symbols depend on both z and [ξ].

The proof of the ellipticity condition for matrix-symbols carries over directly to Sdε .
It is natural that the following holds:

Theorem 7.1.3 (This is a specialization of the Ruzhansky-Turunen-Wirth condition).

A symbol p ∈ Sdε has a parametrix in Sdε if and only if there is a finite F ⊂ Ĝ such that:

1. p(z, ξ) is invertible for all (z, [ξ]) ∈ Gε × (Ĝ \ F ).

2. The family of inverses satisfy

sup
(z,[ξ])∈Gε×(Ĝ\F )

〈ξ〉d||p(z, ξ)−1|| <∞.
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Proof. Suppose that p has a parametrix in Sdε . That is, a q0 ∈ S−dε with pq0 − 1 ∈ S−1
ε .

Then we get a C > 0 so that, uniformly in (z, [ξ]) ∈ Gε × Ĝ, we have

||p(z, ξ)q0(z, ξ)− I|| ≤ C〈ξ〉−1,

and (pq0)(z, ξ) is invertible for 〈ξ〉 ≥ R > 0, independent of z ∈ Gε. So is p, and

||p(z, ξ)−1|| ≤ ||q0(z, ξ)||
∣∣∣∣(p(z, ξ)q0(z, ξ))−1

∣∣∣∣ ≤ C ′〈ξ〉−d,
where C ′ > 0, and the inequality holds for [ξ] ∈ Ĝ except the finite set with 〈ξ〉 < R.
Conversely, if the two points above hold, then consider the bounded set {pY }Y ∈gε ⊂ Sd.
It fulfils the hypotheses of Lemma 3.2.3 with J = gε and the above estimate over z ∈ Gε.
Thus, if we put χF (ξ) = 1F ([ξ])Idξ for all [ξ] ∈ Ĝ, then χF ∈ S−∞ε , it gives

(χF + (1− χF )p)−1 ∈ S−dε ,

and so p ∈ Sdε has a parametrix in Sdε .

The spaces OpSkε contain all the real-analytic differential operators of degree k ∈ N.
This is actually very simple to prove.

Proposition 7.1.8. If P ∈ Diffk(G) is real-analytic, then P ∈ OpSkε for some ε > 0.

Proof. Let (X1, · · · , Xn) be an ordered basis (of left-invariant vector fields on G) for g.
In any sufficiently small chart U of G, we have

P |U =
∑
|α|≤k

gαX
α,

where gα ∈ Cω(U) extend holomorphically into exp(igε)U for an ε > 0 depending on U .
It follows that if z = exp(iY )x ∈ exp(igε)U , we have

ξ(z)−1Pξ(z) = ξ(x)−1ξ(exp(iY ))−1
∑
|α|≤k

gα(z)Xαξ(exp(iY )x)

=
∑
|α|≤k

gα(exp(iY )x)
[
ξ(x)−1Xαξ(x)

]
,

and by taking a finite cover of G by such charts, we obtain ε > 0 such that P ∈ OpSdε .
This is because the symbol p of P in the neighbourhood above is

p(exp(iY )x, ξ) =
∑
|α|≤k

gα(exp(iY )x)pα(ξ),

where pα ∈ S|α| is the matrix-symbol of Xα ∈ Ψ|α|(G), independent of (x, Y ) ∈ G × gε,
and ε > 0 is chosen so (x, Y ) 7→ gα(exp(iY )x) has x-derivatives uniformly bounded in Y .
Thus {pY }Y ∈gε is bounded in Sk.

Corollary 7.1.2. If P above is left-invariant, then P ∈ OpSkε for all ε > 0.

Proof. In this case, the coefficients gα are globally defined and constant.
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As a consequence, elliptic left-invariant operators admit a parametrix in such a space.
More generally, only the leading term in p has to belong to such an operator:

Proposition 7.1.9. Suppose that p of Op(p) ∈ Ψk(G) is of the form

p = pk +
∑

|α|≤k−1

gαpα,

where pα ∈ S|α| and pk ∈ Sk are independent of x ∈ G, the leading pk ∈ Sk is elliptic,
and gα ∈ Cω(G) extends holomorphically to a bounded function on Gε for a fixed ε > 0.
Then P has a parametrix in OpS−kε for this particular ε > 0.

Proof. Observe that

sup
(x,Y )∈G×gε

〈ξ〉−k||pY (x, ξ)− pk(ξ)|| = Oλξ→∞(〈ξ〉−1),

and so, the symbols pY (x, ξ) are invertible for all (x, Y ) ∈ G × gε if 〈ξ〉 is large enough.
This is because pk(ξ) is invertible for large 〈ξ〉 by the characterization in Theorem 3.2.8.

Furthermore, it gives a finite F ⊂ Ĝ and a C > 0 such that

||〈ξ〉kpk(ξ)−1|| ≤ C for all [ξ] ∈ Ĝ \ F,

and for 〈ξ〉 suitably large, we can then write

〈ξ〉k||pY (x, ξ)−1|| =
∣∣∣∣∣∣(I +

∑
|α|≤k−1

gα(exp(iY )x)pk(ξ)−1pα(ξ)
)−1

〈ξ〉kpk(ξ)−1
∣∣∣∣∣∣

≤
(

1−
∑

|α|≤k−1

|gα(exp(iY )x)| ||pk(ξ)−1pα(ξ)||
)−1

||〈ξ〉kpk(ξ)−1||

≤
(

1−
∑

|α|≤k−1

C|gα(exp(iY )x)|〈ξ〉−k||pα(ξ)||
)−1

C,

where the last sum is made smaller than 1
2 for all (x, Y ) ∈ G× gε if 〈ξ〉 is large enough.

Therefore the conditions of Theorem 7.1.3 are fulfilled.

In other words, the ”leading term” in p determines if P has the property that we seek.
These observations indicate that OpSdε contain many non-trivial operators.

Example 7.1.1. Operators in Ψ(Tn), acting on u ∈ C∞(Tn), are of the form

Op(p)u(x) =
∑
k∈Zn

eik·xp(x, k)FTnu(k) for all x ∈ Tn,

and we may take p to be the symbol

p(x, k) = |k|2 +

n∑
j=1

gj(x)kj + f(x),

where {gj}nj=1 and f are bounded holomorphic on Tnε (2π-periodic on the polystrip Rnε ).
Quantization of this particular symbol gives the Laplacian ∆Tn plus lower order terms.
The result above says that p has a parametrix in S2

ε (Tn × Zn), e.g. p(x, k)−1 for large k,
which is not a sum of products of functions in x and k separately.
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Finally, we note how Ct and the restriction R : O(GC) → Cω(G) : f 7→ f |G interact.
It is of interest, because of the earlier observation we made about conjugating ∆G by Pε.
If p ∈ Sd and s ≥ d, consider the diagram:

HHs(GC, νt) HHs−d(GC, νt)

Hs(G) Hs−d(G)

CtOp(p)C−1
t

R∞ R∞

A

The question is, can we find A so the diagram commutes, and does A belong to Ψd(G)?
Unlike when conjugating by Pε, we can form explicit expressions when conjugating by Ct.
Taking u ∈ HHs(GC, νt) and any [ξ] ∈ Ĝ, we can write

FC−1
t u(ξ) =

∫
G

C−1
t

[ ∑
[η]∈Ĝ

dηTr (ηFR∞u(η))
]
(x)ξ(x)∗ dx

=
∑

[η]∈Ĝ

dη

∫
G

C−1
t

[
Tr (ηFR∞u(η))

]
(x)ξ(x)∗ dx

=
∑

[η]∈Ĝ

dηe
λη
2 t

∫
G

Tr(η(x)FR∞u(η))ξ(x)∗ dx = e
λξ
2 tFR∞u(ξ),

where the interchanges are justified by isometry of Ct and L2-convergence of the sums.
Therefore, if z ∈ GC, we have

CtOp(p)C−1
t u(z) =

∑
[ξ]∈Ĝ

dξTr
[( ∫

G

( ∑
[η]∈Ĝ

dηe
−λη2 tTr η(x−1z)

)
ξ(x)p(x, ξ) dx

)
FC−1

t u(ξ)
]

=
∑

[ξ]∈Ĝ

dξTr
(
ξ(z)

[
e
λξt

2 (ct � p)(z, ξ)
]
FR∞u(ξ)

)
,

where the outer sums converge in L2(GC, νt), hence uniformly on compact subsets of GC.
Here, we have put

ct(x, ξ) = e−
λxi
2 tIdξ for all (x, [ξ]) ∈ G× Ĝ,

which, by the functional calculus, is (at the least) a Hörmander class symbol ct ∈ S−∞,
and the symbolic product ct � p extends holomorphically in the first variable to all GC.
It is given by

(ct � p)(z, ξ) =
∑

[η]∈Ĝ

dη

∫
G

Tr
(
η(y−1z)e−

λη
2 t
)
ξ(z−1y)p(y, ξ) dy

This suggests A should be the operator with symbol c−1
t (ct � p). But there is a problem.

The growth of c−1
t is exponential, so c−1

t (ct � p) may not even be an operator symbol,
and the last sum above is well-defined only because Fu decays fast enough to balance it.
But even if c−1

t (ct� p) defines a symbol in Sd, we do not in general have c−1
t (ct� p) = p,

and so A does not equal Op(p) in general (except when Op(p) is a bi-invariant operator).
It seems then that Ct is not the right transformation for our purposes in general.
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7.2 Towards a Proof of Boutet de Monvel’s Conjecture

In [55] Stenzel provides a very detailed proof of Conjecture 7.1.1 in the case that P = ∆,
and so far, it seems to be clearest proof available in the literature, besides Zelditch [65].
The case P = ∆ is prototypical; it is reasonable to think that it holds more generally.
However, neither the the proof in [55] nor in [65] can be generalized straightforwardly,
because some of the tools that are used along the way so far only work for the Laplacian,
or are only available for second-order operators.

The idea in [55] is to express Pε as the Laplace transform of an analytic amplitude.
This leads to a nice workable expression for the kernel in terms of a complex phase FIO,
and the Laplace transform gives a clear description of its branched holomorphic extension.
To obtain these formulations, Stenzel subordinates the Poisson kernel to the heat kernel,
and uses the Minakshisundaram-Pleijel asymptotics to construct the analytic amplitude,
where several of the results obtained in Golse, Leichtnam and Stenzel [54] are invoked.
The argument is completely global, making use of the subordination formula

e−ε
√
−∆ =

ε

2
√
π

∫ ∞
0

et∆e−
ε2

4t t−
3
2 dt,

or more generally (for d > 1)

e−εP
1
d =

1

2π

∫ ∞
0

e−tPFλ→t(e−ε(iλ)
1
d )(t) dt,

which converges as an improper Riemann integral in the norm of B(Hk(M)) for k ∈ N.
It relates the Poisson kernel Pε of −

√
−∆ to the heat kernel Et of ∆ via

Pε(z, y) =
ε√
4π

∫ ∞
0

Et(z, y)e−
ε2

4t t−
3
2 dt

= ε(4π)−
n+1

2 L[a(·, z, y)]
(1

4
(r2

C(z, y) + ε2)
)

+Rε(z, y),

where a is a suitable analytic amplitude obtained from Et, L is the Laplace transform,
and Rε(z, y) is a smooth kernel that is also holomorphic in z and ε in a certain domain.
The details here are not so important, these can of course all be found in the paper [55],
but the point is that it allows Stenzel to use a global contour deformation to prove:

Theorem 7.2.1 (Stenzel [55]). Let u ∈ O(U) for some neighbourhood U containing Mε.
Consider the map

(0,∞)×M 7→ C : (t, x) 7→ e−t
√
−∆(u|M )(x).

Then the following holds:

1. It extends holomorphically in x ∈M to x ∈Mε for each t > 0.

2. It extends holomorphically in t > 0 to t ∈ D(0, ε)\ i(−ε, 0] for each x ∈Mε.

3. The joint extension is smooth in (t, x) ∈ D(0, ε) \ i(−ε, 0]×Mε.

The question is, does this approach generalize? If so, how exactly does it generalize?
Unfortunately, the kernel asymptotics for e−tP are in general not known.
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An alternative is to go through the very construction of the propagator as an FIO.
This is what Zelditch describes as the approach via the ”Hörmander parametrix” in [65].
In this way, the Poisson kernel is represented near the diagonal by∫

T∗yM

ei(gy(ξ,exp−1
y x)+it|ξ|y)at(x, y, ξ) dξ,

where at is a suitable analytic symbol depending real-analytically on the time variable t.
It seems that this approach is by far the best adapted for generalization to other symbols,
because the ”off-diagonal” results on the (half) wave kernel in [55] generalize quite well,
and therefore the proof would be reduced to a study of such integrals near the diagonal.
The ”off-diagonal” part of the results in [55] makes use of the following:

Theorem 7.2.2 (Duistermaat and Guillemin [11]. This is stronger than Theorem 5.1.9).
Let P ∈ Ψd

phg(M) be an elliptic, self-adjoint, and positive operator of positive order d > 0.
So P has classical principal symbol p positive on T ∗M \ 0, and no negative eigenvalues.
Consider the parametrization of kernels (the wave group of P ):

U : R→ D′(M ×M) : t 7→ K(eitP
1
d ).

Then, viewed as an element of D′(R×M ×M), it satisfies

U ∈ I−
1
4

phg(R×M,M ;C) with WF′(K(U)) = C,

and C is the (real) homogeneous canonical relation

C =
{(

(t,−p(y, η)
1
d ),Φt(y, η), (y, η)

) ∣∣∣ (t, (y, η)) ∈ R× T ∗M \ 0
}
,

where Φt is the complete Hamiltonian flow generated by the Hamiltonian p
1
d on T ∗M \ 0.

Thus, sing supp(K(U)) consists exactly of (t, x, y) such that x and y can be joined by Φt.
The same is true of the analytic singular support of K(U) if P is analytic.

As a consequence, the kernel must be expressed in terms of certain phase functions.
That is, near the diagonal, U(t) must be of the form∫

T∗yM

eiψ(t,x,y,ξ)a(t, x, y, ξ)u(y) dξ,

where ψ is a real phase function locally parametrizing C ′, and a is an analytic amplitude.
The important detail here is that C is the real part of a complex Lagrangian submanifold.
Namely, the one that is obtained by extending Φ holomorphically about R × T ∗M \ 0.
Then ψ should be real-analytic, with a holomorphic extension parametrizing it locally,
and at least part of this submanifold (lying over Im (t) ≥ 0) should be of positive type,
which would imply that K(U) extends holomorphically to a domain controlled by the ψ.
The positivity could be checked intrinsically without ψ (see Melin and Sjöstrand [43]),
but it is yet unclear (to me) how to use any of this to get results like in [55].
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l’École Normale Supérieure, 29(4):669–736, 1996.

[55] M. Stenzel. On the analytic continuation of the Poisson kernel. Manuscripta Math-
ematica, 144:253–276, 2014.

[56] M. Stenzel. The Poisson Transform on a Compact Real-Analytic Riemannian Man-
ifold. Monatshefte für Mathematik, 178:299–309, 2015.

[57] M. B. Stenzel. Kähler structures on cotangent bundles of real analytic Riemannian
manifolds. PhD thesis, Massachusetts Institute of Technology, 1993.

[58] M. B. Stenzel. The Segal-Bargmann transform on a symmetric space of compact
type. Journal of Functional Analysis, 165(1):44–58, 1999.

[59] M. B. Stenzel. An inversion formula for the Segal-Bargmann transform on a sym-
metric space of non-compact type. Journal of Functional Analysis, 240(2):592–608,
2006.
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