
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 30, 2024

Improving predictions of Bayesian neural nets via local linearization

Immer, Alexander; Korzepa, Maciej; Bauer, Matthias

Published in:
Proceedings of the 24

th
 International Conference on Artificial Intelligence and Statistics

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Immer, A., Korzepa, M., & Bauer, M. (2021). Improving predictions of Bayesian neural nets via local
linearization. In Proceedings of the 24

th
 International Conference on Artificial Intelligence and Statistics

https://orbit.dtu.dk/en/publications/ffd0815f-78a1-4216-aec7-8b70fd26bce4


Improving predictions of Bayesian neural nets via local linearization

Alexander Immer∗ Maciej Korzepa Matthias Bauer∗
Department of Computer Science

ETH Zurich, Switzerland

Max Planck ETH Center
for Learning Systems

Technical University of Denmark
Copenhagen, Denmark

DeepMind
London, UK

Abstract

The generalized Gauss-Newton (ggn) ap-
proximation is often used to make practical
Bayesian deep learning approaches scalable
by replacing a second order derivative with a
product of first order derivatives. In this paper
we argue that the ggn approximation should
be understood as a local linearization of the
underlying Bayesian neural network (bnn),
which turns the bnn into a generalized linear
model (glm). Because we use this linearized
model for posterior inference, we should also
predict using this modified model instead of
the original one. We refer to this modified pre-
dictive as “glm predictive” and show that it
effectively resolves common underfitting prob-
lems of the Laplace approximation. It extends
previous results in this vein to general likeli-
hoods and has an equivalent Gaussian process
formulation, which enables alternative infer-
ence schemes for bnns in function space. We
demonstrate the effectiveness of our approach
on several standard classification datasets and
on out-of-distribution detection. We provide
an implementation at https://github.com/
AlexImmer/BNN-predictions.

1 Introduction

Inference in Bayesian neural networks (bnns) usually
requires posterior approximations due to intractable
integrals and high computational cost. Given such an
approximate posterior of the parameters, we can make
predictions at new locations by combining the posterior
with the original Bayesian neural network likelihood.
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pbnn(y|x,D) =∫
q(θ)p(y|f(x,θ)) dθ

bnn predictive (Eq. (9))

pglm(y|x,D) =∫
q(θ)p(y|fθ∗

lin(x,θ)) dθ

glm predictive (Eq. (13))

ggn

fθ
∗

lin(x,θ) = f(x,θ∗) + ∇θf(x,θ)|Tθ=θ∗ (θ − θ∗)

Figure 1: The generalized Gauss Newton approxima-
tion (ggn) turns a Bayesian neural network (bnn)
into a generalized linear model (glm) with same like-
lihood distribution, but network function f(x,θ) lin-
earized around θ∗. When using ggn, we should also
use the glm in the predictive. q(θ) is an approximate
posterior and θ∗ is found by MAP estimation, Eq. (3).

One common posterior approximation is the Laplace ap-
proximation (MacKay, 1992a), which has recently seen
a revival for modern neural networks (Khan et al., 2019;
Ritter et al., 2018). It approximates the posterior by a
Gaussian around its maximum and has become com-
putationally feasible through further approximations,
most of which build on the generalized Gauss-Newton
approximation (ggn; Martens and Grosse (2015)). The
ggn replaces an expensive second order derivative by
a product of first order derivatives, and is often jointly
applied with approximate inference in bnns using the
Laplace approximation (Ritter et al., 2018; Foresee and
Hagan, 1997; Foong et al., 2019) or variational approx-
imations (Khan et al., 2018; Zhang et al., 2018).

Recently, Foong et al. (2019) showed empirically that
predictions using a “linearized Laplace” predictive distri-
bution in this setting can match or outperform other ap-
proximate inference approaches, such as mean field vari-
ational inference (MFVI) in the original bnn model
(Blundell et al., 2015) and provide better “in-between”
uncertainties for regression. Here we explain that their
approach relies on an implicit change in probabilistic
model due to the ggn approximation.

More specifically, we argue that the ggn approxima-
tion should be considered separately from approximate
posterior inference: (1) the ggn approximation locally

https://github.com/AlexImmer/BNN-predictions
https://github.com/AlexImmer/BNN-predictions
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linearizes the underlying probabilistic model in its pa-
rameters and gives rise to a generalized linear model
(glm); (2) approximate inference such as through the
Laplace approximation enables posterior inference in
this linearized glm. Because we have done inference
in a modified probabilistic model (the glm), we should
also predict with this modified model. We call the re-
sulting predictive that uses locally linearized neural
network features the “glm predictive” in contrast to
the normally used “bnn predictive” that uses the orig-
inal bnn features in the likelihood, see Fig. 1.

Our approach generalizes previous results by Khan et
al. (2019) and Foong et al. (2019) to non-Gaussian
likelihoods. It explains why the glm predictive works
well compared to the bnn predictive, which can show
underfitting for Laplace posteriors (Lawrence, 2001), es-
pecially when combined with the ggn approximation
(Ritter et al., 2018). We demonstrate that our proposed
glm predictive resolves these underfitting problems
and consistently outperforms the bnn predictive by
a wide margin on several datasets; it is on par or bet-
ter than the neural network MAP or MFVI. Further,
the glm in weight space can be viewed as an equiv-
alent Gaussian process (gp) in function space, which
enables complementary inference approximations. Fi-
nally, we show that the proposed glm predictive can
be successfully used for out-of-distribution detection.

2 Background

In this paper we consider supervised learning tasks with
inputs xn ∈ RD and outputs yn ∈ RC (e.g. regression)
or yn ∈ {0, 1}C (e.g. classification),D = {(xn,yn)}Nn=1.
We introduce features f(x,θ) with parameters θ ∈ RP
and use a likelihood function p(D|θ) to map them to the
outputs y using an inverse link function g−1, E [y] =
g−1(f(x,θ)), such as the sigmoid or softmax:

p(D|θ) =
∏N
n=1 p(yn|f(xn,θ)), (1)

In Bayesian deep learning (BDL) we impose a prior p(θ)
on the likelihood parameters and aim to compute their
posterior given the data, p(θ|D); a typical choice is to
assume a Gaussian prior p(θ) = N (m0,S0). Given a
parameter posterior p(θ|D), we make probabilistic pre-
dictions for new inputs x∗ using the posterior predictive

p(y∗|x∗,D) = Ep(θ|D)[p (y∗|f(x∗,θ))]. (2)

Exact posterior inference requires computation of
a high-dimensional integral, the model evidence or
marginal likelihood p(y|x) =

∫
p(D|θ)p(θ) dθ, and is

often infeasible. We therefore have to resort to approxi-
mate posterior inference techniques, such as mean field
variational inference or the Laplace approximation, that
approximate q(θ) ≈ p(θ|D).

Mean-field VI. Popular in recent years, mean-field
variational inference (MFVI) approximates the poste-
rior p(θ|D) by a factorized variational distribution q(θ)
optimized using an evidence lower bound (ELBO) to
the marginal likelihood (Blundell et al., 2015).

MAP. Many practical approaches compute the
maximum a posteriori (MAP) solution θMAP =
arg maxθ `(θ,D) and return a point estimate q(θ) =
δ(θ− θMAP) or a distribution q(θ) around θMAP; here
`(θ,D) denotes the log joint distribution

`(θ,D) =
∑N
n=1 log p(yn|f(xn,θ)) + log p(θ), (3)

Laplace. The Laplace approximation (MacKay,
1992a) approximates the posterior by a Gaussian q(θ) =
N (θMAP,Σ) around the mode θMAP with covariance
Σ given by the Hessian of the posterior

Σ = −
[
∇2

θθ log p(θ|D)
∣∣
θ=θMAP

]−1
. (4)

To compute Σ, we need to compute the Hessian of
Eq. (3); the prior terms are usually trivial, such that
we focus on the log likelihood. We express the involved
Jacobian and Hessian of the log likelihood per data point
through the Jacobian J ∈ RC×P and Hessian H ∈
RC×P×P of the feature extractor f(x,θ), [Jθ(x)]ci =
∂fc(x,θ)
∂θi

and [Hθ(x)]cij = ∂2fc(x,θ)
∂θi∂θj

, respectively:

∇θ log p(y|f(x,θ)) = Jθ(x)Tr(y; f) (5)

∇2
θθ log p(y|f(x,θ)) = Hθ(x)Tr(y; f)

− Jθ(x)TΛ(y; f)Jθ(x).
(6)

We can interpret r(y; f) = ∇f log p(y|f) as a residual
and Λ(y; f) = −∇2

ff log p(y|f) as per-input noise.

ggn. The network Hessian Hθ(x) in Eq. (6) is in-
feasible to compute in practice, such that many ap-
proaches employ the generalized Gauss-Newton (ggn)
approximation, which drops this term (Schraudolph,
2002; Martens, 2020) and approximates Eq. (6) as:

∇2
θθ log p(y|f(x,θ)) ≈ −Jθ(x)TΛ(y; f)Jθ(x). (7)

This ggn approximation to the Hessian is also guar-
anteed to be positive semi-definite, whereas the original
Hessian Eq. (6) is not. The ggn is often further ap-
proximated, and in this paper, we consider the most
common cases (Ritter et al., 2018; Zhang et al., 2018),
diagonal and Kronecker-factored (kfac) approxima-
tions (Martens and Grosse, 2015; Botev et al., 2017).
kfac approximations are block-diagonal to enable
efficient storage and computation of inverses and de-
compositions while maintaining expressivity compared
to a diagonal approximation. Each block corresponding
to a parameter group, e.g., a neural network layer, is
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pbnn(D,θ) ∝
p(θ)

∏
i p(yn|f(xn,θ))

bnn
pglm(D,θ) ∝

p(θ)
∏
n p(yn|fθ

∗
lin (xn,θ))

Bayesian glm

pgp(D, f) ∝
pGP(f)

∏
n p(yn|fn)

gp

fθ
∗

lin(x,θ) = f(x,θ∗) + Jθ∗(x)(θ − θ∗)

ggn
(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)(Sec. 3.1)

weight/function
space view

(Sec. 3.5)

q(θ) = N (µ,Σ) q(f) = GP(mq(x),kq(x,x
′))

Gaussian posterior approximation (Sec. 3.2)

Figure 2: The generalized Gauss Newton approximation (ggn) turns a Bayesian neural network (bnn) into
a generalized linear model (glm) with same prior and likelihood distribution, but network function f(xn,θ)
linearized around θ∗ ( ). The glm is equivalent to a Gaussian process (gp) ( ). Inference is made
tractable with a Gaussian posterior approximation ( ), and we predict using the glm predictive (Eq. (13)).

Kronecker factored; the ggn of the l-th parameter
group is approximated as[∑N

n=1Jθ(xn)TΛ(yn; fn)Jθ(xn)
]
l
≈ Ql ⊗Wl, (8)

where Ql is the uncentered covariance of the activa-
tions and Wl is computed recursively (Botev et al.,
2017). Therefore, Ql is quadratic in the size of the in-
put and Wl in the output of the layer, and both are
positive semidefinite. Inversion of the Kronecker ap-
proximation is cheap because we only need to invert
its factors individually. The Kronecker approximation
can be combined with the prior exactly (Grosse and
Martens, 2016) or using dampening (Ritter et al., 2018).
We use the exact version, see App. A.1 for a discussion.

Posterior predictive. Regardless of the posterior
approximation, we usually obtain a predictive distri-
bution by integrating the approximate posterior q(θ)
against the model likelihood p(D|θ):

bnn predictive
pbnn(y|x,D) = Eq(θ) [p(y|f(x,θ))]

≈ 1
S

∑
s p(y|f(x,θs)), θs ∼ q(θ)

(9)

where we have approximated the (intractable) expec-
tation by Monte Carlo sampling. To distinguish this
predictive from our proposed method, we refer to Eq. (9)
as bnn predictive. Typically, the bnn predictive dis-
tribution is non-Gaussian, because the likelihood can
be non-Gaussian and/or f depends non-linearly on θs.

3 Methods

Here, we discuss the effects of the ggn approximation
in more detail (Sec. 3.1) and introduce our main con-
tributions, the glm predictive (Sec. 3.3) and its gp
counterpart (Sec. 3.5); see Fig. 2 for an overview.

3.1 Generalized Gauss-Newton turns bnns
into generalized linear models

In Sec. 2 we introduced the ggn as a positive semi-
definite approximation to the Hessian by simply drop-

ping the term Hθ(x)Tr(y; f) in Eq. (7); in other words,
we assume that Hθ(x)Tr(y; f) = 0. Two independently
sufficient conditions are commonly used as justification
(Bottou et al., 2018): (i) The residual vanishes for all
data points, r(y; f(x,θ)) = 0∀(x,y), which is true if the
network is a perfect predictor. However, this is neither
desired, as it indicates overfitting, nor is it realistic. (ii)
The Hessian vanishes, Hθ(x) = 0 ∀x, which is true for
linear networks and can be enforced by linearizing the
network. Hence, an alternative definition uses this sec-
ond condition as a starting point and defines the ggn
through the linearization of the network (Martens and
Sutskever, 2011).

In this work, we follow this alternative definition and
motivate the ggn approximation as a local lineariza-
tion of the network function f(x,θ),

fθ
∗

lin(x,θ) = f(x,θ∗) + Jθ∗(x)(θ − θ∗), (10)

at a parameter setting θ∗ ( in Fig. 2). This lineariza-
tion reduces the bnn to a Bayesian generalized linear
model (glm) with log joint distribution `glm(θ,D)

`glm(θ,D) =
∑N
n=1 log p(yn|fθ

∗
lin(xn,θ)) + log p(θ),

(11)

where fθ
∗

lin(x,θ) is linear in the parameters θ but not
in the inputs x. In practice, we often choose the lin-
earization point θ∗ to be the MAP estimate found by
optimization of Eq. (3). At θ∗ the ggn approxima-
tion to the Hessian of the linearized model, Eq. (11), is
identical to that of the full model, Eq. (3).

Remark 1. Applying the ggn approximation to the
likelihood Hessian turns the underlying probabilistic
model locally from a bnn into a glm.

3.2 Approximate inference in the glm

Previous works, e.g. Ritter et al. (2018) and Khan et
al. (2019), apply the Laplace and the ggn approx-
imation jointly. We refer to the resulting posterior
q(θ) = N (θMAP,Σggn) as the “Laplace-ggn poste-
rior”, where Σggn denotes one of the ggn approxima-
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1 Data D and model
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x
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x
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3 Posterior predictive distribution

x
0

1

y

Data D

w

b

Posterior p(w, b|D)

w0

Posterior p(w|D, b = bMAP)

x

p(
y
|x
,D

)

BNN predictive

x

GLM predictive (ours)

x

HMC

Figure 3: The bnn predictive underfits because some samples can give extremely wrong predictions (an example
shown in orange, ). The glm predictive corrects this.
2 Laplace-ggn posterior ( ) vs. the true posterior ( ) through 105 HMC samples: the Laplace-ggn is
symmetric and extends beyond the true, skewed posterior with same MAP. We highlight two posterior samples,
one where both distributions have mass ( ) and another where only the Laplace-ggn has mass ( ).
3 Posterior predictives p(y|x,D). The bnn and glm predictive both use the same Laplace-ggn posterior;
while the proposed glm predictive closely resembles HMC (using the true posterior), the bnn predictive underfits.
Underfitting is due to samples from the mismatched region of the posteriors ( ); while the glm predictive
reasonably extrapolates the behaviour around the MAP, the bnn predictive behaves qualitatively different.

predictive means; innermost 50%/66% of samples.

tions to the covariance introduced in Sec. 2 (full, diag-
onal, or kfac). The full covariance case is given by:

Σ−1ggn =
∑N
n=1 Jθ∗(xn)TΛ(yn; fn)Jθ∗(xn) + S−10

(12)

with prior covariance S0. In our glm setting, this
corresponds to linearizing the original bnn around
θ∗ = θMAP and using the same Laplace-ggn posterior.
For large-scale experiments we use this posterior as
it is simpler and computationally more feasible than
the refinement we describe next. Note that our main
contribution is to propose a different predictive (see
Sec. 3.3), not a different posterior.

We can use the glm perspective to refine the poste-
rior, because in practise we are only ever approximately
able to find θMAP of Eq. (3). We linearize the net-
work around its state after MAP training, θ∗ ≈ θMAP,
and perform inference in the glm, which typically re-
sults in a posterior with mode different from θ∗. The
glm objective Eq. (11) is convex and therefore easier
to optimize and guarantees convergence. For general
likelihoods, posterior inference is still intractable and
we resort to Laplace and variational approximations
(see Sec. 2). Both lead to Gaussian posterior approx-

imations q(θ) to p(θ|D) ( in Fig. 2) and are com-
puted iteratively for general likelihoods, see e.g. Bishop
(2006, Chapter 4); for Gaussian likelihoods they can be
evaluated in a single step. On small-scale experiments
(Sec. 4.2) we found that refinement can improve perfor-
mance but at a higher computational cost; we discuss
computational constraints in Sec. 3.6. Nonetheless, the
refinement view allows us to consider the ggn approx-
imation separately from the Laplace approximation:
the ggn approximation linearizes the network around
θ∗, whereas the Laplace approximation is only one of
several possible posterior approximations.

Remark 2. The ggn approximation should be treated
as an approximation to the model. It locally linearizes
the network features and is independent of posterior
inference approximations such as the Laplace approxi-
mation or variational inference.

3.3 The glm predictive distribution

To make predictions, we combine the approximate pos-
terior with the likelihood; the posterior is the Laplace-
ggn posterior or a refinement thereof. Previous works
have used the full network features in the likelihood
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resulting in the bnn predictive (Eq. (9)), which was
shown to severely underfit (Ritter et al., 2018). Because
we have effectively done inference in the ggn-linearized
model, we should instead predict using these modified
features:

glm predictive
pglm(y|x,D) = Eq(θ)

[
p(y|fθ∗

lin (x,θ))
]

≈ 1
S

∑
s p(y|fθ

∗
lin (x,θs)), θs ∼ q(θ).

(13)

We stress that the glm predictive in Eq. (13) uses
the same approximate posterior as the bnn predictive,
Eq. (9), but locally linearized features in the likelihood.

Remark 3. Because the Laplace-ggn posterior corre-
sponds to the posterior of a linearized model, we should
use this linearized model to make predictions. In this
sense, the glm predictive is consistent with Laplace-
ggn inference, while the bnn predictive is not.

3.4 Illustrative example

In Fig. 3 we illustrate the underfitting problem of the
bnn predictive on a simple 1d binary classification
problem and show how the glm predictive resolves it.

We consider data sampled from a step function (y = 0
for x < 0 and y = 1 for x ≥ 0) and use a 2-parameter
feature function f(x;θ) = 5tanh(wx + b), θ = (w, b),
Bernoulli likelihood, and factorized Gaussian prior on
the parameters. The data ( vs in Fig. 3 left) is
ambiguous as to where the step from 0 to 1 occurs,
such that both parameters w and b are uncertain.

We obtain the true parameter posterior through HMC
sampling (Neal, 2010) and find that it is symmetric
w.r.t the shift parameter b but skewed w.r.t to the
slope w (see Fig. 3 left). The skewness makes sense as
we expect only positive slopes w. The corresponding
posterior predictive is certain where we observe data
but uncertain around the step, and the predictive mean
monotonically increases from 0 to 1 (see Fig. 3 right).

The Laplace-ggn posterior as a Gaussian approxima-
tion is symmetric w.r.t the slope parameter w. It also
extends to regions of the parameter space with nega-
tive slopes, w < 0, which have no mass under the true
posterior (see Fig. 3 left). Samples from this mis-
matched region result in a monotonically decreasing
predictive when using the non-linear features of the
bnn predictive ( in Fig. 3 right). In contrast, the
linearized features of the glm predictive extrapolate
the behaviour around the MAP and result in a more
sensible predictive in this case. Samples from the
matched region behave sensibly for both predictives
( in Fig. 3 right). See App. B.1 for further details
and an extended discussion.

We derive the following general intuition from this ex-

ample: The Laplace-ggn approximate posterior may
be overly broad compared to the true posterior. Because
the feature function f(x;θ) in the bnn predictive is
highly non-linear in θ, samples θs from this mismatched
region of the posterior can ulimately result in underfit-
ting. While the glm predictive maintains non-linearity
in the inputs x, its features fθ

∗
lin (x;θ) are linear in the

parameters, allowing it to behave more gracefully for
samples θs from the mismatched region. In other words,
the glm predictive linearly extrapolates the behavior
around the MAP, while the bnn predictive with its
non-linear features can behave almost arbitrarily away
from the MAP.

Remark 4. The underfitting of the bnn predictive is
not a failure of the Laplace-ggn posterior per se but
is due to using a mismatched predictive model.

3.5 Gaussian process formulation of the glm

A Bayesian glm in weight space is equivalent to
a Gaussian process (gp) in function space with a
particular kernel ( in Fig. 2) (Rasmussen and
Williams, 2006). The corresponding log joint is given by∑N

n=1 log p(yn|fn)+log p(f), where the GP prior p(f) is
specified by its mean and covariance function that can
be computed based on the expectation and covariance of
Eq. (10) under the parametric prior p(θ) = N (m0,S0):

m(x) = Ep(θ)[fθ
∗

lin(x;θ)] = fθ
∗

lin(x; m0)

k(x,x′) = Covp(θ)[f
θ∗
lin(x;θ), fθ

∗
lin(x′;θ)]

= Jθ∗(x)S0Jθ∗(x′)T.

(14)

As for the glm, we now perform approximate inference
in this gp model or solve it in closed-form for regression;
we denote the gp posterior (approximation) by q(f).
For a single output and at θ∗ = θMAP the Laplace-ggn
approximation to gp posterior q(f∗) at a new location
x∗ is given by (Rasmussen and Williams, 2006):

f∗|x∗,D ∼ N
(
f(x∗;θ∗),σ2

∗
)

(15)

σ2
∗ = K∗∗ −K∗N (KNN + Λ−1NN )−1KN∗,

whereK∗N denotes the kernel k(·, ·) evaluated between
x∗ and the N training points, and ΛNN is a diagonal
matrix with entries Λ(yn; fn) (Eq. (6)). See App. A.2
for the derivation and an extension to multiple out-
puts. Further, we can perform posterior refinement in
function space by optimizing w.r.t. f(X) = Jθ∗(X)θ
on a set of data points X, which follows from the lin-
earized formulation in Eq. (10). Analogous to the glm
predictive, we define the gp predictive:

gp predictive
pgp(y|x,D) = Eq(f) [p(y|f)] (16)

≈ 1
S

∑
s p(y|fs), fs ∼ q(f).
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Functional approximations of a gp model are orthog-
onal to parametric approximations in weight space:
While parametric posterior approximations sparsify
the covariances of the parameters (e.g. kfac), func-
tional posterior approximations consider sparsity in
data space (e.g. subset of data); also see Sec. 3.6.

Remark 5. The glm in weight space is equivalent
to a gp in function space that enables complementary
approximations.

3.6 Computational considerations

Scalability is a major concern for inference in bnns
for large-scale problems. Here, we briefly discuss prac-
tical aspects of the Laplace-ggn computations and
highlight the influence of approximations as well as im-
plementation details; see App. A.3 for further details.

Jacobians. A key component of the Laplace-ggn
approximation and our glm are the neural network
Jacobians Jθ(x). For common architectures, the com-
plexity of computing and storing a Jacobian is O (PC)
per datapoint for a network with C class outputs and
P parameters. Therefore, ad-hoc computation of Jaco-
bians is possible while storage of all Jacobians for an
entire data set of size N is often prohibitive (O (NPC)).

Laplace-ggn. Inversion of the full covariance
Laplace-ggn approximation (Eq. (12)) scales cubi-
cally in the number of parameters (O

(
P 3
)
) and is pro-

hibitive for large neural networks; we only consider
it for small problems. The diagonal approximation is
a cheap alternative for storage and inversion (O (P ))
but misses important posterior correlations and per-
forms worse (see MacKay 1995, Sec. 4.2, and App. B.4).
kfac approximations trade off between feasible com-
putation/storage and the ability to model important
dependencies within blocks, e.g., layers (Martens and
Grosse, 2015; Botev et al., 2017). Storage and compu-
tation only depend on the size of the Kronecker factors
and the blocks can be inverted individually. For scalable
computation of ggn approximations we use backpack
for pytorch which makes use of additional performance
improvements and does not require explicit computa-
tion of Jacobians (Dangel et al., 2019).

Parametric predictives. We use S Monte Carlo
samples to evaluate the predictives; naively, computa-
tion of the bnn predictive (O (SP )) is cheaper than
of the glm predictive (O (SPC)) due to the Jaco-
bians. However, in both cases we can use local repa-
rameterization (Kingma et al., 2015) to sample either
the activations per layer (bnn predictive) or the final
preactivations directly (glm predictive) instead.

Functional inference. gp inference replaces inver-
sion of the Hessian in parameter space (O

(
P 3
)
) with

inversion of the kernel matrix (O
(
N3
)
in computation

and O
(
N2
)
in memory). Additionally, we need to com-

pute the inner products of N Jacobians to evaluate the
kernel. For scalability, we consider a subset of M � N
training points to construct the kernel (App. A.2) and
obtain the gp posterior in O(M3 +M2P ) and predic-
tives per new location in O(MP +M2). We found that
M ≥ 50 already improves performance over the MAP
(see ablations in App. B.4) even when N was orders
of magnitude larger; increasing M strictly improved
performance. Instead of a naive subset approximation
we could also use sparse approximations (Titsias, 2009;
Hensman et al., 2015) to scale the kernel computations.

gp and glm refinement. To perform posterior
refinement (cf. Secs. 3.2 and 3.5) efficiently, we have
to compute and store the Jacobians on all data, as we
require them in every iterative update step. For large
networks and datasets we are memory bound and, thus,
only consider refinement for small problems in Sec. 4.2.

4 Experiments

We empirically evaluate the proposed glm predictive
for the Laplace-ggn approximated posterior in weight
space (Eq. (13)) and the corresponding gp predictive
in function space (Eq. (16)). We compare them to the
bnn predictive (Eq. (9)) with same posterior for sev-
eral sparsity structures of the Laplace and variational
approximation as well as mean-field VI (BBB, Blundell
et al. (2015)) and a dampened kfac Laplace-ggn ap-
proximation with bnn predictive (Ritter et al., 2018).

We consider a second example on 2d binary classifica-
tion (Sec. 4.1), several small-scale classification prob-
lems (Sec. 4.2), for which posterior refinement is possi-
ble, as well as larger image classification tasks (Sec. 4.3).
We close with an application of the glm predictive
to out-of-distribution (OOD) detection (Sec. 4.4). Be-
cause the glm predictive for θ∗ = θMAP is identical
to Foong et al. (2019) and Khan et al. (2019), we focus
on classification and refer to their works for regression.

In all experiments, we use a diagonal prior, p(θ) =
N (0, δ−1IP ), and choose its precision δ based on the
negative log likelihood on a validation set for each
dataset, architecture, and method. The prior precision
δ corresponds to weight-decay with factor δ

N . For each
task, we first train the network to find a MAP esti-
mate using the objective Eq. (3) and the Adam opti-
mizer (Kingma and Ba, 2015). We then compute the
different posteriors and predictives using the values of
the parameters after training, θ∗ (details in App. B).

The proposed glm and gp predictives consistently
resolve underfitting problems of the bnn predictive,
and are on par or better than other methods considered.
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Figure 4: Binary classification on the banana dataset. left: Predictive means; the bnn predictive severely
underfits; like the MAP, our proposed glm predictive makes meaningful predictions but also becomes less certain
away from the data. right: The glm predictive variance (see App. B.2) decomposes into meaningful aleatoric
(data-inherent) uncertainty at class boundaries and epistemic (model-specific) uncertainty away from data.

Dataset NN MAP MFVI bnn glm glm diag glm refine glm refine d

australian 0.31±0.01 0.34±0.01 0.42±0.00 0.32±0.02 0.33±0.01 0.32±0.02 0.31±0.01

cancer 0.11±0.02 0.11±0.01 0.19±0.00 0.10±0.01 0.11±0.01 0.11±0.01 0.12±0.02

ionosphere 0.35±0.02 0.41±0.01 0.50±0.00 0.29±0.01 0.35±0.01 0.35±0.05 0.32±0.03

glass 0.95±0.03 1.06±0.01 1.41±0.00 0.86±0.01 0.99±0.01 0.98±0.07 0.83±0.02

vehicle 0.420±0.007 0.504±0.006 0.885±0.002 0.428±0.005 0.618±0.003 0.402±0.007 0.432±0.005

waveform 0.335±0.004 0.393±0.003 0.516±0.002 0.339±0.004 0.388±0.003 0.335±0.004 0.364±0.008

digits 0.094±0.003 0.219±0.004 0.875±0.002 0.250±0.002 0.409±0.002 0.150±0.002 0.149±0.008

satellite 0.230±0.002 0.307±0.002 0.482±0.001 0.241±0.001 0.327±0.002 0.227±0.002 0.248±0.002

Table 1: Negative test log likelihood (lower is better) on UCI classification tasks (2 hidden layers, 50 tanh). The
glm predictive clearly outperforms the bnn predictive; the glm posterior refined with variational inference is
overall the best method. This also holds for accuracy and calibration and on other architectures, see App. B.3.

4.1 Second illustrative example

First, we consider 2d binary classification on the banana
dataset in Fig. 4. We use a neural network with 2 hidden
layers of 50 tanh units each and compare the bnn and
the glm predictive for the same full Laplace-ggn
posterior (experimental details and additional results
for MFVI and diagonal posteriors in App. B.2).

Like in the 1d example (Fig. 3), the bnn predictive
severely underfits compared to the MAP; its predictive
mean is completely washed out and its variance is very
large everywhere (see App. B.2). Using the same poste-
rior but the proposed glm predictive instead resolves
this problem. In contrast to the MAP point-estimate,
our glm predictive with Laplace-ggn posterior leads
to growing predictive variances away from the data in
line with previous observations for regression (Foong
et al., 2019; Khan et al., 2019). Moreover, the glm pre-
dictive variance decomposes into meaningful aleatoric
(data-inherent) uncertainty at the boundaries between
classes and epistemic (model-specific) uncertainty away
from the data (Kwon et al., 2020) (Fig. 4 (right)).
In App. B.2 we show that the glm predictive eas-
ily adapts to deeper and shallower architectures and
yields qualitatively similar results in all cases, whereas
the bnn predictive performs even worse for deeper
(more non-linear) architectures. MFVI requires exten-

sive tuning and yields lower quality results.

4.2 UCI classification

We now compare the different methods on a set of UCI
classification tasks on a network with 2 hidden layers of
50 tanh units. On this scale, posterior refinement in the
glm using variational inference is feasible as discussed
in Sec. 3.2. In Tab. 1, we report the test log predictive
probabilities over 10 splits (70% train/15% valid/15%
test). See App. B.3 for details and results for accuracy
and calibration as well as on other architectures.

Using the same Laplace-ggn posterior, the glm pre-
dictive (“glm” in Tab. 1) clearly outperforms the bnn
predictive (“bnn”) on almost all datasets and metrics
considered. Moreover, the proposed posterior refinement
using variational inference in the glm (“glm refine”)
can further boost performance. The proposed methods
also perform consistently better than MFVI on most
datasets, even when considering only a diagonal poste-
rior approximation (“... d(iag)”); and they easily adapt
to deeper architectures, unlike MFVI, which is often
hard to tune (see App. B.3). In Fig. 5 we highlight that
the glm predictive consistently outperforms the bnn
predictive for any setting of the prior precision hyper-
parameter δ and that posterior refinement consistently
improves over the MAP estimate.
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Dataset Method Accuracy ↑ NLL ↓ ECE ↓ OOD-AUC ↑

FMNIST

MAP 91.39±0.11 0.258±0.004 0.017±0.001 0.864±0.014

bnn predictive 84.42±0.12 0.942±0.016 0.411±0.008 0.945±0.002

bnn predictive (Ritter et al.) 91.20±0.07 0.265±0.004 0.024±0.002 0.947±0.006

glm predictive (ours) 92.25±0.10 0.244±0.003 0.012±0.003 0.955±0.006

gp predictive (ours) 91.36±0.11 0.250±0.004 0.007±0.001 0.918±0.010

CIFAR10

MAP 80.92±0.32 0.605±0.007 0.066±0.004 0.792±0.008

bnn predictive 21.74±0.80 2.114±0.021 0.095±0.012 0.689±0.020

bnn predictive (Ritter et al.) 80.78±0.36 0.588±0.005 0.052±0.005 0.783±0.007

glm predictive (ours) 81.37±0.15 0.601±0.008 0.084±0.010 0.843±0.016

gp predictive (ours) 81.01±0.32 0.555±0.008 0.017±0.003 0.820±0.013

Table 2: Accuracy, negative test log likelihood (NLL), expected calibration error (ECE) on the test set, and area
under the curve for out-of-distribution detection (OOD-AUC). The proposed methods (glm and gp predictive)
outperform the bnn predictive with same posterior and with dampened (concentrated) posterior (Ritter et al.,
2018) as well as the MAP (point-)estimate posterior on most tasks and metrics. See App. B.4 for further results.
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Figure 5: The glm predictive ( / ) outperforms
the bnn predictive ( ) for all settings of the prior
precision hyperparameter δ.

4.3 Image classification

As larger scale problems, we consider image classifica-
tion on MNIST (LeCun and Cortes, 2010), FashionM-
NIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky,
2009). We use a kfac Laplace-ggn approximation
for parametric models and a subset posterior approx-
imation with M = 3200 data points for the gp. We
compare to the MAP estimate and to the bnn pre-
dictive with same posterior as well as with dampened
posterior (Ritter et al., 2018) and present results for
several performance metrics on CNNs in Tab. 2; see
App. B.4 for details, additional results on MNIST, other
network architectures, and diagonal approximation.

As for the other problems, the glm predictive con-
sistently outperforms the bnn predictive by a wide
margin using the same posterior. It also typically out-
performs the bnn predictive with dampened (concen-
trated) posterior (Ritter et al., 2018), in particular for
fully connected networks, see App. B.4. While the glm
predictive performs best on most tasks in terms of accu-
racy and negative test log likelihood, the gp predictive
interestingly achieves better expected calibration error
(ECE) (Naeini et al., 2015). We attribute the improved
calibration to the gp implicitly using a full-covariance
Laplace-ggn, while the parametric approaches are lim-
ited to a kfac approximation of the posterior covari-
ance. However, the gp is limited to a subset of the

training data to make predictions; we hypothesize that
better sparse approximations could further improve its
performance on accuracy and negative log likelihood.

4.4 Out-of-distribution detection

We further evaluate the predictives on out-of-
distribution (OOD) detection on the following in-
distribution (ID)/OOD pairs: MNIST/FMNIST, FM-
NIST/MNIST, and CIFAR10/SVHN. Following Osawa
et al. (2019) and Ritter et al. (2018), we compare the
entropies of the predictive distributions on ID vs OOD
data and the associated OOD detection performance
measured in terms of the area under the curve (OOD-
AUC). We use the same kfac posterior approxima-
tions as in Sec. 4.3; see Apps. B.4 and B.5 for details
and additional results on other ID/OOD pairs.

We provide OOD detection performance (OOD-AUC)
in Tab. 2 for FMNIST/MNIST and CIFAR10/SVHN
and compare the predictive entropy histograms for CI-
FAR10/SVHN in Fig. 6. Across all tasks considered, we
find that the glm predictive achieves the best OOD
detection performance, while the bnn predictive con-
sistently performs worst. The bnn predictive with con-
centrated (dampened) Laplace-ggn posterior (Ritter
et al., 2018) improves over the undampened posterior,
but performs worse than the glm predictive.

5 Related Work

The Laplace approximation for bnns was first intro-
duced by MacKay (1992a) who applied it to small
networks using the full Hessian but also suggested an
approximation similar to the generalized Gauss New-
ton (MacKay, 1992b). Foresee and Hagan (1997) later
used the Gauss-Newton for Bayesian regression neural
networks with Gaussian likelihoods. The generalized
Gauss-Newton (Martens, 2020) in conjunction with scal-
able factorizations or diagonal Hessian approximations
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Figure 6: In-distribution ( , CIFAR10) vs out-of-distribution ( , SVHN) detection using a fully con-
volutional architecture. The MAP is overconfident while the bnn predictive is underconfident. gp and glm
predictives show best out-of-distribution detection (area under the curve, AUC), also see Tab. 2.

(Martens and Grosse, 2015; Botev et al., 2017) enabled
a revival of the Laplace approximation for modern neu-
ral networks (Ritter et al., 2018; Khan et al., 2019).
Bottou et al. (2018) discuss the linearizing effect of the
ggn approximation for MAP or maximum likelihood
optimization; here we use this interpretation to obtain
a consistent Bayesian predictive.

To address underfitting problems of the Laplace
(Lawrence, 2001) that are particularly egregious when
combined with the ggn, Ritter et al. (2018) intro-
duced a Kronecker factored Laplace-ggn approxima-
tion, which does not seem to suffer in the same way
despite using the same bnn predictive. Our analy-
sis and experiments suggest that this is because of an
additional ad-hoc approximation they introduce, damp-
ening, which can reduce the posterior covariance (see
App. A.1). Dampening is typically used in optimiza-
tion procedures using Kronecker-factored Hessian ap-
proximations (Martens and Grosse, 2015) but can lead
to significant distortions when applied to a posterior
approximation. In contrast, we use an undampened
Laplace-ggn posterior in combination with the glm
predictive to resolve underfitting.

For Gaussian likelihoods our glm predictive recovers
the analytically tractable “linearized Laplace” model
(Foong et al., 2019) as well as dnn2gp (Khan et al.,
2019). Both apply the Laplace and ggn approxima-
tions jointly at the posterior mode θ∗ = θMAP and are
limited to regression. We separate the ggn from ap-
proximate inference to derive an explicit glm model
for general likelihoods and to justify the glm pre-
dictive. Our experiments generalize their observations
to general likelihoods. Khan et al. (2019) introduce
dnn2gp to relate inference in (linearized) bnns to
gps but are limited to Gaussian likelihoods. Our ap-
proach builds on their work but considers general like-
lihoods; therefore, we obtain a similar gp covariance
function that is related to the neural tangent kernel
(NTK) (Jacot et al., 2018). Our proposed refinement
is related to training an empirical NTK (Lee et al.,
2019). In contrast to the empirical NTK, the ggn cor-

responds to a local linearization at the MAP and not
at a random initialization. Therefore, we expect that
these learned feature maps represent the data better.

Out-of-distribution detection has become a benchmark
for predictive uncertainties (Nalisnick et al., 2019), on
which many recent bnn approaches are evaluated,
e.g., Ritter et al. (2018), Osawa et al. (2019), and Wen-
zel et al. (2020). Our simple change in the predictive
also leads to improved OOD detection.

6 Conclusion

In this paper we argued that in Bayesian deep learn-
ing, the frequently utilized generalized Gauss-Newton
(ggn) approximation should be understood as a modifi-
cation of the underlying probabilistic model and should
be considered separately from approximate posterior
inference. Applying the ggn approximation turns a
Bayesian neural network (bnn) locally into a general-
ized linear model or, equivalently, a Gaussian process.
Because we then use this linearized model for inference,
we should also predict using these modified features in
the likelihood rather than the original bnn features.
The proposed glm predictive extends previous results
by Khan et al. (2019) and Foong et al. (2019) to general
likelihoods and resolves underfitting problems observed
e.g. by Ritter et al. (2018). We conclude that under-
fitting is not due to the Laplace-ggn posterior but is
caused by using a mismatched model in the predictive
distribution. We illustrated our approach on several
simple examples, demonstrated its effectiveness on UCI
and image classification tasks, and showed that it can
be used for out-of-distribution detection. In future work,
we aim to scale our approach further.
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