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ABSTRACT

In this work, an unsupervised model selection procedure for identifying data-driven forecast models for urban drainage systems is proposed

and evaluated. Specifically, we consider the case of predicting inflows to wastewater treatment plants for activating wet weather operation

(aeration tank settling, ATS) using Box–Jenkins models. The model selection procedure considers different model structures and different

objective functions. The hyperparameter search space is constrained based on the time of concentration in the catchment. Objective func-

tion criteria that minimize one-step-ahead as well as multi-step prediction errors are considered. Finally, we consider two criteria for

unsupervised selection of the best-performing model. These measure the agreement of observed and predicted hydrographs (persistence

index), as well as the binary exceedance of critical flow thresholds (critical success index (CSI)). Our work shows that forecast models can

be developed in an unsupervised manner, and ATS activation is correctly forecasted in 60–90% of the events. The selected model structures

reflect the physical behaviour of the catchment. Models should not be selected on operational criteria like the CSI due to a risk of overfitting.

The degree to which rainfall input improves forecasts depends on the specific catchment, and the objective function criterion that should be

used for coefficient estimation depends on the application context.

Key words: ARIMAX-type models, influent forecasting, time-series modelling, urban hydrology

HIGHLIGHTS

• Unsupervised model selection procedure for influent forecasting with ARIMA-type models.

• Development of hyperparameter selection criteria, i.e., physical/operational decision criterion.

• Comparisons of objective function criteria, i.e., single/multi-step forecasts.

• Evaluation of the impact of rainfall input on flow forecast quality.

GRAPHICAL ABSTRACT
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

om http://iwaponline.com/jh/article-pdf/23/6/1368/962686/jh0231368.pdf
TECHNICAL  UNIVERSITY (DTU) user
 2022

https://orcid.org/0000-0002-3041-6248
https://orcid.org/0000-0001-6344-7131
https://orcid.org/0000-0003-3799-0493
https://orcid.org/0000-0002-5549-5456
mailto:arijoh94@gmail.com
http://orcid.org/
http://orcid.org/0000-0002-3041-6248
http://orcid.org/0000-0001-6344-7131
http://orcid.org/0000-0003-3799-0493
http://orcid.org/0000-0002-5549-5456
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2021.020&domain=pdf&date_stamp=2021-10-19


Journal of Hydroinformatics Vol 23 No 6, 1369

Downloaded from http
by DENMARK TECHN
on 04 January 2022
INTRODUCTION

Urban drainage systems (UDS) are increasingly challenged as a result of on-going urbanization (European Commission 2016)
and changing rainfall patterns (Arnbjerg-Nielsen 2012). Addressing these challenges with new infrastructural solutions
(increased conveyance and storage) alone implies considerable costs and non-sustainable environmental impacts (Casal-

Campos et al. 2015; Brudler et al. 2016). Green infrastructure, ‘Water Sensitive Cities’ and ‘Sponge Cities’ are, therefore,
advocated, where water management is interlinked with many other services that a city provides to its citizens (Lund
et al. 2019a; Wong et al. 2020). This development in urban water management occurs in parallel with the digitalization

agenda, where the increasing availability of cheap sensor data enables new opportunities to exploit multifunctional aspects
of urban water infrastructure through smart operation in real time (Kerkez et al. 2016; Sarni et al. 2019).

The potential of real-time operation of integrated urban wastewater infrastructures (Lund et al. 2019a; Wong et al. 2020)
has been demonstrated in various contexts (García et al. 2015; Shishegar et al. 2018). These include using urban surfaces as a
multifunction retention space for rainwater during heavy rainfall (Lund et al. 2019a), dynamically optimizing water distri-
bution within the sewer system to minimize emissions to the environment (Fradet et al. 2011; Langeveld et al. 2013;
Löwe et al. 2016), reducing the energy demand from sewer operations (Kroll et al. 2018) while maximizing the use of elec-
tricity from renewable sources (Stentoft et al. 2020), and increasing the treatment capacity of wastewater treatment plants
(WWTPs) during and after wet weather events (e.g. aeration tank settling, ATS; Sharma et al. 2013). All of these applications
either require or can be improved by the availability of a forecast of expected sewer flows, typically over forecast horizons

ranging from 30 min up to 24 h.
Forecasting flows in UDS corresponds to translating observations and forecasts of rainfall into expected flows at specific

locations, typically where the actuators used by real-time controls are placed. As described in García et al. (2015), UDS

models can be subdivided into simulation- and control-oriented models. The first category includes detailed hydraulic
models such as MIKE URBAN, SWMM, or Infoworks (so-called white-box models). Given their level of detail,
these models are frequently considered too tedious and too slow to be applied for real-time operations, where decisions

need to be taken within seconds to minutes. Control-oriented models include simplified conceptual hydrological models
and data-driven models. Simplified conceptual models ensure important reductions in simulation times while still incorpor-
ating an understanding of the physical system into the model equations. These models have been applied both in a

deterministic form (Vanrolleghem et al. 2005; Wolfs et al. 2013; Thrysøe et al. 2019) and in combination with data assimila-
tion algorithms that enable the exploitation of flow sensor information to improve forecasts (Breinholt et al. 2011; Bach et al.
2016; Löwe et al. 2016; Lund et al. 2019b).

Data-driven models are a class of models without physical interpretation but much reduced computational requirements.

These models are particularly useful to generate accurate forecasts in locations where sensor data are available. Their speed
makes them an attractive choice in automated model selection procedures, where many models need to be tested. In urban
hydrology, Box–Jenkins time-series models were used in a number of studies to forecast sewer flows and inflows to WWTPs

(Tan et al. 1991; Pleau et al. 2005; Boyd et al. 2019). Zhang et al. (2018) used long short-term memory neural networks to
predict inflow to WWTPs. Finally, Maleki et al. (2018) compared Box–Jenkins models and neural networks for predictions of
WWTP inflow characteristics and found comparable performance between these model types. Data-driven models have also

been used in catchment hydrology. For example, Phan & Nguyen (2020) used a combination of Box–Jenkins models and
neural networks to forecast river water levels, and Valipour et al. (2013) applied Box–Jenkins models and neural networks
to forecast reservoir inflows.

The aim of this work is to develop a procedure for the automated (or unsupervised) identification of data-driven models for

forecasting flows in the UDS and specifically inflow to WWTPs. The purpose of the deveoped models is to control the acti-
vation of wet weather operation (ATS, see the section ‘Data and catchments’) at WWTPs. We choose to implement the model
development procedure using Box–Jenkins models because they are widely used and readily available in the mathematical

modelling software. The developed principles, however, can be transferable to other modelling approaches. Compared to
existing procedures for the data-driven model development, we provide a number of major improvements:

1. A new approach to restrict the search space for rainfall input based on physical system understanding. Indeed, most of the

existing studies in hydrology (Tan et al. 1991; Pleau et al. 2005; Boyd et al. 2019) select the inputs and the structure of the
forecast model manually based on expert knowledge. For Box–Jenkins models, an inspection of autocorrelation functions
would typically be performed (Box et al. 2008). In an unsupervised setting, this approach needs to be replaced by systematic
://iwaponline.com/jh/article-pdf/23/6/1368/962686/jh0231368.pdf
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tests of different model structures. Box–Jenkins models traditionally offer three hyperparameters that can be used to system-

atically traverse the modelling space (Box et al. 2008; Hyndman & Khandakar 2008). Thus, when considering rainfall as an
input to the model, the search space increases substantially and models may be difficult to identify. Therefore, we develop a
new approach to restrict the search space for rainfall input based on physical system understanding.

2. A set of performance criteria to perfrom unsupervised model evaluation based on the intended model application. Criteria
such as AIC that balance improved model fit on the training dataset against an increase in the number of model parameters
are frequently used for Box–Jenkins models (Hyndman & Khandakar 2008) and have also been used in hydrology (Phan &
Nguyen 2020). However, such criteria are not necessarily optimal for applications involving multi-step forecasting (Löwe

et al. 2014). In general, different applications are dominated by different parts of flow hydrographs. For example, control
schemes that minimize flooding require accurate forecasts of peak flows, while schemes for operating treatment plant
inflow require accurate forecasts of water volume over some hours. Therefore, forecast models for different applications

need to be selected based on different criteria. In this study, we focus on two criteria that, respectively, aim at reproducing
the observed flow hydrograph and at maximizing the operational performance in the specific application, i.e., the fre-
quency of how often ATS is activated correctly.

3. A comparison of different model error measures used to evaluate model performance. Given a model structure, the model
coefficients (e.g., the coefficients in a time-series model, or the weights in a neural network) of the model need to be tuned
such that the flow forecast is optimized for the specific case. Data-driven models come with standardized tuning criteria,

such as maximum likelihood estimation, or the optimization of mean squared error or entropy (Tan et al. 1991; Boyd et al.
2019; Phan & Nguyen 2020). Similar to the previous point, the choice of tuning criterion, however, depends on the
specific application. In particular, when developing a forecast model for flows in the UDS, the widely applied tuning pro-
cedures based on one-step-ahead predictions may not be robust, because sensor issues, pumping operation, and semi-

random behaviour in water consumption cause noise with varying frequencies (Löwe et al. 2014). This work compares
the effect on model calibration when using traditional error measures based on single-step forecasts or average forecast
error over multiple lead times is minimized.

4. A model evaluation is based on performance indicators that are relevant for the final users of the model. Specifically, we
evaluate the performance of our forecast models in terms of frequency of activation of wet weather operation (ATS) at a
WWTP in Copenhagen, Denmark. The operation can, therefore, better relate to the forecast performance compared to

when using traditional error measures based on residuals, such as SSE or RMSE, that were applied in similar studies
(Boyd et al. 2019).

MATERIALS AND METHODS

In this section, we first provide an overview of the considered catchments, the decision-making problem, and the considered

datasets. Subsequently, we provide details on the automated model selection procedure. In the end, a brief summary of the
technical implementation is provided.

Data and catchments

Catchments and forecasting problems

In this work, models were fitted and evaluated on data from two locations in the Damhusåen catchment in Copenhagen, Den-
mark (Figure 1): at an upstream location (Dæmningen) and at a downstream location at the WWTP inlet (Damhusåen).

Dæmningen is used as a wet weather control for Damhusåen WWTP, as it gives a warning of about 30 min to the plant oper-
ator (Breinholt & Sharma 2010). This transport time is confirmed by cross-correlation (see Figure S1 in Supplementary
Material). The hydrographs at the two locations vary strongly. At the upstream location, the hydrographs are relatively
smooth, driven mainly by gravity flow in pipe systems in suburban areas. At the downstream location, the hydrographs

are more erratic due to inflows from dense city areas with fast response time and locally controlled ‘on-off’ pumps.
Historical rainfall observations were available in the form of C-band radar rainfall observations. The radar is located in

Stevns, approximately 50 km south-west from Copenhagen. Data were gathered from the Danish Meteorological Institute

(DMI). Historical forecast data were not available. Models were, therefore, fitted with ‘perfect rainfall forecasts’ (ex-post hind-
casting) as well as entirely without rainfall input. A realistic forecasting performance can be expected to lie between these
extremes.
om http://iwaponline.com/jh/article-pdf/23/6/1368/962686/jh0231368.pdf
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Figure 1 | The two studied flow meters are located in the Damhusåen catchment, Copenhagen. One flow meter is located upstream
(Dæmningen) and one downstream at the WWTP inlet (Damhusåen). The left panel illustrates precipitation (blue) and runoff (green) in the two
catchments. Valid rain events that are used for training and evaluating models are highlighted with red regions. The catchment area and the
location of the flowmeters are spatially visualized in the right panel. Please refer to the online version of this paper to see this figure in colour:
http://dx.doi.10.2166/hydro.2021.020.
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The aim of the forecast models is to support the WWTP in initiating a process that can allow the WWTP to handle larger
inflows than in normal operation, thus minimizing the risk of bypass and combined sewer overflow (CSO). This process is
called ATS because the sludge is allowed to settle in the aeration tanks (Sharma et al. 2013). ATS increases the inflow capacity
of WWTPs but decreases their treatment efficiency. This creates a decision-making problem where failure to activate ATS leads

to unnecessary risk of CSO (because the inflow to the WWTP remains limited), while unnecessary activation of ATS leads to
unwanted increased pollutant concentrations in the WWTP outflow (due to the reduced treatment efficiency). In practice, oper-
ators apply thresholds on the rate of inflow to the WWTP to decide whether ATS should be activated. The process requires

between 30 and 45 min to activate and the threshold exceedance, therefore, needs to be forecasted with sufficient lead time.

Data

Data used in this study consist of both flow measurements and radar rainfall data that range from August 16th, 2017 to the
end of December 31st, 2018. Flow measurements had a 2-min resolution, while rainfall data had a 10-min resolution. To syn-

chronize these two temporal resolutions, the flow measurements were averaged to 10 min resolution.
Models were trained and evaluated only on rain events that are relevant for UDS operation. To identify these events, a rain

intensity threshold of 0.01 mm/min was used to identify the start and stop times of specific rain events, i.e., when the intensity

surpasses and falls below the threshold. This threshold was selected by assessing whether a reasonable selection of rain events
was obtained in a visual inspection of the time series. Similar thresholds have been recommended in Löwe et al. (2016) and
DWA (2006).

Rainfall events closer than 12 h to each other were merged to allow for the emptying of basins in the UDS and to return to dry-

weather operation before the start of the next event. This event separation period was recommended by the operators of the system
and validated by manually inspecting the flow time series. Figure 1 provides an example of a flow time series for a 5-day period.

Anomalies such as flatlines in inflow measurements and missing values were removed from the datasets. Around 3 and 9%

of inflow and rainfall data, respectively, consisted of missing values. After pretreatment, all data were normalized by subtract-
ing the lowest value from all data points in the time series and dividing them by the difference between the maximum and
minimum values.
://iwaponline.com/jh/article-pdf/23/6/1368/962686/jh0231368.pdf
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For an unbiased validation of the model fit, the datasets were split up into a training set and a validation set. The training set

ranged from August 16th, 2017 to December 31st, 2017, while the validation set was the whole year of 2018. The training set con-
tained 61 rain events covering both summer and winter periods. A training period of 4.5 months was considered a reasonable
trade-off between the reducing computational expense and ensuring that the relevant hydrological variations are present in the

training data. Subsequently, the model was validated on 105 events from an entire year to verify model performance across sea-
sons. Training data of similar or shorter size has been used previously in previous work (Tan et al. 1991; Löwe et al. 2014).

Framework for unsupervised development of WWTP inflow forecast models

Hyperparameter search space in Box and Jenkins time-series models

We employed ARIMAX-type models for forecasting flow (Box et al. 2008; Madsen 2008). In their general form, these are
illustrated in Equation (1), where ŷtþ1jt is the flow value to be forecasted, assuming that observations are available until
time step t. yt is the flow observation for time step t, et ¼ yt � ŷtjt�1 is the one-step-ahead forecast error of the model observed
at time step t, and xt is the rainfall observation at time step t. The equation has four terms, the mean m, an autoregressive (AR)

term with parameter f, a moving average term (MA) with parameter u, and an exogenous input term (X ) with parameter l.
The parameters (sometimes referred to as coefficients) m, f, u, and l are dimensionless and need to be estimated. The model
orders p, q, and r can be seen as hyperparameters that define the length of the polynomials. An additional model parameter d
describes the order of differencing (Madsen 2008) of the flow time series, which is a process frequently employed to remove
non-stationarity from the series.

ŷtþ1jt ¼ mþ
Xp�1

i¼0

fiyt�i þ
Xq�1

j¼0

ujet�j þ
Xr�1

k¼0

lkxt�k (1)

There is no theoretical limitation on the values of p, q, and r, and the models can, therefore, in principle contain an infinite
number of parameters. In practice, most processes can, however, be described with p and q below 10. The rainfall inputs xt�k

that should be included in the model will depend on the time delay between rainfall and runoff in the specific catchment, as
well as on the shape of the typical rainfall–runoff hydrograph. Larger time delays imply that xt�k for small time lags k are not

relevant to include in the model. In addition, flow from catchments that cover a larger area will be sensitive to rainfall from
both the more distant and the near past, while the reaction from smaller catchments can be characterized by a narrow rainfall
interval. We exploited these effects by introducing hyperparameters that, depending on the characteristics of a catchment,

define the minimal value rlag that should be considered for the time lag k, and the number rn of rainfall input terms xt�k

that should be included in the model. This approach limits the number of coefficients that need to be estimated for the rainfall
inputs to a window of size rn that covers the time period that is relevant for the catchment and enables the automated search

for optimal model structures based on these hyperparameters with a limited range of values. Equation (2) summarizes the
structure of the resulting model.

ŷtþ1jt ¼ mþ
Xp�1

i¼0

fiyt�i þ
Xq�1

j¼0

uiet�j þ
Xrlagþrn�1

k¼rlag�1

lixt�k (2)

Criteria for estimating model parameters (coefficients)

Traditionally, the coefficients of ARIMA-type models are calibrated by minimizing the single-step residuals, which can be
done by using the sum-of-squares objective function (Equation (3)).

SSE(y, ŷ) ¼
Xn
t ¼ 1

(ytþ1 � ŷtþ1jt)
2 (3)

where yt and ŷt are the observations and predictions at the time point t in a time series of length n.
For estimating the model coefficients of a multi-step forecast, a scoring criterion SCt presented in Löwe et al. (2014) was

used, which takes a weighted average over several forecast horizons (h¼ 1, 2,… , k) (Equation (4)). The maximum forecast
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horizon was set to k¼ 10. This criterion encourages forecast models that reflect the physical system behaviour by penalizing

deviations from the hydrograph on longer forecast horizons.

SC ¼
Xn
t¼1

1Pk
h¼1

(k� hþ 1)

Xk
h¼1

(k� hþ 1)(ytþh � ŷtþhjt)
2

 !
(4)

The implementation of the criterion in Equation (4) requires that forecasts covering multiple forecast horizons are gener-

ated for each time step during model training. This approach cannot be implemented efficiently using standard time-series
modelling packages in R. We, therefore, implemented an approach based on matrix multiplication that exploits that
ARIMA models in multi-step predictions re-use information from previous forecast horizons in an iterative manner. This
approach is documented in the Supplementary Material (S3, Figure S3).

The optimization method used to minimize the objective functions was the dynamically dimensioned search algorithm
(DDS) presented in Tolson & Shoemaker (2017). The DDS search is a heuristic algorithm, specifically designed to solve com-
putationally expensive optimization problems with many parameters. The search starts as a global search where all model

parameters are randomly varied but then narrows down to a local search, eventually varying only one parameter. All par-
ameters were constrained to the interval �5 and 5, and starting parameters were selected randomly from a Gaussian
distribution with a mean of 0 and a variance of 1. DDS requires the user to define the number of objective function evalu-

ations, which was set to 2,500 for all models.

Criteria for selecting the best-performing model

We considered two criteria for evaluating which combinations of hyperparameters of the model should be selected and for
evaluating model performance in general. The first criterion is the persistence index (PI) (Bennett et al. 2013), which

measures whether the model can reproduce the observed flow hydrograph by comparing the forecast error against a bench-
mark forecast defined as the last available flow observation:

PIh ¼ 1�

1
n

Xn
t¼1

(ytþh � ŷtþhjt)
2

1
n

Xn
t¼1

(ytþh � yt)
2

(5)

where ŷ represents a prediction of inflow y at time step t, in a time series of length n, and h represents the forecast horizon in

time steps. A perfect model yields PI ¼ 1, while PI , 0 suggests that the forecast model cannot outperform the constant value
benchmark.

The second criterion focuses on the application of the forecast model to the decision problem of activating wet weather

operation of the WWTP (ATS). The threshold for ATS activation was defined together with the operators of the WWTP
and set to yt ¼ 5,000m3=h at both locations. As unnecessary activation and failure to activate ATS in due time leads to
unwanted pollution of the environment, evaluating the frequency of these undesirable situations enables the assessment of
the model performance in an operational setting. This assessment was implemented as a contingency table with three

states that were defined together with the operators (Courdent et al. 2017, 2018):

1. Correct forecast (TP, true positive): If ATS activation was predicted within a 75 min interval (from 60 min before measured

flow exceeded the threshold to 15 min after).
2. False alarm (FP, false positive): ATS event forecasted, but the measured flow did not exceed the threshold. This case leads

to suboptimal WWTP performance with a worsening of its pollutant removal efficiency.

3. Missed (FN, false negative): if ATS activation was predicted more than 15 min after the measured flow exceeded the
threshold or if ATS activation was not predicted at all. This case can negatively affect the WWTP performance by causing
discharge of partially untreated wastewater (bypass), reduction of the efficiency of biological removal processes, loss of

active biomass, and consequent long-term worsening of the WWTP operational capability.
://iwaponline.com/jh/article-pdf/23/6/1368/962686/jh0231368.pdf
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The time windows used in the classification of the ATS events are schematized in Figure 2 and were defined in collabor-

ation with the plant operator. Forecasting an ATS too early results in FP.
The critical success index (CSI) (Bennett et al. 2013) was used to measure how often ATS events were forecasted correctly

and would ideally take a value of 1:

CSI ¼ TP
TPþ FPþ FN

(6)

Both model selection criteria (Equations (5) and (6)) can be evaluated on different forecast horizons. Selecting models on
longer forecast horizons is likely to encourage more physically realistic behaviour of the forecasts because high forecast skill
cannot be obtained without generating multi-step flow predictions that follow the general shape of the observed hydrograph

(Löwe et al. 2014). On the other hand, this approach might compromise forecast performance on shorter horizons. To ident-
ify which trade-off is reasonable for our problem, we computed PI and CSI for lead times of 30, 60, and 90 min as well as the
average over these horizons (AVG-PI). The PI criterion generally increases with a larger forecasting horizon, and selecting a

model based on the average PI across different forecasting horizons is done to help lower the risk of non-identifiability. Sub-
sequently, we analysed the performance of models selected based on different lead times.
Technical implementation of model selection

ARIMA and ARIMAX-type models were identified by performing a meta-model search (meta-optimization) on a pre-defined
hyperparameter search space. The search was composed of three main steps:

1. Selecting various sets of hyperparameters (p, d, q, rn, rlag) from a pre-defined hyperparameter search space, generating var-
ious ‘hyper-models’.

2. Estimating coefficients of the hypermodels by minimizing an objective function (SSE or SC).

3. Evaluating the calibrated models on a validation dataset based on two evaluation criteria (PI and CSI).

The hyperparameter search space was defined as p ¼ {0, 1, 2, 3, 4, 5, 6, 7, 8}, d ¼ {0, 1}, q ¼ {0, 1, 2, 3, 4, 5, 6, 7, 8},

rn ¼ {2, 4, 6, 8, 10}, and rlag ¼ {5, 10, 15}. The process was carried out for models with (ARIMAX) and without (ARIMA) rain-
fall input, as well as for different objective function criteria (single/multi-step forecasts) to allow for a systematic comparison
of model types. The models were implemented in R and trained in a high-performance cluster environment where up to 120

hyperparameter combinations could be evaluated in parallel. Calibration for each model generally took under 10 min. In
total, 2,592 models were calibrated for each catchment, resulting in a total computation time of approximately 100 CPU h.
Figure 2 | Schematization of the time-thresholds used to classify ATS events, starting from the moment when the measured flow exceeds
the ATS threshold (5,000 m3/h).
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RESULTS AND DISCUSSION

In this section, the effect of different model configurations on forecast performance is evaluated. The first subsection provides
a visual overview of the effect of different procedures for selecting and training forecast models. The subsequent sections then
go in-depth with each of the analysed configurations. Sections S4–S6 in the Supplementary Material provide tables with a

detailed overview of model structures and performance when applying different criteria for the estimation and selection of
forecast models.

Physical forecast behaviour for different models

Figure 3 illustrates multi-step forecasts for a single rain event in the two considered catchments. Panel (a) compares the best-

performing models with and without external rainfall input. Panel (b) compares the best-performing models that were trained
using single and multi-step criteria (SSE and SC), and panel (c) compares models that were selected considering the persist-
ence index and critical success index (PI and CSI), respectively (PI was applied as a selection criterion in panels (a) and (b)).
All models shown in Figure 3 were selected on a 90-min forecast horizon.

Figure 3(a) shows that models without rainfall input can behave similar to models with rainfall input, but cannot very well
forecast the increasing limb of the hydrograph. This can be clearly seen from the hydrographs from Damhusåen (Figure 3(a)).
Where precipitation is increasing (for example, around 00:00–06:00), the ARIMAX models can quite successfully forecast the

increasing runoff, while the ARIMA models remain more stable. From Figure 3(b), it can be seen that models trained using a
multi-step criterion (Equation (4)) seem to better reproduce the physical behaviour of the system on longer forecast horizons.
As before, this is more obvious for the catchment of Damhusåen. From Figure 3(c), it is clear that if models are selected based

on the CSI score, there is a high risk of overfitting and forecasts not reflecting the physical behaviour of the system. This is
clearly illustrated as models selected on the CSI are just sharp peaks while selecting on PI results in a model behaviour that
much more closely resembles the physical behaviour and shape of the hydrograph.

Structural differences between models selected on different criteria were also identified. In Sections S5 and S6 in the Sup-
plementary Material, this is shown by selecting the 10 best-performing models based on both error metrics and various
forecast horizons. When selected on PI, the best-performing models have a higher number of MA parameters (q) compared
to the number of AR parameters (p) which is usually quite low. Additionally, most of the models selected on PI are differen-

tiated, although some 60-min forecast models for Damhusåen are undifferentiated. When selected on the CSI, the only clear
structure that can be seen is that most of the models are not differentiated, resulting in non-stationary behaviour.

Value of rainfall input for forecasting

Figure 4 shows the average PI and CSI skill scores of the top-5 performing models without (ARIMA) and with (ARIMAX)

rainfall input in the Dæmningen and Damhusåen catchments. The figure illustrates that in all cases, models using rainfall
input are superior when compared to the ones that use no rainfall input. The difference is more significant in Damhusåen
compared to Dæmningen, as the Damhusåen catchment exhibits more pronounced peaks and a generally less smooth behav-
iour of the flow series, caused partly by fast rainfall–runoff from dense city areas (cf. Figures 1 and 3).

Considering the model structures with the highest forecast performance (Supplementary Material, Sections S5 and S6), we
see that the selected hyperparameters (rlag and rn) reflect the behaviour of the catchment. The pronounced peaks in Damhu-
såen are mostly described by short lag times (rlag in the order of 5) and narrow window sizes (rn in the order of 2–4), while

slightly longer lag times (rlag in the order of 5–15) and wider window sizes for the rainfall input (rn in the order of 2–10) are
favoured in the Dæmningen catchment.

Effects of single- vs. multi-step parameter calibration

Figure 5 compares models fitted on the single-step objective function criterion (SSE) to models fitted on the multi-step objec-
tive function criterion (SC). Considering selecting on PI skill scores in panel (a), the traditional single-step objective function

criterion generally results in higher score values for shorter forecasting horizons (30 min) while for longer forecasting hor-
izons, a multi-step objective function criterion is preferred. In addition, PI values in the Damhusåen catchment are
generally very low for short forecast horizons, while they are more balanced in the Dæmningen catchment. This implies

that the model selection procedure favours multi-step models in the Damhusåen catchment where 7 of the 10 best-performing
models were trained using the SCt criterion, while the opposite result is obtained in the Dæmningen catchment (Supplemen-
tary Material, Section S4 and Figure S4).
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Figure 3 | Forecasts for both locations (Dæmningen; left, Damhusåen; right) visualized when selected on different criteria. Panel (a) com-
pares models selected with and without rainfall as an external regressor (ARIMA/ARIMAX) and panel (b) compares models estimated using
single- and multi-step criteria (SSE/SC); both panels’models were selected based on the PI. Panel (c) compares models selected on the PI and
the CSI. All models were selected on a 90-min forecasting horizon. Axes are re-used for each panel. From the figure, it can be seen that
ARIMAX models are capable of forecasting the increasing limb of the hydrograph and that multi-step models (SC) can better capture the
physical behaviour of the system for longer horizons. Finally, it can be seen that selecting on the CSI risks overfitting where the model does
not reflect the physical behaviour of the system.
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Figure 4 | The top-5 models based on the average persistence index over various horizons (AVG-PI) and average critical success index (AVG-
CSI) over various horizons with and without rainfall input. Models with rainfall input (ARIMAX) achieve better scores than models without
rainfall (ARIMA).

Figure 5 | Model performances of single/multi-step (SSE/SC) estimated models compared for different forecast horizons. Panel (a) shows the
PI skill obtained for different forecast horizons when training forecast models using the single-step and multi-step objective function criteria,
respectively. Panel (b) shows the corresponding CSI values. Darker colours correspond to higher score values. Please refer to the online
version of this paper to see this figure in colour: http://dx.doi.10.2166/hydro.2021.020.

Journal of Hydroinformatics Vol 23 No 6, 1377

Downloaded from http
by DENMARK TECHN
on 04 January 2022
From Figure 5(b), where models are selected on CSI (in contrast to AVG-PI in Figure 4), it can be observed that the CSI is

lower for models fitted with the multi-step objective function criterion (SC) compared to models fitted with the single-step
objective function criterion (SSE). This is explained by the fact that the multi-step objective function criterion prevents over-
fitting and punishes models that do not follow the shape of the hydrograph (Figure 3(b)). The single-step models are more
prone to overfit, which is clear from the reduced PI values for longer lead times.

Efficient model selection criteria

Figure 6 shows how models selected on PI estimated for different forecast horizons (30, 60, and 90 min, AVG-PI) perform on
other forecast horizons. Each model is selected on a specific forecasting horizon and shown as a certain point shape, and a

line connects its performance for different forecasting horizons.
We have not considered models selected based on the CSI criterion, as the previous sections clearly illustrated that this

criterion favours overfitted models that perform strongly for this specific criterion and a specific forecast horizon. Perform-

ance strongly degrades when considering other forecast horizons or evaluation criteria. In addition, no clear tendencies in the
selected model hyperparameters can be identified if the model selection is performed based on CSI (Supplementary Material,
Section S4). This underlines that the criterion leads to models that do not reflect the physical system behaviour.
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Figure 6 | PI and SCI scores for different forecast horizons of models that were selected using the PI for different forecast horizons (an
average over the forecast horizons). The PI skill score increases with longer horizons due to the error caused by the benchmark being greater.
To prevent this overfitting, an average of all PI scores should be considered. Concerning the CSI, selecting on the PI for shorter horizon results
in a better CSI score.

Journal of Hydroinformatics Vol 23 No 6, 1378

Downloaded fr
by DENMARK 
on 04 January
We observe a general trend of the PI skill score to increase with the forecast horizon. The reason for this behaviour is that
the error of the benchmark forecast (last known observation) increases for increasing forecast horizons. As a result, models

selected on PI60 or PI90 may be overfitted and perform poorly on shorter forecast horizons (Supplementary Material, Sec-
tions S2 and S3). Selecting models based on their average PI for different forecast horizons (AVG-PI) reduces the overfit and
leads to more robust models with robust CSI values.
DISCUSSION

Recommendations for the automated identification of flow forecast models

Our results suggest that it is possible to identify flow forecast models in an automated manner. Although models were trained
on rain events that differed in size, no significant deviation in forecasting performance was observed (Supplementary

Material, Section 1 and Figure S1). In terms of the criterion for parameter estimation, Figure 5 suggests that the most suitable
approach may depend on the specific application. Generally, the multi-step estimation criterion (SC) favours models that
better reflect the physical behaviour of the system, but the CSI of the forecast models will, in some cases, be inferior to

those estimated using the traditional single-step procedure (SSE). The SSE criterion allows for greater flexibility of the pre-
dicted hydrographs. This may or may not be desirable, as the forecasts achieve higher skill in an operational sense.
However, the forecasted hydrograph over multiple time steps will not necessarily reflect the shape of the observed
hydrograph.

The selection of the best-performing model should, in an unsupervised procedure, use a criterion that is based on measuring
the deviation from the hydrograph (such as PI) rather than an operational decision criterion such as CSI, as the latter carries a
high risk of overfitting. The PI criterion generally increases as a function of the forecast horizon, as the performance of the

constant value benchmark decreases. This implies a risk of non-identifiability if the forecast model is selected based on PI
scores obtained for large forecast horizons. We were able to mitigate this problem by selecting models based on their average
performance for different forecast horizons.
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The hyperparameters of the selected models exhibited clear trends. For instance, selected models were mostly differentiated

(d¼ 1) and had low AR term (p) and high MA term (q). Additionally, rainfall input improved forecasts and was mostly
centred around specific lag values, that, however, differed between the catchments. Hence, recalibration of the models
can likely be done more efficiently by considering a smaller search space.

Limitations

This work focused on investigating what factors need to be considered when selecting Box–Jenkins-type models in an unsu-

pervised manner. The work focused on flow measurements of two locations in Copenhagen, but the presented approach will
likely be applicable to other catchments with similar physical characteristics.

Due to various changing factors such as changing temperature and groundwater levels, hydrological models occasionally

need to be recalibrated (Troutman et al. 2017). Future work could investigate how often a recalibration should be performed
and how much data is needed.

There are known data uncertainties, for example in the rainfall data, that will always be present in a real-world context.

Radar rainfall input used in this work does not necessarily correspond to the true rainfall that is observed at the surface
and information on the estimate of the uncertainty is not provided to the model. Such uncertainties imply that models
that react less strongly to rainfall input will be selected and increase the uncertainty of flow forecasts. If desired, uncertainty

bands for the forecasts can be generated based on the variance of model residuals (Madsen 2008). Previous work demon-
strated that the uncertainty of rainfall forecasts can reduce the efficiency of control schemes for the sewer system by 20–
30% (Löwe et al. 2016).

Outlook

We applied a simple grid search to systematically evaluate the hyperparameter search space at the cost of computational

expense. Hyperparameter optimization routines would enable a reduction of the computation time required for training
the models. Heuristic search algorithms such as DDS (Tolson & Shoemaker 2017) or DREAM (Vrugt 2016) could be
employed. Additionally, other criteria for model selection such as hydrological signatures (Shafii & Tolson 2015) could be

promising. We would, however, expect that the consideration of such criteria is subject to similar challenges as identified
in our work, i.e., selecting models based on very specific hydrograph features leads to a high risk of overfitting. Finally, as
rain input does not need to be limited to a temporal resolution of the flow, rainfall-based daily intensities could be investi-

gated. This might help the model capturing seasonal variations in flows.
We employed Box–Jenkins models for forecasting, but our procedures for defining rainfall input variables, tuning the

model, and evaluating model performance are generic and can be transferred directly to other data-driven forecasting
approaches such as artificial neural networks (Zhang et al. 2018; Crotti et al. 2020).

CONCLUSIONS

We developed a method for unsupervised (automated) identification of data-driven models that forecast inflow to wastewater

treatment facilities. Based on the results, we conclude that:

1. We can obtain reliable forecasts of WWTP inflow with models that were identified in an unsupervised manner.

2. To facilitate unsupervised model identification, the search space for precipitation variables that should be included in the
forecast model can be constrained using meta-variables for the number of input variables and the time lag that should be
considered.

3. There is a high risk of overfitting if best-performing models are selected based on operational criteria (e.g. the frequency of
flow threshold exceedance). Model selection criteria should instead ensure that the model generates physically meaningful
hydrographs.

4. Different approaches for tuning model coefficients need to be considered in initial stages of an unsupervised model selec-

tion procedure. A multi-step objective function leads to a more physically realistic behaviour of the forecasts but can lead
to reduced forecast performance in terms of operational criteria. Thus, different objective functions may be optimal in
different applications.

5. Precipitation as an external regressor improves the performance of the models, but the improvement can be very small if
the time of concentration of a catchment is greater than the considered forecast horizon. Precipitation input may, thus, not
be necessary to generate short-term forecasts (,2 h) for larger urban catchments.
://iwaponline.com/jh/article-pdf/23/6/1368/962686/jh0231368.pdf
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6. Unsupervised model selection involves substantial computational efforts. However, once a suitable model was identified,

recalibration to new observations can be performed quickly, because the hyperparameters selected in the unsupervised
procedure exhibit clear trends that are linked to catchment characteristics.
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