

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 19, 2024

Smart Manufacturing Frameworks

 Neythalath, Narendrakrishnan

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Neythalath, N. (2021). Smart Manufacturing Frameworks. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/a3610960-5b9e-4b38-bdbd-1b0ea35a848e

Smart Manufacturing Frameworks

Narendrakrishnan Neythalath

Kongens Lyngby 2021

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The construction industry has been plagued by low productivity for quite some-
time now. Automation is considered as a viable way forward to improve the
situation. The industry has not witnessed proliferation of robotic technologies
as seen in other fields like manufacturing due to high levels of project speci-
ficity, smaller lot sizes for production and need for customization, thus causing
the sector to remain vastly under-served.

In this work, we focus on developing a software framework (Sculptor), which
will help the industry to rapidly design, prototype, develop, and test robotic
applications. An application is said to be understood as a cyber-physical system
which contains one or more robotic manipulators equipped with necessary end-
effectors and a tablet based interface to help a novice user to easily program the
system.

Architects find it convenient to express such robotic processes using parametric
(data flow) models. These models come with some known drawbacks related
to stability, maintainability, latency and re-usability. After having developed
Sculptor, we are trying to address some of the above stated problems by applying
methods like software design patterns. Further, the framework was used to
develop multiple commercial applications to evaluate its effectiveness.

ii

Summary (Danish)

Den globale byggeindustri har gennem en længere årrække været plaget af lav
produktivitet, og automatisering betragtes som et af de væsentligste instrumen-
ter til at forbedre dette forhold. Modsat andre industrielle sektorer, såsom frem-
stillingsindustrien, har byggebranchen dog ikke oplevet en skaleret udbredelse af
robotteknologier. Dette skyldes en række konceptuelle barrierer, herunder høje
niveauer af projektspecificitet, samt udbredt unikaproduktion, som forhindrer
anvendelse af mere konventionelle fremstillingsteknologier.

Smart Manufacturing Frameworks fokuserer på at udvikle en softwarestruktur
(Sculptor), som vil hjælpe byggebranchen med effektivt at designe, prototype,
udvikle og teste robotapplikationer for byggeri. En applikation forstås som et
cyber-fysisk system, der indeholder en eller flere robotmanipulatorer udstyret
med nødvendige end-effectorer og en tabletbaseret grænseflade til at hjælpe en
uerfaren bruger med let at programmere systemet.

Arkitekter finder det praktisk at udtrykke sådanne robotprocesser ved hjælp af
parametriske (grafbaserede) modeller. Disse modeller har nogle kendte ulemper
relateret til stabilitet, vedligeholdelsesevne, latens og genanvendelighed. Efter at
have udviklet Sculptor prøver vi at løse nogle af de ovennævnte problemer ved
at anvende metoder som softwaredesignmønstre. Desuden bliver frameworket
brugt til at udvikle adskillige kommercielle applikationer for at evaluere dets
effektivitet.

iv

Preface

This thesis was prepared at Odico A/S and DTU Compute in fulfilment of the
requirements for acquiring Doctor of Philosophy (PhD) in Computer Science
and Robotics.

The thesis deals with a novel framework to design, prototype, develop and test
robotic applications targeted at construction industry.

It consists of theoretical formulations and experimental evaluation of the pro-
posed framework.

Lyngby, 31-July-2021

Narendrakrishnan Neythalath

vi

Acknowledgements

I would like to thank my supervisors Asbjørn Søndergaard and Jakob Andreas
Bærentzen for all their help and advice with this PhD. I would also like to
express my gratitude to my team members - Bhavatarini Kumaravel, Nishant
Chandrashekar, Deepanshu Bansal, and Aditi Chauhan. I also appreciate all the
support I received from my mother (Sudha), daughter (Reva), and wife (Aruna)
in this journey. It would have not been possible without them.

This work is partly funded by the Innovation Fund Denmark (IFD) under File
No. 7038-00108A.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Background and motivation 1

2 Elaborating on the challenge 5

3 Meeting the challenge 13

4 Preliminaries 17
4.1 Petri nets . 19
4.2 Parametric design and manufacturing 20

5 Sculptor 23
5.1 Canvas . 24
5.2 DaVinci . 25
5.3 Craft . 27

6 Higher Order Knowledge System (HOKS) 29
6.1 Application model . 30
6.2 Layer 1 . 30
6.3 Layer 2 . 32
6.4 Constraints . 33

x CONTENTS

7 Procedural generation of Graphical User Interface (GUI) 37
7.1 Compilation pipeline . 38
7.2 Implementation . 39
7.3 GUI architecture . 40

8 Applying software design patterns 43
8.1 Functional patterns . 44

8.1.1 MVC . 44
8.1.2 DPM . 45
8.1.3 Adapter . 46

8.2 Relational patterns . 47
8.2.1 Mask . 47

8.3 Performa patterns . 48
8.3.1 Isolator . 48
8.3.2 Cache . 49

9 Case studies 51
9.1 Application 1: Abrasive wire-cutting 51
9.2 Application 2: Sawing . 53
9.3 Application 3: Milling . 54
9.4 Application 4: Hot wire-cutting 56
9.5 Application 5: Additive Manufacturing (AM) 58

10 Discussion and Further work 59

A Adaptive Robotic Manufacturing using Higher Order Knowl-
edge Systems 63
A.1 Introduction . 63
A.2 State of the art . 64
A.3 Research challenge . 65
A.4 Knowledge encapsulation strategy 66

A.4.1 Application model . 68
A.4.2 Layer 1 . 69
A.4.3 Layer 2 . 70

A.5 Constraints . 71
A.6 Exemplifications and industrial applications 73
A.7 Discussion and conclusion . 75

B Procedural generation of human machine interfaces from graph-
modelled robotic workflows 77
B.1 Introduction . 77
B.2 Hypothesis . 78
B.3 State of the art . 80
B.4 Robotic application modelling . 82

CONTENTS xi

B.5 Compilation pipeline . 84
B.6 Implementation . 85
B.7 GUI architecture and case studies 87

B.7.1 Application 1 - Sawing . 87
B.7.2 Application 2 - Wire-cutting 88
B.7.3 Application 3 - Milling . 89

B.8 Discussion and conclusion . 91

C Applying software design patterns for graph-modelled robotic
workflows 93
C.1 Introduction . 93
C.2 State of the art . 94
C.3 Importance of VPLs . 97
C.4 Research challenge . 97
C.5 Petri nets . 98
C.6 Design patterns . 100

C.6.1 Functional patterns . 100
C.6.2 Relational patterns . 103
C.6.3 Performa patterns . 104

C.7 Case studies . 106
C.7.1 Application 1: Additive Manufacturing (AM) 106
C.7.2 Application 2: Abrasive wire-cutting 107
C.7.3 Application 3: Sawing . 107

C.8 Discussion and conclusion . 108

Bibliography 113

xii CONTENTS

Chapter 1

Background and motivation

Odico was founded in 2012 with the ambition to transform the global construc-
tion sector through introduction of robotic technologies. The value proposition
was to greatly reduce the cost of formwork manufacturing through robotic wire-
cutting of casting moulds for concrete production. By taking CAD models,
typically comprised of ruled surface geometries, we deduct the isocurves of the
target surface and sweep a suspended wire held by a 6-axis industrial manipula-
tor along the provided Expanded Polystyrene (EPS) block. The bespoke designs
could be produced at up to 126x speed of traditional CNC-milling based method
of formwork making.

This performative advantage would translate to significant reductions in form-
work costs, as the long machining times lead to high costs for digitally produced,
advanced moulds. In addition, the flexibility of the industrial robot setup would
enable swift programming of custom geometries – a critical component within
construction, in which vast majorities of cases constitute production of items in
small lot sizes.

Based on this competitive edge, Odico set out – as the first company inter-
nationally – to commercialize robotic wire-cutting of EPS formwork for large
scale concrete work. This was executed by the initiation of a pilot production
line, which took on projects of increasing scale. In 2014, this materialized into a
breakthrough project, where Odico was requested to create formwork for a load-

2 Background and motivation

(a) (b)

Figure 1.1: (a) Fjordenhus Kirk Kapital building in Vejle Denmark, 2018. (b)
Opus Dubai, UAE 2020. The Opus, designed by Zaha Hadid Ar-
chitects, was listed by CNN as one of the most significant build-
ings in the world in 2020. Odico helped to produce EPS guidework
for the production of the aluminium frames carrying the doubly
curved main glass facade of the building complex.

bearing structural element for the iconic Fjordenhus Kirk Kapital HQ building
(see, Fig. 1.1a), designed by the well-renowned Studio Olafur Eliasson. Encom-
passing a 4500 m2 of robotically wire-cut formwork surface, the project would
represent first example of the realization of a commercial construction project
via the said method internationally. Following the success of the Fjordenhus
project, Odico entered into a phase of organic growth, realizing in 6 years, 350
projects of various scales in 7 countries, including the United Kingdom, Dubai,
Norway, Australia, Belgium and United States.

This trajectory culminated in 2018 on Odico A/S becoming the first Danish
robotic company to be publicly held on Nasdaq First North Copenhagen. The
strategic impetus behind the IPO was to raise financing to realize a technology
vision that had materialized from the years of pilot production and R&D work:
the Factory on the Fly™. It encapsulates the company’s bid to provide an all-
purpose general technology to bring robots to the construction sites and factories
at scale (see, Fig. 1.2). This PhD focuses on realizing this vision.

From the preceding 6 years of effort to bring robotics into construction, three
general, industry-wide challenges had been identified:

1. the global construction workforce is constituted by craftsmen trained in
execution of manual work, with little to no exposure to robotic program-
ming or advanced manufacturing technologies. Hence, to ensure a rapid
adoption of automation, it is paramount that the Human Machine Inter-

3

Figure 1.2: Factory on the Fly™ at a construction site.

faces (HMIs) for these systems should have a complexity level which does
not exceed that of common mobile applications;

2. as opposed to general manufacturing, which has greatly benefited from
embracing a mass manufacturing paradigm in which many instances of
the same product are repeatedly being produced on highly optimized spe-
cialized facilities at high throughput rate, construction is characterized by
the production of either a singular piece of an item or the said items in
small batches. In order to support such variability, the underlying manu-
facturing framework must facilitate product customization with ease;

3. ultimately, not only the shape of the product can vary, but also its ty-
pology, material composition and associated manufacturing processes. To
support such constitutional variability, the entire software architecture
must be structured in anticipation of the highest degree of interchange-
ability and modularity.

From the observation of these fundamental constraints arose the hypothesis that
the above criteria may be met through integrating visual programming for the
creation of parametric design/manufacturing models to drive an execution node
which controls a variable robotic architecture. These two components are then
procedurally expressed in a mobile application interface, which exposes only the
necessary parameters for a particular, specialized manufacturing situation, in
order to provide a simplistic user experience.

The problem statement for this PhD has been to a) investigate this hypothesis
and its theoretical implications; b) conceptualize an optimized software archi-
tecture responding to these findings and c) prototype the architecture and appli-

4 Background and motivation

cations through a plurality of commercial case studies provided by the company,
to deliver real-world indications of the industrial applicability.

Of particular importance has been the emphasis on a case-based, iterative ap-
proach to the framework conceptualization, in which commercial scale imple-
mentations of various applications have informed and refined the architecture
continuously through the project. As such, the impetus to go through such
iterative cycles has been a requirement for ensuring the real-world validity of
results.

The project’s conceptual development has been instrumental to initiating and
implementing the fully operational, commercial grade software framework, Sculp-
tor, which has served as an increasingly comprehensive body for theoretical
experiments. The framework has and is serving as the company’s core technol-
ogy which is intended to underpin a continuously growing portfolio of robotic
technology solutions.

Chapter 2

Elaborating on the
challenge

Despite representing the 5th largest industry segment, the global construction
industry suffers from low productivity (see, Fig. 2.1), while other sectors – such
as the manufacturing industries – has seen consistent increase in productivity
over the years [PTT05, BHK21, BDM20]. The rising productivity in neighbor-
ing segments is widely attributed to the pervasive automation and digitization.
Hence large scale adoption of robots in the construction sector is widely regarded
as the primary enabler for increase in productivity [DOA+19]. However, despite
large research efforts, and the availability of mature automation technologies
from tangential fields such as automotive, aeronautical, naval and energy indus-
tries, ubiquitous adoption of robotic processes within the industry still remains
evasive. As a result, construction is one of the least automated of the leading
industrial sectors, next only to agriculture [Roh08]. Inside of a larger industrial
research effort to establish a general purpose, cyber-physical technology plat-
form (see, Fig. 2.2) for efficient automation of construction tasks, this work
reports on the developments relating to the establishment of Sculptor for effi-
cient robotic application development for the industry.

The main factors prohibiting the large scale espousal of robotic technology in
construction are given below:

6 Elaborating on the challenge

$37/hour

Total economy

$25/hour

Construction industry

Figure 2.1: Average value added by employees per hour at a global level.1

1. Cost - A widely understood differentiating factor between construction
and other manufacturing industries relying on large scale production is
the circumstance, that while the latter can benefit from deploying a mass
manufacturing paradigm - in which multiple instances of identical prod-
ucts is repeatedly produced at high volume - such repetition is not fea-
sible in construction, in which each building project is essentially unique
[DOA+19]. Since automation technologies in general manufacturing is de-
signed to support a repetitive mode of operation, they lack the flexibility
to accommodate the variability experienced in construction. To overcome
this shortfall, significant research efforts [WKB+16, GK14, Men12] have
been directed towards establishing parametric manufacturing workflows,
in which a production system relying on one or more standard industrial
manipulators with associated machining end-effectors is driven by a para-
metric manufacturing model, which utilizes the inherent flexibility of a
manipulator with m degrees of freedom to create shape-variant instances
of a customizable part design within pre-defined ranges of variables. The
establishment of such workflows is complemented by additional research
attention directed towards machine process innovation and mechanical
end-effector engineering. Leading examples from this work entails robotic
processes such as e.g. timber sawing [EGK17, KSM+14]; hot-blade and
wire-cutting [FS14, Sea16]; brick assembly [Bon15]; robotic concrete print-
ing [PZTG18, GM18, GCF18] and metal forming [TPM18]. The combined

1https://www.mckinsey.com/business-functions/operations/our-insights/reinventing-
construction-through-a-productivity-revolution

7

Figure 2.2: A robotic application is understood as a cyber-physical unit com-
prising of these hardware components: a) one or more m-axis ma-
nipulators enclosed on b) a modular frame, equipped with c) cus-
tom processing end-effectors and d) operated by a non-specialist
user through a tablet or mobile application.

developments in this strand of research have recently culminated in the
realization of several experimental and commercial construction projects,
such as Fjordenhus Kirk Kapital HQ, Vejle, Denmark (2018) [SF17], Opus
Dubai, UAE (2020) [Bho17], The Sequential Roof, Zürich, Switzerland
(2016) [ABF+16], and DFAB House, Zürich, Switzerland (2019) [Dea19],
signifying the principal applicability of robotic manufacturing at construc-
tion scale. While the establishment of a robotic parametric manufacturing
paradigm – complemented by aforementioned advances in process innova-
tion – have successfully demonstrated a pathway for increasing flexibility
of digital production to create shape variant parts at near cost-parity to
standardized production schemes – two fundamental limitations remain
largely unaddressed:

(a) while parametric manufacturing workflows can be established for pre-
defined typologies of component production, they are ill-suited to ac-
commodate non-linear changes in fundamental parameters such as
product typology, material composition or machining process. Since
the variability of construction manufacturing entails exactly this across
individual building projects, each non-linear change requires manual
amendment of an existing or establishment of a new workflow;

(b) establishment of such workflows rely on an emerging cross-disciplinary

8 Elaborating on the challenge

expertise spanning across previously isolated domains, including robotics,
computational design and construction manufacturing. By contrast,
the global construction workforce is overwhelmingly trained in craft
based, manual processes with little to no exposure to robotic manu-
facturing.

Taken together, these limitations incur significant overhead in the estab-
lishment of project specific workflows, while inducing substantial inflexi-
bility in applying them in a general regime across projects.
For clarity, aforementioned concerns may be expressed as:

C = Cv +Cf/n (2.1)

where C denotes the production cost of a shape-variant part or build-
ing component, Cv is variable costs associated with producing each item
unaffected by the number of produced items - typically entailing labor,
material and machining time and Cf signifies the fixed, one-time costs
of implementing the digital production workflow required to manufacture
the shape variant family of parts, and n denotes the number of construc-
tion projects on which the particular workflow can be applied. Since global
construction is generally characterized by a high number of sub-specialized
trades, which operates interchangeably to construct topologically variant
tasks, it stands to reason that the probability of n being one is quite high.
In this case, only an extra-ordinary construction budget would be capable
of sustaining the upfront cost of bespoke workflow establishment, limiting
the application of such robotic schemes to high-profile building projects.
To be cost affordable, Cf needs to be minimized.

2. Knowledge gap - There is a need to bridge the knowledge gap between
crafts-trained construction workers educated in manual execution on one
hand, and the deep technical expertise required for robotic programming
on the other [Ela08]. In the wider community of robotic research, to
which this challenge also applies, several novel paradigms have been ex-
plored, such as collaborative robotics, in which e.g. a human operator may
program the robotic motion through physically translating the position of
the end-effector from one point to another and recording this translation
[AMAI19]; or through high-level voice commands to instruct a robot to
perform certain actions [Pir05]. However, such approaches are inapt to
construction manufacturing workflows, because they involve complex op-
erations such as a) obtaining or adapting a CAD file containing geometric
design; b) deriving target positions from this CAD file and c) executing
the targets with high precision to produce the desired item or product
through additive, subtractive or formative machining.
Contemporary industrial software packages for handling such CAD/CAM
production workflows - for instance, Catia, Solidworks, MasterCam, Fu-

9

sion 360, Dynamo or Grasshopper - rely on comprehensive, multi-functional
interfaces, which require extensive training and often academic educational
backgrounds to operate. The complexity of such systems and associated
requirements for expert user knowledge stem from the need to provide
versatile, general purpose tools, geared to process a plurality of manufac-
turing or designing tasks. By contrast, the popularization of smart devices
within the domain of consumer electronics have established a wide range
of common examples of advanced processes like natural language process-
ing; image classification; or remote control of drones being accessible and
operable by non-expert users within few minutes of training [IMKT21].
The fundamental enabler for this development has been the introduction
of simplified mobile applications/interfaces, which rather than offering a
general purpose tool set, is specialized for tasks or sub-tasks of strictly
limited functional scope [YYAR02]. While such interfaces offer a strategy
of knowledge encapsulation, which has proven widely successful in allow-
ing broader audiences to access and benefit from sophisticated computing
tools and processes, they do however rely on extensive usability studies,
complementing the software engineering efforts required to establish the
underlying processes. For these reasons, the average development time for
a mobile application is comprehensive, typically quantified between 6 and
9 months for a basic application [GSMG17].

Considering the success of mobile applications in offering access to com-
plex computational processes for broad and varied audiences, it stands
to reason that such applications of comparable simplicity may enable ac-
cess for non-specialist workers to operate advanced, robotic processes and
on-the-fly customization of parts typically required within construction
manufacturing, hereby representing a pathway to overcome the knowledge
barriers prohibiting wide-spread adoption within the construction indus-
try. However, successful mobile applications for smartphones, tablets or
wearable devices may achieve millions or even billions of users, whereas for
robotic applications in construction industry comparable numbers may be
less than 1000 for a given robotic process, even down to 1 for an entirely
project specific scenario.

Considering the significant limitation in target user group size, the nor-
mative cost of conventional mobile application development becomes pro-
hibitive, even before considering the significant added complexity of mod-
eling a construction robotic process (see, 2.1). Thus, even with the utiliza-
tion of best software development practices, an entirely manual schema
of interface implementation [MJ06] remains wholly insufficient to solve
the before mentioned structural challenge of bridging the knowledge gap
between construction workforce and robotic programming. However, if
implementation time could be significantly reduced through either full or
partial automation of the interface development process, the cost parity

10 Elaborating on the challenge

threshold between a fully manual operation and development plus utiliza-
tion of a project specific robotic workflow could potentially be passed,
hereby enabling the pursuit of robotics within the global construction sec-
tor at a grand scale. Based on these considerations we summarize the
hypotheses:

(a) Widespread acceptance of robotics in construction manufacturing
may only be reached by simplifying the operation of construction
robotic systems to levels accessible to crafts-trained, non-specialist
users.

(b) The success of mobile applications within consumer electronics pro-
vide a template for such simplification, enabling operation of com-
plex product configuration and manufacturing functions via simplis-
tic, scope-restricted Graphical User Interfaces (GUIs).

(c) The normative development cost of such applications is however not
consistent with the significantly reduced target user group sizes aris-
ing from high degrees of trade sub-specialization.

(d) Hence, to solve 2a, new software technologies are required, which can
provide a substantial reduction in end-to-end interface implementa-
tion time.

After having presented two core reasons behind lack of automation in con-
struction industry, we focus our attention on another related problem. Visual
Programming Language (VPL) is utilized with increasing frequency in Archi-
tectural, Engineering and Construction (AEC) industries to harness advanced
geometry and complex buildings. As a consequence, Sculptor also relies heav-
ily on VPL. In recent developments, VPL has bifurcated into robotic research,
where they are being explored as a good tool for robotic programming. While
visual programming holds several key advantages justifying this attention, it
comes with important limitations for developing commercial-grade software ap-
plications.

VPL based parametric modelling has since its introduction in early 2000’s seen
rapid adoption within the AEC industries for the design and engineering of com-
plex buildings [Mon00]. More recently, parametric design thinking has enjoyed
widespread interest within architectural and construction robotic research for
the development of custom and experimental workflows [Sch13, Ras15, Gea16].
In complementary notes, core fields within general robotics have also acknowl-
edged key advantages of VPLs in development of robotic applications, causing
increasing research interest [SW16, HRSW13, PNBK13]. Some of the identi-
fied advantages in this approach are ease of programming, effortless knowledge
encapsulation for less specialist developers, efficiency in establishing geometry-
intensive workflows and modular architectures [PP13]. While these advantages

11

(a) Parametric model 1 (b) Parametric model 2

Figure 2.3: Examples of visual clutter (wires inside red coloured boxes) and
code duplication (blocks inside teal coloured boxes) in parametric
models.

are well established, the general scope of application for VPL based paramet-
ric modeling has historically been limited to custom or project specific scripts,
graphs, functions or prototypical workflows within AEC organizations. As such,
investigations into whether they could be applied for development of commercial
scale software applications are sparse.

Rick Smith has identified the following as some of the major challenges faced in
parametric modelling [Dav13]:

1. Major changes can break parametric models. As it is difficult to foresee
all feature requests in the beginning of a project itself, the instability of
the model raises some grave concerns when one has to amend it later on
to incorporate a request from the customer.

2. It is difficult to reuse and share parametric models. Often, only the orig-
inal designer is able to operate with a model, as it can be arduous for
another one to comprehend the design intent making the system averse to
maintenance.

Around 1960s, a large number of major software projects unexpectedly failed
in the broader industry, giving rise to the software crisis. As pointed out by
Turing award winner Niklaus Wirth, "systems could not be built or delivered
on time, bringing some companies to the brink of collapse" [Wir08]. One of the
examples is, IBM’s ambitious System/360 unification project, led by F. Brooks,
which in 1964 was one of the largest software projects ever undertaken. It was
years late and costed millions of dollars more than budgeted [Dav13].

12 Elaborating on the challenge

In 1968, NATO decided to form a group of scientists to further analyze the prob-
lems faced in software engineering. As recalled by Naur and Randell, the talk
was centered around “slipped schedules, extensive rewriting, much lost effort,
large number of bugs, and an inflexible and unwieldy product” [NR68]. One of
the main reasons for this problem, was the fact that software programs written
during those days were largely unstructured with GOTO statements littered
randomly across the source code.

In many ways, one can relate these findings from NATO, to the problems men-
tioned by Rick Smith [Dav13]. The analysis of parametric models created by two
different Computational Design Specialists (CDSs) (see, Fig. 2.3a and 2.3b), in
one of our previous works, is reminiscent of the same issues which led to the
software crisis in 1960s. After a careful literature study, we have concluded that
the same problem has been highlighted by others as well [Dav14, Jan14]. In our
work, we are looking at some of the potential solutions to improve the current
situation in parametric modelling.

Chapter 3

Meeting the challenge

Prior to the development of Sculptor, one of our software engineers was tasked
with building a robotic application. The result was a huge monolithic system of
software which was highly inflexible to changing customer requests and needs.
Moreover, it suffered from the curse that only the original developer was able to
maintain it. It took 2 years of development time and in no way, it could scale
up to supporting other applications. In other words, it resulted in a high Cf .

To overcome the challenges related to cost introduced in the last chapter, we
propose increasing the efficiency of custom workflow implementation through
deploying a model of higher order knowledge encapsulation, which enables semi-
automatic application development and software architecture generalization.
The purpose of this effort would be to lower the development costs of implement-
ing bespoke, project specific applications below the cost of manual production,
hereby facilitating wide spread use of robotic manufacturing in construction.
The presented work addresses the software related implications of this solution.

In other words, we are presenting Sculptor that will enable someone to rapidly
design, prototype and develop a robotic application. As a result, one can achieve
cost parity even though the aforementioned application is not mass manufac-
tured. This is specifically of interest in construction industry, as a building
contractor usually orders only 1-2 robotic units supporting a given process. For
any provider of such cells to the industry, it becomes important that a frame-

14 Meeting the challenge

work exists to develop applications quickly so that the goal of keeping Cf to the
minimum can be met.

Additionally, to bridge the knowledge gap of craftsmen, we focused on building
intuitive tablet applications to interact with our robot cells so as to make it
accessible for everyone. By partial automation of user interface generation, we
were able to overcome the cost conundrum associated with the development of
said tablet applications.

As mentioned earlier, Sculptor is based on VPL as CDS relies on that technique
to build parametric models for a given process. We have seen that commercial-
grade software application development using VPL is less efficient. For the con-
text of our work, an efficient process denotes a flexible software development
methodology which creates stable, reusable, performance optimal and main-
tainable parametric models. In this work, we demonstrate how software design
patterns could contribute to further increasing this efficiency.

Though the term "design pattern" was an age old idea in the field of architec-
ture, it was probably introduced by Christopher Alexander [AIS77] in a modern
sense. He says, "Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.". The term was later taken by the
software engineering fraternity [GJV94] to describe abstract, well-established
forms of program construction. A pattern is fully defined by a name, a problem
statement, an abstract solution, and a discussion of implications.

The need for software design patterns in parametric models is explained in
[WAK07, Qia09, Zbo15]. It is claimed that it will lead to robust and sus-
tainable models. Following their foot steps, we have implemented six design
patterns while programming graph-modelled robotic workflows. Out of six pat-
terns discussed here, five are new to the best of our knowledge, whereas one
is a well-known pattern from the Object Oriented Programming (OOP) world,
applied to visual programming.

Since 1994, many design patterns have been suggested primarily for software
systems based on OOP paradigm since languages based on this paradigm were
on an ascendancy during that time. As we carry the concept of software design
patterns to VPLs, we need to keep in mind that not all design patterns appli-
cable for object oriented world are relevant to VPLs as these systems follow a
Functional Programming (FP) paradigm which is fundamentally different from
OOP.

This thesis is based on three publications and these papers are added as appen-

15

dices to this report. These publications are listed below for easy reference:

1. Title: Adaptive Robotic Manufacturing using Higher Order Knowledge
Systems, Venue: Journal of Automation in Construction, Status: Pub-
lished.

2. Title: Procedural generation of human machine interfaces from graph-
modelled robotic workflows, Venue: Journal of Automation in Construc-
tion, Status: Submitted.

3. Title: Applying software design patterns for graph-modelled robotic work-
flows, Venue: Journal of Automation in Construction, Status: Revision.

16 Meeting the challenge

Chapter 4

Preliminaries

There are mainly two ways of representing a geometric object (G) mathemat-
ically viz. parametric and implicit. For all our practical cases, G is either a
curve (C) or a surface (S) in a 2D or 3D world.

An implicit representation takes the form g(p) = 0 where p = (x, y, z) is any
point lying on G described by g. With this representation, it is very easy to
check whether a point lies on G. However, it doesn’t give a mechanism to
systematically generate a set of such points. Usually, an implicit representation
is constructed so that the sign of g(p) can be used to determine on which side
of G does p lie.

A parametric representation, on the other hand, can be written as p = f(s)
where s lies within a predefined domain. Let us take the example of a sphere
centered around origin having radius r. It can be denoted as x2 + y2 + z2 = r2

implicitly whereas it takes the following parametric form:

x = rsin(u)cos(v)

y = rsin(u)sin(v)

z = rcos(u)

(4.1)

where r > 0, 0 <= u <= π radians and 0 <= v < 2π radians. Such a sphere is

18 Preliminaries

u

v

x

y

z

p

Figure 4.1: Parametric representation of a sphere

depicted in Fig. 4.1. It is worthwhile to note that f is not unique. By changing
f , one can arrive at different parametric expressions for the same G.

A common procedure is to use polynomials for f . In such cases, G becomes:

C(u) =

n∑
i=0

f(u)pi

S(u, v) =

n∑
i=0

m∑
j=0

f(u)h(v)pi,j

(4.2)

where C(u) and S(u, v) are points on a curve/surface respectively. The param-
eters u and v ∈ [0, 1]. There are n + 1 and m + 1 control points in u and v
directions. pi and pi,j denote the control points for the said curve/surface.

If f(u) = Bi,n(u) =
(
n
i

)
ui(1− u)n−i and h(v) = Bj,m(v) =

(
m
j

)
vj(1− v)m−j

respectively, 4.2 reduces to Bezier representation.

For a Basis spline (B-spline), we have:

f(u) = Ni,k(u) =
u− ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u)

Ni,0(u) =

{
1, if ui ≤ u ≤ ui+1

0, otherwise

h(v) = Nj,l(v) =
v − vj
vj+l − vj

Nj,l−1(v) +
vj+l+1 − v

vj+l+1 − vj+1
Nj+1,l−1(v)

Nj,0(v) =

{
1, if vj ≤ v ≤ vj+1

0, otherwise

(4.3)

4.1 Petri nets 19

where k and l are degrees in u and v directions. The values of ui and vj are
taken from a sequence called knot vector. U = (u0, u1, u2, ...uq) and V =
(v0, v1, v2, ...vr) are knot vectors in u and v directions where q = n+ k + 1 and
r = m+ l + 1.

A k degree curve and a (k, l) degree surface can be specified in Non-Uniform
Rational B-spline (NURBS) form as:

C(u) =

∑n
i=0 f(u)wipi∑n
i=0 f(u)wi

S(u, v) =

∑n
i=0

∑m
j=0 f(u)h(v)wi,jpi,j∑n

i=0

∑m
j=0 f(u)h(v)wi,j

(4.4)

where f(u) and h(v) can be plugged in from 4.3.

On setting,

ri(u) =
f(u)wi∑n

r=0Nr,k(u)wr

ri,j(u, v) =
f(u)h(v)wi,j∑n

r=0

∑m
s=0Nr,k(u)Ns,l(v)wr,s

(4.5)

We can rewrite (4.4) in the form,

C(u) =

n∑
i=0

ri(u)pi

S(u, v) =

n∑
i=0

m∑
j=0

ri,j(u, v)pi,j

(4.6)

4.1 Petri nets

Petri net is a graphical and mathematical modelling tool applicable to many
systems. The concept of Petri nets was introduced by Carl Adam Petri in his
dissertation submitted in 1962. It is a bipartite directed graph consisting of
two types of nodes viz. transitions and places, where edges are either from a
place to a transition or vice versa. It is forbidden to connect either a place with
another place or a transition with another transition using an edge. Graphically,
a place is denoted using circles whereas bars or thin boxes represent transitions.
A marking (state) assigns to every place in the graph a non-negative integer.

20 Preliminaries

p1

p2

add

p3

(a) A sample Petri net
where p1, p2 and p3
are places and add
is a transition. add
is in enabled state.

p1

p2

add

p3

(b) Firing of add de-
ducted 1 token each
from p1 and p2 and
added 1 token to p3.

O1 I3 O2

I1

I2
f g

g(f (I 1,I 2))= O 2

(c) HOKS

Figure 4.2

If a state assigns to a place (p) a non-negative integer k, we can say that p is
marked with k tokens. Pictorially, if a particular p holds k tokens, we will draw
k black dots (tokens) inside of p. A marking is denoted M where M(p) gives
the number of tokens in p. Some interpretations for transitions or places and a
formal way to define Petri nets are given in Tab. 4.1 and 4.2 respectively.

In the context of our work, we have used Petri nets to model a Higher Order
Knowledge System (HOKS) for parametric design/manufacturing which is a
directed graph where data flows between a set of interconnected nodes (ref, Fig.
4.2c). Each node stands for a function (transition) which accepts n inputs (input
places), performs some operations on these inputs to emit m outputs (output
places). The transition firing rule for a Petri net is given by:

1. ti is said to be enabled if each input place of ti is marked with at least w
tokens, where w is the weight of the edge from the corresponding input
place to ti (see, Fig. 4.2a).

2. A firing of an enabled transition removes k tokens from each input place
of ti and adds k tokens to each output place of ti as shown in Fig. 4.2b.

4.2 Parametric design and manufacturing

Parametric design/manufacturing is a strategy based on algorithmic thinking
that allows one to express design/manufacturing intent. Such intents define
relationships between objects that any change to one will propagate to others.

4.2 Parametric design and manufacturing 21

Input places Transitions Output places
Pre-conditions Event Post-conditions
Input data Computation step Output data
Input signals Signal processor Output signals

Resources needed Job or task Resources released
Buffers Processor Buffers

Table 4.1: Some typical interpretations of places and transitions in Petri net.

A sample product is shown in Fig. 4.3a, the associated parametric models
encoding the design and manufacturing intent are illustrated in Fig. 4.3b and
4.3c respectively.

The word parametric stems from parametric representation introduced earlier
and refers to the use of certain variables that can be altered to manipulate the
end result of an equation or system. One of the distinguishing features of such
a paradigm is that, trace of how a particular geometry is modelled is available
at any given time.

It might be a tad surprising to know that parametric design existed even before
the dawn of digital computing. For example, Antoni Gaudí, a famous Spanish
architect employed these techniques at the end of the 19th century to design
the church of Sagrada Família. To increase longevity of the building, it was
important that erected columns, remain in a state of pure compression.

He traced the outline of the church on a wooden board at 1:10 scale, which he
then fixed onto the ceiling of a small house next to the construction site. He
hung cords from the points (anchor points) where columns were to be placed.
Next, he tied small sacks filled with pellets to these strings. This model has all
the characteristics of a parametric design with a set of input parameters:

1. Length of the string

A Petri net (N) is given by (P, T,E,W,M0):
P = {p1, p2, ..., pm} | pi is a place,
T = {t1, t2, ..., tn} | ti is a transition,

E = {e1, e2, ..., eq} | ei is an edge between pa and tb,
W = {w1, w2, ..., wq} | wi is the weight associated with ei,
M0 = {n1, n2, ..., nm} | ni denotes the initial marking for pi,

P ∩ T = ∅ and P ∪ T 6= ∅

Table 4.2: Formal definition of a Petri net.

22 Preliminaries

r0

r1

h

x

z

y

(a) Visualization of the
target product which
is a polyhedron (p)
with a height h in the
view port. r0 and r1
are the respective dis-
tances measured nor-
mal to the axis of
symmetry (z axis).

number of
sides (n)

polygon
bottom

scale

scaling factor (r0/r1)

translate

height (h)

top

loft polyhedron

preview

options

mesh

(b) Petri net representation of the parametric design
associated with the polyhedron shown on the left.
It is responsible for rendering the target geometry in
the view port. An user of the tablet application can
interact with the geometry by selecting a surface, a
curve or a dimension object. In this example, the
selected surface is shown in teal.

polyhedron (p)

layer height (l)

xy plane

intersect frg

(c) Petri net representation of parametric manufacturing which generates a tool path
for additive manufacturing process by intersecting the given polyhedron (p) with
a plane parallel to XY plane. p and layer height (l) are parameters to the model.
As long as 0 ≤ l ≤ h, the model will output a valid tool path curve via the node
frg.

Figure 4.3

2. Location of the anchor points

3. Weight of the pellets

It has a set of outcomes namely the location of anchor points for the columns. It
is determined by gravity and follows laws of motion from Newton. The force of
gravity acted on the strings to create the shape thereby acting like an algorithm
driven by physics rather than as an algorithm expressed using digital means.
By analyzing the model, Gaudí was able to determine the exact location for the
anchor points so that the resulting archs will experience only compression. In
this report, the words Petri net and parametric model are used inter changeably.

Chapter 5

Sculptor

Sculptor provides a framework which will help to quickly develop the software
required to control the robotic unit introduced in chapter 1. It comprises of 3
modules developed in-house as shown in Fig. 5.1 viz.

1. Canvas - A Unity based library which is responsible for creating enjoyable
user experience (UX) for any robotic application made using Sculptor.
Unity is a cross-platform game engine developed by Unity Technologies.
Additionally, it also helps the CDS to contrive complex parametric models.

2. DaVinci - A computational geometry kernel created using C# program-
ming language.

Sculptor

DaVinciCanvas Craft

Figure 5.1: Sculptor architecture

24 Sculptor

3. Craft - A module created for robot planning and control based on Robot
Operating System (ROS). ROS is a set of software libraries and tools which
will help you build robot applications.

5.1 Canvas

An User Interface (UI) is the space where interactions between humans and
machines occur. The objective of this transaction is to allow efficacious oper-
ation of the machine by a human operator, whilst the machine simultaneously
provides feedback that aids the operator in decision-making process. As a gen-
eral rule of thumb, for a good user experience, the operator should be able to
provide minimal input to achieve the desired output, and also that the machine
minimizes undesired outputs to the user.

In our endeavour to achieve the above stated rule, we try to present the crafts-
men with intuitive tablet interfaces to operate robotic systems (refer, Fig. 5.2).
Massive scale automation of construction industry will heavily depend on the
simplicity of such interfaces as the industry is dominated by a workforce which
is ill-suited to deal with complicated technology.

Figure 5.2: In the given interface created using Canvas, product is visualized
within the view port. Touch gestures can be used to interact with
the 3D model. One can do basic file operations such as opening,
loading, saving of projects using the icons on the top left corner.
Panel on the right hand side presents the user with actions that
can be performed on the 3D parametric model or the robot. A
robotic action could be as simple as asking the robot to print.

5.2 DaVinci 25

In the latest edition of Sculptor, a CDS can create parametric models using Bolt
which is a visual programming interface from Unity (see, Fig. 5.3). As a result,
Unity acts as an Integrated Development Environment (IDE) for developing
robotic applications using Sculptor.

5.2 DaVinci

Each of the transitions used to build the parametric model, comes from DaVinci.
It is largely a collection of logical, arithmetic, geometric and data manipulation
operators.

Data manipulators can work on data trees, to alter their structure. For exam-
ple, a merge operator can coalesce a set of data trees into a single tree. DaVinci
uses polynomials to represent curves and surfaces as explained in the previous
chapter. Being a computational geometry kernel, it has lots of transitions relat-
ing to geometry. We are discussing one of the algorithms from the kernel here
so that reader might be able to get a better picture about DaVinci.

One of the methods by which a CDS can specify a NURBS surface is by specify-
ing four boundary curves of the surface. Since we are going to specify a surface
with these curves, two of the curves need to be in the u direction whereas the
other two should be in the v direction. These curves are of the form as specified
in (4.6) and are given by C1(u), C2(u), C3(v) and C4(v).

Furthermore, the curves should satisfy the following compatibility conditions:

Figure 5.3: A cylinder is created using parametric modelling approach within
Unity and Bolt.

26 Sculptor

1. C1(u) and C2(u) should be defined in the same U. In a similar way, C3(v)
and C4(v) must have a common V.

2. C1(u), C2(u), C3(v) and C4(v) should have intersection points given by:

s0,0 = C1(u = 0) = C3(v = 0)

s1,0 = C1(u = 1) = C4(v = 0)

s0,1 = C2(u = 0) = C3(v = 1)

s1,1 = C2(u = 1) = C4(v = 1)

(5.1)

3. deg(C1(u)) = deg(C2(u)) = k and deg(C3(v)) = deg(C2(v)) = l

A surface can be formed by these curves by using a bi-linearly blended Coons
patch defined in the following form:

S(u, v) = R1(u, v) +R2(u, v)− T (u, v) (5.2)

where R1(u, v) is a ruled surface between C1(u) and C2(u), R2(u, v) is a ruled
surface between C3(v) and C4(v) and T (u, v) is a bi-linear tensor product sur-
face.

T (u, v) =
[
1 u

] [s0,0 s0,1
s1,0 s1,1

] [
1
v

]
(5.3)

Since R1(u, v) and R2(u, v) are ruled surfaces, they have a degree of (k, 1) and
(1, l) respectively.

s0,0

s1,0

s0,1

s1,1

Figure 5.4: A bi-linearly blended Coons surface.

5.3 Craft 27

5.3 Craft

It is an assemblage of tools and libraries based out of ROS that aim to simplify
the task of creating complex and robust robot behavior across a wide variety of
applications. The two important services inside of Craft are motion planning
and execution. From the parametric model defined by the CDS, we will be able
to glean the target poses for successful execution of a given task. The motion
planning service can accept these target poses along with various models and
compute a collision free trajectory which can be physically realized on a robotic
manipulator by the execution service. The overview of Craft module is shown
in Fig. 5.5.

The motion planning service is based on MoveIt which works with planners
through a plugin interface. As a result, MoveIt can communicate with and
use different motion planners, making it inherently extensible. OMPL (Open
Motion Planning Library) is an open source motion planning library that has
implementations for randomized motion planners. MoveIt is integrated with
OMPL and utilizes the planners from that library as its default set of planners.

MoveIt is primarily meant for performing “free space” motion where the goal is to
move a robot from point A to point B. In these cases, we don’t particularly care
about how the robot reaches B from A. They form only a subset of frequently
performed tasks. In manufacturing tasks like cutting or polishing, the tool has
to follow a specified path to complete the assigned task. Descartes is a motion
planner meant for moving a robot along some process path and is integrated
with MoveIt.

Tablet

Motion
planner

Environment
Robot
Tool

Executor Physical
robot

GoalPlan

Models

Plan Feedback

Figure 5.5: An overview of Craft.

28 Sculptor

It is also possible to provide the following constraints to MoveIt which will be
considered for planning:

1. Position constraints - It can be used to restrict the position of a certain
link to lie within a particular region of space.

2. Orientation constraints - It allows to specify that the orientation of a link
must lie within a given range of roll, pitch or yaw.

3. Joint constraints - It sets out that a joint must be within the allowable
range.

Chapter 6
Higher Order Knowledge

System (HOKS)

In this chapter, we will take a deeper look at HOKS which is the primary enabler
for swift robotic application development and semi-autonomous generation of
tablet interfaces. The idea is elaborated on one of our papers which is attached
to this thesis as an appendix (check, Appendix A).

Our knowledge encapsulation is initialized with denoting an application to entail
the following components:

1. a parametric template or product model (PM), which holds a customizable
design of a component, part sub-assembly or entire building design;

2. a fabrication model (FM) which, as a function of PM generates the corre-
sponding tool path targets;

3. an execution node (EN) entailing a digital representation of the robotic
system with incorporated planning module to ensure motion safety;

4. a physical robotic cell (PRC) equipped with a set of predefined end-
effectors for executing one or a combination of several processes. The
robotic system is containerized or mounted on an autonomously moving
base for modular deployment;

30 Higher Order Knowledge System (HOKS)

5. a HMI, which exposes key parameters of PM, FM and EN to the user
through a GUI.

The entirety of the application is process or product specific, allowing for a
simple expression of controls. Hereby, the application enables a non-expert
user, i.e. a construction worker trained in craft with no robotics experience,
to (a) customize a part design on the fly or retrieve an externally customized
part design and (b) safely execute production of the customized instance of that
part.

The concept of such a containerized set up with a tablet interface can be seen
in Fig. 2.2 where an user can be seen interacting with PRC using a HMI.

6.1 Application model

Pursuant to the proposed encapsulation strategy, the robotic application can be
visualized as a bi-layered structure (refer, Fig. 6.1a) and the corresponding Petri
net models are shown in Fig. 6.1b and Fig. 6.1c. Petri nets have previously
been shown useful for knowledge abstraction [HSZL16, HLY16]. The first layer
entails a meta-representation consisting of five components and the interactions
between them.

The second layer corresponds to a topologically variable sub-system, which mod-
els the product or process specific aspects of the application (see, Fig. 6.1a).
Since these sub-systems may model any variability within the constitutional pa-
rameter space including product type, material combination, machining process,
location or robot system configuration, the technical challenge becomes project-
ing a non-finite variety of sub-system topology to a finite meta representation
(layer 1) under the constraint that model should remain valid. To solve this, we
implement the following method as shown in Fig. 6.2.

6.2 Layer 1

Each component in the knowledge encapsulation strategy viz. PM, FM, EN,
PRC and HMI finds a representation in this layer to completely define various
robotic applications. Associated to the components, there are transitions or
projections. Depending on the current state of the application, a particular
route gets active. A route is an event handling pipeline comprising of a subset

6.2 Layer 1 31

PM

HMI

PRC

FM

EN

I

O

Layer 1: Meta processes

Layer 2: Projections

(a) Bi-layered structure

p1 th p2
tp p3

tf p4 te p5 tr p6

tfailure

p7

(b) Petri net representation of the bi-
layered structure. th, tp, tf , te and
tr are transitions (projections) asso-
ciated with HMI, PM, FM, EN and
PRC respectively. tfailure is the error
handling routine.

p1

t1

p2 t2
p3

t3

t4

p4

(c) th, tp, tf , te and tr are further rep-
resented using individual Petri nets
and resides in layer 2 of our bi-layered
structure. For example, for a given
application, the role of a CDS is to
model tp and tf whereas a robotic en-
gineer will be able to build up te. A
sample Petri net which can be used to
model one of the projections is shown
here. t1, t2, t3 and t4 are individual
transitions which make up a function
composition model.

Figure 6.1: Knowledge encapsulation strategy

of components. At any given time, there will always be only one active route.
For example, when a production user is initiating a request to fabricate a piece
to the robot, the active route is shown in Fig. 6.1a and Fig. 6.1b.

32 Higher Order Knowledge System (HOKS)

Append constraints to process routine
of individual projections for validation.

Extract topological manifold from the
Petri net using functional composition.

Specify the constraint as an operation
on the obtained topological manifold.

Compare the generated values with a pre-
decided threshold to evaluate a boolean output.

Determine the state of the constraint
evaluation based on the output.

Figure 6.2: Constraint Checking Workflow

Due to the simple nature of interaction possible, it is suitable for a low skilled
production user to work with this layer. He or she can tweak input parameters
to achieve a specific valid product configuration and further instruct the robotic
system to manufacture the product confirming to the specified parameter values.

6.3 Layer 2

As mentioned, there is a transition associated with each one of the components
in layer 1. They encapsulate the complex nature of computations required to
achieve the functionality of a meta node. For example, PFM (refer, Table 6.1)
is primarily tasked with the computation of tool path to service the fabrication
request from the user.

Expert user knowledge is required to model projections. A CDS will be able
to define the transitions for PM and FM whereas a CAM operator or a robotic

6.4 Constraints 33

Projection
(transition)
name

Associated
meta node

Input Output

PPM (tp) PM Numeric/Boolean Fabrication task
PFM (tf) FM Fabrication

Task
Robot task

PEN (te) EN Robot Task Configuration
task

PPRC (tr) PRC Configuration
task

Physical motion

PHMI (th) HMI Human gestures System action

Table 6.1: Associated projections.

engineer is required for EN.

Every transition has a predefined input/output type. Since it’s most of the
times difficult to describe the relationship between the output and input with a
single function, it is expressed using function composition which is an operation
that takes two functions f and g and produces a function h such that h(x) =
g(f(x)) (see, Fig. 6.3a and Fig. 6.1c).

The details of projections is provided in Table 6.1. A fabrication task contains
a NURBS model, tool data and other process parameters whereas a robot task
comprises of a tool path, process speed along with other specifications includ-
ing Robot Model (RM), Environment Model (EM), Tool Model (TM), Work
Piece (WP) and Operation Sequence (OS). The configuration task includes the
position, velocities and accelerations of all the robot joints as a function of time.

Projections are further represented via Petri net. They are also composed of
places and transitions just like any other Petri net. They involve a special set of
transitions called constraints. An evaluation of a projection is said to be valid,
if and only if all the constraints attached to the projection are satisfied.

6.4 Constraints

In Fig. 6.2, a constraint is expressed as an operation on a topological manifold
otherwise referred to as a manifold. Let an arbitrary set M represent the point
cloud which resides either in task or configuration space (see, Fig. 6.3b) and
O be the chosen topology on M. For robotic manufacturing, it’s a necessary

34 Higher Order Knowledge System (HOKS)

condition that the topological space (M,O) forms a manifold. A topological
space is called a d-dimensional manifold if ∀p ∈ M there exists an open set U
containing p where the following continuous maps exist:

1. x : U 7→ R : R ⊆ Rd

2. x−1

This is called the charting condition.

For example, consider the surface of a torus as the NURBS model included in
the fabrication task, let the points in this model be M where M ⊆ R3. We can
choose standard topology as O. For any p in this model, we can find a U which
is nothing but the open neighbourhood around the point. Since U ⊆ M, it can
be represented as a NURBS surface, following which it can easily be verified
that there exists a x which maps every point on U to R embedded in R2 in a
continuous invertible manner where R forms the parameter space for U. Hence
we can say that (M,O) is a manifold as it satisfies the charting condition.

There are many artifacts whose presence will convert the model into a non-
manifold geometry, viz. a curve that bifurcates at a point, a set of surfaces
forming an open volume or an edge shared by more than 2 surfaces, because
around such artifacts the continuity of x gets broken.

A robotic arm ζ having an m dimensional configuration space C is used to
process the tool path specified in the robot task. Since ζ is made of several
objects connected by joints, it is subjected to kinematic constraints. These are
constraints which restricts an object or a collection of objects from rotating or

O1 I3 O2

I1

I2
f g

g(f (I 1,I 2))= O 2

(a) Function composition

Parameter
Space

P1

PN

x1

z1

xn

y1 yn

zn. . .

. . .

. . .

. . .

. . .

. . .q1,1 q1,2

qa,1 qa,2

q1,n

qa,n

Task
Space

Con�guration
Space

α1

γ1

αn

β1 βn

γn. . .

. . .

. . .

(b) Topological spaces

Figure 6.3: Graph operations

6.4 Constraints 35

translating freely in the workspace. There are two types of kinematic constraints
viz. holonomic and non-holonomic.

An atlas has been defined on C and any configuration q of ζ is represented by
a list of m coordinates (q1, q2, ..., qm−1, qm) in some chart of the atlas. A scalar
constraint of the form:

F (q, t) = 0 (6.1)

where F is a smooth function with non-zero derivative, is called a holonomic
equality constraint. More generally, there may be k such constraints where k ≤
m. Typically, such equality constraints allow us to map a manifold from task
space to C. Undesirable collisions as well as out of reach scenarios could be
modelled as holonomic inequality constraints of the form:

F (q, t) ≤ 0 (6.2)

and can be expressed as an operation on the manifold in task space. Constraints
can be modelled either in task or C. As manifolds are inherently differentiable,
constraints involving velocities or accelerations can be plugged in.

36 Higher Order Knowledge System (HOKS)

Chapter 7

Procedural generation of
Graphical User Interface

(GUI)

Following the discussion on knowledge encapsulation, we would like to discuss a
bit on the semi-autonomous generation of user interfaces as it plays an important
role in achieving our goal of keeping Cf to the minimum. Further details of the
same can be found on our paper which is attached to this thesis as an appendix
(see, Appendix B).

As discussed already, a robotic application is modelled as a Petri net by a CDS,
which will have k inputs pre-decided by the designer of the system. The model
is created by chaining transitions together to define the relationship between the
input and output places. Two transitions can be chained by way of a connection.
A connection is a directed link where data can flow only in one direction. It
has two ends viz. origin and destination. Data can flow only from an origin to
destination. The origin should be attached to the output place of a transition
whereas the destination should be tied up to an input place of a transition.

38 Procedural generation of Graphical User Interface (GUI)

Input Lexer Synthesizer Semantic
analyzer

tp & tf Compiler

te

th

parser

Figure 7.1: Compilation pipeline

7.1 Compilation pipeline

During the semi auto-generation phase of the GUI, the provided input file goes
through a compilation pipeline (see, Fig. 7.1) which has the following steps:

1. Input - specifies the parametric design in the form of a XML/JSON file.
It mentions all the transitions and places contained in tp and tf and their
relationships with each other.

2. Parser - consumes the given input file and converts it into a process model
which contains two Petri nets viz. tp and tf . During this phase, the file
passes through 3 stages:

(a) Lexer - the input file is split into meaningful symbols at this stage.
In case any unrecognized symbols are found in the model, an error
will be reported.

(b) Synthesizer- The output of this activity will be a network of transi-
tions and places where the connectivity information has been gleaned
from the file and synthesized to a process model. In other words, each
transition and place will know their predecessors and successors after
this step.

(c) Semantic analyzer - the model is analyzed for its correctness by ver-
ifying whether all the connections are valid. All the connections are
type checked.

3. Compiler - accepts the synthesized process model from the previous step
along with te to create th. te contains robot, environment and tool models
required for creating collision free motion plans for execution on tr which
is the Factory on the Fly™.

7.2 Implementation 39

th is a tablet based interface which holds a) a parametric CAD model of a given
product with parameters accessible to customize the product within predefined
boundaries; b) a fabrication menu within this interface, which holds options for
the user to select pieces for production and submit that to tf which parametri-
cally deduct the necessary tool paths and operations within preset bounds.

All the sources inside of tp and tf will be exposed in th via UI elements. The UI
element could be a text box, an active dimension object, slider etc. A functional
UI can be achieved with such simplification. It is important to note that the
goal is to achieve an unified user experience across Factory on the Fly™ units.

The extracted tool path is transmitted to te and tr for planning and execution.

7.2 Implementation

The input XML/JSON file can be created by a standard software tools intended
for working with parametric workflows. A proprietary computational geome-
try kernel named DaVinci was created which can be accessed via Grasshopper
as well as Unity. Currently, designers use Grasshopper editor to prepare the
XML/JSON file which is termed as the development workflow. We are cur-
rently exploring to migrate to Bolt which is a visual programming environment
integrated with Unity. Once the input file has been prepared, it is ported to
Unity which converts the provided file to Petri net models (tp and tf) through
a custom developed parser implemented using C# programming language.

For specifying te, we are relying on MoveIt motion planning framework provided
inside Robot Operating System (ROS). Further, Unity is used to create the iOS
application in a semi-automatic manner.

Each Factory on the Fly™ unit has 3 computing devices:

1. A tablet which holds th, tp and tf .

2. A mini computer which is a PC with a small form factor. te resides in this
device. It is powered by Ubuntu 20.04 and ROS Noetic.

3. A robot controller which receives instructions for execution on the physical
robot from the above mentioned mini computer.

40 Procedural generation of Graphical User Interface (GUI)

Action Interpretor

Product Model (PM)

Export /
Save

Import /
Load

Settings

Help

Save Model
Service

Load Model
Service

Fabrication Model (FM)

Design
Menu

Fabrication
Menu

Process
Menu

Material
Menu

Update
Material
Service

G.U.I.

Dimension Objects

Active Passive
Update

Dimension
Service

Camera
Service

Camera

Show / Hide
Help Text
Service

Rendering
Engine

Product
Mesh

Fabrication
Mesh

Data
Service

Command
Service

Network
ServiceExecution Node (EN)

Update Model Service

Update
Mesh Service

Zoom
Request

Pan
Request

Orbit
Request

Restore
Request

Robot
Settings

Load Work Assembly
RequestsView port

Up
da

te
Re

qu
es

ts

Update Requests

Utility Menu Task Menu
Save

Model
Request

Load
Model

Request

Re
qu

es
t t

o
se

t w
or

kp
ie

ce
 d

im
en

si
on

s
&

 m
at

er
ia

l p
ro

pe
rt

ie
s

Type:
Geometry

Service

Type:
Viewport
Service

Type:
Viewport
Service

Type:
Viewport
Service

Type:
Geometry

Service

Type:
I/O Service

Type:
I/O Service

Type:
I/O Service

Type:
System
Service

Type:
System
Service

Figure 7.2: Architecture diagram for user interface

7.3 GUI architecture

The architecture of the GUI is shown in Fig. 7.2. The interface is an event based
system which responds to gestures from the user. The advantage of modelling
the application using the proposed method is that various functional behaviors
can be achieved by performing basic operations on the graph which makes the
implementation universal across applications. As a result, we will be able to go
for partial automation of the generation process. Some of these behaviors are
discussed below:

1. A fundamental property of the interface is that it should allow an user
to customize a particular parametric model. For this purpose, sources
are exposed as editable parameters to the user. On changing a value of
a particular source, a series of transitions are fired resulting in the re-
computation of the model. The output of this activity is stored in sinks.

7.3 GUI architecture 41

The safeness can be ensured by keeping the parameters within the bounds.

2. User might want to save/load a particular state of the application. It can
be easily achieved by storing the values associated with all the sources in
the Petri net. On re-loading the saved state, values for all the other places
in the Petri net can be computed by triggering a series of transitions as
prescribed by the system specification.

3. Under some situations, the user would like to undo/redo a specific opera-
tion. In a Petri net based system, this can be accomplished by recording
the values for sources so that one can move between states.

4. Monitoring of robot states.

42 Procedural generation of Graphical User Interface (GUI)

Chapter 8

Applying software design
patterns

Now let us take a brief look at some of the software design patterns proposed by
us to improve parametric modelling. The complete work can be found on our
third paper which is attached to this thesis as an appendix (see, Appendix C).

It is to be noted that ability to decide which design patterns can be applied to
in a given situation comes with practice. In general terms, it follows the idea
of factoring out the commonalities between various problems and abstracting
the solution so that it can be used in other situations as well. As an example,
let us look at Observer pattern popular among members from OOP community.
It can be used under any situation where one process (publisher) is producing
some information which many other processes (subscribers) will be interested
in listening to. Some of the concrete examples of its implementations are:

1. Pick and place robot - A camera fitted to the robot arm publishes the pose
of the object to be picked up by the arm as and when it enters within the
reachable workspace of the robot.

2. If someone whom you are following in Twitter or Facebook publishes a
new post, you will be notified about the same.

44 Applying software design patterns

view

model

controller

user

updates manipulates

sees uses

Figure 8.1: Schematic representation of MVC

In the above example, if one chooses not to see beyond the specificity of a
given problem, it will be difficult to see the commonality between the two cases.
After analysing parametric design models created by us, we have identified some
patterns and categorized them into three groups viz. functional, relational and
performa. It is not an exhaustive list and more patterns may be recognized as
we continue our exercise in future.

A design pattern is introduced by a Title, What, Use when, Why and How
as is followed in [WAK07]. The Title is a short name given to refer to a pattern.
What provides a short description of the pattern. Use when mentions about
the situations under which the said pattern is relevant to be considered and
Why signifies the inspiration for using the pattern and sketches the associated
benefits. How refers to the internal details on how they can be implemented
within the given context.

8.1 Functional patterns

Functional patterns deal with breaking down the parametric models into simpler
logical sub-units. It will help to reduce unnecessary coupling between nodes,
improves readability and makes the graph more maintainable. We introduce
and discuss three functional patterns namely Model-View-Controller (MVC),
Design-Plan-Monitor (DPM) and adapter in this section.

8.1.1 MVC

1. What: Organizes the transitions and places into three collections, namely
model, view and controller (refer, Fig. 8.1). A collection is simply a bevy

8.1 Functional patterns 45

design plan monitor

Figure 8.2: Schematic representation of DPM

of transitions and places.

2. Use when: You are developing a complex Petri net to model an inter-
active parametric process involving visual feedback. The said process can
be controlled via a set of parameters.

3. Why: Most interactive robotic applications can be conveniently subdi-
vided into model, view and controller so as to avoid unnecessary coupling
between the various transitions. Model holds the underlying geometry
data and drives the application. It can be visualized through the view.
Transitions present in the controller will let the user interact with the
model.

4. How: The model is a group of nodes which defines the geometry or tool
paths for a parametric design. For instance, the model nodes in the para-
metric design might produce a mesh or a smooth surface defined in terms
of vertices or control points. The view is formed by a cluster of nodes
which determines the visualization aspects of the model, like the thickness
of a curve, style or colour of a surface. A given model may have multiple
associated views viz. plan, elevation, detailed etc. The controller is a set
of interactive widgets that correspond to source nodes. The controller al-
lows the user to change the parameters governing the geometry defining
nodes in the model.

8.1.2 DPM

1. What: Organize the transitions and places into 3 collections namely de-
sign, plan and monitor as shown in Fig. 8.2.

2. Use when: If you are developing a robotic application which involves the
design on the fly feature using Petri nets.

3. Why: In many of the fabrication centered robotic applications from the
construction industry, it is required that the user should be able to cus-
tomize the part being manufactured. A strategy is to expose some de-
sign/fabrication related parameters to the production user so that he or
she can tweak the parameters to achieve the desired customization. It is

46 Applying software design patterns

w1

w2

w3

filter adapter w4

Figure 8.3: Schematic representation of adapter - w1, w2 and w3 are upstream
workflows whereas w4 is the singular downstream workflow. At
any given moment, filter lets output from either w1, w2 or w3 to
pass through. adapter massages the outputs from w1, w2 or w3 to
a form which is consistent with the expected input of w4.

our proposal that a neat way of handling such parametric workflows is to
decouple the process into three sections viz. design, plan and monitor.

4. How: It can be implemented in the following way:

(a) Design - Specifies the design of the product to be manufactured.
(b) Plan - From the given design of the product, a machining strategy

is determined. It involves applying lead in/out, determining the pro-
cess speed depending on material properties, deciding when to turn
on/off the tool and extracting tool path from the given product ge-
ometry. Further, robot motion will be planned taking into account
the collision matrix. The output of this step will be a task which can
be executed on the robot.

(c) Monitor - Once the robot starts to execute the task, the cell has
to be continuously monitored for safe operation. Human safety is
of paramount importance. In case of any safety sensor breach, the
robot is stopped. One can include further recovery strategies in this
section to handle other error scenarios.

8.1.3 Adapter

1. What: Adapt the outputs of preceding workflows to match the input
structure of the succeeding one as depicted in Fig. 8.3.

2. Use when: If there are multiple upstream workflows that converges onto
a singular downstream workflow, it is important that all these upstream
workflows pass on a consistent output form - one that can be acted upon by

8.2 Relational patterns 47

GO

m1

mn

map act

Figure 8.4: Schematic representation of mask where GO is the geometry ob-
ject, m1, ..,mn are masks to be applied to GO.

the downstream workflow. In many cases, individual upstream workflows
will be generating outputs in a different form.

3. Why: It helps to avoid duplicating the downstream workflows to suit the
output form from each of the individual upstream workflows.

4. How: An adapter workflow is included between the said workflows, to
massage the outputs of the upstream workflows such that they are syn-
chronous with one another and match the input form of the succeeding
workflow.

8.2 Relational patterns

Relational patterns aid us to better organize the data models within the para-
metric design workflows to represent the relations between them accurately. We
are only talking about one relational pattern namely mask here.

8.2.1 Mask

1. What: Maintain a mask that will be used to qualify the underlying data
(see, Fig. 8.4).

2. Use when: In most parametric workflows, each Geometry Object (GO)
will have metadata associated with it. Masks can be used to store such
metadata. Typically, information like colour, material so on and so forth
can be stored using masks.

48 Applying software design patterns

w1 w2

trigger : off

Figure 8.5: Schematic representation of isolator

3. Why: Usually in OOP based languages, under these scenarios, a custom
class can be defined which includes the GO with all its associated meta-
data. However, in FP based languages, we cannot create such custom
classes. Hence, the masks need to be stored as a separate data structure,
so that a downstream workflow can associate the GO with a particular
mask and perform some action on the GO accordingly.

4. How: Masks are stored using separate data structures, which have the
same form as that of the ones holding GOs. They can be either constants,
external inputs or be generated dynamically within a workflow. There can
be multiple masks, each pertaining to one aspect of the geometry.

8.3 Performa patterns

These patterns help us to reduce latency in a given workflow to improve perfor-
mance. We were able to come up with two patterns belonging to this category
viz. isolator and cache. Each of these patterns is discussed below in greater
detail.

8.3.1 Isolator

1. What: Isolate a particular workflow from the upstream workflow logically
as shown in Fig. 8.5.

2. Use when: In many situations, we will encounter downstream workflows
which shouldn’t get recomputed at every instance of a change to the up-
stream workflow for various reasons. We can use this pattern as a bridge
between two workflows to achieve the same.

3. Why: If there are computationally heavy downstream workflows within
a parametric workflow, users will experience a latency while interacting
with the parameters of the upstream workflow. Hence, designers may

8.3 Performa patterns 49

reg

w

reg

input

Figure 8.6: Schematic representation of cache

want to strategically defer the recalculation of such dependents so as not
to hamper the user experience.

4. How: An isolator component can be developed which will collate and
store the outputs from the upstream workflow. It will be relayed on to the
downstream workflows, only on request.

8.3.2 Cache

1. What: Store results from a single execution of the Petri net (see, Fig.
8.6).

2. Use when: It can be used when one has to use the results from the
previous iteration of the program during the current run.

3. Why: If the computation of a Petri net introduces latency due to the time
complexity of the algorithm, one may be able to speed up the process
by caching the output from the previous run under certain situations.
By using the cached value, one can perform the current execution as an
incremental operation to enhance user experience.

4. How: A register component can be developed which can be used to stow
the outputs from the Petri net.

50 Applying software design patterns

Chapter 9

Case studies

As mentioned before, the development of Sculptor followed a case study based
approach wherein the framework was used to develop multiple robotic applica-
tions. The details of our experiments are presented here to the interest of the
reader.

9.1 Application 1: Abrasive wire-cutting

In this application, the goal is to manufacture moulds for concrete casting. The
results are demonstrated on staircase moulds which are one of the most advanced
mould types among regularly produced concrete components. Today’s method
for producing a mould for concrete casting entails the following:

1. A 2D drawing of the requested design is received by the mould supplier.

2. This is translated by a CAD specialist into a production drawing.

3. The production drawing is used by the CAM specialist to program a CNC
machine to manufacture the mould parts in timber.

4. The manufactured parts are assembled by a craftsman (typically a mould
carpenter) to produce the moulds.

52 Case studies

(a) (b)

(c) (d)

Figure 9.1: (a) Factory on the Fly™ unit; (b) samples of surface coated EPS
moulds for staircase; (c) hydraulically driven abrasive wire-cutting
end-effector and (d) auto generated tablet interface.

The entire operation takes typically between 1.5 - 2 working days and relies on
3 specialist competences.

We deployed the developed framework to build the following alternative: a
parametric staircase model was developed, which holds the relevant variables
to accommodate most common staircase dimensions and detailing. The model
is represented on a tablet, which holds a design menu for altering parameter
values; and a fabrication menu, which shows the mould configuration of the
customized design, and enables the user to submit mould parts to fabrication.
The GUI is shown in Fig. 9.1d.

The above method was implemented for an industrial, multi-process formwork
production unit. The unit consists of a shipping container equipped with an
IRB 8700 manipulator as depicted in Fig. 9.1a. It supports three operations
viz. abrasive wire-cutting, milling (for edges) and surface coating with resin.
Machining time for a staircase mould created out of a bounding box with di-
mensions 2400 × 1200 × 300 mm was around 30 minutes with an additional
14 minutes for surface coating. It produces a formwork piece with same level
of surface smoothness, precision and durability as a timber formwork; however

9.2 Application 2: Sawing 53

(a) (b)

Figure 9.2: Auto generated tablet interface for sawing application along with
the corresponding Factory on the Fly™.

at much reduced production time. The finished EPS mould (see, Fig. 9.1b) is
ready for concrete casting. It is to be noted that in our current iteration, we
only supported abrasive wire cutting process through the tablet interface in the
interest of development time. The other processes were carried out separately.
In the future, we envision exposing all processes via the tablet. Hereby, we have
now simplified the workflow to involve only the following competences to use
the robotic unit:

1. General know-how of operating an iOS tablet application with a complex-
ity level comparable to other commonly available iOS applications.

2. The ability to read dimensions from a provided 2D drawing and inputting
the corresponding values in the design menu. Both of these tasks can be
achieved in our system with simple instructions which require no special-
ized training.

9.2 Application 2: Sawing

For further evaluation, framework was used to quickly develop a robotic appli-
cation for tile sawing operations. In contemporary paving works, concrete and
natural stone tiles are often adapted onsite through manual sawing. Adaption is
typically required either because standard tiles were not available for the partic-
ular dimensions required for the project, or most commonly, to cut the tiles to
fit edge conditions at roads, lamp posts or facade walls. The manual tile cutting
process is both physically demanding and disturbing to the environment. It is

54 Case studies

conducted in non-ergonomic positions with noise levels above 110 dB, and cre-
ates significant dust. For these reasons, physical wear down and early retirement
among workers are common.

To address this challenge, Odico developed a mobile robotic tile cutting solution,
to be operated onsite by craftsmen. By encapsulating the cutting work in a
closed envelope, noise and dust generation is reduced to a minimum. To increase
mobility and ease of deployment, the solution was fitted within a standard box
trailer, which can be towed by any class 2 or 3 vehicle (standard passenger cars
and above), and equipped with a generator for autonomous deployment. The
solution is equipped with a 6 axis standard manipulator with a circular saw
mounted on the flange. By manually placing or utilizing an on-board crane,
tiles are lifted in place and cut by the robot. Hereby cutting speed comparable
to manual cutting is achieved, but through automation of the cutting process,
and reduction of noise and dust generation, physical fatigue is avoided, enabling
the worker to increase the productivity rate by 1.5 – 2x over the course of a day.

For successfully meeting the needs of this segment, the overarching requirement
for the interface, was to enable unskilled craftsmen to operate the system and
program unique tile cutting designs within a 5 minute training window. The
preset template is a parametric model with some of the design variables exposed
to the user to edit. For example, length, width and height of a tile can be edited
by the user.

On deciding the dimensions of the tile, the user can choose how the tile needs
to be cut by adding cut lines on the tile. With addition of each cut line, the
original tile will be split into multiple pieces. User can choose one of the pieces
and add it to a fabrication queue. As the queue gets processed, user can go back
to the design work thereby saving valuable time.

The tablet interface is shown in Fig. 9.2a and the mobile robot station at a
construction site can be seen in Fig. 9.2b. The product was launched as Odico’s
first commercial, off-the-shelf technology solution in August 2020. As of July
2021, it constitutes one of the main pillars for planned scaling of commercial
operations.

9.3 Application 3: Milling

A third application (refer, Fig. 9.3a, 9.3b and 9.3c) was developed to target the
following challenge: in today’s construction for sewage and water infrastructure,
a common occurring situation is that several pipes with variable diameters and

9.3 Application 3: Milling 55

(a) (b) (c)

Figure 9.3: (a) Auto generated tablet interface for milling application; (b)
along with the corresponding robotic unit and (c) end product.

approach angles need to meet in a single junction. For standard junctions,
off-the-shelf precast concrete connectors can be utilized. However, in several
cases, the number of pipes, the combination of diameters or the combination of
approach angles is non-standard and requires a custom build solution. Today,
this is handled by creating a bespoke, sub-terrain timber formwork, which is
manually crafted at the site. For the test partner of the project, the duration of
such work was estimated to be 2-3 days (normative average) for the formwork
production.

To increase productivity, an alternative solution was proposed: a fully digitized
production of EPS formwork, in which customization happens through a web
application. Using an e-commerce pipeline, it is linked to a stationary, robotic
CNC-milling facility which is located at the factory. The baseline can be estab-
lished by comparing to current production of standard timber formworks used
for precast well junctions from a factory. The process involves 3 levels of exper-
tise: 1) a CAD specialist for expert modeling of the advanced geometry in a time
span of 4-8 hours; 2) a CAM expert for programming the CNC milling of the
complex piece within a time-span of 2-4 hours; and 3) a CNC operator, capable
of inserting a work piece, executing a program and monitoring the process on a
dedicated machining center, with on-off involvement for 3-4 hours of machining.

A GUI was made available online with sophisticated customization parameters
for generating any unique combination of base diameter, number of pipes, in-
dividual pipe diameters and approach angles1. Within preset bounds of each
parameter, an unskilled user with knowledge of the design specification for any
given pipe junction can now configure the design within a 2-minute process,
replacing the former need for 4-8 hours of modeling from a CAD specialist.
Upon submitting the order, the design is forwarded to an associated fabrication
model, which procedurally generates the corresponding tool path, hereby negat-

1https://odico.dk/wellmate/

56 Case studies

(a) (b) (c)

Figure 9.4: (a) EPS form in the excavated site; (b) connection to two sewage
pipes and (c) final cast of the sewage pipe junction after removal
of the formwork.

ing the need for a CAM expert applying 2-4 hours of programming. Finally, this
program is launched by an operator on a robotic system - a stationary 6 axis
manipulator with external rotary axis. Due to the change of material from tim-
ber to lightweight EPS, we can operate the process at a higher speed, reducing
machining time to 1-2 hours per piece, depending on base diameter or junction
size.

9.4 Application 4: Hot wire-cutting

In the architectural history of masonry, brick arches have played a pivotal role in
creating doorways, windows and portals in buildings, owing to the compressive
strength of this geometry. In restoration of such buildings, as well as for new
construction projects utilizing arches or other complex designs, the production
of expensive timber guides is required, typically created manually or through
digital means. According to an internal research conducted by Odico over the
course of a 3 year period, the prohibitive cost levels of making such guides, may
have contributed for the retreat of such designs from contemporary architecture.

To alleviate this restriction, a case study was developed in which an online
configurator2 dubbed Archer, would allow customers to select between 4 most
common brick arch types – jack arch; roman arch; 3-centered arch; and seg-
mental arch. Once user decides on a type, the other parameters of the support
body can be specified. Upon order purchase, a rapid code file is automatically

2https://odico.dk/en/archer/

9.4 Application 4: Hot wire-cutting 57

(a) (b)

(c) (d)

(e)

Figure 9.5: (a) and (b) Manual production of a timber brick arch guide. (c)
In the construction of the brick arch, the timber guide is initially
placed at the appropriate height by a supporting stack of tempo-
rary bricks. After this, bricks are incrementally placed on top of
the arch with mortar applied between them. Once the arch is com-
pleted and the mortar has cured, the template is removed; (d) en-
trance portal at Svendborg Brewery and (e) sample of a brick arch
guide produced from EPS using robotic hot wire-cutting method.

generated from the configured model, which is then executed on an associated
robot station to manufacture the corresponding design out of an EPS block in
less than 15 minutes. Hereby, the final cost of the guide work is reduced by

58 Case studies

approximately 55%. In July 2021, Archer was used for the creation of a roman
arch to restore the entrance portal of the preserved building of Svendborg Brew-
ery from 1898, which was severely damaged following an accident involving a
motor vehicle.

9.5 Application 5: Additive Manufacturing (AM)

3D Concrete Printing is an additive manufacturing technique to fabricate build-
ings or functional components for construction. In recent commercial applica-
tions, the system is based on the extrusion of cement-based material through a
nozzle of a variable size/shape. Because of this, building components are pro-
duced by layered wall elements and often made of partially hollow geometries,
in order to save time and material. For structural rigidity, one cannot choose
a random pattern for material deposition inside the shell. In one of the pre-
studies conducted by us with SDU CREATE, we were exploring the possibility
of utilizing the Differential Growth (DG) [PS06] of a continuous curve to achieve
a beam design of a variable density (see, Fig. 9.6), with a continuous path that
can be printed without interruptions. The input to the program is a shell (sim-
ple polygon), a scalar field, and a growth factor. The growth factor controls the
rate at which the curve will grow in every iteration. The scalar field is a function
which associates a number to every point in space. A grayscale image was used
as the field wherein the intensity lies between 0 (white) and 1 (black). In our
case, we bias the growth of the curve according to the field which means that
more material will be deposited in areas corresponding to darker pixels from the
image. The scalar field follows the result of a structural stress analysis so that
a darker pixel from the field means that more material needs to be deposited
around that point.

Figure 9.6: DG algorithm applied to create dynamic infills for a structural
beam using scalar fields.

Chapter 10

Discussion and Further
work

The goal of the project was two fold:

1. To come up with means to reduce the costs associated with the process of
development of software for robotic applications targeting the construction
industry.

2. To provide intuitive user experiences so as to take robotic technology to
craftsmen who are ill-equipped at embracing complex systems.

For this, a novel model for second order knowledge encapsulation has been
presented. The model enables a single, 5-node meta layer as an uniform control
scheme for a non-finite variability of applications, hereby greatly increasing the
efficiency of development of bespoke applications for construction processes.

Based on current implementation work, we project that any robotic applica-
tion in the field of construction can be modelled by the same set of five nodes
in the meta layer. The variation which exists between applications can be ac-
complished by changing the contents of the corresponding transition functions
associated with each of these nodes in the meta layer, though respecting the
desired input-output relationship between them.

60 Discussion and Further work

The proposed solution contains two layers of encapsulation in which (a) com-
plex machining processes for adaptive manufacturing of on-the-fly customized,
shape-variant part designs can be operated by a non-specialist construction
personnel in the form of a tablet application and (b) people from five special-
ist domains, viz. computational design, UI/UX development, manufacturing,
robotic and process engineering are able to contribute within their domain in
isolation through provision of constitutive sub-systems in a larger network.

For (a), the challenge is that the cost implications of developing a custom tablet
application from scratch is prohibitive. However, general automation of software
development has been proven highly complex, and remains a topic of intense
research [RMAHGA+15, KDA12]. We propose that by confining the scope of
the problem to construction manufacturing interfaces; by relying on the closed-
end solution space given by parametric models; and by leveraging the already
procedural nature of workflow graphs, it is possible to establish an effective
automation procedure for the given problem. In particular, the method proposal
can be contrasted to general import of any random CAD file, in which the
geometry generation does not happen in a closed loop system. By controlling
all aspects of geometry computation within the graph, the robustness of the
workflow is greatly increased, enabling a feasible automation pathway.

Further, we have presented multiple seemingly unrelated applications for robotic
construction manufacturing. Each case relies on a highly customized combina-
tion of hardware configuration, tooling process, and design geometry, serving
a unique need for the industry. We demonstrate that a custom interface can
be procedurally generated for each case using the same, standardized model
across all applications. The generated visual interface is capable of reducing
the operational complexity of the underlying system to such degree that an un-
skilled worker within few minutes of training can effectively and safely execute
the work, to produce highly customized items. Through digitization, the au-
tomation process serves to significantly increase the levels of productivity by
reducing the labor time.

We further established that parametric modelling holds a significant potential for
increasing the efficiency in building robotic applications in construction industry.
However, there are some important open problems relating to maintainability,
stability, reusability and performance of these models. We have analyzed these
scenarios in greater detail and tried to solve them by applying software design
patterns.

Patterns were categorized into 3 viz. functional, relational, and performa. In
functional patterns, the entire workflow was decomposed into clusters compris-
ing of nodes which are closely related to each other serving a specific purpose in
the application. Relational patterns assist to manage data models within a given

61

parametric design in an efficient manner whereas performa patterns resulted in
reducing the latency.

Further work includes on building more applications using Sculptor. Addition-
ally, we will be focusing on exploring more design patterns suitable to the realm
of parametric modelling.

62 Discussion and Further work

Appendix A

Adaptive Robotic
Manufacturing using Higher
Order Knowledge Systems

A.1 Introduction

Despite representing the 5th largest industry segment, the global construction
industry has for a decade seen stagnant growth in productivity, while other sec-
tors – such as the manufacturing industries – have enjoyed nearly a quadrupling
within the same period [PTT05]. Even in more recent works [BHK21, BDM20],
it is mentioned that the problems related to low productivity is still prevalent
in construction industry. The rising productivity in neighboring segments is
widely attributed to the pervasive automation and digitization these sectors
have been undergoing. Hence large scale adoption of robots in the construc-
tion sector is widely regarded as the primary enabler of potential productivity
increase [DOA+19].

However, despite large research efforts, and the availability of mature automa-
tion technologies from tangential fields such as automotive, aeronautic, naval
and energy industries, ubiquitous adoption of robotic processes within the indus-
try still remains evasive. As a result, construction is one of the least automated

64Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

of the leading industrial sectors, next only to agriculture [Roh08]. Inside of
a larger industrial research effort to establish a general purpose, cyber-physical
technology platform for efficient automation of construction tasks, this paper re-
ports on the developments relating to the establishment of a software framework
for adaptive robotic control in construction manufacturing.

A.2 State of the art

A widely understood differentiating factor between construction and other man-
ufacturing industries relying on large scale production is the circumstance, that
while general manufacturing can benefit from deploying a mass manufacturing
paradigm - in which multiple instances of identical products is repeatedly pro-
duced at high volume - such repetition is not feasible in construction, in which
each building project is essentially unique [DOA+19]. Since automation tech-
nologies in general manufacturing is designed to support a repetitive mode of
operation, they lack the flexibility to accommodate the variability experienced
in construction.

To overcome this shortfall, significant research efforts [WKB+16, GK14, Men12]
have been directed towards establishing parametric manufacturing workflows,
in which a production system relying on one or more standard industrial ma-
nipulators with associated machining end-effectors is driven by a parametric
manufacturing model, which utilizes the inherent flexibility of a manipulator
with m degrees of freedom to create shape-variant instances of a customizable
part design within pre-defined ranges of variables.

The establishment of construction scale parametric manufacturing workflows
is complemented by additional research attention directed towards machine
process innovation, investigating a plurality of avenues for achieving low cost,
large scale production through mechanical end-effector engineering. Leading
examples from this work entails robotic processes such as e.g. timber sawing
[EGK17, KSM+14]; hot-blade and wire-cutting [FS14, Sea16]; brick assembly
[Bon15]; robotic concrete printing [PZTG18, GM18, GCF18] and metal forming
[TPM18].

The combined developments in this strand of research have recently culmi-
nated in the realization of several experimental and commercial construction
projects, such as Fjordenhus Kirk Kapital HQ, Vejle, Denmark (2018) [SF17],
Opus Dubai, Dubai UAE (2020) [Bho17], The Sequential Roof, Zürich, Switzer-
land (2016) [ABF+16], and DFAB House, Zürich, Switzerland (2019) [Dea19],
signifying the principal applicability of robotic manufacturing at construction

A.3 Research challenge 65

scale.

While the establishment of a robotic parametric manufacturing paradigm – com-
plemented by aforementioned advances in process innovation – have successfully
demonstrated a pathway for increasing flexibility of digital production to create
shape variant parts at near cost-parity to standardized production schemes –
two fundamental limitations remain largely unaddressed:

1. while parametric manufacturing workflows can be established for prede-
fined typologies of component production, they are ill-suited to accom-
modate non-linear changes in fundamental parameters such as product
typology, material composition or machining process. Since the variabil-
ity of construction manufacturing entails exactly this across individual
building projects, each non-linear change requires manual amendment of
an existing or establishment of a new workflow;

2. establishment of such workflows rely on an emerging cross-disciplinary
expertise spanning across previously isolated domains, including robotics,
computational design and construction manufacturing. By contrast, the
global construction workforce is overwhelmingly trained in craft based,
manual processes with little to no exposure to robotic manufacturing.

Taken together, these limitations incur significant overhead in the establishment
of project specific workflows, while inducing substantial inflexibility in applying
them in a general regime across projects.

A.3 Research challenge

For clarity, aforementioned concerns may be expressed as:

C = Cv +Cf/n (A.1)

where C denotes the production cost of a shape-variant part or building compo-
nent, Cv is the variable costs associated with producing each item unaffected by
the number of produced items - typically entailing labor, material and machining
time and Cf signifies the fixed, one-time costs of implementing the digital pro-
duction workflow required to manufacture the shape variant family of parts, and
n denotes the number of construction projects on which the particular workflow
can be applied. Since global construction is generally characterized by a high
number of sub-specialized trades, which operates interchangeably to construct
topologically variant tasks, it stands to reason that the probability of n = 1 is

66Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

high. In this case, only an extra-ordinary construction budget would be capable
of sustaining the upfront cost of bespoke workflow establishment, limiting the
application of such robotic schemes to high-profile building projects.

The presented work assumes the hypothesis that:

1. full automation of the workflow creation process is not feasible, because
the number of implied variables for constitutional parameters is too high;

2. this leads to high development costs which - in combination with the small
niche markets resulting from the high level of trade-specialization – makes
the development of project specific workflows economically non-viable in
mainstream construction, and thus leaving the majority of construction
disciplines technologically under served.

To overcome this challenge, we propose increasing the efficiency of custom work-
flow implementation through deploying a model of second order knowledge en-
capsulation, which enables semi-automatic application development and frame-
work architecture generalization. The purpose of this effort would be to lower
the development costs of implementing bespoke, project specific applications
below the cost of manual production, hereby facilitating wide spread adoption
of robotic manufacturing in construction. The presented work addresses the
software related implication of this solution.

In other words, we are presenting a software framework that will enable someone
to rapidly design, prototype and develop a robotic application. As a result,
one can achieve cost parity even though the aforementioned application is not
mass manufactured. This is specifically of interest in construction industry, as
a building contractor usually orders only 1-2 robotic units supporting a given
process. For any provider of such cells to the industry, it becomes important
that a framework exists to develop applications quickly.

A.4 Knowledge encapsulation strategy

Our knowledge encapsulation is initialized with denoting an application to entail
the following components:

1. a parametric template or product model (PM), which holds a customizable
design of a component, part sub-assembly or entire building design;

A.4 Knowledge encapsulation strategy 67

Figure A.1: An application is understood in the context of a software system
operating on a cyber-physical production unit entailing a) one
or more m-axis manipulators enclosed on b) a modular frame,
equipped with c) custom processing end-effectors and d) operated
from a tablet or mobile device by a non-specialist user.

2. a fabrication model (FM) which, as a function of PM generates the corre-
sponding tool path targets;

3. an execution node (EN) entailing a digital representation of the robotic
system with incorporated planning module to ensure motion safety;

4. a physical robotic cell (PRC) equipped with a set of predefined end-
effectors for executing one or a combination of several processes. The
robotic system is containerized or mounted on an autonomously moving
base for modular deployment;

5. a human machine interface (HMI), which exposes key parameters of PM,
FM and EN to the user through a Graphical User Interface (GUI).

The entirety of the application is process or product specific, allowing for a
simple expression of controls. Hereby the application enables a non-expert user,
i.e. a construction worker trained in craft with no robotics experience, to (a)
customize a part design on the fly or retrieve an externally customized part
design and (b) safely execute production of the customized instance of that
part. The concept of such a containerized set up with a tablet interface can be
seen in Fig. A.1 where an user can be seen interacting with PRC using a HMI.
The containerized set up including the tablet is referred to as Factory on the
Fly™.

68Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

PM

HMI

PRC

FM

EN

I

O

Layer 1: Meta processes

Layer 2: Projections

(a) Bi-layered structure

p1 th p2
tp p3

tf p4 te p5 tr p6

tfailure

p7

(b) Petri net representation of the bi-
layered structure. th, tp, tf , te and
tr are transitions (projections) asso-
ciated with HMI, PM, FM, EN and
PRC respectively. tfailure is the error
handling routine.

p1

t1

p2 t2
p3

t3

t4

p4

(c) th, tp, tf , te and tr are further rep-
resented using individual Petri nets
and resides in layer 2 of our bi-layered
structure. For example, for a given ap-
plication, the role of a Computational
Design Specialist (CDS) is to model tp
and tf whereas a robotic engineer will
be able to build up te. A sample Petri
net which can be used to model one
of the projections is shown here. t1,
t2, t3 and t4 are individual transitions
which make up a function composition
model.

Figure A.2: Knowledge encapsulation strategy

A.4.1 Application model

Pursuant to the proposed encapsulation strategy, the robotic application can be
visualized as a bi-layered structure (refer, Fig. A.2a) and the corresponding Petri
net models are shown in Fig. A.2b and Fig. A.2c. Petri nets have previously

A.4 Knowledge encapsulation strategy 69

Append constraints to process routine
of individual projections for validation

Extract topological manifold from the
Petri net using functional composition

Specify the constraint as an operation
on the obtained topological manifold

Compare the generated values with a pre-
decided threshold to evaluate a boolean output

Determine the state of the con-
straint evaluation based on the output

Figure A.3: Constraint Checking Workflow

been shown useful for knowledge abstraction [HSZL16, HLY16]. The first layer
entails a meta-representation consisting of 5 components and the interactions
between them. The second layer corresponds to a topologically variable sub-
system, which models the product or process specific aspects of the application
(refer, Fig. A.2a). Since these sub-systems may model any variability within the
constitutional parameter space including product type, material combination,
machining process, location or robot system configuration, the technical chal-
lenge becomes projecting a non-finite variety of sub-system topology to a finite
meta representation (layer 1) under the constraint that model should remain
valid. To solve this, we implement the following method as shown in Fig. A.3.

A.4.2 Layer 1

Each component in the knowledge encapsulation strategy viz. PM, FM, EN,
PRC and HMI finds a representation in this layer to completely define various
robotic applications. Associated to the components, there are transitions or

70Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

projections. Depending on the current state of the application, a particular
route gets active. A route is an event handling pipeline (refer, Fig. A.2b)
comprising of a subset of components. At any given time, there will always
be only one active route. For example, when a production user is initiating a
request to fabricate a piece to the robot, the active route is shown in Fig. A.2a
and Fig. A.2b.

Due to the simple nature of interaction possible, it is suitable for a low skilled
production user to work with this layer. He or she can tweak input parameters
to achieve a specific valid product configuration and further instruct the robotic
system to manufacture the product confirming to the specified parameter values.

A.4.3 Layer 2

As mentioned, there is a transition associated with each one of the components
in layer 1. They encapsulate the complex nature of computations required to
achieve the functionality of a meta node. For example, PFM (refer, Table A.1)
is primarily tasked with the computation of tool path to service the fabrication
request from the user.

Expert user knowledge is required to model projections. A CDS will be able
to define the transitions for PM and FM whereas a CAM operator or a robotic
engineer is required for EN.

Every transition has a predefined input/output type. Since it’s most of the
times difficult to describe the relationship between the output and input with a

Projection
(transition)
name

Associated
meta node

Input Output

PPM (tp) PM Numeric/Boolean Fabrication task
PFM (tf) FM Fabrication

Task
Robot task

PEN (te) EN Robot Task Configuration
task

PPRC (tr) PRC Configuration
task

Physical motion

PHMI (th) HMI Human gestures System action

Table A.1: Associated projections.

A.5 Constraints 71

single function, it is expressed using function composition which is an operation
that takes two functions f and g and produces a function h such that h(x) =
g(f(x)) (see, Fig. A.4a and Fig. A.2c).

The details of projections is provided in Table A.1. A fabrication task contains
a NURBS model, tool data and other process parameters whereas a robot task
comprises of a tool path, process speed along with other specifications includ-
ing Robot Model (RM), Environment Model (EM), Tool Model (TM), Work
Piece (WP) and Operation Sequence (OS). The configuration task includes the
position, velocities and accelerations of all the robot joints as a function of time.

Projections are further represented via Petri net. They are also composed of
places and transitions just like any other Petri net. They involve a special set of
transitions called constraints. An evaluation of a projection is said to be valid,
if and only if all the constraints attached to the projection are satisfied.

A.5 Constraints

In Fig. A.3, a constraint is expressed as an operation on a topological manifold
otherwise referred to as a manifold. Let an arbitrary set M represent the point
cloud which resides either in task or configuration space (refer, Fig. A.4b) and
O be the chosen topology on M.

For robotic manufacturing, it’s a necessary condition that the topological space
(M,O) forms a manifold. A topological space is called a d-dimensional manifold
if ∀p ∈ M there exists an open set U containing p where the following continuous

O1 I3 O2

I1

I2
f g

g(f (I 1,I 2))= O 2

(a) Function composition

Parameter
Space

P1

PN

x1

z1

xn

y1 yn

zn. . .

. . .

. . .

. . .

. . .

. . .q1,1 q1,2

qa,1 qa,2

q1,n

qa,n

Task
Space

Con�guration
Space

α1

γ1

αn

β1 βn

γn. . .

. . .

. . .

(b) Topological spaces

Figure A.4: Graph operations

72Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

maps exist:

1. x : U 7→ R : R ⊆ Rd

2. x−1

This is called the charting condition.

For example, consider the surface of a torus as the NURBS model included in
the fabrication task, let the points in this model be M where M ⊆ R3. We can
choose standard topology as O. For any p in this model, we can find a U which
is nothing but the open neighbourhood around the point. Since U ⊆ M, it can
be represented as a NURBS surface, following which it can easily be verified
that there exists a x which maps every point on U to R embedded in R2 in a
continuous invertible manner where R forms the parameter space for U. Hence
we can say that (M,O) is a manifold as it satisfies the charting condition.

There are many artifacts whose presence will convert the model into a non-
manifold geometry, viz. a curve that bifurcates at a point, a set of surfaces
forming an open volume or an edge shared by more than 2 surfaces, because
around such artifacts the continuity of x gets broken.

A robotic arm ζ having an m dimensional configuration space C is used to
process the tool path specified in the robot task. Since ζ is made of several
objects connected by joints, it is subjected to kinematic constraints. These are
constraints which restricts an object or a collection of objects from rotating or
translating freely in the workspace. There are two types of kinematic constraints
viz. holonomic and non-holonomic.

(a) Additive Manufacturing
(b) Robotic Bending

Figure A.5: Robotic Processes

A.6 Exemplifications and industrial applications 73

An atlas has been defined on C and any configuration q of ζ is represented by
a list of m coordinates (q1, q2, ..., qm−1, qm) in some chart of the atlas. A scalar
constraint of the form:

F (q, t) = 0 (A.2)

where F is a smooth function with non-zero derivative, is called a holonomic
equality constraint. More generally, there may be k such constraints where k ≤
m. Typically, such equality constraints allow us to map a manifold from task
space to C. Undesirable collisions as well as out of reach scenarios could be
modelled as holonomic inequality constraints of the form:

F (q, t) ≤ 0 (A.3)

and can be expressed as an operation on the manifold in task space. Constraints
can be modelled either in task or C. As manifolds are inherently differentiable,
constraints involving velocities or accelerations can be plugged in.

A.6 Exemplifications and industrial applications

The generality of the proposed framework has been validated using two robotic
applications viz. additive manufacturing and bending. For additive manufactur-
ing, we will use the target product as a hemispherical bowl whereas for bending,
the product is in the form of a coil or spring with a rectangular cross section.
A serial chain robotic arm fitted with the corresponding tool will be used for
physical realization of the process (refer, A.5a and A.5b).

In both the cases, the schematic representations of corresponding PPM and
PFM are shown in Fig. A.6a, Fig. A.6b, Fig. A.7a and Fig. A.7b respectively.
PEN, PPRC and PHMI are not shown for brevity. The various functions shown
in the representation denotes the parametric operations performed in sequential
form to arrive at the target geometry or tool path. Constraint nodes are not
shown for clarity but are explained briefly below.

For a better understanding of constraints explained before, we will try to apply
a well known reachability analysis to check the validity of the motion. A given
p = (X,Y,Z), in the tool path contained in the robot task needs to satisfy
the holonomic inequality constraint introduced before. If R (refer, Fig. A.6a),
increases beyond a threshold, p will breach (A.3). Similarly, any non-allowed
collision between the given RM, EM, TM and WP can also be expressed in the
form of (A.3).

The presented knowledge encapsulation model has been utilized in the devel-
opment of a novel framework for robotic control and product customization,

74Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

R

θ

Φ

X

Y

Z

XY 0

Geometry

Trimming

Plane

DS

Index

[0,π]

n1

n2

n1

n2

n1

n2

n1

n2

Angle

Angle

Angle

Angle

Sine

Cosine

Multiply

MultiplyRadius of Hemisphere

Angle 1

Angle 2

Vector

Trim

X = R sinθ cosΦ

Y = R sinθ sinΦ

Z = R cosθ

[0,2π]

[0, inf] Select

Sine

Cosine

Multiply

Multiply

(a) PPM

PPM Geometry 1

Start

No. of
Terms

CDI

Vector
X

Y

Z

Geometry 2
Geometry

0

00

Series

Intersect Interpolate

Taskspace
Constraint

CheckerPPM for
Hemisphere

Translate

XY

Geometry

Translation
Vector

100

Plane

Point
Cloud

(b) PFM

Figure A.6: Additive Manufacturing

Sculptor™, for high-efficiency development of new applications within the Fac-
tory on the Fly™concept for modular, containerized robotic pop-up manufac-
turing stations, developed by Danish technology innovator Odico Construction
Robotics.

The framework has enabled CDS employed in the company with no prior train-
ing in software development to develop a plurality of functionally non-related
applications such as (1) sawing of concrete tiles (refer, Fig. A.8) - objective
of this portable robotic cell, is to be able to support cutting of tiles to various
shapes so that they can be laid on pavements; (2) wire-cutting of custom EPS
formwork (refer, Fig. A.8) - the goal is to manufacture formwork for concrete

Sine

Cosine

Multiply

Multiply

R

Φ

Radius of Helix

Angle

Vector

Rectangle

X

Y

Z

Sweep 2

Section

X = R sinΦ

Y = R cosΦ

Z = Φ

[0,2π]

[0, inf]
Rail

Length

Width

Center

Plane

L

W

XZ

(0,0,0)

Brep Curve

Cap

Naked
Edge

Extractor

Angle

Angle

n1

n2

n1

n2

(a) PPM

P

num

Arctan

R

Multiply

Inverse

Pitch of
Helix

Radius of
Helix 2π

n1

n2

0 Roll

Pitch

Yaw

RPY

X

Y

Z

Vector

C1

C2

C3

RPY

Pos

Pose

[0, inf]

[0, inf]

(b) PFM

Figure A.7: Robotic Bending

A.7 Discussion and conclusion 75

casting of a given product geometry. Our modular robotic cell can be shipped
to the customer site and production user can operate the same using our easy
to use tablet interface to customize the formwork design and generate the robot
instructions for wire-cutting EPS blocks to create the bespoke formwork. In
this particular instance, product geometry was a staircase; (3) CNC milling of
custom sewage and water pipe junctions - a contractor had approached Odico
to build a robotic application which is easy to use and assists them in creating
formwork for custom pipe junctions. As opposed to the staircase application,
we had to use milling since the target geometry involved doubly curved surfaces.

For application 1, a mobile product has been launched as of August 2020. Early
commercial tests have demonstrated that non-specialized pavers with no prior
education in robotics can operate the unit and create advanced custom tile
designs within a 10 minute training window.

A.7 Discussion and conclusion

Based on current implementation work, we project that any application in the
field of construction can be modelled by the same set of five nodes in the meta
layer. The variation which exists between applications can be accomplished
by changing the contents of the corresponding projections (see, Fig. A.2a) by

Figure A.8: (top left) Robot sawing tablet interface; (top right) Robot sawing
unit and (bottom) Wire-cutting unit

76Adaptive Robotic Manufacturing using Higher Order Knowledge Systems

respecting the desired input-output relationship between them. For example, as
long as the NURBS model contained in the fabrication task is a d-dimensional
manifold where d ∈ (1, 2), PFM can accept it for further processing. Further
constraints can be wired into individual projections to model various system
limitations. In most cases, these constraints could be generalized to a degree
that they could be used across applications. For example, the reachability or
collision constraint in PEN can be applied to any robotic application.

Furthermore, in this work, we validated our framework by applying our model
to examples belonging to entirely different realms as well as with some industrial
applications. A closer inspection of Fig. A.6a and Fig. A.7a (refer, the com-
ponents inside the red coloured region), reveals that many components could
be rearranged and reused to build PPM and PFM for two applications. As a
result, our original goal of keeping Cf low by distributing it over a plethora of
applications has been achieved.

A novel model for second order knowledge encapsulation in the development of
adaptive robotic applications for construction tasks has been presented. The
model enables a single, 5-node meta layer as an uniform control scheme for a
non-finite variability of applications, hereby greatly increasing the efficiency of
development of bespoke applications for construction processes. It entails two
layers of encapsulation in which (a) complex machining processes for adaptive
manufacturing of on-the-fly customized, shape-variant part designs can be oper-
ated by non-specialist construction personnel in the form of an application and
(b) people from 5 specialist domains, viz. computational design, UI/UX devel-
opment, manufacturing, robotic and process engineering are able to contribute
within their domain in isolation through provision of constitutive sub-systems
in a larger network.

Appendix B
Procedural generation of

human machine interfaces
from graph-modelled

robotic workflows

B.1 Introduction

Despite significant research efforts to introduce robots into construction manu-
facturing, wide-spread adoption of robotic workflows remain elusive within the
sector [Boc07]. Among several identified challenges, a key inhibitor is the need
to bridge the knowledge gap between crafts-trained construction workers edu-
cated in manual execution on the one hand, and the deep technical knowledge
required for robotic programming on the other [Ela08]. In the wider community
of robotic research, to which this challenge also applies, several novel paradigms
have been explored, such as collaborative robotics, in which e.g. a human opera-
tor may program the robotic motion through physically translating the position
of the end-effector from one point to another and recording this translation
[AMAI19]; or through high-level voice commands to instruct a robot to perform
certain actions [Pir05]. However, such approaches are particularly ill-suited to
construction manufacturing workflows, because they involve complex operations

78
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

such as a) obtaining or adapting a geometric design CAD file; b) deriving target
positions from this CAD file and c) executing the targets with high precision to
produce the desired item or product through additive, subtractive or formative
machining.

Contemporary industrial software packages for handling such CAD/CAM pro-
duction workflows - such as for instance Catia, Solidworks, MasterCam, Fusion
360, Dynamo or Grasshopper - rely on comprehensive, multi-functional inter-
faces, which require extensive training and often academic educational back-
grounds to operate. The complexity of such systems and associated require-
ments for expert user knowledge stem from the need to provide versatile, gen-
eral purpose tools, geared to process a plurality of manufacturing or designing
tasks. By contrast, the popularization of smart devices within the domain of
consumer electronics have established a wide range of common examples of
advanced processes such as natural language processing; image classification;
or remote control of drones being accessible and operable by non-expert users
within few minutes of training [IMKT21]. The fundamental enabler for this
development has been the introduction of simplified mobile applications, which
rather than offering a general purpose tool set, is specialized for tasks or sub-
tasks of strictly limited functional scope [YYAR02]. While such applications
offer a strategy of knowledge encapsulation, which has proven widely successful
in allowing broader audiences to access and benefit from sophisticated com-
puting tools and processes, they do however rely on extensive usability studies
and careful calibration of the implied user interface and user experience design
to achieve such accessibility, complementing the software engineering efforts
required to establish the underlying processes. For these reasons, the average
development time for a mobile application is comprehensive, typically quantified
between 6 and 9 months for a basic application [GSMG17].

B.2 Hypothesis

Considering the success of mobile applications in offering access to complex
computational processes for broad and varied audiences, it stands to reason that
mobile applications of comparable user interface simplicity may enable access
for non-specialist workers to operate advanced, robotic processes and on-the-
fly customization of parts typically required within construction manufacturing,
hereby representing a pathway to overcome the knowledge barriers prohibiting
wide-spread adoption within the construction industry.

However, since global construction is characterized by very high levels of trade
sub-specialization; low inter-trade exchange; inadequate data registration; and

B.2 Hypothesis 79

extra-ordinarily high levels of combinatorial variability stemming from the co-
existence of historical building methods (e.g. masonry, stonework or carpentry)
with highly industrialized schemes of manufacturing (e.g. steel work, concrete
pre-casting or facade glass production) [SB13]; the resulting size of the target
groups that may benefit from such applications is limited. In other words,
successful mobile applications for smartphones, tablets or wearable devices may
achieve millions or even billions of users, whereas for robotic applications in
construction industry comparable numbers may be less than 1000 for a given
application, even down to 1 for an entirely project specific scenario.

Considering the significant limitation in target user group size, the normative
cost of conventional mobile application development becomes prohibitive, even
before considering the significant added complexity of modeling a construction
robotic process. Thus, even with the utilization of best software development
practices, an entirely manual schema of application implementation [MJ06] re-
mains wholly insufficient to solve the before mentioned structural challenge of
bridging the knowledge gap between construction workforce and robotic pro-
gramming.

However, if implementation time could be significantly reduced through full
or partial automation of the application development process, the cost parity
threshold between a fully manual construction process and development plus uti-
lization of a project specific robotic process could potentially be passed, hereby
enabling large scale adoption of robotics within the global construction sector.
Based on these considerations we summarize the hypotheses - (a) widespread
adoption of robotics in construction manufacturing may only be reached by
simplifying the operation of construction robotic systems to levels accessible
to crafts-trained, non-specialist users; (b) the success of mobile applications
within consumer electronics provide a template for such simplification, enabling
operation of complex product configuration and manufacturing functions via
simplistic, scope-restricted GUIs; (c) the normative development cost of such
applications is however not consistent with the significantly reduced user group
target sizes arising from high degrees of trade sub-specialization and (d) hence,
to solve (a), new software technologies are required, which can provide a sub-
stantial reduction in end-to-end application implementation time.

This paper presents a novel method towards this target, which relies on graph
based modeling of the geometric and fabrication workflows, and automatic ex-
pression of application specific control parameters within an adaptive user in-
terface structure for tablet control of robotic systems. The work is conducted
as part of a larger research effort to create an industrial software framework for
development of construction robotic applications.

80
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

B.3 State of the art

Through preceding developments in the field of construction robotics, it has
been established that standard industrial m axis manipulators equipped with
machining end-effectors and driven through a parametric workflow, is capa-
ble of producing advanced, shape-variant designs at near mass-manufacturing
throughput volumes [ABF+16, SF17, GKW14]. However, such custom work-
flows rely to a very high degree on highly specialized, cross-disciplinary exper-
tise in robotics, computational design and manufacturing, which is inaccessible
to the vast majority of construction professionals. As this challenge also applies
within the otherwise CAD centric AEC environment, it has been proposed to
create simplified interface wrappers on top of parametric graphs to ease the op-
eration of design customization workflows [Ber16]. While this trajectory does
provide a principal pathway for increasing user accessibility, current software
architectures proposed require still a manual crafting - and thus time-intensive
UI development. Furthermore, implementation architectures based on Windows
Presentation Foundation and established parametric CAD environments such as
McNeel Grasshopper or Autodesk Dynamo are highly ill-suited for development
of OS agnostic tablet applications.

Overcoming this last challenge, examples of iOS based control tablet applica-
tions for architectural robotics has been proposed [DRR13, Sch13], however
through architectures, which rely on a separation between interface layers on a
tablet client and server side geometric operations. Hereby, instantaneous cus-
tomization actions that rely on server side geometry modules becomes difficult.
Additionally, these frameworks break the direct link to the underlying graph
and rely on manually crafted UI, which are time-consuming to implement. Sim-
ilarly, industrial HMI frameworks such as Siemens Simatic HMI Panels rely on
an modularly adaptive, yet integrated, OS specific solution, but without the
critical geometric functionalities required to handle CAD/CAM customization.
In summary, currently proposed methods of UI encapsulation remain imple-
mentation ineffective, when considered under the pretext that sub-normative
implementation times are required to reach cost feasibility in the context of
construction industry.

To overcome these challenges, we propose an encapsulation architecture, which
a) is based on graph-modelled parametric workflows for design and manufac-
turing control; b) automatically derives the corresponding, customized UI from
an adaptive framework; c) is implemented for OS agnostic mobile application
development. In preceding work by the authors [NSB21], a proposal was made
for a knowledge abstraction model as shown in Fig. B.1. The meta layer is
made up of 5 nodes which gives a logical structure to any robotic application.
The details of these nodes are given below:

B.3 State of the art 81

p

p′

f

f ′

e

e ′

r ′

r

h ′

h

Input

Figure B.1: Directed acyclic graph (DAG) representation of the knowledge
encapsulation model. p, f , e, r and h stand for the current states
of PM, FM, EN, PRC and HMI respectively. On receiving an
Input from a human through the HMI, all nodes will propagate
to their future states viz. p′, f ′, e ′, r ′ and h ′ respectively.

1. a product model (PM), which holds a customizable design of a component,
part sub-assembly or entire building design;

2. a fabrication model (FM), which is expressed as a function of PM and
outputs corresponding tool path targets;

3. a physical robotic cell (PRC), which is equipped with one or multiple
robotic arms, a set of predefined end-effectors for executing a combination
of several processes. The system is containerized for modular deployment;

4. an execution node (EN), which contains a digital model of PRC with an
integrated motion planning module to ensure robot safety;

5. a human machine interface (HMI), which exposes key parameters of PM,
FM and EN to the production user through an intuitive user interface.

Each of these nodes is associated with a transition which is in turn a Petri
net (see, Fig. B.3c). A Petri net is a directed bipartite graph that has two
types of nodes viz. places and transitions used for dataflow modelling systems
[Mur89]. The application is specific to a process or product, which allows a
simple expression of controls. The primary role of such an application is to
enable a non-expert user, i.e. a construction worker with no experience in
robotics, to (a) customize a product design on the fly or import an externally
customized product design and (b) safely execute and monitor production of
such customized instances of a particular product.

82
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

Figure B.2: Factory on the Fly™.

The concept of such a containerized set up referred to as Factory on the Fly™
can be seen in Fig. B.2. An user can operate it with an easy to use tablet
interface.

As a result of this model, we expect a quicker deployment of new workflows due
to separation of concerns and reusable nature of software units. In this paper, we
would like to explain how the proposed model enables semi-automatic generation
of user interfaces for a given robotic application.

General automation of software development has been proven highly complex,
and remains a topic of intense research [RMAHGA+15, KDA12]. However, we
propose that by confining the scope of the problem to construction manufactur-
ing interfaces; by relying on the closed-end solution space given by parametric
models; and by leveraging the already procedural nature of workflow graphs,
it is possible to establish an effective automation procedure for the given prob-
lem. In particular, the method proposal can be contrasted to general import
of any random CAD file, in which the geometry generation does not happen
in a closed loop system. By controlling all aspects of geometry computation
within the graph, the robustness of the workflow is greatly increased, enabling
a feasible automation pathway.

B.4 Robotic application modelling

A robotic application is modelled as a Petri net by a Computational Design
Specialist (CDS), which will have k inputs pre-decided by the designer of the
system. The model is created by chaining transitions (see, Fig. B.3c) together

B.4 Robotic application modelling 83

r0

r1

h

x

z

y

(a) Visualization of the
target product which
is a polyhedron (p)
with a height h in the
view port. r0 and r1
are the respective dis-
tances measured nor-
mal to the axis of
symmetry (z axis).

vertices (v1)

vertices (v2)

polygon

bottom
face

polygon top
face

loft

polyhedron

preview

options

mesh

(b) Petri net representation of the tp associated with
the polyhedron shown on the left. It is responsi-
ble for rendering the target geometry in the view
port. An user of the tablet application can interact
with the geometry by selecting a surface, a curve or
a dimension object. In this example, the selected
surface is shown in red.

p1

t1p2

p3 t2
p4

t3

t4

p5

(c) A transition associated with PM, FM,
EN, PRC and HMI can in turn be rep-
resented using Petri nets. t1, t2, t3 and
t4 are transition functions which could
stand for any one of the parametric
operations required to model the pro-
cess.

polyhedron (p)

layer height (l)

xy plane

intersect frg

(d) Petri net representation of a sample tf
which generates a tool path for addi-
tive manufacturing process by inter-
secting the given polyhedron with a
plane parallel to XY plane. Polyhe-
dron (p) and layer height (l) are pa-
rameters to the model. As long as
0 ≤ l ≤ h, the following projection
will output a valid tool path curve
which is given out as the output from
the model via the node frg.

Figure B.3: Petri net models for visualization and physical realization of a
polyhedron using an additive manufacturing process.

to define the relationship between the input and output places. Two transitions
can be chained by way of a connection. A connection is a directed link where
data can flow only in one direction. It has two ends viz. origin and destination.
Data can flow only from an origin to destination. The origin should be attached
to the output place of a transition whereas the destination should be tethered

84
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

Input Lexer Synthesizer Semantic
analyzer

tp & tf Compiler

te

th

parser

Figure B.4: Compilation pipeline

to an input place of a transition. The data types of the places should match.
For example, an output place holding a double cannot be connected to an input
place accepting a string.

A transition will have a single scalar or vector valued function associated with
it. The parameters to the associated function is exposed as input places and
the result of the function evaluation are stored in output places. Each of the
places may have predecessors or successors. A place with no predecessor is
termed source whereas the one with no successor is called a sink. Sources are
used to provide the tokens (inputs) to the model for evaluation whereas sinks
determine the outputs. Two examples of a sink are mesh and frg as shown in
Fig. B.3b and B.3d respectively. The former is used while the designer would
like to visualize a geometry or process in the view port and latter could be used
to generate robot instructions which are then passed for execution. In a given
model there could be several sources as well as sinks. In Fig. B.3b and B.3d,
the places marked v1, v2, p and l are sources.

B.5 Compilation pipeline

During the semi auto-generation phase of the GUI, the provided input file goes
through a compilation pipeline (see, Fig. B.4) which has the following steps:

1. Input - specifies the parametric design in the form of a XML file. It
mentions all the transitions and places contained in tp and tf and their
relationships with each other.

2. Parser - consumes the given input file and converts it into a process model
which contains two Petri nets viz. tp and tf . During this phase, the file

B.6 Implementation 85

passes through 3 stages:

(a) Lexer - the input file is split into meaningful symbols at this stage.
In case any unrecognized symbols are found in the model, an error
will be thrown.

(b) Synthesizer- The output of this activity will be a network of transi-
tions and places where the connectivity information has been gleaned
from the file and synthesized to a process model. In other words, each
transition and place will know their predecessors and successors after
this step.

(c) Semantic analyzer - the model is analyzed for its correctness by ver-
ifying whether all the connections are valid. All the connections are
type checked.

3. Compiler - accepts the synthesized process model from the previous step
along with te to create th. te contains robot, environment and tool models
required for creating collision free motion plans for execution on tr.

tr is understood as a cyber-physical production unit entailing a) one or more
m axis manipulators enclosed on b) a modular frame, equipped with c) custom
processing end-effectors. th is a tablet based interface which holds a) a paramet-
ric CAD model of a given product with parameters accessible to customize the
product within predefined boundaries; b) a fabrication menu within this inter-
face, which holds options for the user to select pieces for production and submit
that to tf which parametrically deduct the necessary tool paths and operations
within preset bounds.

All the sources inside of tp and tf will be exposed in th via UI elements. The UI
element could be a text box, an active dimension object, slider etc. A functional
UI can be achieved with such simplification. It is important to note that the
goal is to achieve an unified user experience across Factory on the Fly™ units
made by Odico.

The extracted tool path is transmitted to te for planning safe motion for the
robot manipulators present in the production unit which is designed to manu-
facture the selected product.

B.6 Implementation

The input XML file can be created by a standard software tool intended for work-
ing with parametric workflows. Since our designers are familiar with Grasshop-

86
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

per, we have relied on GHX file format for now. A proprietary computational ge-
ometry kernel named DaVinci was created which can be accessed via Grasshop-
per as well as Unity. Currently, designers use Grasshopper editor to prepare the
XML file which is termed as development workflow.

We are currently exploring to migrate to Bolt which is a visual programming
environment integrated with Unity. Once the XML file has been prepared, it
is ported to Unity which converts the provided file to Petri net models (tp and
tf) through a custom developed parser implemented using C# programming
language.

For specifying te, we are relying on MoveIt motion planning framework provided
inside Robot Operating System (ROS). Further, Unity is used to create the iOS
application in a semi-automatic manner.

Each Factory on the Fly™ unit has 3 computing devices - (a) a tablet which

Action Interpretor

Product Model (PM)

Export /
Save

Import /
Load

Settings

Help

Save Model
Service

Load Model
Service

Fabrication Model (FM)

Design
Menu

Fabrication
Menu

Process
Menu

Material
Menu

Update
Material
Service

G.U.I.

Dimension Objects

Active Passive
Update

Dimension
Service

Camera
Service

Camera

Show / Hide
Help Text
Service

Rendering
Engine

Product
Mesh

Fabrication
Mesh

Data
Service

Command
Service

Network
ServiceExecution Node (EN)

Update Model Service

Update
Mesh Service

Zoom
Request

Pan
Request

Orbit
Request

Restore
Request

Robot
Settings

Load Work Assembly
RequestsView port

Up
da

te
Re

qu
es

ts

Update Requests

Utility Menu Task Menu
Save

Model
Request

Load
Model

Request

Re
qu

es
t t

o
se

t w
or

kp
ie

ce
 d

im
en

si
on

s
&

 m
at

er
ia

l p
ro

pe
rt

ie
s

Type:
Geometry

Service

Type:
Viewport
Service

Type:
Viewport
Service

Type:
Viewport
Service

Type:
Geometry

Service

Type:
I/O Service

Type:
I/O Service

Type:
I/O Service

Type:
System
Service

Type:
System
Service

Figure B.5: Architecture diagram for user interface

B.7 GUI architecture and case studies 87

holds th, tp and tf ; (b) a mini computer which is a PC with a small form factor.
te resides in this device. It is powered by Ubuntu 20.04 and ROS Noetic and
(c) a robot controller which receives instructions for execution on the physical
robot from the above mentioned mini computer.

B.7 GUI architecture and case studies

The architecture of the GUI is shown in Fig. B.5. The interface is an event based
system which responds to gestures from the user. The advantage of modelling
the application using the proposed method is that various functional behav-
iors can be achieved by performing basic operations on the graph which makes
the implementation universal across applications. Some of these behaviors are
discussed below:

1. A fundamental property of the interface is that it should allow an user to
customize a particular product model. For this purpose, sources are ex-
posed as editable parameters to the user. On changing a value of a partic-
ular source, a series of transitions are fired resulting in the re-computation
of the model. The output of this activity is stored in sinks. The safeness
can be ensured by bound checks on the values for the source.

2. User might want to save/load a particular state of the application. It can
be easily achieved by storing the values associated with all the sources in
the Petri net. On re-loading the saved state, values for all the other places
in the Petri net can be computed by triggering a series of transitions as
prescribed by the system specification.

3. Under some situations, the user would like to undo/redo a specific opera-
tion. In a Petri net based system, this can be accomplished by recording
the values for sources so that one can move between states.

4. Monitoring of robot states.

Based on the developed system, we test the capacity of the suggested approach
by developing a series of applications.

B.7.1 Application 1 - Sawing

For further demonstration, framework was used to quickly develop a robotic
application for tile sawing operations. In contemporary paving works, concrete

88
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

and natural stone tiles are often adapted onsite through manual sawing. Adap-
tion is typically required either because standard tiles were not available for the
particular dimensions required for the project, or most commonly, to cut the
tiles to fit edge conditions at roads, lamp posts or facade walls. The manual
tile cutting process is both physically demanding and disturbing to the environ-
ment. It is conducted in non-ergonomic positions with noise levels above 110
dB, and creates significant dust. For these reasons, physical wear down and
early retirement among workers is common.

To address this challenge, Odico developed a mobile robotic tile cutting solution,
to be operated onsite by craftsmen. By encapsulating the cutting work in a
closed envelope, noise and dust generation is reduced to a minimum. To increase
mobility and ease of deployment, the solution was fitted within a standard box
trailer, which can be towed by any class 2 or 3 vehicle (standard passenger cars
and above), and equipped with a generator for autonomous deployment. The
solution is equipped with a 6 axis standard manipulator with a circular saw
mounted on the flange. By manually placing or utilizing an on-board crane,
tiles are lifted in place and cut by the robot. Hereby cutting speed comparable
to manual cutting is achieved, but through automation of the cutting process,
and reduction of noise and dust generation, physical fatigue is avoided, enabling
the worker to increase the productivity rate by 1.5 – 2x over the course of a day.

For successfully meeting the needs of this segment, the overarching requirement
for the interface, was to enable unskilled craftsmen to operate the system and
program unique tile cutting designs within a 5 minute training window. The
preset template is a parametric model with some of the design variables exposed
to the user to edit. For example, length, width and height of a tile can be edited
by the user. On deciding the dimensions of the tile, the user can choose how
the tile needs to be cut by adding cut lines on the tile. With addition of each
cut line, the original tile will be split into multiple pieces. User can choose one
of the pieces and add it to a fabrication queue. As the queue gets processed,
user can go back to the design work thereby saving valuable time.

The tablet interface is shown in Fig. B.6a and the mobile robot station at a
construction site and the physical product created using the process can be seen
in Fig. B.6b and B.6c respectively.

B.7.2 Application 2 - Wire-cutting

In this application, the goal is to manufacture moulds for concrete casting. The
results are demonstrated on staircase moulds which are one of the most advanced
mould types among regularly produced concrete components. Today’s method

B.7 GUI architecture and case studies 89

for producing a mould for concrete casting entails the following:

1. A 2D drawing of the requested design is received by the mould supplier.

2. This is translated by a CAD specialist into a production drawing.

3. Output from STEP 2 is used by the CAM-specialist to program a CNC
machine to manufacture the mould parts in timber.

4. Output from STEP 3 is used by a craft specialist (typically a mould car-
penter) to assemble and produce the moulds.

The entire operation takes typically between 1.5 - 2 working days and relies on
3 specialist competences.

We deployed the developed framework to build the following alternative: a
parametric staircase model was developed, which holds the relevant variables
to accommodate most common staircase dimensions and detailing. The model
is represented on a tablet, which holds a design menu for altering parameter
values; and a fabrication menu, which shows the mould configuration of the
customized design, and enables the user to submit mould parts to fabrication.
The GUI is shown in Fig. B.6d. Once submitted, the required robot trajectory
is transmitted to a robot station holding an Abrasive Wire Cutting (AWC) end-
effector as depicted in Fig. B.6e, which cuts the corresponding mould piece from
a standardized Expanded Polystyrene (EPS) material block. The EPS mould
(see, B.6f) is then ready for concrete casting. Hereby, we have now simplified the
process to involve only the following competences to operate a robotic unit - (a)
general know-how of operating an iOS tablet application with a complexity level
comparable to commonly available iOS applications and (b) the ability to read
dimensions from a provided 2D drawing and inputting the corresponding values
in the product design parameter menu. Both of these tasks can be achieved in
our system with simple and general instructions which require no specialized
training.

Machining time for a staircase mould created out of a bounding box with di-
mensions 2400 × 1200 × 300 mm was around 30 minutes. This is much faster
than a clock time of 1.5 - 2 working days required for conventional method of
mould production of a similar item.

B.7.3 Application 3 - Milling

A third application (refer, Fig. B.6g, B.6h and B.6i) was developed to target the
following challenge: in today’s construction for sewage and water infrastructure,

90
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.6: Auto generated tablet interfaces for 3 robotic applications are
shown here - (a) sawing; (d) wire-cutting and (g) milling. In-
puts to the synthesized process model are either exposed via the
right hand side panel or through editable dimension objects. User
can modify them through the provided keypad. Any change in
the associated inputs will fire a series of transitions within the
process model. Geometry is rendered in the view port. The cor-
responding Factory on the Fly™ units are shown in (b), (e) and
(h) and associated physical products can be seen in (c), (f) and
(i) respectively.

a common occurring situation is that several pipes with variable diameters and
approach angles need to meet in a single junction. For standard junctions,
standard precast concrete well junctions can be utilized. However, in several
cases, the number of pipes, the combination of diameters or the combination of
approach angles is non-standard and requires a custom build solution. Today,
this is handled by creating a bespoke, sub-terrain timber formwork, which is

B.8 Discussion and conclusion 91

manually crafted at the site. For the test partner of the project, the duration of
such work was estimated to be 2-3 days (normative average) for the formwork
production.

To increase productivity, an alternative solution was proposed: a fully digitized
production of EPS formwork, in which customization happens through a web
application. Using an e-commerce pipeline, it is linked to a stationary, robotic
CNC-milling facility which is located at the factory. The baseline can be estab-
lished by comparing to current production of standard timber formworks used
for precast well junctions from a factory. The process involves 3 levels of exper-
tise: 1) a CAD specialist for expert modeling of the advanced geometry in a time
span of 4-8 hours; 2) a CAM expert for programming the CNC milling of the
complex piece within a time-span of 2-4 hours; and 3) a CNC operator, capable
of inserting a work piece, executing a program and monitoring the process on a
dedicated machining center, with on-off involvement for 3-4 hours of machining.

In the implementation reported in this paper, a GUI was made available online
with sophisticated customization parameters for generating any unique combina-
tion of well diameter, number of pipes, individual pipe diameters and approach
angles1. Within preset bounds of each parameter, an unskilled user with knowl-
edge of the design specification for any given well junction can now configure
the design within a 2-minute process, replacing the former need for 4-8 hours of
modeling from a CAD specialist.

Upon submitting the order, the design is forwarded to an associated fabrication
model, which procedurally generates the corresponding tool path, hereby negat-
ing the need for a CAM expert applying 2-4 hours of programming. Finally, this
program is launched by an operator on a robotic system - a stationary 6 axis
manipulator with external rotary axis. Due to the change of material from tim-
ber to lightweight EPS, we can operate the process at a higher speed, reducing
machining time to 1-2 hours per piece, depending on well diameter or junction
size.

B.8 Discussion and conclusion

In this paper, we have presented 3 seemingly unrelated applications for robotic
construction manufacturing. Each case relies on a highly customized combina-
tion of hardware configuration, tooling process, and design geometry, serving a
unique need for the industry. We demonstrate that a custom interface can be
procedurally generated for each case using the same, standardized model across

1https://odico.dk/wellmate/

92
Procedural generation of human machine interfaces from graph-modelled

robotic workflows

all 3 case applications. The generated visual interface is capable of reducing
the operational complexity of the underlying system to such degree that an un-
skilled worker within few minutes of training can effectively and safely execute
the work, to produce highly customized items. Through digitization, the au-
tomation process serves to significantly increase the levels of productivity by
reducing the labor time.

As a company offering robotic solutions to construction industry, we often deal
with building contractors who are averse to huge investments. Mostly, we get an
order for only 2-3 cells supporting a specific robotic process. It is not financially
prudent to treat each application differently and develop an user interface from
the scratch.

Hence we developed a software framework where a robotic application is mod-
elled using nested Petri nets. This framework was then used to quickly develop
industry grade solutions reducing the application development time by 40%.
Apart from other benefits related to process modelling, this approach resulted
in modular architecture and explored the commonalities between multiple seem-
ingly different applications.

In this work, we had presented three such applications viz. abrasive wire cutting
of EPS formwork, sawing of tiles for pavements and milling of EPS formwork.
All of these applications were expressed by an unifying framework. As a result,
we were able to support semi-automated generation of user interfaces. Such
interfaces were shown to be highly effective in allowing a low-skilled produc-
tion worker to easily interact and generate robotic instructions for the task.
Typically, a novice user needs only a 10 minute training session to be able to
productively engage with our cells.

A novel method for semi-procedural generation of user interfaces based on a
parametric model provided by a CDS was presented. As a result, a non-specialist
construction personal was able to carry out complex machining processes asso-
ciated with adaptive manufacturing of customized parts easily and safely. Fur-
thermore, the interface enabled the user to monitor the robot execution.

Appendix C

Applying software design
patterns for graph-modelled

robotic workflows

C.1 Introduction

Since second half of the 20th century, the global construction industry has wit-
nessed stagnating productivity, while other sectors such as manufacturing, has
experienced a significant increase [PTT05, BHK21, BDM20]. Automation of
construction processes is generally viewed as the primary instrument to in-
crease productivity [DOA+19]. However, due to the high levels of project speci-
ficity, smaller lot sizes for production and need for customization, conventional
automation technologies as seen in other industrial fields cannot be directly
adopted within construction, thus causing the sector to remain vastly under-
served.

It is our hypothesis that successful adoption of automation within global con-
struction can only be achieved through a software framework enabling rapid
design, development and testing of new robotic applications. In preceding work
by authors of this paper, Higher Order Knowledge System (HOKS) has been in-
troduced to overcome this challenge [NSB21]. This framework enables a parallel

94 Applying software design patterns for graph-modelled robotic workflows

workflow within the application development process, wherein contributors with
diverse skill sets can collaboratively co-develop across their knowledge domains.

In this new paper, we demonstrate how software design patterns could contribute
to further increasing the efficiency in the development of robotic applications.
For the context of this paper, an efficient process denotes a flexible software
development methodology which creates stable, reusable, performance optimal
and maintainable parametric models. As a result, a parametric design model
should be described in such a generalized manner, that enables straightforward
editing by multiple users at any point in time, rather than depending on the
original developer. This model transferability is crucial for commercial-grade
software development, as any dependency on an individual developer or software
engineer, will lead to the risk of single points of failure in the event of fluctuation
in the team constitution.

C.2 State of the art

VPL based parametric modelling has since its introduction in early 2000’s seen
rapid adoption within the AEC industries for the design and engineering of
complex building design [Mon00]. In particular, it enables the establishment
of control hierarchies for managing component variables which achieve a larger
global effect [Sch09]. More recently, parametric design thinking has enjoyed
widespread interest within architectural and construction robotic research for
the development of custom and experimental workflows [Sch13, Ras15, Gea16].
In complementary notes, core fields within general robotics have also acknowl-
edged key advantages of VPLs in development of robotic applications, causing
increasing research interest [SW16, HRSW13, PNBK13].

Some of the identified advantages in this approach are ease of programming,
effortless knowledge encapsulation for less specialist developers, efficiency in
establishing geometry-intensive workflows and modular architectures [PP13].
While these advantages are well established, the general scope of application
for VPL based parametric modeling has historically been limited to custom or
project specific scripts, graphs, functions or prototypical workflows within AEC
organizations. As such, investigations into whether VPLs could be applied for
development of commercial scale software applications are sparse.

Rick Smith has identified the following as some of the major challenges faced in
parametric modelling [Dav13]:

1. Major changes can break parametric models. As it is difficult to foresee

C.2 State of the art 95

all feature requests in the beginning of a project itself, the instability of
the model raises some grave concerns when one has to amend it later on
to incorporate a request from the customer.

2. It is difficult to reuse and share parametric models. Often, only the orig-
inal designer is able to operate with a model, as it can be arduous for
another one to comprehend the design intent making the system averse to
maintenance.

Around 1960s, a large number of major software projects unexpectedly failed
in the broader industry, giving rise to the software crisis. As pointed out by
Turing award winner Niklaus Wirth, "systems could not be built or delivered
on time, bringing some companies to the brink of collapse" [Wir08]. One of the
examples is, IBM’s ambitious System/360 unification project, led by F. Brooks,
which in 1964 was one of the largest software projects ever undertaken. It was
years late and costed millions of dollars more than budgeted [Dav13].

In 1968, NATO decided to form a group of scientists to further analyze the prob-
lems faced in software engineering. As recalled by Naur and Randell, the talk
was centered around “slipped schedules, extensive rewriting, much lost effort,
large number of bugs, and an inflexible and unwieldy product” [NR68]. One of
the main reasons for this problem, was the fact that software programs written
during those days were largely unstructured with GOTO statements littered
randomly across the source code.

In many ways, one can relate these findings from NATO, to the problems men-

(a) Parametric model 1 (b) Parametric model 2

Figure C.1: Examples of visual clutter (wires inside red coloured boxes) and
code duplication (blocks inside teal coloured boxes) in parametric
models.

96 Applying software design patterns for graph-modelled robotic workflows

tioned by Rick Smith [Dav13]. The analysis of parametric models created by two
different Computational Design Specialists (CDSs) (see, Fig. C.1a and C.1b),
in one of our previous works, is reminiscent of the same issues which led to the
software crisis in 1960s. After a careful literature study, we have concluded that
the same problem has been highlighted by others as well [Dav14, Jan14].

Parametric models are generally created using VPLs by a CDS. In general, a
CDS is trained with a different set of skills as compared to a software devel-
oper. Current day programmers are very much acquainted with principles of
software reuse, maintainability and stability. They practice these concepts in
their day-to-day work as well. Some of the techniques prevalent in the indus-
try are design patterns, modular software architectures as against monolithic
systems, comments for future reference, automated module testing etc.

Though the term "design pattern" was an age old idea in the field of architecture,
it was probably introduced by Christopher Alexander [AIS77] in a modern sense.
He says, "Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without ever
doing it the same way twice.".

The term was later adopted by the software engineering fraternity [GJV94] to
describe abstract, well-established forms of program construction. A pattern
is fully defined by a name, a problem statement, an abstract solution, and a
discussion of implications.

The need for software design patterns in parametric models is explained in
[WAK07, Qia09, Zbo15]. It is claimed that it will lead to robust and sustainable
models. Following their foot steps, this paper, implements six design patterns
while programming graph-modelled robotic workflows. Out of six patterns dis-
cussed here, five are new to the best of our knowledge, whereas one is a well
known pattern from the Object Oriented Programming (OOP) world, applied
to visual programming.

Since 1994, many design patterns have been suggested primarily for software
systems based on OOP paradigm since languages based on this paradigm were
on an ascendancy during that time. As we carry the concept of software design
patterns to VPLs, we need to keep in mind that not all design patterns appli-
cable for object oriented world are relevant to VPLs as these systems follow a
Functional Programming (FP) paradigm. OOP is fundamentally different from
FP.

C.3 Importance of VPLs 97

C.3 Importance of VPLs

Many applications targeted at the construction industry need to be driven by
parametric models. For example, in our wire-cutting Factory on the Fly unit,
we need to visualize the target geometry (see, Fig. C.9a) in the view port. VPL
provides a convenient way to express parametric models for the CDS.

Visual programming enables more than just software developers to program such
robot applications. Modern day text based programming languages have several
advanced constructs like delegates, access specifiers, and many more which might
be difficult to access for non-expert programmers. A relevant analogy is using an
operating system purely from command line as compared to the GUI available
for Windows/Ubuntu/macOS. Unity acquiring the visual programming tool Bolt
also shows how the game industry as well is looking to VPL as a way to accelerate
the access to content creation to non-programmers.

The analysis will not be complete without looking into the Turing completeness
associated with visual programming systems. It is important that a program-
ming language or system is Turing complete since it means that it can then be
used to solve any computational problem given enough time and memory. VPL
follows the FP paradigm which is based on the Lambda calculus proposed by
Alonzo Church in early 1930s. Lambda calculus is an universal model of com-
putation that is used to simulate any Turing machine. The equivalence between
Turing machine and Lambda calculus is discussed in the seminal work termed
Church-Turing thesis [Jac20]. Since Lambda calculus is Turing complete, it can
be argued that any given VPL can also be Turing complete in principle.

C.4 Research challenge

To summarize, this leads us to claim that visual programming is needed to widely
design, develop and prototype robotic applications in construction industry.
Such visual programming techniques often lead to the following problems:

1. It is generally considered that a parametric workflow is very difficult to
be debugged and maintained by anyone other than the original designer.
Such kind of dependencies will lead to single points of failure, wherein if
the developer who has authored the workflow leaves the organization, the
commercial product will remain elusive to the rest of the team.

98 Applying software design patterns for graph-modelled robotic workflows

2. In [Dav14], 2002 Grasshopper models were analyzed, researchers have re-
ported that highly unstructured way of developing workflows with wires
floating around is a big problem.

3. It has been observed that use of complex and large parametric models
often results in latency. As we were using parametric models to create
commercial-grade robotic applications, where users will perform on the
fly design of custom components using a tablet application, latency is of
big concern for us.

Now, to make this process sustainable, we will borrow some ideas from the
discipline of software engineering and apply them to parametric modeling. Soft-
ware design patterns are here employed to address concerns of latency, stability,
maintainability and reuse of fairly complex parametric models. By this, we will
be able to help avoid a situation compared to the software crisis happening to
parametric design.

C.5 Petri nets

Petri net is a graphical and mathematical modelling tool applicable to many
systems. In the context of our work, we have used Petri nets to represent
a parametric model where data flows between a set of interconnected nodes
(refer, Fig. C.2c). Each node stands for a function (transition) which accepts
n inputs (input places), performs some operations on these inputs to emit m
outputs (output places).

p1

p2

add

p3

(a)

p1

p2

add

p3

(b)

O1 I3 O2

I1

I2
f g

g(f (I 1,I 2))= O 2

(c)

Figure C.2: (a) A sample Petri net where p1, p2 and p3 are places and add is
a transition. add is in enabled state. (b) Firing of add deducted
1 token each from p1 and p2 and added 1 token to p3. (c) A
simplified data flow model.

C.5 Petri nets 99

Input places Transitions Output places
Pre-conditions Event Post-conditions
Input data Computation step Output data
Input signals Signal processor Output signals

Resources needed Job or task Resources released
Buffers Processor Buffers

Table C.1: Some typical interpretations of places and transitions in Petri net

The concept of Petri nets was introduced by Carl Adam Petri in his dissertation
submitted in 1962. It is a bipartite directed graph consisting of two types of
nodes, namely transitions and places, where edges are either from a place to a
transition or vice versa. It is forbidden to connect either a place with another
place or a transition with another transition using an edge. Graphically, a place
is denoted using circles whereas bars or thin boxes represent transitions. A
marking (state) assigns to every place in the graph a non-negative integer. If
a state assigns to a place (p) a non-negative integer k, we can say that p is
marked with k tokens. Pictorially, if a particular p holds k tokens, we will draw
k black dots (tokens) inside of p. A marking is denoted M where M(p) gives
the number of tokens in p. Some interpretations for transitions or places and a
formal way to define Petri nets are given in Tab. C.1 and C.2 respectively.

The transition firing rule for a Petri net is given by:

1. ti is said to be enabled if each input place of ti is marked with at least w
tokens, where w is the weight of the edge from the corresponding input
place to ti (see, Fig. C.2a).

2. A firing of an enabled transition removes k tokens from each input place
of ti and adds k tokens to each output place of ti as shown in Fig. C.2b.

A Petri net (N) is given by (P, T,E,W,M0):
P = {p1, p2, ..., pm} | pi is a place,
T = {t1, t2, ..., tn} | ti is a transition,

E = {e1, e2, ..., eq} | ei is an edge between pa and tb,
W = {w1, w2, ..., wq} | wi is the weight associated with ei,
M0 = {n1, n2, ..., nm} | ni denotes the initial marking for pi,

P ∩ T = ∅ and P ∪ T 6= ∅

Table C.2: Formal definition of a Petri net

100Applying software design patterns for graph-modelled robotic workflows

C.6 Design patterns

It is to be noted that ability to decide which design patterns can be applied to
in a given situation comes with practice. In general terms, it follows the idea of
factoring out the commonalities between various problems and abstracting the
solution so that it can be used under other situations as well. As an example,
let us look at Observer pattern popular among members from OOP community.
It can be used under any situation where one process (publisher) is producing
some information which many other processes (subscribers) will be interested
in listening to. Some of the concrete examples of its implementations are:

1. Pick and place robot - A camera fitted to the robot arm publishes the pose
of the object to be picked up by the arm as and when it enters within the
reachable workspace of the robot.

2. If someone whom you are following in Twitter or Facebook publishes a
new post, you will be notified about the same.

In the above example, if one chooses not to see beyond the specificity of a given
problem, it will be difficult to see the commonality between the two cases. After
analysis of parametric design models created by us, we have identified some
patterns and categorized them into three groups viz. functional, relational and
performa in this paper. It is not an exhaustive list and more patterns may be
recognized as we continue our exercise in future.

A design pattern is introduced by a Title, What, Use when, Why and How
as is followed in [WAK07]. The Title is a short name given to refer to a pattern.
What provides a short description of the pattern. Use when mentions about
the situations under which the said pattern is relevant to be considered and
Why signifies the inspiration for using the pattern and sketches the associated
benefits. How refers to the internal details on how they can be implemented
within the given context.

C.6.1 Functional patterns

Functional patterns deal with breaking down the parametric models into simpler
logical sub units. It will help to reduce unnecessary coupling between nodes,
improves readability and makes the graph more maintainable. We introduce
and discuss three functional patterns namely Model-View-Controller (MVC),
Design-Plan-Monitor (DPM) and adapter in this section.

C.6 Design patterns 101

view

model

controller

user

updates manipulates

sees uses

Figure C.3: Schematic representation of MVC

C.6.1.1 MVC

1. What: Organizes the transitions and places into three collections, namely
model, view and controller (refer, Fig. C.3). A collection is simply a bevy
of transitions and places.

2. Use when: You are developing a complex Petri net to model an inter-
active parametric process involving visual feedback. The said process can
be controlled via a set of parameters.

3. Why: Most interactive robotic applications can be conveniently subdi-
vided into model, view and controller so as to avoid unnecessary coupling
between the various transitions. Model holds the underlying geometry
data and drives the application. It can be visualized through the view.
Transitions present in the controller will let the user interact with the
model.

4. How: The model is a group of nodes which defines the geometry or tool
paths for a parametric design. For instance, the model nodes in the para-
metric design might produce a mesh or smooth surface defined in terms
of vertices or control points. The view is formed by a aggregate of nodes
which determines the visualization aspects of the model, like the thickness
of a curve, style or colour of a surface. A given model may have multiple
associated views viz. plan, elevation, detailed etc. The controller is a set
of interactive widgets that correspond to source nodes. The controller al-

design plan monitor

Figure C.4: Schematic representation of DPM

102Applying software design patterns for graph-modelled robotic workflows

lows the user to change the parameters governing the geometry defining
nodes in the model.

C.6.1.2 DPM

1. What: Organize the transitions and places into 3 collections namely de-
sign, plan and monitor as shown in Fig. C.4.

2. Use when: If you are developing a robotic application which involves the
design on the fly feature using Petri nets.

3. Why: In many of the fabrication centered robotic applications from the
construction industry, it is required that the user should be able to cus-
tomize the part being manufactured. A strategy is to expose some de-
sign/fabrication related parameters to the production user so that he or
she can tweak the parameters to achieve the desired customization. It is
our proposal that a neat way of handling such parametric workflows is to
decouple the process into three sections viz. design, plan and monitor.

4. How: It can be implemented in the following way:

(a) Design - Specifies the design of the product to be manufactured.

(b) Plan - From the given design of the product, a machining strategy
is determined. It involves applying lead in/out, determining the pro-
cess speed depending on material properties, deciding when to turn
on/off the tool and extracting tool path from the given product ge-
ometry. Further, robot motion will be planned taking into account
the collision matrix. The output of this step will be a task which can
be executed on the robot.

(c) Monitor - Once the robot starts to execute the task, the cell has
to be continuously monitored for safe operation. Human safety is
of paramount importance. In case of any safety sensor breach, the
robot is stopped. One can include further recovery strategies in this
section to handle other error scenarios.

C.6.1.3 Adapter

1. What: Adapt the outputs of preceding workflows to match the input
structure of the succeeding one as depicted in Fig. C.5.

2. Use when: If there are multiple upstream workflows that converges onto
a singular downstream workflow, it is important that all these upstream

C.6 Design patterns 103

w1

w2

w3

filter adapter w4

Figure C.5: Schematic representation of adapter - w1, w2 and w3 are upstream
workflows whereas w4 is the singular downstream workflow. At
any given moment, filter lets output from either w1, w2 or w3 to
pass through. adapter massages the outputs from w1, w2 or w3

to a form which is consistent with the expected input of w4.

workflows pass on a consistent output form - one that can be acted upon by
the downstream workflow. In many cases, individual upstream workflows
will be generating outputs in a different form.

3. Why: It helps to avoid duplicating the downstream workflows to suit the
output form from each of the individual upstream workflows.

4. How: An adapter workflow is included between the said workflows, to
massage the outputs of the upstream workflows such that they are syn-
chronous with one another and match the input form of the succeeding
workflow.

C.6.2 Relational patterns

Relational patterns aid us to better organize the data models within the para-
metric design workflows to represent the relations between them accurately. We
are only talking about one relational pattern namely mask here.

C.6.2.1 Mask

1. What: Maintain a mask that will be used to qualify the underlying data
(see, Fig. C.6).

2. Use when: In most parametric workflows, each Geometry Object (GO)
will have metadata associated with it. Masks can be used to store such

104Applying software design patterns for graph-modelled robotic workflows

GO

m1

mn

map act

Figure C.6: Schematic representation of mask where GO is the geometry ob-
ject, m1, ..,mn are masks to be applied to GO.

metadata. Typically, information like colour, material so on and so forth
can be stored using masks.

3. Why: Usually in OOP based languages, under these scenarios, a custom
class can be defined which includes the GO with all its associated meta-
data. However, in FP based languages, we cannot create such custom
classes. Hence, the masks need to be stored as a separate data structure,
so that a downstream workflow can associate the GO with a particular
mask and perform some action on the GO accordingly.

4. How: Masks are stored using separate data structures, which have the
same form as that of the ones holding GOs. They can be either constants,
external inputs or be generated dynamically within a workflow. There can
be multiple masks, each pertaining to one aspect of the geometry.

C.6.3 Performa patterns

These patterns help us to reduce latency in a given parametric workflow to
improve performance. We were able to come up with two patterns belonging to
this category viz. isolator and cache. Each of these patterns is discussed below
in greater detail.

w1 w2

trigger : off

Figure C.7: Schematic representation of isolator

C.6 Design patterns 105

C.6.3.1 Isolator

1. What: Isolate a particular workflow from the upstream workflow logically
as shown in Fig. C.7.

2. Use when: In many situations, we will encounter downstream workflows
which shouldn’t get recomputed at every instance of a change to the up-
stream workflow for various reasons. We can use this pattern as a bridge
between two workflows to achieve the same.

3. Why: If there are computationally heavy downstream workflows within
a parametric workflow, users will experience a latency while interacting
with the parameters of the upstream workflow. Hence, designers may
want to strategically defer the recalculation of such dependents so as not
to hamper the user experience.

4. How: An isolator component can be developed which will collate and
store the outputs from the upstream workflow. It will be relayed on to the
downstream workflows, only on request.

C.6.3.2 Cache

1. What: Store results from a single execution of the Petri net (see, Fig.
C.8).

2. Use when: It can be used when one has to use the results from the
previous iteration of the program during the next run.

3. Why: If the computation of a Petri net introduces latency due to the time
complexity of the algorithm, one may be able to speed up the process
by caching the output from the previous run under certain situations.
By using the cached value, one can perform the current execution as an
incremental operation to enhance user experience.

reg

w

reg

input

Figure C.8: Schematic representation of cache

106Applying software design patterns for graph-modelled robotic workflows

4. How: A register component can be developed which can be used to stow
the outputs from the Petri net.

C.7 Case studies

C.7.1 Application 1: Additive Manufacturing (AM)

3D Concrete Printing is an additive manufacturing technique to fabricate build-
ings or functional components for construction. In recent commercial applica-
tions, the system is based on the extrusion of cement-based material through a
nozzle of a variable size/shape. Because of this, building components are pro-
duced by layered wall elements and often made of partially hollow geometries,
in order to save time and material. For structural rigidity, one cannot choose a
random pattern for material deposition inside the shell. In one of the pre-studies
conducted by us, we were exploring the possibility of utilizing the Differential
Growth (DG) [PS06] of a continuous curve to achieve a beam design of a variable
density, with a continuous path that can be printed without interruptions (see,
Fig. C.9b). Since DG is a well-known strategy for such problems, we will not
elaborate on the algorithm in this paper. The input to the program is a shell
(simple polygon), a scalar, and a growth factor. The growth factor controls the
rate at which the curve will grow in every iteration. The scalar field is a function
which associates a number to every point in space. A grayscale image was used
as the field wherein the intensity lies between 0 (white) and 1 (black). In our
case, we bias the growth of the curve according to the field which means that
more material will be deposited in areas corresponding to darker pixels from the

(a)
(b)

(c)

Figure C.9: MVC applied to 3 robotic applications: (a) abrasive wire cutting;
(b) additive manufacturing and (c) sawing.

C.7 Case studies 107

image. The scalar field follows the result of a structural stress analysis so that
a darker pixel from the field means that more material needs to be deposited
around that point.

C.7.2 Application 2: Abrasive wire-cutting

A standard 6-axis robot arm fitted with an abrasive wire-cutting tool is used
to manufacture moulds for concrete casting (see, Fig. C.10a). The details can
be found in [NSB]. The results are demonstrated on moulds used for casting a
staircase in concrete. A tablet application was created which exposes relevant
variables of the underlying parametric model for supporting product customiza-
tion. On finalizing the customization, the production user can submit the mould
parts for fabrication. The tool path is then extracted from parametric surfaces
and relayed to a robot cell equipped with an abrasive wire-cutting tool which
cuts into an Expanded Polystyrene block to create the mould.

C.7.3 Application 3: Sawing

For creating pavements to facilitate pedestrian transit, concrete and natural
stone tiles are often required to be reshaped onsite because tiles of the required
dimensions are not available. It mostly happens when one needs to ensure a snug
fit around lamp posts or corners. We developed a mobile robotic cell, which is
driven around to the site. It contains a 6-axis robotic manipulator fitted with a
circular saw (see, Fig. C.10b). The tiles can be placed inside the cell, and then
robot can be instructed to cut according to a design created on the fly using a
tablet interface.

(a) Abrasive wire-cutting (b) Sawing

Figure C.10

108Applying software design patterns for graph-modelled robotic workflows

d

g

bounds
check

segment

regions

dg

fractal

smoothen

pattern

preview
visualization
parameters

s2

model

view

controller

Figure C.11: MVC applied to simplified Petri net model associated with con-
crete additive manufacturing application with three parameters
viz. diameter of the nozzle (d), scalar field and growth factor
(g). The generated pattern is shown in the view port (refer, Fig.
C.9b).

A digital model of the tile is exposed to the user where one can edit certain
associated parameters. For example, length or width of the tile can be tweaked
by the user to suit his or her needs. Post this, user can apply cuts onto the
model. User can select one or more resulting pieces and instruct the robot to
cut (refer, Fig. C.9c).

C.8 Discussion and conclusion

Having established that parametric modelling holds a significant potential for
increasing the efficiency in building robotic applications in construction industry,
we have tried to address important open problems pertaining to maintainability,
stability, reusability and performance of parametric models.

If a given parametric model is maintainable, then developers other than the
original one will be able to comprehend the model and be able to fix bugs or
develop new features. It is our claim that functional patterns infuse this desired
flexibility by a systematic organization of the parametric model into simpler
Functional Units (FUs) which improves the readability of the model. Each FU
is a bundle comprising of nodes which are closely related to each other serving
a specific purpose in the application. To mention one of our experiences, the
CDS who developed the initial parts of the sawing application, abruptly had to
be pulled into another project due to business needs. However, a new CDS was
able to take over the project after four hours of knowledge transfer.

C.8 Discussion and conclusion 109

As mentioned briefly before, it is often difficult to predict all the desired fea-
tures at the beginning of the product life cycle itself. Quite often, this is an
iterative process wherein, based on customer inputs, a decision will be made
to incorporate a certain feature into the system. A stable model is amenable
to such new feature requests. One should be able to incorporate such requests
without breaking the existing model. Functional patterns can help to ensure
only a necessary level of coupling exists between FUs. Hence a change in one
section of the model, will only have a minimal impact on the other parts, thus
reducing the chances of ending up with a broken model. This results in a highly
efficient process for a CDS to come in and incorporate new requirements.

It has been one of our endeavors to build reusable visual functions. Many VPLs
provide support for creating such functions. For example, Bolt and Grasshopper
have super units and clusters respectively. Since design patterns is all about
abstracting the given problem and solving the abstracted problem to maximize
generality, it is our claim that by applying functional patterns, one can try to
create highly reusable FUs.

In our case, MVC and DPM were employed in parametric workflows to reduce
coupling between various parts of the workflow increasing the ease at which
new features or change requests can be accommodated during the later phases
of the project without breaking the Petri net. Fig. C.11 and C.12 depict the
disintegration of wire-cutting and additive manufacturing processes according
to MVC pattern. A similar approach was adopted for sawing application as well.
Model is responsible to bear the skeletal structure of the product geometry under
consideration whereas view guides the display aspects of the model. Controller
handles how a user can interact with the view and model. If the user selects
a GO (for example, a surface or a dimension object), it gets highlighted in a
different colour. A mask (refer, Fig. C.12) that holds the selection state of
each GO is maintained separately. If a GO gets selected, its value in the mask
becomes true, which makes the preview render it in a different colour.

A model FU created by applying MVC pattern, can be further dissected into 3
constituent units viz. design, plan and monitor in most of the robotic applica-
tions. Fig. C.13 depicts how this was achieved in the case of sawing application.
The application presents the users with multiple cut options. The number of
inputs and the modelling workflows as such are subtly different for each of these
options, but they are adapted using an adapter workflow and then passed onto
a singular workflow involving the split operation within the design FU.

The planning and monitoring operations are downstream to design FU. In con-
ventional parametric modelling schema, all downstream workflows will be com-
puted in one go if any of the parameters associated with an upstream workflow
changes. Introduction of isolation helped us to segregate the recomputation.

110Applying software design patterns for graph-modelled robotic workflows

On changing any parameter of the design workflow, isolator will act as a shield
so that the subsequent workflows will get recomputed only on receiving the
trigger. Such a solution is not just specific to one application, but has helped
us to abstract the problem and apply the same strategy on other applications
as well where we had to stave off execution of dependent workflows to a more
appropriate time. One may want to do that for many reasons, an example could
be that the downstream workflow is computationally heavy. Another common
situation is that certain workflows initiate a robotic process, due to which it
should get triggered only when explicitly requested by the user as he or she
wants to change the design multiple times before sending the instruction to the
robot.

h

l

n

bounds
check

series

vertices

polyline

pl

copy move

pr

loft

cap cap

s1

preview
mask

visualization
parameters

s2 preview

visualization
parameters

mask

model

view

view

controller

Figure C.12: MVC and mask applied to simplified Petri net model associated
with product design in wire-cutting application. For brevity, we
have only shown 3 parameters viz. height (h), length (l) and
number of steps (n) here. Usually, the model will possess 10-15
design related parameters along with another set of parameters
for fabrication. The latter set of parameters are dependent on
material properties like hardness (for example, cutting speed).
The design model is responsible for rendering the target geome-
try in the view port. A user of the tablet application can interact
with the geometry by selecting a surface, a curve or a dimen-
sion object. In this example, the selected surface and dimension
object are shown in teal and orange respectively in Fig. C.9a.

C.8 Discussion and conclusion 111

The concept of cache was used to optimize a specific workflow in robot sawing
application. As a cut is added, computation of an associated Petri net will be
triggered which will split all the tiles in the pattern affected by the cut (see, Fig.
C.9c). After that, if the user chooses to add another cut, one has to either work
on the output of the previous split operation or perform the operation twice

t

s

c

points ply reg

split

cut

adapter

wf1

wf2

wf3

reg isolator

trigger

select

index

frg

motion
planner

lead in/out

execute

recovery safesafe

error

design

plan

monitor

Figure C.13: Simplified Petri net representation of the robotic sawing applica-
tion. design FU creates the tile pattern based on the parameters
- type (t), size (s) and count (c). Register (reg) caches the cre-
ated polygons. User can specify a particular cut by initiating
one of the workflows wf1, wf2 or wf3. Each of these workflows
is specific to an option available to the user in the interface. For
example, wf1 might correspond to the user adding a horizontal
cut onto the tile pattern. Depending on the cut chosen, either
wf1, wf2 or wf3 will be triggered. Outputs from these work-
flows differ slightly in form which is massaged using the adapter
block (shown in brown). Post massage action and receiving a
cut, split operates on the cache available in reg (shown in teal)
and overwrites reg with its output. The next cut instruction
operates on the current data available in reg. isolator (depicted
in red) behaves like a normally open switch. On receiving the
trigger signal, the switch gets closed and any downstream nodes
will get recomputed. In our case, downstream nodes are the ones
shown inside of plan and monitor FUs.

112Applying software design patterns for graph-modelled robotic workflows

(once for the first cut and subsequently for the second one). It has been noted
that former approach will result in an optimal performance. As stated before,
parametric workflows are generally intended to be executed as a single chunk
of operations where you generally don’t work with the result of the previous
iteration. We introduced the concept of registers (refer, Fig. C.13) to support
such a procedure which resulted in up to 2x improvement in performance.

We have presented five novel software design patterns and applied it to three
graph-modelled robotic workflows - out of which two are commercial products -
to demonstrate that it can be used to create highly maintainable, stable, reusable
and performance optimal solutions. The crisis mentioned at the beginning of
the paper was created due to the unstructured way of developing software. It
resulted in a non-maintainable system which never could support changing cus-
tomer requirements during its life cycle in an agile manner. Recently, many
practitioners have observed a similar situation developing in parametric mod-
elling as well. Hence, by helping to develop maintainable and stable models, we
were able to contribute to solving the larger crisis looming the industry.

Further, we have demonstrated the relevance of the previously reported MVC
pattern in the same context. Increasing the efficiency in applications developed
through visual programming may help overcoming limitations in this develop-
ment paradigm, critical to furthering the use of robotics within the construction
industry.

Bibliography

[ABF+16] A. Apolinarska, R. Bärtschi, R. Furrer, F. Gramazio, and
M. Kohler. Mastering the sequential roof. Advances in Ar-
chitectural Geometry, pages pp. 240–258, 2016.

[AIS77] C. Alexander, S. Ishikawa, and M. Silverstein. A pattern lan-
guage: towns, buildings, construction. Center for Environmen-
tal Structure Series, 2:pp. 1–1171, 1977.

[AMAI19] H. Abdelfetah, A. Mustapha, M. Abderraouf, and A. Isma.
Human–robot interaction in industrial collaborative robotics:
a literature review of the decade 2008–2017. Advanced Robotics,
33:764–799, 2019.

[BDM20] M. Bragliaa, P. Dallasegab, and L. Marrazzinia. Overall con-
struction productivity: a new lean metric to identify construc-
tion losses and analyse their causes in engineer-to-order con-
struction supply chains. Production Planning and Control,
1:pp. 1–18, 2020.

[Ber16] N. Berg. Nbbj releases human ui to bring parametric modeling
to the masses. Architect Magazine, 1:1–1, 2016.

[BHK21] J. Berlak, S. Hafner, and V. G. Kuppelwieser. Digitalization’s
impacts on productivity: a model based approach and evalu-
ation in germany’s building construction industry. Production
Planning and Control, 32:pp. 335–345, 2021.

114 BIBLIOGRAPHY

[Bho17] S. Bhooshan. Parametric design thinking: A case-study
of practice-embedded architectural research. Design Studies,
52:pp. 115–143, 2017.

[Boc07] T. Bock. Construction robotics. Autonomous Robots, 22:201–
209, 2007.

[Bon15] T. Bonwetsch. Robotically assembled brickwork: Manipulating
assembly processes of discrete elements. Doctoral dissertation,
ETH Zurich, 2015.

[Dav13] D. Davis. Modelled on Software Engineering: Flexible Paramet-
ric Models in the Practice of Architecture. PhD thesis, RMIT
University, 2013.

[Dav14] D. Davis. Quantitatively analysing parametric models. Inter-
national Journal of Architectural Computing, 12:pp. 307–319,
2014.

[Dea19] K. Dörfler and et al. Mobile robotic fabrication beyond factory
conditions: Case study mesh mould wall of the dfab house.
Construction Robotics, 3:pp. 53–67, 2019.

[DOA+19] J.M.D Delgado, L. Oyedele, A. Ajayi, L. Akanbi, O. Akinade,
M. Bilal, and H. Owolabi. Robotics and automated systems
in construction: Understanding industry-specific challenges for
adoption. Journal of Building Engineering, 26:pp. 1–11, 2019.

[DRR13] K. Dörfler, F. Rist, and R. Rust. Interlacing : An experimental
approach to integrating digital and physical design methods.
Robotic Fabrication in Architecture, Art, and Design, 1:82–91,
2013.

[EGK17] P. Eversmann, F. Gramazio, and M. Kohler. Robotic prefab-
rication of timber structures: towards automated large-scale
spatial assembly. Construction Robotics, 1:pp. 49–60, 2017.

[Ela08] S.M.S Elattar. Automation and robotics in construction: op-
portunities and challenges. Emirates Journal for Engineering
Research, 13:21–26, 2008.

[FS14] J. Feringa and A. Søndergaard. Fabricating architectural vol-
ume: stereotomic investigations in robotic craft. Fabricate :
negotiating design and making, 2:pp. 44–51, 2014.

[GCF18] S. Ghaffar, J. Corker, and M. Fana. Additive manufacturing
technology and its implementation in construction as an eco-
innovative solution. Automation in Construction, 93:pp. 1–11,
2018.

BIBLIOGRAPHY 115

[Gea16] C. Gosselin and et al. Large-scale 3d printing of ultra-high
performance concrete–a new processing route for architects and
builders. Materials and Design, 100:102–109, 2016.

[GJV94] E. Gamma, R. Helm R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software, vol-
ume 1. Addison-Wesley, 1994.

[GK14] F. Gramazio and M. Kohler. Made by robots: challenging ar-
chitecture at a larger scale, volume 1. Wiley, 2014.

[GKW14] F. Gramazio, M. Kohler, and J. Willmann. Authoring robotic
processes. Architectural Design, 84:14–21, 2014.

[GM18] S. Ghaffar and P. Mullett. Commentary: 3d printing set to
transform the construction industry. Proceedings of the Insti-
tution of Civil Engineers - Structures and Buildings, 171:pp.
737–738, 2018.

[GSMG17] L. Ghandi, C. Silva, D. Martinez, and T. Gualotuna. Mo-
bile application development process: A practical experience.
Iberian Conference on Information Systems and Technologies
(CISTI), 1:1–6, 2017.

[HLY16] H. Hu, Y. Liu, and L. Yuan. Supervisor simplification in fmss:
Comparative studies and new results using petri nets. IEEE
Transactions on Control Systems Technology, 24:pp. 81–95,
2016.

[HRSW13] U. Thomas; G. Hirzinger, B. Rumpe, C. Schulze, and A. Wort-
mann. A new skill based robot programming language using
uml/p statecharts. IEEE International Conference on Robotics
and Automation (ICRA), 1:pp. 461–466, 2013.

[HSZL16] H. Hu, R. Su, M. Zhou, and Y. Liu. Polynomially complex
synthesis of distributed supervisors for large-scale amss using
petri nets. IEEE Transactions on Control Systems Technology,
24:pp. 1610–1622, 2016.

[IMKT21] S.H. Iqbal, H.M. Moshiul, U.M. Kafil, and A. Tawfeeq. Mobile
data science and intelligent apps: concepts, ai-based modeling
and research directions. Mobile Networks and Applications,
26:285–303, 2021.

[Jac20] C. B. Jack. The Church-Turing Thesis. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, Summer 2020 edition, 2020.

116 BIBLIOGRAPHY

[Jan14] P. Janssen. Visual dataflow modelling - some thoughts on com-
plexity. Education and research in Computer Aided Architec-
tural Design in Europe Conference, 2:pp. 547–556, 2014.

[KDA12] M. King, N. Dave, and Arvind. Automatic generation of
hardware/software interfaces. Computer Architecture News,
40:325–336, 2012.

[KSM+14] O.D. Krieg, T. Schwinn, A. Menges, J. M. Li, J. Knippers,
A. Schmitt, and V. Schwieger. Biomimetic lightweight timber
plate shells: computational integration of robotic fabrication,
architectural geometry and structural design. Advances in Ar-
chitectural Geometry, pages pp. 109–125, 2014.

[Men12] A. Menges. Morphospaces of robotic fabrication. Robotic Fabri-
cation in Architecture, Art, and Design, pages pp. 28–47, 2012.

[MJ06] P. Meso and R. Jain. Agile software development: Adaptive
systems principles and rest practices. Information Systems
Management, 23:19–30, 2006.

[Mon00] J. Monedero. Parametric design: a review and some experi-
ences. Automation in Construction, 9:pp. 369–377, 2000.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77:541–580, 1989.

[NR68] P. Naur and B. Randell. Software engineering: A report. Tech-
nical report, NATO SCIENCE COMMITTEE, 1968.

[NSB] N. Neythalath, A. Søndergaard, and J.A Bærentzen. Pro-
cedural generation of human machine interfaces from graph-
modelled robotic workflows. submitted.

[NSB21] N. Neythalath, A. Søndergaard, and J.A Bærentzen. Adaptive
robotic manufacturing using higher order knowledge systems.
Automation in Construction, 127, 2021.

[Pir05] N. Pires. Robot-by-voice: experiments on commanding an in-
dustrial robot using the human voice. Industrial Robot, 32:505–
511, 2005.

[PNBK13] M. R. Pedersen, L. Nalpantidis, A. Bobick, and V. Krüger. On
the integration of hardware-abstracted robot skills for use in
industrial scenarios. Cognitive Robotics Systems: Replicating
Human Actions and Activities, 1:pp. 1166–1171, 2013.

BIBLIOGRAPHY 117

[PP13] T. Peters and B. Peters. Inside Smartgeometry: expanding the
architectural possibilities of computational design, volume 1.
Wiley, 2013.

[PS06] H. Pedersen and K. Singh. Organic labyrinths and mazes. In-
ternational symposium on non-photo realistic animation and
rendering, 1:pp. 79–86, 2006.

[PTT05] H.S Park, S.R Thomas, and R.L Tucker. Benchmarking of
construction productivity. Journal of Construction Engineer-
ing and Management, 131:pp. 772–778, 2005.

[PZTG18] S.C. Paul, G.P.A.G.V. Zijl, M.J. Tan, and I. Gibson. A review
of 3d concrete printing systems and materials properties: Cur-
rent status and future research prospects. Rapid Prototyping,
24:pp. 784–798, 2018.

[Qia09] Z. C. Qian. Design Patterns: Augmenting design practice in
parametric CAD systems. PhD thesis, Simon Fraser University,
2009.

[Ras15] F. Raspall. A procedural framework for design to fabrication.
Automation in Construction, 51:132–139, 2015.

[RMAHGA+15] V.Y. Rosales-Morales, G. Alor-Hernández, J.L. García-
Alcaráz, R. Zatarain-Cabada, and M.L. Barrón-Estrada. An
analysis of tools for automatic software development and auto-
matic code generation. Revista Facultad De Ingeniería, 77:75–
87, 2015.

[Roh08] M. Rohana. An investigation into the barriers to the imple-
mentation of automation and robotics technologies in the con-
struction industry. PhD thesis, Queensland University of Tech-
nology, 2008.

[SB13] S.M. Sepasgozar and L.E. Bernold. Factors influencing the
decision of technology adoption in construction. International
Conference on Sustainable Design and Construction, 1:654–
661, 2013.

[Sch09] P. Schumacher. Parametricism: A new global style for archi-
tecture and urban design. Architectural Design, 79:pp. 14–23,
2009.

[Sch13] T. Schwartz. Hal. Robotic Fabrication in Architecture, Art,
and Design, 1:92–101, 2013.

118 BIBLIOGRAPHY

[Sea16] A. Søndergaard and et al. Robotic hot-blade cutting. Robotic
Fabrication in Architecture, Art and Design, pages pp. 150–
164, 2016.

[SF17] A. Søndergaard and J. Feringa. Scaling architectural robotics:
construction of the kirk kapital headquarters. Proceedings of
Fabricate, 1:pp. 264–271, 2017.

[SW16] F. Steinmetz and R. Weitschat. Skill parametrization ap-
proaches and skill architecture for human-robot interaction.
IEEE International Conference on Automation Science and
Engineering (CASE), 1:pp. 280–285, 2016.

[TPM18] M. Tamke, N. Paul, and Z. Mateusz. Machine learning for ar-
chitectural design: Practices and infrastructure. International
Journal of Architectural Computing, 16:pp. 123–143, 2018.

[WAK07] R. Woodbury, R. Aish, and A. Kilian. Some patterns for para-
metric modeling. Proceedings of the 27th Annual Conference
of the Association for Computer Aided Design in Architecture,
1:pp. 222–229, 2007.

[Wir08] N. Wirth. A brief history of software engineering. IEEE Annals
of the History of Computing, 30:pp. 32–39, 2008.

[WKB+16] J. Willmann, M. Knauss, T. Bonwetsch, A. A. Apolinarska,
F. Gramazio, and M. Kohler. Robotic timber construction —
expanding additive fabrication to new dimensions. Automation
in Construction, 61:pp. 16–23, 2016.

[YYAR02] A. Yariv, D. Carmel; M.S. Yoelle, S. Aya, and L. Ronny. Knowl-
edge encapsulation for focused search from pervasive devices.
ACM Transactions on Information Systems, 20:25–46, 2002.

[Zbo15] M. A. Zboinska. Boosting the efficiency of architectural visual
scripts. Modelling Behaviour, 1:pp. 479–490, 2015.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Background and motivation
	2 Elaborating on the challenge
	3 Meeting the challenge
	4 Preliminaries
	4.1 Petri nets
	4.2 Parametric design and manufacturing

	5 Sculptor
	5.1 Canvas
	5.2 DaVinci
	5.3 Craft

	6 Higher Order Knowledge System (HOKS)
	6.1 Application model
	6.2 Layer 1
	6.3 Layer 2
	6.4 Constraints

	7 Procedural generation of Graphical User Interface (GUI)
	7.1 Compilation pipeline
	7.2 Implementation
	7.3 GUI architecture

	8 Applying software design patterns
	8.1 Functional patterns
	8.1.1 MVC
	8.1.2 DPM
	8.1.3 Adapter

	8.2 Relational patterns
	8.2.1 Mask

	8.3 Performa patterns
	8.3.1 Isolator
	8.3.2 Cache

	9 Case studies
	9.1 Application 1: Abrasive wire-cutting
	9.2 Application 2: Sawing
	9.3 Application 3: Milling
	9.4 Application 4: Hot wire-cutting
	9.5 Application 5: Additive Manufacturing (AM)

	10 Discussion and Further work
	A Adaptive Robotic Manufacturing using Higher Order Knowledge Systems
	A.1 Introduction
	A.2 State of the art
	A.3 Research challenge
	A.4 Knowledge encapsulation strategy
	A.4.1 Application model
	A.4.2 Layer 1
	A.4.3 Layer 2

	A.5 Constraints
	A.6 Exemplifications and industrial applications
	A.7 Discussion and conclusion

	B Procedural generation of human machine interfaces from graph-modelled robotic workflows
	B.1 Introduction
	B.2 Hypothesis
	B.3 State of the art
	B.4 Robotic application modelling
	B.5 Compilation pipeline
	B.6 Implementation
	B.7 GUI architecture and case studies
	B.7.1 Application 1 - Sawing
	B.7.2 Application 2 - Wire-cutting
	B.7.3 Application 3 - Milling

	B.8 Discussion and conclusion

	C Applying software design patterns for graph-modelled robotic workflows
	C.1 Introduction
	C.2 State of the art
	C.3 Importance of VPLs
	C.4 Research challenge
	C.5 Petri nets
	C.6 Design patterns
	C.6.1 Functional patterns
	C.6.2 Relational patterns
	C.6.3 Performa patterns

	C.7 Case studies
	C.7.1 Application 1: Additive Manufacturing (AM)
	C.7.2 Application 2: Abrasive wire-cutting
	C.7.3 Application 3: Sawing

	C.8 Discussion and conclusion

	Bibliography

