

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 30, 2024

Interactive Theorem Proving for Logic and Information

Villadsen, Jørgen; From, Asta Halkjær; Jensen, Alexander Birch; Schlichtkrull, Anders

Published in:
Natural Language Processing in Artificial Intelligence

Link to article, DOI:
10.1007/978-3-030-90138-7_2

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Villadsen, J., From, A. H., Jensen, A. B., & Schlichtkrull, A. (2022). Interactive Theorem Proving for Logic and
Information. In Natural Language Processing in Artificial Intelligence (Vol. 999, pp. 25-48). Springer.
https://doi.org/10.1007/978-3-030-90138-7_2

https://doi.org/10.1007/978-3-030-90138-7_2
https://orbit.dtu.dk/en/publications/f2502f31-2216-4976-8f4c-353287ac1815
https://doi.org/10.1007/978-3-030-90138-7_2

Interactive Theorem Proving for Logic and
Information

Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and
Anders Schlichtkrull

Abstract. Automated reasoning is the study of computer programs that can build
proofs of theorems in a logic. Such programs can be either automatic theorem provers
or interactive theorem provers. The latter are also called proof assistants because the
user constructs the proofs with the help of the system. We focus on the Isabelle proof
assistant. The system ensures that the proofs are correct, in contrast to pen-and-paper
proofs which must be checked manually. We present applications to logical systems
and models of information, in particular selected modal logics extending classical
propositional logic. Epistemic logic allows intelligent systems to reason about the
knowledge of agents. Public announcements can change the knowledge of the system
and its agents. In order to account for this, epistemic logic can be extended to public
announcement logic. An axiomatic system consists of axioms and rules of inference
for deriving statements in a logic. Sound systems can only derive valid statements
and complete systems can derive all valid statements. We describe formalizations of
sound and complete axiomatic systems for epistemic logic and public announcement
logic, thereby strengthening the foundations of automated reasoning for logic and
information.

Keywords: Interactive Theorem Proving, Propositional Logic, Epistemic Logic,
Public Announcement Logic, Isabelle/HOL Proof Assistant

Jørgen Villadsen
Technical University of Denmark, Kongens Lyngby, Denmark, e-mail: jovi@dtu.dk

Asta Halkjær From
Technical University of Denmark, Kongens Lyngby, Denmark, e-mail: ahfrom@dtu.dk

Alexander Birch Jensen
Technical University of Denmark, Kongens Lyngby, Denmark, e-mail: aleje@dtu.dk

Anders Schlichtkrull
Aalborg University Copenhagen, Copenhagen, Denmark, e-mail: andsch@cs.aau.dk

1

jovi@dtu.dk
ahfrom@dtu.dk
aleje@dtu.dk
andsch@cs.aau.dk

2 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

1 Introduction

Automated reasoning technology has matured tremendously in the recent decades.
However, the main applications are found in verification of hardware and software
systems as well as in many areas of mathematics. We present a series of applications
to logical systems and models of information, in particular classical propositional
logic and selected modal logics extending classical propositional logic.

On the one hand, we interpret interactive theorem proving narrowly and focus on
the Isabelle proof assistant [44]. On the other hand,we interpret logic and information
broadly and consider three logics in the area: propositional logic, epistemic logic
(EL) and public announcement logic (PAL).

Building up to formalizations of formulas, we start with a formalization of binary
trees and a number of functions operating on these. Thereafter, we formalize a prover
for propositional logic as a simple example to introduce the reader to the idea of
formalizing logics in Isabelle. We use a so-called deep embedding of logics where
formulas are essentially binary trees. By using a datatype for formulas we can prove
soundness, completeness and termination of the prover. Moving on, we formalize
epistemic logic, a logic for reasoning about both the factual and higher-order knowl-
edge of agents, and a deductive proof system that enables this reasoning from a few
axioms and inference rules. Again we use the deep embedding approach and prove
soundness and completeness. Finally, we formalize public announcement logic with
countably many agents. Public announcement logic extends epistemic logic with an
operator for publicly announcing information. The formalization includes proofs of
soundness and completeness for a variant of the well-known PA + DIST! + NEC!
axiomatic system. The completeness proof builds on the one of epistemic logic by
reducing formulas into that logic.

Our definitions are given in Isabelle’s precise language of higher-order logic and
every step of our soundness and completeness proofs is mechanically checked. With
formalizations of sound and complete axiomatic systems for epistemic logic and
public announcement logic, we strengthen the foundations of automated reasoning
for logic and information.

The formalizations are available here:

https://hol.compute.dtu.dk/ITPLI

The present paper extends our 3-page paper at the International Workshop on
Logical Aspects in Multi-Agent Systems and Strategic Reasoning which was not
formally published and covered only the formalization of epistemic logic [19].

Summing up, in the present paper we focus on propositional logic, epistemic
logic and public announcement logic. As a supplement to pen-and-paper proofs of
soundness and completeness, we describe the use of the powerful Isabelle proof
assistant for interactive theorem proving.

Other logics have been formalized in Isabelle. We mention here some of them
and leave the rest for our discussion of related work together with results in other
proof assistants than Isabelle.

https://hol.compute.dtu.dk/ITPLI

Interactive Theorem Proving for Logic and Information 3

• Michaelis and Nipkow formalize several proof systems for classical propositional
logic [38, 39]. From, Eschen and Villadsen formalize a number of axiomatic
systems for propositional logic [18]. In the present paper we consider modal
logics going beyond classical propositional logic.

• From, Lund and Villadsen formalize a number of small provers for classical
propositional logic [20, 70, 71]. In the present paper we use a similar prover as a
motivational example.

We recommend the survey on the use of formalizations in computer science by
Ringer et al. [58] and the state-of-the-art in mathematics in form of the official
published account of the now completed Flyspeck project [24].

The paper is organized as follows: Sect. 2 introduces the reader to Isabelle/HOL
and how to deeply embed logics. Sect. 3 explains our formalization of epistemic
logic. Sect. 4 explains our formalization of public announcement logic. We discuss
related work in Sect. 5 and conclude in Sect. 6.

2 Isabelle/HOL and Deep Embeddings of Logics

Isabelle is a generic proof assistant originally developed at the University of Cam-
bridge and Technische Universität München [44]. The most used instance of Isabelle
today is Isabelle/HOL, based on classical higher-order logic, and in the following
we often use the name Isabelle to refer to Isabelle/HOL.

In order to provide a gentle introduction to programming and proving in Isabelle,
we start with a formalization of binary trees and a number of functions operating
on these. We further prove a few interesting properties about these functions. In
Isabelle/HOL, programming is not limited to the computable fragments of HOL.
For instance, a function may return a boolean value that is the result of quantifying
over all elements of a type, e.g. stating that all natural numbers are either odd or
even. As such, the concept of programming in Isabelle/HOL goes beyond its usual
meaning in the context of traditional programming languages like Haskell and Java.

Finally, we briefly consider a formalization of a prover for propositional logic.
This mainly serves the purpose of introducing the reader to formalizing logics in
Isabelle using a deep embedding approach. In this approach, formulas are defined
as a datatype which enables the definition of semantics, a proof system and a small
prover as functions that operate on this datatype. In turn, we can prove termination,
soundness and completeness of the prover.

2.1 Formally Verified Functional Programming

The following is a rather straightforward example of formally verified functional
programming in Isabelle/HOL: a typical solution to an exercise in the Isabelle
tutorial [43]. We start with a datatype of trees with labels at the nodes. The labels

4 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

can be of any type, as specified by the type variable ′0, and so-called cartouches
delineate the three components of a Node:

datatype ′a tree = Tip | Node 〈 ′a tree 〉 〈 ′a 〉 〈 ′a tree 〉

We may collect the contents of such trees into a set by writing a simple functional
program:

fun set :: 〈 ′a tree⇒ ′a set 〉 where
〈 set Tip = {} 〉 |
〈 set (Node l a r) = set l ∪ {a} ∪ set r 〉

Note that we can use the usual set notation and operators in our definition. The type
declaration can be omitted in which case it is inferred automatically.

We can then write a predicate on trees labelled by integers that checks if they are
binary search trees:

fun ord :: 〈 int tree⇒ bool 〉 where
〈 ord Tip = True 〉 |
〈 ord (Node l a r) = ((∀ i ∈ set l. i < a) ∧ ord l ∧ (∀ i ∈ set r. a < i) ∧ ord r) 〉

This checks if they are ordered such that for all nodes, every element in the left
subtree is smaller than the element at the node while every element in the right
subtree is larger. The following insertion function is supposed to preserve this order:

fun ins :: 〈 int⇒ int tree⇒ int tree 〉 where
〈 ins i Tip = Node Tip i Tip 〉 |
〈 ins i (Node l a r) = (if i < a then Node (ins i l) a r else

if a < i then Node l a (ins i r) else Node l a r) 〉

In the ord function we have exploited universal quantification over a finite set, which
is computable, but really this program could also be written in an ordinary functional
language. This is a good thing as it helps build familiarity with the proof assistant.
The next two lines take things a step further:

theorem [simp]: 〈 set (ins i t) = {i} ∪ set t 〉
by (induct t) auto

There could potentially be a mistake in the ins function where certain elements were
not inserted or other elements forgotten. Moreover, we might have to test a lot of
inputs to uncover such a mistake. The theorem above, stated for all elements and
all trees, rules out such errors. The proof works by induction on the tree and using
Isabelle’s proof method auto to discharge the two resulting cases.

With that result in hand we can also prove that ins preserves the binary search
tree order:

theorem 〈 ord t =⇒ ord (ins i t) 〉
by (induct t) simp-all

Writing a machine-checked proof requires a higher level of abstraction, considering
both how properties are expressed and proved.

Interactive Theorem Proving for Logic and Information 5

2.2 Termination

So far we have only considered programs that are trivially total. The fun command
will prove both pattern completeness and termination automatically. An advanced
alternative is to use the function command, which does not prove either, and thus we
have to do so manually afterwards, for example using Isar for the formal proofs [73].

Pattern completeness must be proved immediately, here with simp-all, and termi-
nation is shown later with the termination command.

We need to prove the termination of our micro provers manually. To illustrate
the technique, we consider the McCarthy 91 function, which is an old test case for
formal verification [32, 35]. The definition itself is simple, but the nested recursion
makes termination non-obvious:

function M :: 〈 int⇒ int 〉 where 〈M i = (if 100 < i then i − 10 else M (M (i + 11))) 〉
by simp-all

It is called the 91 function because " 8 = 91 for all 8 ≤ 100 (and " 8 = 8 − 10
otherwise). This is easy to show once termination has been established. We do so
below.

To prove termination we show a well-founded relation between the recursive calls
and function input:

termination
proof
let ?R = 〈measure (_i. nat (101 − i)) 〉
show 〈wf ?R 〉
by simp

Briefly, (G, H) ∈ measure 5 ←→ 5 G < 5 H. Any relation defined via measure is
well-founded by construction. What remains to be shown is that both 8 + 11 and
" (8 + 11) are related to 8, to justify the inner and outer recursive call, respectively.
We consider only the branch of the if where the recursion happens and as such the
first case is trivial given our measure:

fix i :: int
assume ∗: 〈¬ 100 < i 〉
then show 〈 (i + 11, i) ∈ ?R 〉
by simp

For the other case, we assume that 8+11 is an input that" terminates for, as expressed
by M-dom:

assume 〈M-dom (i + 11) 〉

ThisM-dom predicate allows us to prove properties about the input that" terminates
on, even though we are still to prove that this is in fact all input. In particular, we
note that when M terminates, the output is “mostly” larger than the input:

moreover have 〈M-dom j =⇒ j − 11 < M j 〉 for j
by (induct j rule: M.pinduct) (auto simp: M.psimps)

6 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

Since the inner recursive call is on 8 + 11, the output is in fact larger than the input 8
and this is enough to relate the two, proving termination of the outer recursive call:

ultimately have 〈 i + 11 − 11 < M (i + 11) 〉
by blast
then show 〈 (M (i + 11) , i) ∈ ?R 〉
using ∗ by simp

qed

Having proved termination, we can now perform induction over the call graph (as
expressed by M.induct) to prove that the function can be defined without recursion:

theorem 〈M i = (if 100 < i then i − 10 else 91) 〉
by (induct i rule: M.induct) simp

This was an example of a function with a difficult termination proof. We also need
to give explicit measures to prove termination of our provers in the coming sections
but then the automation takes over, making them more suitable as starting points for
exploration. Coming up with the measure can be tricky enough without struggling
to prove that it works. We note that this declarative way of proving termination is
similar to how a mathematician would do it.

2.3 A Prover for Propositional Logic

The following is a formalization of a simple prover for propositional logic. The
prover is implicitly based on a sequent calculus for formulas in negation normal
form.

We start with a datatype for formulas:

datatype ′a form = Paf ′a | Naf ′a | Con 〈 ′a form 〉 〈 ′a form 〉 | Dis 〈 ′a form 〉 〈 ′a form 〉

Formulas can be combined using conjunction (Con) and disjunction (Dis). The type
variable ′0 allows for any representation of atomic formulas. We do not include
negation as usual; instead, an atomic formula can appear as either positive (Paf :
positive atomic formula) or negative (Naf : negative atomic formula).

The following function defines the semantics of formulas,where an interpretation 8
maps elements of the type ′0 to truth values:

fun val where
〈 val i (Paf n) = i n 〉 |
〈 val i (Naf n) = (¬ i n) 〉 |
〈 val i (Con p q) = (val i p ∧ val i q) 〉 |
〈 val i (Dis p q) = (val i p ∨ val i q) 〉

We exploit the built-in Boolean operators for negation, conjunction and disjunction.
Alongside the semantics, we define a sequent calculus as a function for proving

formulas:

Interactive Theorem Proving for Logic and Information 7

function cal where
〈 cal e [] = (∃ n ∈ fst e. n ∈ snd e) 〉 |
〈 cal e (Paf n # s) = cal ({n} ∪ fst e, snd e) s 〉 |
〈 cal e (Naf n # s) = cal (fst e, snd e ∪ {n}) s 〉 |
〈 cal e (Con p q # s) = (cal e (p # s) ∧ cal e (q # s)) 〉 |
〈 cal e (Dis p q # s) = cal e (p # q # s) 〉
by pat-completeness simp-all

The sequent calculus operates on a list of formulas, recursively decomposing them.
We construct a set of the positive and a set of the negative literals in 4. The function
terminates once the list of formulas is empty — the truth is determined by whether
some atom appears in both literal sets.

We need to prove that our cal function terminates:

termination by (relation 〈measure (_(-, s) . ∑ p← s. size p) 〉) simp-all

We obtain a termination proof by providing a suitable measure based on the second
argument of the cal function: the sum of sizes of the formulas in the list that we
decompose.

Because we have defined our sequent calculus as a function, we can immediately
obtain a prover by proper initialization of this function:

definition 〈 prover p ≡ cal ({}, {}) [p] 〉

We showcase the prover by running it on a list of formulas (applied to each element
individually):

value 〈map prover [Paf n, Naf n, Con (Paf n) (Naf n) , Dis (Paf n) (Naf n)] 〉

Trivially, only the last formula is a tautology so the result is a list with three False
values and then a single True value. Isabelle interactively displays the result of
running the prover on the formulas.

We now move on to the question of soundness and completeness for the sequent
calculus. We first define an intermediate abbreviation sat that captures that at least
one literal in 4 (positive or negative) is satisfied by the interpretation 8.

abbreviation 〈 sat i e ≡ (∃ n ∈ fst e. i n) ∨ (∃ n ∈ snd e. ¬ i n) 〉

This definition is useful for stating the soundness and completeness properties of our
sequent calculus:

lemma sound-and-complete: 〈 cal e s←→ (∀ i. (∃ p ∈ set s. val i p) ∨ sat i e) 〉
by (induct rule: cal.induct) auto

Because we state soundness and completeness as a single property, and for any call
pattern of cal, we need to consider both the contents of the sets of positive and
negative literals e, and the list of formulas s. The sequent calculus returns true if and
only if, for all interpretations, truth either follows from a formula in the list or from
one of the literals. The proof is by induction over the rules of the sequent calculus.

We finally formulate soundness and completeness for the prover:

8 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

theorem main: 〈 prover p←→ (∀ i. val i p) 〉
unfolding sound-and-complete prover-def by simp

The stated lemma is weaker than for the sequent calculus and a proof can be ob-
tained by simple rewriting. As such, the proof goal is easily discharged by Isabelle’s
automation.

3 Epistemic Logic

Epistemic logic provides a foundation for reasoning about the knowledge of agents,
both factual (“I know the sky is blue”) and higher-order (“I know that you know
that I know the sky is blue”). A deductive proof system enables this reasoning with
just a few axioms and inference rules. We formalize epistemic logic with countably
many agents in the proof assistant Isabelle/HOL [16]. We include soundness and
completeness proofs for the axiomatic system = based on the textbook Reasoning
About Knowledge by Fagin, Halpern, Moses and Vardi [14]. Our definitions and
proofs are specified in the precise language of higher-order logic and every step of
our reasoning is mechanically checked. While the results are not new, we use them
to showcase the level of precision and guarantee achievable by formalizing work in
a proof assistant. Our formalization can also serve as starting point for similar logics
or proof systems.

Our completeness proof does not follow the one by Fagin et al. [14] to the letter but
is inspired by Fitting’s [15] consistency properties as formalized by Berghofer [5].
We have adapted them from first-order logic to epistemic logic.

3.1 Syntax and Semantics

The formal languageL for epistemic logic is a propositional language extended with
modal operators 1, . . . , = for expressing knowledge of agents, for example the
formula

 1i ∧ 2 1i ∧ ¬ 1 2 1i

states that: (i) agent 1 knows i, (ii) agent 2 knows that agent 1 knows i, but (iii)
agent 1 does not know that agent 2 knows (i).

The language is deeply embedded as a datatype in Isabelle/HOL:

datatype ′i fm
= FF (⊥)
| Pro id
| Dis 〈 ′i fm 〉 〈 ′i fm 〉 (infixr ∨ 30)
| Con 〈 ′i fm 〉 〈 ′i fm 〉 (infixr ∧ 35)
| Imp 〈 ′i fm 〉 〈 ′i fm 〉 (infixr −→ 25)
| K ′i 〈 ′i fm 〉

Interactive Theorem Proving for Logic and Information 9

We define a constructor for each primitive of our syntax, e.g. FF for falsity with the
alternative notation ⊥. Similarly, we give infix syntax for the binary connectives,
which all associate to the right and are given suitable precedences.

The type id is an abbreviation for strings of characters, used as labels for the
propositions. We fix this instead of using a type variable in order to ease notation
later.

The type variable ′8 is an arbitrary type for agents. In our informal example, we
used natural numbers, but we do not commit ourselves to any specific type. Our
soundness proof holds for any type while the completeness proof holds for any
countable type ′8. We need the agent labels ′8 to be countable, such that the language
itself is countable. Countability of the syntax is a standard prerequisite for our way
of proving completeness.

We introduce negation into the syntax as an abbreviation:
abbreviation Neg (¬ - [40] 40) where
〈Neg p ≡ p −→ ⊥ 〉

The semantics of epistemic logic formulas is based on a model of possible worlds as
formalized by Kripke structures:

datatype (′i, ′s) kripke = Kripke (c: 〈 ′s⇒ id⇒ bool 〉) (K: 〈 ′i⇒ ′s⇒ ′s set 〉)

There are two components: an interpretation c that assigns truth values to proposi-
tions for each state (possible world), and a relationK that, when viewed as a function,
takes an agent and a state and returns a set of states. This set is to be understood as
the states the agent considers possible given the information available in the input
state. We should mention the type variables (′8, ′B). The type ′8 is again an arbitrary
type for agents while ′B is the type of states. Thus, the formalization is generic over
the type of agents and possible worlds.

The double turnstile, ", B |= i, denotes the semantics of a formula i ∈ L under
a Kripke structure " and state B. We formalize it as the following function:

primrec semantics :: 〈 (′i, ′s) kripke⇒ ′s⇒ ′i fm⇒ bool 〉
(-, - |= - [50,50] 50) where
〈 (-, - |= ⊥) = False 〉
| 〈 (M, s |= Pro i) = c M s i 〉
| 〈 (M, s |= (p ∨ q)) = ((M, s |= p) ∨ (M, s |= q)) 〉
| 〈 (M, s |= (p ∧ q)) = ((M, s |= p) ∧ (M, s |= q)) 〉
| 〈 (M, s |= (p −→ q)) = ((M, s |= p) −→ (M, s |= q)) 〉
| 〈 (M, s |= K i p) = (∀ t ∈ K M i s. M, t |= p) 〉

No combination of model and state satisfies ⊥. The logical operators are defined by
recursively obtaining the semantics of each subformula and combining the Boolean
values through the built-in operators in Isabelle/HOL. The case for a proposition 8
looks up and returns the truth value of B and 8 in c " (the latter gives the c component
of the Kripke structure "). Lastly, we have the case for a modal operator 8 ? which
requires the semantics of ? to be true in every state agent 8 considers possible (from
the current state).

With the semantics in place, we can prove various properties of themodal operator
 8 , say, (see the formalization for the proof):

10 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

? is a propositional tautology
A1 ` ?

A2 ` 8 ? ∧ 8 (? −→ @) −→ 8 @

` ? ` ? −→ @
R1 ` @

` ?
R2 ` 8 ?

Fig. 1 Our axiomatic system for epistemic logic.

theorem distribution: 〈M, s |= (K i p ∧ K i (p −→ q) −→ K i q) 〉

The above states that the operator 8 distributes over implication.

3.2 Axiomatic System

The distribution theorem can be recognized in the very compact axiomatic system
 = (cf. Fig. 1). We adopt the usual syntax that the provability of a formula i ∈ L is
denoted by the turnstile symbol: ` i. The system is inductively defined as follows:

inductive SystemK :: 〈 ′i fm⇒ bool 〉 (` - [50] 50) where
A1: 〈 tautology p =⇒ ` p 〉
| A2: 〈 ` (K i p ∧ K i (p −→ q) −→ K i q) 〉
| R1: 〈 ` p =⇒ ` (p −→ q) =⇒ ` q 〉
| R2: 〈 ` p =⇒ ` K i p 〉

�1 states that any classical propositional tautology is provable, �2 is similar to
the distribution theorem, '1 is simply modus ponens and '2 states that agents also
know the provable formulas. The definition tautology in �1 relies on a semantics that
treats modal formulas 8i as if they were propositional symbols. This is the semantic
equivalent of allowing all substitution instances of propositional tautologies, but is
simpler to formalize.

3.3 Soundness

For the axiomatic system to be sound, every formula in L provable in system =
must be valid with respect to the semantics:

∀i ∈ L. ` i −→ (∀", B. ", B |= i)

That is, no combination of proof rules leads to a formula that is not valid. It does
not follow that all valid formulas are provable, however, which is why we also need
completeness.

Interactive Theorem Proving for Logic and Information 11

Our formalized proof of soundness requires extra work for the rule �1. The
following theorem states soundness for this rule:

theorem tautology: 〈 tautology p =⇒ M, s |= p 〉

Note that the quantification ? ∈ L and ∀" B is implicit in Isabelle/HOL. See the
formalization for the proof.

Proving soundness for system = is now straightforward. The following theorem
captures the property:

theorem soundness: 〈 ` p =⇒ M, s |= p 〉
by (induct p arbitrary: s rule: SystemK.induct) (simp-all add: tautology)

The proof strategy is to apply induction over the rules of the system. Once we supply
the tautology theorem, the simplification proof method in Isabelle/HOL discharges
all subgoals.

3.4 Completeness

We now want to demonstrate that system = is not only sound, but also complete,
namely that every valid formula in L is provable:

∀i ∈ L. (∀", B. ", B |= i) −→ ` i

The formalized proof follows Fagin et al. [14] and builds on maximal consistent
sets of formulas. A formula i is =-consistent if its negation is not provable: 0 ¬i. A
finite set of formulas i1, . . . , i= is =-consistent if we cannot prove that they imply
a contradiction: 0 i1 −→ . . . −→ i= −→ ⊥. Finally, an infinite set of formulas is
 =-consistent if all its finite subsets are.

Instead of working directly with this definition, we start from Fitting’s consis-
tency properties [5], which define the class � of consistent sets (directly from the
connectives of the formula, instead of referencing the axiom system:

definition consistency :: 〈 ′i fm set set⇒ bool 〉 where
〈 consistency C ≡ ∀S ∈ C.
(∀p. ¬ (Pro p ∈ S ∧ (¬ Pro p) ∈ S)) ∧
⊥ ∉ S ∧
(∀Z. (¬ (¬ Z)) ∈ S −→ S ∪ {Z } ∈ C) ∧
(∀A B. (A ∧ B) ∈ S −→ S ∪ {A, B} ∈ C) ∧
(∀A B. (¬ (A ∨ B)) ∈ S −→ S ∪ {¬ A, ¬ B} ∈ C) ∧
(∀A B. (A ∨ B) ∈ S −→ S ∪ {A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. (¬ (A ∧ B)) ∈ S −→ S ∪ {¬ A} ∈ C ∨ S ∪ {¬ B} ∈ C) ∧
(∀A B. (A −→ B) ∈ S −→ S ∪ {¬ A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. (¬ (A −→ B)) ∈ S −→ S ∪ {A, ¬ B} ∈ C) ∧
(∀A. tautology A −→ S ∪ {A} ∈ C) ∧
(∀A i. ¬ (K i A ∈ S ∧ (¬ K i A) ∈ S)) 〉

All but the last two conditions are standard and ensure downwards saturation [66]
of each set: the satisfiability of any member is guaranteed by conditions on its

12 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

subformulas, and consistency is ensured at the bottom. The penultimate line ensures
that the consistent sets contain all tautologies. This is a technical trick that makes
them easier to work with: since any tautology cannot break consistency, we might
as well include them. Similarly, the last condition ensures that no agent both knows
and does not know the same formula �.

We connect the definition of consistency to provability in system = through the
following theorem:

theorem K-consistency: 〈 consistency {set G | G. ¬ ` imply G ⊥} 〉

The completeness proof follows the usual recipe: (i) assume a valid formula i has
no derivation (ii) then its negation is =-consistent and (iii) we can extend the set
{¬i} in a standard way (due to Lindenbaum [67]) to a maximally consistent set [14]
which (iv) has a model. This contradicts the validity assumption. The completeness
theorem is:

theorem completeness:
assumes 〈 ∀ (M :: (′i :: countable, ′i fm set) kripke) s. M, s |= p 〉
shows 〈 ` p 〉

For technical reasons we have to require validity in a specific universe, namely in
which the possible worlds are sets of formulas, but this is implied by the usual
assumption of validity in all universes. Given the provability of ?, that is ` ?, the
soundness results implies that ? is valid in all universes.

4 Public Announcement Logic

We now move beyond static knowledge of agents and consider information updates
as well. The formal language L! for public announcement logic is an extension of
that of epistemic logic with the operator [A]! ? for any formulas A and ? meaning “?
is true after the public announcement of A”. For example, [1d ∧! 2f]! g means
that g is true after the public announcement that agent 1 knows d and agent 2 knows
f. In the formalization [17], we again deeply embed the language as a datatype in
Isabelle/HOL:

datatype ′i pfm
= FF (⊥!)
| Pro ′ id (Pro!)
| Dis 〈 ′i pfm 〉 〈 ′i pfm 〉 (infixr ∨! 30)
| Con 〈 ′i pfm 〉 〈 ′i pfm 〉 (infixr ∧! 35)
| Imp 〈 ′i pfm 〉 〈 ′i pfm 〉 (infixr −→! 25)
| K ′ ′i 〈 ′i pfm 〉 (K!)
| Ann 〈 ′i pfm 〉 〈 ′i pfm 〉 ([-]! - [50, 50] 50)

Wehave added primes to some constructors to disambiguate them from the epistemic
logic. We say that a formula is static if it does not contain any announcement
operators.

Interactive Theorem Proving for Logic and Information 13

? is a propositional tautology
PA1 `! ?

PA2 `! ! 8 ? ∧! ! 8 (? −→! @) −→! ! 8 @

`! ? `! ? −→! @PR1 `! @
`! ?PR2 `! ! 8 ?

`! ?PR3 `! [A]! ?

PFF `! ([A]! ⊥! ←→! (A −→! ⊥!))

PPro `! [A]! G←→! (A ←→! G)

PDis `! ([A]! (? ∨! @) ←→! [A]! ? ∨! [A]! @)

PCon `! ([A]! (? ∧! @) ←→! [A]! ? ∧! [A]! @)

PImp
`! ([A]! (? −→! @) ←→! [A]! ? −→! [A]! @)

PK `! (([A]! ! 8 ?) ←→! A −→! ! 8 ([A]! ?)))

Fig. 2 Our axiomatic system for public announcement logic.

The bi-implication operator is central to our development and we introduce it as
an abbreviation:

abbreviation PIff :: 〈 ′i pfm⇒ ′i pfm⇒ ′i pfm 〉 (infixr←→! 25) where
〈 p←→! q ≡ (p −→! q) ∧! (q −→! p) 〉

The semantics depend on the notion of the restriction of a model to the worlds
in which a specific formula is true. We formalize the semantics as the function
psemantics and restriction as the function restrict. They are defined by mutual
recursion:

fun
psemantics :: 〈 (′i, ′w) kripke⇒ ′w⇒ ′i pfm⇒ bool 〉 (-, - |=! - [50, 50] 50) and
restrict :: 〈 (′i, ′w) kripke⇒ ′i pfm⇒ (′i, ′w) kripke 〉 where
〈 (M, w |=! ⊥!) = False 〉
| 〈 (M, w |=! Pro! x) = c M w x 〉
| 〈 (M, w |=! (p ∨! q)) = ((M, w |=! p) ∨ (M, w |=! q)) 〉
| 〈 (M, w |=! (p ∧! q)) = ((M, w |=! p) ∧ (M, w |=! q)) 〉
| 〈 (M, w |=! (p −→! q)) = ((M, w |=! p) −→ (M, w |=! q)) 〉
| 〈 (M, w |=! K! i p) = (∀ v ∈ K M i w. M, v |=! p) 〉
| 〈 (M, w |=! [r]! p) = ((M, w |=! r) −→ (restrict M r, w |=! p)) 〉
| 〈 restrict M p = Kripke (c M) (_i w. {v. v ∈ K M i w ∧ (M, v |=! p) }) 〉

As can be seen, the semantics for each formula is defined the same as for epistemic
logic, a semantics for [_]! is added, and restrict is defined.

14 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

We restrict the model, not by removing worlds but by removing every agent’s
accessibility to those worlds. The idea for that semantics is that for [A]! ? to be true
in model " and world F, either ? is falsified at " and F, a false announcement, or ?
is satisfied at F in the restricted world restrict " where only ?-worlds are accessible.

4.1 Axiomatic System

We adapt the syntax `! d for the provability of d in the following axiomatic system
inspired by the system described by Baltag and Renne [2]. It is defined inductively
(cf. Fig. 2):

inductive PA :: 〈 ′i pfm⇒ bool 〉 (`! - [50] 50) where
PA1: 〈 ptautology p =⇒ `! p 〉
| PA2: 〈 `! (K! i p ∧! K! i (p −→! q) −→! K! i q) 〉
| PR1: 〈 `! p =⇒ `! (p −→! q) =⇒ `! q 〉
| PR2: 〈 `! p =⇒ `! K! i p 〉
| PR3: 〈 `! p =⇒ `! [r]! p 〉
| PFF: 〈 `! ([r]! ⊥! ←→! (r −→! ⊥!)) 〉
| PPro: 〈 `! ([r]! Pro! x←→! (r −→! Pro! x)) 〉
| PDis: 〈 `! ([r]! (p ∨! q) ←→! [r]! p ∨! [r]! q) 〉
| PCon: 〈 `! ([r]! (p ∧! q) ←→! [r]! p ∧! [r]! q) 〉
| PImp: 〈 `! (([r]! (p −→! q)) ←→! ([r]! p −→! [r]! q)) 〉
| PK: 〈 `! (([r]! K! i p) ←→! (r −→! K! i ([r]! p))) 〉

Rules PA1, PA2, PR1 and PR2 are analogous to the rules A1, A2, R1 and R2
of epistemic logic (ptautology is implemented in the same style as tautology). In
addition the system has six axioms – one for each combination of [_]! with ⊥! ,
atomic formulas, ∨! , ∧! , −→! and !. The axioms for the binary connectives
simply distribute [_]! over each connective, while the ones for ⊥! and atomic
formulas rephrase [_]! as an implication. The axiom for [_]! and knowledge says
that “8 knows ? after an announcement A if and only if the announcement A , whenever
truthful, is known by 8 to make ? true.” [2].

4.2 Reducing to Epistemic Logic

We implement the reduction from public announcement logic to epistemic logic
operationally, as guided by the reduction axioms. We do so in two steps. The first
operation, reduce ′ r p, translates the formula [A]!? into an equivalent formula in
epistemic logic when ? itself is static:

primrec reduce ′ :: 〈 ′i pfm⇒ ′i pfm⇒ ′i pfm 〉 where
〈 reduce ′ r ⊥! = (r −→! ⊥!) 〉
| 〈 reduce ′ r (Pro! x) = (r −→! Pro! x) 〉
| 〈 reduce ′ r (p ∨! q) = (reduce ′ r p ∨! reduce ′ r q) 〉
| 〈 reduce ′ r (p ∧! q) = (reduce ′ r p ∧! reduce ′ r q) 〉

Interactive Theorem Proving for Logic and Information 15

| 〈 reduce ′ r (p −→! q) = (reduce ′ r p −→! reduce ′ r q) 〉
| 〈 reduce ′ r (K! i p) = (r −→! K! i (reduce ′ r p)) 〉
| 〈 reduce ′ r ([p]! q) = undefined 〉

The second operation, reduce p, reduces the PAL-formula ? into epistemic logic by
recursion over the syntax:

primrec reduce :: 〈 ′i pfm⇒ ′i pfm 〉 where
〈 reduce ⊥! = ⊥! 〉

| 〈 reduce (Pro! x) = Pro! x 〉
| 〈 reduce (p ∨! q) = (reduce p ∨! reduce q) 〉
| 〈 reduce (p ∧! q) = (reduce p ∧! reduce q) 〉
| 〈 reduce (p −→! q) = (reduce p −→! reduce q) 〉
| 〈 reduce (K! i p) = K! i (reduce p) 〉
| 〈 reduce ([r]! p) = reduce ′ (reduce r) (reduce p) 〉

We stay within the pfm type rather than fm, even though we do not use the extra
constructors, since our axiomatic system is defined over the pfm type.

To prove completeness, we must prove that the reduction preserves the semantics.
We do so by first considering the basic reduce ′ operation with a static target:

lemma reduce ′-semantics:
assumes 〈 static q 〉
shows 〈 ((M, w |=! [p]! (q))) = (M, w |=! reduce ′ p q) 〉
using assms by (induct q arbitrary: w) auto

With this lemma we can prove that reduce preserves the semantics:

lemma reduce-semantics: 〈 (M, w |=! p) = (M, w |=! reduce p) 〉

We refer to the formalization for the proof by structural induction.

4.3 Soundness

We prove the proof system sound similar to how we did for epistemic logic:

theorem soundness:
assumes 〈 `! p 〉
shows 〈M, w |=! p 〉
using assms by (induct p arbitrary: M w rule: PA.induct) (simp-all add: ptautology)

The lemma ptautology is analogous to the theorem tautology from the formalization
of epistemic logic.

4.4 Completeness

We prove the proof system complete. Recall that the static formulas are those in
which [_]! does not occur. The proof system is complete for such formulas:

16 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

theorem static-completeness:
assumes 〈 static p 〉 〈 ∀ (M :: (′i :: countable, ′i fm set) kripke) w. M, w |=! p 〉
shows 〈 `! p 〉

The reason is that

• `! contains all the axioms of `,
• ` is complete, and
• a static formula is straightforwardly a formula of epistemic logic.

With this theorem in place we can prove completeness for all formulas:

theorem completeness:
assumes 〈 ∀ (M :: (′i :: countable, ′i fm set) kripke) w. M, w |=! p 〉
shows 〈 `! p 〉

We do it by proving that if ? is true in all models then so is the formula reduce ? since
the reduction is sound. The formula reduce ? does not contain [_]! and is therefore
static. By static completeness, reduce ? is provable, `! reduce ?. Additionally
we prove from the reduction axioms PDis, PCon, PImp, PK and PFF, PPro that
`! ?←→! reduce ?, and thus that ? is provable, `! ?.

5 Related Work

For a good overview of the topic of formalizing logical meta-theory we recommend
a recent paper by Blanchette [6].

Several frameworks have been developed for proving logical calculi complete.
These frameworks allow the reuse of syntax, semantics and proof ideas to formalize
logical systems and their soundness and completeness as well as other results:

• Michaelis and Nipkow formalize a bouquet of different proof systems all based
on the same syntax for propositional logic [38, 39]. The framework formalizes
sequent calculus, natural deduction, Hilbert systems and resolution.

• The framework byBlanchette, Popescu andTraytel allows proofs of soundness and
completeness for proof systems for different logics [7, 8, 9, 10]. This is possible
because their framework is parameterized on the specific syntax and semantics.
In a related paper’s supplementary material, Blanchette and Popescu show that a
formalized tableau for many-sorted first-order logic in negation normal form with
equality fits in the framework. This supplementary material is unfortunately not
up to date with recent Isabelle versions.

• A third development is frameworks for proving completeness of saturation
provers. Schlichtkrull et al. [59, 62, 63] formalize the completeness of resolution
in a generic way that allows for different provers to be built from the development,
which is based on the work by Bachmair and Ganzinger [1]. The development
is used to show the soundness and completeness of a particular prover using
binary resolution and with a specific strategy for removing redundant clauses, but

Interactive Theorem Proving for Logic and Information 17

other provers would also fit [60, 61]. Tourret and Blanchette reformalize this re-
sult [68, 69] based on the more general theory of saturation provers byWaldmann
et al. [72].

Outside of the mentioned frameworks, a number of self-contained formalizations
of sequent calculi in proof assistants appear in the literature:

• Ridge and Margetson [36, 56, 57] formalized in Isabelle/HOL soundness and
completeness for a sequent calculus for formulas in negation normal form and
with a term language of only variables.

• Braselmann and Koepke [11, 12] formalized in Mizar soundness and complete-
ness of a sequent calculus.

• Schlöder and Koepke [65] formalized its completeness considering also uncount-
able languages.

• A more exotic result is the formalization by Ilik [27] in Coq of completeness
of a sequent calculus with respect to a Kripke-semantics for classical first-order
logic [28].

The following formalizations appear if we broaden the scope to include intuition-
istic logic:

• Persson [49] formalized in ALF the soundness of a sequent calculus for intuition-
istic first-order logic.

• Herbelin, Kim and Lee [26] formalized in Coq the completeness of a sequent
calculus for intuitionistic first-order logic restricted to formulas with implication
and universal quantification as the only logical symbols. Their formalization
applied a Kripke-style semantics.

If we broaden the scope further to look beyond sequent calculi, we can mention
several other formalizations:

• Jensen, Larsen, Schlichtkrull and Villadsen [31, 64] formalized in Isabelle/HOL
an axiomatic system for classical logic.

• Raffali [52] formalized in Phox natural deduction for classical logic.
• Persson [49] formalized in ALF natural deduction for intuitionistic logic.
• Peltier [48] formalized in Isabelle/HOL superposition.
• Paulson [45, 46, 47] formalized in Isabelle/HOL Gödel’s Incompleteness Theo-

rems, but this does not include a completeness proof.
• Popescu and Traytel present a formalization of Gödel’s Incompleteness Theo-

rems [51].
• Jensen, Hindriks and Villadsen [29, 30] also present an approach to formalize in

Isabelle/HOL a verification framework for agent programs.

Let us now turn to formalizations of modal logic. These logics contain a single
necessity operator � rather than one 8 for each agent 8 in a set of agents:

• Bentzen [3] formalized S5 in Lean.
• Neeley [41] formalized modal systems K, T, S4 and S5 in Lean.

18 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

In the context of epistemic logic we found two formalizations in Lean of the
S5 system for epistemic logic and PAL. We instead opted to formalize =. The S5
system extends = in that it has a number of additional axioms, and it is sound
and complete when considering Kripke models in which the accessibility relation
is an equivalence relation rather than any relation. Additionally there is work on a
formalization of intuitionistic epistemic logic in Coq.

• Neeley [41, 42] formalized S5 for epistemic logic and public announcement
logic in Lean. Her proof system includes an axiom for the composition of public
announcement operators, instead of our axiom for distribution over implication
(PImp) and our announcement necessitation rule (PR3).

• Li [34] formalized S5 for epistemic logic and public announcement logic in Lean
but only formalized the logical equivalence of the reduction axioms, not the
completeness of a proof system that includes them.

• Hagemeier [23] is formalizing intuitonistic epistemic logic in Coq. It is presented
in a number of slides, memos and draft memos. We look forward to the finished
presentation of the work.

• The Twelf distribution [50] includes a formalization in the LF logical frame-
work [25] of a sequent calculus and natural deduction proof system for classi-
cal S5.

The Twelf system [50] is worth mentioning by itself. It provides a uniform meta-
language for specifying logics and proof systems and proving meta-theoretical prop-
erties like cut-elimination. However, we are not aware of any formalizations of
semantic completeness like we present here.

Other interesting proposals for epistemic logic appear in the literature:

• Kądziołka [33] formalized a solution to a puzzle and introduces a logic tailored
to the problem that turns out to be very similar to the possible worlds model of
epistemic logic.

• Zuojun, Ågotnes and Zhang [74] presented a variant of epistemic logic that adds
the notion of secret knowledge as a first-class citizen. The notion of secrets can
be defined in terms of the knowledge operator, but a new modality for secrets is
introduced. The authors argue that the main principles can be studied this way,
for instance when considering a language with an operator for secrets and without
the usual knowledge operator.

Our formalizations rely on deep embedding of formulas. In contrast, using a
shallow embedding of the logic means that we write formulas directly in the proof
assistant’s logic. The advantages of a shallow embedding include not having to
formalize semantics, and usually the automation has an easier time proving theorems.
The advantage of a deep embedding is that we can obtain formalized soundness and
completeness theorems, cf. Sect. 2.

• Benzmüller and Paulson [4] formalized in Isabelle/HOL a shallow encoding of
modal logic.Gleißner, Steen andBenzmüller [21, 22] showed effective automation
for a wide range of modal logics due to the use of a shallow embedding.

Interactive Theorem Proving for Logic and Information 19

• Reiche and Benzmüller [53] formalized in Isabelle/HOL a shallow embedding of
PAL.

Giselle Reis [54] sees formalizing logics in proof assistants as one of several
ways to facilitate meta-theory. Concretely, she looks at three methods for facilitating
meta-theory: Firstly, she considers using linear logic and subexponential linear logic
as a framework for meta-theoretical reasoning. The idea is that certain logics can be
expressed in the meta-logic of linear logic and subexponential linear logic. These
logics allow some meta-theoretical properties to be proved automatically. Secondly,
she considers the use of proof assistants to prove meta-theoretical properties – this
is similar to our work here. She notes:

One of the issues when developing proofs of meta-properties by hand is the sheer complexity
and number of cases. By implementing these proofs in proof assistants, the computer will
not let us skip cases or overlook details.

We share this experience. Reis experienced that using Coq to formalize logics re-
quired her to write specific tactics to do parts of the proofs automatically. In our
Isabelle formalization we instead relied on the Isar proof language and the built-in
tactics of Isabelle. Reis also explains that working in proof assistants can be com-
bined with the approach of using linear logic as a framework: the idea is that linear
logic can be formalized in Coq and then one can use this formalized linear logic to
prove properties of other logics. Giselle Reis also notes that formalizations of logics
require a significant amount of work:

The fact that each of these works is a publication (or collection of publications) itself is
evidence that formalizing meta-theory is far from trivial work and cannot be done as a matter
of fact.

We agree with this perspective and see the building of frameworks in proof assistants
and formalizing more logics within them as a way to improve this situation. Addi-
tionally, improving the proof assistants themselves will help this agenda. Lastly, Reis
considers a solution where the computer aids only in parts of the meta-reasoning,
which leaves a part to be done by hand. In particular she considers two systems
that can be used for this: GAPT [13] (General Architecture for Proof Theory) is a
proof theory framework containing common components of proof theory such as
data structures, algorithms, parsers and automated deduction. GAPT interfaces to a
number of automated reasoning tools and its focus is on transformation and further
processing of proofs. Sequoia [55] is a tool for helping with the meta-theory of
sequent calculi and which can import and export LaTeX code. Reis concludes that
each method has its strengths and weaknesses and also that much work can be done
to make them better and easier to use.

6 Concluding Remarks

For artificial intelligence (AI) in general and for natural language processing (NLP)
in particular, the interrelationship between logic and information is pivotal [37]:

20 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

There is a bi-directional relation between logic and information.On the one hand, information
underlies the intuitive understanding of standard logical notions such as inference (which
may be thought of as the process that turns implicit information into explicit information)
and computation. On the other hand, logic provides a formal framework for the study of
information itself.

We have considered fundamental axiomatic systems for both epistemic logic (EL)
and public announcement logic (PAL). Instead of presenting pen-and-paper proofs of
soundness and completeness we have used automated reasoning, the Isabelle proof
assistant, as a powerful interactive tool. We share the vision of Rob Nederpelt and
Herman Geuvers [40, p. 385]:

In the future, we expect an enormous increase in the use of proof assistants. Our vision
is that formalising a mathematical proof may become as easy as writing mathematics in a
mathematical text editor such as LATEX (Lamport, 1985) and that a mathematical proof will
only be accepted for publication when it has been formally checked.

But, in fact, we do not need to choose between pen-and-paper and mechanically
checked proofs, as they can successfully coexist.

Acknowledgements We thank Frederik Krogsdal Jacobsen for comments on drafts.

References

1. Bachmair, L., Ganzinger, H., McAllester, D.A., Lynch, C.: Resolution theorem proving. In:
J.A. Robinson, A. Voronkov (eds.) Handbook of Automated Reasoning (in 2 volumes), pp.
19–99. Elsevier and MIT Press (2001)

2. Baltag, A., Renne, B.: Dynamic Epistemic Logic. In: E.N. Zalta (ed.) The Stanford Ency-
clopedia of Philosophy, Winter 2016 edn. Metaphysics Research Lab, Stanford University
(2016)

3. Bentzen, B.: A Henkin-style completeness proof for the modal logic S5 (2019). URL http:
//arxiv.org/abs/1910.01697. CoRR,

4. Benzmüller, C., Paulson, L.C.: Quantified multimodal logics in simple type theory. Logica
Universalis 7(1), 7–20 (2013). DOI 10.1007/s11787-012-0052-y. URL https://doi.org/
10.1007/s11787-012-0052-y

5. Berghofer, S.: First-Order Logic According to Fitting. Archive of Formal Proofs (2007).
http://isa-afp.org/entries/FOL-Fitting.html

6. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic provers in
Isabelle/HOL (invited talk). In: A. Mahboubi, M.O. Myreen (eds.) Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cas-
cais, Portugal, January 14-15, 2019, pp. 1–13. ACM (2019)

7. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. Archive of Formal Proofs
(2014). https://isa-afp.org/entries/Abstract_Completeness.html, Formal proof
development

8. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness - A coinductive
pearl. In: S. Demri, D. Kapur, C. Weidenbach (eds.) Automated Reasoning - 7th International
Joint Conference, ĲCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 19-22, 2014. Proceedings, Lecture Notes in Computer Science, vol.
8562, pp. 46–60. Springer (2014)

http://arxiv.org/abs/1910.01697
http://arxiv.org/abs/1910.01697
https://doi.org/10.1007/s11787-012-0052-y
https://doi.org/10.1007/s11787-012-0052-y
http://isa-afp.org/entries/FOL-Fitting.html
https://isa-afp.org/entries/Abstract_Completeness.html

Interactive Theorem Proving for Logic and Information 21

9. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract soundness. Archive of Formal Proofs
(2017). https://isa-afp.org/entries/Abstract_Soundness.html, Formal proof de-
velopment

10. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinductive
methods. J. Autom. Reason. 58(1), 149–179 (2017). DOI 10.1007/s10817-016-9391-3

11. Braselmann, P., Koepke, P.: Gödel’s completeness theorem. Formalized Mathematics 13(1),
49–53 (2005)

12. Braselmann, P., Koepke, P.: A sequent calculus for first-order logic. Formalized Mathematics
13(1), 33–39 (2005)

13. Ebner, G., Hetzl, S., Reis, G., Riener,M.,Wolfsteiner, S., Zivota, S.: System description: GAPT
2.0. In: N. Olivetti, A. Tiwari (eds.) Automated Reasoning - 8th International Joint Conference,
ĲCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings, Lecture Notes in Com-
puter Science, vol. 9706, pp. 293–301. Springer (2016). DOI 10.1007/978-3-319-40229-1_20

14. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about Knowledge. MIT Press
(1995)

15. Fitting, M.: First-Order Logic and Automated Theorem Proving, Second Edition. Graduate
Texts in Computer Science. Springer (1996)

16. From, A.H.: Epistemic logic. Archive of Formal Proofs (2018). https://isa-afp.org/
entries/Epistemic_Logic.html, Formal proof development

17. From, A.H.: Public announcement logic. Archive of Formal Proofs (2021). https:
//isa-afp.org/entries/Public_Announcement_Logic.html, Formal proof develop-
ment

18. From, A.H., Eschen, A.M., Villadsen, J.: Formalizing axiomatic systems for propositional
logic in Isabelle/HOL. In: F. Kamareddine, C. Sacerdoti Coen (eds.) Intelligent Computer
Mathematics - 14th International Conference, CICM 2021, Timisoara, Romania, July 26-31,
2021, Proceedings, Lecture Notes in Artificial Intelligence, vol. 12833, pp. 32–46. Springer
(2021)

19. From, A.H., Jensen, A.B., Villadsen, J.: Formalized soundness and completeness of epistemic
logic. In: LAMAS 2021 - 11th Workshop on Logical Aspects of Multi-Agent Systems (2021)

20. From, A.H., Lund, S.T., Villadsen, J.: A case study in computer-assisted meta-reasoning. In:
Special Session on Computational Linguistics, Information, Reasoning, and AI 2021 (Comp-
LingInfoReasAI’21), Lecture Notes in Networks and Systems, vol. 332, pp. 53–63. Springer
(2021). 18th International Conference Distributed Computing and Artificial Intelligence

21. Gleißner, T., Steen, A.: The MET: the art of flexible reasoning with modalities. In:
C.Benzmüller, F. Ricca,X. Parent,D.Roman (eds.) Rules andReasoning - Second International
Joint Conference, RuleML+RR 2018, Luxembourg, September 18-21, 2018, Proceedings, Lec-
ture Notes in Computer Science, vol. 11092, pp. 274–284. Springer (2018). DOI 10.1007/
978-3-319-99906-7_19. URL https://doi.org/10.1007/978-3-319-99906-7_19

22. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In:
T. Eiter, D. Sands (eds.) LPAR-21, 21st International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017, EPiC Series
in Computing, vol. 46, pp. 14–30. EasyChair (2017). URL https://easychair.org/
publications/paper/6bjv

23. Hagemeier, C.: Formalizing intuitionistic epistemic logic in Coq (2021). URL https://www.
ps.uni-saarland.de/~hagemeier/bachelor.php. BSc thesis.

24. Hales, T.C., et al.: A formal proof of the Kepler conjecture. Forum of Mathematics, Pi 5, 1–29
(2017). DOI 10.1017/fmp.2017.1

25. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM 40(1), 143–184
(1993). DOI 10.1145/138027.138060

26. Herbelin, H., Kim, S.Y., Lee, G.: Formalizing the meta-theory of first-order predicate logic.
Journal of the Korean Mathematical Society 54(5), 1521–1536 (2017)

27. Ilik, D.: Constructive completeness proofs and delimited control. Ph.D. thesis, École Poly-
technique (2010). https://tel.archives-ouvertes.fr/tel-00529021/document

28. Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Annals of Pure and Applied
Logic 161(11), 1367–1378 (2010)

https://isa-afp.org/entries/Abstract_Soundness.html
https://isa-afp.org/entries/Epistemic_Logic.html
https://isa-afp.org/entries/Epistemic_Logic.html
https://isa-afp.org/entries/Public_Announcement_Logic.html
https://isa-afp.org/entries/Public_Announcement_Logic.html
https://doi.org/10.1007/978-3-319-99906-7_19
https://easychair.org/publications/paper/6bjv
https://easychair.org/publications/paper/6bjv
https://www.ps.uni-saarland.de/~hagemeier/bachelor.php
https://www.ps.uni-saarland.de/~hagemeier/bachelor.php
https://tel.archives-ouvertes.fr/tel-00529021/document

22 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

29. Jensen, A.B.: Towards Verifying GOAL Agents in Isabelle/HOL. In: ICAART 2021 – Pro-
ceedings of the 13th International Conference on Agents and Artificial Intelligence – Volume
1, pp. 345–352. SciTePress (2021)

30. Jensen, A.B., Hindriks, K.V., Villadsen, J.: On Using Theorem Proving for Cognitive Agent-
Oriented Programming. In: ICAART 2021 – Proceedings of the 13th International Conference
on Agents and Artificial Intelligence – Volume 1, pp. 446–453. SciTePress (2021)

31. Jensen, A.B., Larsen, J.B., Schlichtkrull, A., Villadsen, J.: Programming and verifying a
declarative first-order prover in Isabelle/HOL. AI Communications 31(3), 281–299 (2018)

32. Krauss, A.: Defining Recursive Functions in Isabelle/HOL (2021). https://isabelle.in.
tum.de/doc/functions.pdf

33. Kądziołka, J.: Solution to the xkcd blue eyes puzzle. Archive of Formal Proofs (2021).
https://isa-afp.org/entries/Blue_Eyes.html, Formal proof development

34. Li, J.: Formalization of PAL·S5 in proof assistant. CoRR (2020). URL https://arxiv.
org/abs/2012.09388

35. Manna, Z., Pnueli, A.: Formalization of properties of functional programs. J. ACM 17(3),
555–569 (1970). DOI 10.1145/321592.321606

36. Margetson, J., Ridge, T.: Completeness theorem. Archive of Formal Proofs (2004). http:
//isa-afp.org/entries/Completeness.html, Formal proof development

37. Martinez, M., Sequoiah-Grayson, S.: Logic and Information. In: E.N. Zalta (ed.) The Stanford
Encyclopedia of Philosophy, Spring 2019 edn. Metaphysics Research Lab, Stanford University
(2019)

38. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In: A. Abel, F.N.
Forsberg, A. Kaposi (eds.) 23rd International Conference on Types for Proofs and Programs,
TYPES 2017,May 29-June 1, 2017, Budapest, Hungary,LIPIcs, vol. 104, pp. 5:1–5:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2017)

39. Michaelis, J., Nipkow, T.: Propositional proof systems. Archive of Formal Proofs (2017).
http://isa-afp.org/entries/Propositional_Proof_Systems.html, Formal proof
development

40. Nederpelt, R., Geuvers, H.: Type Theory and Formal Proof: An Introduction. Cambridge
University Press (2014). DOI 10.1017/CBO9781139567725

41. Neeley, P.: A formalization of dynamic epistemic logic. Master’s thesis, Carnegie Mellon
University (2021). URL https://paulaneeley.com/wp-content/uploads/2021/05/
draft1.pdf

42. Neeley, P.: Results in modal and dynamic epistemic logic: A formalization in Lean. Slides
Lean Together Workshop (2021). URL https://leanprover-community.github.io/
lt2021/slides/paula-LeanTogether2021.pdf

43. Nipkow, T.: Programming and Proving in Isabelle/HOL (2021). https://isabelle.in.
tum.de/doc/prog-prove.pdf

44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

45. Paulson, L.C.: Gödel’s incompleteness theorems. Archive of Formal Proofs (2013). http:
//isa-afp.org/entries/Incompleteness.html, Formal proof development

46. Paulson, L.C.: A machine-assisted proof of Gödel’s incompleteness theorems for the
theory of hereditarily finite sets. Rev. Symb. Log. 7(3), 484–498 (2014). DOI 10.1017/
S1755020314000112

47. Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nominal
Isabelle. J. Autom. Reason. 55(1), 1–37 (2015)

48. Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs (2016). http:
//isa-afp.org/entries/SuperCalc.shtml, Formal proof development

49. Persson, H.: Constructive completeness of intuitionistic predicate logic. Ph.D. thesis, Chalmers
University of Technology (1996). http://web.archive.org/web/20001011101511/
http://www.cs.chalmers.se/~henrikp/Lic/

50. Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for deduc-
tive systems. In: H. Ganzinger (ed.) Automated Deduction - CADE-16, 16th International Con-
ference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings, Lecture Notes in
Computer Science, vol. 1632, pp. 202–206. Springer (1999). DOI 10.1007/3-540-48660-7_14

https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf
https://isa-afp.org/entries/Blue_Eyes.html
https://arxiv.org/abs/2012.09388
https://arxiv.org/abs/2012.09388
http://isa-afp.org/entries/Completeness.html
http://isa-afp.org/entries/Completeness.html
http://isa-afp.org/entries/Propositional_Proof_Systems.html
https://paulaneeley.com/wp-content/uploads/2021/05/draft1.pdf
https://paulaneeley.com/wp-content/uploads/2021/05/draft1.pdf
https://leanprover-community.github.io/lt2021/slides/paula-LeanTogether2021.pdf
https://leanprover-community.github.io/lt2021/slides/paula-LeanTogether2021.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf
http://isa-afp.org/entries/Incompleteness.html
http://isa-afp.org/entries/Incompleteness.html
http://isa-afp.org/entries/SuperCalc.shtml
http://isa-afp.org/entries/SuperCalc.shtml
http://web.archive.org/web/20001011101511/http://www.cs.chalmers.se/~henrikp/Lic/
http://web.archive.org/web/20001011101511/http://www.cs.chalmers.se/~henrikp/Lic/

Interactive Theorem Proving for Logic and Information 23

51. Popescu, A., Traytel, D.: A formally verified abstract account of Gödel’s incompleteness
theorems. In: P. Fontaine (ed.) Automated Deduction – CADE 27, pp. 442–461. Springer
International Publishing, Cham (2019)

52. Raffalli, C.: Krivine’s abstract completeness proof for classical predicate logic. https://
github.com/craff/phox/blob/master/examples/complete.phx (2005, possibly ear-
lier)

53. Reiche, S., Benzmüller, C.: Public announcement logic in HOL. In: M.A. Martins, I. Sedlár
(eds.) Dynamic Logic. New Trends and Applications - Third International Workshop,
DaLí 2020, Prague, Czech Republic, October 9-10, 2020, Revised Selected Papers, Lec-
ture Notes in Computer Science, vol. 12569, pp. 222–238. Springer (2020). DOI 10.1007/
978-3-030-65840-3_14. URL https://doi.org/10.1007/978-3-030-65840-3_14

54. Reis, G.: Facilitating meta-theory reasoning (invited paper). In: E. Pimentel, E. Tassi (eds.)
Proceedings Sixteenth Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice, Pittsburgh, USA, 16th July 2021, Electronic Proceedings in Theoretical Computer
Science, vol. 337, pp. 1–12. Open Publishing Association (2021). DOI 10.4204/EPTCS.337.1

55. Reis, G., Naeem, Z., Hashim, M.: Sequoia: A playground for logicians - (system descrip-
tion). In: N. Peltier, V. Sofronie-Stokkermans (eds.) Automated Reasoning - 10th Inter-
national Joint Conference, ĲCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part
II, Lecture Notes in Computer Science, vol. 12167, pp. 480–488. Springer (2020). DOI
10.1007/978-3-030-51054-1_32

56. Ridge, T.: A mechanically verified, efficient, sound and complete theorem prover for
first order logic. Archive of Formal Proofs (2004). http://isa-afp.org/entries/
Verified-Prover.shtml, Formal proof development

57. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for
first order logic. In: Theorem Proving in Higher Order Logics, 18th International Conference,
TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, pp. 294–309 (2005)

58. Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: QED at large: A survey of
engineering of formally verified software. Found. Trends Program. Lang. 5(2-3), 102–281
(2019). DOI 10.1561/2500000045

59. Schlichtkrull, A., Blanchette, J., Traytel, D., Waldmann, U.: Formalizing Bachmair and
Ganzinger’s ordered resolution prover. J. Autom. Reason. 64(7), 1169–1195 (2020)

60. Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified functional implementation
of Bachmair and Ganzinger’s ordered resolution prover. Archive of Formal Proofs
(2018). https://isa-afp.org/entries/Functional_Ordered_Resolution_Prover.
html, Formal proof development

61. Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based on ordered resolution.
In: A. Mahboubi, M.O. Myreen (eds.) Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,
2019, pp. 152–165. ACM (2019)

62. Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalization of Bachmair and
Ganzinger’s ordered resolution prover. Archive of Formal Proofs (2018). https://isa-afp.
org/entries/Ordered_Resolution_Prover.html, Formal proof development

63. Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bachmair and
Ganzinger’s ordered resolution prover. In: D. Galmiche, S. Schulz, R. Sebastiani (eds.) Au-
tomated Reasoning - 9th International Joint Conference, ĲCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Lecture
Notes in Computer Science, vol. 10900, pp. 89–107. Springer (2018)

64. Schlichtkrull, A., Villadsen, J., From, A.H.: Students’ Proof Assistant (SPA). In: P. Quaresma,
W. Neuper (eds.) Proceedings 7th International Workshop on Theorem proving components
for Educational Software (ThEdu), EPTCS, vol. 290, pp. 1–13 (2019)

65. Schlöder, J.J., Koepke, P.: The Gödel completeness theorem for uncountable languages. For-
malized Mathematics 20(3), 199–203 (2012)

66. Smullyan, R.M.: First-Order Logic. Springer-Verlag (1968)
67. Tarski, A.: Logic, Semantics,Metamathematics: Papers from 1923 to 1938. Hackett Publishing

(1983)

https://github.com/craff/phox/blob/master/examples/complete.phx
https://github.com/craff/phox/blob/master/examples/complete.phx
https://doi.org/10.1007/978-3-030-65840-3_14
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
https://isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html
https://isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html
https://isa-afp.org/entries/Ordered_Resolution_Prover.html
https://isa-afp.org/entries/Ordered_Resolution_Prover.html

24 Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull

68. Tourret, S.: A comprehensive framework for saturation theorem proving. Archive of Formal
Proofs (2020). https://isa-afp.org/entries/Saturation_Framework.html, Formal
proof development

69. Tourret, S., Blanchette, J.: A modular Isabelle framework for verifying saturation provers.
In: C. Hritcu, A. Popescu (eds.) CPP ’21: 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021, pp. 224–237.
ACM (2021)

70. Villadsen, J.: A micro prover for teaching automated reasoning. In: Seventh Workshop on
Practical Aspects of Automated Reasoning (PAAR 2020)—Presentation Only / Online Papers,
pp. 1–12 (2020). URL http://paar2020.gforge.inria.fr/

71. Villadsen, J.: Tautology checkers in Isabelle and Haskell. In: F. Calimeri, S. Perri, E. Zumpano
(eds.) Proceedings of the 35th Edition of the Italian Conference on Computational Logic
(CILC 2020), Rende, Italy, 13-15 October 2020, CEUR Workshop Proceedings, vol. 2710, pp.
327–341. CEUR-WS.org (2020). URL http://ceur-ws.org/Vol-2710/paper-21.pdf

72. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework for satu-
ration theorem proving. In: N. Peltier, V. Sofronie-Stokkermans (eds.) Automated Reasoning -
10th International Joint Conference, ĲCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 12166, pp. 316–334. Springer (2020)

73. Wenzel, M.: The Isabelle/Isar Reference Manual (2021). https://isabelle.in.tum.de/
doc/isar-ref.pdf

74. Xiong, Z., Ågotnes, T., Zhang, Y.: The logic of secrets. In: LAMAS 2020 - 10th Workshop on
Logical Aspects of Multi-Agent Systems (2020)

https://isa-afp.org/entries/Saturation_Framework.html
http://paar2020.gforge.inria.fr/
http://ceur-ws.org/Vol-2710/paper-21.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	Interactive Theorem Proving for Logic and Information
	Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull
	Introduction
	Isabelle/HOL and Deep Embeddings of Logics
	Formally Verified Functional Programming
	Termination
	A Prover for Propositional Logic

	Epistemic Logic
	Syntax and Semantics
	Axiomatic System
	Soundness
	Completeness

	Public Announcement Logic
	Axiomatic System
	Reducing to Epistemic Logic
	Soundness
	Completeness

	Related Work
	Concluding Remarks
	References
	References

