

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Vertical Composition of Distributed Systems

Gondron, Sébastien Pierre Christophe

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gondron, S. P. C. (2021). Vertical Composition of Distributed Systems. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/a394366b-0f98-4c3f-8892-a1198972925d

Vertical Composition of
Distributed Systems

Sébastien Pierre Christophe Gondron

Kongens Lyngby 2021

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

Ensuring security is a fundamental problem in modern distributed systems. For
that purpose, system designers use security protocols, e.g., to transfer confiden-
tial data or to authenticate a user. It has become the norm to use simultaneously
several of these security protocols. For example, to look up the balance on her
bank account, a user Alice has to open a web browser session, and in order
to access the application of her bank, she must first login through a webpage.
All these components make use of security protocols to ensure that the data
are exchanged out of reach from potential eavesdroppers and that the bank is
authenticated to the client.

These security protocols are widely formally verified in the literature, but are
only considered in isolation for the most part, and interactions between protocols
that run simultaneously are ignored. This is because so called composed proto-
cols can be rather difficult to verify since they are often too big for automated
methods. To address these problems, we are interested in compositionality re-
sults of this form: given a number of protocols that are secure in isolation and
that satisfy a number of simple syntactic conditions, then their composition is
also secure.

Existing compositionality results focus on parallel composition, where protocols
run independently on the same network, only sharing an infrastructure on fixed
long-term keys, and on sequential composition where, for instance, one protocol
can establish keys that a subsequent protocol then uses. However, vertical
composition where protocols that keep a global state interact with each other,
such as when a protocol uses another one to transmit messages in a confidential
and authenticated manner, have been only scarcely studied.

The main objective of this thesis is to formalize a paradigm for vertical com-
position of stateful protocols. We can notably model trace-based properties,
such as confidentiality or authentication; we are however limited when it comes
to equivalence-based properties, such as privacy-type properties, which are of
uttermost importance on the Internet. This is the reason why we extended
in this thesis (α, β)-privacy. This approach allows to express privacy goals as
reachability properties and opens the way for vertical compositionality results
that also encompass privacy-type properties.

Our main contributions include:

ii

• the formalization of vertical compositionality results for stateful protocols,
based on previous results for parallel compositionality and on a sound
abstraction for payloads,

• formalization of voting privacy properties, including receipt-freeness, in
(α, β)-privacy,

• formalization of privacy as reachability properties, and

• a conservative extension of (α, β)-privacy with probabilities.

Summary (Danish)

Titel: Vertikal Sammensætning af Distribuerede Systemer

At sikre sikkerhed er et grundlæggende problem i moderne distribuerede syste-
mer. Med henblik herpå bruger systemarkitekter sikkerhedsprotokoller, e.g., for
at sende konfidentielle data eller for at autentificere brugere. Det er blevet al-
mindeligt, at mange sikkerhedsprotokoller kører på samme tidspunkt. Når Alice
vil tjekke hendes konto, åbner hun en webbrowser session og derefter logger hun
på en webside for at få adgang til bankapplikationen. Alle komponenter bruger
sikkerhedsprotokoller for at sikre, at dataene, der bliver udvekslet er beskyttet
mod aflytning, og som autentificerer banken til klienten.

Sikkerhedsprotokoller er i stor udstrækning formelt verificerede i litteraturen.
Generelt påtænkes de i isolation, og interaktioner mellem protokoller, der kører
på samme tidspunkt, bliver set bort fra. Det skyldes, at såkaldte sammensatte
protokoller kan være ret svære at verificere, fordi de ofte er for store til au-
tomatiserede metoder. For at løse disse problemer bør vi koncentrere os om
sammensætningsresultater, som har følgende form: hvis et givet antal protokol-
ler hver især er sikker i isolation, og som opfylder et antal enkle syntaktiske
forudsætninger, så er deres sammensætning også sikker.

Eksisterende sammensætningsresultater fokuserer på sideløbende sammensæt-
ning, hvor protokoller selvstændigt kører på samme netværk og deler langsigtede
nøgler, eller på sekventiel sammensætning, hvor en protokol for eksempel kan
genere nøgler, som en efterfølgende protokol kan bruge. Imidlertid blev vertikale
sammensætninger, hvor tilstandsfulde protokoller påvirker hinanden, som for ek-
sempel, når en protokol bruger en anden for at sende beskeder på en konfidentiel
og autentisk måde, knap udforsket.

Hovedformålet med denne afhandling er at formalisere vertikale sammensæt-
ningsresultater til tilstandsfulde protokoller. Vi kan især formalisere trace-based -
egenskaber såsom konfidentialitet og autenticitet. Desværre er vi begrænset, når
det kommer til equivalence-based -egenskaber såsom privatlivsegenskaber, der har
særlig vægt på Internettet. Derfor udvidede vi (α, β)-privacy i denne afhandling.
Den tilgang muliggør at udtrykke privatlivsmål som reachability-egenskaber og
baner vej for vertikale sammensætningsresultater, som gælder for privatlivsmål.

Vores vigtigste bidrag inkluderer:

iv

• formalisering af vertikale sammensætningsresultater for tilstandsfulde pro-
tokoller, der baseres på tidligere sammensætningsresultater for sideløbende
protokoller op på velfunderet abstraktion til applikationsdata,

• formalisering i (α, β)-privacy af stemmehemmelighedsegenskaber såsom
kvitteringsfri,

• formalisering af privatlivsegenskaber som reachability egenskaber, og

• en vedligeholdende udvidelse af (α, β)-privacy med sandsynligheder.

Preface

This thesis was prepared at Department of Applied Mathematics and Computer
Science (DTU Compute) in fulfillment of the requirements for acquiring a PhD
degree in Computer Science.

The research has been carried out under the supervision of Sebastian Möder-
sheim and Alberto Lafuente in the period from July 2018 to June 2021.

This research was supported by the Sapere-Aude project “Composed: Secure
Composition of Distributed Systems”, grant 4184-00334B of the Danish Council
for Independent Research.

A substantial part of the work presented in this thesis is based on extensions
to joint work with Sebastian Mödersheim and Luca Viganò, namely the fol-
lowing two published papers and a submitted paper: Formalizing and Proving
Privacy Properties of Voting Protocols using Alpha-Beta Privacy [GM19], Verti-
cal Composition and Sound Payload Abstraction for Stateful Protocols [GM21],
and Privacy as Reachability [GMV21]. Chapter 2 is mainly based on [GM21]
whereas Chapter 3 and Chapter 4 are based on [GM19], and Chapter 5 is based
on [GMV21].

Lyngby, 30-June-2021

Sébastien Pierre Christophe Gondron

vi

Acknowledgements

At hyggjandi sinni
skylit maðr hræsinn vera,
heldr gætinn at geði;
þá er horskr ok þögull
kemr heimisgarða til,
sjaldan verðr víti vörum,
því at óbrigðra vin
fær maðr aldregi
en mannvit mikit.

Eddukvæði, Hávamál

I am especially grateful to my supervisors Sebastian Alexander Mödersheim
and Alberto Lluch Lafuente, for their encouragement and excellent guidance
throughout this thesis. This has been the opportunity to look deeper into formal
methods and verification of security protocols, areas that I grew attached to. I
would also like to thank Luca Viganò for being my supervisor during my external
stay at King’s College London, even though this has taken place remotely due
to the context.

I would also like to thank Jørgen Villadsen, Joshua D. Guttman and Christoph
Sprenger for accepting to be part of my assessment committee. I am also grateful
to my colleagues in the formal methods section at DTU and all the people I have
shared lunches and discussions at the office or conferences. These discussions,
always pleasant, have been fruitful in the development of my research.

On a personal note, I want to thank all my friends, be they in Copenhagen
or elsewhere. In such difficult times, they have often been the reason I could
continue this work. I would also like to thank the people at Peders that made
the most advertised concept of danish hygge concrete and that, in a context
where universities were closed, heard me rambling on the doubts and hopes
around my research. Most importantly, I want to thank my family for always
believing in me. I am sure this work will make them proud, and that a copy
will find its way to a bookcase at home.

viii

Notations

App The application protocol . 9.
Ch The channel protocol . 9.
f(...) Message formats . 9.
Ch? The protocol idealization, or the protocol interface 10.
Ch] The protocol abstraction . 11.
Σ The set of function symbols. 12.
V The set of variables. .12.
x, xi Variables. 12.
t, ti Terms. 12.
Σn The symbols of Σ of arity n. 12.
C The set of constants, i.e., Σ0. .12.
T (Σ,V) The set of terms over Σ and V.12.
fv(t) The set of variables of a term t. 12.
v The subterm relation. 12.
σ,θ Substitutions. 12.
dom(σ) The substitution domain of the substitution σ . . . 12.
img(σ) The substitution image of the substitution σ 12.
I Interpretations. 12.
Σpub The public functions. 12.
Ana The analysis function. .12.
M ` t Denotes that the intruder can derive t given the mes-

sages in M . 13.
P,P1,P2 Arbitrary protocols. 14.
Ri Transaction rules. 14.
S Transaction strands with sets. 14.
send(t), receive(t) Message transmission constraints. 14.
t
.
= t′ Equality constraints on messages. 14.
∀x̄. t 6 .= t′ Inequality constraints on messages.14.
t ∈̇ t′ Positive set-membership constraints. 14.
∀x̄. t /̇∈ t′ Negative set-membership constraints. 14.
insert(t, t′) Insertion of element t into database t’. 14.
delete(t, t′) Deletion of element t into database t’. 14.
t→ t′ Syntactic sugar for insert(t, t′). 14.
t← t′ Syntactic sugar for t ∈̇ t′.delete(t, t′).14.

t←−−−−− Syntactic sugar for receive(t). 14.
t−−−−−→ Syntactic sugar for send(t). .14.

trms(A) The set of terms occurring in the constraint A. . . 15.
A Symbolic constraints. 15.

x Notations

setops(A) The set of set operations of the constraint A.15.
[[M,D;A]] I Constraint semantics for stateful constraints. Denotes

that I is a model of A given the initial intruder knowl-
edge M and the initial database mapping D. 15.

I |= A Constraint semantics. Equivalent to [[∅, ∅;A]] I. . 16.
fv(A) The free variables of th constraint A.16.
⇒ The state transition relation. 16.
dual(S) The dual of the transaction strand S. 16.
s Constraint steps. 16.
⇒? The transitive reflexive closure of ⇒. 17.
attackP The attack constant unique to the protocol P. . . 17.
outbox(A,B),inbox(A,B) Message transmission sets between the principals A

and B. 17.
p Abstract type, or Payload type. 18.
Tp The set of concrete payload types. 19.
Ta The set of atomic types. 19.
Γ The typing function. 19.
τ Arbitrary types. 19.
SMP(M) The sub-message patterns of the messages in the set

M .20.
? The star label. 21.
P? The idealization of the protocol P. 22.
P1 ‖ P2 The parallel composition of protocols P1 and P2. 22.
{t | ∅ ` t} The basic public terms. 23.
Sec The set of secret messages. 23.
GSMP(M) The ground sub-message patterns of the messages in

M .23.
DY(M) The Dolev-Yao closure of the set of messages M . 23.
traces(P) The traces of the protocol P. .24.
App

Ch
The vertical composition of protocols App and Ch. 24.

G The infinite set of constants of type a.32.
a The abstract type. 32.
pq A block. 36.
A(n) The n-th block of the constraint A. 36.
A(1, n) The n first blocks of the constraint A.36.
tr , tr ′ Traces. .36.
ChApp The instantiated channel. 37.
g The abstraction function. 39.
GSMPApp The ground sub-message patterns of the application

protocol without the public terms. 39.
status The meta-function that returns the status of a con-

stant g. 39.
./ The compatibility relation. 44.

Notations xi

pos(t) The set of positions that exists in the term t.44.
Σf The set of uninterpreted function symbols. 77.
Σi The set of interpreted function symbols. 77.
Σr The set of relation symbols. 77.
TΣf

The set of ground terms that can be built using sym-
bols in Σf . 77.

≈ A congruence relation on TΣf
. 77.

φ, ψ Herbrand formulae. 78.
Σop The set of operators available to the intruder. . . . 78.
z,z1,z2 Arbitrary frames. 78.
concr The concrete knowledge frame. 78.
struct The structural knowledge frame. 78.
gen A unary relation symbol. .78.
r, s Arbitrary recipes. 79.
Σ0 The payload alphabet. 80.
MsgAna Message-Analysis problem . 81.
π, ρ Permutations . 86.
θ0 The truth. 87.
θI The intruder hypothesis. 88.
Dan The coerced voter. 92.
structDan , concrDan The story of Dan. 93.
φlie The Lying Axiom. 94.
γ The truth formula. .103.
δ The sequence of conditional updates on the cells. 103.
η The probability decision tree for the random vari-

ables.. 103.
Pl Left processes. 104.
Pr Right processes. 104.
(α, β, γ, δ, η) A state. .107.
(P, φ, struct) A possibility. .108.
(S,P) A configuration. 108.
[I] An interpretation class. 121.
Pabs,η([I]) The absolute probability of the interpretation class

[I]. 121.
Pη([I]) The normalized probability of the interpretation class

[I]. 121.

xii Notations

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

Notations ix

1 Introduction 1

2 Vertical Composition and
Sound Payload Abstraction for Stateful Protocols 9
2.1 Preliminaries . 12

2.1.1 Terms and substitutions 12
2.1.2 The Intruder Model . 12
2.1.3 Stateful Protocols . 14
2.1.4 Stateful Symbolic Constraints 15
2.1.5 Reachable Constraints . 16

2.2 Stateful Vertical Composition . 17
2.2.1 Typed Model and Payloads 18
2.2.2 Parallel Compositionality 21
2.2.3 Channels and Applications 24

2.3 Abstracting the Payload . 31
2.3.1 Abstract Constants . 32
2.3.2 Translation to the abstract channel 32

2.4 Proofs . 36
2.5 Extension of the typing results 44

2.5.1 Extension of the Typing Result [Hess18] 44
2.5.2 Extending the Results of [Hess18] 46
2.5.3 Update of the Parallel Composability Result 49
2.5.4 Declassification (extended from [Hess18]) 49

2.6 Application of the theorems . 54
2.7 Further examples . 58

2.7.1 Key-exchange with certificate 58
2.7.2 Authenticated channel without secrecy 59
2.7.3 Channel with replay protection 63
2.7.4 Second mechanism for replay protection 66

xiv CONTENTS

2.8 Channel Bindings . 69
2.9 Related Work and Conclusion . 73

3 Preliminaries for Alpha-Beta Privacy 77
3.1 Herbrand Logic . 77
3.2 Encoding of Frames . 78
3.3 Alpha-Beta-Privacy . 79

4 Formalizing and Proving Privacy Properties of Voting Proto-
cols using Alpha-Beta Privacy 83
4.1 Verifying Voting Privacy . 85

4.1.1 The FOO’92 Voting Protocol in Alpha-Beta Privacy . . . 86
4.1.2 Voting Privacy Holds in S 88
4.1.3 Voting Privacy Holds in S’ 91

4.2 Receipt-freeness . 92
4.2.1 Formalizing Receipt-freeness 93
4.2.2 Receipt-freeness in the current state 95
4.2.3 Violation of Receipt-Freeness in FOO’92 97

4.3 Related work . 98
4.4 Conclusion . 99

5 Privacy As Reachability 101
5.1 Transition Systems for Alpha-Beta-privacy 103

5.1.1 Syntax . 103
5.1.2 Operational Semantics . 107
5.1.3 Linkability attack on OSK Protocol 114

5.2 Probabilistic privacy . 118
5.2.1 Probabilistic Alpha-Beta-Privacy 118
5.2.2 The intruder as an empirical scientist 124
5.2.3 Background Knowledge 126

5.3 DP-3T . 127
5.3.1 Modeling . 127
5.3.2 Privacy violated . 130
5.3.3 The Actual Privacy Guarantee 131

5.4 Voting Protocols . 137
5.5 Comparison with Trace Equivalence Approaches 143

5.5.1 Visibility of Transactions 144
5.5.2 Restrictions . 145

5.6 Comparison with information flow 149
5.7 Future Work . 153

6 Conclusion 155

Bibliography 159

Chapter 1

Introduction

The work presented in this thesis is based on three major publications, each of
which has a dedicated chapter in this thesis:

• Formalizing and Proving Privacy Properties of Voting Protocols using
Alpha-Beta Privacy [GM19] by Gondron and Mödersheim, published at
the 24th European Symposium on Research in Computer Security (ES-
ORICS) in 2019.

• Vertical Composition and Sound Payload Abstraction for Stateful Proto-
cols [GM21] by Gondron and Mödersheim, published at the 34th IEEE
Computer Security Foundations (CSF) Symposium in 2021.

• Privacy as Reachability [GMV21] by Gondron, Mödersheim and Viganò,
submitted to the 35th IEEE Computer Security Foundations (CSF) Sym-
posium (first cycle).

Composition of Security Protocols

Communicating on networks, like the Internet, requires to run a wide variety
of security protocols since such networks cannot be assumed to be safe. For
instance, if Alice wants to visit the website of her bank to request the balance
on her main account, she has to open a web browser, enter her login and her
password on the login page of her bank website, and then only she can access
the banking application. During this brief operation from everyday life, many
security protocols were involved. The banking application is itself such a proto-
col that uses for security a login protocol and a TLS session. The specification
and the analysis of the security properties of these protocols is a full-fledged
research area.

One approach in this research area is to model cryptographic messages as for-
mal terms subject to some equational theories representing attacker capabilities:

2 Introduction

C Network S

•
getBalance(N) +3 •

getBalance(N) +3 •

• •
balance(N ,Bal)ks •

balance(N ,Bal)ks

Figure 1.1: Banking protocol

A

Payload

��

Network B

•
{|Payload|}sk(A,B)

//
{|Payload|}sk(A,B)

// •

Payload

OO

Figure 1.2: Channel protocol

the symbolic model originally proposed by Dolev and Yao [DY83]. The model
aims at finding logical flaws, e.g., man-in-the-middle [Low95] or reflection at-
tacks [BCM13] Over the years, a number of models have been adapted to this
idea, e.g., the applied-pi calculus [ABF18], or multiset rewriting [Mit02]. This
has resulted in tools such as ProVerif [Bla01], Avispa [Arm+05], Maude-
NPA [EMM07], CPSA [Gut11], Tamarin [Mei+13], DeepSec [CKR18], or
PSPSP [Hes+21].

However, despite their actual deployment within real environments, security
protocols have been mostly and comprehensively formally verified in isolation.
Only few work has been undertaken about their composition, i.e., when pro-
tocols run simultaneously or interact with each other. Indeed, being proven
secure in isolation is not a guarantee that their composition is also secure. In
the literature, three families of compositions are classically identified: parallel,
sequential and vertical.

These compositionality results have a modular form: “given a suite of protocols
that satisfy certain sufficient conditions and that are secure in isolation, then
their composition is a secure system as well”. These conditions should be easy to
check statically. Most existing works on protocol composition have concentrated
on parallel composition, i.e., when protocols run independently on the same
network only sharing an infrastructure of fixed long-term keys [GT00; Gut09;
CD09] with each other. [HMB18] is the first parallel compositionality result to
support a wide variety of interactions between protocols: it allows for stateful
protocols that maintain databases, shares them between protocols, and for the

3

declassification of long-term shared secrets.

C Network S

•
getBalance(N)

��

getBalance(N) +3 getBalance(N) +3 •

•
{|getBalance(N)|}sk(C,S)

//
{|getBalance(N)|}sk(C,S)

// •

getBalance(N)

OO

•
balance(N ,Bal)ks •

balance(N ,Bal)

��

balance(N ,Bal)ks

•

balance(N ,Bal)

OO

{|balance(N ,Bal)|}sk(S,C)
oo •

{|balance(N ,Bal)|}sk(S,C)
oo

Figure 1.3: Vertical composition of a banking and channel protocols

In this thesis, we are particularly concerned with vertical composition. This
is of great importance on the Internet, where protocols are often composed in
a layered manner, i.e., one protocol transport “payload” for another. One can
think of the numerous protocols that establish secure channels, such as TLS,
and the protocols actually using these channels to run in a “secure” manner.
For instance, the banking protocol from Figure 1.1 and the channel protocol
from Figure 1.2 can be composed into the protocol in Figure 1.3, where the
channel transports the messages from the banking application by replacing its
“payload” message.

Mödersheim and Viganò [MV14] gave a first result on vertical composition lim-
ited to one transmitted message of the application protocol over the established
channel, but the sufficient condition is semantical, i.e., cannot be checked stat-
ically. Mödersheim and Groß [GM11] introduce compositionality results for a
larger class of protocol, including the stacking of several protocols on top of
each other, introduced for instance by the vast deployment of VPNs and secure
channels established by browsers but the interactions were limited.

Establishing a Vertical Compositionality Result for Stateful Protocol
In Chapter 2, we establish a vertical compositionality result for stateful protocol.
This work is based on [GM21].

The first contribution of this chapter is the formalization of a general paradigm

4 Introduction

for vertical composition of stateful protocols. We build on the results for par-
allel compositionality for stateful protocols of [Hes19]. The results of [Hes19]
allow for stateful protocols that maintain databases (such as a keyserver), and
the databases may even be shared between these protocols. This includes the
possibility to declassify long-term secrets, e.g., to verify that a protocol is even
secure if the intruder learns old private keys. We express a vertical composition
as the parallel composition of two types of protocols, channel Ch and application
App protocols, that are connected only by two families of sets outbox and inbox.

Let us take a look back at our examples in Figures 1.1 and 1.2, and consider
them in our paradigm in Figure 1.4. When the client wants to send a request,
getBalance(N), to the bank server, the client inserts the message into the set
outbox(C, S). The channel protocol retrieves the request from the set, transports
it over the network, and on S’s side, inserts it into the set inbox(C, S). The server
can now retrieve the request from the inbox set. To send the response, the client
and the server exchange the roles.

C Network S

•

getBalance(N)

��

•

outbox(S,C) inbox(C, S)

getBalance(N)

OO

• •

balance(N ,Bal)

��

inbox(S,C)

balance(N ,Bal)

OO

outbox(C, S)

‖

outbox(A,B)

Payload

��

Network inbox(A,B)

•
{|Payload|}sk(A,B) +3

{|Payload|}sk(A,B) +3 •

Payload

OO

Figure 1.4: Vertical composition in our framework

We develop and proved a number of extensions of the definition and theorems
of [Hes19]. In particular, we extend the typing result to take into account that
messages from App can be handled by Ch when moved between sets and trans-
mitted over the network as part of channel message transmissions by introducing
a “payload type”. These extensions were sufficient to allow for the verification of

5

the application protocol with respect to an idealization of the channel protocol
Ch?. A channel idealization models the security guarantees that a channel offers
to an application. In Figure 1.5, we represent that an application relies on the
security provided by Ch? to move messages from outbox to inbox sets.

C Network S

•

getBalance(N)

��

•

outbox(C, S)
Ch? // inbox(C, S)

getBalance(N)

OO

• •

balance(N ,Bal)

��

inbox(S,C)

balance(N ,Bal)

OO

Ch?
oo outbox(S,C)

Figure 1.5: Login protocol with respect to the idealization of a channel pro-
tocol

However, in contrast with the application, our extensions to the results of [Hes19]
are not sufficient for verifying channel protocols independent of an application,
since outbox sets still contain all possible concrete terms from the application.
The key contribution of this chapter is the development of a sound abstraction
for payload variables, so the channel can be verified independent of a concrete
application protocol. This abstraction substitutes, in a way, payload variables
by constants that can either be fresh or previously used, and either known or
unknown to the intruder. Many works that verify channel protocols such as
TLS [Cre+17] model payloads as freshly generated nonces that are transmitted
over the channel, and we prove in this chapter that this is a sound abstraction
if done right.

Privacy

Beyond the classical security properties that we have considered in the first
part of this thesis, such as confidentiality or authentication, a problem of large
systems is to maintain privacy properties. When composing components, it is
much harder to keep the overview of where an observer may be able to make
links—and which links are even acceptable, i.e., considered pubic information.
While we do not really develop compositionality results for privacy goals, we

6 Introduction

follow here an approach to make feasible the specification and analysis of privacy
goals in large systems where it is hard to keep track of all details. Formulating
privacy "positively" by what information has deliberately been released eases
the work for the system designer and reduces the risk of forgetting about links
that an attacker can make.

Privacy-type properties of security and voting protocols are traditionally speci-
fied as trace equivalence of two processes in some process calculus, such as the
Applied-π calculus [ABF18; BAF08; CRZ07; DRS08]. While such approaches
have uncovered vulnerabilities in a number of protocols, they rely on asking
whether the intruder can distinguish two variants of a process. It is a rather
technical way to encode the privacy goals of a protocol.

To fill the gap between intuitive ideas of the privacy goals and the mathematical
notions used to formalize and reason about them, (α, β)-privacy has been pro-
posed in [MV19]. It is a declarative approach based on specifying two formulae
α and β in first-order logic with Herbrand universes. α formalizes the payload
i.e., the “non-technical” information that we intentionally release to the intruder,
and β describes the “technical” information that he has, i.e., his “actual knowl-
edge”: what (names, keys, etc.) he initially knows, which actual cryptographic
messages he observed and what he infers from them. He may be unable to
decrypt a message, but know anyway that it has a certain format and contains
certain (protected) information, e.g., a vote.

Formalizing Voting Privacy Properties in Alpha-Beta Privacy In Chap-
ter 4, we formalize voting privacy properties, including receipt-freeness, in (α, β)-
privacy. This work is based on [GM19].

This chapter gives a model-theoretic way to formalize and reason about voting
privacy and receipt-freeness. As explained, we build on the framework of (α, β)-
privacy [MV19], that defines privacy as a state-based reachability property.

Our contribution is a general methodology to modeling voting privacy and
receipt-freeness with (α, β)-privacy that can be applied for a variety of pro-
tocols. This in particular includes a proof methodology that allows for simple
model-theoretic arguments, suitable for manual proofs and proof assistants like
Isabelle and Coq. We illustrated this practically at hand of the FOO’92 protocol
as an example.

Formalizing Privacy Properties as Reachability Properties In the first
part of Chapter 5, we express privacy as a reachability problem in a state tran-

7

sition system. This work is based on [GMV21].

The main contribution of this part of Chapter 5 is to lift (α, β)-privacy from a
static approach to a dynamic one. We define a transaction-process formalism
for distributed systems; the semantics of these transactions is specified by a
transition system. Our formalism includes privacy variables that can be non-
deterministically chosen from finite domains, can work also with long-term mu-
table states, and allows one to specify the consciously released information.
Every state of our defined transition system is an (α, β)-privacy problem, i.e., a
pure reachability problem.

Extending Alpha-Beta Privacy to a Probabilistic Approach Finally,
we extend both the static and dynamic approach of (α, β)-privacy by probabil-
ities in the second part of Chapter 5. This work is based on [GMV21].

Many approaches (e.g., quantitative information flow [Alv+20; CHM01; DHW04;
Gru08; LMT10; Low02; Smi09], differential privacy [Dwo08; YCW17], etc.) rea-
son about privacy by considering quantitative aspects and probabilities. Trace
equivalence approaches are instead purely qualitative and possibilistic, and so
is (α, β)-privacy; this is appropriate for many scenarios, but we give examples
where probability distributions play a crucial role (i.e., in a purely possibilistic
setting, there is no attack, but with probabilities there is).

The contribution of the second part of Chapter 5 is a conservative extension
of (α, β)-privacy by probabilistic variables. As for non-deterministic variables
(used when probabilities are irrelevant or when the intruder does not know the
distribution), probabilistic variables can be sampled from a finite domain with
a probability distribution, which may depend on probabilistic variables that
were chosen earlier. As proof-of-concept, we consider some examples, e.g., the
well-known problem of vote copying (e.g., in Helios, where a dishonest voter can
copy an honest voter’s vote). Finally, we also study in details how (α, β)-privacy
relates to trace-equivalence and information flow approaches.

8 Introduction

Chapter 2
Vertical Composition and

Sound Payload Abstraction
for Stateful Protocols

With vertical composition, we mean that a high-level protocol called application,
or App for short, uses for message transport a low-level protocol called channel,
or Ch for short. For instance, a banking application may be run over a channel
established by TLS. For concreteness, let us consider a simple running example
of a login protocol over a unilaterally authenticated channel as shown in semi-
formal notation in Figure 2.1. Here [C]P represents a client C that is not
authenticated but acting under an alias (pseudonym) P , which is simply a public
key, and only C knows the corresponding private key inv(P). Clients can have
any number of aliases, and thus choose in every session to either work under
a new identity or use the same alias, and thereby link the sessions. The setup
of the channel has the client generate a new session key K, sign it with inv(P)
and encrypt it for a server S. The functions f(...) represent message formats
like XML that structure data and distinguish different kinds of messages. This
gives us a secure key between P and S: the server S is authenticated w.r.t. its
real name while the client is only authenticated w.r.t. alias P—this is somewhat
similar to the typical deployment of TLS where P would correspond to the
unauthenticated Diffie-Hellman half-key of the client. We can transmit messages
on the channel by encrypting with the established key, and the login protocol
now uses this channel for authenticating the client. For simplicity, the client is
computing a MAC on a challenge N from the server with a shared secret. This
models the second factor in the Danish NemID [Net21] service where each user
has a personal key-card to look up the response for a given challenge N . The
first factor, a password, we just omit for simplicity.

Most existing works on protocol composition have concentrated on parallel com-
position, i.e., when protocols run independently on the same network only shar-
ing an infrastructure of fixed long-term keys [HT96; GT00; And+08; Gut09;
CD09; CC10; Che+13; ACD15; Alm+15]. In contrast, we want to compose
here components that interact with each other, namely an application App that
hands messages to a channel Ch for secure transmission. [GM11; CCW17] allow

10
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Channel protocol Ch:
Setup:

[C]P : new K
[C]P → S : crypt(pk(S), sign(inv(P), fnewSess(P, S,K)))

Transport:

For [C]P
Ch−→ S : X, transmit scrypt(K, fpseudo(P, S,X))

For S Ch−→ [C]P : X, transmit scrypt(K, fpseudo(S, P,X))

Login protocol App:

S : newN

S
Ch−→ [C]P : f1(N,S)

[C]P
Ch−→ S : f2(mac(secret(C, S), N))

Figure 2.1: Running Example

for interaction between the protocols that are being composed, albeit specialized
to a particular form of interaction. [HMB18] is the first parallel compositionality
result to support arbitrary interactions between protocols: it allows for stateful
protocols that maintain databases, shares them between protocols, and for the
declassification of long-term secrets.

As a first contribution, we build upon these results a general paradigm for ver-
tical composition: we use such databases to connect channel Ch and application
App protocols. For instance, when the application wants to send a message
from A to B, then it puts it into the shared set outbox(A,B) where the channel
protocol fetches it, encrypts and transmits it, and puts it in the corresponding
inbox of B where the application can pick it up.

As a second contribution, we extend the typing result from [Hes19] to take
into account that messages from App can be manipulated by Ch. Thus, in our
paradigm, Ch and App are arbitrary protocols from a large class of protocols
that synchronize via shared sets inbox and outbox and fulfills a number of simple
syntactic conditions.

Compared to refinement approaches that “compose” a particular application
with a specific channel, our vertical compositionality result is much more general:
from the definition of a channel protocol Ch, we extract an idealized behavior
Ch?, the protocol interface, that hides how the channel is actually implemented
and offers only a high-level interface for the application, e.g., guaranteeing con-

11

fidential and/or authentic transmission of messages. The application can be
then verified against this interface, and so we can at any time replace Ch by
any other channel Ch′ that implements the same interface Ch? without verifying
the application again. However, the third and core contribution of this chapter
is a solution for the converse question, namely how to also verify the channel
independently of the application, so that the channel Ch can be used with any
application App that relies only on the properties guaranteed by the interface
Ch?.

If we look for instance at the formal verification of TLS in [Cre+17; BBK17],
all the payload messages that are transmitted over the channel (corresponding
to X in Figure 2.1) are just modeled as fresh nonces. One could say this paper
verifies that TLS is correct if the application sends only fresh nonces. In reality,
the messages may neither be fresh nor unknown to the intruder, and in fact
they may be composed terms that could interfere with the channel context they
are embedded in. For a well-designed channel protocol, this is unlikely to cause
trouble, but wouldn’t it be nice to formally prove that?

The core contribution of this chapter is a general solution for this problem: we
develop an abstraction of the payload messages and prove its soundness. The
abstraction is indeed similar to the fresh-nonce idea, but taking into account
that they represent structured messages that may be (partially) known to the
intruder, and that applications may transmit the same message multiple times
over a channel. This gives rise to a translation from the concrete Ch to an
abstract version Ch] that uses nonces as payloads—a concept that all standard
protocol verification tools support. The soundness means that it is sufficient to
verify Ch] in order to establish that Ch is secure in that it fulfills its interface Ch?,
and is securely composable with any application App that expects interface Ch?

(and given that some syntactic conditions between App and Ch are met, like no
interference between their message formats). In the example, after verification,
we know that not only this composition is secure, but that Ch is secure for
any application that requires a unilaterally authenticated channel, and App can
securely run on any channel providing the same interface. Thus, the composition
may not only reduce the complexity of verification, breaking it into smaller
problems, but also make the verification result more general.

Organization: in §2.1, we introduce the framework to model stateful protocols.
In §2.2, we describe our paradigm for vertical composition, and we extend a
typing result to support an abstract payload type. In §2.3, we prove that our
abstraction of payloads is sound, and that our vertical composition result can
be used with a wide variety of channel and application protocols. §2.4 gives the
proof of the main theorems. §2.5 gives the full extension of the typing results.
§2.6 show how to apply the vertical composability definition to our running
example. §2.7 gives a battery of examples to illustrate the scope of our results.

12
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

In §2.8, we show how our results can be used to study channel bindings. Finally,
we relate our work to others and conclude in §2.9.

2.1 Preliminaries

Most of the content of this section is adapted from [Hes19].

2.1.1 Terms and substitutions

We consider a countable signature Σ and a countable set V of variable symbols
disjoint from Σ. We do not fix a particular set of cryptographic operators, and
our theory is parametrized over an arbitrary Σ. A term is either a variable x ∈ V
or a composed term of the form f(t1, . . . , tn) where f ∈ Σn, the ti are terms,
and Σn denotes the symbols in Σ of arity n. We define the set of constants C as
Σ0. We denote the set of terms over Σ and V as T (Σ,V). We denote the set of
variables of a term t as fv(t), and if fv(t) = ∅ then t is ground. We extend these
notions to sets of terms. We denote the subterm relation by v.

We define substitutions as functions from variables to terms. dom(σ) ≡ {x ∈
V | σ(x) 6= x} is the domain of a substitution σ, i.e., the set of variables that
are not mapped to themselves by σ. We then define the substitution image,
img(σ), as the image of dom(σ) under σ: img(σ) ≡ σ(dom(σ)), and we say σ is
ground if its image is ground. An interpretation is defined as a substitution that
assigns a ground term to every variable: I is an interpretation iff dom(I) = V
and img(I) is ground. Substitutions are extended to functions on terms and set
of terms as expected. Finally, a substitution σ is a unifier of terms t and t′ iff
σ(t) = σ(t′).

2.1.2 The Intruder Model

We use a Dolev-Yao-style intruder model, i.e., cryptography is treated as a
black-box where the intruder can encrypt and decrypt terms when he has the
respective keys, but he cannot break cryptography. In order to define intruder
deduction in a model where the set of operators Σ is not fixed, one first needs
to also specify what the intruder can compose and decompose. To that end, we
denote as Σnpub ⊆ Σ the public functions, which are available to the intruder, of
Σ of arity n, and we define a function Ana that takes a term t and returns a

2.1 Preliminaries 13

pair (K,T) of sets of terms. This function specifies that, from the term t, the
intruder can obtain the terms T , if he knows all the “keys” in the set K. For
example, if scrypt is a public function symbol to represent symmetric encryption,
we may define Ana(scrypt(k,m)) = ({k}, {m}) for any terms k andm. We define
the relation `, where M ` t means that an intruder who knows the set of terms
M can derive the message t as follows:

Definition 2.1 (Intruder Model [Hes19]). We define ` as the least relation that
includes the knowledge, and is closed under composition with public functions
and under analysis with Ana:

M ` t
(Axiom),
t ∈M

M ` t1 . . .M ` tn
M ` f(t1, . . . , tn)

(Compose),
f ∈ Σnpub

M ` t M ` k1 . . .M ` kn
M ` ti

(Decompose),
Ana(t) = (K,T),
ti ∈ T,K = {k1, . . . , kn}

(Axiom) says that the intruder can derive everything in his knowledge. (Compose)
says that the intruder can compose messages by applying public function sym-
bols to derivable messages. (Decompose) says that the intruder can decom-
pose, i.e., analyze, messages if he can derive the keys specified by Ana. The
specification of Ana must satisfy the following requirements for the typing and
compositionality results from [Hes19] to hold:

1. Ana(t) = (K,T) implies that K is finite and fv(K) ⊆ fv(t),

2. Ana(x) = (∅, ∅) for variables x ∈ V,

3. Ana(f(t1, . . . , tn)) = (K,T) implies T ⊆ {t1, . . . , tn}, and

4. Ana(f(t1, . . . , tn)) = (K,T) implies Ana(σ(f(t1, . . . , tn))) = (σ(K), σ(T)).

Ana is defined for arbitrary terms, including terms with variables (though the
standard Dolev-Yao deduction is normally used on ground terms only). The
first requirement restricts the set of keys K to be finite and to not introduce
any new variables, but the keys otherwise do not need to be subterms of the
term being decomposed. The second requirement says that we cannot analyze
a variable. The third requirement says that the result of the analysis are imme-
diate subterms of the term being analyzed. The fourth requirement says that
Ana is invariant under instantiation.

Example 2.1. Let scrypt, crypt and sign be public function symbols, repre-
senting respectively symmetric encryption, asymmetric encryption and signa-
tures, and let inv be a private function symbol mapping public keys to the cor-
responding private key. We characterize these symbols with the following Ana

14
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

theory: Ana(scrypt(k,m)) = ({k}, {m}), Ana(crypt(k,m)) = ({inv(k)}, {m}),
Ana(sign(k,m)) = (∅, {m}). To model message formats, we define a number of
transparent functions, e.g., f1 that the intruder can open without knowing any
keys: Ana(f1(t, t′)) = (∅, {t, t′}). For all other terms t: Ana(t) = (∅, ∅).

This model of terms and the intruder is not considering algebraic properties
such as the ones needed for Diffie-Hellman-based protocols. Since handling
algebraic properties is making everything more complicated, while being largely
orthogonal to the points of this chapter, for simplicity, we stick with this free
term algebra model.

2.1.3 Stateful Protocols

We introduce a strand-based protocol formalism for stateful protocols. The
idea is to extend strands with a concept of sets to model long-term mutable
state information of stateful protocols. The semantics is defined by a symbolic
transition system where constraints are built up during transitions. The models
of the constraints then constitute the concrete protocol runs.

Protocols are defined as sets P = {R1, . . .} of transaction rules of the form: Ri =
∀x1 ∈ T1, . . ., xn ∈ Tn. new y1, . . . , ym.S where S is a transaction strand with
sets, i.e. of the form receive(t1).receive(tk). φ1.φk′ . send(t′1).send(t′k′′)
where t and t′ ranges over terms and x̄ over finite sequences x1, . . . , xn of vari-
ables from V:

φ ::= t
.
= t′ | ∀x̄. t 6 .= t′ | t ∈̇ t′ | ∀x̄. t /̇∈ t′ | insert(t, t′) | delete(t, t′)

As syntactic sugar, we may write t 6 .= t′ and t /̇∈ t′ in lieu of ∀x̄. t 6 .= t′ and ∀x̄. t /̇∈
t′ when x̄ is the empty sequence. We may also write t→ t′ for insert(t, t′) and t←
t′ for t ∈̇ t′.delete(t, t′). We may also write t←−−−− for receive(t) and t−−−−→ for
send(t) when writing rules. The prefix ∀x1 ∈ T1, . . . , xn ∈ Tn denotes that the
transaction strand S is applicable for instantiations σ of the xi variables where
σ(xi) ∈ Ti. The construct new y1, . . . , ym represents that the occurrences of the
variables yi in the transaction strand S are instantiated with fresh constants.

Example 2.2. In Figure 2.2, we formalize the App from Figure 2.1; we now
look at a few rules as examples and discuss the others later. Note that each
step of a rule is labeled by either label App or ? which we also introduce below.
The rule App3 models an honest server S who first generates a new nonce N ,
stores it in a set of active nonces sent(S, P) where P is an identifier (alias) for

2.1 Preliminaries 15

a currently unauthenticated agent. It then adds the message fchallenge(N,S) to
a set outbox(S, P) for being sent on a secure channel to P . Here, fchallenge is
just a format to structure the message. In App4, this is received by a client A
in its inbox(S, P), where the relation between the client A and its pseudonym is
ensured by the positive check P ∈̇alias(A). The client then sends a more complex
message as a reply.

We call all variables that are introduced by a quantifier or new the bound vari-
ables of a transaction, and all other variables free. We say a transaction rule
is well-formed if all free variables first occur in a receive step or a positive
check, and the bound variables are disjoint from the free variables (over the
entire protocol). For the rest of this chapter we restrict ourselves to well-formed
transaction rules.

2.1.4 Stateful Symbolic Constraints

The semantics of a stateful protocol is defined as in terms of a symbolic transition
system of intruder constraints. The intruder constraints are also represented
as strands, essentially a sequence of transactions where parameters and new
variables are instantiated, and are formulated from the intruder’s point of view,
i.e., a message sent in a transaction becomes a received message in the intruder
constraint and vice-versa. We first define the semantics of constraints and then
how a protocol induces a set of reachable constraints.

By trms(A) we denote the set of terms occurring in the constraint A. The set
of set operations of A, called setops(A), is defined as follows where we assume
a binary symbol (·, ·) ∈ Σ2

pub:

setops(A) ≡ {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s or ∀x̄.t ˙6∈ s occurs in A}

We extend trms(·) and setops(·) to transaction strands, rules and protocols as
expected. For the semantics of constraints, we first define a predicate [[M,D;A]] I,
where M is a ground set of terms (the intruder knowledge), D is a ground set

16
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

of tuples (the state of the sets), A is a constraint and I is an interpretation:

[[M,D; 0]] I iff true
[[M,D; send(t).A]] I iff M ` I(t) and [[M,D;A]] I
[[M,D; receive(t).A]] I iff [[{I(t)} ∪M,D;A]] I
[[M,D; t

.
= t′.A]] I iff I(t) = I(t′) and [[M,D;A]] I

[[M,D; (∀x̄. t 6 .= t′).A]] I iff [[M,D;A]] I and(
I(σ(t)) 6= I(σ(t′)) for all ground substitutions σ with domain x̄

)
[[M,D; insert(t, s).A]] I iff [[M, {I((t, s))} ∪D;A]] I
[[M,D; delete(t, s).A]] I iff [[M,D \ {I((t, s))};A]] I
[[M,D; t ∈̇ t′.A]] I iff I((t, s)) ∈ D and [[M,D;A]] I
[[M,D; (∀x̄. t /̇∈ t′).A]] I iff [[M,D;A]] I and(
I(σ((t, s))) 6∈ D for all ground substitutions σ with domain x̄

)
I is called a model of A, written I |= A, iff [[∅, ∅;A]] I. We define again free and
bound variables as for transactions, and say a constraint is well-formed if every
free variable first occurs in a send step or a positive check and free variables are
disjoint from bound variables. We denote the free variables of a constraint A
by fv(A). In contrast, in a transaction we defined free variables must first occur
in a receive step or a positive check; this is because constraints are formulated
from the intruder’s point of view. For the rest of the chapter we consider only
well-formed constraints without further mention.

2.1.5 Reachable Constraints

Let P be a protocol. We define a state transition relation ⇒ where states
are constraints and the initial state is the empty constraint 0. First the dual
of a transaction strand S, written dual(S) means “swapping” the direction
of the sent and received messages of S: dual(send(t).S) = receive(t).dual(S),
dual(receive(t).S) = send(t).dual(S) and otherwise dual(s.S) = s.dual(S) for
any other step s. The transition A ⇒ A.dual(α(σ(S))) is possible if the follow-
ing conditions are met:

1. (∀x1 ∈ T1, . . . , xn ∈ Tn.new y1, . . . , ym.S) is a transaction of P,

2. dom(σ) = {x1, . . . , xn, y1, . . . , ym},

3. σ(xi) ∈ Ti for all i ∈ {1, . . . , n},

4. σ(yi) is a fresh constant for all i ∈ {1, . . . ,m}, and

5. α is a variable-renaming of the variables of σ(S) with fresh variables.

2.2 Stateful Vertical Composition 17

Note that by these semantics, each transaction is atomic (we do not allow partial
application of a transaction), and each transaction rule can be taken arbitrarily
often, thus allowing for an unbounded number of “sessions”.

We say that a constraint A is reachable in protocol P if 0 ⇒? A where ⇒? is
the transitive reflexive closure of ⇒. Note that we consider only well-formed
transactions and thus every reachable state is a well-formed constraint.

To model goal violations of a protocol P we first fix a special non-public con-
stant unique to P, e.g. attackP . We can then formulate transactions that check
for violations of the goal and if so, send out the message attackP . A proto-
col has an attack if there exists a satisfiable reachable constraint of the form
A. attackP−−−−−−−−→, otherwise the protocol is secure. This allows for modeling all
security properties expressible in the geometric fragment [Alm+15; Gut14], e.g.,
standard reachability goals like secrecy and authentication, but not for instance
privacy-type properties. We give attack rules in our examples in Example 2.3
and Example 2.4.

2.2 Stateful Vertical Composition

The compositionality result of Hess et al. [Hes19; HMB20] allows for the parallel
composition of stateful protocols. The protocols being composed may share
sets. An example would be a server that maintains a database and runs several
protocols that access and modify this database.1 After specifying an appropriate
interface how these protocols may access and modify the database, one can verify
each protocol individually with respect to this interface and obtain the security
of the composed system.

A simple idea is to re-use this result for vertical composition of protocols as
follows (but we explain later why this is not enough). We consider a channel
protocol Ch and an application protocol App that wants to transmit messages
over this channel. We regard them as running in parallel and sharing two families
of sets as an interface, called inbox and outbox. In the application, if A wants
to send a message to B over the channel, she inserts it into outbox(A,B). The
channel protocol on A’s side retrieves the message from outbox(A,B), encrypts
it appropriately and transmits it to B, where it is decrypted and delivered into
inbox(A,B). The application on B’s side can now receive the message from this
inbox.

1One could also use sets to model an abstract synchronous communication channel between
participants, but that is not what we will consider here: we will only use sets that belong to
one single agent who may engage in several protocols.

18
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

This paradigm is very general: the application can freely transmit messages over
the channel, similar to sending on the normal network; there are no limitations
on the number of messages that can be sent. Similarly, we can model a wide
variety of channels and the protections they offer, e.g., our running example
considers a channel where only one side is authenticated like in the typical TLS
deployment. Moreover, the channel may have a handshake that establishes one
or more keys that are used in the transport, where we can model both that the
same key is used for several message transmissions, and that we can establish
any number of such keys.

Nevertheless, there are three challenges to overcome. First, the compositionality
result of [Hes19; HMB20] relies on a typing result, and this typing result is not
powerful enough for our paradigm of vertical composition, due to the payload
messages from the application that are inserted on the channel. The extension
is in fact our first main contribution in §2.2.1. Note that §2.2.2 comes mainly
from [Hes19; HMB20] but we include it here because we need to incorporate our
extension of the typing result, and we need to update several definitions to take
into account the specific features of vertical composition. The second challenge
in §2.2.3 is to define an appropriate interface between channel and application,
i.e., which security properties the channel ensures that the application can rely
on. This interface allows for verifying the application completely independent
of the channel, in particular, the channel can then be replaced by any other
channel that implements the same interface without verifying the application
again. Finally, the third and main challenge (in §2.3) is a sound abstraction of
the payload messages of the application so that the channel can also be verified
independent of the application.

2.2.1 Typed Model and Payloads

As already mentioned, the typing result of [Hes19; HMB20] is not general enough
for our purposes: since we want to define a channel protocol independent of the
application that uses the channel, we would like the messages that the channel
transports to be of an abstract type p (payload) that can, during composition,
be instantiated by the concrete message types of the application protocol.

This requires, however, a substantial extension of the typing system and the
typing result, since from the point of view of the channel protocol, the payload
is a variable that is embedded into a channel message, e.g., a particular way to
encrypt the payload. The fact that the payload is a variable reflects that the
channel is indeed “agnostic” about the content that it is transporting. This is,
however, incompatible with the typing result from [Hes19; HMB20], because the
instantiation of the payload type with several concrete message types from the

2.2 Stateful Vertical Composition 19

application protocol implies that, amongst the channel, messages are unifiable
message patterns of different types, which is precisely what [Hes19; HMB20]
forbid.

The main idea to overcome this problem is as follows. Let Tp be the set of
concrete payload types of a given application, i.e., the types of messages the
application transmits over the channel. Essentially, we want to exclude that
there can ever be an ambiguity over the type of a transmitted message, i.e.,
that one protocol recipient sends a message of type τ1 ∈ Tp and the recipient
receives it as some different type τ2 ∈ Tp. Such ambiguity can for instance be
prevented by using a distinct format for each type (e.g., using a tag).

This allows us to extend the typing and the depending compositionality results
from [Hes19; HMB20] such that every instantiation of the abstract payload type
p with a type of Tp counts as well-typed. We now introduce all concepts in the
notation of [Hes19] and mark our extensions; the proof of the results under the
extensions is given in Section 2.5.

Type expressions are terms built over a finite set Ta of atomic types like Agent
and Nonce and the function symbols of Σ without constants. Our extensions are
the special abstract payload type p and a finite non-empty set Tp of concrete
payload types where Tp ⊂ T (Σ \ C,Ta).

Let Γ be a given type specification for all variables and constants, i.e., Γ(c) ∈ Ta
for every constant c and Γ(x) = τ ∈ T (Σ \ C,Ta) ∪ {p} such that τ does not
contain an element of Tp as a subterm.

The restriction that τ does not contain an element of Tp is our new addition:
it prevents that the application (or the channel) uses any variables of a payload
type (or variables that can be instantiated with a term that contains a payload-
typed subterm). This is to prevent that we can have unifiers between terms of
distinct types. Similarly, observe that p can only be the type of a variable, and
that it cannot occur as a proper subterm in a type expression. The type system
leaves the protocol only two choices for handling payloads: either abstractly
(in the channel) as a variable of type p or concretely (in the application) as a
non-variable term of Tp type.

The typing function is extended to composed terms as follows: Γ(f(t1, . . . , tn)) =
f(Γ(t1), . . . ,Γ(tn)) for every f ∈ Σn \ C and terms ti. Further, it is required
that for every atomic type β ∈ Ta, the intruder has an unlimited supply of these
terms, i.e., {c ∈ C | c ∈ Σpub,Γ(c) = β} is infinite for each atomic type β. This
is needed to find solutions to inequalities.

For the payload extension, we define a partial order on types, formalizing that

20
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

the abstract payload is a generalization of the types in Tp:

• p > τ for all τ ∈ Tp,

• τ ≥ τ ′ iff τ = τ ′ ∨ τ > τ ′, and

• f(τ1, . . . , τn) ≥ f(τ ′1, . . . , τ
′
n) iff τ1 ≥ τ ′1 ∧ · · · ∧ τn ≥ τ ′n .

We say that two types τ and τ ′ are compatible when they can be compared with
the partial order. We say a substitution σ is well-typed iff Γ(x) ≥ Γ(σ(x)) for all
x ∈ V. This is a generalization of [Hes19] which instead requires Γ(x) = Γ(σ(x)),
i.e., we allow here the instantiation of p with types from Tp. The central theorem
for extending [Hes19] with payload types is that, for any two unifiable terms s
and t with Γ(s) ≥ Γ(t), their most general unifier is well-typed:

Theorem 2.2. Let s, t be unifiable terms with Γ(s) ≥ Γ(t). Then their most
general unifier is well-typed.

The modifications to the following definitions and results with respect to [Hes19]
are minor: we use our updated notion of well-typed, and we use the notion of
compatible types instead of the same type. We give the definitions as an almost
verbatim quote without pointing out these minor differences each time.

The typing result is essentially that the messages and sub-messages of a protocol
have different form whenever they do not have compatible types. Thus, given
a set of messages M that occur in a protocol, define the set of sub-message
patterns SMP(M) as:

Definition 2.3 (Sub-message patterns [Hes19]). The sub-message patterns for
a set of messages M is denotes as SMP(M) and is defined as the least set
satisfying the following rules:

1. M ⊆ SMP(M).

2. If t ∈ SMP(M) and t′ v t then t′ ∈ SMP(M).

3. If t ∈ SMP(M) and σ is a well-typed substitution then σ(t) ∈ SMP(M).

4. If t ∈ SMP(M) and Ana(t) = (K,T) then K ⊆ SMP(M).

It is sufficient for the typing result that the non-variable sub-message patterns
have no unifier unless they have compatible types:

2.2 Stateful Vertical Composition 21

Definition 2.4 (Type-flaw resistance (extended from [Hes19])). We call a term
t generic for a set of variablesX, if t = f(x1, . . . , xn), n > 0 and x1, . . . , xn ∈ X.

We say a set M of messages is type-flaw resistant iff ∀t, t′ ∈ SMP(M) \
V. (∃σ.σ(t) = σ(t′)) → Γ(t) ≥ Γ(t′) ∨ Γ(t) ≤ Γ(t′). We call a constraint A
type-flaw resistant iff the following holds:

• trms(A) ∪ setops(A) is type-flaw resistant,

• for all t .= t′ occurring in A: if t and t′ are unifiable then Γ(t) ≤ Γ(t′) or
Γ(t) ≥ Γ(t′),

• for all ∀x̄. t ˙6= t′ occurring in A, no subterm of (t, t′) is generic for x̄, and

• for all ∀x̄.t /̇∈ t′ occurring in A, no subterm of (t, t′) is generic for x̄.

We say that a protocol P is type-flaw resistant iff the set trms(P) ∪ setops(P)
is type-flaw resistant and all the transactions of P are type-flaw resistant.

Our extension of the type system with the payload types requires an update of
the typing result of [Hes19]. Most of this is straightforward and Theorem 2.2 is
the only new theorem. In a nutshell, the typing result shows that the intruder
never needs to make any ill-typed choice to perform an attack, and thus if there
is an attack, then there is a well-typed one:

Theorem 2.5 ((extended from [Hes19])). If A is a well-formed, type-flaw re-
sistant constraint, and if I |= A, then there exists a well-typed interpretation Iτ
such that Iτ |= A.

The typing requirements essentially imply that messages with different meaning
should be made discernable, and this is indeed a good engineering practice.
However, since we will below require that channel and application messages
are also distinguishable, we will not be able to stack several layers of the same
channel.

2.2.2 Parallel Compositionality

We review and adapt the parallel composition result from [Hes19]. The composi-
tionality result ensures that attacks cannot arise from the composition itself. To
keep track of where a step originated in a constraint, each step in a transaction
is labeled with the name of the protocol, or with a special label ?. This ? labels

22
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

App1 : ∀C ∈ Agent|Hon, P ∈ Alias|Hon.

App : P /̇∈ taken.
App : P → taken.
App : P → alias(C)

App2 : ∀P ∈ Alias|Dis.

? :
inv(P)−−−−−−−→

App3 : ∀S ∈ Agent|Hon, P ∈ Alias, new N.

App : N → sent(S, P).
? : fchallenge(N,S)→ outbox(S, P)

App4 : ∀S ∈ Agent, P ∈ Alias|Hon, C ∈ Agent|Hon.

? : fchallenge(N,S)← inbox(S, P).
App : P ∈̇ alias(C).
? : fresponse(mac(secret(C, S), N))→ outbox(P, S)

App5 : ∀S ∈ Agent|Hon, P ∈ Alias, C ∈ Agent.

? : fresponse(mac(secret(C, S), N))← inbox(P, S).
App : N ← sent(S, P)

App6 : ∀S ∈ Agent|Hon, P ∈ Alias, C ∈ Agent|Hon.

? : fresponse(mac(secret(C, S), N))← inbox(P, S).
App : N ∈̇ sent(S, P).

App : P /̇∈ alias(C).

App :
attackApp−−−−−−−−−→

Figure 2.2: Example of a login protocol

all those steps of a protocol that are relevant to the other: when the protocols
to compose share any sets, then all checks and modifications to these sets must
be labeled ?. One may always label even more steps with ? to make them visible
to the other protocol (this may be necessary to ensure well-formedness of the
interface). From this labeling, one can obtain an interface between the protocols
to compose as follows. Define the idealization P? of a protocol P as removing
all steps from P that are not labeled ?. The compositionality result essentially
says that the parallel composition P1 ‖ P2 is secure, if P1 ‖ P?2 and P?1 ‖ P2 are
secure (and some syntactic conditions hold), i.e., each protocol can be verified
in isolation against the idealization of the other. In the special case that no sets
are shared between the two protocols, these idealizations are empty.

The protocols to compose should, to some extent, have separate message spaces,
e.g., by tagging messages uniquely for each protocol. In fact, messages (or

2.2 Stateful Vertical Composition 23

sub-messages) that occur in both protocols must be given special attention.
Unproblematic are basic public terms {t | ∅ ` t}, i.e., all messages that the
intruder initially knows. All other messages that can occur in more than one
protocol must be part of a set Sec of messages that are initially considered
secret. A secret may be explicitly declassified by a transaction that sends it on
the network with a ? label, e.g., when an agent sends a message to a dishonest
agent, this message has to be explicitly declassified. For instance, Sec can
contain all public and private keys, and then declassify all public keys and the
private keys of dishonest agents. Of course it counts as an attack if any protocol
leaks a secret that has not been declassified.

Formally, the ground sub-message patterns (GSMP) of a set of terms M is
defined as GSMP(M) ≡ {t ∈ SMP(M) | fv(t) = ∅}. For a constraint A, we
define GSMPA ≡ GSMP(trms(A) ∪ setops(A)), and similarly for protocols.
It is required for composition that two protocols are disjoint in their ground
sub-message except for basic public terms and shared secrets:

Definition 2.6 (GSMP disjointness [Hes19]). Given two sets of terms M1 and
M2, and a ground set of terms Sec (the shared secrets), we say that M1 and M2

are Sec-GSMP disjoint iff GSMP(M1) ∩GSMP(M2) ⊆ Sec ∪ {t | ∅ ` t}.

For declassification, we extend the definition from [Hes19]: we close the declas-
sified messages under intruder deduction. We denote the Dolev-Yao closure of
a set of messages M by DY(M) = {t | M ` t}. We now define that what the
intruder can derive from declassified messages is also declassified:2

Definition 2.7 (Declassification (extended from [Hes19])). Let A be a labeled
constraint and I a model of A. Then the set of declassified secrets of A under
I is declassifiedDY(A, I) ≡ DY({t | ? :

t←−−−− occurs in I(A)}).

This modification requires the update of several definitions and proofs in [Hes19].
We provide the details of this extension in Section 2.5.

If the intruder learns a secret that has not been declassified then it counts as
an attack. We say that the protocol P leaks a secret s if there is a reachable
satisfiable constraint A where the intruder learns s before it is declassified:

Definition 2.8 (Leakage ([Hes19])). Let Sec be a set of secrets and I be a
model of the labeled constraint A. A leaks a secret from Sec under I iff there
exists s ∈ Sec \ declassifiedDY(A, I) and a protocol-specific label l such that
I |= A|l.send(s) where A|l is the projection of A to the steps labeled l or ?.

2Each protocol can define more refined secrecy goals to catch unintended declassifications
(so it is not a restriction in the protocols we can model), while the Dolev-Yao closure of
declassification is necessary since later after abstraction of payload messages, we cannot reason
about deductions from these payload messages anymore.

24
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

We define the traces of a protocol P as the “solved” ground instances of reachable
constraints: traces(P) ≡ {I(A) | 0⇒? A∧I |= A}. Next is the compositionality
requirement on protocols that ensures that all traces are parallel composable:

Definition 2.9 (Parallel composability [Hes19]). Let P1 ‖ P2 be a composed
protocol and let Sec be a ground set of terms. Then (P1,P2,Sec) is parallel
composable iff

1. P1 ‖ P?2 is Sec-GSMP disjoint from P?1 ‖ P2,

2. for all s ∈ Sec and s′ v s, either ∅ ` s′ or s′ ∈ Sec,

3. for all l : (t, s), l′ : (t′, s′) ∈ labeledsetops(P1 ‖ P2), if (t, s) and (t′, s′) are
unifiable then l = l′,

4. P1 ‖ P2 is type-flaw resistant and P1,P2,P?1 and P?2 are well-formed.

where labeledsetops(P) ≡ {l : (t, s) | l : insert(t, s) or l : delete(t, s) or l : t ∈̇ s or
l : (∀x̄.t /̇∈ s) occurs in P}.

Composition of secure, parallel composable protocols is secure:

Theorem 2.10 (Parallel Composition [Hes19]). If (P1,P2,Sec) is parallel com-
posable and P1 ‖ P?2 is well-typed secure in isolation, and P?1 ‖ P2 does not leak
a secret under any well-typed model, then all goals of P1 hold in P1 ‖ P2.

2.2.3 Channels and Applications

As our second contribution in this chapter, we propose a general paradigm for
expressing vertical composition problems as parallel composition of a channel
protocol Ch and an application protocol App that transmits messages over the
channel. We employ the parallel compositionality result from [Hes19], where we
connect the two protocols with each other via shared sets inbox and outbox. We
may even denote this by using the notation App

Ch
, emphasizing it is essentially a

parallel composition. Let us first look more closely to the application protocols:

Definition 2.11 (Application Protocol). Let inbox and outbox be two families
of sets (e.g., parametrized over agent names). An application protocol App is a
protocol that does not contain any normal sending and receiving step, but may
insert messages into sets of the outbox family, and retrieve messages from sets
of the inbox family and perform no other operations on these sets. The inbox and
outbox steps are labeled ? (since these sets are shared with the channel protocol),

2.2 Stateful Vertical Composition 25

and no other operations are labeled ?— except potentially set operation steps
needed to ensure well-formedness of the idealization App?, whose sets are only
accessed by the application. The set of concrete payload types Tp of the type
system is determined to contain exactly those message types that are inserted
into an outbox or received from an inbox by the application. Finally, let the set
Sec of shared secrets contain all application messages.

This definition does not specify what guarantees the application can get from
the channel (like secure transmission). This will in fact be formalized next as
part of the channel protocol. Recall also that our type system requires that no
variable may have a type in which a Tp type occurs as a subterm.

Example 2.3. We formalize the running example from Figure 2.1, i.e., a login
protocol, as an application that runs over a secure channel where one side is not
yet authenticated. As explained, we formalize the unauthenticated endpoint of a
channel using an alias P , which is an unauthenticated public key and the owner
is the person who created P and knows the corresponding private key inv(P).
Thus let Names be a set of the public constants that is further partitioned into a
subset Agent, representing real names of agents, and a subset Alias, representing
the aliases. The set Names is further partitioned between honest principals Hon
and dishonest principals Dis. We write for example Agent|Hon when we restrict
the agent set to the honest principals. Since global constants cannot be freshly
created, the rules App1 and App2 formalize that every agent can assume any
alias P that has not yet been taken, mark it as taken, and insert it into its
set of aliases. For the honest users, the knowledge of the corresponding inv(P)
is implicitly understood, for the dishonest agents, we declassify inv(P). P is
public anyway, and by obtaining inv(P) the intruder will be able to use alias P .3
Note that, in this way, the protocol can simply distinguish between pseudonyms
belonging to honest and dishonest agents—which of course is not visible to any
agent. Note also that we do not need to explicitly specify that the honest agents
also know inv(P) to every P they pick.

The actual protocol begins with App3, and it assumes a secure channel between
some server S and some unauthenticated client under some alias P . Here, the
server S generates a fresh nonce N (of type Nonce) and inserts it into its set
sent(S, P) of unanswered challenges. Then, S uses the channel to P by inserting
fchallenge(N,S) into its outbox for P , where fchallenge is message format, i.e., a
transparent function. The rule App4 describes how this message is received by
the unauthenticated client C who is the owner of P . The client computes a MAC
of the challenge N with a secret pre-shared with the server, secret(C, S). Here,

3This declassification step is in principle forbidden by Definition 2.11. However, as we
see below at the channel protocol, the channel will automatically declassify all payloads sent
to a dishonest recipient, and thus, we can see declassification of inv(P) in the application as
syntactic sugar for ∀P ∈ AliasDis, C ∈ Agent|Dis.? : inv(P)→ outbox(C,C).

26
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

mac is a public function, whereas secret is a private function. This in fact models
a personal code card where agents can look up the answer to a challenge N from
a server. C inserts its response, fresponse(mac(secret(C, S), N)) where fresponse
is another message format distinct from fchallenge , into its outbox(P, S). In the
rule App5, an honest server can retrieve C’s message from its set inbox(P, S),
where N ← sent(S, P) means that the server both checks that N is an active
challenge for P and removes it from the set. At this point, S accepts C as
authenticated, i.e., S believes that C is indeed the owner of alias P , and thus the
other endpoint of the secure channel. Consequently, App6 defines that it counts
as an attack if that is actually not the case: this rule can fire when a server could
accept the login (with App5) while P is actually not owned by C. Note that in
this rule, we limit C and S to honest agents, similar to standard authentication
goals (if the intruder authenticates under the name of any dishonest agents, there
are no security guarantees for such sessions). App6 is in fact a non-injective
authentication goal (it does not check for replay); we discuss such examples
in Section 2.7.

The payload types of this application are

Tp = {fchallenge(Nonce,Agent), fresponse(mac(secret(Agent,Agent),Nonce))}.

Observe that the example protocol would indeed have an attack if we imple-
mented the channel as simply transmitting the payload messages in clear text
through the network. The application obviously needs the channel to imple-
ment some properties in order to be secure, and this is indeed now part of the
formalization of the channel itself:

Definition 2.12 (Channel Protocol). Let again inbox and outbox be families of
sets. A channel protocol is a protocol that uses these families only in a particular
way: it only retrieves from outbox as variable X of the abstract payload type p
and only inserts to inbox also with X of type p, and these steps must be labeled
star.

Example 2.4 (Unilaterally authenticated secure channel). We now model the
channel protocol from Figure 2.1 in our framework as a unilaterally authenti-
cated secure channel, similar to what TLS without client authentication would
establish. We consider the same sets of agents that we used in Example 2.3.
Additionally, we have a function pk(A) to model an authenticated public key of
a server A and the corresponding private key is inv(pk(A)). We define all these
public keys and the private keys of any dishonest A as public terms.

In the first rule Ch1 in Figure 2.3, an honest client with alias P generates a
session key K (of type Key) for talking to an agent B, stores it in sessKeys(P,B),
and signs it with the private key inv(P) of their alias, and encrypts it with

2.2 Stateful Vertical Composition 27

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch :K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch :K → sessKeys(B,P)

Ch3 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :X ← outbox(A,B).
Ch :K ∈̇ sessKeys(A,B).
? :X → secCh(A,B).

Ch :
scrypt(K,fpseudo(A,B,X))−−−−−−−−−−−−−−−−−−−→

Ch4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,fpseudo(A,B,X))←−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(B,A).
? :X ∈̇ secCh(A,B).
? :X → inbox(A,B)

Ch5 : ∀A ∈ Names, B ∈ Names|Dis.

? :X ← outbox(A,B).

? :
X−−−−−→

Ch6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? :X → inbox(A,B)

Ch7 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,fpseudo(A,B,X))←−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(A,B).

? :X /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.3: Example for an unilaterally authenticated pseudonymous secure
channel

the public key pk(B) of B. Note that a similar protocol for a mutually secure
channels would just instead of P use a real name A, and use inv(pk(A)) for
signing, but this would require clients to have an authenticated public key. Also
note that this implicitly assumes that all users know the public keys of all servers,
and in Section 2.7, we consider variants where this is actually communicated
using key certificates.

In Ch2, an honest agent B is receiving a session key K encrypted with his public
key and signed by an agent under an alias P . They insert K into sessKeys(B,P).
Note that this is a minimal key exchange protocol for simplicity (that does not
protect against replay). One may in fact here install a more complicated pro-
tocol that also uses sessKeys as an interface to the other rules Ch3 . . .Ch7 as a
sequential composition.

28
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

The following rules use the session keys, and they do not distinguish whether
endpoints are real names (from the set Agent) or aliases (from the set Alias), and
instead use the union set Names. In Ch3, an honest A can transmit a payload
message X that an application protocol has inserted into an outbox set using for
encryption any session key K that was established for that recipient. The term
X bears the type payload p, and in a composition, p will be instantiated with all
the concrete payload types from the application, like Tp in Example 2.3. Let us
ignore the insertion into the set secCh for a moment.

In Ch4, an honest B can receive the encrypted payload X from A, provided it
is encrypted correctly with a key K that has been established with A. Both A
and B can be a real name or an alias. It is inserted into inbox(A,B) to make it
available on an application level. We ignore again the secCh.

Rules Ch5 and Ch6 describe symmetrically the sending and the receiving oper-
ations for a dishonest principal, i.e., the intruder can receive message directed
to any dishonest recipient, and send messages under the identity of any dishon-
est sender, where recipient and sender can both be real names or aliases. Note
also that Ch5 means declassifying the payload X: the message was directed to a
dishonest agent, so if it was a secret so far, it cannot be considered one anymore.

For formulating goals, and especially the interface to the application, we intro-
duce the set secCh(A,B) that represents all messages ever sent by an honest
A for an honest B. Note the similarity between rules Ch4 and Ch7: they are
applicable when a message that looks like a legitimate message from honest A
to honest B with the right session key arrives at B. Ch4 can fire if the corre-
sponding X was indeed sent by A for B, i.e., secCh holds, and otherwise we
have an authentication attack, and Ch7 fires. This expresses that the channel
ensures non-injective agreement of the payload messages: recipient B can be
sure it came from A, but we do not check for replay here. In fact, in this simple
channel, the intruder can simply replay the encrypted message so that B can
receive a payload more often than it was sent. For an example of a channel
offering replay protection, see Section 2.7.

Now consider the idealization Ch? of the protocol, i.e., the restriction to ?-labeled
steps of the Ch protocol as in Figure 2.4: this describes abstractly every changes
that the channel can ever do to the sets outbox and inbox that it shares with
the application (given that the channel protocol does not have an attack, i.e.,
Ch7 can never fire): all messages sent by honest A to honest B move to a
set secCh(A,B) and from there into the inbox of B, and the intruder can read
messages directed to a dishonest B and send messages as any dishonest A.

Observe how interface and attack declaration complement each other: when a
message arrives at an honest B coming apparently from an honest A, either this

2.2 Stateful Vertical Composition 29

Ch?3 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :X ← outbox(A,B).
? :X → secCh(A,B).

Ch?4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :X ∈̇ secCh(A,B).
? :X → inbox(A,B)

Ch?5 : ∀A ∈ Names, B ∈ Names|Dis.

? :X ← outbox(A,B).

? :
X−−−−−→

Ch?6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? :X → inbox(A,B)

Figure 2.4: Idealization of the channel protocol from Figure 2.3

is true (and rule Ch4 is applicable), or not (and rule Ch7 is applicable). The
former case is what the interface advertises, while if the latter can ever happen,
the verification of the channel fails.

Secrecy is specified implicitly: recall that all messages from the application are
part of the set Sec of shared secrets and it counts as an attack if a protocol leaks a
secret that has not been explicitly declassified. Here we only declassify messages
that are directed at a dishonest agent (Ch?5), i.e., the interface advertises that it
will keep all messages secret (if they are not public anyway) except those sent to
dishonest recipients.

Example 2.5 (Perfect Forward secrecy). Figure 2.5 shows a modification of
our running example that also provides perfect forward secrecy for the chan-
nel, i.e., even when the private key of the server B is given to the intruder,
it does not compromise past sessions. For this reason, we have a new special
rule Ch0a that gives inv(pk(B)) to the intruder and marks B as compromised.
The transactions of the key-exchange (Ch0b, Ch1 and Ch2) require that B is
uncompromised; however, after the key K is established, the channel allows for
transactions with a compromised B. In our running example, the channel would
not provide forward secrecy because the intruder could learn all session keys K
any client has established with B, and thus decrypt all traffic with B. We have
a slightly more complicated key exchange: in Ch0b the server generates a new
(ephemeral) public key PK and signs it. Ch1 is similar to the running example,
except that the key K is now encrypted with PK instead of inv(pk(B)). This is
somewhat simulating an aspect of Diffie-Hellman, since both PK and P play the
role of ephemeral keys, and later discovery of the authentication key inv(pk(B))
does not reveal the session key K. We do not need to even update the specifica-
tion of the goals, because the channel should provide exactly the same interface
to the application: it keeps the secrecy of all payload messages that have not
been explicitly declassified (either by the application or by sending to a dishon-
est agent with Ch5). It is merely a change on the channel level that long-term

30
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Ch0a : ∀B ∈ Agent.

Ch :B → compromized

Ch :
inv(pk(B))−−−−−−−−−−→

Ch0b : ∀P ∈ AliasHon, B ∈ Agent, new PK .

Ch :B /̇∈ compromized
Ch : PK → tmpK(B,P)

Ch :
sign(inv(pk(B)),fPK (B,P,PK))−−−−−−−−−−−−−−−−−−−−−−→

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch :B /̇∈ compromized

Ch :
sign(inv(pk(B)),fPK (B,P,PK))←−−−−−−−−−−−−−−−−−−−−−−

Ch :K → sessKeys(P,B).

Ch :
crypt(PK ,sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀A ∈ Alias, B ∈ Agent|Hon.

Ch :B /̇∈ compromized

Ch :
crypt(PK ,sign(inv(P)),fnewSess(P,B,K))←−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : PK ← tmpK(B,P)
Ch :K → sessKeys(B,P)

Figure 2.5: Example for a channel with perfect forward secrecy.

private keys may be lost.4

Let us take stock. We can define application and channel protocols App and Ch
that interact with each other via the inbox and outbox sets, and the idealization
of the channel protocol Ch? describes abstractly the properties that the channel
guarantees, such as authentication or secrecy properties, and in fact, one can use
this for more complicated properties like preserving the order of transmissions.
Verifying the application now essentially means to verify that App ‖ Ch? is
secure, i.e., that the application has no attack as long as the channel does not
manipulate the inbox and outbox sets in any other way than described in Ch? and
does not leak any messages except those explicitly declassified in Ch?. The first
main point of composition is here that this verification App ‖ Ch? is independent
of the concrete implementation Ch: any channel Ch′ with Ch′? = Ch? would
work! In fact, using Theorem 2.10 we can derive:

Theorem 2.13 (Vertical Composition (with unabstracted payload)). Given a
channel protocol Ch and an application protocol App w.r.t. a ground set Sec of

4Note that in our specification the public-key infrastructure is only used by the channel.
If the application were to use them, then inv(pk(B)) would have to be part of Sec, and thus
declassified in Ch0a, and similarly compromized would have to be a shared set (i.e., operations
labeled ?).

2.3 Abstracting the Payload 31

terms where the only shared sets are the inbox and outbox sets5 s.t. (Ch,App,Sec)
is parallel composable. If both App ‖ Ch? and App? ‖ Ch are secure and do not
leak secrets (in the typed model) then the vertical composition App

Ch
is secure (even

in the untyped model).

The verification of App ‖ Ch? is now independent of the concrete channel, how-
ever the verification of App? ‖ Ch is still depending largely on the concrete
messages of App, especially if, to achieve well-formedness, almost everything in
App has to be labeled ?. The next section is solving exactly this.

2.3 Abstracting the Payload

As the third and core contribution of this chapter, we show how to verify the
channel independent of the payload messages of a particular application. After
recasting the vertical composition as a parallel composition, the problem is that
a concrete execution of Ch ‖ App? has the concrete messages from the application
at least in the outbox and inbox sets and as subterms of the messages that the
channel transmits. There are two reasons why we want to do this independently
of App: it should be simpler (we do not want the complexity of the messages
of App) and more general (we do not want to have to verify the channel again
when considering a different application).

We show a transformation of the problem, at the end of which we have a com-
pletely App-independent protocol Ch] such that each transformation is sound
(if there is an attack, then so there is after the transformation). If we manage
to verify Ch], then we have also verified Ch ‖ App? and (with the results of
the previous section) the vertical composition App

Ch
. In fact, the requirements for

automated verification tools to handle Ch] are modest: besides whatever the
modeling of the channel itself requires, our result will only require a supply of
fresh constants that can be used as payloads and which can occasionally be
given to the intruder—and the tool needs to be able to track which ones are
still secret.

5Note: ?-labeled set operations on other sets (like secCh in the example) are not forbidden
by this as long as each set is mentioned in only one of the protocols. This then simply means
that the respective set is not “hidden” by the interface.

32
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

2.3.1 Abstract Constants

At the core of the transformation is the idea to replace the concrete payload
messages that can be inserted on the channel by abstract constants in a sound
way. The intuition is as follows: the precise form of the messages of the appli-
cation should not matter as long as we can ensure that they do not interfere
with the form of the messages of the channel. For that purpose, let G ⊆ Sec
be an infinite set of constants disjoint from GSMPCh and from GSMPApp. All
elements of G are elements of a new type a that does not occur in App or Ch.
We now define a protocol Ch] where we replace payload messages X of type p
by variables of this type a, and where we remove the outbox and inbox sets.

Moreover, we introduce two new sets, closed and opened. We use these two
sets during transactions to keep track of which constants from G have been
declassified, namely they are in closed if they have not been declassified, in
opened otherwise.

2.3.2 Translation to the abstract channel

We now explain formally the transformation of Ch into the protocol Ch]. As
explained, in the rules of Ch], the payload messages of type p have been re-
placed by variables of type a, thus allowing us to verify the channel without
considering the concrete terms from the application. Furthermore, since after
this abstraction we do not need the interface with the application anymore, we
drop the steps with outbox and inbox sets. We prove later in this chapter that
Ch] has an attack if Ch ‖ App? has, i.e., this abstraction is sound.

Definition 2.14 (Transformation of rules of Ch to rules of Ch]). Given a chan-
nel rule Chi, its translation to Ch] rules is as follows.

• we remove all the steps containing outbox or inbox sets,

• if the rule contains any variable X of type p, we make a case split into
two rules: one containing the positive check (? : X ∈̇opened) and the other
containing (? : X ∈̇ closed), and X is now of type a. We repeat this case
splitting until there is no more variable of type p, and

• for every rule that contains both (? : X ∈̇ closed) and (? :
X−−−−−→), we

replace these two steps by (? : X ← closed. ? : X → opened. ? :
X−−−−−→).

Finally, we add the special rule: Ch]new : new G.? : G → closed for creating new
constants.

2.3 Abstracting the Payload 33

The idea of the special rule (Ch]new) is that any “new” abstract constant is
first inserted in closed, and that they are moved to opened and reveled to the
intruder whenever they represent a payload that is declassified. Note that this
setup handles both payloads that are secret to the intruder and payloads that are
known to the intruder, and further they can be fresh or they can be a repetition.
We now give as an example the translation of the rules from Figure 2.3:

Ch]1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch :K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch]2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch :K → sessKeys(B,P)

Ch]3a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :G ∈̇ opened/G ∈̇ closed.
Ch :K ∈̇ sessKeys(A,B).
? :G→ secCh(A,B).

Ch :
scrypt(K,fpseudo(A,B,G))−−−−−−−−−−−−−−−−−−−→

Ch]4a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,fpseudo(A,B,G))←−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(B,A).
? :G ∈̇ secCh(A,B).

Ch]5a :

? :G ∈̇ opened.

? :
G−−−−−→

Ch]5b :

? :G← closed
? :G→ opened.

? :
G−−−−−→

Ch]6a,b :

? :G ∈̇ opened/G ∈̇ closed.

? :
G←−−−−− .

Ch]new : new G.

? :G→ closed

Ch]7a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,fpseudo(A,B,G))←−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(A,B).

? :G /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.6: Abstraction for our example channel Ch from 2.3

Example 2.6 (Abstraction of the channel from Example 2.4). In Figure 2.6, we
give the set of rules of Ch] transformed from the set of rules given in Figure 2.3
following Definition 2.14 where we have actually renamed the payload variables

34
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

X into G to emphasize that they now bear the type a. We consider the same set
of agents that we used in Example 2.3. We write ? : G ∈̇ opened/G ∈̇ closed as
a syntactic sugar to avoid writing two rules, one with (? : G ∈̇ opened) and one
with (? : G ∈̇ closed), when all other things are equal.

Ch1 and Ch2 are not affected by the transformation since they do not deal with
any payload messages. These two rules can be seen as “pure” channel rules since
they are already independent of any application protocol. Thus Ch]1 and Ch]2 are
identical to the original rules.

A payload message X occurs in Ch3, thus we need to divide this rule into two
rules. The rule Ch]3a contains the positive check (? : G∈̇opened) at the beginning,
whereas the rule Ch]3b contains (? : G ∈̇ closed). The further transformations are
similar for the two rules since there is no declassification step for the payload.
The step containing the set operation for outbox is dropped. The payload message
inserted into the secCh set is replaced by the variable G of type a, as is the payload
message in the transmitted message. The transformations for the rule Ch4 are
very similar. It needs to be split into two rules, the inbox step is dropped and
the payload messages X are replaced by a variable G of type a.

The rule Ch5 also has to be split into two rules. Since the payload is declassified
upon transmission to the intruder, the transformations are different for the two
rules. In Ch]5a, we add the positive check (? : G∈̇opened). We then simply remove
the step with outbox and replace the payload message by the variable G of type a.
In Ch]5b, we add the positive check (? : G ∈̇ closed). We also remove the step with
outbox. Since, the remaining step, after replacing the payload with the variable
of type a, is the declassification of that variable, and since that G is in closed,
we need to replace the previously added positive check and the declassification
step by (? : G← closed.? : G→ opened.? :

G−−−−−→). We correctly abstracted the
declassification of the original payload.

The rule Ch6 has to be be split into two rules. The step with the set inbox
is removed and the payload is replaced by a variable of type a in both rules.
Note that these rules become superfluous (since they contain only a check and a
receive) but we keep them here to illustrate the transformation. We also add the
rule Ch]new that me mentioned before. Finally, Ch7 has also to be split into two
rules. Further, in both rules, the payload variable X is replaced by the variable
G of type a.

Recall that the parallel composability of Ch and App requires that GSMPCh ∩
GSMPApp? ⊆ Sec ∪ {t | ∅ ` t}, and that the definition of an application requires
that GSMPApp ⊆ Sec ∪ {t | ∅ ` t}. For the abstraction of the payload we
actually need something even stronger, namely that the application is completely

2.3 Abstracting the Payload 35

disjoint from the channel without payloads. Having defined Ch], we can specify
this simply as GSMPCh] ∩GSMPApp ⊆ {t | ∅ ` t}, i.e., the only terms common
to the channel and the application are public. This allows us to label any
ground term and subterm of a channel and an application protocol in any well-
typed instantiation in a unique way either as Pub (when it is in {t | ∅ ` t}),
Ch (when it is in GSMPCh] or a variable of type p) or App (when it is in
GSMPApp). We require that when f(t1, . . . , tn) is a message of GSMPCh and
Ana(f(t1, . . . , tn)) = (K,T) that none of the keys in K or their subterms are
labeled App, i.e., the channel never uses payload messages in key positions. This
is because application payloads are abstracted and thus application payload
messages cannot be used to encrypt channel messages. In fact, a violation of
this rule would be a poor practice of protocol design.

Let us now collect all the conditions we stated for vertical composition in the
following notion of vertical composability:

Definition 2.15 (Vertical Composability). Let Ch be a channel protocol, App
an application protocol w.r.t. a ground set Sec of terms. Then (Ch,App,Sec) is
vertical composable iff

1. (Ch,App,Sec) is parallel composable,

2. GSMPApp ⊆ Sec ∪ {t | ∅ ` t},

3. GSMPCh] ∩GSMPApp ⊆ {t | ∅ ` t}, and

4. none of the keys in K or their subterms in an analysis rule for a channel
term s.t. Ana(f(t1, . . . , tn)) = (K,T) are labeled App.

The first condition was also required in Theorem 2.13. Conditions (2)–(3) give
the disjointness requirements. Condition (4) requires that the keys or their
subterms are not labeled App. We now can give the main theorem:

Theorem 2.16. Let Ch be a channel protocol and App an application protocol
w.r.t. a ground set Sec of terms that are vertical composable. If there is an
attack in Ch||App?, then there is one in the protocol Ch].

The proof is given in Section 2.4 and the proof idea is as follows. First, we define
an intermediate channel protocol ChApp where the payloads are instantiated by
arbitrary concrete ground terms from the application and where we delete the
steps with the sets outbox and inbox. We show that this protocol has an attack
if Ch ‖ App? has. Then we define a translation of ground traces of ChApp that
replaces the concrete payloads with abstract ones, keeping track of which are

36
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

declassified, and show that the resulting trace is a trace of Ch]. Again, we show
that all attacks are preserved.

This last result allows us to conclude on the security of the vertical composition
of a channel and an application protocol:

Corollary 2.17. Let Ch be a channel protocol and App an application protocol
w.r.t. a ground set Sec of terms. If (Ch,App,Sec) is vertical composable, and
Ch] and Ch? ‖ App are both secure in isolation, then the composition App

Ch
is also

secure.

To summarize, in order to prove the security of App

Ch
w.r.t. a ground set Sec of

terms, one has first to prove that (Ch,App,Sec) is vertical composable (Defini-
tion 2.15). This means that one has to prove (Ch,App,Sec) is parallel compos-
able (Definition 2.9) and Ch ‖ App is type-flaw resistant (Definition 2.4). Then,
one has to make sure that all the terms from GSMPApp are shared secrets or
public terms, and that none of the keys used in the channel or their subterms
are labeled App, to avoid them being abstracted. Finally, one has to check that
GSMPApp and GSMPCh] only shares public terms. All these requirements are
syntactical conditions. Provided that Ch] and Ch? ‖ App are secure in isolation,
one can conclude with Corollary 2.17. We show how to apply the results to the
protocols from our main examples in Section 2.6.

2.4 Proofs

We give in this section the proofs of our results. We first introduce a new nota-
tion. Each constraint can be seen as a sequence of blocks with each block being
an application of a transaction rule. We sometimes write a block between pq.
For n > 0, we write A(n) when we consider the n-th block or A(1, n) when we
consider the n first blocks of the constraint. We adopt the following convention
for n = 0: A(0) and A(1, 0) are the empty constraints. Given a constraint
A(1, n), we define M(A(1, n)) = {m | m←−−−−− occurs in A(1, n)} as the in-
truder knowledge until the n-th block of the constraint A. We use later the
same notations for traces, i.e., tr(1, n) and tr(n). We designed in Section 2.3 a
transformation from a channel protocol Ch to the protocol Ch]. To prove the
main theorem of this work, we first want to introduce an intermediary transfor-
mation. In order to lower the complexity of verifying the protocol Ch ‖ App?,
we want to reduce the problem of solving an intruder constraint representing
a protocol execution of Ch ‖ App? containing set operations coming from the
idealization of the application protocol App? to solving an intruder constraint

2.4 Proofs 37

without these set operations — namely set operations dealing with the outbox
and inbox sets. We call the protocol that we obtain at the end of this transfor-
mation an instantiated channel and we denote it by ChApp.

Definition 2.18 (Transformation of rules of Ch to rules of ChApp). Given a
pure channel rule Chi, its translation into an instantiated channel rule is given
as follows. If the rule contains a step of the form (X ← outbox(A,B)), where
X is a payload variable of type p, it is split into a rule for every t ∈ GSMPApp

s.t. ChApp
i,t = Chi[X 7→ t] where the payload is instantiated with a ground subterm

from the application. All other steps with a set operation for a set of the set
families inbox or outbox are dropped.

Note that if Chi is a well-formed rule, then ChApp
i,t , for every t ∈ GSMPApp, are

also well-formed rules. Indeed, instead of retrieving a variable from an outbox
set, we instantiate it with a ground term from GSMPApp. By Definition 2.15, a
channel protocol can only retrieve from an outbox set, no other set operation is
allowed on this set family. Similarly, a channel protocol can only insert into an
inbox set, no other set operation is allowed on this set family. We now state a
soundness theorem for this transformation.

Theorem 2.19. Let A be a constraint of the protocol Ch ‖ App? and I an
interpretation s.t. I |= A. Then, there exists a constraint A′ of the protocol
ChApp s.t. I |= A′. Furthermore, if there is an attack against Ch ‖ App? then
there is an attack against ChApp.

Proof. Let A be a constraint of Ch ‖ App? and I an interpretation s.t. I |= A.
We define the following translation and then prove it is a constraint of ChApp.
The translation of the constraint A, that we denote A′, is obtained by the
following operations:

• for every block b being an application of an App? rule, drop the block b,

• for every step (X ← outbox(A,B)), instantiate X with I(X) in the whole
constraint, and

• for every step s where a set of the set family outbox or inbox occurs, drop
the step s (but not the entire block to which this step belongs to).

We show that A′ is a constraint of the protocol ChApp defined in Definition 2.18
and that I |= A′. We proceed by induction where the induction hypothesisH(n)
is concerned with the first n blocks of the constraints A(1, n) and A′(1, n):

(a) A′(1, n) is a valid constraint of the protocol ChApp,

38
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

(b) the knowledge of the intruder is the same in both constraints, i.e.M(I(A(1,
n))) = M(I(A′(1, n))),

(c) the state of the sets, except the set from the set families outbox and inbox
and sets only accessed from App? are the same in both traces, and

(d) I |= A′(1, n)

For n = 0, i.e., the empty constraints, it is obvious. Let us now assume that
H(n) holds for every blocks until n ≥ 0, let us prove it holds also for n + 1
blocks. We have to distinguish if the block n + 1 is the application of a Ch or
an App? transaction.

First, consider the case when the block n+ 1 is the application of an App? rule.
Then, it is dropped from the constraint, so A′(1, n+1) = A′(1, n). By induction
hypothesis, I |= A′(1, n) so I |= A′(1, n+ 1) (d). Since the only set operations
allowed in App? are set operations involving sets from the set families inbox and
outbox or sets only accessed by the application, the requirement on the state
of sets holds (c). There are no sent messages in App?, thus we also have that
M(I(A(1, n + 1))) = M(I(A′(1, n + 1))) (b). Also, by induction hypothesis
A′(1, n) is a valid constraint of ChApp and thus so is A′(1, n+ 1) (a).

Second, consider the case when the block n + 1 is an application of a Ch rule.
If the block n + 1 contains a step (X ← outbox(A,B)), since by induction
hypothesis I |= A(1, n) and I(X) ∈ GSMPApp, it is possible to instantiate X
with I(X) in the whole constraint. Then, all the steps where a set of the set
family inbox or outbox occur are dropped. Since by induction hypothesis, the
constraint until now did not contain any of these sets, removing these steps
does not affect the satisfiability of the constraint, i.e. I |= A′(1, n + 1) (d).
Following this argument, the knowledge of the intruder remains the same after
the translation, so M(I(A(n+ 1))) = M(I(A′(n+ 1))) (b) and besides sets of
the set families inbox and outbox, the state of sets remains the same (c). Also,
during the translation of this Ch block, we instantiated X with a ground term
from GSMPApp and remove the sets from the set families inbox and outbox, so
we obtain a valid block of a constraint of ChApp. Thus A′(1, n + 1) is a valid
constraint of ChApp (a).

By induction we proved that there exists a constraint A′ of the protocol ChApp

s.t. I |= A′. It entails that if there is an attack against Ch ‖ App?, there is an
attack against ChApp.

We are now ready to take it to the level of the protocol Ch]. We want to define
a ground trace of Ch] from a translation of a ground trace of ChApp. For that

2.4 Proofs 39

purpose, we define an abstraction function denoted g that takes terms from
GSMP•App = GSMPApp \{t | ∅ ` t}— namely the terms that are labeled App —
and abstract from them by replacing them by a fresh constant g from G — the
infinite set of constants that we defined in Section 2.3.1. This function leaves
unchanged the terms labeled Ch or Pub:

Definition 2.20 (g function). Let g be an injective function from GSMP•App

to G (i.e., ∀s, t ∈ GSMP•App. g(s) = g(t) ⇒ s = t). We extend g to a func-
tion from TΣ → TΣ by setting g(f(t1, . . . , tn)) = f(g(t1), . . . , g(tn)) whenever
f(t1, . . . , tn) /∈ GSMP•App.

If we apply this function to all steps of a ground trace of ChApp, we can abstract
from the terms introduced by the application. We use this function to defined
a ground trace tr ′ that we later prove to be a valid trace of Ch]:

Definition 2.21 (Translated trace tr ′). We define the meta function status on
the abstract constants of a trace tr ′:

status(g, tr ′(1, n)) =

{
(g ∈̇ opened) if (g → opened) ∈ tr ′(1, n)

(g ∈̇ closed) otherwise

For a given ground trace tr of ChApp and n >= 1, we define the translated ground
trace tr ′ by:

tr ′(0) = {pg → closedq | g ∈ g(GSMP(M(tr))) ∩G}
tr ′(n) = p{status(g, tr ′(a, n− 1)) | g ∈ g(tr(n)) ∩G}.g(tr(n))q

Besides, if g ∈ declassifiedDY(tr ′(n)) ∩ G, i.e., g is declassified in the n-th
block in a step (? :

g←−−−−), and (g ∈̇ closed) ∈ tr ′(n), then these two steps are
replaced by (g ← closed.g → opened.? :

g←−−−−).

We now show that the declassified terms of a ground trace of Ch] are just the
abstraction of the declassified terms of the original ground trace of ChApp:

Lemma 2.22. The declassified Payload messages of the translated trace coin-
cides with the ones of the original trace modulo g, i.e., g(declassifiedDY(tr(1, n)∩
GSMP•App) = declassifiedDY(tr ′(0, n))) ∩G.

Proof. Let g ∈ g(declassifiedDY(tr(1, n)) ∩ GSMP•App). By Definition 2.20,
g ∈ G. If g ∈ closed, then it is going to be declassified and inserted in
opened during the translation of original trace as defined in Definition 2.21
and then g ∈ declassifiedDY(tr ′(0, n)). If g ∈ opened, then it means it has

40
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

been declassified before because abstraction constants can only be inserted in
an opened during declassification and then again g ∈ declassifiedDY(tr ′(0, n)).
Thus, g ∈ declassifiedDY(tr ′(0, n)) ∩G.

Let M = declassifiedDY(tr(1, n)) and M ′ = declassifiedDY(tr ′(0, n)), i.e., the
declassified messages of each trace without restriction to payloads, for the other
direction. First, observe that for every s ∈ M ′ there is a t with M ` t
and g(t) = s; this is because M ′ contains only messages that are the trans-
lation g(t) of a message t declassified in tr , or that have been opened, i.e.,
t ∈ declassifiedDY(tr(1, n)) ∩ GSMP•App. Let M ′ ` s, then there is a corre-
sponding derivation M ` t with g(t) = s, because we can replace every con-
stant from G in the proof M ′ ` s with the corresponding term from M . Thus
declassifiedDY(tr ′(0, n)) ⊆ g(declassifiedDY(tr(1, n))).

We thus proved that the declassified Payload messages of the translated trace co-
incides with the ones of the original trace modulo g, i.e., declassifiedDY(tr ′(0, n))∩
G = g(declassifiedDY(tr(1, n)) ∩GSMP•App).

Lemma 2.23. Let tr be a ground trace from ChApp of length at least n + 1.
Let M+ = M(tr(1, n + 1)) and M? = M(tr ′(0, n + 1)). If g(DY(M(tr(1,
n)))) ⊆ DY(g(M(tr ′(0, n)))) then also g(DY(M+)) ⊆ DY(M?) or there exists
g ∈ DY(M?) s.t. (g → closed) occurs in tr ′(0, n+ 1) and not (g → opened).

Proof. Let tr , tr ′, n,M+,M? given as in the statement. Let us say that tr(1, n+
1) leaks payload if there is a message t ∈ GSMP•App \declassifiedDY(tr(1, n+1))
such that M+ ` t, and similarly, say that tr ′(0, n+ 1) leaks payload if there is a
message g ∈ G \ declassifiedDY(tr ′(0, n+ 1)) such that M? ` g. If tr ′(0, n+ 1)
leaks payload, then this lemma holds, because M? ` g for some g ∈ G (so g →
closed occurs in the trace) and g /∈ declassifiedDY(tr ′(0, n+ 1)) (so g → opened
does not). Thus, for the remainder of this proof we can assume that tr ′(0, n+1)
does not leak payload.

Note that, if g ∈ declassifiedDY(tr ′(1, n + 1)) ∩ G, then by Lemma 2.22, there
exists a t ∈ declassifiedDY(tr(0, n+ 1)) ∩GSMP•App such that g(t) = g.

We proceed by structural induction over the derivation M+ ` t (see Defini-
tion 2.1). Our induction hypothesis (for m ∈ N) is: ϕ(m) ≡ ∀t. M+ `m t =⇒
M? ` g(t) where `m denotes the derivation in at most m steps.

The initial case ϕ(0) coincides with the (Axiom) case: M+ ` t, t ∈ M+. By
definition of the translated trace tr ′, g(t) ∈M? thus M? ` t.

For the induction step ϕ(m) =⇒ ϕ(m+ 1): we have either a composition or a

2.4 Proofs 41

decomposition step.

For the (Compose) derivation, we have that t = f(t1, . . . , tp) for some f ∈

Σppub and
M+ `m t1 · · · M+ `m tp

M+ `m+1 f(t1, . . . , tp)
. By induction, we have that M? `

g(t1),. . . ,M? ` g(tp). We further distinguish two cases:

1. f(t1, . . . , tp) ∈ GSMP•App: we have g(f(t1, . . . , tp)) ∈ G, and ti ∈ GSMPApp

for 1 ≤ i ≤ p. For each 1 ≤ i ≤ p, we have either ti ∈ {t | ∅ ` t}, then
g(ti) = ti, otherwise g(ti) ∈ G. In that case, g(ti) ∈ declassifiedDY(tr ′(0,
n+1))∩G since tr ′(0, n+1) does not leak, and thus ti ∈ declassifiedDY(tr(1,
n+1)) ∩ GSMP•App by Lemma 2.22. Thus, ti ∈ declassifiedDY(tr(1, n+1))
for all 1 ≤ i ≤ p (including public ti). Thus, by DY-closure also f(t1, . . . ,
tp) ∈ declassifiedDY(tr(1, n+ 1)), and since also f(t1, . . . , tp) ∈ GSMP•App,
again by Lemma 2.22, we have g(f(t1, . . . , tp)) ∈ declassifiedDY(tr ′(1,
n + 1)) ∩ G and thus g(f(t1, . . . , tp)) ∈ M? by the construction of tr ′.
We thus have M? ` g(f(t1, . . . , tp)) and therefore ϕ(m+ 1) holds.

2. f(t1, . . . , tp) 6∈ GSMP•App: then by definition of g, g(f(t1, . . . , tp)) = f(g(t1),
. . . , g(tp)). Since M? ` g(ti) by induction, also M? ` f(g(t1), . . . , g(tp))
and thus ϕ(m+ 1) holds.

(Decompose): then there is t0 = f(t1, . . . , tq) such that t ∈ {t1, . . . , tq} and

M+ `m t0 M+ `m k1 . . . M+ `m kp

M+ `m+1 t

Ana(t0) = ({k1, . . . , kp}, {t} ∪ T),
p ≤ q

By the form of Ana rules, {k1, . . . , kp} ⊆ {t1, . . . , tq}. W.l.o.g. we can assume
that the keys are the first p positions of f , i.e. t1 = k1, . . . , tp = kp. By
induction, we have that M? ` g(t0),M? ` g(k1), . . . ,M? ` g(kp). To show:
M? ` g(t). We distinguish further two the cases:

1. t0 ∈ GSMP•App: we have that g(t0) ∈ G, and t, t1, . . . , tq ∈ GSMPApp.
For each 0 ≤ i ≤ q, we have either ti ∈ {t | ∅ ` t}, then g(ti) = ti,
otherwise ti ∈ GSMP•App and thus g(ti) ∈ G. In that case, g(ti) ∈
declassifiedDY(tr ′(0, n + 1)) ∩ G, since tr ′(1, n + 1) does not leak, and
thus by Lemma 2.22, ti ∈ declassifiedDY(tr(1, n+ 1)) ∩GSMP•App. Thus,
ti ∈ declassifiedDY(tr(1, n + 1)) for all 0 ≤ i ≤ q (including public ti).
Thus by DY, also t ∈ declassifiedDY(tr(1, n + 1)). If t ∈ {t | ∅ ` t},
then trivially M? ` g(t), otherwise since t ∈ GSMPApp, we have t ∈
declassifiedDY(tr(1, n + 1)) ∩ GSMP?

App, and thus again by Lemma 2.22,
g(t) ∈ declassifiedDY(tr ′(0, n + 1)) ∩G, and thus g(t) ∈ M? by construc-
tion. Therefore M? ` g(t) and therefore ϕ(m+ 1) holds.

42
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

2. t0 /∈ GSMP•App: excluding the trivial case t0 ∈ {t | ∅ ` t}, t0 is thus
labeled channel and thus by our assumptions so are also the keys t1, . . . , tp,
i.e., they cannot be part of GSMP•App either. Thus, g(t0) = g(f(t1, . . . ,
tq)) = f(g(t1), . . . , g(tq)) = f(t1, . . . , tp, g(tp+1), . . . , g(tq)). By induction,
we have that M? ` g(t0) and M? ` g(ti) = ti for 1 ≤ i ≤ q. Thus the
corresponding analysis step is possible in M?, yielding M? ` g(t).

Theorem 2.16. Let Ch be a channel protocol and App an application protocol
w.r.t. a ground set Sec of terms that are vertical composable. If there is an
attack in Ch ‖ App?, then there is one in the protocol Ch].

Proof. Let us consider a constraint A of Ch ‖ App? and an interpretation I
s.t. I |= A. By Theorem 2.19, there exists a constraint A′ of ChApp s.t. I |= A′.
I(A′) is a ground trace of ChApp. We note it tr and we consider its translation
following Definition 2.21.

We proceed now by induction, where the induction hypothesisH(n) is concerned
with the first n blocks of the original trace tr(1, n) and the n+ 1 blocks of steps
of the translated trace tr ′(0, n) defined in Definition 2.21:

• either tr ′(0, n) is a valid trace of Ch], and we have that g(DY(M(tr(1,
n)))) ⊆ DY(M(tr ′(0, n))),

• eitherDY(M(tr ′(0, n)))∩ (g(Sec\declassifiedDY(tr(1, n)))∪{attackCh}) 6=
∅

The second conjunction holds for n = 0. We show that tr ′(0, 0) is a valid trace
of Ch]. It was defined in Definition 2.21 that initially a number of g-values are
inserted in the closed set. These steps can be generated by the rule Ch]new. There
is initially no declassified values.

Suppose the induction hypothesis holds for some number n ≥ 0, and the number
of blocks of steps in both traces is at least n + 1. Note that once the second
disjunction is true for n, it is also true for all n′ > n. Thus we suppose the second
disjunction does not hold until n. We start by showing that the translation of
every new block is the application of a valid rule of Ch]. Note that as specified
in Definition 2.21, all the constants g ∈ G occurring in tr ′(0, n + 1) have been
inserted in the set closed at the start of the trace. The function status only
inserts positive checks at the beginning of the blocks, as in every rule of Ch].

2.4 Proofs 43

There are already no outbox or inbox in ChApp. We then apply the function g
to the block that replace every ground term from the application, that replaced
payload variables, by an abstract constant from G. We also specify how to
correctly declassify the constants from G. Thus we obtain a valid application
of a rule of Ch]. Then, we can now show that the induction hypothesis holds
for n + 1. We distinguish the following cases according to the kind of blocks
of steps that we are concerned with at the block n + 1. In the following, we
consider that the second disjunction is not true until n, otherwise the induction
is trivially true as we explained earlier.

• new messages are received but not the constant attackCh: it means the
knowledge of the intruder is augmented by the set of new received mes-
sages, i.e. M(tr(1, n+1)) = M(tr(1, n))∪M(tr(n+1)). By induction hy-
pothesis, we can apply Lemma 2.23 and we have g(DY(M(tr(1, n+1)))) ⊆
DY(g(M(tr ′(0, n + 1)))) or there exists g ∈ DY(g(M(tr(1, n + 1)))) s.t.
(g ∈̇ closed) occurs in tr ′(0, n+ 1). Therefore, either of the disjunction of
the induction hypothesis holds and H(n+ 1) holds.

• no new messages are received: the knowledge of the intruder stays the
same, i.e. M(tr(1, n + 1)) = M(tr(1, n)). We can use the induction
hypothesis and apply Lemma 2.23, either of the disjunction holds and
H(n+ 1) holds.

• the constant attackCh is received in the original trace: as explained in
Definition 2.20, the constant attackCh is not abstracted. This means the
constant attackCh is also received in the translated trace. Therefore the
second disjunction holds in the block n+ 1 and H(n+ 1).

By induction, we proved the theorem.

Finally, the composition of vertical composable and secure application and chan-
nel protocols is secure:

Corollary 2.17. Let Ch be a channel protocol and App an application protocol
w.r.t. a ground set Sec of terms. If (Ch,App,Sec) is vertical composable, and
Ch] and Ch? ‖ App are both secure in isolation, then the composition App

Ch
is also

secure.

Proof. This is a direct consequence of Theorem 2.16 and Theorem 2.10.

44
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

2.5 Extension of the typing results

2.5.1 Extension of the Typing Result [Hess18]

We define a compatibility relation as the least reflexive and symmetric relation
such that:

• τ1 ./ τ2 if τ1 ≤ τ2, and

• f(τ1, . . . , τn) ./ f(τ ′1, . . . , τ
′
n) if τ1 ./ τ ′1 ∧ . . . ∧ τn ./ τ ′n

Note that ./ is not transitive, e.g. p ./ f3(Nonce) and f1(Nonce,Agent) ./ p, but
f3(Nonce) 6./ f1(Nonce,Agent).

We silently assume in the following that all substitutions are idempotent, i.e. vari-
ables of the domain do not occur in the image. Note that all unifiers of terms
can be made idempotent.

As it is standard we define the composition θ ◦ σ of two substitutions σ and
θ as function composition. Note that the result is in general not idempotent
(e.g. σ = [x 7→ f(y)], θ = [y 7→ f(x)]), therefore, we silently assume in the
following that fv(img(θ)) ∩ dom(σ) = ∅ (which is the case for all constructions
we make in this chapter).

Lemma 2.24. Given well-typed σ and θ, then θ ◦ σ is well-typed.

Proof. Consider any variable x, we have to show Γ(x) ≥ Γ(σ(x)) ≥ Γ(θ(σ(x))).

By well-typedness of σ follows already Γ(x) ≥ Γ(σ(x)). If σ(x) is a variable,
then also Γ(σ(x)) ≥ Γ(θ(σ(x))) follows by well-typedness of θ. If σ(x) is not a
variable, no proper subterm of σ(x) can have type p or a type from Tp (because
otherwise Γ(x) would contain p or Tp as a proper subterm). Thus Γ(y) = Γ(θ(y))
for every variable y in σ(x), and thus Γ(σ(x)) ≤ Γ(θ(σ(x))).

Lemma 2.25. Let s, t be terms such that Γ(s) ./ Γ(t), and θ = [x 7→ u]
with Γ(x) = p and Γ(u) ∈ Tp such that θ(s) and θ(t) can be unified. Then
Γ(θ(s)) ./ Γ(θ(t)).

Proof. Consider P = pos(s) ∩ pos(t), the set of positions that exist in both s
and t. Note that Γ(s|p) ./ Γ(t|p) for all p ∈ P . Consider any position p where
x occurs in s or t, say in s. We consider two cases:

2.5 Extension of the typing results 45

• p ∈ P . Since Γ(s|p) ./ Γ(t|p), t|p is:

– either a variable of type p (thus Γ(θ(s|p)) ./ Γ(θ(t|p)))
– or a composed term of a type in Tp. Since θ(s|p) can be unified with
θ(t|p), follows Γ(t|p) = Γ(u) (thus Γ(θ(s|p)) = Γ(θ(t|p))).

• p /∈ P . Let p0 be the longest prefix of p with p0 ∈ P . Since Γ(s|p0) ./
Γ(t|p0), t|p0 must be variable (otherwise a strictly longer prefix of p would
be in P). However, that also means Γ(t|p0) contains as a subterm either
p or an element of Tp — that contradicts the requirements on the typing
system.

For all other positions p ∈ P (including p = ε), it follows Γ(θ(s|p)) ./ Γ(θ(t|p))
from the definition of ≤.

Theorem 2.2. Let s, t be unifiable terms with Γ(s) ≥ Γ(t). Then their most
general unifier is well-typed.

Proof. We show an invariant for the standard unification algorithm where a state
of the algorithm is characterized by a set of pairs of terms {(s1, t1), . . . , (sn, tn)}
to unify (initially this set consists of the given pair {(s, t)}) and a current sub-
stitution σ (initially the identity). The invariant is that Γ(si) ./ Γ(ti) and σ
is well-typed. We exploit during the proof the fact that the given s and t are
unifiable, and the standard unification algorithm is correct, i.e., it will return a
unifier σf that is most general, and at each state, the current σ will have σf as
an instance, and the (si, ti) pairs all have σf as a unifier.

The algorithm picks any pair (si, ti) to unify first and we distinguish the cases:

• Γ(si) = p. Then si is a variable (since p is not an atomic or composed
type). Since Γ(si) ./ Γ(ti), we have one of the following two cases:

– Γ(ti) = p, and hence ti is a variable. Then θ = [si 7→ ti] (or θ = [ti 7→
si], depending on the algorithm’s preference) is well-typed, thus θ ◦σ
is also well-typed by Lemma 2.24. Moreover, θ does not change the
type of any term it is applied to, i.e. Γ(θ(sj)) = Γ(si) ./ Γ(tj) =
Γ(θ(tj)).

– Γ(ti) ∈ Tp, and hence ti is not a variable. Thus θ = [si 7→ ti]
is well-typed since Γ(si) > Γ(ti). Moreover, θ ◦ σ is well-typed by
Lemma 2.24. By Lemma 2.25, we have that Γ(θ(sj)) ./ Γ(θ(tj)) for
the all pairs to unify.

46
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

This takes care of the case that one of the terms to unify is a variable of
type p.

• If si is a variable, but not of type p, then it cannot contain p or any
element of Tp as subterm of the type. Thus actually Γ(si) = Γ(ti) and the
substitution θ = [si 7→ ti] does not change any types and thus preserves
the invariant. The case that ti is a variable is handled symmetrically.

• Otherwise we have si = f(u1, . . . , uk) and ti = f(v1, . . . , vk) for some
operator f and Γ(ui) ./ Γ(vi) by construction, thus also here the invariant
is preserved recursively.

2.5.2 Extending the Results of [Hess18]

We now describe how the definition and results from [Hes19] can be extended to
the payload data type that we have introduced. We just summarize definitions
and proofs that do not require any changes, and we omit aspects that we do not
need for our result.

The thesis [Hes19] develops the typing result in several stages, namely in Sec. 3.2
first on intruder constraints without analysis (so the intruder can only compose
and unify) and without set operations and conditions; this is extended in Sec. 3.3
to transition systems (where analysis is also handled), and then in Sec. 4, this
is extended to stateful constraints (augmenting with set operations and condi-
tions). The reason is that Sec. 3.3 and Sec. 4 are done by reduction to problems
of Sec. 3.2; since all the extensions on all levels are similar, we will sometimes
group this together for the different levels.

Note that the typing result we have formalized so far is a conservative extension
of the typing system in [Hes19] (Sec. 3.2) in the sense that our system allows
strictly more types, considers strictly more substitutions as well-typed and leads
to a strictly larger SMP for a given protocol (since it is closed under well-typed
substitutions).

Our notion of type-flaw resistance is thus more liberal than [Hes19] (Def. 3.17
and 4.12) except for the requirements on inequalities: here [Hes19] gives two
possible ways to satisfy the requirements: either all free variables of the in-
equality are of atomic type or no subterm of the inequality is generic. We have
opted to specify only the second choice since we never practically needed the

2.5 Extension of the typing results 47

first and wanted to make the notion of type-flaw resistance not unnecessarily
complicated — the result holds however even when allowing both choices.

In section [Hes19], a sound, complete and terminating procedure for constraint
reduction is introduced. This procedure is applied to a pair (A, θ) where A is a
well-formed constraint and θ a substitution for variables that have been already
instantiated (so dom(θ) ∩ fv(A) = ∅); initially θ is the identity. This procedure
is unaffected by our extensions. The core of the typing result is the following
lemma:

Lemma 2.26 ([Hes19] (Lemma 3.18)). If (A, θ) is well-formed, A is type-flaw
resistant, θ is well-typed, and from (A, θ) the constraint reduction can reach
(A′, θ), then A′ is type-flaw resistant and θ′ is well-typed.

Proof. The constraint reduction can do any of the following steps:

• it can unify a received term s and a term t that the intruder has sent. Nei-
ther s nor t may be a variable (but may contain variables). By type-flaw
resistance and since s, t ∈ SMP(A) and are not variables, if they have a
unifier, then either Γ(s) ≤ Γ(t) or Γ(s) ≥ Γ(t), and thus by Theorem 2.2,
their most general unifier is well-typed. Thus, the invariants are satis-
fied on the resulting constraint. This is in fact the main point why our
extension of the typing result is correct.

• for equality we already have that the two terms must have compatible
types, and thus again their most general unifier is well-typed, and

• the other two operators are composition and analysis (in [Hes19] (Sec. 3.3)),
both just move to subterms or key-terms under which SMP is closed.

Thus, as far this procedure is concerned, the intruder never needs to make an
ill-typed choice to launch an attack. The constraint reduction terminates with
so-called simple constraints: all messages left to send for the intruder are vari-
ables with satisfiable inequalities. Without any inequality constraints, this is
trivially satisfiable, because the intruder can pick just any value for the remain-
ing variables. For constraints with inequalities [Hes19] (Lemma 3.7) (that is
independent of the typing) tells us to pick a fresh value for every remaining
variable and check the inequalities; if they are unsatisfiable, then they are un-
satisfiable for every choice, otherwise we have a solution. The point is that this
pick can be done also well-typed:

48
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Lemma 2.27 ([Hes19] (Lemma 3.19)). If (A, θ) is well-formed, A is simple,
and θ is well-typed, then (A, θ) has a well-typed model.

Proof. The point is that the intruder has unbounded reservoir of public con-
stants of any atomic type; for composed types with a public function symbol,
he can just apply the function symbol to fresh terms of the corresponding sub-
types. Private function symbols are in fact just syntactic sugar: a private func-
tion symbol f ∈ Σn is encoded as a public function symbol fp ∈ Σn+1

pub , where
the first argument for all terms of a protocol is a special constant the intruder
does not have, so he cannot compose “interesting” private terms of the protocol
(like private keys), but something that satisfies the typing. For our extension
with payload types, there is only one item to consider: the abstract payload
type p. Here, we have to pick a value for some type of Tp. This requires that
Tp 6= ∅, which is however not a restriction as we actually do want to use it with
concrete payloads.

From this follows immediately the typing result for constraints [Hes19] (Theorem
3.20) that a type-flaw resistant constraint has a solution iff it has a well-typed
solution.

As part of lifting the result to the protocol level, the analysis rules integrated
in [Hes19] (Sec. 3.3.3); this is relevant since the analysis rules are untyped, while
we have to handle this in way compatible with the typing result. The construc-
tion is to allow analysis steps for every subterm in the intruder knowledge except
variables. This is sufficient since the intruder does not have to analyze any term
that does not occur as a construction in his knowledge (because all other con-
structions are by the intruder, so he already knows the subterms). In fact, this
proof also works when we integrate payloads: either a variable of type p is never
instantiated (so the intruder does not have to analyze it) or it is instantiated
with a more concrete term that already occurs in the constraint (then it is al-
ready covered by the construction). Thus there is in fact no modification for
obtaining the result [Hes19] (Theorem 3.27) for the typing result on the proto-
col level: every satisfiable reachable constraint of a protocol has a well-typed
solution.

In [Hes19] (Sec. 4), the result is lifted to stateful constraints by a reduction proof
that maps set operations and check into equality and inequality checks. In fact,
the result theorem [Hes19] (Theorem 4.15) requires only the updates to type-
flaw resistance already discussed, i.e. for type-flaw resistant stateful protocols,
every satisfiable reachable constraint of a protocol has a well-typed solution.

2.5 Extension of the typing results 49

2.5.3 Update of the Parallel Composability Result

[Hes19] defines the declassified messages as those that are sent by an honest agent
in a ?-labeled step, i.e., those that some component explicitly wishes to declas-
sify. This mechanism was initially intended to apply only to a few distinguished
secrets used in both protocols, e.g., public and private keys. The construction in
this chapter, however, treats all messages of the payload and their submessages
(as far as they are not public) as members of Sec. For instance, in a pair-style
function (i.e., the intruder can both compose and decompose it), we would have
for instance that the intruder also immediately knows the components, and also
that he can build other messages of the protocol with these components. It is
unfeasible to explicitly declassify all these messages, because the intruder may
even compose well-typed messages from components that he learned in differ-
ent declassification steps. Therefore, we consider in this chapter a variant of
declassification that is closed under Dolev-Yao deduction.

2.5.4 Declassification (extended from [Hess18])

Let A be a labeled constraint and I a model of A. Then declassifiedDY(A, I) ≡
DY({t | ? :

t←−−−− occurs in I(A)}) is the set of declassified secrets of A under
I.

First, one may wonder if this is going to far, i.e., that this closure includes some
declassifications that the designer of the protocol did not intend and is not aware
of. However, this is in our opinion not the case, since the declassification does
in general not play the role of secrecy goals, but only the one of an interface
in the composition of protocols where they are guaranteeing each other not to
leak. In other words, the declassification plays the role of a “contract” between
two protocols, each of them should have their own policy about secrecy, and
it is then part of the verification of each protocols goals, that said contract is
sufficient to guarantee these goals.

As a concrete example, let us consider the famous attack on Needham-Schroeder
Public-Key Protocol (NSPK) [Low95]. Suppose we have NSPK without cryp-
tography as an application running over confidential channels. In the attack,
an honest a in role A first sends a message f1(na, a) to the intruder, i.e., to a
dishonest recipient. Note that we use here a format f1 instead of pairs to ensure
type-flaw resistance. This means that we declassify f1(na, a), and thus na and
later also f2(na, nb) which would be a type-correct message of the second step.
The intruder forwards this message on a confidential channel to an honest b in
role B, who answers with f2(na, nb) on a confidential channel to a, so this is not

50
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

declassified. In fact, nb is now considered by NSPK as a secret between a and b,
and is made explicit by putting nb → secret(a, b) (with the corresponding rule
(

M←−−−−− .M ∈ secret(A,B).attack) for all honest A and B). Further, a, who
believes to be talking to the intruder, sends the reply f3(nb) on a confidential
channel to the intruder. From a’s point of view this is fine, and f3(nb) and nb
get declassified as they are deliberately sent to a dishonest recipient. Now, the
intruder does indeed know the declassified nb and can trigger the violation of
the secrecy goal for b. This illustrates that the attack exploits a discrepancy
between a’s understanding of the protocol (in particular na, nb ∈ secret(a, i)),
and thus sending this message to the intruder in accordance with the protocol,
and thereby revealing a value that b considers as a secret. However, this does
not violate the contract between channel and application: in the steps where
a has sent messages to a dishonest recipient, she has just released the channel
from the obligation to keep these messages secret.

It seems intuitive that all proofs of the compositionality result [Hes19] still work
with this modified notion of the declassification, because these proofs do not
actually depend on what message the particular protocols choose to declassify;
the only crucial property — that the intruder can derive all declassified messages
— still holds with this definition.

However, the way the proofs are constructed in [Hes19] on the constraint level
does not work with this update directly. Like in the typing result, [Hes19] (Sec. 5)
first establishes all properties on a constraint level, and for all notions considers
only messages that occur on the constraint level, but not all messages that may
occur in a given set of protocols. In contrast, our new notion of declassification
deliberately considers terms that have not yet occurred at a particular point in
a constraint, but that the intruder may want to use later.

However this “scoping” issue can be overcome by the following change to a
number the definitions in [Hes19]: where the scope is limited to GSMP of a
particular trace, we replace it with the GSMP of the entire protocol. This is
actually a substantial change to a number of definitions and lemmas, but the
intuition why this works is quite simple: suppose we add to a constraint at the
start that the intruder should send messages covering every message pattern
occurring in the protocol (using fresh variables). This does not constrain the
intruder really —since he is always able to generate messages in the form of the
protocol— and the GSMP of the constraint would then indeed cover the GSMP
of the entire protocol we consider. However, this is only the intuition why this
change works, and we now provide proper definitions.

First, we have the definition given in the main text, i.e., the set Sec; the def-
inition of GSMP for a set of messages, for a trace, and for a protocol; and

2.5 Extension of the typing results 51

GSMP -disjointness. We also define declassifiedDY(A, I) as in the main text
as the Dolev-Yao closure of the ?-labeled messages received by the intruder in
I(A). Thus, declassifiedDY(A, I) = DY(declassified(A, I)) for the notion of
declassified in [Hes19] (Def. 5.2). We define leakage with respect to our notion
of declassification.

The definition of parallel composability is also changed w.r.t. [Hes19] (Def. 5.4
and 5.6) on the constraint level and on the protocol level: we omit the require-
ment that a transaction cannot have ?-labeled receive steps (i.e., sending from
the intruder’s point of view). In fact, the authors of [HMB20] have discovered
in the meantime that the proofs can be conducted without this requirement.
Another change is that we of course now use the notion of type-flaw resistance
that we have defined in this chapter earlier (and the parallel compositionality
only relies on the typing result itself, i.e., that a well-typed attack exists if an
attack exists).

To prove the updated parallel compositionality result, let us fix a few terms for
the remainder of this section: suppose P1, . . . ,Pn are protocols that are parallel
composable with respect to a set Sec of secrets. Let P = P1 ‖ . . . ‖ Pn. The first
definitions and lemmata consider once again only constraints on the stateless
level (i.e., without set operations and set conditions).

Definition 2.28 (Update of [Hes19] (Def. 5.9)). Let A be a constraint from P.

• A term t is i-specific iff t ∈ GSMPPi
\ (Sec ∪ {t | ∅ ` t}) for a label i.

• A term t is heterogeneous iff there exists protocol-specific labels l1 6= l2
and subterms t1 and t2 of t such that each ti is li-specific.

• A term t is homogeneous iff it is not heterogeneous.

We have then (with the same proof idea):

Lemma 2.29 (Update of [Hes19] (Lemma 5.10)). If A is a constraint of P,
then every t ∈ GSMPA is homogeneous.

An important next step is that the intruder never needs to construct heteroge-

52
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

neous terms. For that we first define homogeneous intruder deduction:

M `hom t
t ∈M

M `hom t1 . . . M `hom tn
M `hom f(t1, . . . , tn)

f ∈ Σnpub,

f(t1, . . . , tn) homogeneous,
f(t1, . . . , tn) ∈ GSMPP

M `hom t M `hom k1 . . . M `hom kn
M `hom ti

Ana(t) = (k1, . . . , kn, T),
ti ∈ T

Lemma 2.30 (Update of [Hes19] (Lemma 5.12)). Given a finite set of messages
M ⊂ GSMPP and a term t ∈ GSMPP , then M ` t iff M `hom t.

Proof. This is only a minor update in the proof; the essential idea is that we
can do proof normalization. If the proof tree for M ` t contains a composition
f(t1, . . . , tn) from known ti that is being analyzed to obtain one of the ti again,
then we can simplify the proof for that ti. Further, since for homogeneous t,
Ana(t) = (K,T) has that also K and T are all homogeneous terms, and the goal
term t of the statement must be homogeneous, no heterogeneous term in the
derivation remains after proof normalization.

From homogeneity follows, where ik(A) is the intruder knowledge in A:

Lemma 2.31 (Update of [Hes19] (Lemma 5.13)). Given a constraint A of P and
a well-typed model I such that ∀s ∈ Sec\declassifiedDY(A, I). ik(I(A|i)) 6`hom s
for any label i, (i.e., none of the protocols in isolation leaks a classified secret
in I(A)). Let ik(I(A)) `hom t, then t /∈ Sec \ declassifiedDY(A, I) and if t ∈
GSMP(A|i) for some i, then ik(I(A|i)) `hom t.

Thus, these lemmata together give that if the protocols do not leak secrets,
then every derivation of a term that belongs to protocol i can be achieved in
the projection to protocol i of the constraint:

Lemma 2.32 (Update of [Hes19] (Lemma 5.14)). Given a constraint A of
P and a well-typed model I. Then A leaks a secret from Sec or for every
ik(I(A)) ` t ∈ GSMP(A|i), we have ik(I(A|i)) ` t where i is a protocol-specific
label.

The next step is:

Lemma 2.33 (Update of [Hes19] (Lemma 5.15)). Given a constraint A of
P and a well-typed model I. Then either some prefix of A leaks a secret, or
I |= I(A|i) for every label i.

2.5 Extension of the typing results 53

Proof. This proof actually does not need an update with respect to our modifi-
cation of declassification, but one in order to lift the original requirement that
no receiving step in a transaction is labeled ?.

Suppose A = A′.(l : s) for a constraint A′ on which the statement already holds
and a step s labeled l. If a prefix of A′ leaks a secret, then so does a prefix of
A. Suppose thus, I |= I(A′|i) for every label i, and we have to show that also
I |= I(A|i) for all i. We do this by case distinction of l and s.

• s is a receive step of A (thus, a send in the corresponding transaction):
this is not problematic as it only augments the intruder knowledge and, if
?-labeled, also the declassified terms, but cannot invalidate I.

• s =
t−−−−→ (thus a receive of a transaction) and l is a protocol specific

label: since ik(I(A′)) ` I(t) (since I |= A′), we have by Lemma 2.32 that
also ik(I(A′|i)) ` I(t).

• The difficult part is if s =
t−−−−→ and the label l is ?. Avoiding this

case in the proof was indeed the reason for forbidding transaction with a
star-labeled receive (i.e. ?-labeled send in the resulting constraints). How-
ever, it can be proved without as seen in [HMB20]. First, I(t) must
be in Sec ∪ {t | ∅ ` t}, because it occurs in the projections I(A|i) for
all labels i and this would violate GSMP-disjointness if I(t) had any i-
specific subterms. If it is public (i.e., in {t | ∅ ` t}) or declassified (i.e., in
declassifiedDY(I(A′))), then the statement easily follows. There remains
the most tricky case: I(t) ∈ Sec \ declassifiedDY(I(A′)). Since I |= A, we
have that ik(I(A′)) ` I(t). To show: one of the Pi is to blame for leaking
this classified secret (and thus concluding this case).

Consider the normalized derivation proof for ik(I(A′)) ` I(t).

– If the root operation is a compose step, i.e., producing a term of
the form f(t1, . . . , tn), then the ti are in Sec ∪ {t | ∅ ` t}. Then,
also one of the ti must be in Sec \ declassifiedDY(I(A′)) (other-
wise, if all ti are public or declassified, then also f(t1, . . . , tn) ∈
declassifiedDY(I(A′))). In this case, we shall continue with the re-
spective subterm. By repeatedly applying this argument we thus
arrive at a node in the derivation tree that is not a composition,
but an (Axiom) or (Decompose) step, and such that this term is in
Sec ∪ {t | ∅ ` t} as handled by the following cases.

– We assume thus we have a term t0 ∈ Sec ∪ {t | ∅ ` t} and ik(I(A′)) `
t0, and root node of the derivation tree is (Axiom) or (Decompose).
In the case of analysis, note that the term being analyzed cannot
be obtained by a (Compose) step due to proof normalization, so it

54
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

is either itself obtained by (Axiom) or (Decompose). We follow this
chain of analysis steps until we reach a message that was obtained
by (Axiom). In any case this message contains t0 as a subterm and
was sent by some protocol Pi and must be homogeneous. Thus all
keys that have been used to obtain the analysis steps along the path
to t0 must be labeled i or ?. Thus, by Lemma 2.32, we have either a
leak or ik(I(A|i)) ` t0, which is then also a leak.

• Equalities and inequalities are also not problematic as they are all already
satisfied since I is a model of A.

[Hes19] (Lemma 5.16) does not change in statement or proof: if no protocol
leaks, then every constraint A with model I has a well-typed model that is a
model of every project A|i.

Again, [Hes19] (Sec. 5.4.2) lifts the previous result from ordinary constraints
(without set operations and conditions) to the stateful level by a translation from
stateful to ordinary constraints and [Hes19] (Sec. 5.4.3) lifts it to the protocol
level. This requires no changes for our modification of declassification.

2.6 Application of the theorems

In this section, we want to show in detail how to apply our results to the
vertical composition App

Ch
from our running example (see Figures 2.2 and 2.3) as

summarized in the end of Section 2.3. Thus, following Definition 2.15, we need
to show that:

1. (Ch,App,Sec) is parallel composable,

2. GSMPApp ⊆ Sec ∪ {t | ∅ ` t},

3. GSMPCh] ∩GSMPApp ⊆ {t | ∅ ` t}, and

4. none of the keys in K or their subterms in an analysis rule for a channel
term s.t. Ana(f(t1, . . . , tn)) = (K,T) are labeled App.

Let us start with showing that (Ch,App,Sec) is parallel composable (Defini-
tion 2.9). This means that we have to show that:

2.6 Application of the theorems 55

a) Ch ‖ App is Sec-GSMP disjoint from Ch? ‖ App,

b) for all s ∈ Sec and s′ v s, either ∅ ` s′ or s′ ∈ Sec,

c) for all l : (t, s), l′ : (t′, s′) ∈ labeledsetops(Ch ‖ App), if (t, s) and (t′, s′) are
unifiable then l = l′, and

d) Ch ‖ App is type-flaw resistant and Ch,App,Ch? and App? are well-formed.

We give here the basis for the demonstration, for more details on how to prove
the parallel composability, we refer the reader to [Hes19].

Following Definition 2.4, let us first start by proving the type-flaw resistance
(1d) of Ch ‖ App, i.e., we can prove the type-flaw resistance of the following set
of steps M that subsumes the steps of Ch ‖ App as well-typed instances, where
Γ({P}) = {Alias}, Γ({C, S}) = {Agent}, Γ({N}) = {Nonce}, Γ({K}) = {Key},
Γ({A,B}) = {Names} and Γ({X}) = {p}:

M = {P /̇∈ taken, P → taken, P → alias(C),
P−−−−−→, N → sent(S, P),

fchallenge(N,S)→ outbox(S, P), fchallenge(N,S)← inbox(S, P),

N ← sent(S, P), P ∈̇ alias(C),K → sessKeys(P,B),

fresponse(mac(secret(C, S), N))→ outbox(P, S),

fresponse(mac(secret(C, S), N))← inbox(P, S), (∀C.P /̇∈ alias(C)),

attackApp−−−−−−−−−→, crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→,
crypt(pk(B),sign(fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−,K → sessKeys(B,P),

X ← outbox(A,B),K ∈̇ sessKeys(A,B), X → secCh(A,B),

scrypt(K,fpseudo(A,B,X))−−−−−−−−−−−−−−−−−−−→, scrypt(K,fpseudo(A,B,X))←−−−−−−−−−−−−−−−−−−−,
K ∈̇ sessKeys(B,A), X ∈̇ secCh(A,B), X → inbox(A,B),

X−−−−−→ .
X←−−−−−, (∀A,B.X /̇∈ secCh(A,B)),

attackCh←−−−−−−−−}

All variables have atomic types. Besides the non-constant, non-variable sub-
message patterns of M consist of the composed terms and subterms closed under
well-typed variable renaming and well-typed instantiation of the variables with
constants. It is easy to see that each pair of non-variable terms amongst these
composed sub-message patterns have compatible types if they are unifiable.
There are no inequality checks in M , there remains just the conditions for
negative checks to fulfill. There are only three negative checks, (P /̇∈ taken),
(P /̇∈ alias(C)) and (X /̇∈ secCh(A,B)), and none of their subterms are generic
for any set of variables.

56
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

It is easy to see that Ch, App, Ch? and App? are well-formed. Now that we proved
that Ch ‖ App is type-flaw resistant, we need to prove the other conditions for
parallel composability. First let us look at the GSMP disjointness of Ch ‖ App∗

and Ch? ‖ App (1a). The set GSMPCh?‖App consists of the following set closed
under subterms:

{attackApp, (p, alias(a)), (n1, sent(s, p)),

(fresponse(mac(secret(c, s), n1)), outbox(p, s)),

(fresponse(mac(secret(c, s), n1)), inbox(p, s)),

(fchallenge(n1, s), inbox(p, s)), (fchallenge(n1, s), outbox(p, s)), inv(p),

(x, outbox(a, b)), (x, secCh(a, b)), (x, inbox(a, b)), x,

(p, taken) | n1, a, s, p, b, c, x ∈ C,Γ({n1}) = {Nonce},
Γ({c, s}) = {Agent},Γ({p}) = {Alias},
Γ({a, b}) = {Names},Γ({x}) = {p}},

and GSMPCh‖App? consists of the following set closed under subterms:

{attackCh, (k, sessKeys(a, b)), scrypt(k, fpseudo(A,B,X)),

(x, outbox(b, c)), (x, secCh(b, c)), (x, inbox(b, c)), x,

(fresponse(mac(secret(c, s), n1)), outbox(p, s)),

(fresponse(mac(secret(c, s), n1)), inbox(p, s)),

(fchallenge(n1, s), inbox(p, s)), (fchallenge(n1, s), outbox(p, s)), inv(p),

(k, sessKeys(s, p)) | n1, a, s, p, b, c, x, k ∈ C,
Γ({n1}) = {Nonce},Γ({c, s}) = {Agent},
Γ({p}) = {Alias},Γ({a, b}) = {Names},
Γ({x}) = {p},Γ({k}) = {Key}.}

The terms occurring in the intersection of the GSMP are included in the fol-
lowing set Sec:

{x, (x, secCh(a, b)), (x, outbox(a, b)), (x, inbox(a, b)),

(fresponse(mac(secret(c, s), n1)), outbox(p, s)),

(fresponse(mac(secret(c, s), n1)), inbox(p, s)),

(fchallenge(n1, s), inbox(p, s)), (fchallenge(n1, s), outbox(p, s)), inv(p),

secret(c, s), n1

| n1, a, s, p, b, c, x ∈ C,Γ({n1}) = {Nonce},
Γ({c, s}) = {Agent},Γ({p}) = {Alias},
Γ({a, b}) = {Names},Γ({x}) = {p}}

2.6 Application of the theorems 57

The second condition (1b) is satisfied since any subterm of a term from Sec is
either in Sec or an agent name. Finally, for the third condition (1c), we indeed
have for all l : (t, s), l′ : (t′, s′) ∈ labeledsetops(Ch ‖ App), if (t, s) and (t′, s′) are
unifiable then l = l′.

Let us now look at the remaining conditions for the vertical composability fol-
lowing definition 2.15.

GSMPApp consists of the following set closed under subterms:

{attackApp, (p, alias(a)), (n1, sent(s, p)),

(f2(mac(secret(a, s), n1)), inbox(p, s)),

(f2(mac(secret(a, s), n1)), outbox(p, s)),

(f1(n1, s), inbox(s, p)), (f1(n1, s), outbox(s, p)),

inv(p), (p, taken) | p, n1, a, s ∈ C,
Γ({p}) = {Alias},Γ({n1}) = {Nonce},
Γ({a, s}) = {Agent}},

and GSMPCh] consists of the following set closed under subterms:

{attackCh, (g, secCh(a, b)), (k, sessKeys(a, b)),

(g, opened), (g, closed), scrypt(k, fpseudo(a,b,g)),

(k, sessKeys(b, a)), (k, sessKeys(c, p)), g

crypt(pk(b), sign(inv(p), fnewSess(p, c, k))),

(k, sessKeys(p, c)) | g, a, b, k, p ∈ C,
Γ({g}) = {a},Γ({a, b}) = {Names},
Γ({k}) = {Key},Γ({p}) = {Alias},
Γ({c}) = {Agent}}

The second condition (2) and third condition (3) of vertical composability are
verified. Besides, none of the keys in the protocol are labeled App, thus the
fourth condition (4) is also verified.

We proved that the two protocols are vertical composable, and we proved in
PSPSP [Hes+21] that Ch] and Ch? ‖ App are secure, thus we can conclude
with Corollary 2.17 that App

Ch
is secure.

58
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

2.7 Further examples

We include in this section further examples to illustrate the extend of our
method. In particular, we want to show how to formalize different security
goals for a channel protocol. We also want to highlight what aspects are mech-
anisms of a channel protocol and what aspects specify the guarantees that the
channel exposes in its interface and thus what an application protocol is verified
against when we verify Ch? ‖ App. We formalize the following examples:

• another variant of the channel from our running example that uses certifi-
cate to authenticate one endpoint in the key-exchange (Figure 2.7),

• a channel providing authentication without secrecy (Figures 2.8 to 2.10),

• two different channel mechanisms to guarantee replay protections that
both expose the same interface, and (Figures 2.11 to 2.14)

We do not reintroduce notations when they have already been introduced in our
main examples.

2.7.1 Key-exchange with certificate

Ch0 : ∀B ∈ Agent,CA ∈ CAuthority.

Ch :
sign(inv(pk(C)),certificate(B,pk(B)))−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch :
sign(inv(pk(C)),certificate(B,PKB))←−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K → sessKeys(A,B).

Ch :
crypt(PKB,sign(inv(pk(A)),fnewSess(A,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 2.7: Example for the key-exchange part of a channel with certificates

Consider first the variant of Ch in Figure 2.7 where an agent is authenticated
with a certificate. Let CAuthority be a set of the public constants representing
the honest certification authorities. Let certificate be a transparent function
representing the certificate. In Ch0, the certification authority CA signs a cer-
tificate for an agent B. In Ch1, an honest agent with alias P generates a session
key K for talking to an agent B, provided that she receives a valid certificate for

2.7 Further examples 59

that agent from a certification authority, stores it in sessKeys(P,B) and signs it
with the private key inv(P) of her alias, and encrypts it with the public key PKB
of B included in the certificate. This protocol has the same rules Ch2, . . . ,Ch7

than the original channel. Even though the channel mechanisms are different, it
offers the same guarantees, especially, we do not need to alter the formalization
of goals. Therefore, the interface for this protocol is exactly the same than the
one in Figure 2.4.

2.7.2 Authenticated channel without secrecy

We continue with an example of a channel that provides unilateral authenti-
cation but without secrecy in Figure 2.8. We consider a similar setting than
the one in Figure 2.3, and therefore we consider the same set of principals.
Additionally, let mac/2, fauthentic/4 and fmac/3 be public functions to respec-
tively model a message authentication code and message formats. For the
mac function, we have Ana(mac(t1, t2)) = (∅, {t2}) and fauthentic and fmac are
transparent functions, i.e. Ana(fauthentic(t1, t2, t3, t4)) = (∅, {t1, t2, t3, t4}) and
Ana(fmac(t1, t2, t3)) = (∅, {t1, t2, t3}). Besides, we introduce a new family of
set, authCh(A,B), that we describe shortly later.

The two first rules, Ch1 and Ch2, remain unchanged with respect to the running
example. In Ch3, an honest A can transmit a payload message X that an appli-
cation protocol has inserted into an outbox set. For transmission, A generates
a MAC of X with a key K that was established with B. In Ch4, an honest B
can receive the authenticated payload X from A, provided it is MAC-ed cor-
rectly with a key K that has been established with A. It is then inserted into
inbox(A,B) to make it available on an application level.

We can now describe the security guarantees exposed in the interface, i.e., the ?-
labeled steps. Comparing with the running example, we basically only replaced
the set secCh(A,B) by the set authCh(A,B) that represents all messages ever
sent by an honest A for an honest B—and we note that Ch3 declassifies the
payload X. Here, the interface warns that payloads are not guaranteed to
be secret (but only authentic), i.e., the application must assume all messages
handed to the channel will end up in the intruder knowledge.

Once again, the rules Ch4 and Ch7 bear similarities; they are applicable when a
message that looks like a legitimate message from honest A to honest B with the
right session key arrives at B. Ch4 can fire if the corresponding X was indeed
sent by A for B, i.e., authCh(A,B) holds. Otherwise, we have an authentication
attack and Ch7 fires. Thus again, the interface promises that the channel delivers
only messages that indeed come from the claimed origin—and if this is not true,

60
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch : K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀A ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P)),fnewSess(P,B,K))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K → sessKeys(B,P)

Ch3 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? : X ← outbox(A,B).
Ch : K ∈̇ sessKeys(A,B).
? : X → authCh(A,B).

Ch :
fauthentic(A,B,X,mac(K,fmac(A,B,X)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ .

? :
X−−−−−→

Ch4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
fauthentic(A,B,X,mac(K,fmac(A,B,X)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(B,A).
? : X ∈̇ authCh(A,B).
? : X → inbox(A,B)

Ch5 : ∀A ∈ Names, B ∈ Names|Dis.

? : X ← outbox(A,B).

? :
X−−−−−→

Ch6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? : X → inbox(A,B)

Ch7 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
fauthentic(A,B,X,mac(K,fmac(A,B,X)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(A,B).

? : X /̇∈ authCh(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.8: Example for an unilateraly authenticated channel without secrecy

then the channel has an attack according to Ch7.

The intruder rules Ch5 and Ch6 are not modified. Now consider the idealization
Ch? of the protocol. This still describes all changes that the channel can ever
do to the sets outbox and inbox that it shares with the application (given that

2.7 Further examples 61

Ch?3 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? : X ← outbox(A,B).
? : X → authCh(A,B).

? :
X−−−−−→

Ch?4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? : X ∈̇ authCh(A,B).
? : X → inbox(A,B)

Ch?5 : ∀A ∈ Names, B ∈ Names|Dis.

? : X ← outbox(A,B).

? :
X−−−−−→

Ch?6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? : X → inbox(A,B)

Figure 2.9: Idealization of the channel protocol from Figure 2.8

the channel protocol is safe). All messages sent by honest A to honest B move
to a set authCh(A,B) and from there to the inbox of B. The main difference in
this interface in Figure 2.9 compared to the one in Figure 2.4 is that messages
transported on the channel are declassified.

For concision, we keep in the abstraction in Figure 2.10 only the rules that
perform an action or that are not redundant, i.e., if after abstraction a rule
contains only receiving and checking steps, then we drop it. We describe here
the transformation in detail one more time. Ch1 and Ch2 remains unaffected by
the transformations since they do not deal with any payload messages and only
have Ch-labeled steps: these rules are “pure” channel rules. Thus, Ch]1 and Ch]2
are identical to the original rules.

A payload message X occurs in Ch3, thus we need to divide this rule into two
rules: Ch]3a that contains the positive check (? : G ∈̇ opened), and Ch]3b that
contains the positive check (? : G ∈̇ closed). For Ch]3a, the step containing the
set operation for outbox is dropped, and we replace the payload message that
is inserted to secCh by the variable G of type a, as is the payload message in
the transmitted message. For Ch]3b, the set operation for outbox is also dropped
and the payload message inserted into the set secCh is replaced by the variable
G of type a. It is also replaced in the transmitted message. However, since a
variable of type a that is in the closed is declassified, we need to replace the
declassification step by the steps (? : G ← closed.? : G → opened.? :

G−−−−−→).
The transformations for the rule Ch4 leads to a rule performing no action so it
is dropped.

The transformation for the rules Ch5 and Ch6 are the same as the ones of the
main example. We only keep here the rule Ch5b that is the only non redundant
rule; it represents the abstraction of the declassification of a payload. We add
still the rule Ch]new to allow for the creation of new variable of type a. Finally,

62
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Ch]1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch : K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch]2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K → sessKeys(B,P)

Ch]3a : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? : G ∈̇ opened.
Ch : K ∈̇ sessKeys(A,B).
? : G→ authCh(A,B).

Ch :
fauthentic(A,B,G,mac(K,fmac(A,B,G)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ .

? :
G−−−−−→

Ch]3b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch : K ∈̇ sessKeys(A,B).
? : G→ authCh(A,B).

Ch :
fauthentic(A,B,G,mac(K,fmac(A,B,G)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ .

? : G← closed(A,B).
? : G→ opened(A,B).

? :
G−−−−−→

Ch]5b :

? : G← closed
? : G→ opened.

? :
G−−−−−→ .

Ch]new : new G.

? : G→ closed

Ch]7a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? : G ∈̇ opened/G ∈̇ closed.

Ch :
fauthentic(A,B,G,mac(K,fmac(A,B,G)))←−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K ∈ sessKeys(A,B).

? : G /̇∈ authCh(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.10: Abstraction for our example channel Ch from Figure 2.8

2.7 Further examples 63

Ch7 is also split into two rules. Further, in both rules, the payload X is replaced
by the variable G of type a.

2.7.3 Channel with replay protection

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch : K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K → sessKeys(B,P)

Ch3 : ∀A ∈ Names|Hon, B ∈ Names|Hon,
new N.

? : X ← outbox(A,B).
Ch : K ∈̇ sessKeys(A,B).
? : X,N → secCh(A,B).

Ch :
scrypt(K,freplay(A,B,X,N))−−−−−−−−−−−−−−−−−−−−→

Ch5 : ∀A ∈ Names, B ∈ Names|Dis.

? : X ← outbox(A,B).

? :
X−−−−−→

Ch4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,freplay(A,B,X,N))←−−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(B,A).
? : X,N ∈̇ secCh(A,B).

Ch : N /̇∈ seen(A,B).

? : N /̇∈ end(A,B).
Ch : N → seen(A,B).
? : N → end(A,B).
? : X → inbox(A,B)

Ch6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? : X → inbox(A,B)

Ch7 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,freplay(A,B,X,N))←−−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(A,B).

? : X,N /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Ch8 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,freplay(A,B,X,N))←−−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(A,B).
? : X,N ∈̇ secCh(A,B).

Ch : N /̇∈ seen(A,B).
? : N ∈̇ end(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.11: Example for an unilaterally authenticated pseudonymous channel
with replay protection

64
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Ch?3 : ∀A ∈ Names|Hon, B ∈ Names|Hon,
new N.

? :X ← outbox(A,B).
? :X,N → secCh(A,B)

Ch?4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :X,N ∈̇ secCh(A,B).

? :N /̇∈ end(A,B).
? :N → end(A,B).
? :X → inbox(A,B).

Ch?5 : ∀A ∈ Names, B ∈ Names|Dis.

? :X ← outbox(A,B).

? :
X−−−−−→

Ch?6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? :X → inbox(A,B)

Figure 2.12: Idealization of the channel protocol from Figure 2.11

Let us now go back to our original example with a unilaterally authenticated
pseudonymous channel, but let us add a replay protection mechanism in Fig-
ure 2.11. The first one we introduce is quite simple and not really practical,
because it will basically require to remember nonces for messages received so
far. The second one is a bit more involved, but will expose the same interface
to the application and not demanding to remember much.

Let freplay/4 be a public and transparent function. We also introduce two new
sets: seen to keep track of identifiers that have already been received for the
channel mechanism and end for specifying the replay protection goal (injective
agreement).

The two first rules remain unchanged. In rule Ch3, an honest A can transmit a
payload message X that an application protocol has inserted into an outbox. In
the transmission, it adds a fresh nonceN , and for encryption it uses a session key
K that was established for that recipient. In Ch4, an honest B can retrieve the
encrypted payloadX and the nonce N from A, provided it is encrypted correctly
with a key K that has been established with A and that the nonce N has not
been seen in an earlier exchange. The payload is then inserted into inbox(A,B)
to make it available on the application level and the nonce is registered into the
set seen(A,B).

We can now describe what has to do with the security guarantees in the interface.
We keep the set secCh(A,B) that represents all messages and challenges ever
sent by an honest A for an honest B. Note that here, we insert jointly X,N into
the set; this allows for storing the same payload X several times, if A sends it
several times to B. We introduce the set end(A,B) to formulate the injectivity
aspect of the goal w.r.t. nonce N . Note once again the similarities between

2.7 Further examples 65

Ch]1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch :K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch]2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch :K → sessKeys(B,P)

Ch]3a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon,

new N.

? :G ∈̇ opened/G ∈̇ closed.
? :K ∈̇ sessKeys(A,B).
? :G,N → secCh(A,B).

Ch :
scrypt(K,freplay(A,B,G,N))−−−−−−−−−−−−−−−−−−−−→

Ch]4a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,freplay(A,B,G,N))←−−−−−−−−−−−−−−−−−−−− .

? :K ∈̇ sessKeys(B,A).
? :G,N ∈̇ secCh(A,B).

Ch :N /̇∈ seen(A,B).

? :N /̇∈ end(A,B).
Ch :N → seen(A,B).
? :N → end(A,B)

Ch]5b :

? :G← closed
? :G→ opened.

? :
G−−−−−→

Ch]new : new G.

? :G→ closed

Ch]7a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,freplay(A,B,G,N))←−−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(A,B).

? :G,N /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Ch]8a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? :G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,freplay(A,B,G,N))←−−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(A,B).
? :G,N ∈̇ secCh(A,B).

? :N /̇∈ seen(A,B).
? :N ∈̇ end(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.13: Abstraction for our example channel Ch from Figure 2.11

rules Ch4, Ch7 and Ch8; they are applicable when a message that looks like a
legitimate message from honest A to honest B with the right session key arrives
at B. Ch4 can fire if the corresponding X was indeed sent for the first time

66
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

by A for B, i.e., secCh(A,B) holds and N is not in end(A,B) yet (and in this
case we insert N into end(A,B)). Otherwise, we either have an authentication
attack and Ch7 fires, or we have a replay attack and Ch8 fires.

The rules Ch5 and Ch6 describe again the sending and the receiving operations
for a dishonest principal and remain unchanged. Note that the idealization
of this protocol in Figure 2.12 is slightly different than the one in our main
example, since now the operations on secCh(A,B) must include a nonce N and
the replay protection goal is stated with the set end(A,B).

We give the abstraction of the protocol in Figure 2.13. Note that we once
again removed the redundant rules and the ones that do not perform an action
anymore.

2.7.4 Second mechanism for replay protection

We now give an alternative protocol for replay protected channels that will ex-
hibit the exact same interface, i.e., offers the same guarantees to an application
protocol. This is sometimes useful to design a “canonical” and simple but inef-
ficient solution (like all the nonces above have to be remembered) and then to
replace it with a more efficient one that offers the same “functionality”.

More generally, when we have two different channel protocols Ch1 and Ch2, but
that offer the same guarantees for an application protocol (Ch?1 = Ch?2), then for
verifying the vertical compositions App

Ch1

and App

Ch2

, it is enough to verify Ch]1, Ch]2

and Ch?1 ‖ App since the two protocols have the exact same interface.

In this example, the mechanism to provide replay protection is based on a
challenge-response mechanism. We still consider a similar setting as before and
therefore the same set of principals. Additionally let freplay2/5 and f ′newSess/4 be
public and transparent functions. We need for this example to further consider
two new families of set: myChall(A,B) that A uses to keep track of the challenges
she issued to B and theirChall(A,B) that A uses to keep track of the challenges
she received from B. However, these sets will at any time contain at most one
value.

This time, the two rules Ch1 and Ch2 are modified for the key exchange to issue
a challenge. In Ch1, an honest agent with alias P generates a fresh session key
for talking to an agent B, stores it in the set sessKeys(P,B), generates a fresh
nonce to challenge the agent B, stores it in the set myChall(A,B) and signs
them with the private key inv(P) of their alias, and encrypts it with the public

2.7 Further examples 67

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K, new N.

Ch :K → sessKeys(P,B).
Ch :N → myChall(P,B).

Ch :
crypt(pk(B),sign(inv(P),f ′newSess(P,B,K,N)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P),f ′newSess(P,B,K,N)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch :N → theirChall(B,P).
Ch :K → sessKeys(B,P)

Ch3 : ∀A ∈ Names|Hon, B ∈ Names|Hon,
new M.

? :X ← outbox(A,B).
Ch :N ← theirChall(A,B).
Ch :M → myChall(A,B).
Ch :K ∈̇ sessKeys(A,B).
? :X,N → secCh(A,B).

Ch :
scrypt(K,freplay2(A,B,X,N,M))−−−−−−−−−−−−−−−−−−−−−−−→

Ch4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,freplay2(A,B,X,N,M))←−−−−−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(B,A).
Ch :N ← myChall(B,A).
? :X,N ∈̇ secCh(A,B).

Ch :M → theirChall(B,A).

? :N /̇∈ end(A,B).
? :N → end(A,B).
? :X → inbox(A,B)

Ch5 : ∀A ∈ Names, B ∈ Names|Dis.

? :X ← outbox(A,B).

? :
X−−−−−→

Ch6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? :X → inbox(A,B)

Ch7 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,freplay2(A,B,X,N,M))←−−−−−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(A,B).
Ch :N ← myChall(B,A).

? :X,N /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Ch8 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,freplay2(A,B,X,N,M))←−−−−−−−−−−−−−−−−−−−−−−− .

Ch :K ∈̇ sessKeys(A,B).
Ch :N ← myChall(B,A).
? :X,N ∈̇ secCh(A,B).

Ch :M → theirChall(B,A).
? :N ∈̇ end(A,B).

Ch :
attackCh←−−−−−−−−

Figure 2.14: Second example for an unilaterally authenticated pseudonymous
channel with replay protection

key pk(B) of B. In Ch2, an honest agent B is receiving a session key K and a

68
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

nonce N encrypted with his public key and signed by an agent under an alias
P . They insert K into their set sessKeys(B,P) and N in theirChall(B,P).

In Ch3, an honest A can transmit a payload X and a response to the recipient’s
challenge that an application protocol has inserted into an outbox set using for
encryption any session K that was established for communicating with B. They
retrieve the challenge N that this recipient had emitted and generate a fresh
nonce M for their response that they insert into their set myChall(A,B). In
Ch4, an honest B can retrieve the encrypted payload X and the response M to
their challenge N from A, provided that it is encrypted correctly with a key K
that has been established with A. The response is inserted into theirChall(B,A)
and the payload is then inserted into inbox(A,B) to make it available on an
application level.

This protocol and the previous one offer an additional guarantee compared to
the protocol in our main example. The example of an application protocol in
Figure 2.2 implements a challenge response itself and thus it is not relying on a
replay protection by the channel. In fact, the App from the running example is
perfectly fine with these two replay-protected channels.

App1 : ∀C ∈ Agent|Hon, P ∈ Alias|Hon.

App : P /̇∈ taken.
App : P → taken.
App : P → alias(C)

App2 : ∀P ∈ Alias|Dis.

? :
inv(P)−−−−−−−→

App3 : ∀S ∈ Agent, P ∈ Alias|Hon, C ∈ Agent|Hon, newN.

App : P ∈̇ alias(C).
App :N → loginCounter(P, S).
? : f2(secret(C, S))→ outbox(P, S)

App4 : ∀S ∈ Agent|Hon, P ∈ Alias|Hon, C ∈ Agent|Hon.

? : f2(secret(C, S))← inbox(P, S).
App : P ∈̇ alias(C).
App :N ← loginCounter(P, S)

App4 : ∀S ∈ Agent|Hon, P ∈ Alias|Hon, C ∈ Agent|Hon.

? : f2(secret(C, S))← inbox(P, S).

App : P /̇∈ alias(C).

App :
attackApp←−−−−−−−−−

Figure 2.15: Example of a login protocol without replay protection

2.8 Channel Bindings 69

Now with the additional guarantee for replay protection from the channel, we
consider in Figure 2.15 a weaker login protocol as an application that relies on
the replay protection mechanism provided by the channel. Rules App1 and App2

remain unchanged. The original rule App3 has been removed since the server
does not need to issue a challenge (this is now taken care of by the channel).
This means that the server S does not need to create a fresh nonce anymore
and to keep track of the ones that have not been answered with a set sent(S, P).
The new rule App3 describes how the client C updates its login counter on the
server S with a fresh nonce N and sends its pre-shared secret, i.e., C inserts
their response into her outbox(P, S), provided that P is an alias owned by C.
The server removes this login attempt from the set loginCounter provided the
login message has been sent by an alias that the client owns. If not, there is an
attack. Remains then also the underlying secrecy goal that the intruder cannot
learn any shared secret, e.g., secret(C, S) here.

2.8 Channel Bindings

There is a number of flaws in application protocols that arise from using secure
channels where one party is not authenticated (like the channel in our running
example) and using this channel to transmit a credential to authenticate that
party (like our login application). The problem is that a dishonest server may
forward these credentials in a man-in-the-middle attack to another server, pre-
tending to be the owner of the credentials. This is for instance the case in the
SAML SSO attack from [Arm+08] or the re-negotiation attack on TLS (cf. for
instance the study about channel bindings in [BDP15]). In fact, one could
say that this is all just the old attack on the Needham-Schroeder Public-Key
Protocol in new disguises: if the messages fail to bind to context, a dishonest
participant can abuse it, and designers often disregard the dishonest server in
their intuitive analysis.

We show here an example akin to the gist of the TLS re-negotiation attack
(borrowed from the formalization from [GM11]): the protocol in Figure 2.16 is
meant to be run over the unilaterally authenticated channel from Figure 2.3.
The first two rules App1 and App2 are again just honest agents choosing any
number of aliases that have not been taken yet, and the intruder owning all dis-
honest aliases. Note that the unilaterally authenticated channel from Figure 2.3
only guarantees the authentication of the server side while the client side is au-
thenticated only with respect to an alias. App3 now describes that an honest
agent A, who owns alias P , sends a critical command to the server. Critical
here means that this requires the authentication of A. The function critCmd
is a message format, and the nonce N represents some relevant arguments to

70
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

App1 : ∀A ∈ Agent|Hon, P ∈ Alias|Hon.

App : P /̇∈ taken.
App : P → taken.
App : P → alias(A).

App2 : ∀P ∈ Alias|Dis.

? :
inv(P)−−−−−−−→ .

App3 : ∀A ∈ Agent|Hon, P ∈ Alias, S ∈ Agent, new N.

App : P ∈̇ alias(A).
App : critCmd(N)→ begin(A,S).
? : critCmd(N)→ outbox(P, S).

App4 : ∀S ∈ Agent|Hon, P ∈ Alias, new M.

? : critCmd(N)← inbox(P, S).
App : (critCmd(N),M)→ pending(P, S).
? : authPlease(M)→ outbox(S, P).

App5 : ∀A ∈ Agent|Hon, P ∈ Alias, S ∈ Agent.
App : P ∈̇ alias(A).
? : authPlease(M)← inbox(S, P).

App : sign(inv(sigKey(A)), ack(M))→ outbox(P, S).

App6 : ∀S ∈ Agent|Hon, P ∈ Alias, A ∈ Agent|Hon.

? : sign(inv(sigKey(A)), ack(M))← inbox(P, S).
App : (critCmd(N),M)← pending(P, S).

App : critCmd(N) /̇∈ begin(A,S).

App :
attackApp−−−−−−−−−→ .

Figure 2.16: Example of an application (to deploy over a unilaterally authen-
ticated secure channel) that has a renegotiation-style flaw.

the command. For the security goal, it is noted in the set begin(A,S) that A
really meant to issue this command to S. An honest server in App4 receives
this command and, since it comes from the unauthenticated source P , marks it
as pending and sends an authentication request with a fresh challenge M (also
the function authPlease is a message format). App5 models how an honest A
answers this challenge using a signature with a dedicated signing key pair, and
we assume the server knows the public key sigKey(A) and that it belongs to
A; again, ack is a format. Finally, when the server receives a response with a
signature by an agent A that fits a pending request of a critical command N ,
then the server infers that this command was indeed issued by A. We formalize
here with App6 only that this would be an authentication problem, if A were

2.8 Channel Bindings 71

an honest agent and critCmd(N) /̇∈ begin(A,S), i.e., the server is believing a
command to come from A while this is actually not the case.

An attack with App6 is actually possible: suppose an honest agent a under
alias p1 starts a session with a dishonest server i, and i starts a session under
alias p2 with the honest server s, issuing some critical command. The intruder
forwards authentication request authPlease(m) from s to a/p1 who responds
with a corresponding signature according to App5. With this, App6 is applicable,
since i can now authenticate its command as coming from a, while the critical
command is actually not in begin(a, s).

More generally, the problem is the following. The fact that we have a secure
channel with an agent (under some alias) does not mean that all messages we
receive from that agent are necessarily authored by that agent. In the case of
the login application of Figure 2.2, this is not a problem, since a dishonest server
only learns the password that a user has with this server and cannot re-use this
in other sessions (unless, of course, a user uses the same password with multiple
servers). In contrast, the application of Figure 2.16 has a flaw since the signature
that is meant to authenticate the endpoint could in fact come from a different
run.

This demonstrates that the compositionality does not magically give us secure
protocols, but it guarantees that when there is a flaw, like in the example, we
can identify one or two culprits:

• the channel does not live up to what its interface promises, and in this
case we find an attack against Ch], and

• or (as in this example) even if the channel behaves as advertised, the
application could fail to achieve its goals, and in this case we find an
attack against App ‖ Ch?.

A fix for the App protocol in Figure 2.16 could be to require that the command
directly be authenticated, i.e., replacing the signature in rules App5 and App6

with sign(inv(sigKey(A)), fcontext(critCmd(N), ack(M), S)). For good measure,
we have here even included the name of the server S. A similar solution is also
advised by [Arm+08] to fix the attack on SAML SSO: here the original protocol
contains a credential from the identity provider that basically just acknowledges
that the holder is a particular person, but this is of course not secure when the
recipient (the relying party) is dishonest and authenticates itself with it. The
solution is here to include the name of the relying party to prevent forwarding.

Finally, let us look at an example where the party has a key certificate, say

72
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

sign(inv(pkca), fcert(A, pk(A))) (where pkca is the key of a certificate authority;
we omit other typical fields like expiration for simplicity). If such a credential
is used over a unilaterally authenticate channel to authenticate A, we have the
same problems as before that a dishonest server could abuse this certificate to
pose as A. Also in this case, we thus have to require that A signs something with
the private key inv(pk(A)) to prove ownership, and the signed text must contain
at least the name of B so that B cannot take this to another agent. This is shown
in Figure 2.17 where we actually bind also the alias P to it. We have formulated
here only the simple (non-injective) authentication goal that P indeed belongs
to A. The binding to an alias has differences to the bindings usually considered
in TLS and similar protocols [BDP15], as it has an asymmetric form, and we
want to investigate further this relationship in future work.

App1 : ∀A ∈ Agent|Hon, P ∈ Alias|Hon.

App : P /̇∈ taken.
App : P → taken.
App : P → alias(A).

App2 : ∀P ∈ Alias|Dis.

? :
inv(P)−−−−−−−→ .

App3 : ∀A ∈ Agent|Hon, P ∈ Alias, S ∈ Agent, new N.

App : P ∈̇ alias(A).
? : sign(inv(pkca), fcert(A, pk(A)))→ outbox(P, S).
? : sign(inv(pk(A)), fpwn(A,P, S))→ outbox(P, S)

App4 : ∀S ∈ Agent|Hon, P ∈ Alias, A ∈ Agent|Hon.

? : sign(inv(pkca), fcert(A, pk(A)))← inbox(P, S).
? : sign(inv(pk(A)), fpwn(A,P, S))← inbox(P, S).

? : P /̇∈ alias(A).

App :
attackApp−−−−−−−−−→ .

Figure 2.17: Binding the alias P to a real name with an asymmetric credential.

We conclude with the remark that the application in Figure 2.17, composed
with a suitable channel protocol, could be itself serve as a channel protocol, as
it lifts the underlying unilaterally authenticated secure channel to a bilaterally
authenticated one. This can be done by rules that take messages from a higher-
level outboxH(A,B), transfer them into the low-level outbox(A,B), and vice-
versa on the receiving side with inboxes. Thus we can describe this as several
layers of composition to achieve a channel with better guarantees.

2.9 Related Work and Conclusion 73

2.9 Related Work and Conclusion

There exists a sequence of works on protocol composability that has pushed the
boundaries of the class of protocols that can be composed, for instance [GT00;
Gut09; CD09]. These works are concerned with protocols that do not interact
with each other but just run independently on the same network, maybe shar-
ing an infrastructure of fixed long-term keys. A limited form of interaction is
allowed in [GM11] for vertical composition: a handshake protocol can gener-
ate secure keys that are then used to encrypt traffic of an application protocol;
similarly, [CCW17] allows for sequential composition between a handshake es-
tablishing keys that can then be used by a subsequent protocol.

There are several refinement approaches that are close to vertical composition,
such as [SB18], where a particular application that assumes abstract channels
for communication gets refined by a particular implementation of a channel.
The drawback of a refinement proof is that it has to be entirely re-done after
changing the application. Indeed, the work [CCM15] bears the word refinement
in its title, while it is actually a vertical composition (i.e., not specializing to a
particular application) and is thus closest to our work. Our work generalizes this
result in several regards: while [CCM15] considers only authentic, confidential
and secure channels, we can specify any channel property that can be expressed
by our formalism; this is of course also limited to trace-based properties but we
can formulate all goals from the geometric fragment [Gut14]. Second, [CCM15]
formulates the result only for secrecy goals of the application, while our result
holds for all properties expressible in our formalism. Moreover, note that our
formalism is stateful, i.e., both channel and application may use information
that goes beyond single isolated sessions. This also includes a general notion of
declassification that has not been present in any vertical composition approach
so far. Moreover, [CCM15] requires a particular tagging scheme on protocols,
while we have a more general non-unifiability requirement (that can be imple-
mented by tagging but also instead by other forms of message structuring like
XML or ASN.1). Last but not least, we want to point out the succinctness of our
result. We see a contribution of this chapter in decomposing the problem into
two smaller problems: a parallel composition of stateful protocols and a sound
abstraction of payloads messages in the channel. For the first, we had to make
a non-trivial extension to an existing compositionality result, namely handling
abstract payload types and declassification, but this allows to reduce a large
part of the problem to existing results, and can handle everything in greater
generality. This is both mathematically economical and easy to understand and
use.

Our work significantly generalizes [MV09; MV14], which were a first step in
solving vertical composition without fixing a particular form of interaction, but

74
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

had to fix the number of transmissions that the channel can be used for, and the
constructions are very complicated. We see as future work the application of
our results in cases where the low-level protocol can hardly be called a channel
but some general way to handle a form of payload, e.g., a distributed ledger,
generalizing further the class of compositions that we support.

We emphasize that our results can be used with standard automated verification
tools. Our compositionality result reduces the verification of App

Ch
to a number of

syntactic conditions and the verification tasks of Ch? ‖ App and Ch]. In most
cases, these are well suited for automated verification tools: while one can of
course consider protocols that are not suitable for automated verification, our
running example for instance requires only features expressible (with slight over
approximation) in the standard tools like ProVerif [Bla01], AVISPA [Arm+05],
Maude-NPA [EMM07], CPSA[Gut11] or Tamarin [Mei+13]. We have verified
for instance our running example in Isabelle with PSPSP [Hes+21].

We see however three main limitations to our results. First, the behavior and
goals must of course be expressible with transaction and sets, where the inter-
face between low-level and high-level is just sets that one can only read and the
other can only write—and the low-level is agnostic of the high-level data. Sec-
ond, the results we are building on do not support algebraic properties, limiting
the class of primitives that can be used, e.g., it is not possible yet to consider
Diffie-Hellmann-based protocols. We consider the extension of this composi-
tionality result to support the term algebra as future work. Third, we require
that messages from channel and payload are discernable. This forbids multiple
vertical compositions with several instances of the same channel protocol.

Finally, while this work is based on a black-box model of cryptography, there is
a great similarity of the ideas in this chapter with the Universal Composability
framework [Can01; KT11]. UC is typically used in a refinement style: one
defines an ideal functionality and shows that (under appropriate cryptographic
hardness assumptions) a particular real system implements the ideal one in the
sense that real and ideal system cannot be distinguished. The real system can be
for instance a channel protocol Ch and the ideal system would be similar to our
abstraction Ch?, i.e., abstractly describing properties of the channel without
containing concrete cryptography. We can then verify an application being
correct using Ch? instead of Ch. The differences to our work are that we do
not consider one particular implementation Ch, but give a general methodology
to verify an arbitrary implementation Ch, in particular, reducing the problem
to one with abstract constants Ch] that is compatible with existing protocol
verification tools. This allows notably also for payloads that can be declassified,
even after occurring in a transmission. However, our model is Dolev-Yao style
abstracting from cryptography and we consider it an interesting future challenge

2.9 Related Work and Conclusion 75

to extend our ideas in UC style to a full cryptographic result.

76
Vertical Composition and

Sound Payload Abstraction for Stateful Protocols

Chapter 3

Preliminaries for
Alpha-Beta Privacy

As we have mentioned earlier, it is common in protocol verification to consider
an algebraic model of messages, namely interpreting functions in the quotient al-
gebra modulo a set of algebraic equations (i.e., two terms are different unless the
algebraic equations deem them equal). Many approaches usually reason about
only logical implications, i.e., derivations that follow in every interpretation. In
contrast, we reason from now on in this thesis about the different interpretations
of formulae and hence have to make the interpretation of functions explicit. For
this reason, we use Herbrand logic [HG06], a variant of first-order logic, that
allows us just that. We adapt some useful notions from [MV19].

3.1 Herbrand Logic

(α, β)-privacy is based on specifying two formulae α and β in First-Order Logic
with Herbrand Universes, or Herbrand Logic for short [HG06]. For brevity, we
only list the differences with respect to standard first-order logic (FOL).

Herbrand Logic fixes the universe in which to interpret all symbols. We intro-
duce a signature Σ = Σf] Σi] Σr with Σf the set of uninterpreted function
symbols, Σi the set of interpreted function symbols and Σr the set of relation
symbols. Let TΣf

be the set of ground terms that can be built using symbols
in Σf and let ≈ be a congruence relation on TΣf

; then we define the Her-
brand Universe as the quotient algebra A = TΣf

/≈ = {[[t]]≈ | t ∈ TΣf
}, where

[[t]]≈ = {t′ | t ∈ TΣf
∧ t ≈ t′}. The algebra fixes the “interpretation” of all

uninterpreted function symbols: fA([[t1]]≈, . . . , [[tn]]≈) = [[f(t1, . . . , tn)]]≈.

The interpreted function symbols Σi and the relation symbols Σr behave as in
FOL, i.e., as function and relation symbols on the universe. To highlight the
distinction between uninterpreted and interpreted function symbols, we write
f(t1, . . . , tn) if f ∈ Σf and f [t1, . . . , tn] if f ∈ Σi . Given a signature Σ, a set

78 Preliminaries for Alpha-Beta Privacy

V of variables distinct from Σ, and a congruence relation ≈, and thus fixing a
universe A, we define an interpretation I (with respect to Σ, V, and ≈) as a
function such that: I(x) ∈ A for every x ∈ V; I(f) : An 7→ A for every f/n ∈ Σi

of arity n; and I(r) ⊆ An for every r/n ∈ Σr of arity n. Note that the functions
of Σf are determined by the quotient algebra. We define a model relation I |= φ
(in words: φ holds under I) as is standard and use notation like φ |= ψ.

Let Σf contain the constant 0 and the unary function s, and let Σi con-
tain the binary function +, i.e., the universe contains the natural numbers
0, s(0), s(s(0)), . . ., which we also write as 0, 1, 2, . . . We characterize + by the
axiom1:

αax ≡ ∀x, y. x+ 0 = x ∧ x+ s(y) = s(x+ y) .

We employ standard syntactic sugar and write, e.g., ∀x. φ for ¬∃x. ¬φ, and
x ∈ {t1, . . . , tn} for x = t1 ∨ . . .∨ x = tn. Slightly abusing notation, we will also
consider a substitution {x1 7→ t1, . . . , xn 7→ tn} as a formula x1 = t1∧ . . .∧xn =
tn.

3.2 Encoding of Frames

We use, as it is customary in security protocol analysis, a black-box algebraic
model. We choose a subset Σop ⊆ Σf of uninterpreted functions to be the
operators available to the intruder. For instance, we generally require 0, s ∈ Σop ,
so the intruder can “generate” any natural number. In order to represent the
intruder’s knowledge, we use frames.

Definition 3.1 (Frame). A frame is written as z = {|m1 7→ t1, . . . ,ml 7→ tl|},
where the mi are distinguished constants called labels and the ti are terms that
do not contain any mi. We call m1, . . . ,ml the domain and t1, . . . , tl the image
of the frame. We write z{|t|} for replacing in the term t every occurrence of mi

with ti, i.e., z works like a substitution.

The labels mi can be regarded as memory locations of the intruder, representing
that the intruder knows the messages ti. The set of recipes is the least set that
contains m1, . . . ,ml and that is closed under all the cryptographic operators in
Σop .

We use two frames concr and struct that always have the same domain D in
any formula. Let concr and struct be unary function symbols, and gen a unary

1This characterization is only possible due to the expressive power of Herbrand logic (in
FOL one cannot characterize the universe appropriately).

3.3 Alpha-Beta-Privacy 79

relation symbol defined by the following axioms:

φgen ≡ ∀r.gen(r)⇔
(
r ∈ D ∨

∨
fn∈Σop

∃r1, . . . , rn.

r = f(r1, . . . , rn) ∧ gen(r1) ∧ . . . ∧ gen(rn)
)

φhom ≡
∧
fn∈Σop

∀r1, . . . , rn. gen(r1) ∧ . . . ∧ gen(rn) =⇒
concr [f(r1, . . . , rn)] = f(concr [r1], . . . , concr [rn])∧
struct [f(r1, . . . , rn)] = f(struct [r1], . . . , struct [rn])

φ∼ ≡ ∀r, s. gen(r) ∧ gen(s) =⇒
concr [r] = concr [s]⇔ struct [r] = struct [s]

Then, the formula

φ ≡ struct [l1] = t1 ∧ . . . ∧ struct [ln] = tn ∧
concr [l1] = t′1 ∧ . . . ∧ concr [ln] = t′n

specifies two frames concr and struct with domain D = {l1, . . . , ln} and the
augmentation with the axioms above means that concr and struct are statically
equivalent : for any pair of recipes r and s that the intruder can generate, concr
agrees on r and s iff struct does. We define φframe ≡ φhome ∧ φ.

3.3 Alpha-Beta-Privacy

Privacy-type properties of security and voting protocols are often specified as
trace equivalence of two processes in some process calculus, such as the Applied-
π calculus [ABF18; BAF08; CRZ07; DRS08]. While such approaches have
uncovered vulnerabilities in a number of protocols, they rely on asking whether
the intruder can distinguish two variants of a process; e.g., the intruder should
not be able to detect a difference between two processes differing only by the
swap of the votes of two honest voters. It is quite hard to intuitively understand
what such a trace equivalence goal actually entails and what not, and one may
wonder if there are other trace equivalences that should be checked for. It is
a rather technical way to encode the privacy goals of a protocol, and although
one can get insights from a failed proof when the goal is too strong, one cannot
easily see when it is too weak.

To fill the gap between intuitive ideas of the privacy goals and the mathemat-
ical notions used to formalize and reason about them, (α, β)-privacy has been
proposed in [MV19]. It is a declarative approach based on specifying two for-
mulae α and β in first-order logic with Herbrand universes. α formalizes the

80 Preliminaries for Alpha-Beta Privacy

payload, i.e., the “non-technical” information, that we intentionally release to
the intruder, and β describes the “technical” information that he has, i.e., his
“actual knowledge”: what (names, keys, etc.) he initially knows, which actual
cryptographic messages he observed and what he infers from them. He may be
unable to decrypt a message, but know anyway that it has a certain format and
contains certain (protected) information, e.g., a vote.

The distinction between payload and technical information is at the core of
(α, β)-privacy. We formalize it by a distinguished subset Σ0 ⊂ Σ of the alpha-
bet, where Σ0 contains only the non-technical information, such as votes and
addition, while Σ\Σ0 includes cryptographic operators. The formula α is always
over just Σ0, whereas β is over the full Σ.

Definition 3.2 (Model-theoretical (α, β)-privacy [MV19]). Consider a count-
able signature Σ and a payload alphabet Σ0 ⊂ Σ, a formula α over Σ0 and a
formula β over Σ s.t. fv(α) ⊆ fv(β), both α and β are consistent and β |= α.
We say that (α, β)-privacy holds (model-theoretically) iff every Σ0-model of α
can be extended to a Σ-model of β, where a Σ-interpretation I ′ is an extension
of a Σ0-interpretation I if they agree on all variables and all the interpreted
function and relation symbols of Σ0.

In this thesis, we call model-theoretical (α, β)-privacy also static possibilistic
(α, β)-privacy and, in contrast to [MV19], we allow β to have more free variables
than α. All α formulae we consider in this thesis are combinatoric, which means
that Σ0 is finite and contains only uninterpreted constants. Then α has only
finitely many models.

The common equivalence-based approaches to privacy are about the distin-
guishability between two alternatives. In contrast, (α, β)-privacy represents only
one single situation that can occur, and it is the question what the intruder can
deduce about this situation. To model this, we formalize that the intruder not
only knows some concrete messages, but also that the intruder may know some-
thing about the structure of these messages, e.g., that a particular encrypted
message contains a vote v1, where v1 is a free variable of α. Hence, we define
the intruder knowledge by two frames concr and struct , where struct formalizes
the structural knowledge of the intruder and thus may contain free variables of
α, and the frame for the concrete knowledge concr is the same except that all
variables are instantiated with what really happened, e.g., v1 = 1. The main
idea is that we require as part of β that struct and concr are statically equiv-
alent, which means that if the intruder knows that two concrete constructible
messages are equal, then also their structure has to be equal, and vice versa.
For example, let h ∈ Σ \ Σop and

struct = {m1 7→ h(v1),m2 7→ h(v2)} and concr = {m1 7→ h(0),m2 7→ h(1)} .

3.3 Alpha-Beta-Privacy 81

Every model of β has the property v1 6= v2. Suppose α ≡ v1, v2 ∈ {0, 1}, then
(α, β)-privacy is violated, since, for instance, v1 = 0, v2 = 0 is a model of α, but
cannot be extended to a model of β. However, if α ≡ v1, v2 ∈ {0, 1}∧v1+v2 = 1,
then all models of α are compatible with β and privacy is preserved.

Definition 3.3 (Message-analysis problem (adapted from [MV19])). Let α be
combinatoric, and struct and concr be two frames with domain D. We say that
β is a message-analysis problem if β ≡ MsgAna(D,α, struct , concr) with:

MsgAna(D,α, struct , concr) ≡ α ∧ φgen ∧ φframe ∧ φ∼

In the following, we assume β in every state to be implicitly augmented by the
respective α and by the axioms φgen , φhom and φ∼ where D is the set of labels
occurring in β. In other words, we assume β in every state to be implicitly a
message-analysis problem.

82 Preliminaries for Alpha-Beta Privacy

Chapter 4

Formalizing and Proving
Privacy Properties of

Voting Protocols using
Alpha-Beta Privacy

Le suffrage par le sort est de la
nature de la démocratie; le
suffrage par choix est de celle de
l’aristocratie.

Charles de Secondat, baron de
Montesquieu

De l’esprit des lois (1748), II, 2.

“The suffrage by lot is natural to democracy, as that by choice is to
aristocracy.”, Charles de Secondat, baron de Montesquieu, The Spirit of the

Laws (1748), II, 2.

Privacy is essential for freedom: to make a choice like a vote in a completely
free way, i.e., determined only by one’s own convictions, context, interests and
expectations (rather than those of others), it is crucial that this choice cannot
be observed by others. However, it is not sufficient to give people the possibility
to make the choice in a private way: we also have to actually prevent them from
proving what they have chosen. While one has the right to say what one has
chosen (by the freedom of speech), we must also guarantee the possibility to
lie about it, too. The reason is that otherwise we limit the privacy through a
backdoor, as there can arise pressure to prove what one has chosen, especially
when bribery or abuse of power comes into play. This chapter investigates
the tension between privacy and coercion with the focus on voting privacy,

84
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

however, this is also relevant in other areas like electronic medical prescriptions
(preventing pressure from the pharmaceutical industry onto doctors).

Related to the understanding of privacy goals is the problem that a demagogue
can easily raise doubts about the legitimacy of an election. Our best chance
to defeat this are open source systems that scientists, and ideally also ordinary
people, can understand and convince themselves to be correct. The less obscure,
the harder it is to defame, and the easier to recognize criticisms as unfounded.
One of the challenges for describing systems in both a formally precise and
intuitive way is privacy goals and their subtle relation to coercion.

This chapter gives a model-theoretic way to formalize and reason about privacy
and receipt-freeness. We build on the framework of (α, β)-privacy [MV19], that
defines privacy as a state-based safety property, where each state consists of two
formulae α, the deliberately released high-level information like the result of an
election, and β, the observations that the intruder could make. During transi-
tions, the information in α and β can only increase (by adding new conjuncts to
the formulae). The question is (for every reachable state), whether every model
of α is compatible with the observations in β: if not, the intruder is able to rule
out some models of α and thus has obtained more information about the system
than we have deliberately released. In particular, we use this to come as close
as possible to the following intuitive definition of privacy goals:

(a) Voting privacy: the number of voters and the result of the election are
published at the end of the election. The intruder should not find out more
than that about voters and votes.

(b) Receipt-freeness: no voter has a way to prove how they voted. This can
be indirectly expressed by saying: for everything that could have happened
according to (a), the voter can make up a consistent “story”.

Our contribution is a general methodology to modeling voting privacy and
receipt-freeness with (α, β)-privacy that can be applied for a variety of pro-
tocols. This in particular includes a proof methodology that allows for simple
model-theoretic arguments, suitable for manual proofs and proof assistants like
Isabelle and Coq. We illustrated this practically at hand of the FOO’92 pro-
tocol as an example, showing in particular how the use of permutations in the
reasoning can lead to elegant proofs. In the model we propose, α is the same for
both voting secrecy and receipt-freeness; the difference lies in β, namely in the
challenge for a coerced voter to make a consistent story. From this construction,
it immediately follows that receipt-freeness implies vote secrecy.

We do regard our models in (α, β)-privacy as a complementary view to existing

4.1 Verifying Voting Privacy 85

approaches like [DKR09]. We believe that their formalization may be equivalent
in some sense to ours (at least we found no examples where the notions would
differ), and regardless, our models aim to provide a fresh perspective. This holds
in particular as it allows for a different style of proofs that are, in some sense,
easier to conduct. While we consider only a static approach in this chapter, we
extend this approach to a dynamic one in the next chapter.

4.1 Verifying Voting Privacy

An (α, β)-pair characterizes a single state of a transition system. To illustrate
voting privacy and receipt-freeness we pick a few reachable states of the voting
protocol FOO’92 and prove (or disprove) fulfillment of some properties. In
fact, a manual proof for the entire infinite state-space is possible by appropriate
generalization, but for the purpose of illustration, this would be a laborious task.

First, let us look at α and for simplicity consider a choice between 0 or 1 (all
definitions can be easily extended to more complex voting choices). We use
a sequence of variables v1, . . . , vN to model the votes. During each transition
where an honest voter i sends a message that contains their vote vi, we augment
α by vi ∈ {0, 1}, since the intruder does not know more than they will cast a
valid vote. For dishonest voters, it is more complicated and actually depends on
the protocol, since dishonest voters (or the intruder) may not follow the protocol
and, e.g., replay a message of some honest voter (thus not necessarily knowing
what vote they have cast). Anyway, in this case one should augment α with
vi = b for the concrete value of the vote that they have cast, since the intruder
is allowed to know all dishonest votes. Finally, when the result is about to be
published and suppose the sum of the votes that equal 1 is R, then we finally
augment α with the information

∑N
i=1 vi = R. Therefore, from this point on,

the intruder is allowed to know the result, but before this point, it is already
a violation if he can obtain a partial result (beyond the votes of the dishonest
agents). For all examples in this chapter, we have

α ≡ v1 ∈ {0, 1} ∧ . . . ∧ vN ∈ {0, 1} ∧
N∑
i=1

vi = R , (4.1)

i.e., N honest voters have cast their votes, and R of these votes are 1. In fact,
we also use the same formula in examples for receipt-freeness since we want
that the same amount of information is kept secret, just some honest voters are
“under more pressure” from the intruder.

86
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

4.1.1 The FOO’92 Voting Protocol in Alpha-Beta Privacy

The FOO’92 protocol [FOO92] has been formally studied with the Applied π-
calculus [KR05]. We give here a brief description of the protocol and introduce
relevant aspects on the fly. The FOO’92 protocol is divided in six distinct
phases. In the preparation phase, each voter decides their vote and compute
their ballot using a bit-commitment scheme. The ballot is then blinded and
signed, before being sent to the administrator through an anonymous channel.
In the administration phase, the administrator verifies that each received ballot
comes from a legitimate voter that has not voted yet. The administrator checks
the validity of the signature on the ballot, and sends a certified ballot to the
voter. In the voting phase, each voter checks the validity of the certificate for
their ballot and sends it to the counter through an anonymous channel. In
the collecting phase, the counter checks the signature on the ballots, and then
prints them in a random order on the bulletin board. In the opening phase, each
voter checks that their ballot is printed on the bulletin board, and then sends
their commitment value to the counter through an anonymous channel. In the
counting phase, the counter opens all the commitments and publishes the votes
and the result on the bulletin board.

The final result of FOO’92 is the publication of a bulletin board of crypto-
graphic messages containing all the votes. More precisely, each entry contains
sign(priv(A), commit(vi, ri)) and ri for some i ∈ {1, . . . , N}. This is the signa-
ture with the private key of an administrator A and contains a cryptographic
commitment of the vote with some (initially secret) random value ri. Here,
we assume as part of Σop the following operators: sign for signature, verify
for signature verification, and retrieve for obtaining the message under the
signature; we also assume the following properties of the congruence relation
on terms: retrieve(sign(priv(A),m)) ≈ m and verify(pub(A), sign(priv(A),m)) ≈
true. Moreover, we have commit, vcommit and open for commitments with the
properties open(commit(m, r), r) ≈ m and vcommit(r, commit(m, r)) ≈ true.

Let us consider an intruder who just obtains this bulletin board. This is not
unrealistic since the exchanges in the other phases are best protected by anony-
mous channels, anyway. It is crucial that the bulletin board lists its entries in
some unpredictable order. To model that, we introduce an interpreted function
π[·] that is a permutation on {1, . . . , N}.1 To conveniently make use of this
function, we like to also access the votes vi and the random values ri (these
are uninterpreted constants of Σ \ Σ0) through a function, and thus introduce
two further interpreted functions v[·] and r[·] with the properties vi = v[i] and
ri = r[i] for each 1 ≤ i ≤ N .

1i.e., ∀i. 1 ≤ i ≤ N =⇒ 1 ≤ π[i] ≤ N ∧ ∀j. 1 ≤ j ≤ N ∧ π[i] = π[j] =⇒ i = j.

4.1 Verifying Voting Privacy 87

We can then describe the structural knowledge of the intruder who initially
knows all public keys and has seen the bulletin board by the following frame:

struct = {|m0 7→ pub(A),m1 7→ pub(V1), . . . ,mn 7→ pub(VN),

mN+1 7→ sign(priv(A), commit(v[π[1]], r[π[1]])), . . . ,

m2N 7→ sign(priv(A), commit(v[π[N]], r[π[N]])),

m2N+1 7→ r[π[1]], . . . ,m3N 7→ r[π[N]]|}

To obtain the concrete knowledge frame, we need to replace the interpreted
terms by their actual values. For the function π, this means the actual permu-
tation used on the bulletin board; let us call it π0. Mind π0 is not a symbol of
Σ but an actual permutation. Further, let θ0 |= α be an interpretation of each
vi by mapping them to 0, 1 and that is a model of α, i.e., the true vote of every
voter. Note that both π0 and θ0 are arbitrary, so the proofs we give hold for
every such choice. Then, the concrete knowledge is obtained by replacing π[x]
by π0(x), v[x] by θ0(vx) and r[x] by rx. Now we can specify the frame concr as
follows:

concr = {|m0 7→ pub(A),m1 7→ pub(V1), . . . ,mn 7→ pub(VN),

mN+1 7→ sign(priv(A), commit(θ0(vπ0(1)), rπ0(1))), . . . ,

m2N 7→ sign(priv(A), commit(θ0(vπ0(N)), rπ0(N))),

m2N+1 7→ rπ0(1), . . . ,m3N 7→ rπ0(N)|}

Thus, the frame concr replaces every occurrence of v[π[i]] by θ0(vπ0(i)) and every
r[π[i]] by rπ0(i). The point is that in the concrete messages the intruder observes,
everything is instantiated with respect to π0 and θ0, while the structural knowl-
edge about these messages is with respect to π[·] and v[·], i.e., reflecting what
the intruder knows about the content of a message. For example, v[π[j]] reflects
that the intruder knows that this is the vote of the voter who has entry number
j on the bulletin board, but he may be unable to find out the true permuta-
tion π0 and neither the votes directly as a function of the voters. We know the
technical information according to Chapter 3 and the protocol description:

β ≡
N∧
i=1

(
v[i] = vi ∧ r[i] = ri

)
∧MsgAna(D,α, struct , concr) (4.2)

Let us call S the state with this β (4.2) and the α (4.1) previously defined.

88
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

4.1.2 Voting Privacy Holds in S

To show that (α, β)-privacy holds in S, we need to show how an arbitrary model
of α can be extended to a model of β. To that end, we consider an arbitrary
model θI |= α, called an intruder hypothesis, i.e., that maps each vi to {0, 1} so
that their sum is R. We show how θI can be extended to a model I |= β. In
other words, we show that β does not allow the intruder to logically rule out
any hypothesis about the votes vi. We do this construction for an arbitrary θI ,
thus, every model of α can be extended to a model of β.

Since I must be an extension of θI , we have I(vi) = θI(vi) for all votes vi.
Further, we need to give an interpretation for all other symbols of Σ, in our
example gen(·), struct [·], concr [·], π[·], r[·] and of course v[·]. For the symbols
gen, struct , and concr , there is not much choice so that they satisfy the formulae
φgen and φframe , and we give a canonical construction for them (i.e., the same
construction applies for any message analysis problem). More interesting is to
find an interpretation of the protocol specific functions π[·], r[·] and v[·], so that
I |= φ∼, i.e., satisfying the static equivalence of struct and concr modulo ≈.
While this is generally difficult, we are sometimes in luck: in some cases (α, β)-
privacy allows for a relatively easy proof by reasoning about permutations—i.e.,
how “human provers” would like to do it. Indeed, for the state S, we can find an
interpretation for π[·] (and the other functions) such that I(struct) = I(concr).
In this case I |= φ∼ follows trivially. Note that here, we do not even need to
reason about algebraic properties of the operators (i.e., the congruence relation
≈) to conduct the proof.

The proof idea for this is actually straightforward in this case. Remember that
S entails “what really happened”, i.e., a particular model θ0 |= α and a par-
ticular permutation π0 that reflect the true outcome of the vote, and the true
permutation under which the votes have been published. The idea is that any
discrepancy between θI and θ0 can be “balanced” by an appropriate interpre-
tation of π. More precisely, the voting function is interpreted following the
intruder hypothesis, i.e., v[i] is θI(vi) for all voters. Since both θ0 |= α and
θI |= α, we have

∑N
i=1 θ0(vi) =

∑N
i=1 θI(vi) = R. Since v1, . . . , vN ∈ {0, 1}, the

list [θI(v1), . . . , θI(vN)] is a permutation of [θ0(v1), . . . , θ0(vN)]. Thus, we can
find a permutation ρ : {1, . . . , N} → {1, . . . , N} such that θI(vi) = θ0(vρ(i)) for
all i ∈ {1, . . . , N}. Intuitively, ρ is the discrepancy between θI and θ0. Then,
let us define πI as the intruder’s hypothesis of π: πI = ρ−1 ◦ π0. Finally, r
is interpreted accordingly, as the commitment secrets are permuted the same
way that the votes, i.e., a value r[i] is rρ(i). Let us thus define (recall that the
Herbrand universe is A = {[t]≈ | t ∈ TΣf

}):
Definition 4.1 (A model of the functions). Let I map v to the function
I(v) : A→ A, r to the function I(r) : A→ A and π to the function I(π) : A→

4.1 Verifying Voting Privacy 89

A:

I(v)([t]≈) = [θI(vt)]≈ if t ∈ [{1, . . . , N}]≈ and I(v)([t]≈) = [t]≈ otherwise
I(r)([t]≈) = [rρ(t)]≈ if t ∈ [{1, . . . , N}]≈ and I(r)([t]≈) = [t]≈ otherwise
I(π)([t]≈) = [πI(t)]≈ if t ∈ [{1, . . . , N}]≈ and I(π)([t]≈) = [t]≈ otherwise

Example 4.1. Given three voters, i.e., N = 3, and the result of the vote is
R = 2, the true result of the vote is θ0 = {v1 7→ 1, v2 7→ 1, v3 7→ 0} and the
actual permutation is π0 =

(
1 2 3
1 3 2

)
, the bulletin board is then:

Bulletin board j 1 2 3
vπ0(j) 1 0 1

Let us consider one possible intruder hypothesis, i.e., one model of α, θI =
{v1 7→ 0, v2 7→ 1, v3 7→ 1}. It is then possible to isolate one corresponding
permutation: ρ =

(
1 2 3
3 1 2

)
. We can then build πI =

(
1 2 3
2 1 3

)
.

The construction of the remaining items is generic for all message analysis prob-
lems, namely struct and concr behave like substitutions, and that gen is true
exactly for the recipes:

Definition 4.2 (A model of gen, struct and concr). Let D be the domain of
the frames struct and concr . Then we define

I(gen) = {[t]≈ | t ∈ TΣop∪D}
I(struct)([t]≈) = I(struct{|t|}) for all t ∈ TΣf

I(concr)([t]≈) = I(concr{|t|}) for all t ∈ TΣf

This interpretation expresses that gen is exactly the set of recipes. For struct
and concr , we define the meaning by first applying the actual frames struct{| · |}
and concr{|·|} as substitutions to a given term t, i.e., replacing the labelsmi ∈ D
in t; afterwards, we apply I to the resulting term since struct{|t|} in general
contains variables and interpreted function symbols that need to be interpreted.

This interpretation is well-defined because it does not depend on the choice of
the representative of the equivalence classes, e.g., if s ≈ t then struct{|s|} ≈
struct{|t|}. It is immediate that I is a model of φframe :

Lemma 4.3. Let I be defined such as in Definition 4.2. Then I |= φframe .

Proof. Following Definition 4.2, I models the second conjunct of φframe .

It remains to show that I models the first conjunct of φframe , namely φhom . Let
fn ∈ Σop . Let r1, . . . , rn be n recipes in TΣop∪D. Note that I(ri) = [ri]≈. It is

90
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

sufficient to show that I |= struct [f(r1, . . . , rn)] = f(struct [r1], . . . , struct [rn]).

I(struct [f(r1, . . . , rn)]) = I(struct)(I(f(r1, . . . , rn)))
= I(struct)([f(r1, . . . , rn)]≈)
= [struct{|f(r1, . . . , rn)|}]≈ by 4.2,
= [f(struct{|r1|}, . . . , struct{|rn|})]≈
= f([struct{|r1|}]≈, . . . , [struct{|rn|}]≈)
= f(I(struct)([r1]≈), . . . , I(struct)([rn]≈)) by 4.2,
= f(I(struct)(I(r1)), . . . , I(struct)(I(rn)))
= f(I(struct [r1]), . . . , I(struct [rn]))
= I(f(struct [r1], . . . , struct [rn])).

The development is similar for proving that I |= concr [f(r1, . . . , rn)] = f(concr [r1],
. . . , concr [rn]). Therefore, we proved that I |= φhom . Thus, I |= φframe .

It remains to show that I |= φ∼. In general, such a proof of static equivalence of
two frames can be difficult (especially by hand). However, in our case we have
I(struct) = I(concr) by construction—we have designed the interpretation of
π so that this holds—and then static equivalence is immediate:

Lemma 4.4. Let I be defined such as in Definition 4.2. If I(struct) = I(concr)
then I |= φ∼.

Proof. Suppose I(struct) = I(concr). Recall that struct and concr have the
same domain D so genstruct = genconcr = gen. Let r and s be two recipes in
TΣop∪D. Suppose now that I |= struct [r] = struct [s].

I |= struct [r] = struct [s] iff I(struct)(I(r)) = I(struct)(I(s))
iff I(concr)(I(r)) = I(concr)(I(s))
iff I |= concr [r] = concr [s].

Thus, I |= φ∼.

We can now conclude on the voting privacy in the state S that we described.

Theorem 4.5. Voting privacy holds in the state S.

Proof. First, let us prove that I(struct) = I(concr). For the struct , we just
have to look at the interpretation of v[π[i]] and r[π[i]] because all the other

4.1 Verifying Voting Privacy 91

terms are uninterpreted symbols. For i ∈ {1, . . . , N},

I(v[π[i]]) = I(v)(I(π)([i]≈)) = I(v)([πI(i)]≈) = I(v)([(ρ−1 ◦ π0)(i)]≈)

= [θI(vρ−1(π0(i)))]≈ = [θ0(vπ0(i))]≈

I(r[π[i]]) = I(r)(I(π)([i]≈)) = I(r)([πI(i)]≈) = I(r)([(ρ−1 ◦ π0)(i)]≈)

= [r(ρ◦ρ−1◦π0)(i)]≈ = [rπ0(i)]≈.

Since for the concr , the messages are of the form mN+i 7→ sign(priv(A), commit(
θ0(vπo(i)), rπ0(i))), we have I(struct) = I(concr). Then, we have shown that
for every model θI |= α, i.e., any possible intruder’s hypothesis, we can find a
model I of β that agrees with θI , i.e., I(v[i]) = θI(vi) for all votes vi.

This FOO’92 example demonstrates the declarativity of the (α, β)-privacy ap-
proach, in particular that we are able to reason about permutations allows for
a rather simple proof how “human provers” would like it: after a small insight
(the discrepancy between θI and θ0 can be balanced in the interpretation of π),
then the rest all falls into place.

4.1.3 Voting Privacy Holds in S’

In many cases, it is not as easy as before. For instance, in the FOO’92 pro-
tocol, we have a first phase where voters send a blind signature of their vote-
commitment to an administrator and receive a signature from that administra-
tor. Let us now consider a state S′ where the intruder has seen also all theses
blinded signatures (the formula α is again (4.1)):

struct = {|m0 7→ pub(A),m1 7→ pub(V1), . . . ,mN 7→ pub(VN),

mN+1 7→ sign(priv(A), commit(v[π[1]], r[π[1]])), . . . ,

m2N 7→ sign(priv(A), commit(v[π[N]], r[π[N]])),

m2N+1 7→ r[π[1]], . . . ,m3N 7→ r[π[N]],

m3N+1 7→ sign(priv(V1), blind(commit(v[1], r[1]), b1)), . . . ,

m4N 7→ sign(priv(VN), blind(commit(v[N], r[N]), bN)),

m4N+1 7→ sign(priv(A), blind(commit(v[1], r[1]), b1)), . . . ,

m5N 7→ sign(priv(A), blind(commit(v[N], r[N]), bN))|}

Here, we have augmented the frame from S by the messages from the voters
stored at m3N+1, . . . ,m4N , and the messages from the administrator stored
at m4N+1, . . . ,m5N , where bi is the corresponding blinding secret of voter Vi.

92
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

We assume the following property about blind and sign: unblind(sign(priv(A),
blind(m, b), b)) ≈ sign(priv(A),m), so that each voter can unblind the reply mes-
sage from the administrator. The concrete frame concr is again obtained by
replacing π[x] by π0(x), v[x] by θ0(vx) and r[x] by rx.

Note that the messages between voters and administrators are actually shown
in the order of the voters rather than under a permutation. The reason is that
such a permutation would not make the problem harder for the intruder, since
the signatures of the voters already identify which message belongs to whom
and the replies from the administrator could probably be linked due to timing.

Now, the difficulty is that we cannot find an interpretation I such that I(struct) =
I(concr), because the messages stored at m3N+1, . . . ,m4N are signed by the in-
dividual voters and are thus linked to the voters.2

Instead, the point is here that, due to the blinding, the intruder cannot derive
anything useful from these messages. Formally, we show for the same I as
constructed for S (for given θI |= α), that the weaker property I |= φ∼ still
holds in S′. This therefore requires a full static equivalence proof modulo the
properties of ≈, which is quite involved (cf., for instance [Cha+16]).

Claim 4.1. Voting privacy holds in the state S′.

4.2 Receipt-freeness

We now assume that the intruder tries to influence one particular voter, let
us call him Dan3 and identify him with the first voter V1. We will later briefly
discuss the case when the intruder tries to influence several voters. The question
is whether Dan can prove to the intruder how he voted by a kind of “receipt”. The
protocol does not explicitly produce any such receipt, but revealing all messages
that Dan knows could allow the intruder to verify how Dan voted, i.e., that Dan
is unable to lie about his vote. For instance, for FOO’92, we will now show, that
if the intruder has observed all the messages between voters and administrators
(state S′), and if Dan reveals his blinding factor, then the intruder can indeed
identify Dan’s vote with certainty. If we consider however FOO’92 without the
blinded signature messages (as in state S), and that the intruder sees only the
final bulletin board, Dan can claim any vote to be his—and the intruder has no

2In fact, due to the messages stored atm3N+1, . . . ,m4N , in any model I where I(struct) =
I(concr) we necessarily also have θ0 = θI , and thus there cannot be such a simple construction
for every θI |= α.

3According to Saxo Grammaticus in his Gesta Danorum, Book I, Dan was the first leg-
endary king of the Danes and Denmark.

4.2 Receipt-freeness 93

chance to falsify that claim. Mind that does not hold in the state before the
commitments are opened as we also discuss below. Note that the contribution
of this section is not the further formalization of the FOO protocol, but the
formalization of a privacy goal for receipt-freeness in (α, β)-privacy.

4.2.1 Formalizing Receipt-freeness

Consider a given state where we want to check whether the protocol is receipt-
free with respect to the voter Dan. The intruder can ask Dan to reveal his entire
knowledge, i.e., all the secrets Dan knows (his private key, his commitment value
and his blinding factor) as well as messages that Dan has received from other
parties, like the administrator. If Dan has any “receipt” (in the broadest sense
of the word), then it is something that can be derived from his knowledge.
The point is that Dan does not necessarily tell the truth, but can present any
collection of messages that can be constructed from his knowledge. We call
this Dan’s story. Dan’s story has to be consistent with whatever the intruder
can check, e.g., Dan cannot lie about his private key, since the intruder knows
his corresponding public key. We thus want to express that a state is receipt-
free, if for every model θI |= α, Dan can come up with a consistent story (in
particular consistent with θI). We do not even change the formula α, but only
add an additional challenge in β: that the intruder obtains a story from Dan,
i.e., what he claims to be his knowledge. We see receipt-freeness as preserving
voting privacy even under this additional challenge. From that actually follows
a relation between the goals: receipt freeness implies voting privacy.

We reason about Dan’s knowledge similarly to the intruder’s knowledge: we in-
troduce the frames concrDan and structDan whose domain DDan = {d1, . . . , dl}
is disjoint from the domain D of the intruder knowledge: DDan ∩ D = ∅. We
consider similar axioms that we introduced in Section 3.2 for the frames struct
and concr :

φhom,Dan ≡
∧
fn∈Σop

∀r1, . . . , rn. gen(r1) ∧ . . . ∧ gen(rn) =⇒
concrDan [f(r1, . . . , rn)] = f(concrDan [r1], . . . , concrDan [rn])
∧ structDan [f(r1, . . . , rn)] = f(structDan [r1], . . . , structDan [rn])

φDan ≡ structDan [d1] = t1 ∧ . . . ∧ structDan [dl] = tl
∧ concrDan [d1] = t′1 ∧ . . . ∧ concrDan [dl] = t′l

If we consider that the protocol itself is not a secret, the intruder “knows”
structDan , i.e., what the messages are supposed to be according to protocol,
and Dan’s story has to be consistent with this. The idea is that what Dan can
lie about is concrDan . We let Dan choose any recipes s1, . . . , sl (with respect to

94
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

DDan), one for each item in his knowledge and send concr [s1], . . . , concr [sl] as
his story to the intruder. The augmented intruder knowledge has then domain
D ∪DDan where the concr ’s memory are filled with Dan’s story and the struct
is identical with structDan , i.e., what it is supposed to be. This is captured by
the formula φlie that we call the Lying Axiom.

Definition 4.6 (The Lying Axiom φlie). Let Dan be the coerced voter, struct
and concr the intruder’s knowledge, structDan and concrDan Dan’s story with
domain DDan = {d1, . . . , dl}. Then, we define the lying axiom φlie :

φlie(Dan) ≡ struct [d1] = structDan [d1] ∧ . . . ∧ struct [dl] = structDan [dl]
∧∃ s1, . . . , sl. genDDan

(s1) ∧ . . . ∧ genDDan
(sl).(

concr [d1] = concrDan [s1] ∧ . . . ∧ concr [dl] = concrDan [sl]
)

In fact, I |= φlie(Dan) (w.r.t. the whole domain D ∪DDan) means that Dan’s
story is consistent with the protocol (i.e., the struct values) and I’s interpreta-
tion of the free variables of α. Thus, we define:

Definition 4.7 (Receipt-freeness problem). We say that β is a receipt-freeness
problem (with respect to a combinatoric α, the frames struct and concr with
domain D ∪DDan , a coerced voter Dan and his story structDan and concrDan

with domain DDan) if β ≡ RcpFree(D,α, struct , concr ,Dan) where:

RcpFree(D,α, struct , concr ,Dan) ≡ MsgAna(D ∪DDan , α, struct , concr)
∧φlie(Dan) ∧ φhom,Dan ∧ φDan

We say receipt-freeness holds if the (α, β)-pair is consistent. We call β′ ≡
MsgAna(D,α, struct , concr) the message-analysis problem underlying β.

β is always consistent since there is at least one way to satisfy β: the truth
(i.e., Dan selects si = di for each 1 ≤ i ≤ l). Note that the story of Dan
may be the truth when this is compatible with the intruder hypothesis (e.g.,
when θI = θ0) without breaking receipt-freeness. What matters is only that the
intruder cannot rule out any model of α, including the truth when θI coincides
with θ0.

The consistent “story” is here represented by the axiom φlie . For every receipt-
freeness problem, we also defined an underlying message-analysis problem that
is just a restriction of the original receipt-freeness problem. Indeed, the message-
analysis problem is part of the receipt-freeness problem and can be restricted
over the domain D. In that sense, the next proposition relates the two privacy
properties.

4.2 Receipt-freeness 95

Proposition 4.8. Let α be combinatoric, struct and concr two frames with
domain D, V an arbitrary coerced voter. Then, if the receipt-freeness is holding
for voter V , then the voting privacy is holding:

RcpFree(D,α, struct , concr , V) |= MsgAna(D,α, struct , concr) .

It is then sufficient to prove receipt-freeness to prove plain voting privacy.

4.2.2 Receipt-freeness in the current state

FOO’92 does not satisfy receipt-freeness as shown in [DKR09], and even though
our notion of receipt-freeness is defined differently, it agrees with their results.
FOO’92 serves well anyway for illustration: in the final state S that we have
considered before (where the intruder has seen only the final bulletin board),
receipt-freeness does hold as we now show.

Example 4.2. Let us first continue with Example 4.1. In the intruder’s hypoth-
esis θI that we considered, the intruder assumes Dan (i.e., V1) has voted 0, but
he actually voted 1 (see θ0). Dan can however point to a vote that is consistent
with θI , namely the second entry on the bulletin board, and claim it to be his
vote. While the intruder may have doubts about Dan’s story, he just cannot rule
out that Dan speaks the truth.

Let us first consider S, augment it to a receipt-freeness problem with respect to
a voter Dan, and show that receipt-freeness actually holds in this state. We first
need to define what the knowledge of Dan is. The structural information is very
similar to the intruder’s knowledge that consists of the published information
(the bulletin board and the public keys); additionally Dan also knows his private
key, his own vote, his own commitment value and his blinding factor. We did
not include the blinded message as it can be reconstructed using the blinding
factor.

structDan = {|d0 7→ pub(A), d1 7→ pub(V1), . . . , dn 7→ pub(VN),

dN+1 7→ sign(priv(A), commit(v[π[1]], r[π[1]])), . . . ,

d2N 7→ sign(priv(A), commit(v[π[N]], r[π[N]])),

d2N+1 7→ r[π[1]], . . . , d3N 7→ r[π[N]],

d3N+1 7→ priv(Dan), d3N+2 7→ v[1],

d3N+3 7→ r[1], d3N+4 7→ b1|}

The concrete frame is again obtained by replacing π[x] by π0(x), v[x] by θ0(vx)
and r[x] by rx. The formula α is the same for receipt-freeness than for voting

96
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

privacy, i.e., the intruder still is not supposed to find out anything more than
the published result of the election (in particular not what Dan has voted).
However, he has more information in β due to the story that Dan gives to the
intruder as part of the receipt-freeness definition:

βRF ≡
N∧
i=1

v[i] = vi ∧ r[i] = ri ∧ RcpFree(D,α, struct , concr ,Dan)

When it comes to crafting his story for the public values, Dan has no choice but
to tell the truth. As the intruder knows Dan’s public key, Dan also has to tell
the truth for his private key. For his blinding factor, he may also use the truth as
the intruder has not witnessed the exchange with the administrator. For d3N+2

(the actual vote) and d3N+3 (the commitment value), Dan needs to adapt his
story to what the intruder “wants to hear”, i.e., to a given θI (and πI). Observe
at this point the order of quantification here: we want to show that every model
θI |= α can be extended to a model I |= βRF where βRF entails an existential
quantifier for Dan’s story. So, we have to show how, given θI , we can construct
I and a value for the recipes of the story s1, . . . , sl that satisfies all conditions.
We take exactly the same construction for I (depending on θI) that we used
for state S, i.e., using the discrepancy ρ between the intruder hypothesis θI and
the reality θ0 (i.e., such that θ0(vρ(i)) = θI(vi)) for interpreting π[·], namely as
the permutation πI = ρ−1 · π0. It is sufficient to show that Dan can make his
story consistent with this interpretation, namely by pointing to the vote ρ(1) as
being his own vote. Let dN+ρ(1) and d2N+ρ(1) be the indices in Dan’s knowledge
for the signed commitment and commitment values on the bulletin board at
position ρ(1). He can claim this entry by choosing:

s3N+2 = open(retrieve(dN+ρ(1)), d2N+ρ(1)) and s3N+3 = d2N+ρ(1)

For all other values si, Dan tells the truth, i.e. si = di. With this, we can
conclude:

Theorem 4.9. (α, βRF)-privacy holds, i.e., receipt-freeness holds in S.

Proof. The idea once again here is to prove that for all θI |= α, I(struct) =
I(concr). We extend the proof of Theorem 4.5. gen is extended to the domain
D ∪DDan . The frames struct and concr are also extended to the new domain
as explained with the knowledge of Dan. We already described Dan’s strategy
for lying. By definition, I(v[1]) = [θI(v1)]≈ and I(r[1]) = [rρ(1)]≈

Since I(concr [d3N+2]) = I(concrDan [s3N+2]) = [θ0(vρ(1))]≈ = [θI(v1)]≈ and
I(concr [d3N+3]) = I(concrDan [s3N+3]) = [rρ(1)]≈ by construction, we still have

4.2 Receipt-freeness 97

I(struct) = I(concr). Thus, in the augmented state S, receipt-freeness holds.

One may argue that the choice of s3N+2 and s3N+3 is hardly a strategy for Dan,
since the choice is based on the permutation ρ (that neither Dan nor the intruder
would know), but formally that is fine since the existential quantifier over the
si only requires that there is a recipe that works, and thus our construction is
just the simplest way to conduct the proof of receipt-freeness. Dan can choose
any vote on the bulletin board that matches the intruder’s expectation for Dan
θI(v1).

The aspect of strategy becomes more relevant if we consider the case that more
than one voter is bribed by the intruder, because the intruder knows that some
agent is lying if more than one points to the same vote. This becomes an issue
when the intruder has bribed a significant part of the voters, which may be
possible when a vote is held amongst a small consortium. If the bribed voters
have no way to “coordinate” their story, the risk of a collision (that reveals the
lie) comes into play. For instance, suppose there are 100 voters, and 40 voted
yes. If the intruder has bribed 20 of them, there is a substantial chance that two
or more of them point to the same vote if they cannot coordinate their story.

We observe that our definition of receipt-freeness is independent of what the
intruder actually wants: we actually have formalized that agents vote however
they want and we prove that they can get away with lying—however only with
respect to models of α. If the intruder has bribed more voters than actually want
to vote for the intruder’s preferred choice, then the expected outcome is not a
model of α (since the result is not compatible with all bribed people having voted
the way the intruder wants). Both this and the previous issue (of coordination)
are problems that arise when a significant part of the votership is bribed: they
may be coerced into voting what the intruder wants out of fear not to get away
with lying after all. These are the boundaries where a possibilistic approach like
classical (α, β)-privacy makes sense and where probabilities and behavior models
would be needed. We see it as a strong point for the declarativity of (α, β)-
privacy that such subtle points become clearly visible from the formalization
and discussion of examples. We extend in the next chapter (α, β)-privacy with
probabilities.

4.2.3 Violation of Receipt-Freeness in FOO’92

To see the problems of FOO’92 with receipt-freeness, let us consider just the
state after the third phase of the protocol. In this case, the bulletin board con-

98
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

tains all the ballots (the signed commitments) but the commitment secrets have
not yet been revealed. In this state receipt-freeness does not hold: Unopened
commitments violate receipt freeness, since the creator of the commitment is in
a unique position to prove authorship to the intruder (by revealing the commit-
ment secret). Effectively, this allows the intruder to bribe agents for obtaining
the commitment secrets, and this is captured by our notion of receipt freeness.
This is in particular relevant since voters could refuse to make the last step
(the protocol cannot force them, since, by construction, one cannot see who the
missing voters are).

While it is intuitively clear that receipt-freeness is violated in this intermediate
step, let us prove that it is violated according to our formal definition. Consider
the bulletin board without the commitments open, i.e., the same frame as in
state S but removing the elements m2N+1, . . . ,m3N (the commitment values).
Since in this case, the result has not been published yet, we have here α ≡
v1, . . . , vN ∈ {0, 1}, i.e., the intruder knows nothing more than there are N
binary votes in the game.

The knowledge of the coerced voter Dan is the same as in the previous subsec-
tion, except for removing the entries d2N+1, . . . , d3N which contain the r[π[i]]
that have not yet been published at this point, of course. The intruder again
asks Dan to reveal his knowledge as before, which entails that Dan must claim
some vote on the bulletin board to be his own and present a fitting commit-
ment secret, namely structDan [d3N+3] = r[1]. Thus the only consistent story
that Dan can give for this value is the truth: s3N+3 = d3N+3. That in turn is
only consistent with a given intruder hypothesis θI |= α if θI(v1) = θ0(v1), i.e.,
it rules out any model that does not state Dan’s vote correctly. Thus, at this
point, Dan has proved to the intruder what he voted.

In fact, this demonstrates how our notion of receipt-freeness is connected to
voting secrecy, namely whether the information given by Dan proves anything
to the intruder, i.e., whether it allows him to rule out any model θI of α. Note
that this is a very fine notion: receipt-freeness would be violated even in a state
where Dan cannot precisely prove what he voted, but only giving the intruder
enough information to rule out some model of α.

4.3 Related work

This work is based on the framework of (α, β)-privacy [MV19], which is in
turn based on Herbrand logic [HG06]. As a variant of First-Order Logic, using
the ground terms of uninterpreted function symbols as a universe, Herbrand

4.4 Conclusion 99

logic is very expressive, e.g., it can axiomatize natural number arithmetic. The
main idea of (α, β)-privacy is to depart from the most popular approach of
specifying privacy as bisimilarity of pairs of processes as in [ABF18; BAF08;
CRZ07; DRS08]. Instead, we define privacy as a reachability problem of states,
where each state is characterized by (at least) two formulae, namely α giving
the public high-level information (like a voting result), and β containing all
observations that the intruder could make.

While [MV19] has already defined voting secrecy, this work gives the first adap-
tion of (α, β)-privacy to a real-world voting protocol, namely FOO’92 [FOO92].
Another core contribution of this chapter is the formalization of receipt-freeness,
namely as a refinement of standard voting secrecy. Here, the high-level infor-
mation α remains the same (i.e., the same information must be kept private),
but the intruder gets extra observations as part of β through the interaction
with a voter Dan. The most similar work is [DKR09] where voting privacy,
receipt-freeness and coercion-resistance have been expressed with observational
equivalence (see also [Ara+17]). The formalization of these properties rely on
labeled bisimilarity of two processes, also proving a hierarchy between these
goals. We believe that our formalization in (α, β)-privacy is more declarative
and intuitive, due to its model-theoretic formulation. An interesting question
for future work is how the two approaches compare, i.e., whether one can cap-
tures anything as an attack that the other does not. If they turned out to
be equivalent in some sense instead, then this would indicate that the “right”
concept has been hit.

Another question is automation. There are several fragments of bisimilar-
ity for which automation is being developed. However some protocols, even
the relatively simple FOO’92, are hard to analyze fully automatically: for in-
stance, [DKR09] is at the high-level a manual proof, reducing the problem to a
static equivalence of two frames (which is then automated). Only in the recent
paper [BS18] a fully automatic analysis of FOO’92 is given. Our focus on a
declarative formalization rather than automation concerns allows often for very
simple proofs, e.g., in FOO’92 in S, which basically amounts to finding a fitting
interpretation for a permutation. This is exactly how one may want to prove
such a property manually or in a proof assistant like Isabelle or Coq.

4.4 Conclusion

(α, β)-privacy was introduced as a simple and declarative way to specify privacy
goals and reason about them. We present here the first major use-case using
this framework. This use-case illustrates the refined voting privacy goal that

100
Formalizing and Proving Privacy Properties of Voting Protocols using

Alpha-Beta Privacy

we have defined in this chapter. Indeed, we showed how for any model θ of α,
we could step by step construct a model I of β. On top of this voting privacy
property, we defined a new property: receipt-freeness. We showed that receipt-
freeness implies voting privacy. We illustrated these properties for a voting
system, but both privacy and receipt-freeness are actually relevant to a variety
of areas, for instance healthcare privacy [DJP12]. Indeed, prescriptions by a
medial doctor have similar requirements regarding privacy and even receipt-
freeness: for instance, we want to prevent that a doctor could be coerced by
a pharmaceutical company to prescribe specific medication, which is actually a
receipt-freeness problem.

We are currently investigating coercion resistance as a stronger variant of receipt-
freeness, where the intruder can initially determine values for the coerced voter
to use. To counter such attacks, one needs protocols with a different setup than
FOO’92, allowing re-voting. This also requires to formalize more details about
the underlying transition system than we did in this chapter, including how
the intruder can take a more active part in the protocol. In fact, it is part of
ongoing work to provide languages, proof strategies and potentially automated
tools for specifying and verifying transition systems with (α, β)-privacy. The
idea is here that the formula β can be automatically derived from what happens
(like message exchanges) and that only α needs to be specified by the modeler,
namely indicating at which point which information is deliberately released. We
extend (α, β)-privacy with transition system in the next chapter.

Chapter 5

Privacy As Reachability

There are two further open problems with (α, β)-privacy, which we tackle in this
chapter.

Problem 1. The main difficulty in reasoning about privacy with trace equivalence
is that one needs to consider two possible worlds: for every step the first system
can make, one has to show that the other system can make a similar step so that
they are still indistinguishable (and so are the executed steps). Many works tame
this difficulty by making the processes just differ in some message-subterms, so
everything except these subterms is equal. One can obtain a verification question
that is close to a reachability problem, which drastically reduces the range of
protocols that can be considered.

What distinguishes (α, β)-privacy from trace equivalence is that it considers one
possible world rather than two. (α, β)-privacy is until now only a static approach
that does not reason about the development of a system, like the influence that
the actions of an intruder can have on a system, and thus does not solve Problem
1 . . . yet.

The first main contribution of this chapter is to lift (α, β)-privacy from a static
approach to a dynamic one. We define a transaction-process formalism for
distributed systems that can exchange cryptographic messages (in a black-box
cryptography model). Our formalism

• includes privacy variables that can be non-deterministically chosen from
finite domains (e.g., the candidates in a voting protocol),

• can work also with long-term mutable states (e.g., modeling a hash-key
chain), and

• allows one to specify the consciously released information (e.g., the number
of cast votes and the result).

We define dynamic (α, β)-privacy that holds if (α, β)-privacy holds in every

102 Privacy As Reachability

state of the transition system. Hence, every state is an (α, β)-privacy problem,
i.e., a pure reachability problem that supports a wide variety of privacy goals.

This does not solve all the challenges of automation: (i) (α, β)-privacy is in
general undecidable, but for most reasonable protocols (including the algebraic
model of cryptography) it is decidable, as it boils down to a static equivalence
of frames; (ii) the set of reachable states is infinite. Symbolic and abstract
interpretation methods still need to be developed.

We argue though that this approach is very helpful for manual analysis, because
it is a novel view of privacy that allows us to characterize the reachable states
in a declarative logical way, and analyze the dynamic (α, β)-privacy question
for them. As a topical case study we consider the core of the privacy-preserving
proximity tracing system DP-3T [Vau20]. We discover counter-examples for
dynamic (α, β)-privacy, i.e., the intruder can make more deductions about the
honest agents than released in α. Step by step, including more details in α, we
obtain a characterization of all information that the system actually discloses,
and then prove dynamic (α, β)-privacy. This can be helpful to understand the
actual privacy impact of a system, and is also an answer to Problem 1.

Problem 2. Many approaches (e.g., quantitative information flow, differential
privacy, etc.) reason about privacy by considering quantitative aspects and
probabilities. Trace equivalence approaches are instead purely qualitative and
possibilistic, and so is (dynamic) (α, β)-privacy; this is appropriate for many sce-
narios, but we give examples where probability distributions play a crucial role
(i.e., in a purely possibilistic setting, there is no attack, but with probabilities
there is).

As second main contribution of this chapter, we give a conservative extension
of (dynamic) (α, β)-privacy by probabilistic variables. As for non-deterministic
variables (used when probabilities are irrelevant or when the intruder does not
know the distribution), probabilistic variables can be sampled from a finite do-
main with a probability distribution, which may depend on probabilistic vari-
ables that were chosen earlier.

As proof-of-concept, we consider some simple examples, and then we show that a
well-known problem of vote copying (e.g., in Helios, where a dishonest voter can
copy an honest voter’s vote) can be analyzed with probabilistic (α, β)-privacy in
a new light: one can observe the influence on the distribution by the dishonest
votes, where possibilistic models would not allow the deduction. The intruder
almost becomes an empirical scientist who needs to decide when the distortion
of the probabilities is significant to deduce how a particular voter voted. Hence,
our approach successfully tackles Problem 2.

5.1 Transition Systems for Alpha-Beta-privacy 103

We prove two theorems for (dynamic) probabilistic (α, β)-privacy. We define a
notion of extensibility, which says that β does not exclude choices of probabilis-
tic variables. Theorem 5.10 says that if we prove possibilistic (α, β)-privacy for
an extensible pair (α, β), then probabilistic (α, β)-privacy holds as well. The-
orem 5.11 proves stability under background knowledge: if the intruder has
additional background information α0 (e.g., knowledge about the distribution
of votes or particular voters), then in any state with an extensible pair (α, β),
probabilistic (α∧α0, β∧α0)-privacy still holds; the intruder does not learn more
than what he already knew and what we deliberately release.

As a third contribution of this chapter, we formalize the relationship between
our approach and trace equivalence (Theorems 5.15 and 5.16).

In §5.1, we lift (α, β)-privacy from static to dynamic. In §5.2, we give a conser-
vative extension of (dynamic) (α, β)-privacy with probabilities. We formalize
the DP-3T protocol with dynamic possibilistic (α, β)-privacy in §5.3, we show
how to formalize voting privacy goals with dynamic (α, β)-privacy in §5.4, and
we prove the relationship with trace equivalence in §5.5, and discuss that with
information flow in §5.6. Finally, in §5.7, we discuss future work.

5.1 Transition Systems for Alpha-Beta-privacy

We lift the definition of static (α, β)-privacy to a dynamic one with transition
systems. In §5.1.1, we describe the syntax of a protocol specification, notably
the syntax of processes. We give the operational semantics for transition sys-
tems in §5.1.2 and define the state with, amongst other things, the following
formulae: the payload formula α, the technical information formula β and the
truth formula γ. We also define δ, which is a sequence of conditional updates
on the cells, and η, which is a probability decision tree for the random variables.
In §5.1.3, we show how to derive a legitimate linkability attack on the OSK
protocol.

5.1.1 Syntax

We consider a number a transaction processes and a number of families of mem-
ory cells, which allow us to model the stateful nature of some protocols. These
cells can be used, for instance, to store the status of a key (e.g., valid or revoked).

In the processes, we talk about privacy variables of two sorts: non-deterministic

104 Privacy As Reachability

or random. Each of them has a domain D = {c1, . . . , cn}, where c1, . . . , cn are
constants, i.e., a variable will be instantiated to one of these values. A random
variable can also use Dprob = {c1 : p1, . . . , cn : pn}, where the pi are probabilities
s.t. they form a distribution, i.e., pi ∈ [0, 1] and

∑n
i=1 pi = 1. We might omit

the probabilities in Dprob when the distribution is uniform, and if only some of
the pi are made precise, then the rest of them are uniformly distributed amongst
the remaining probability weight. We consider only finite domains. This is not
a restriction, since it is possible to leave the size of the model as a parameter in
all definitions.

Definition 5.1 (Syntax). A protocol specification consists of:

• a number of families of memory cells, e.g., cell(·), together with an initial
value which is a ground context k([·]), so that initially cell(t) = k([t]),

• a number of transaction processes of the form Pl, where Pl is a left process
according to the syntax below, and

• an initial state (see Definition 5.3), containing, e.g., domain specific ax-
ioms in the formulae α and β (see preliminaries).

We define left processes and right processes as follows:

Pl ::= mode x ∈ D.Pl Pr ::= snd(t).Pr
| mode x← Dprob .Pl | cell(s) := t.Pr
| rcv(x).Pl | mode φ.Pr
| x := cell(s).Pl | 0
| if φ then Pl else Pl
| νN.Pr

where x ranges over variables; mode is either ? or �, D is the finite domain of
a non-deterministic variable; Dprob is the finite domain of a random variable; s
and t range over terms, cell over families of memory cells, and φ over Herbrand
formulae; and N is a set of fresh variables, i.e., that do not occur elsewhere. In
φ formulae, we also allow the symbol I around terms, e.g., x .

= I(x). This will
refer during execution to the true interpretation of the variables as we define
below.

“mode x ∈ D” is the picking of a non-deterministic variable, “mode x← Dprob”
is the sampling of a random variable, and both are only released in β if mode
is �, and additionally in α if mode is ?. “rcv(x)” is a standard message input,
where the variable x is replaced with an actual received message. “x := cell(s)”
is a cell read where x is replaced by a value stored in the memory cell. The
conditional “ if φ then Pl else Pl” is standard. “νN.Pr” creates a sequence of

5.1 Transition Systems for Alpha-Beta-privacy 105

fresh variables; it does not recur on Pl but on Pr, meaning that one can have
new variables only once, directly before entering the right process. “snd(t)” is a
standard message output. “cell(s) := t” is a cell write that stores a term in the
cell. “mode φ” releases a formula in α of the current state if mode is ? and in γ
if mode is �. Finally, “0” is the null process.

We may write “ let x = t” for the substitution of all following occurrences of x
by t. Another syntactic sugar concerns parsing of messages. For many (crypto-
graphic) operators we may have a corresponding destructor and verifier , e.g.,
we often use the public functions pair/2, proji/1 and vpair/1 with the properties
proji(pair(t1, t2)) ≈ ti, and vpair(pair(t1, t2)) ≈ true. More generally, let f/n
be a destructor (like the proji) and v/n a corresponding verifier (like vpair);
then we may write “try t = f(t1, . . . , tn) in P1 catch P2” in lieu of “ if v(t1,
. . . , tn)

.
= true then let t = f(t1, . . . , tn).P1 else P2”. In the try construct, t is

substituted in P1 and, as for the else branch in the conditional construct, we
may omit the catch branch when P2 is the null process. Let us now look at a
first example.

Example 5.1 (Basic Hash). As a first example, we consider the Basic Hash
protocol [BCH10]: a reader can access a database of authorized tags that carry
a mutable state. We consider n tags in the domain Tags = {t1, . . . , tn}. Let
sk/1 and h/2 be private functions. Each tag T has an immutable secret key
sk(T). Let pair/2, vpair/1 and proji/1 be public functions as before. The tag
sends messages of the form of a pair of a fresh nonce and the hash of the same
nonce and its secret key.

Tag

? T ∈ Tags.
νN.snd(pair(N,h(sk(T), N))).0

When the reader receives a message from a tag T , it has first to figure out who T
is by trying all known keys sk(T) of any token T , almost like a guessing attack.
In order not to have to describe this procedure as transactions (it is included in
the intruder model if he knows any keys), we simply define two special private
functions for the reader (extract/1 and vextract/1) that check if a message is
valid and extract T from it such that extract(pair(N,h(sk(T), N))) ≈ sk(T) and
vextract(pair(N,h(sk(T), N))) ≈ true.

Definition 5.2 (Requirements on Processes). We require that α formulae are
over Σ0 and contain only variables that were released in α. In “mode x ∈
D.Pl”, “mode x ← Dprob .Pl”, “rcv(x).Pl” and “x := cell(s).Pl”, we require that
x cannot be instantiated twice, i.e., Pl contains neither “mode x ∈ D′”, nor
“mode x ← D′prob”, nor “rcv(x)”, nor “x := cell(s′)”. We also require that

106 Privacy As Reachability

Reader

rcv(t).
try R = extract(t) in

snd(ok).0

in different branches of conditionals, the same random and non-deterministic
variables are chosen in the same order and from the same set of values, and the
ordering with receive steps is also the same. This is formalized by the following
function that is only defined when the requirements are met:

varseq(mode x ∈ D.Pl) = mode x ∈ D.varseq(Pl)
varseq(mode x← Dprob .Pl) = mode x← D.varseq(Pl)
varseq(if φ then P1else P2) = varseq(P1)

if varseq(P1) = varseq(P2) and undefined otherwise
varseq(rcv(t).Pl) = rcv(t).varseq(Pl)

varseq(_.Pr) = varseq(Pr)
varseq(0) = 0

Note that in the case for Dprob, the right-hand side uses D, which is supposed
to mean drop the probabilities from the domain: two branches are allowed to
assign different probabilities to the elements of the domain, but it has to be the
same domain. We also require that when a random variable y is sampled inside
a conditional “ if φ then Pl else Pl”, φ can only contain conjunctions of the form
x
.
= ci, where x is a random variable that has previously been sampled, and if y

is an α variable, then also x must be.

Finally, we require that every transaction in a protocol specification is a closed
process, i.e., it has no free variables and the binding occurrence of a variable
is the first occurrence where in the context it is not free (so further occurrences
do not open a new scope):

fv(mode x ∈ D.Pl) = fv(Pl) \ {x}
fv(mode x← Dprob .Pl) = fv(Pl) \ {x}

fv(rcv(x).Pl) = fv(Pl) \ {x}
fv(x := cell(s).Pl) = (fv(s) ∪ fv(Pl)) \ {x}

fv(if φ then P1else P2) = fv(φ) ∪ fv(P1) ∪ fv(P2)
fv(νN.Pr) = fv(Pr) \N

, and the free variables of a right process are all variables occurring in it.

5.1 Transition Systems for Alpha-Beta-privacy 107

5.1.2 Operational Semantics

We describe the operational semantics that lifts the definition of static (α, β)-
privacy to a dynamic one with transition systems. We define possibilistic dy-
namic (α, β)-privacy, which intuitively holds if (α, β)-privacy holds in every
state of the transition system. Let us start by defining the states of our tran-
sition system, where, for simplicity, we already include the tree η that we will
need in Section 5.2, in which we discuss probabilities explicitly.

Definition 5.3 (State). A state is a tuple (α, β, γ, δ, η), where:

• formula α over Σ0 is the released information,

• formula β over Σ is the technical information available to the intruder,
such that β is consistent and entails α (thus also α is consistent and
fv(α) ⊆ fv(β)1),

• formula γ over Σ0 is the truth, which is true for exactly one model with
respect to the free variables of α and Σ0, and γ ∧ β is consistent,

• δ is a sequence of conditional updates of the form cell(s) := t if φ, where
s and t are terms and φ is a formula over Σ, and its free variables are a
subset of the free variables of α, and

• η is a probability decision tree, which, for a sequence of random variables
x1, . . . , xn, has n + 1 levels where every inner node on the i-th level is
labeled xi, and the leaves on level n + 1 are unlabeled. To each variable
xi we associate a domain Di = {cl1 , . . . , cli}. Every xi node in η has li
children, and every branch from a node to its children is labeled with one
of the cli and a probability, so that the probabilities under a variable sum
up to 1. In the following, we will use η in such a way that the first k
levels are the random variables of α, and the remaining levels the random
variables of β.2 If there are no probabilistic variables, we may omit the
tree η.

The formulae α and β play the same roles than in the previous chapter. To
define our transition system, we introduce the formula γ that represents the
“truth”, i.e., the real execution of a protocol. For instance, for a voting protocol,
α may contain vi ∈ {0, 1} (i.e., that vote vi is one of these values), β may contain
cryptographic messages that contain vi, and γ may contain vi = 1, i.e., what

1[MV19] only allowed that fv(α) = fv(β), but our constructions do not require it.
2Note that the tree has exponential size in the number of variables, so for implementation

in automated tools, a more efficient representation should be chosen, but for the conceptual
level, this is irrelevant.

108 Privacy As Reachability

the vote actually is (and this is not visible to the intruder). The consequences
of γ is what really happened, e.g., the result that one can derive from the votes
in γ is the true result of the election. The sequence δ represents in a symbolic
way all updates that a protocol may have performed on the memory cells: when
updates are under a condition, the intruder does not know whether they where
executed, so each update operation in δ come with a condition φ; these entries in
general contain variables when the intruder does not know the concrete values.
We describe η and the probabilistic mechanisms in Section 5.2.

During the execution of a transaction, the intruder will in general not know what
exactly is happening, in particular in a conditional, it will not be generally clear
which branch has been taken. Therefore, we define now the notion of possibilities
that represent all possible choices, what that means for the condition and the
structure of messages. One of the possibilities is marked to indicate which one
is actually true.

Definition 5.4 (Possibility, configuration). A possibility (P, φ, struct) consists
of a process P , a formula φ and a frame struct representing the structural knowl-
edge attached to this process P . A configuration is a pair (S,P), where S is a
state and P is a non-empty finite set of possibilities s.t.:

• fv(P) is a subset of the free variables of S,

• exactly one element of P is marked as the actual possibility, which we
depict by underlining that element,

• the formulae φ1, . . . , φn of P are mutually exclusive (i.e., |= ¬φi∨¬φj for
i 6= j) and β implies their disjunction (i.e., β |= φ1 ∨ . . . ∨ φn), and

• β ∧ γ |= φ for the condition φ of the marked possibility.

In a state, we can start the execution of any transaction from the protocol
description as follows:

Definition 5.5 (Initial configuration). Consider a configuration (S,P), a trans-
action process Pl, a substitution θ that substitutes the fresh variables N (from a
νN.Pr specification) with fresh constants from Σ\Σ0 that do not occur elsewhere
in the description or in (S,P), and that replaces all other variables with fresh
variables that do not occur elsewhere in the description or in (S,P). The initial
configuration of Pl w.r.t. (S,P) and θ is (S ′, {(θ(Pl), φ, struct) | (0, φ, struct) ∈
P}).

From this initial configuration, we can get to a new state (or several states) by
the following normalization and evaluation rules, basically working off the steps

5.1 Transition Systems for Alpha-Beta-privacy 109

of the process Pl. We first define these rules and then give a larger example
in Section 5.1.3.

5.1.2.1 Normalization Rules

We have six normalization rules for a configuration: redundancy, cell reads,
conditional, cell write, redundant entries in δ, release in α. Recall that in a
configuration, we have always one possibility being marked, which we denote
by underlining it; in the following rules however, if no possibility is underlined,
then the rule applies for all possibilities, no matter if marked or not.

Redundancy We can always remove redundant possibilities when the in-
truder knows that a condition is inconsistent with β (this can never happen
to the marked possibility, as the truth is always consistent with β):

{(P, φ, struct)} ∪ P =⇒ P if β |= ¬φ

Cell Reads Let C[·] be the initial state of cell, and let the cell operations in
the current state S be cell(s1) := t1 if φ1, . . . , cell(sn) := tn if φn. Then, every
configuration that starts with the reading of a memory cell is normalized via:

{(x := cell(s).Pl, φ, struct)} ∪ P =⇒
{(if s = sn ∧ φn then let x := tn.Pl else

if s = sn−1 ∧ φn−1 then let x := tn−1.Pl else

. . .

if s = s1 ∧ φ1 then let x := t1.Pl else

let x := C[s].Pl, φ, struct)} ∪ P

The same rule holds if the possibility is marked (and then the transformed
possibility is the marked one).

Conditional A conditional process is normalized via:

{(if ψ then P1 else P2, φ, struct)} ∪ P =⇒
{(P1, φ ∧ ψ, struct), (P2, φ ∧ ¬ψ, struct)} ∪ P

If the process “ if ψ then P1 else P2” is marked, then, by construction, β∧γ |= φ,
thus either β ∧ γ |= φ ∧ ψ or β ∧ γ |= φ ∧ ¬ψ. Accordingly, exactly one of the
alternatives is marked.

110 Privacy As Reachability

Cell write A cell write process is normalized via:

{(cell(s) := t.Pr, φ, struct)} ∪ P =⇒ {(Pr, φ, struct)} ∪ P

where δ is augmented with the entry cell(s) := t if φ. The order of these
entries in δ depends on which normalizations are performed first, e.g., if we have
{(cell(s1) := t1.0, φ1, struct1), (cell(s2) := t2.0, φ2, struct2)}, then normalization
yields {(0, φ1, struct1), (0, φ2, struct2)}. Depending on whether we have started
normalizing the first or the second possibility, the resulting δ is either δ ≡
cell(s1) := t1 if φ1, cell(s2) := t2 if φ2 or δ ≡ cell(s2) := t2 if φ2, cell(s1) := t1 if
φ1.

However, both orderings are in some sense equivalent, because φ1 and φ2 are
mutually exclusive, so at most one of them can happen in any given model I
of β. A similar argument holds for any critical pair of applicable normalization
rules, and thus an arbitrary application strategy of the normalization rules may
be fixed for the uniqueness of the definition.

Redundant entries in δ An entry cell(s) := t if φ can be removed from δ if
β |= ¬φ.

Release Given a process that wants to release some information φ0, if the
possibility is marked then we add it to α if mode is ? or to γ if mode is �,
otherwise we ignore it:

{(mode α0.Pr, φ, struct)} ∪ P =⇒ {(Pr, φ, struct)} ∪ P

Recall that in process specifications, the formula φ0 may contain subterms of
the form I(t), e.g., x = I(x). When adding to α or to γ, this subterm must
be replaced by the actual value I(t) where I is the unique model of γ, i.e., the
truth.

5.1.2.2 Evaluation Rules

We call a set of configurations normalized if normalization rules have been ap-
plied as far as possible. The first step of a normalized set of configurations
is either a random sampling or non-deterministic choice, a send or a receive
step, or they finished—since all other constructs are acted upon by the nor-
malization rules. The following evaluation rules can produce multiple successor
configurations (due to non-deterministic choice or random sampling), and they
can produce non-normalized configurations. In this case, before another of the
evaluation rules can be taken, the configurations have to be normalized again.

5.1 Transition Systems for Alpha-Beta-privacy 111

Non-deterministic choice If the first step in the marked process is a non-
deterministic choice, then in fact, all processes must start with a non-deterministic
choice of the same variable x and from the same domain D. This is because we
required that varseq is defined and the set of configurations is normalized. In
this case, the evaluation is defined as a non-deterministic configuration transi-
tion for every c ∈ D as follows:

((α, β, γ, δ, η),{((mode x ∈ D.P1, φ1, struct1), . . . ,
(mode x ∈ D.Pn, φn, structn))}) =⇒

((α′, β′, γ′, δ, η),{(P1, φ1, struct1), . . . , (Pn, φn, structn)})

where α′ = α ∧ x ∈ D if mode is ? and α′ = α if mode is �, β′ = β ∧ x ∈ D and
γ′ = γ ∧ x .

= c for whatever mode.

Random Sampling For the same reason as before, if the first step in the
marked process is a random sampling, then all processes must start with a
random choice of the same variable x. They may be sampled at different prob-
abilities Dprob,1, . . . , Dprob,n, but the underlying set of elements D is identical.
Then, for every c ∈ D we have a configuration transition as follows:

((α, β, γ, δ, η),{((mode x← Dprob,1.P1, φ1, struct1), . . . ,
(mode x← Dprob,n.Pn, φn, structn))}) =⇒

((α′, β′, γ′, δ, η′),{(P1, φ1, struct1), . . . , (Pn, φn, structn)})

where α′ = α ∧ x ∈ D if ? is specified and α′ = α otherwise, β′ = β ∧ x ∈ D
and γ′ = γ ∧ x .

= c for whatever mode.

The tree η′ is obtained from η as follows. First, let us describe the case that
x has been sampled when mode was set to �. Then, we replace the leaves of η
with a new level of nodes labeled x, each of which have |D| leaves as children.
The probabilities on the new branches are determined as follows: for every
x-labeled node, the path from the root determines an interpretation of all the
random variables. We check which of the conditions of φ1, . . . , φn agree with this
interpretation. If there is more than one, say φi and φj , then Dprob,i = Dprob,j

(due to our requirement that the conditions for a probability distribution for a
random variable can only depend on the value of earlier random variables). Thus
we can label the children of a given node accordingly.Note that it may happen
that no φi agrees with the node; this is when the respective interpretation has
already been excluded by α or β; in this case, the probability distribution is
immaterial in the following, we just set it to uniform distribution.

If x has been sampled when mode was set to ?, i.e., is an α variable, the con-
struction of η′ is slightly different: we introduce the new level below the last
α-variable in η, where the children of an x-node in η′ are n copies of the subtree

112 Privacy As Reachability

of the corresponding node in η. This is possible since the choice of an α variable
by construction can only depend on other α variables.

Example 5.2 (Probability tree). Consider the simple process that samples in
that order a variable x with mode set to ?, a variable y with mode set to � and
a variable z with mode set to ?:

Example of a probability tree

? x← {1: 1
3 , 2: 1

3 , 3: 1
3}.

� y ← {1: 1
4 , 2: 3

4}.
? z ← {1: 1

2 , 2: 1
2}

With our evaluation rules, this produces the probability decision tree in Fig-
ure 5.1 (note that the nodes with variables z appears before the nodes with vari-
able y because z has been sampled with mode set to ?):

x

z

y y

z

y y

z

y y

1: 1
3

1: 1
2

1: 1
4

2: 3
4

2: 1
2

1: 1
4

2: 3
4

2: 1
3

1: 1
2

1: 1
4

2: 3
4

2: 1
2

1: 1
4

2: 3
4

3: 1
3

1: 1
2

1: 1
4

2: 3
4

2: 1
2

1: 1
4

2: 3
4

Figure 5.1: Example of a probability tree

To see an another example of an η tree, see Figure 5.4.

Marked process receives Also in this case, if one process starts with a
receive, all the others start with a receive as well. Also here, we have several
possible state transitions, since the intruder can freely choose a message to send
to the processes. Let r be any recipe that the intruder can generate according
to β, i.e., β |= gen(r). For every such r, we have a configuration transition:

{(rcv(x).P1, φ1, struct1), . . . , (rcv(x).Pk, φk, structk)} →
{(P1[x 7→ struct1[r]], φ1, struct1), . . . , (Pk[x 7→ structk[r]], φk, structk)}

5.1 Transition Systems for Alpha-Beta-privacy 113

Note that our construction requires that in any rcv(x).Pk, x is a variable that
did not occur previously in the same process, i.e., we forbid rcv(x).rcv(x).Pk, as
explained in Definition 5.2.

Marked process sends If the marked process sends a message next, this is
observable, and all processes that do not send are ruled out. Thus, we have the
rule

{(snd(m1).P1, φ1, struct1), . . . , (snd(mk).Pk, φk, structk)} ∪ P →
{(P1, φ1, struct1 ∪ {|l 7→ m1|}), . . . , (Pk, φk, structk ∪ {|l 7→ mk|})}

where l is a fresh label and P is a set of configurations that are finished, and we
augment β by:

φ1 ∨ . . . ∨ φk ∧ concr [l] = γ(m1) ∧

∃i ∈ {1, . . . , k}.
k∨
j=1

i = j ∧ struct [l] = mj ∧ φj

This is because the intruder can now rule out all possibilities in P and their
conditions (so one of the φi in the remaining processes must be true). Moreover,
the intruder knows a priori only that the message they receive, concretely γ(m1),
is one the mi and this is the case iff φi holds.

Marked process has terminated If the marked process has terminated,
then the others have either also terminated or start with a send step (since
other cases are already done). If all processes are terminated, we are done,
otherwise the intruder can rule out the processes that are not yet done:

{(0, φ1, struct1), . . . , (0, φk, structk)} ∪ P →
{(0, φ1, struct1), . . . , (0, φk, structk)}

where P is a set of configurations that start with a send, and we augment β by
φ1∨. . .∨φk. In any case, we have thus finished the normalization and evaluation
rules, and thus have reached a state.

After defining transition systems, let us define dynamic (α, β)-privacy. Note
that this definition is possibilistic, so we refer to states without regards to η:

Definition 5.6 (Dynamic (α, β)-privacy). Given a configuration (S,P), a trans-
action process Pl, and a substitution θ as in Definition 5.5, the successor states
are defined as all states reachable from the initial configuration of Pl using the

114 Privacy As Reachability

normalization and evaluation rules. The set of reachable states of a proto-
col description is the least reflexive transitive closure of this successor relation
w.r.t. a given initial state of the specification (the possibilities being initialized
with (0, true, ∅)).

We say that a transition system satisfies dynamic (α, β)-privacy iff static (α, β)-
privacy holds for every reachable state.

5.1.3 Linkability attack on OSK Protocol

As a second example, we consider the OSK protocol [OSK03]. Consider a finite
set of tags Tags = {t1, . . . , tn}, and let h/1 and g/1 be two public functions
(modeling one-way functions). Consider also two families of memory cells: one
for the tags, r(·), one for the reader, state(·), whose initial values are both
init(·). Each tag T owns r(T) and the reader owns the entire family state(T),
i.e., T ’s “database”. The tag updates its state r(T) by applying a hash to it at
each session and sending out the current key under g. The privacy goal is thus
that the intruder cannot find out anything besides the fact that this action is
performed by some tag T ∈ Tags, i.e., that he cannot link two or more sessions
to the same tag.

Tag

? T ∈ Tags.
Key := r(T).
r(T) := h(Key).
snd(g(Key)).0

The reader should receive a message of the form g(hj(init(T))), and would ac-
cept this message, if its own database contains the value hi(init(T)) for some
i ≤ j (to prevent replay). Like in Example 5.1, the server has to perform a kind
of guessing attack to figure out T and j − i. To model this simply we intro-
duce private functions getT/1, vgetT/1, extract/2, vextract/2 with the algebraic
properties in Figure 5.2. The getT function extracts the name (if it is a valid
message, as checked with vgetT) and extract extracts the current key (if it is
a higher hash than the given key, as checked with vextract). For applying the
verifiers, we use the syntactic sugar try again to formulate the reader, who when

5.1 Transition Systems for Alpha-Beta-privacy 115

getT(g(init(T))) ≈ init(T)

getT(g(h(X))) ≈ getT(g(X))

vgetT(g(init(T))) ≈ true

vgetT(g(h(X))) ≈ vgetT(g(X))

extract(g(init(T)), init(T)) ≈ init(T)

extract(g(h(X)), init(T)) ≈ h(extract(g(X), init(T)))

extract(g(h(X)), h(X ′)) ≈ h(extract(g(X), X ′))

vextract(g(init(T)), init(T)) ≈ true

vextract(g(h(X)), init(T)) ≈ vextract(g(X), init(T))

vextract(g(h(X)), h(X ′)) ≈ vextract(g(X), X ′)

Figure 5.2: Algebraic properties for the OSK example.

successful, updates its own state and sends an ok message:

Reader

rcv(x).
try T = getT(x) in
s := state(T).
try s′ = extract(x, s) in

state(T) := h(s′).
snd(ok).0

We illustrate the semantics by showing how to reach a state of the OSK protocol
that violates (α, β)-privacy. The initial state is S0 = {α0 ≡ true, β0 ≡ true, γ0 ≡
true, δ0 ≡ true}; we omit η0 since this example is purely possibilistic. We start
with a transition of process Tag , and we thus get to the following possibilities
(with a variable-renamed copy of Tag): {(? T1 ∈ Tags. Key1 := r(T1). r(T1) :=
h(Key1). snd(g(Key1)). 0, true, {})}. The first step is choosing a value from Tags
for T1, i.e., we have |Tags| successor states. Let us focus on the choice t1, and
thus γ0 is augmented by T1

.
= t1, and α and β are augmented by T1 ∈ Tags.

Then we apply the rule for cell reads. Since δ0 is still empty, we just replace Key1

by init(T1) in the rest of the process. We can now apply the rule for cell write.
This means δ0 is augmented by r(T1) := h(init(T1)) if true. is sending a message
and we thus augment β by concr [l1] = g(init(t1)) ∧ struct [l1] = g(init(T1)).
There is just one possibility in our configuration and it has terminated, so the
transaction is completed, getting to the state shown in the first line of Figure 5.3
(we refer to the α in that line as α1 and so on).

For the second transition, we use Tag once more, the new possibilities being

116 Privacy As Reachability

α
β

γ
δ

1
T

1
∈

T
ags

co
n

cr
[l1]

=
g
(in

it(t
1))∧

stru
ct[l1]

=
g
(in

it(T
1))

T
1
.=
t
1

r(T
1)

:=
h

(in
it(T

1))
if

tru
e

2
T

2
∈

T
ags

co
n

cr
[l2]

=
g
(h

(in
it(t

1)))∧
∃
i∈
{1,2}

.
T

2
.=
t
1

r(T
2)

:=
h

(h
(in

it(T
1)))

if
T

1
.=
T

2

i
=

1
∧

stru
ct[l2]

=
g
(h

(in
it(T

1)))∧
T

1
.=
T

2
r(T

2)
:=
h

(in
it(T

2))
if
T

1 6 .=
T

2

∨
i

=
2
∧

stru
ct[l2]

=
g
(in

it(T
2))∧

T
1 6 .=

T
2

3
co

n
cr

[l3]
=

ok
∧
∃
i∈
{1
,2}.

state(T
1)

:=
h

(in
it(T

1))
if
T

1
.=
T

2

i
=

1
∧

stru
ct[l3]

=
ok
∧
T

1
.=
T

2
state(T

2)
:=

in
it(T

2)
if
T

1 6 .=
T

2

∨
i

=
2
∧

stru
ct[l3]

=
ok
∧
T

1 6 .=
T

2

4
T

1
.=
T

2
state(T

1)
:=
h

(in
it(T

1))
if
T

1 6 .=
T

2

F
igu

re
5.3:

E
xecution

of
the

O
SK

P
rotocol

5.1 Transition Systems for Alpha-Beta-privacy 117

{(? T2 ∈ Tags. Key2 := r(T2). r(T2) := h(Key2). snd(g(Key2)). 0, true, struct)}.
Let us consider the transition where we pick for the choice of T2 the same tag
t1. This time, the cell read introduces a case split:

if T2
.
= T1 then let Key2 = h(init(T1)) . . . else let Key2 = init(T2)

The normalization of if splits this into two possibilities: {(Pa, T1
.
= T2, struct1),

(Pb, T1 6
.
=T2, struct1)} where Pa and Pb are instantiations of the process r(T2) :=

Key2. snd(g(Key2)) by Key2 = h(init(T1)) and Key2 = init(T2), respectively,
and where struct1 is the frame from the first transaction. The case where
T2

.
= T1 is marked since this is the reality. The normalization of the cell writes

augments δ1 by two lines (in either order): r(T2) := h(h(init(T1))) if T2
.
= T1 and

r(T2) := h(init(T2)) if T2 6= T1. It remains to send the outgoing, message and the
structural information is now different, leading to the β in line 2 of Figure 5.3.
The corresponding structural knowledge of each possibility is updated with the
respective version, let us call them structa and structb in the following. Since
they both have terminated, we have reached the end of the second transaction.

The new possibilities are {(Reader(3), T1
.
= T2, structa), (Reader(3), T1 6

.
= T2,

structb)} after a Reader transition, where Reader(3) is a renaming of the reader
process variables with index 3. We evaluate the receive step and here we have a
choice of every recipe that the intruder can generate: we use l2, i.e., the message
from the second token transaction. Note that structa[l2] = g(h(init(T1))) and
structb[l2] = g(init(T2)), which is what we insert for the received message x3

in the respective processes. When the processes (successfully) try getT(x3),
we get thus let T3 = T1 and let T3 = T2, respectively. The state lookup
gives the respective initial value, since we have not yet written anything to
the state cells. Thus also trying extract(T, s) will succeed and either produce
s3 := h(init(T1)) or s3 := init(T2). We thus amend δ by the two lines (in either or-
der) state(T1) := h(h(init(T1))) if T1

.
= T2 and state(T2) := h(init(T2)) if T1 6

.
=T2.

In both processes, we are now at a sending step. Even if the message is the same
in both processes, we still have to consider a case distinction since the conditions
differ, as shown in line 3 of Figure 5.3 (this formula can be simplified, of course).
Again, both processes are empty, so we have finished the third transaction.

Finally, we have {(Reader(4), T2
.
= T1, struct ′a), (Reader(4), T2 6= T1, struct ′b)}

after performing another Reader process, with Reader(4) again being a renaming
of variables with index 4 and struct ′a and struct ′b are the augmented structs
frames with the last ok-message. We consider the intruder choosing l1 as a
recipe for the received message, i.e., struct ′a[l1] = struct ′b[l1] = g(h(init(T1)))
for variable x4. The next operation tries getT(x4), which gives T1 in any case.
Looking up the state(T1) gives s4 := h(h(init(T1))) in the first possibility (due
to T1

.
= T2), and the initial value s4 := init(T1) in the second. Thus, the next

try succeeds only for the second possibility, and we have: {(0, T2
.
= T1, struct ′a),

118 Privacy As Reachability

(snd(ok).0, T2 6
.
=T1, struct ′b)}. Now, the evaluation rule for the marked possibility

being finished tells us: the second possibility cannot be the case because it would
send a message, and the intruder can see that this does not happen, so we can
augment β by the condition of the only remaining possibility, i.e., T1

.
= T2. That

is indeed a violation of privacy since we can now exclude all those models of α
where T1 6

.
= T2.

5.2 Probabilistic privacy

In the previous section, we introduced random privacy variables, but we did
not fully explain their purpose and functioning yet. For some problems that
satisfy dynamic possibilistic (α, β)-privacy, we might want to refine the analysis.
Extending all the models of α to a model of β does not mean that we do not
leak information on the likelihood of a specific model of α through the technical
information in β.

5.2.1 Probabilistic Alpha-Beta-Privacy

We thus propose a conservative extension first of static and then of dynamic
(α, β)-privacy in order to add probabilities. We still consider a protocol spec-
ification, but, while the problems that we considered before had only non-
deterministic privacy variables, we now consider problems that also have some
privacy variables that can be sampled according to a probability distribution.
These random variables are organized in a probability decision tree as defined
via η in the previous section. We define the probability of a model of α, and
intuitively, if the models of β yield a different probability for the model of α
that they extend, then β violates the privacy of α in a probabilistic sense. How-
ever, the difference in probabilities might not be significant, so it is left to the
modeler’s appreciation to define an acceptable threshold.

Before giving formal definitions, we illustrate the interest of a probabilistic def-
inition of (α, β)-privacy by means of a simple example, the well-known Monty
Hall problem that originates from the game show “Let’s Make a Deal” [Sel75].

Example 5.3 (Monty Hall problem). There are three doors, and only one of
these doors hides a valuable prize; the two other doors hide joke prizes3. We
model this situation with a random variable x. The prize has an equal probability
to be found behind each door. We write x ← {1, 2, 3} to say that x is sampled

3The joke prizes were called zonk in the game

5.2 Probabilistic privacy 119

from these values with a uniform distribution. The trader (this is “Let’s Make
a Deal” lingo) has to choose a door and communicate (send) their choice to the
host, Monty Hall. Monty then opens one of the two doors that were not chosen
by the trader and that does not hide the prize. However, from the point of view
of the trader, Monty chooses a door randomly between the two remaining doors.
Monty then gives the trader the choice whether they want to switch door or not,
before ultimately the two remaining doors are opened and the location of the prize
is revealed. Let us formalize this with a dynamic probabilistic (α, β)-privacy and
define the Monty process.

Monty

? x← {1, 2, 3}.
rcv(choice).
? open← {1, 2, 3} \ {x, open}.
? x 6 .= open.
snd(open).0

open← {1: 1
3 , 2: 1

3 , 3: 1
3} \ {x, open} is syntactic sugar for:

if x
.
= 1 then

if choice
.
= 2 then open← {1: 0, 2: 0, 3: 1}.

else if choice
.
= 3 then open← {1: 0, 2: 1, 3: 0}.

else open← {1: 0, 2: 1
5 , 3: 1

2}.
else if x

.
= 2 . . .

Before the execution of the process, α0 ≡ true. After, it is revealed as part of
α that the prize was put behind a door chosen with a uniform probability. It
is also revealed which door has been opened, thus which door does not hide the
prize. Let us now consider one concrete reachable state after the execution of
the Monty process, namely one where the intruder in the role of trader chose,
or sent, 1 for the choice, the prize is behind the third door and Monty opened
the second door: γ ≡ x .

= 3 ∧ choice
.
= 1 ∧ open

.
= 2. We then have:

α ≡ x ∈ {1, 2, 3} ∧ x 6 .= 2, i.e., α ≡ x ∈ {1, 3}

Intuitively, the trader thinks they have an equal chance to find the prize either
behind the door that they initially choose or behind the other door. However,
since they know the way Monty chooses the door to open, β and η are as follows,
where l is a fresh label generated during the evaluation of the transition:

β ≡ α ∧ concr [l] = 2 ∧ struct [l] = open

120 Privacy As Reachability

x

open open open

1: 1
3

1: 0
2: 1

2
3: 1

2

2: 1
3

1: 0
2: 0 3: 1

3: 1
3

1: 0
2: 1 3: 0

Figure 5.4: Probability tree for the Monty Hall problem

We colored in red the nodes for which no model exists in the considered state,
e.g., the branch for which x .

= 2 is not supported by any valid model. The table
below shows the models of α and their extension to β for this concrete reachable
state where AP stands for the absolute probability, i.e., the multiplication of the
probability of events for that model, and NP for the normalized probability, i.e.,
so that the column sums up to 1. Remember that this does not yet follow from
our transition systems definition, but rather motivates the following definition
of the probability of the models of α and β. We can see now the well-known
glitch in the Monty Hall problem: according to α, the probability of x .

= 1 and
that of x .

= 3 are both 1
2 , but according to β, x .

= 1 has probability 1
3 whereas

x
.
= 3 has 2

3 , i.e., β has been leaking information about x that was not contained
in α. This reflects the advice that in this situation the trader should switch to
door 3.

α-Model α-AP α-NP β-Model β-AP β-NP

x = 1 1
3

1
2

open = 1 impossible
1
3open = 2 1

6
open = 3 impossible

x = 3 1
3

1
2

open = 1 impossible
2
3open = 2 1

3
open = 3 impossible

Table 5.1: Models of α and their extensions to β for the Monty Problem

Since we propose below a conservative extension, we want to be able to talk
about models that differ only by the choice of non-deterministic variables. To
this aim, we define an equivalence relation for the interpretations over the free
random variables of α (respectively, of β): given two models of α (of β) I1 and

5.2 Probabilistic privacy 121

I2, I1 =r I2 iff I1(x) = I2(x) for all x ∈ fvr(α) (for all x ∈ fvr(β)) where
fvr(·) refers to free random variables of a formula. We define an equivalence
class [I] ([I ′]) induced by this relation for all Σ0-interpretations I of α (for all
Σ-interpretation I ′ of β).

Since there are finitely many free random variables of α (of β), there are finitely
many equivalence classes of probabilistic models of α, i.e., there exist I1, . . . , Ik,
s.t. k ∈ N+, such that [I1] ∪ . . . ∪ [Ik] is a partition of the models of α (re-
spectively, there exists I1, . . . , Ik′ , s.t. k′ ∈ N+, such that [I1] ∪ . . . ∪ [Ik′] is a
partition to their extensions to models of β).

Definition 5.7 (Absolute and Normalized Probabilities). Given two formulae α
and β, and a probability decision tree η, an interpretation class [I] corresponds
to a unique path in η starting at the root node, and we define its absolute
probability Pabs,η([I]) as the product of the probabilities along the path. Note
that if [I] is an α interpretation class, the path traverses just the upper part of
η that corresponds to the free variables of α while if [I] is a β interpretation the
path reaches a leaf.

Let [I1], . . . , [Ik] be the model classes of α (of β); we define the normalized
probability of each interpretation class as:

Pη([Ii]) =
Pabs,η([Ii])∑k
j=1 Pabs,η([Ij])

.

Note that Pη([I]) is defined so it does not depend on the choice of the repre-
sentative I of the equivalence class [I].

We allow β to have more free variables than α. In particular, it allows β to have
more free random variables than α. The intuitive idea to formulate probabilistic
(α, β)-privacy as a conservative extension is to require that the sum of the
probabilities of the equivalence classes of β, when restricted to the free variables
of α and the payload alphabet Σ0, is equal to the probabilities of the equivalence
classes of α:

Definition 5.8 (Probabilistic (α, β)-privacy). Let Σ0 (Σ and consider a for-
mula α over Σ0 and a formula β over Σ, s.t. β |= α, fv(α) ⊆ fv(β), and both
α and β are consistent, and η is the probability decision tree. We say that
(α, β)-privacy holds probabilistically iff (α, β)-privacy holds and

Pη([I0]) =

k∑
i=1

Pη([Ii])

for every model I0 of α, and for the models [I1], . . . , [Ik] of β (partitioned by
equivalence class) s.t. Ii|Σ0,fv(α) = I0 for every i ∈ {1, . . . , k}. We say that

122 Privacy As Reachability

(α, β)-privacy holds probabilistically and dynamically iff (α, β)-privacy holds
probabilistically in every reachable state.

Intuitively, this means that the probability of every model of β that agrees on the
payload part, when considered together, equals the probability of the original
model of α. With this definition, we can see that the Monty Hall problem from
Example 5.3 satisfies possibilistic (α, β)-privacy in the state we considered but
breaks probabilistic (α, β)-privacy. Now, let us see how we could correct the
protocol:

Example 5.4 (Alternative Monty Hall). Suppose the door that Monty opens
after the choice of the trader is taken randomly between the doors that were not
chosen by the trader, thus including the one hiding the prize (even though this
might shorten the game). We propose the process:

Alternative Monty

? x← {1, 2, 3}.
rcv(choice).
? open← {1, 2, 3} \ {choice}.
if open

.
= x then

? x
.
= open.

else
? x 6 .= open.

snd(open).0

We consider the same reachable state as in Example 5.3. α, β and γ are similar.
The probability tree has a similar form but we update the probability on the
branches accordingly. Let us look again at the models of α and their extension
to β. This time again, the probability of x .

= 1 and x .
= 3 is both 1

2 according
to α and so it is according to β. β is not leaking information about x that was
not contained in α anymore. This reflects that the trader cannot adopt a better
strategy.

The difference between the original Monty Hall problem in Example 5.3 and the
alternative Monty Hall problem in Example 5.4 is that the choice of the door
that Monty opens is independent of where the prize is located in the second
case. In other words, the free random variable of β, namely the choice of the
opened door, could have been 2 or 3, whatever the free random variable of α,
namely the location of the prize; that is, the choice of the location of the prize
does not influence the probability distribution of the choice of the opening of
the door. We can actually identify a condition under which if (α, β)-privacy
holds possibilistically, then (α, β)-privacy also holds probabilistically:

5.2 Probabilistic privacy 123

α-Model α-AP α-NP β-Model β-AP β-NP

x = 1 1
3

1
2

open = 1 impossible
1
2open = 2 1

6
open = 3 impossible

x = 3 1
3

1
2

open = 1 impossible
1
2open = 2 1

6
open = 3 impossible

Table 5.2: Models of α and their extension to β for the Alternative Monty
Problem

Definition 5.9 (Extensibility). Let Σ0 (Σ and consider a formula α over Σ0

and a formula β over Σ, s.t. β |= α, fv(α) ⊆ fv(β) and both α and β are consis-
tent. We say that a pair (α, β) is extensible if it is possible to extend every model
of α by a number of models of β that cover the whole domain of the free random
variables occurring exclusively in β, i.e., for all I0 |= α. for all σ : y1, . . . , yk 7→
dom(y1)× · · · × dom(yk). there exists I |= β ∧ σ such that I|Σ0,fv(α) = I0.

The definition of extensibility does not refer to probabilities or to a probability
tree η. When we have extensibility, it means that the [I1], . . . , [Ik] are exactly
all the leaves under I0, so the probability of that subtree is 1, as can be seen by
induction. As a consequence, the absolute probability of [I0] is the same as the
sum of the absolute probabilities of the [Ii].

We can prove that if (α, β)-privacy holds possibilistically for (α, β) that is ex-
tensible, then (α, β)-privacy also holds probabilistically. This is only a sufficient
condition: probabilistic (α, β)-privacy may hold, even if (α, β) is not extensible.

Theorem 5.10. Let Σ0 (Σ and consider a formula α over Σ0 and a formula β
over Σ, s.t. β |= α, fv(α) ⊆ fv(β) and both α and β are consistent. Let η be the
probability decision tree. If (α, β)-privacy holds possibilistically, i.e., for every
I0 |= α, there exists I |= β such that I|Σ0,fv(α) = I0, and (α, β) is extensible,
then (α, β)-privacy holds probabilistically. We extend this theorem to dynamic
(α, β)-privacy as expected.

Proof. Let Σ0, Σ, α, β, and η be as in the assumptions of the theorem and
let (α, β)-privacy hold possibilistically and be extensible. Let I0 |= α and
[I1], . . . , [Ik] be the models of β (partitioned by equivalence class) such that
Ii|Σ0,fv(α) = I0 for every i ∈ {1, . . . , k}. Let pα be the sum of the absolute

124 Privacy As Reachability

probabilities of all α models, so,

Pη([I0]) =
1

pα
Pabs,η([I0]) .

Since (α, β)-privacy is extensible, the probability of the β subtree for each α
model is 1 (as every leaf of the subtree is a model and the children of each node
in η sum up to 1). Thus,

Pη,abs([I0]) =

k∑
i=1

Pη,abs([Ii])

The sum of the absolute probabilities of all β model classes is thus pα (since
this is the sum of the α-model classes). Thus,

k∑
i=1

Pη([Ii]) =

k∑
i=1

1

pα
Pη,abs([Ii])

=
1

pα

k∑
i=1

Pη,abs([Ii])

=
1

pα
Pη,abs([I0])

= Pη([I0])

, and therefore, (α, β)-privacy holds probabilistically.

5.2.2 The intruder as an empirical scientist

Probabilistic (α, β)-privacy is a “sharp sword”: a relatively small shift in proba-
bilities due to the information in β is already a violation of (α, β)-privacy, while
it may be too insignificant to be beneficial for the intruder. One wants to avoid
even minimal shifts, because in many areas of security we have seen how an
intruder can actually “amplify” tiny imperfections in a system, so that they be-
come significant. Nonetheless, it can be insightful to analyze also a system that
does not satisfy probabilistic (α, β)-privacy for a weaker goal. In particular,
we want to regard now the intruder as an empirical scientist who conducts an
experiment, where they manipulate some “independent variables”, and try to
observe a significant effect.

The Helios voting protocol originally allowed an intruder, as a dishonest voter,
to copy votes of others [CS11]. For a small number of voters, this can lead to a
violation of possibilistic (α, β)-privacy, e.g., a and b are honest, c dishonest, and

5.2 Probabilistic privacy 125

we consider a binary vote between 0 and 1; then the intruder can copy a’s vote;
the result is greater than two iff a voted 1. Thus, possibilistic (α, β)-privacy
does not hold. It would, however, if the cardinality would not allow for such
a deduction, but if we look at the problem probabilistically, i.e., we know a
distribution of the votes, then this yields a shift in probabilities.

We could see this as an experiment, where the intruder is not really interested
in breaking the privacy of the entire vote, but rather targeting the privacy of a
particular voter a—even sacrificing their chance to make their preferred option
win by copying a’s vote. If this is the actual goal, then actually it makes sense to
focus on this single vote also in the privacy goal, i.e., to say α ≡ x1 ∈ {0, 1}, and
β containing all the other votes and the result. This means that all the other
voters and the result are for the intruder right now not interesting but just how
a has voted. The copying of α’s vote is thus the experiment the intruder takes
if we regard a’s vote as an independent variable of a scientific experiment.

Let us make such an experiment for 6 honest and 2 dishonest voters, meaning
the intruder can copy the vote of a two times. The result is 5 votes for candidate
1. Let v1, . . . , v6 be random variables and v7, v8 are the votes controlled by the
intruder.

α ≡ v1 ∈ {0, 1}
β ≡ α ∧ v2, · · · , v6 ∈ {0, 1} ∧ v7, v8 ∈ {0, 1}

∧
∑8
i=1 vi = 5 ∧ v7

.
= v1 ∧ v8

.
= v1 .

By analyzing the previous elections, the intruder knows the random variables
are chosen following the probability distribution {0: 2

3 , 1: 1
3}. It is clear that α

has only two models: I1 s.t. I1(v1) = 0 and Pη([I1]) = 2
3 , I2 s.t. I2(v1) = 1 and

Pη([I2]) = 1
3 . Both these models can be extended to models of β. Possibilisti-

cally, (α, β)-privacy holds. However, if we normalize the sum of the probabilities
of the interpretation class for the β models that extend these two models, we
obtain for the first one P1 ≈ 2.44 and for the second P2 ≈ 97.56. In this case,
there is nearly no doubt for the intruder that voter a voted for the candidate 0.

In general, the intruder may set a threshold for being convinced for a particular
model, e.g., when all other models together have a probability of at most 0.05.
One can thus also calculate, given the number of honest and dishonest voters,
as well the probability distribution, whether the intruder has even a chance to
find a significant result. For instance, in an election with 100 votes where the
intruder controls just five votes, a’s privacy is well protected, unless there is a
candidate with a very low popularity, say 0.01, and a votes for that candidate.
We explain in Section 5.4 how to model voting protocols with dynamic (α, β)-
privacy.

126 Privacy As Reachability

5.2.3 Background Knowledge

The authors of [MV19] explained what happens when the intruder can use back-
ground knowledge outside our formal method. Consider a small village where
everybody votes the same way. A new person settles in, and in the next elec-
tion, a vote for the opposition party is cast. Even a perfect privacy-preserving
voting system cannot prevent the intruder to infer that it is quasi-certain this
vote comes from the newcomer. The authors proved that the possibilistic (α, β)-
privacy is stable under an arbitrary consistent intruder background knowledge.
One may wonder if the stability under background knowledge that holds for pos-
sibilistic (α, β)-privacy also holds for probabilistic (α, β)-privacy. Unfortunately,
this is not the case in general:

? x← {0: 1
2 , 1: 1

2}.
? y ∈ {0, 1}.
if x

.
= 1 then

? z ← {0: 1
2 , 1: 1

2}.
snd(y ⊕ z)

else
? z ← {0: 0, 1: 1}.
snd(z)

While this is an artificial example, it has some similar patterns to Σ-protocols,
i.e., giving out a “secret” y “blinded” by z in one case, and just z in another
case. Suppose this process executes and the intruder observes that it sends the
value 1. Then, we have the models depicted in the following table where (we
have arranged the items, so that we can summarize them to model classes) we
have shaded red all those models that get excluded by the fact that we have
observed sending 1 (because this means that either x = 1, and then y and z
must be different, or x = 0, then z must be 1).

So far, (α, β)-privacy holds probabilistically: all model classes of β where x .
= 1

have together probability 1
2 as does the corresponding α-class, and the same

for x .
= 0. If we now have the background knowledge that y .

= 1, then this
excludes some further models that are shaded in blue in the from x. While this
still preserves possibilistic (α, β) privacy, it violates probabilistic (α, β) privacy:
according to β, x .

= 1 is half as likely as x .
= 0.

Indeed, this is a very constructed example (where for x .
= 0, z is not really ran-

dom any more), and actually in many practically relevant examples, background
knowledge indeed also preserves probabilistic (α, β)-privacy for extensible pair

5.3 DP-3T 127

α-Prob x y z β-Prob

1
2

0 0 0
0 1 0 0

0 0 1 1
20 1 1

1
2

1 0 0 1
41 1 0

1 0 1
1 1 1

1
4

Table 5.3: Example: for non-extensible (α, β), probabilistic privacy is in gen-
eral not stable under background knowledge.

(α, β):

Theorem 5.11 (Stability Under Background Knowledge). Let α and β be given
so that (α, β)-privacy holds possibilistically, and (α, β) is extensible. Let α0 be
a Σ0-formula. Then (α ∧ α0, β ∧ α0)-privacy holds probabilistically. We extend
this result for dynamic (α, β)-privacy as expected.

Proof. If (α, β) is extensible, then also (α ∧ α0, β ∧ α0) is extensible. Since
(α, β)-privacy holds possibilistically, by stability under background knowledge,
(α ∧ α0, β ∧ α0)-privacy holds possibilistically, and since it is still extensible, it
also holds probabilistically by Theorem 5.10.

5.3 DP-3T

As a concrete, and topical example, let us consider the decentralized, privacy-
preserving proximity tracing system DP-3T [DP-20], which has been developed
to help slow the spread of the SARS-CoV-2 virus by identifying people who have
been in contact with an infected person. The DP-3T system aims to minimize
privacy and security risks for individuals and communities, and to guarantee
the highest level of data protection.

5.3.1 Modeling

For every agent and for every day, we have a day key, and the day is further
separated into periods (e.g., of 15 minutes), and for each period, each agent

128 Privacy As Reachability

generates a new ephemeral identity. In order to avoid any complications with
infinite numbers of models, we consider finite (but arbitrarily large) sets of
agents, day keys, and ephemeral IDs. Moreover, we use these sets as sorts, so
that we can define interpreted functions between these sorts without inducing
infinitely many models for these functions. We use the following sorts:

• Agent is the sort of all participating agents,

• Day = {0, . . . ,D− 1} identifies days,

• Period = {0, . . . ,P− 1} identifies a particular period of a day, i.e., a day
is partitioned into P periods (e.g., of 15 minutes).,

• SK is the sort of daily identities, and

• EphID is the sort of ephemeral identities (changing, e.g., every 15 min-
utes),

Let all elements of these sorts but SK be part of Σ0, so that α formulae can
talk about agents, days, and ephemeral identities. On these sorts, we define the
following functions and relations:

• sk0[·] : Agent → SK maps every agent to their first-day key. We assume
that this key is distinct for every agent, i.e., sk0[a] 6= sk0[b] for any a 6= b,

• h[·] : SK → SK is a hash function that maps every daily identity to the
next day. We assume that for every a : Agent, we have a seed value sk0[a] ∈
SK such that hi[sk0[a]] 6= hj [sk0[b]] for any a, b ∈ Agent, i, j ∈ Day with
(a, i) 6= (b, j): every daily identity of an agent is unique4,

• prg [·, ·] : SK × Period → EphID models a pseudo-random number gener-
ator to generate the ephemeral identities. We assume prg is injective on
the domain SK × Period , so that there is also no collision between the
ephemeral identities of any agents (with respect to any timepoints).

• pwnr [·] : EphID → Agent relates, in our model, an ephemeral ID to its
actual owner, i.e., for e = prg [hi[sk(a)], j], we have pwnr [e] = a,

• dayof [·] : EphID → Day tells the day an ephemeral ID is issued, and

• sick ⊆ EphID × Day is a relation where sick(e, d) means that the agent
identified by e has declared sick on day d. In contrast, dayof [e] is the day
when e was used.

4SK is a finite set, so h must have collisions, and we merely exclude that these collisions
are relevant to the protocol. We abstract from cryptography and thus from the negligible
probability of collisions between agents.

5.3 DP-3T 129

The functions h and prg are cryptographic functions, and sk0 is a cryptographic
setup. We regard them as technical/implementation related, so they are only
part of Σ \ Σ0 and cannot be used in α. We have made several assumptions
about absence of collisions in these functions: these assumptions are part of β
in the initial state. The function pwnr and the relation sick are part of the
high-level modeling, and thus part of Σ0.

We use the following memory cells with their initial values:

• skl(A : Agent) := sk0[A] is whatever is the opposite of a look-ahead: it
represents the day ID of agent A of l days ago, where l is the period how
far back we want to report the sickness after a positive test (e.g. five days),

• sk(A : Agent) := hl[sk0[A]]. The current day ID of A is l hashes ahead of
sk0. Thus, within the first l days of the app, we have some “virtual” past
days where we can report sickness—this is to keep the model simple,

• today() := l is the current day counter (it is the same for all agents),

• period() := 0, where 0 identifies the first period of a day,

• ephid(A : Agent) := prg [sk(A), period()] is the current ephemeral ID, and

• isSick(A : Agent) := false is a flag to indicate that the agent has reported
sick and should no longer use the app and should quarantine.

We consider the agent transactions in Figure 5.5. The transaction New Day
or Period advances a global clock, and when a day is finished, automatically
triggers the generation of new day keys for each agent. This ignores any pri-
vacy problems that could arise from de-synchronized clocks and the like. The
Agent Advertise transaction models that an agent can at any time communicate
its current ephemeral identity e and that the intruder never learns more than
the owner of e is some agent x ∈ Agent. Here, our model ignores the details
of how two agents’ phones actually exchange IDs, which can cause also several
problems [Vau20]. Finally, the Agent Sick Transaction models that an agent
declares sick and publishes the day keys in their sickness period (for simplicity,
we publish only the oldest, the others can be generated by everybody them-
selves). We specify that the intruder should now only learn that all ephemeral
IDs belong to an agent that has just declared sick. The model actually omits the
details of how this sick report is communicated to a central server (who must
also somehow check with health authorities whether the agent is indeed sick),
which again is not trivial to get right [Vau20]. Our model thus focuses on the
core privacy question that arises, even if all exchange protocols work perfectly.

130 Privacy As Reachability

New Day or Period

if (period() < P− 1) then
period() := period() + 1

else
period() := 0
if (today() < D− 1) then

today() := today() + 1
for x : Agent

sk(x) := h(sk(x))
skl(x) := h(skl(x))

Agent Advertise

? x ∈ Agent
if ¬isSick(x) then

let z = prg [sk(x), period()]
? pwnr [I(z)] = x ∧ dayof [I(z)] = today()
snd(z)

Agent Sick

? x ∈ Agent
if ¬isSick(x) then

isSick(x) := true
let y = skl(x)
for i ∈ Period ∧ j ∈ {0, . . . , l}
? sick(I(prg [hj [y], i]), I(today()))

snd(y)

Figure 5.5: A model of DP-3T (with insufficient α).

5.3.2 Privacy violated

Suppose that we have two advertisements by the same agent a in the first two
periods of the first day (numbered l), i.e., let skl = hl[sk0[a]] be the day key,
and e0 = prg [skl, 0] and e1 = prg [skl, 1] be the released ephemeral IDs. On the
same day, a releases a sick note sk0[a] that gives rise to further ephemeral IDs
e2, . . . , en. Then, α in the reached state is:

α ≡ x1 ∈ Agent ∧ pwnr [e0] = x1 ∧ dayof [e0] = l
∧x2 ∈ Agent ∧ pwnr [e1] = x2 ∧ dayof [e1] = l
∧x3 ∈ Agent ∧ sick(e0, l) ∧ . . . ∧ sick(en, l)

where e0, . . . , en are all ephemeral keys of a released in the sick report. The
following can be derived from β, for some labels m1, m2 and m3 where the sent

5.3 DP-3T 131

messages are stored:

concr [m1] = e0 struct [m1] = prg [hl[sk0[x1]], 0]
concr [m2] = e1 struct [m2] = prg [hl[sk0[x2]], 1]
concr [m3] = skl struct [m3] = hl[sk0[x3]]

Intruder deductions:
concr [prg [m3, 0]] = prg [hl[sk[a]], 0] = e0 = concr [m1]
concr [prg [m3, 1]] = prg [hl[sk[a]], 1] = e1 = concr [m2]

Using φ∼:
struct [prg [m3, 0]] = struct [m1]
struct [prg [m3, 1]] = struct [m2]
prg [h1[sk1[x3]], 0] = prg [hl[sk0[x1]], 0]
prg [hl[sk0[x3]], 1] = prg [hl[sk0[x2]], 1]

By the properties of prg , h and sk0 : x3 = x2 ∧ x3 = x1

, and thus x1 = x2

This last statement is however not compatible with all models of α, so dynamic
possibilistic (α, β)-privacy is indeed violated. Note that we do not find out that
x1 = a, but we have linkability of pseudonyms of sick persons.

5.3.3 The Actual Privacy Guarantee

Actually, the protocol releases more information than we have specified so far
in α. This corresponds to the privacy problem that the intruder gets to know
that all the ephemeral identities of a day are related to the same agent. This
could be practically relevant if, e.g., the intruder surveys in several places for
ephemeral identities and can then build partial profiles of users who declared
sick.

We at least need to add the following information: in the sick release by the
information there is one particular agent who is the owner of all released sick-
predicates, i.e., in the Agent Sick transaction we have the α release:

? sick(I(prg [hj [y], i]), I(today())) ∧ pwnr [I(prg [hj [y], i])] = x

This provides the link between all ephemeral IDs released by an agent, because
the owner is the same agent x (who of course still remains anonymous, hence
the variable).

As a consequence, “admitting” in α this additional information, what we could
find out in the concrete scenario before, namely that x1 = x2 = x3, no longer

132 Privacy As Reachability

∀E,F ∈ EphID , C,D ∈ Day : sick(E,C) ∧ sick(F,D) ∧
pwnr [E]

.
= pwnr [F] =⇒ C = D

∧ ∀E,F ∈ EphID , D ∈ Day : sick(E,D) ∧
pwnr [E]

.
= pwnr [F] =⇒ dayof [F] ≤ D

∧ ∀E,F ∈ EphID , D ∈ Day : pwnr [E]
.
= pwnr [F]∧

dayof [E]
.
= dayof [F] ∧ sick(E,D) =⇒ sick(F,D)

∧ ∀E0, E1, . . . , EP ∈ EphID :
∧
i,j∈{0,...,P},i6=j Ei 6= Ej

pwnr [E1]
.
= . . .

.
= pwnr [EP]∧

dayof [E1]
.
= . . .

.
= dayof [EP]

=⇒ pwnr [E0] 6= pwnr [E1] ∨ dayof [E0] 6= dayof [E1]

Figure 5.6: Axioms for DP3T

count as an attacks, as we explicitly declare that we want to release this infor-
mation.

However, this extended α still does not cover all the information we release.
For instance, if the two agents x1 = a and x2 = b have released ephemeral IDs
ea and eb, respectively, and a has declared sick, then we can still observe that
x1 6= x2 because eb does not belong to any of the keys that have been released
with a sick note. Similarly, we can distinguish agents that have declared sick;
for instance, if both a and b have declared sick, then we can also derive x1 6= x2,
because we have distinct day keys and moreover, when two day keys belong to
the same agent, then they are related by the hash function, i.e., sk1 = hk[sk2]
or vice-versa.

So, actually, what we really give out here is much more, and it is not easy to keep
track of it without basically copying into α most of what is going on in β, and
thus basically making the implementation be also the specification. However,
as most logicians will agree, there is almost always a declarative way to describe
things. In this case, we can actually formalize a few relevant properties of the
implementation as axioms on the Σ0 level, without talking about the day keys
SK or how they are generated and how the ephemeral IDs are generated. These
axioms are given in Figure 5.6, and we obtained them from failed attempts
of proving dynamic possibilistic (α, β)-privacy, adding missing aspects until we
could prove it. Here is what these axioms respectively express:

• an agent declares sick only once,

• after declaring sick, the agent does not use the app anymore. In fact, they
could, if we had a reset operation that installs a new initial key, but we
refrained from further complicating the model,

5.3 DP-3T 133

• when an agent reports sick for a particular day, this entails all ephemeral
identities for that day, and

• finally, let P = |Period | denote the number of periods in a day; then there
cannot be more P ephemeral IDs that belong to the same agent on the
same day.

We shall thus, from now on, consider the axioms in Figure 5.6 as part of α in
our initial state.

Now, it may not be entirely intuitive anymore what this actually implies. So,
let us look at the general form that α has after a number of transitions, and
how to compute the models (satisfying interpretations) of α.

In general, in any reachable state the formula α consists of conjuncts of the
following forms:

• from Agent Advertise: x ∈ Agent ∧ pwnr [e] = x ∧ dayof [e] = d, where
e ∈ EphID , d ∈ Day , and x is a variable that occurs nowhere else in α,
and

• from Agent Sick:
∧
e∈E pwnr [e] = x ∧ sick(e, dr), where E is a set of

ephemeral IDs that are released on reporting day dr. Amongst all agent
sick reports, the set E is pairwise disjoint. Moreover, the variable x occurs
nowhere else in α. Finally, the size of E is |Period | × l, i.e., for every of
the l days and for every time period of a day, we identify exactly one
ephemeral ID as sick.

Lemma 5.12. Every model I of α can be computed by the following non-
determinstic algorithm:

1. Consider every conjunct that arose from Agent Sick and consider the vari-
able x of that conjunct.

(a) For every such x, choose a unique a ∈ Agent and set I(x) = a.
(Unique here means: two different Agent-sick conjuncts with variables
x and x′ must be interpreted as different agents I(x) 6= I(x′)).

(b) For every e that occurs in this conjunct, we have I(pwnr [e]) = a.

2. Consider every conjunct that arose from Agent Advertise and let x be the
variable occurring in there and e be the ephemeral ID in there.

(a) If I(pwnr [e]) = a has been determined already, then I(x) = a.

134 Privacy As Reachability

(b) If I(pwnr [e]) has not yet been determined, then let d be the day that
is has been declared. Let Agents be the set of agents that have declared
sick on day d or before, i.e., I(x′) for every x′ such that α contains
sick(e, d′) ∧ pwnr [e] = x′ ∧ dayof [e] = d0 and d0 ≤ d. Further,
let Agente denote all the agents a for which I(pwnr[e]) = a, and
I(dayof [e]) = d for P different ephemeral IDs e. Then, choose a ∈
Agent\Agents\Agente arbitrarily and set I(x) = a and I(pwnr [e]) =
a.

3. All remaining aspects of I are actually irrelevant (i.e., I(pwnr [e]) for e
that did not occur in the formula).

In a nutshell: α does not reveal any agent names, but allows one to distinguish
all sick agents from each other and from the non-sick, and it allows one to link
all ephemeral IDs of every sick agent from the first day of sickness on.

Proof. Soundness (i.e., the algorithm produces only models of α): the algorithm
respects obviously every conjunct of α produced during transactions, and for the
axioms the distinct choice of sick-reported agents is actually sufficient.

Completeness (i.e., every model of α is produced by the algorithm): we have
first to show that α enforces I(xi) 6= I(xj) for every pair of variables xi and
xj that occur in distinct sickness reports. Suppose this were not true, i.e., we
have a model I of α such that I(xi) = I(xj) for the variables xi and xj from
distinct agent sickness reports. From the construction, we know each sick report
contains exactly P · l ephemeral IDs (l days reporting, and P periods per day),
and the ephemeral IDs from distinct sick reports are disjoint. Moreover, each
sick report has a reporting day, say di and dj . Let thus ei and ej be ephemeral
IDs from the two sick reports, then I |= pwnr [ei]

.
= xi

.
= xj

.
= pwnr [ej] and

therefore the axioms entail di = dj (same day of reporting). Thus, α contains for
each sick report P ephemeral IDs for l days up to reporting day di = dj . That
is however impossible by the axiom that not more than P different ephemeral
IDs can have the same day and the same owner (while we have 2 · P according
to assumption). Thus, I(xi)

.
= I(xj) is absurd.

That all distinct sickness reports must be interpreted as being done by different
agents shows the completeness of the choice in step 1a. Steps 1b and 2a are
directly enforced by α. For step 2b, we have an ephemeral ID e for an agent x,
such that e is not contained in any sick-report. By dayof [e] = d we can check
all sick reports that have been done on day d or before, and which agents we
have reported there according to a given model I, which the algorithm calls the
set Agents. Suppose I(x) ∈ Agents, i.e., there is a sick report for an agent x′
and I(x′) = I(x) that has at least one ephemeral id e′ that is included in the

5.3 DP-3T 135

sick report for day d′ ≤ d. If d = d′, this contradicts the axiom that an agent
releases all their ephemeral IDs for a given sick day, because we were considering
an e that was not reported sick. If d′ < d, this contradicts the axiom that the
agent stops using the app after the sick report, i.e., dayof [e] must be before the
sick report. Finally, we have to show that also I(x) ∈ Agente is not possible,
because Agente contains all agents for which we have interpreted already P
different ephemeral IDs for this day. This directly follows from the axiom that
there are at most P different ephemeral IDs for the same agent on the same day.
This shows that the choice in step 2b of an agent outside Agents and Agente is
complete.

Hence, the algorithm allows all choices that are not excluded by α itself, and is
thus complete.

This characterization of the models of α of any reachable state allows us to
prove dynamic possibilistic (α, β)-privacy as follows.

Theorem 5.13. DP-3T with the extended α specification given in this section
satisfies dynamic possibilistic (α, β)-privacy.

Proof. We have to show that in every reachable state, any model I0 of α can be
extended to a model I of β. Note that β must have a model Ir that corresponds
to what really happened (and it is also a model of α). The idea is that we
incrementally construct I close to Ir.

First, we choose a key from SK for every agent a and every day d that occur in
β; let us call it ska,d. The principle here is: if, according to I, agent a declares
sick at some point, then β will contain the publication of the corresponding day
keys of some agent x, where I(x) = a. So, we have to set ska,d for those days
d and a accordingly. All remaining keys can be set to arbitrary distinct values
from SK , disjoint from those occurring in β. ska,d = skb,c implies a = b and
c = d by construction now, so set I(sk0[a]) = ska,0, and I(h[ska,d]) = ska,d+1

for any agent a and day d occurring in β.

For prg , we can already pick some values in a convenient way: for those sk that
are part of a sick report (i.e., not arbitrarily chosen from SK in the previous
step), we can choose the ephemeral IDs derived from them to be identical to
those in Ir, i.e., set I(prg [sk, i]) = Ir(prg [sk, i]) for every period i ∈ Period and
every day key sk that is covered by a sickness report. The remaining ephemeral
IDs (that did not occur in sickness reports) will be chosen “on the fly” now. It
is yet to be proved that this is consistent with the rest of β.

For the initial state, we have thus an “intruder interpretation”, i.e., what the

136 Privacy As Reachability

initial value of the memory cells skl(a) and sk(a) of every agent a is, namely
I(sk0[a]) and I(hl[sk0[a]]), respectively (while the real initial values are Ir(sk0[a])
and Ir(hl[sk0[a]])). The intruder cannot see all the concrete values sk that occur
here: the intruder can only see those values that have been explicitly released
and apply the hash function further to them. Let us speak in the following of
the virtual state of the memory cells, i.e., what value they would have (after a
given sequence of transaction) if I were the reality.

The next day and the next period transactions just change the state; the vir-
tual state is changed in a way that is completely determined by what we have
determined in I so far.

For an agent advertisement transaction, let x be the variable for the agent in
the transaction and I(x) = a the concrete agent according to I and e the
ephemeral ID advertised. Let further sk, i, and d be the current values of sk(a),
period() and today() in the virtual state. We distinguish two cases: first, if sk
is a day key published in a sick report later, then we have already determined
I(prg [sk, i]) = Ir(prg [sk, i]) previously, and Ir(prg [sk, i]) = e because this is
indeed the advertisement of the agent Ir(x) (which may have a name different
from I(x)) at this day and time period and sk is indeed the current day key this
agent. Otherwise, if sk is not reported sick later, then I(prg [sk, i]) is not yet
determined, unless we run the same advertisement a second time for the same
agent on the same day and time period, and so it is already set to e, and we
can set it to e. This is possible since in every other reached virtual state, sk
and i are necessarily different, so prg [sk, i] has not yet been assigned a different
interpretation yet. The formula β now contains (for an appropriate label m):
concr [m] = e ∧ struct [m] = prg [hd[sk0[x]], i]. This is because d and i in the
virtual state are equal to the value in reality. Under I, the struct term thus also
equals e. We show below also for the other transitions that on every introduced
label m it holds that I |= concr [m] = struct [m], and thus concr and struct will
be trivially in static equivalence under I.

For a sick report, let x be the variable for the agent in the transition and
I(x) = a the concrete agent according to I, and let skl, i, and d be the current
values of skl(a), period(), and today() in the current virtual state. The formula
β now contains concr [m] = skl and struct [m] = hd−l[sk0[x]]. Observe also here
that we have I |= concr [m] = struct [m] because skl(x) is x’s key from l days
ago.

5.4 Voting Protocols 137

5.4 Voting Protocols

In the previous chapter, we have modeled privacy goals for voting protocols with
static possibilistic (α, β)-privacy. To illustrate the expressive power of our ap-
proach, we show how to adapt and formalize these privacy goals, namely voting
privacy and receipt-freeness, with our dynamic extension of (α, β)-privacy. We
show the formalization of these goals with a simple voting protocol. Indeed,
while voting protocols can use more complicated cryptographic primitives, such
as homomorphic encryption or blind signature as we have seen in the previous
chapter, the principles behind the formalization of the goals remain similar. The
state we discuss at the end of this section is rather complex, but the specification
of the privacy goals is actually simple and intuitive with (α, β)-privacy, and we
obtain a reachability problem out of this.

In our example, we consider a finite set of n voters Voters = {x1, . . . , xn}, two
candidates candA and candB, and a trusted third-party a that acts both as
the administrator of the election and the counter. Let scrypt/2, dscrypt/2 and
sk/2 be public functions, modeling symmetric encryption with a secret key. We
consider the algebraic equation dscrypt(sk(a, b), scrypt(sk(a, b),m)) ≈ m. Let
ballot/2 and open/1 be two public functions modeling the ballot as a message
format with the algebraic function open(ballot(t1, t2)) ≈ t1, t2. We assume that
each voter xi shares an encryption key with the administrator, sk(xi, a). We
also assume that the intruder knows the key of dishonest voters, i.e., if xi is
dishonest, the intruder knows sk(xi, a). We consider four families of memory
cells: one for the status of the election status(·), one for the status of a voter
voted(·), one for recording that the administrator accepts the vote of a voter
cast(·), and one for the result of a candidate result(·). The initial values are
voting, no, no and 0, respectively. Each voter X owns their own cell voted(X)
and the administrator owns the three other entire families, i.e., the election
public information. The administrator can update the status of the election to
over when the tallying phase starts. A voter X updates their status voted(X)
to yes when they vote, and the administrator updates cast(X) to yes when he
accepts the vote of a voter X. Finally, the administrator updates the result
of a candidate, say candA, with the memory cell result(candA), each time a
valid vote for this candidate is counted. Moreover, let v/1 and c/1 be two
interpreted functions that model respectively the voting function and the check
for counted votes. Finally, we allow for dishonest voters, and we define the
predicate dishonest. For every dishonest X ∈ Voters, dishonest(X) holds, and,
conversely, for every honest X ∈ Voters, ¬dishonest(X) holds.

The election is divided in two phases. The voting phase is modeled by the Cast
and Admin processes in Figure 5.7. During a Cast process transaction, a honest
voter X can choose their vote V . If the voter did not vote already, a new random

138 Privacy As Reachability

Cast

if status(·) .
= voting then

? X ∈ Voters.
if (¬dishonest(X)) then
? V ∈ {candA, candB}.
s := voted(X).
if (s

.
= no) then

νR. voted(X) := yes.
� v[I(X)]

.
= I(V).

snd(scrypt(sk(X, a), ballot(R, V)))

Admin

if status(·) .
= voting then

rcv(scrypt(sk(X, a), ballot(R, V))).
s := cast(X).
if (X ∈ Voters ∧ s .

= no) then
cast(X) := yes.
if (dishonest(X)) then
� v[I(X)]

.
= I(V).

? v[I(X)]
.
= I(V).

Counter

status(·) := over.
forX : Voters
s := cast(X).
if (s

.
= yes ∧ v[I(X)]

.
= candA) then

result := result(candA).
result(candA) := result + 1.
� c[I(X)]

.
= true.

if (s
.
= yes ∧ v[I(X)]

.
= candB) then

result := result(candB).
result(candB) := result + 1.
� c[I(X)]

.
= true.

resultA := result(candA).
resultB := result(candB).
if (resultA 6

.
= result_candA ∨ resultB 6

.
= result_candB) then

attack.
else
? result_candA

.
= I(result_candA) ∧ result_candB

.
= I(result_candB).

result_candA = ΣX∈Voters∧v[X]
.
=candA∧c[X]

.
=yes1

result_candB = ΣX∈Voters∧v[X]
.
=candB∧c[X]

.
=yes1

Figure 5.7: Voting Protocol

5.4 Voting Protocols 139

value R is generated. Their status voted(X) is updated to yes. We publish in
γ the true value of their vote, i.e., v[I(X)]

.
= I(V): this is used later in the

tallying phase to formalize the core of the privacy goal. Finally, the voter sends
their vote to the administrator that they encrypt with their shared secret key.
Note that this transaction can only be taken for honest voters. The intruder
can send any messages that he wants, but ultimately, for the dishonest voters
that he controls, he has to produce a vote that the administrator later accepts
if he wants the vote to be counted.

During a Admin process transaction, every time the administrator receives a
ballot from a voter X, they first check that the sender is a legit voter, and
they also check that the legit voter did not cast a vote already by checking
cast(X). If these requirements are met, the administrator updates cast(X) to
yes. Besides, if the voter is dishonest, i.e., if dishonest(X) holds, the vote is
also disclosed in γ and in α. This does not mean that the intruder necessarily
knows the value of the vote, but that it should not count as an attack if he
learns it. This can be seen as a sort of declassification: the relation between a
dishonest voter and their vote is not a secret. This is important in systems like
an early version of Helios, where an intruder can cast a copy of another voter’s
vote as his own vote. It would be obscuring the attack from our analysis, if
we simply gave to the intruder the information what his vote is; leaving this
information classified would lead to a false positive in general (because typically
the intruder knows what he voted). (α, β)-privacy thus allows us to stay clear
of both problems by just declassifying the relation between dishonest voter and
their vote. This is somewhat analog to our declassification definition that we
introduced in Chapter 2.

At the beginning of a Counter process transaction, the administrator who is
also acting as the counter can switch the status of the election to over. The
administrator is going through all the voters. We use a for construct as a
syntactic sugar. We need to unroll this loop, i.e., repeat the body for each
voter. This notational sugar allows us to keep our formalization parametrized
over an arbitrary number of voters, while a concrete specification that results
from unrolling this loop has the number of voters fixed. This is because we do
not wish to formalize an unbounded number of steps in a single step, which
would have undesirable consequences on the semantics. For each voter, the
administrator checks whether they cast a vote that has been accepted. If this
is the case, a distinction is made following the value of the interpreted function
v[I(X)] stored in γ. This does not represent that the administrator knows the
value of the vote, but that we make a case distinction depending of what the
truth γ is. Depending on v[I(X)] being candA or candB, the administrator
updates the result memory cell for the corresponding candidate. Finally, the
administrator sets the check for counted vote of the voter to true. Once this
is done for all voters, the administrator checks that the result is correct. We

140 Privacy As Reachability

encode this correctness property for candA for instance by resultA 6
.
=result_candA.

result_candA is computed directly from the information published in γ, i.e.,
result_candA =

∑
X∈Voters∧v[X]

.
=candA∧c[X]

.
=true 1, whereas resultA is the actual

computation done by the administrator. Again, this does not mean that the
administrator knows the value of each individual vote, but this means that we
require that the result the counter computes corresponds to the truth. If this
is not the case, there is an attack, i.e., it triggers a violation of (α, β)-privacy,
since the basic correctness of the protocol is shown violated if this branched is
reached. Otherwise, we can publish the result in α. We would like to emphasize
the key role of the information published in γ through interpreted functions to
express the privacy goals of a voting protocol (similarly to what was done in the
static approach in the previous chapter).

To give another example on how dynamic possibilistic (α, β)-privacy works, we
show how to reach a state that we call “final”, i.e., a state where the result has
been printed and no new transactions can be taken (see Figure 5.8). For this
example, we consider that there are three voters, i.e., Voters = {x1, x2, x3}. x1

and x2 are honest voters, and x3 is dishonest, i.e., dishonest(x3) holds. For the
sake of simplicity, we consider that first the three voters cast their vote, and
then only that the administrator registers their votes.

This means that a Cast process transaction is taken two times for the honest
voters. For the two instantiations (lines 1, 2 in Figure 5.8), public information
about the voter is released in α, the intruder can observe the exchange of mes-
sages with the administrator, the true value of the votes is released in γ, and
the status of each of the voters is updated to yes. Note that the intruder can
send whatever messages that he can compose, especially he is able to send a
valid vote to the administrator since he knows sk(x3, a).

Then, a process Admin transaction is also taken three times. This is reflected
for the three instantiations (line 3, 4, 5 in Figure 5.8) by the update of cast(X) to
yes. Note that for the dishonest voter x3, the true result of the vote is released
in both γ and α, since this is a vote that was produced by the intruder. Again,
this does not mean that the intruder learns the value of the vote at this point,
but that it will not count as an attack if he does.

Finally, the only transaction still possible is the instantiation of a Counter
process. This means the administrator is going through the votes and updates
the result. Every time the administrator counts the vote of a voter, it is released
in γ that the vote has been counted. At the end of the process, the result of the
election is released in α.

Before concluding on the security of this “final” state, we need to recapitulate
the privacy goals that we expressed. Let us have a look at the information we

5.4 Voting Protocols 141

α
β

γ
δ

1
X

1
∈
V
o
te
rs

co
n
cr

[l
1
]
=

sc
ry
p
t(
sk
(x

1
,a

),
b
al
lo
t(
R

1
,c
an

d
A
))

X
1
. =
x
1

vo
te
d
(X

1
)
: =

ye
s
if
φ
1

∧
V
1
∈
{c
an

d
A
,c
an

d
B
}
∧

st
ru
ct
[l
1
]
=

sc
ry
p
t(
sk
(X

1
,a

),
b
al
lo
t(
R

1
,V

1
))

∧
V
1
. =
ca
n
d
A

∧
v
[x

1
]
. =
ca
n
d
A

2
X

2
∈
V
o
te
rs

co
n
cr

[l
2
]
=

sc
ry
p
t(
sk
(x

2
,a

),
b
al
lo
t(
R

2
,c
an

d
B
))

X
2
. =
x
2

vo
te
d
(X

2
)
: =

ye
s
if
φ
1
∧
φ
2

∧
V
2
∈
{c
an

d
A
,c
an

d
B
}
∧

st
ru
ct
[l
2
]
=

sc
ry
p
t(
sk
(X

2
,a

),
b
al
lo
t(
R

2
,V

2
))

∧
V
2
. =
ca
n
d
B

∧
v
[x

2
]
. =
ca
n
d
B

3
ca
st
(X

1
)
: =

ye
s
if
φ
3

4
ca
st
(X

2
)
: =

ye
s
if
φ
3
∧
φ
4

5
v
[x

3
]
. =
ca
n
d
A

v
[x

3
]
. =
ca
n
d
A

ca
st
(X

3
)
: =

ye
s
if
φ
3
∧
φ
4
∧
φ
5

6
re
su
lt
_
ca
n
d
A
. =
2

c[
x
1
]
. =
tr
u
e

st
at
u
s(
·)
: =

o
ve
r
if
φ
6

∧
re
su
lt
_
ca
n
d
B
. =
1

∧
c[
x
2
]
. =
tr
u
e

re
su
lt
(c
an

d
A
)
: =

2
if
φ
6
∧
φ
v
o
te

∧
c[
x
3
]
. =
tr
u
e

re
su
lt
(c
an

d
B
)
: =

1
if
φ
6
∧
φ
v
o
te

φ
1
≡

st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 1

. =
n
o
∧
¬
d
is
h
o
n
es
t(
X

1
)

φ
2
≡

st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 2

. =
n
o
∧
¬
d
is
h
o
n
es
t(
X

2
)

φ
3
≡
φ
1
∧
φ
2
∧
φ
3
∧
X

1
∈
V
o
te
rs
∧
st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 3

. =
n
o

φ
4
≡
X

2
∈
V
o
te
rs
∧
st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 4

. =
n
o

φ
5
≡
X

3
∈
V
o
te
rs
∧
st
at
u
s(
·)
. =
vo
ti
n
g
∧
s 5

. =
n
o

φ
6
≡
φ
3
∧
φ
4
∧
φ
5
∧
s 6

. =
ye
s

φ
v
o
te
≡

(v
[x

1
]
. =
ca
n
d
A
∧
v
[x

2
]
. =
ca
n
d
B
∧
v
[x

3
]
. =
ca
n
d
A
)

∧
s 8

. =
ye
s
∧
s 9

. =
ye
s

∨
(v
[x

1
]
. =
ca
n
d
B
∧
v
[x

2
]
. =
ca
n
d
A
∧
v
[x

3
]
. =
ca
n
d
A
)

F
ig
u
re

5.
8:

E
xe
cu
ti
on

of
th
e
vo
ti
ng

pr
ot
oc
ol

142 Privacy As Reachability

have intentionally released, i.e., the formula α:

α ≡ X1 ∈ Voters ∧ V1 ∈ {candA, candB}
∧ X2 ∈ Voters ∧ V2 ∈ {candA, candB}
∧ v[x3]

.
= candA

∧ result_candA
.
= 2 ∧ result_candB

.
= 1

α has just two models (before the release of the results, it has four models).
Also, observe that the intruder can now deduce that V1 and V2 are different,
and that is a legal consequence of α. This is something that the cardinality of
the election allows, and the best protocol cannot prevent it. Let us have now
a look on the technical information: β is the conjunction of φgen , φhom , φ∼
(see preliminaries) and the following frames concr and struct (note that xi are
concrete voters and that Xi are the privacy variables picked during transitions):

concr = {| l1 7→ scrypt(sk(x1, a), ballot(R1, candA)),
l2 7→ scrypt(sk(x2, a), ballot(R2, candB))|}

struct = {| l1 7→ scrypt(sk(X1, a), ballot(R1, V1)),
l2 7→ scrypt(sk(X2, a), ballot(R2, V2))|}

The payload formula α specifies that the intruder can learn that the three voters
voted (he can indeed observe that there are three votes on the bulletin board)
and the result of the election. As explained, he can also learn the true vote
of voter x3 (in our specific case, he knows it since he knows sk(x3, a)). But
he should not learn more. The technical information β takes into account the
messages that the intruder observed. In any instantiations of the variables that is
compatible with α, concr and struct are statically equivalent, since the intruder
cannot decrypt anything else that the vote of the dishonest voter (or compose
and check other messages). Thus, all the models of α can be extended to models
of β, and this simple voting protocol ensures voting privacy in its “final” state.

Now let us say that we want this protocol to ensure stronger privacy goals, such
as receipt freeness. We gave the following definition in the previous chapter:
“no voter has a way to prove how they voted”. The property is formalized with
respect to a specific voter, say x1, that the intruder is trying to influence. The
question is whether voter x1 can prove to the intruder how they voted by a
kind of “receipt”. The idea is to force the coerced voter to reveal their entire
knowledge. But the voter can lie and give to the intruder anything that they
can construct from their own knowledge, as long as their story is consistent with
what the intruder already knows, e.g., from observing the messages exchanged
between the voters and the administrator. Similarly to the frames concr and
struct that represent the knowledge of the intruder, we reason about the frames
concrx1

and structx1
that represent the knowledge of voter x1. The core idea is

5.5 Comparison with Trace Equivalence Approaches 143

then that what voter x1 can lie about is the content of concrx1
. We augment β by

the following axiom φlie , that is updated for every transition as φ∼ for instance,
and where {d1, . . . , dl} is the domain of the frames concrx1

and structx1
:

φlie ≡ struct [d1] = structx1 [d1] ∧ . . . ∧ struct [dl] = structx1 [dl]
∧ ∃s1, . . . , sl. genDx1

(s1) ∧ genDx1
(sl).

(concr [d1] = concrx1 [s1] ∧ . . . ∧ concr [dl] = concrx1 [sl]])

In our simple voting protocol, the knowledge of the voter x1 is very simple.
They know their shared key with the administrator, the random value that they
generate when voting and they know the messages that they send:

concrx1
= {| d1 7→ sk(x1, a), d2 7→ R1,

d3 7→ scrypt(sk(x1, a), ballot(R1, candA)) |}
structx1

= {| d1 7→ sk(X1, a), d2 7→ R1,
d2 7→ scrypt(sk(X1, a), ballot(R1, V1)) |}

There is no way for the voter x1 to lie about their true vote because they know
neither the secret key that the other voters share with the administrator, nor
the other random values. This means that the intruder can exclude some models
of α when we require as part of β the receipt-freeness axiom: this protocol is
not receipt-free.

Receipt-freeness is a difficult property to express with approaches such as the
ones based on Applied-π calculus [DKR06]. We have shown here how to re-
fine our privacy goal in dynamic (α, β)-privacy. Note that was done with an
additional axiom to β rather than something we could already express with
(α, β)-privacy directly.

5.5 Comparison with Trace Equivalence Approaches

The gold standard for privacy in security protocols are the notions of observa-
tional equivalence and trace equivalence (see, e.g., [DH17] for a survey). Roughly,
a pair of processes is trace equivalent if all transitions of one process can be sim-
ulated by the other. This entails substantial difficulties for automated verifica-
tion [CCD17], especially when systems have a long-term mutable state [Ara+17],
but still privacy notions are typically formulated as such an equivalence between
two alternative worlds, rather than reachability problem. Interesting in this
context is the notion of diff-equivalence [BAF08] that is implemented in the
most popular verification tools ProVerif and Tamarin: here the processes are

144 Privacy As Reachability

parametrized over a binary choice in terms and this gets close to a reachability
problem, because the processes are practically in lockstep. This is, however, so
restrictive that only a very limited class of privacy properties can be considered.

(α, β)-privacy was introduced in [MV19] as a more declarative way to formal-
ize and reason about privacy than the indistinguishability of two alternatives.
There is an underlying notion of equivalence in (α, β)-privacy though: the static
equivalence of the frames concr and struct . These describe not two alternative
worlds but rather different levels of knowledge of the intruder: the concrete mes-
sages and the structural knowledge. However, (α, β)-privacy is a static notion,
describing a fixed state of the world, and does not reason about the interaction of
the intruder with his environment. We showed in this chapter how to lift (α, β)-
privacy to full-fledged transition systems, and have thus re-cast privacy as a
reachability problem without the limitations that come, e.g., in diff-equivalence.

In a nutshell, all that can be expressed with trace equivalence, and more, can
be expressed with (α, β)-privacy. We now give a formal comparison5.

5.5.1 Visibility of Transactions

It is inherent in the semantics of (α, β)-privacy that the intruder knows which
transaction is currently being executed; but the intruder does not know which
of the if-then-else branches is taken, unless this can be inferred from the commu-
nication behavior of the transaction. In contrast, most trace-based approaches
are formulated in a variant of the Applied-π calculus and do not have a no-
tion of transaction in the first place; the intruder view is thus limited to the
communication behavior.

If desired, it is easy to express the same limited intruder view in (α, β)-privacy
transactions:6 given a specification of transactions T1, . . . , Tn, one can transform
them into a single transaction T as follows (where z is a variable that does not

5The reader should bear in mind that trace equivalence and (α, β)-privacy are two quite
different “games”, so bridging between them often leads to constructions, and requires restric-
tions, that are somewhat artificial, but that at least give an idea of how the two approaches
relate.

6It is similarly possible to equip a process calculus specification with additional messages
that tell the intruder a particular point has been reached.

5.5 Comparison with Trace Equivalence Approaches 145

occur in any of the Ti):

� z ∈ {1, . . . , n}.
if (z

.
= 1) then T1.

else if (z
.
= 2) then T2.

...
else if (z

.
= n) then Tn

This transaction allows all the same behaviors as the Tis together, except that
the intruder does not see a priori which of the Tis is taken. Depending on the
output messages of the Tis, the intruder may anyway find out which Ti it is (or
just narrow it down to a few candidates), but that in itself is not a violation of
privacy since the non-deterministic choice of z was not released in α (and thus
learning the value of z does not exclude any models of α).

In our opinion, it is better to let the intruder know the transaction by default,
and have the modeler explicitly specify otherwise (with the above construction),
when the protocol privacy indeed relies on this. This makes it less likely that
such a reliance is overlooked upon implementation. For the rest of this discus-
sion, we will speak of transactions T1, . . . , Tn, but allowing for the case that
n = 1 with the above construction.

5.5.2 Restrictions

We consider two restrictions (R1) and (R2) that do not seem utterly neces-
sary, but greatly simplify the exposition. (R1): for this discussion, we consider
(α, β)-privacy without interpreted functions except concr and struct and with-
out relation symbols except gen. Hence, there are only the following “sources”
of non-determinism:

• variables that are introduced as ? x ∈ D;7 let us call such an x an α-
variable (because it is part of α),

• variables that are introduced as � y ∈ D; let us call such a y a β-variable
(because it is not part of α),

• the non-determinism of the transition relation itself, i.e., in a sequence of
steps, which transaction is performed next, and

7We also ignore the probabilistic aspect in this section as it is not part of the common
trace equivalence notions.

146 Privacy As Reachability

• for a transaction that receives a message, which of all available messages
is received.

Thus, for a given choice of transactions to perform and recipes of the intruder
to send for the inputs, the α- and β-variables are the only non-determinism.

(R2): we restrict transactions to having exactly one input and one output (on
every path through its if-the-else conditions). This simplifies the problem as
the intruder may not directly infer anything about the conditionals from the
number of messages sent or received by a transaction; of course, the intruder
may still be able to conclude from the observed output which path was taken
by a transaction. Hence, this is not a significant restriction in practice. In a
trace of k steps, the intruder has to give k inputs and receives k outputs. Thus,
in each reached state after k steps, every struct frame and the concr frame
have the same domain {l1, . . . , lk}, where each li labels the output of the i-th
transaction. Similarly, the input from the intruder to each transaction is thus
simply a recipe ri which uses only labels {l0, . . . , li−1}, i.e., all outputs received
so far.

Definition 5.14. Given a transaction specification with the restrictions (R1)
and (R2), we define a trace tr as a tuple ((a1, r1), . . . , (ak, rk), (S,P)), where

• each ai identifies one of the transactions,

• each ri is an intruder recipe over labels {l1, . . . , li−1}, and

• (S,P) is any configuration reached by the given sequence of transactions
when the inputs are bound to the ri and the outputs labeled li. (This is
according to our definition of transaction semantics in Section 5.1.2.)

We refer to the α(S), β(S), and γ(S) of a trace as expected; we may also refer
to the concr(S) of a trace, i.e., the (unique) ground messages bound to the labels
li according to β(S).

We call a sequence (a1, r1), . . . , (ak, rk) a symbolic trace that represents all those
traces that have this sequence of (ai, ri) transactions and inputs. The set of
represented traces is finite, corresponding to the possible interpretations of the
non-deterministic α and β variables.

We say that (α, β)-privacy holds in a trace ((a1, r1), . . . , (ak, rk), (S,P)) if it
holds in state S, and that it holds in a symbolic trace tr if it holds in all traces
represented by tr .

5.5 Comparison with Trace Equivalence Approaches 147

We call two traces tr = ((a1, r1), . . . , (ak, rk), (S,P)) and tr ′ = ((a1, r1), . . . ,
(ak, rk), (S ′,P ′)) equivalent, and write tr ≈ tr ′, if concr(S) ∼ concr(S ′) (and,
as indicated by pattern matching, the ai, ri, and k are the same).

Let traces(Spec) be the set of traces produced by a specification of (α, β)-privacy
transactions. We call two specifications Spec and Spec′ trace equivalent, and
write Spec ≈ Spec′, if for every trace tr ∈ traces(Spec), there is a tr ′ ∈
traces(Spec′) with tr ≈ tr ′, and vice versa.

A binary privacy question is a specification of (α, β)-privacy transactions that
do not contain any α-variables and make no α-release, together with a special
transaction Tbin = if (init

.
= ⊥) then ? x ∈ {0, 1}. init := x, where init is a

distinguished memory cell initialized to ⊥ and the other transactions may only
read, but not modify, the value of init.

The traces represented by a symbolic trace are actually easy to compute thanks
to the restrictions (R1) and (R2): we follow the normal semantics, but for
every step “? x ∈ Dx” and for every step “� y ∈ Dy”, we keep the choice
symbolic, and compute a set of corresponding α and γ that we attach to the
respective possibility (Pi, φi, struct i) in the configurations. The δ is the same
for all, and the β can be reconstructed from γ and the configuration. This is
taking advantage of the fact that we already have a representation for all the
possibilities (the (Pi, φi, struct i)) at a given point. Now, there is however no
possibility (Pi, φi, struct i) marked, but that marking is actually only needed in
case the different possibilities have differences in the number of sent and received
messages, which we do not consider here due to the restrictions (R1) and (R2).

Note that every trace has at least one interpretation since every if-then-else has
at least one branch that can execute, i.e., every transaction is applicable in every
trace (it may just fail to actually do something).

This definition expresses the fact that trace equivalence is about the ability
to distinguish between two systems that each reflect a particular choice of the
privacy information. Relating this to the terms of (α, β)-privacy means thus
that α is simply the secrecy of a bit x. We can now relate (α, β)-privacy in the
binary case with trace equivalence (we first prove Theorem 5.16 as it will come
in handy to prove Theorem 5.15):

Theorem 5.15. Consider a binary privacy question Spec that meets (R1) and
(R2). For each b ∈ {0, 1}, let Specb be the specialization of Spec where Tbin sets
the choice of x to {b}. Then (α, β)-privacy holds in Spec iff Spec0 ≈ Spec1.

Here, one can see two fundamental differences between (α, β)-privacy and the
trace equivalence approach: in trace equivalence, we do not have to introduce a

148 Privacy As Reachability

distinction between high-level and low-level (but we simply have a single bit a
secret); on the other hand, we cannot express more than a binary choice between
two systems in one go: of course one can specify several binary questions, but
each is an independent binary question. In contrast, in (α, β)-privacy we can
have a choice between any finite number of models and we can let this develop
during transitions, also dependent on the actions of the intruder. For this reason,
we also formulate a different equivalence notion that is based on traces, but that,
instead of distinguishing two systems, is based on the models of a formula α in
a single system:

Theorem 5.16. (α, β)-privacy holds in a symbolic trace tr = (a1, r1), . . . , (ak, rk)
iff for every trace (tr , (S,P)) and every Σ0-interpretation I0 |= α(S), there ex-
ists a trace (tr , (S ′,P ′)) such that I0 |= γ(S ′) and concr(S) ∼ concr(S ′).

Proof. Let tr = (a1, r1), . . . , (ak, rk) and first suppose (α, β)-privacy is violated
in tr , i.e., for some trace (tr , (S,P)), (α, β)-privacy is violated in S. This means
that there is one model I0 of α(S) that cannot be extended to a model of β,
i.e., for every (Pi, struct i, φi) ∈ P, either I0 6|= φi or the I0(struct i) 6∼ concr(S).
Thus, the intruder can exclude in state S every trace (tr , (S ′,P ′)) where I0 |=
γ(S ′). Since only the α- and β-variables are to interpret, this means that in
every trace (tr , (S ′,P ′)) where I0 |= γ(S ′), we have concr(S) 6∼ concr(S ′).

Vice-versa, suppose there is a trace (tr , (S,P)) and a model I0 of α(S) such
that for every trace (tr , (S ′,P ′)) where I0 |= γ(S ′), concr(S) 6∼ concr(S ′).
Then, similarly, for every (Pi, struct i, φi) ∈ P, either I0 6|= φi or I0(struct i) 6∼
concr(S). Thus, (tr , (S,P)) violates (α, β)-privacy.

We can finally prove Theorem 5.15:

Proof. Note that Spec, Spec0 and Spec1 have the same set of symbolic traces.
If a symbolic trace tr does not contain the special transaction Tbin , then all the
concrete traces it represents in Spec0, Spec1 and Spec are also the same, so up to
taking the special transaction, there is trivially no violation of (α, β)-privacy or
trace distinction possible. Thus, for the rest of this theorem, we consider only
a symbolic trace tr that includes the special transaction Tbin . Observe that in
Spec, all concrete traces (tr ,S,P) represented by tr have thus α(S) ≡ x ∈ {0, 1}.

Suppose now (α, β)-privacy holds in Spec and suppose (tr ,S,P) is a trace that
tr represents in Spec0. Then, γ(S)(x) ≡ 0. This trace is also possible in Spec,
and since the privacy holds, by Theorem 5.16, there exists a trace (tr ,S ′,P ′) in
Spec that supports the other model of α, namely γ(S ′)(x) ≡ 1, and such that
concr(S) ∼ concr(S ′). By construction, (tr ,S ′,P ′) is a trace of Spec1. Thus,

5.6 Comparison with information flow 149

for every trace in Spec0 exists an equivalent one Spec1. By a similar proof,
every trace in Spec1 has an equivalent in Spec0. Hence, Spec0 and Spec1 are
trace equivalent.

Suppose now, for the sake of contradiction, that (α, β)-privacy is violated in
Spec. Then, by Theorem 5.16, there exists a trace (tr ,S,P) in Spec, say with
γ(S)(x) ≡ 0 (the proof for the case γ(S)(x) ≡ 1 is analogous), and there
is no trace (tr ,S ′,P ′) of Spec such that both γ(S)(x) ≡ 1 and concr(S) ∼
concr(S ′). Obviously, (tr ,S,P) is a trace of Spec0, but for all (tr ,S ′,P ′) of
Spec1, concr(S) 6∼ concr(S ′) (since they have γ(S)(x) ≡ 1). Thus, Spec0 and
Spec1 are not trace equivalent.

5.6 Comparison with information flow

For many applications, it is interesting to take into account probabilities. We
see no obvious way to reason with them in equivalence-based specifications,
but the fact that every state in dynamic possibilistic (α, β)-privacy represents
a single reality allows us to make a declarative extension that integrates non-
determinism and probabilistic aspects. In fact, the two theorems on extensible
specification allow for adding probabilities and background knowledge to an
otherwise possibilistic specification without further proofs.

Our work is also related to privacy approaches based on non-interference and
information flow [GM82; MSS11; TJ11]. In fact, one may wonder if dynamic
probabilistic (α, β)-privacy is not simply information flow in disguise. That
is, one may think that α is basically akin to high variables, and β is akin to
low variables. While there are similarities and parallels, there are also key
conceptual differences. Most importantly, the β information is “low” in quite a
different sense: it is regarded as technical information, but without stipulating
whether it is privileged. For instance, β may contain cryptographic keys and
nonces, and some nonces (and even some keys) may be obtained by the intruder
without violating dynamic probabilistic (α, β)-privacy; in fact, knowing them
does not in itself constitute a violation. However, sometimes even just knowing
that two low-level messages are identical can be sufficient to deduce a violation,
because it rules out some model of α.

Our explicit focus on probabilities bears similarities with approaches in quan-
titative information flow [Alv+20; CHM01; DHW04; Gru08; LMT10; Low02;
Smi09], as well as differential privacy [Dwo08; YCW17], k-anonymity [Swe02],
l-diversity [Mac+07], and t-closeness [LLV07], which aim at quantifying pri-
vacy to capture leaks or information disclosure in a system. Differential privacy,

150 Privacy As Reachability

in particular, is concerned with statistical queries to databases, i.e., how do
you reveal accurate statistics about a set of individuals while preserving their
privacy? In this approach, private and public information are not completely
disjoint, e.g., one might want to reveal the average age of the participants in a
survey, but if a new participant is added after the reveal of the average, then
one can learn their age.

Differential privacy (and related approaches) and approaches for protocol secu-
rity and privacy (like ours) are typically seen as two different disciplines that
look at privacy in distinct, particular ways. We regard our work also as an
attempt to start bridging this gap. While our approach is rooted in protocol
verification, we have tried to import here notions that have been successful on
the other side of the gap.

Still, it is important to note an interesting relationship between our work in
this chapter and information flow. This comparison underlines the fact that
in general, many information flow approaches are a form of static analysis that
over-approximates and classifies many potential problems as violations, whereas
(α, β)-privacy is usually more precise. The comparison with information flow
is a bit more difficult, since it is farther away from (α, β)-privacy than trace
equivalence, and thus we give a less formal comparison.

An intuition is that the semantics of transactions in (α, β)-privacy reflects what
would be called explicit and implicit flows in information flow approaches: the
messages sent out by a transaction are visible to the intruder. This may give rise
to an explicit flow, for instance, if the sent message contains directly the value of
an α-variable. It may give rise to an implicit flow, if the sent message depends
on a condition and the intruder may thus be able to determine the value of the
condition. In fact, an important part of the semantics is to formalize what the
intruder knows about the shape of the message (i.e., struct) depending on the
different outcomes of conditions taken so far.

For example, consider the following simple program:

if (x>10){
y:=y*y;

}
else{

y:=y*x;
}

Suppose x is of level H (high) and y of level L (low). Then, we obviously have
two violations of information flow. We could model this also in (α, β)-privacy,

5.6 Comparison with information flow 151

but since we are modifying variables, we would have to use here memory cells
Xcell and Ycell. We can initialize these memory cells with an arbitrary value
from, say, the set of integers. The privacy condition is that the intruder cannot
find out anything about the initial value of x. However, he should be able to
see the value of y before and after the transaction. The initialization can be
formalized as follows (where init is a boolean memory cell, initialized to false):

if (init
.
= false) then

init := true.
? X ∈ {0, . . . ,MAXINT}.
� Y ∈ {0, . . . ,MAXINT}.
Xcell := X.
Ycell := Y.
snd(Ycell)

and the actual program is:

if (init
.
= true) then

if (Xcell > 10) then
Ycell := Ycell ∗ Ycell.

else
Ycell := Ycell ∗ Xcell.

snd(Ycell)

A possible trace is now that the intruder observes an initialization transaction
with the concrete value 1 (for y) and then the same value again in a program
transaction. Then, he can exclude the second branch (because y would have to
be at least 11 for that), and thus knows X > 10, violating the (α, β)-privacy
privacy goal.

Here we can however observe five major differences between (α, β)-privacy and
information flow. The first major difference is that (α, β)-privacy will not trigger
if there is no actual information flow that can be observed. In the above example,
for instance, if y gets initialized with 0, then the result is not telling anything
about x, and hence in that state, (α, β)-privacy holds. Thus, (α, β)-privacy does
not share the false positives that can arise from the over-approximation of static
information flow analysis. While it is nice to avoid false positives, the simplicity
and efficiency of static analysis naturally raise the question whether this can
also be an effective technique to analyze (α, β)-privacy problems and whether
we can over-approximate in a similar way—a problem we must leave open at
this point.

A second major difference is that (α, β)-privacy allows for sending also classified
values on a public channel when they are encrypted such that the intruder cannot

152 Privacy As Reachability

decrypt them. While one can of course define an appropriate declassification
to allow also for this in information flow, this is not suitable for the analysis of
privacy in protocols, and one would need here (α, β)-privacy or trace equivalence
approaches: this is because one needs to analyze in general whether the employed
encryption regime indeed excludes attacks, so that the intruder cannot obtain
any information, for instance by comparison of encrypted messages (or their
reuse).

For a third major difference, recall that (α, β)-privacy by default does not hide
which transaction is taken, but this information can be hidden from the intruder
(cf. the comparison with trace equivalence in Section 5.5). It is important to
note that the number of transactions taken cannot be hidden from the intruder
in (α, β)-privacy. For instance, this program

while (x>0){
x:=x-1;
y:=y*x;

}

would be fine in classical information flow if x and y are both H (or both L), as
all implicit and explicit flows are allowed. However, the number of transactions
that can be taken now reveals information about x. One may consider this as a
(rather blunt) timing leak. In fact, we cannot directly implement this program
as one transaction in (α, β)-privacy. Instead we would have to also model a
program counter—as a β-variable that is not given to the intruder:

if (PC
.
= start ∧ Xcell > 0) then

Xcell := Xcell− 1.
Ycell := Ycell ∗ Xcell.

else if (PC
.
= start ∧ Xcell

.
= 0) then

PC
.
= end

Now after only two such transactions, the intruder can infer that the initial
value of x is greater then 0 and thus violate privacy.

A fourth difference between the approaches concerns declassifications. While in
information flow one would declassify a particular value, (α, β)-privacy in general
allows one to rather declassify a statement, and declassification is closed under
logical deduction. For instance, when we release the result of an election, we
do not just declassify the number of votes received by each candidate (that was
computed based on the classified votes), but we also release the statement that
it is the sum of all accepted votes. Thus, if we have three dishonest voters voting

5.7 Future Work 153

for candidate A, and candidate A received only three votes, then the intruder
can infer—and is allowed to infer—that no honest voter voted for candidate A.
Similarly, in a unanimous vote, the intruder also learns the value of every single
vote, and that is permitted by the goal.

As a final difference, consider the security lattices that can be used for the
different levels in information flow. While we, in (α, β)-privacy, basically con-
sider only two levels (i.e., whether the intruder may know or not), this can be
used anyway for a more complex lattice by several separate analyses, one for
each security level that the intruder may realistically obtain. There is, however,
one aspect that (α, β)-privacy cannot handle at all: how information flow can
use lattices for integrity analysis, e.g., that information cannot flow from an
untrusted variable into a trusted one. Here, (α, β)-privacy can only offer the
formulation of the usual authentication goals like injective agreement that are
standard in protocol verification.

5.7 Future Work

Having introduced transition systems, it is natural to consider the automation of
our approach. Since it is based on FOL, our formalization is expressive but not
decidable, not even semi-decidable, which presents challenges for automation.
Still, some fragments of (α, β)-privacy are decidable [MV19] and are, in some
sense, equivalent to the classical static equivalence of frames, so there is hope for
automation for fragments of dynamic probabilistic (α, β)-privacy too. We also
plan to extend our approach to formalize other quantitative aspects of privacy in
addition to probabilities, such as costs and timing leaks as in [Di +07; Koc96].

154 Privacy As Reachability

Chapter 6

Conclusion

The work of this thesis is divided into two main parts. We first developed
a framework to study vertical composition of stateful protocol. Then, we de-
veloped applications of (α, β)-privacy to voting protocols and then leveraged
(α, β)-privacy, first to a dynamic approach, and second to a probabilistic ap-
proach.

Compositionality results In Chapter 2, we started by defining what we
mean by the vertical composition of stateful protocols. Our definition allowed to
recast this problem into a parallel composition of stateful protocols that play the
role of a channel and of an application protocol. We could then adapt the results
from [Hes19] to study the security of our vertical composition. As a first step for
applying these results, we extend several definitions and theorems, most notably
the underlying typing result that Hess et al. build upon, in order to consider
the particularities of our problem, namely that a channel can transmit any
messages from an application. We then developed an abstraction for the channel
and proved this abstraction sound. This abstraction allows us to make the
verification of the channel truly independent of the application. This actually
justifies the usual abstraction of payloads by fresh nonces, but shows that it
is actually a bit more complicated i.e., one has to consider constants that can
be fresh or reused, and known or unknown to the intruder. Our results can be
applied to a large class of protocols, given that they respect a number of easy to
check syntactic conditions and is, to our knowledge, the first result of vertical
compositionality of stateful protocols in the symbolic model not limited to a
specific class of protocols.

Voting privacy and receipt-freeness In Chapter 4, we applied (α, β)-
privacy to voting protocols, and showed how to model voting privacy goals.
We gave proof techniques to prove or disprove that privacy holds, in a particu-
lar (α, β)-privacy state. In particular, we showed how this novel approach can
express in a rather declarative way a receipt-freeness goal. The idea is that a
coerced voter should be able to come up with a consistent story for everything

156 Conclusion

that could have happened. In addition, we proved a hierarchy between these
two properties: receipt-freeness entails voting privacy.

Privacy as reachability In the first part of Chapter 5, we extended (α, β)-
privacy with transition systems. This means that we lifted (α, β)-privacy from a
static approach to a dynamic one. We defined a transaction-process formalism
for distributed systems, where we keep track of several possibilities in each sate
until some can be excluded by observation, that can exchange cryptographic
messages and that includes privacy variables, can work with long-term mutable
states and allows one to specify the consciously released information. Hence,
every sate of our transition system is an (α, β)-privacy problem, i.e., expressing
privacy as a pure reachability problem that supports a wide variety of privacy
goals.

Extension to probabilities In the second part of Chapter 5, we developed
a conservative extension of (dynamic) (α, β)-privacy by probabilistic variables.
These privacy variables can be sampled from finite domain with a probabilistic
distribution. We showed with examples that a probabilistic analysis can benefit
many problems. We also defined a notion of extensibility, which says that β
does not exclude choices of probabilistic variables. We proved that if (α, β)-
privacy holds possibilistically for an extensible pair (α, β), then it also holds
probabilistically. Finally, we formalized the relationship between our approach
and trace equivalence.

Future work

Algebraic properties A limitation inherent in the work of [Hes19] is that
the term model is currently based on a free algebra, in which terms are equal
if they are syntactically equal. The question is thus whether it is possible to
support algebraic properties such as the properties of exponentiation needed to
model Diffie-Hellman-based protocols, which are omnipresent in channel proto-
col design. The ProVerif tool supports algebraic properties to some extend
by a suitable encoding in Horn clauses (which are in the free algebra). A similar
transformation may also be possible in our setting. Another possibility identified
by [Hes19] would be to work directly with quotient algebras in Isabelle.

NuFMC The worked presented in this thesis has focused on establishing ver-
tical compositionality results. As for now, to apply our results, one would need

157

to manually model and prove protocols correct. Integrating protocol verifica-
tion with our results is thus crucial to make them practically available. Though
our results are not limited to the protocol formalism we used in Chapter 2,
we are working on developing a new hybrid tool based on OFMC [BMV05],
that uses set-abstraction techniques to model the stateful aspects of protocols.
This tool uses lazy data-types as a simple way of building efficient on-the-fly
model-checkers for protocols with very large state-spaces and integrates sym-
bolic techniques and optimizations for modeling a lazy Dolev-Yao intruder. We
use set-based abstraction techniques from [Möd10] to handle the stateful aspects
of protocols.

Refined privacy goals We have formalized in this work a number of privacy
goals, e.g., voting secrecy, receipt-freeness, unlinkability, etc. An interesting
question for future research is to extend the scope of domains, such as e-health
protocols, and the scope of properties that we can formalize such as stronger
flavors of secrecy or coercion-resistance.

Automation for (α, β)-privacy Having introduced transition systems, it is
natural to consider the automation of our approach. Since it is based on First-
Order Logic, our formalization is expressive but not decidable, and Herbrand
Logic is not even semi-decidable, which presents challenges for automation. Still,
some fragments of (α, β)-privacy are decidable [MV19] and are, in some sense,
equivalent to the classical static equivalence of frames, so there is hope for
automation for fragments of dynamic probabilistic (α, β)-privacy too.

Compositionality results for privacy Can we compose privacy properties?
In other words, given similar requirements as for confidentiality and authenti-
cation goals, can we verify privacy goals with the same compositionality tech-
niques? An interesting question for future research is thus to combine our latest
results that recast privacy as a reachability problem with (α, β)-privacy and our
compositionality results.

158 Conclusion

Bibliography

[ABF18] Martín Abadi, Bruno Blanchet, and Cédric Fournet. “The Applied
Pi Calculus: Mobile Values, New Names, and Secure Communica-
tion”. In: J. ACM 65.1 (2018), 1:1–1:41.

[ACD15] Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. “Compos-
ing Security Protocols: From Confidentiality to Privacy”. In: ETAPS
2015. 2015, pp. 324–343.

[Alm+15] Omar Almousa et al. “Typing and Compositionality for Security
Protocols: A Generalization to the Geometric Fragment”. In: ES-
ORICS. 2015.

[Alv+20] Mário S. Alvim et al. The Science of Quantitative Information Flow.
2020.

[And+08] Suzana Andova et al. “A framework for compositional verification
of security protocols”. In: Inf. Comput. 206.2-4 (2008), pp. 425–459.

[Ara+17] Myrto Arapinis et al. “Stateful applied pi calculus: Observational
equivalence and labelled bisimilarity”. In: J. Log. Algebraic Methods
Program. 89 (2017), pp. 95–149.

[Arm+05] Alessandro Armando et al. “The AVISPA Tool for the Automated
Validation of Internet Security Protocols and Applications”. In: CAV.
2005.

[Arm+08] Alessandro Armando et al. “Formal analysis of SAML 2.0 web browser
single sign-on: breaking the SAML-based single sign-on for google
apps”. In: FMSE. 2008, pp. 1–10.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. “Automated
verification of selected equivalences for security protocols”. In: J.
Log. Algebraic Methods Program. 75.1 (2008), pp. 3–51.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. “Ver-
ified Models and Reference Implementations for the TLS 1.3 Stan-
dard Candidate”. In: SP. 2017.

[BCH10] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog.
“Formal Verification of Privacy for RFID Systems”. In: CSF. 2010,
pp. 75–88.

[BCM13] David A. Basin, Cas Cremers, and Simon Meier. “Provably repair-
ing the ISO/IEC 9798 standard for entity authentication”. In: J.
Comput. Secur. 21.6 (2013), pp. 817–846.

160 BIBLIOGRAPHY

[BDP15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Alfredo Pironti.
“Verified Contributive Channel Bindings for Compound Authenti-
cation”. In: NDSS. 2015.

[Bla01] Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules”. In: CSFW-14. 2001.

[BMV05] David A. Basin, Sebastian Mödersheim, and Luca Viganò. “OFMC:
A symbolic model checker for security protocols”. In: Int. J. Inf.
Sec. (2005), pp. 181–208.

[BS18] Bruno Blanchet and Ben Smyth. “Automated reasoning for equiva-
lences in the applied pi calculus with barriers”. In: J. Comput. Secur.
26.3 (2018), pp. 367–422.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm
for Cryptographic Protocols”. In: FOCS. 2001.

[CC10] Ştefan Ciobâcă and Véronique Cortier. “Protocol Composition for
Arbitrary Primitives”. In: CSF 2010. 2010, pp. 322–336.

[CCD17] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. “A
procedure for deciding symbolic equivalence between sets of con-
straint systems”. In: Inf. Comput. 255 (2017), pp. 94–125.

[CCM15] Vincent Cheval, Véronique Cortier, and Eric le Morvan. “Secure
Refinements of Communication Channels”. In: FSTTCS. 2015.

[CCW17] Vincent Cheval, Véronique Cortier, and Bogdan Warinschi. “Secure
Composition of PKIs with Public Key Protocols”. In: CSF. 2017.

[CD09] Véronique Cortier and Stéphanie Delaune. “Safely Composing Se-
curity Protocols”. In: FMSD (2009).

[Cha+16] Rohit Chadha et al. “Automated Verification of Equivalence Prop-
erties of Cryptographic Protocols”. In: ACM Trans. Comput. Log.
17.4 (2016), 23:1–23:32.

[Che+13] Céline Chevalier et al. “Composition of password-based protocols”.
In: Formal Methods Syst. Des. 43.3 (2013), pp. 369–413.

[CHM01] David Clark, Sebastian Hunt, and Pasquale Malacaria. “Quantita-
tive Analysis of the Leakage of Confidential Data”. In: ENTCS 59.3
(2001), pp. 238–251.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. “The DEEPSEC
Prover”. In: FloC 2018. 2018, pp. 28–36.

[Cre+17] Cas Cremers et al. “A Comprehensive Symbolic Analysis of TLS
1.3”. In: CCS. 2017.

[CRZ07] Véronique Cortier, Michaël Rusinowitch, and Eugen Zalinescu. “Re-
lating two standard notions of secrecy”. In: Log. Methods Comput.
Sci. 3.3 (2007).

BIBLIOGRAPHY 161

[CS11] Véronique Cortier and Ben Smyth. “Attacking and Fixing Helios:
An Analysis of Ballot Secrecy”. In: CSF. 2011, pp. 297–311.

[DH17] Stéphanie Delaune and Lucca Hirschi. “A survey of symbolic meth-
ods for establishing equivalence-based properties in cryptographic
protocols”. In: JLAMP 87 (2017), pp. 127–144.

[DHW04] A. Di Pierro, C. Hankin, and H. Wiklicky. “Approximate Non-
Interference”. In: J. Comput. Secur. 12.1 (2004), pp. 37–81.

[Di +07] A. Di Pierro et al. “Tempus Fugit: How to Plug It”. In: JLAP 72.2
(2007), pp. 173–190.

[DJP12] Naipeng Dong, Hugo Jonker, and Jun Pang. “Formal Analysis of
Privacy in an eHealth Protocol”. In: Computer Security - ESORICS
2012 - 17th European Symposium on Research in Computer Se-
curity, Pisa, Italy, September 10-12, 2012. Proceedings. Vol. 7459.
Lecture Notes in Computer Science. 2012, pp. 325–342.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. “Coercion-Resistance
and Receipt-Freeness in Electronic Voting”. In: CSFW. 2006.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. “Verifying privacy-
type properties of electronic voting protocols”. In: J. Comput. Secur.
17.4 (2009), pp. 435–487.

[DP-20] DP-3T. DP-3T – Decentralized Privacy-Preserving Proximity Trac-
ing. 2020. url: https://github.com/DP-3T/documents/blob/
master/DP3T%20White%20Paper.pdf.

[DRS08] Stéphanie Delaune, Mark Ryan, and Ben Smyth. “Automatic Veri-
fication of Privacy Properties in the Applied pi Calculus”. In: Trust
Management II - Proceedings of IFIPTM 2008: Joint iTrust and
PST Conferences on Privacy, Trust Management and Security, June
18-20, 2008, Trondheim, Norway. Vol. 263. IFIP Advances in Infor-
mation and Communication Technology. 2008, pp. 263–278.

[Dwo08] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In:
TAMC. LNCS 4978. 2008.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. “On the security of public
key protocols”. In: IEEE Trans. Inf. Theory 29.2 (1983), pp. 198–
207.

[EMM07] Santiago Escobar, Catherine A. Meadows, and José Meseguer. “Equa-
tional Cryptographic Reasoning in the Maude-NRL Protocol Ana-
lyzer”. In: ENTCS (2007).

https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf

162 BIBLIOGRAPHY

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. “A Practical
Secret Voting Scheme for Large Scale Elections”. In: Advances in
Cryptology - AUSCRYPT ’92, Workshop on the Theory and Appli-
cation of Cryptographic Techniques, Gold Coast, Queensland, Aus-
tralia, December 13-16, 1992, Proceedings. Vol. 718. Lecture Notes
in Computer Science. 1992, pp. 244–251.

[GM11] Thomas Groß and Sebastian Mödersheim. “Vertical Protocol Com-
position”. In: CSF. 2011.

[GM19] Sébastien Gondron and Sebastian Mödersheim. “Formalizing and
Proving Privacy Properties of Voting Protocols Using Alpha-Beta
Privacy”. In: ESORICS. LNCS 11735. 2019, pp. 535–555.

[GM21] Sébastien Gondron and Sebastian Mödersheim. “Vertical Compo-
sition and Sound Payload Abstraction for Stateful Protocols”. In:
CSF. 2021.

[GM82] Joseph A. Goguen and José Meseguer. “Security Policies and Secu-
rity Models”. In: IEEE Symposium on Security and Privacy. 1982,
pp. 11–20.

[GMV21] Sébastien Gondron, Sebastian Mödersheim, and Luca Viganò. Pri-
vacy as Reachability. Tech. rep. 2021.

[Gru08] Damas P. Gruska. “Probabilistic Information Flow Security”. In:
Fundam. Inform. 85 (2008), pp. 173–187.

[GT00] Joshua D. Guttman and F. Javier Thayer. “Protocol Independence
through Disjoint Encryption”. In: CSFW. 2000.

[Gut09] Joshua D. Guttman. “Cryptographic Protocol Composition via the
Authentication Tests”. In: FOSSACS. 2009.

[Gut11] Joshua D. Guttman. “Shapes: Surveying Crypto Protocol Runs”. In:
CIS 5. 2011.

[Gut14] Joshua D. Guttman. “Establishing and preserving protocol security
goals”. In: J. Comput. Secur. (2014).

[Hes+21] Andreas Hess et al. “Performing Security Proofs of Stateful Proto-
cols”. In: CSF. 2021.

[Hes19] Andreas Viktor Hess. “Typing and Compositionality for Stateful
Security Protocols”. PhD thesis. 2019.

[HG06] T. Hinrichs and M. Genesereth. Herbrand Logic. Tech. rep. Stanford
University, 2006.

[HMB18] Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker.
“Stateful Protocol Composition”. In: ESORICS. 2018.

[HMB20] Andreas Victor Hess, Sebastian Mödersheim, and Achim D. Brucker.
“Stateful Protocol Composition and Typing”. In:Arch. Formal Proofs
(2020).

BIBLIOGRAPHY 163

[HT96] Nevin Heintze and J. D. Tygar. “A Model for Secure Protocols and
Their Compositions”. In: IEEE Trans. Software Eng. 22.1 (1996),
pp. 16–30.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. In: Advances in Cryp-
tology. 1996, pp. 104–113.

[KR05] Steve Kremer and Mark Ryan. “Analysis of an Electronic Voting
Protocol in the Applied Pi Calculus”. In: Programming Languages
and Systems, 14th European Symposium on Programming,ESOP
2005, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings. Vol. 3444. Lecture Notes in Computer Science.
2005, pp. 186–200.

[KT11] Ralf Küsters and Max Tuengerthal. “Composition Theorems With-
out Pre-Established Session Identifiers”. In: CCS. 2011.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-Closeness:
Privacy Beyond k-Anonymity and l-Diversity”. In: ICDE. 2007, pp. 106–
115.

[LMT10] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina.
“Time and Probability-Based Information Flow Analysis”. In: IEEE
Trans. Software Eng. 36.5 (2010), pp. 719–734.

[Low02] Gavin Lowe. “Quantifying Information Flow”. In: CSF. 2002, pp. 18–
31.

[Low95] Gavin Lowe. “An Attack on the Needham-Schroeder Public-Key
Authentication Protocol”. In: Inf. Process. Lett. 56.3 (1995), pp. 131–
133.

[Mac+07] Ashwin Machanavajjhala et al. “L-diversity: Privacy beyond k -anonymity”.
In: ACM Trans. Knowl. Discov. Data 1 (2007).

[Mei+13] Simon Meier et al. “The TAMARIN Prover for the Symbolic Anal-
ysis of Security Protocols”. In: CAV. 2013.

[Mit02] John C. Mitchell. “Multiset Rewriting and Security Protocol Anal-
ysis”. In: RTA 2002. 2002, pp. 19–22.

[Möd10] Sebastian Mödersheim. “Abstraction by set-membership: verifying
security protocols and web services with databases”. In: CCS. 2010,
pp. 351–360.

[MSS11] Heiko Mantel, David Sands, and Henning Sudbrock. “Assumptions
and Guarantees for Compositional Noninterference”. In: CSF. 2011,
pp. 218–232.

[MV09] Sebastian Mödersheim and Luca Viganò. “Secure Pseudonymous
Channels”. In: ESORICS. 2009.

164 BIBLIOGRAPHY

[MV14] Sebastian Mödersheim and Luca Viganò. “Sufficient conditions for
vertical composition of security protocols”. In: ASIA CCS. 2014.

[MV19] Sebastian Mödersheim and Luca Viganò. “Alpha-Beta Privacy”. In:
ACM Trans. Priv. Secur. 22.1 (2019), 7:1–7:35.

[Net21] Nets. NEM ID. 2021. url: https://www.nemid.nu/dk-en/get_
started/code_token/ (visited on 06/22/2021).

[OSK03] M. Ohkubo, K. Suzuki, and S. Kinoshita. “Cryptographic approach
to "privacy-friendly" tags”. In: RFID Privacy Workshop (2003).

[SB18] Christoph Sprenger and David A. Basin. “Refining security proto-
cols”. In: J. Comput. Secur. (2018).

[Sel75] Steve Selvin. “On the Monty Hall problem (letter to the editor)”.
In: The American Statistician 29.3 (1975).

[Smi09] Geoffrey Smith. “On the Foundations of Quantitative Information
Flow”. In: FoSSaCS. LNCS 5504. 2009, pp. 288–302.

[Swe02] Latanya Sweeney. “k-Anonymity: A Model for Protecting Privacy”.
In: Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10.5 (2002),
pp. 557–570.

[TJ11] Henk C. A. van Tilborg and Sushil Jajodia, eds. Encyclopedia of
Cryptography and Security, 2nd Ed. 2011.

[Vau20] Serge Vaudenay. Analysis of DP3T. Cryptology ePrint Archive, Re-
port 2020/399. 2020.

[YCW17] Jiannan Yang, Yongzhi Cao, and Hanpin Wang. “Differential pri-
vacy in probabilistic systems”. In: Inf. Comput. 254 (2017), pp. 84–
104.

https://www.nemid.nu/dk-en/get_started/code_token/
https://www.nemid.nu/dk-en/get_started/code_token/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Notations
	Contents
	1 Introduction
	2 Vertical Composition and Sound Payload Abstraction for Stateful Protocols
	2.1 Preliminaries
	2.1.1 Terms and substitutions
	2.1.2 The Intruder Model
	2.1.3 Stateful Protocols
	2.1.4 Stateful Symbolic Constraints
	2.1.5 Reachable Constraints

	2.2 Stateful Vertical Composition
	2.2.1 Typed Model and Payloads
	2.2.2 Parallel Compositionality
	2.2.3 Channels and Applications

	2.3 Abstracting the Payload
	2.3.1 Abstract Constants
	2.3.2 Translation to the abstract channel

	2.4 Proofs
	2.5 Extension of the typing results
	2.5.1 Extension of the Typing Result [Hess18]]
	2.5.2 Extending the Results of [Hess18]
	2.5.3 Update of the Parallel Composability Result
	2.5.4 Declassification (extended from [Hess18])

	2.6 Application of the theorems
	2.7 Further examples
	2.7.1 Key-exchange with certificate
	2.7.2 Authenticated channel without secrecy
	2.7.3 Channel with replay protection
	2.7.4 Second mechanism for replay protection

	2.8 Channel Bindings
	2.9 Related Work and Conclusion

	3 Preliminaries for Alpha-Beta Privacy
	3.1 Herbrand Logic
	3.2 Encoding of Frames
	3.3 Alpha-Beta-Privacy

	4 Formalizing and Proving Privacy Properties of Voting Protocols using Alpha-Beta Privacy
	4.1 Verifying Voting Privacy
	4.1.1 The FOO'92 Voting Protocol in Alpha-Beta Privacy
	4.1.2 Voting Privacy Holds in S
	4.1.3 Voting Privacy Holds in S'

	4.2 Receipt-freeness
	4.2.1 Formalizing Receipt-freeness
	4.2.2 Receipt-freeness in the current state
	4.2.3 Violation of Receipt-Freeness in FOO'92

	4.3 Related work
	4.4 Conclusion

	5 Privacy As Reachability
	5.1 Transition Systems for Alpha-Beta-privacy
	5.1.1 Syntax
	5.1.2 Operational Semantics
	5.1.3 Linkability attack on OSK Protocol

	5.2 Probabilistic privacy
	5.2.1 Probabilistic Alpha-Beta-Privacy
	5.2.2 The intruder as an empirical scientist
	5.2.3 Background Knowledge

	5.3 DP-3T
	5.3.1 Modeling
	5.3.2 Privacy violated
	5.3.3 The Actual Privacy Guarantee

	5.4 Voting Protocols
	5.5 Comparison with Trace Equivalence Approaches
	5.5.1 Visibility of Transactions
	5.5.2 Restrictions

	5.6 Comparison with information flow
	5.7 Future Work

	6 Conclusion
	Bibliography

