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ABSTRACT
Epistemic logic allows reasoning about the knowledge of agents,
and deductive proof systems enable this reasoning with a few ax-
ioms and inference rules. We strengthen the logical foundations of
such a system by formalizing it in the proof assistant Isabelle/HOL.
Our definitions are given in the precise language of higher-order
logic and every step of our soundness and completeness proofs is
mechanically checked.
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1 INTRODUCTION AND RELATEDWORK
Epistemic logic provides a foundation for reasoning about the
knowledge of agents, both factual (“I know the sky is blue”) and
higher-order (“I know that you know that I know the sky is blue”).
A deductive proof system enables this reasoning with just a few
axioms and inference rules.We formalize epistemic logic with count-
ably many agents in the proof assistant Isabelle/HOL [5, 11]. We
include soundness and completeness proofs for the axiom system
𝐾𝑛 based on the textbook Reasoning About Knowledge by Fagin,
Halpern, Moses and Vardi [3]. Our definitions and proofs are speci-
fied in the precise language of higher-order logic and every step of
our reasoning is mechanically checked. While the results are not
new, this level of precision and guarantee, due to formalization in
a proof assistant, is. Our formalization can also serve as starting
point for similar logics or proof systems.

Our completeness proof does not follow the one by Fagin et al. [3]
to the letter but is inspired by Fitting’s [4] consistency properties as
formalized by Berghofer [1]. We have adapted them from first-order
logic to epistemic logic.

It would be interesting to also formalize Dynamic Epistemic
Logic [2] which adds dynamics to epistemic logic by considering
changes to the knowledge of agents (epistemic events) brought
about by events such as public announcements. Some variants also
consider events which change the state of the world (ontic events).

In a formalization of a solution to a puzzle [10], the author in-
troduces a logic tailored to the problem that turns out to be very
similar to the possible worlds model of epistemic logic.

In [13] the authors present a variant of epistemic logic that adds
the notion of secret knowledge as a first-class citizen. The notion
of secrets can be defined in terms of the knowledge operator, but
a new modality for secrets is introduced. The authors argue that
the main principles can be studied this way, for instance when
considering a language with an operator for secrets and without
the usual knowledge operator. We think it would be interesting to
formalize their work in a proof assistant.

An approach using Isabelle/HOL to verify agent programs is
considered in [8, 9].

2 SYNTAX AND SEMANTICS
The formal language L for epistemic logic is a propositional lan-
guage extended with modal operators 𝐾1, . . . , 𝐾𝑛 for expressing
knowledge of agents, for example the formula

𝐾1𝜑 ∧ 𝐾2𝐾1𝜑 ∧ ¬𝐾1𝐾2𝐾1𝜑
states that: (1) agent 1 knows 𝜑 , (2) agent 2 knows that agent 1
knows 𝜑 , but (3) agent 1 does not know that agent 2 knows (1).

The language is deeply embedded as a datatype in Isabelle/HOL:
datatype ′i fm
= FF (⊥)
| Pro id
| Dis ⟨ ′i fm⟩ ⟨ ′i fm⟩ (infixr ∨ 30)
| Con ⟨ ′i fm⟩ ⟨ ′i fm⟩ (infixr ∧ 35)
| Imp ⟨ ′i fm⟩ ⟨ ′i fm⟩ (infixr −→ 25)
| K ′i ⟨ ′i fm⟩

The type variable ′𝑖 is an arbitrary type for agents. In our in-
formal example, we used natural numbers, but we do not commit
ourselves to any specific type. Our soundness proof holds for any
type while the completeness proof holds for any countable type ′𝑖 .

The semantics of epistemic logic formulas is based on a model
of possible worlds as formalized by Kripke structures:
datatype ( ′i, ′s) kripke
= Kripke (𝜋 : ⟨ ′s ⇒ id ⇒ bool⟩) (K : ⟨ ′i ⇒ ′s ⇒ ′s set⟩)
There are two components: an interpretation 𝜋 that assigns truth

values to propositions for each state (possible world), and a relation
K that given an agent and a state gives a set of states. This set is
to be understood as the states the agent considers possible given
the information available in the input state. We should mention
the type variables (′𝑖, ′𝑠). The type ′𝑖 is again an arbitrary type for
agents while ′𝑠 is the type of states. Not requiring a specific type
of possible worlds ensures that the formalization is generic.

The double turnstile, 𝑀, 𝑠 |= 𝜑 , denotes the semantics of a for-
mula 𝜑 ∈ L under a Kripke structure𝑀 and state 𝑠 . We formalize
it as the following function:
primrec semantics :: ⟨( ′i, ′s) kripke ⇒ ′s ⇒ ′i fm ⇒ bool⟩
(-, - |= - [50,50] 50) where
⟨(-, - |= ⊥) = False⟩
| ⟨(M, s |= Pro i) = 𝜋 M s i⟩
| ⟨(M, s |= (p ∨ q)) = ( (M, s |= p) ∨ (M, s |= q)) ⟩
| ⟨(M, s |= (p ∧ q)) = ( (M, s |= p) ∧ (M, s |= q)) ⟩
| ⟨(M, s |= (p −→ q)) = ( (M, s |= p) −→ (M, s |= q)) ⟩
| ⟨(M, s |= K i p) = (∀ t ∈ K M i s. M, t |= p) ⟩
No combination of model and state satisfies ⊥. The logical oper-
ators are defined by recursively obtaining the semantics of each
subformula and combining the Boolean values through the built-in
operators in Isabelle/HOL. Two cases remain: the case for a propo-
sition 𝑖 looks up and returns the truth value of 𝑠 and 𝑖 in 𝜋 𝑀 (the



latter gives the 𝜋 of the Kripke structure 𝑀). Lastly, we have the
case for a modal operator 𝐾𝑖 𝑝 which requires the semantics of 𝑝 to
be true in every state agent 𝑖 considers possible (from the current
state).

With the semantics in place, we can prove various interesting
properties of the modal operator 𝐾𝑖 , say, (the proof is omitted in
the present paper):
theorem distribution: ⟨M, s |= (K i p ∧ K i (p −→ q) −→ K i q) ⟩

The above states that the operator𝐾𝑖 distributes over implication.

3 AXIOM SYSTEM 𝐾𝑛

The distribution theorem can be recognized in the very compact
axiomatic system𝐾𝑛 . We adopt the usual syntax that the provability
of a formula 𝜑 ∈ L is denoted by the turnstile symbol: ⊢ 𝜑 . The
system is inductively defined as follows:
inductive SystemK :: ⟨ ′i fm ⇒ bool⟩ (⊢ - [50] 50) where
A1: ⟨tautology p =⇒ ⊢ p⟩
| A2: ⟨⊢ (K i p ∧ K i (p −→ q) −→ K i q) ⟩
| R1: ⟨⊢ p =⇒ ⊢ (p −→ q) =⇒ ⊢ q⟩
| R2: ⟨⊢ p =⇒ ⊢ K i p⟩

𝐴1 states that any classical propositional tautology is provable,
𝐴2 is similar to the distribution theorem, 𝑅1 is simply modus po-
nens and 𝑅2 states that agents also know the provable formulas.
The definition tautology in 𝐴1 relies on a semantics that treats
modal formulas 𝐾𝑖𝜑 as if they were propositional symbols. This is
the semantic equivalent of allowing all substitution instances of
propositional tautologies, but is simpler to formalize.

4 SOUNDNESS
For the axiom system 𝐾 to be sound, every formula in L provable
in system 𝐾𝑛 must be valid with respect to the semantics:

∀𝜑 ∈ L . ⊢ 𝜑 −→ (∀𝑀, 𝑠. 𝑀, 𝑠 |= 𝜑)
That is, no combination of proof rules leads to a formula that

is not valid. It does not follow that all valid formulas are provable,
however, which is why we also need completeness.

Our formalized proof of soundness requires extra work for the
rule 𝐴1. The following theorem states soundness for this rule:
theorem tautology: ⟨tautology p =⇒ M, s |= p⟩

Note that the quantification 𝑝 ∈ L and ∀𝑀 𝑠 is implicit in Is-
abelle/HOL. The proof is omitted in the present paper.

Proving soundness for system 𝐾𝑛 is now straightforward. The
following theorem captures the soundness property for system 𝐾𝑛 :
theorem soundness: ⟨⊢ p =⇒ M, s |= p⟩
by (induct p arbitrary: s rule: SystemK .induct) (simp-all add: tautology)
The proof strategy is to apply induction over the rules of the

system. Once we supply the tautology theorem, the simplification
proof method in Isabelle/HOL can easily solve each subgoal.

5 COMPLETENESS
We now want to demonstrate that system 𝐾𝑛 is not only sound, but
also complete, namely that every valid formula in L is provable:

∀𝜑 ∈ L . (∀𝑀, 𝑠. 𝑀, 𝑠 |= 𝜑) −→ ⊢ 𝜑
The formalized proof follows Hagin et al. [3] and builds on max-

imal consistent sets of formulas. A formula 𝜑 is 𝐾𝑛-consistent if its

negation is not provable: ⊬ ¬𝜑 . A finite set of formulas 𝜑1, . . . , 𝜑𝑛
is 𝐾𝑛-consistent if we cannot prove that they imply a contradiction:
⊬ 𝜑1 −→ . . . −→ 𝜑𝑛 −→ ⊥. Finally, an infinite set of formulas is
𝐾𝑛-consistent if all its finite subsets are.

Instead of working directly with this definition, we start from
Fitting’s consistency properties [1], which define the class 𝐶 of
consistent sets 𝑆 syntactically:
definition consistency :: ⟨ ′i fm set set ⇒ bool⟩ where
⟨consistency C ≡ ∀ S ∈ C.
(∀p. ¬ (Pro p ∈ S ∧ (¬ Pro p) ∈ S)) ∧
⊥ ∉ S ∧
(∀Z . (¬ (¬ Z)) ∈ S −→ S ∪ {Z } ∈ C) ∧
(∀A B. (A ∧ B) ∈ S −→ S ∪ {A, B} ∈ C) ∧
(∀A B. (¬ (A ∨ B)) ∈ S −→ S ∪ {¬ A, ¬ B} ∈ C) ∧
(∀A B. (A ∨ B) ∈ S −→ S ∪ {A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. (¬ (A ∧ B)) ∈ S −→ S ∪ {¬ A} ∈ C ∨ S ∪ {¬ B} ∈ C) ∧
(∀A B. (A −→ B) ∈ S −→ S ∪ {¬ A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B. (¬ (A −→ B)) ∈ S −→ S ∪ {A, ¬ B} ∈ C) ∧
(∀A. tautology A −→ S ∪ {A} ∈ C) ∧
(∀A i. ¬ (K i A ∈ S ∧ (¬ K i A) ∈ S)) ⟩
All but the last two conditions are standard and ensure down-

wards saturation [12] of each set: the satisfiability of any member
is guaranteed by conditions on its subformulas, and consistency is
ensured at the bottom. The penultimate line ensures that the consis-
tent sets contain all tautologies. This is a technical trick that makes
them easier to work with. Similarly, the last condition ensures that
no agent both knows and does not know the same formula.

We connect the definition of consistency to provability in system
𝐾𝑛 at a later stage through the following theorem:
theorem K-consistency: ⟨consistency {set G | G. ¬ ⊢ imply G ⊥}⟩

The completeness proof follows the usual recipe: (i) assume
a valid formula 𝜑 has no derivation (ii) then its negation is 𝐾𝑛-
consistent and (iii) we can extend the set {¬𝜑} in a standard way to
a maximally consistent set [3] which (iv) has a model, contradicting
the validity assumption. The model existence rests on four facts
outlined by Fagin et al. [3]. Unfortunately we do not have space to
cover the formalization here. The completeness theorem is:
theorem completeness:
assumes ⟨∀ (M :: ( ′i :: countable, ′i fm set) kripke) s. M, s |= p⟩
shows ⟨⊢ p⟩

6 CONCLUDING REMARKS
System 𝐾𝑛 provides a concise way of reasoning about the knowl-
edge of agents. To trust such reasoning we need to know that the
system is sound and thus only proves valid formulas. Moreover,
if we want to use the system in practice, we would like to know
that if we cannot prove a formula, then it is not due to a limitation
of the proof system but because the formula is incorrect: we want
completeness. To prove these properties, we have given precise
specifications of the syntax and semantics of an epistemic logic
for countably many agents. The proofs are mechanically checked
allowing us to fully trust the axiom system. In adapting Fitting’s [4]
consistency properties from first-order to epistemic logic, we have
shown another application of these. More generally, the work is an
example of a synthetic completeness proof, a technique we have
also used in other formalizations [6, 7].
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