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Abstract—Over the past decade, the high penetration of 

renewable-based distributed generation (DG) units has witnessed 

a considerable rise in electrical networks. In this context, direct 

current (DC) microgrids based on DGs are being preferred due to 

having less complexity for the establishment and control. At the 

same time, they offer higher efficiency and reliability compared to 

their alternating current (AC) counterparts. This paper proposes 

a new model predictive control (MPC)-trained artificial neural 

network (ANN) control strategy being an ANN-MPC instead of 

conventional cascaded-proportional-integral (PI)-trained ANN 

control for dynamic damping of photovoltaic (PV)-battery-based 

grid-connected DC microgrids. Unlike traditional controllers, the 

proposed control approach more rapidly attains generation-load 

power balancing under variable climate input (meteorological 

sensor data) and output (load demand), hence achieving quick DC-

bus voltage damping. The proposed ANN-MPC scheme is 

examined under different operating conditions, and the results are 

compared with the ANN-based conventional PI controller. The 

results show the proposed control strategy's efficacy to lessen the 

instability issues and achieve effective attenuation of oscillations in 

DC microgrids. 

 
Index Terms—Artificial neural network (ANN), battery energy 

storage system (BESS), DC microgrids, model predictive 

controller (MPC), photovoltaics (PVs). 

I.  INTRODUCTION 

ECAUSE of technical, environmental, and economic rea-

sons, an increasing interest is shown by the energy sector 

in adopting micro and smart grid technologies to enhance future 

electricity grids' efficiency and reliability [1]. A microgrid is a 

small-scale power grid that can solve energy issues and enhance 

the flexibility locally and operate either in a grid-connected or 

autonomous operation mode. Compared with the alternating 

current (AC) microgrids, direct current (DC) microgrids have 

the advantages of higher efficiency, lower implementation cost, 

simpler control, and higher reliability [2]. Moreover, reactive 

power flows, voltage unbalances, and harmonics are absent  
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from the DC microgrid, makes it easier to control [3]. With the 

continuous advancement of control theory, many advanced 

control algorithms [4] have been developed recently. In this 

context, researchers have proposed various control frameworks 

such as centralized control [5], distributed control [6], and 

hierarchical control [7], to meet the communication 

requirements in practical projects to ensure normal operations 

of the microgrids. Among advanced control methods, model 

predictive control is seen as one of the most versatile advanced 

control methods for DC microgrids [3]. Model predictive 

control (MPC)-based strategies have been proposed for control 

of hybrid AC/DC [1], [8], [9], AC [10], [11], and DC 

microgrids, [12]–[19], [20]. In AC and hybrid AC/DC 

microgrids, the MPC-based strategies have been proposed for 

the control of AC/DC [8], [9], and DC/DC bidirectional 

interlinking converters (BICs) [1]. In DC microgrids, different 

MPC-based techniques have been proposed for stability 

improvement [15], [16] optimal energy management [3], 

improving power-sharing [4], control of DC microgrids 

including constant power loads (CPLs) [12], [17], [18], high-

performance control of DC microgrid with a good transient 

tracking error [21], control of naval DC microgrids supplying 

pulsed power loads [13], [14], mitigating distribution power 

loss of DC microgrids with DC electric springs [22], control of 

DC/DC BICs [1], [20], and maximum power point tracking of 

photovoltaic (PV) sources [19]. As known, MPCs possess some 

features such as the basic inclusion of systems constraints and 

nonlinearities, flexibility to implement, and time-consuming 

behavior due to progressing optimization and prediction 

processes to manage the plant [23]. Thus, that behavior results 

in a computational burden issue unexpectedly. The weighting 

factor have been determined in the cost function of the MPC 

through artificial neural networks (ANNs) [24] for obtaining 

robustness with a novel method. To reduce the computational 

burden of MPCs for controlling modular multilevel converters, 

a neural network (NN) regression controller is introduced [25]. 

As ANN-based techniques do not need any information or 

mathematical model of the system in which it is implemented 

and also do not have a heavy computational burden, it is 

noteworthy to perform. 

Similarly, some approaches have been reported to further 

improve the control techniques. Therefore, the application of 

smart methodologies has been becoming prominent in the con-

trol area of DC microgrids [26]. In particular, ANN-based 

controllers have been broadly utilized for problem 

identification [27], voltage sag classifications [28], short-term 

prediction [29], etc., which is a subset of artificial intelligence 
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(AI) and also machine learning (ML) technology. Some exam-

ples are regulating the DC-bus voltage of a hybrid AC/DC 

microgrid through feedforward NNs with low computational 

burden [30], obtaining robustness in dual active bridge structure 

for DC microgrids [31] with ANN-based proportional-integral 

(PI) controllers in terms of over-undershoot, rise-fall time, and 

settling time, etc., and mitigating the steady-state oscillations 

with the help of ANN-based PI sensorless controllers [32] and 

ANFIS-power oscillation damping controllers [33] that contain 

the benefits of the ANNs and the fuzzy logic. Due to these 

benefits, more complex ANN structures, e.g., deep supervised 

learning-based ANN architecture have been proposed to 

capture the  system dynamics with high accuracy rates in the 

control of the DC/DC converter [34] and also actor-critic ANN 

architecture regulates the voltage of the DC bus with current 

sharing at the same time [35]. Furthermore, the ANNs are 

implemented in this field such as the control of a DC/DC 

converter to maintain stable output voltage [36] and also in the 

AC microgrid applications, e.g., sensorless voltage prediction 

method for total harmonic distortion (THD) calculation is 

presented [37]. 

This paper aims to bridge these disadvantages, such as 

computational burden, steady-state oscillations, slowness, and 

others. To this end, a new control strategy is proposed by 

combining the MPC and ANNs, which are trained through the 

robust behavior of the MPC to tackle the drawbacks of the 

mentioned controllers. In other words, the proposed method is 

implemented by replacing MPC with ANNs instead of merely 

applying MPC to alleviate the disadvantages in DC microgrids, 

including PV units and battery energy storage systems (BESSs). 

Similary, one of the biggest motivations of this study is to 

provide more effective stabilization in DC-bus parameters by 

improving the results obtained as a result of the training of the 

ANNs to be trained with different controllers. Using the MPC's 

robust stability features can rapidly provide robust behavior and 

desired training datasets under load changes and variable input 

and output conditions, dissimilar to the reported PI-based 

control schemes. The theoretical concepts and basic modeling 

of the DC microgrid system are provided, and the training 

procedure of ANN for realizing the ANN-based MPC scheme 

is explained. Briefly, the main features of proposed method can 

be summarized as follows: 

1) Using the MPC's robust stability features rapidly provides 

robust behavior and more proper training datasets under load 

changes and variable input and output conditions, dissimilar to 

the utilized PI-based control schemes. 

2) Additionally, the ANN-based MPC control scheme has 

the merits of flexible and enhanced system robustness by 

achieving more effective attenuation in the steady-state, 

superior to ANN-based PI. 

3) The obtained simulation results and comparisons can 

conclusively prove the effectiveness, accuracy, and authenticity 

of the proposed method for the dynamic stabilization of DC 

microgrids. 

Finally, to prove the effectiveness of the proposed ANN-

based MPC strategy, offline digital time-domain simulation 

studies are performed on a test DC microgrid system in 

MATLAB/Simulink environment, and all obtained results are 

compared with each other. For the sake of obtaining more 

realistic results, the input dataset of distributed generation (DG) 

is supplied with the help of a weather station, and the real-time 

experimental setup of the PV side (i.e., DG) and the BESS are 

performed by measuring their dynamics and then embedded in 

the simulation. The performance of the proposed strategy is 

evaluated in different operating conditions. 

 To cover the mentioned themes, the rest of this paper is 

organized as follows: Section II elaborates on the physical 

structure of the DC microgrid and its conventional cascaded-PI-

based control scheme. The proposed ANN-based MPC strategy 

is presented in Section III. Offline digital time-domain 

simulation studies and comparisons are provided in Section IV. 

Finally, discussions and conclusions are stated in Sections V 

and VI, respectively. 

II.  OVERVIEW OF CONVENTIONAL DC MICROGRID 

ARCHITECTURE  

A.  Physical Structure of DC Microgrid 

Fig. 1 depicts the overview of conventional DC microgrid 

architecture under study. The system comprises a PV array, a 

BESS, power converters, load, and grid parts. As to a DG, the 

PV array is linked to a DC bus with its unidirectional DC/DC 

converter. The BESS is also connected to the same DC bus 
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Fig. 1.  Overview of proposed PV- Battery based DC microgrid. 

TABLE I 

PARAMETERS OF ENERGY CONVERSION SYSTEM COMPONENTS 

DG: PV ARRAY  

Rated Maximum Power-Pm (kW) 1 
Maximum Power Current-Imp (A) 

Maximum Power Voltage-Vmp (V) 

Short Circuit Current-Isc (A) 
Open Circuit Voltage-Voc (V) 

Module Efficiency-η (%) 

32.68 

30.6 

34.83 
36.3 

15.40 

BATTERY ENERGY STORAGE SYSTEM (BESS)  

Battery Type 

Nominal Voltage (V) 

Nominal Capacity (Ah) 
Internal Resistance (mΩ) 

Cut-off Voltage (V) 

Fully Charge Voltage (V) 

Lead-Acid 

12 

200 
3.4 

9 

13.6 
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through a bidirectional DC/DC bus converter. Variable AC 

loads have been included in the system. The AC bus is tied to 

the DC bus with an AC/DC BIC. The model represents a real 

platform to some extent. Regarding connections among the 

elements, solid lines possess power, whereas intermittent ones 

belong to the communication line. The above-mentioned DC 

microgrid ensures to feed the AC loads interruptedly with a 

DC/AC inverter operation. The power grid is connected to the 

DC microgrid from the transformer. An energy management 

system (EMS) controls the power converters coordinately to 

provide power flow smoothly. In this microgrid, the total rating 

power of the PV array is 1 kW. Also, the PV side has a 

maximum power point tracking (MPPT). We have tried to 

maximize battery capacity as much as the physical and financial 

situations allow while establishing the system. In order to 

provide longer sustainable energy to the load side once the PV 

input has a lack of power generation, we have selected six 

pieces of batteries, three pieces connected in parallel and two 

pieces of them in series. Each of them has a 200 Ah capacity 

with nominal 12 V output voltage. Thereby, the BESS’s 

capacity corresponds 600 Ah, and its nominal output voltage 

reaches 24 V, with 14.4 kWh energy capacity. The parameters 

of the system components are given in Table I. The BESS plays 

a vital role in improving the microgrid's stability and alleviating 

the effects of the variable nature of the RESs. The primary 

power source to the loads is the PV array; however, the BESS 

stores surplus power generated from the PV side as 

complementary power sources. This operation form makes the 

system more stable and robust. 

B.  Traditional Control Scheme for General System  

To determine the system's behavior under different control 

schemes in this paper, we first implemented cascaded-PI 

reference voltage-current control, then controlled through 

MPC, and lastly performed the trained ANNs with the help of 

the cascaded-PI and MPC separately. The data were obtained 

and compared using these controllers. As known, any controller 

is one of the systems’ main parts for achieving a high-

performance. Fig. 2 shows the general scheme of the 

implemented cascaded-PI reference voltage-current control. 

The system contains eight switches controlled for uninterrupted 

power flow from DG to loads or grid to loads. The first (I) 

controller belongs to the PV converter by its MPPT controller. 

Solar cells from the PV systems are nonlinear characteristics 

and are considered to operate the maximum power point (MPP) 

under those changes [38]. The most forceful method for better 

harvesting energy from PV cells is the MPPT technique. A 

bidirectional DC/DC buck-boost BESS converter is one of the 

key elements for managing the deficit or surplus powers among 

DGs, loads, and power grid through the second (II) and third 

(III) controllers. The third one also enables us to keep the BESS 

working in a predefined state of charge (SoC) band. The SoC 

value can be calculated with the ampere-hour (coulomb) 

counting method. This method assumes that the battery capacity 

is known, and battery parameters like voltage and current can 

be measured accurately. On the other hand, a full cycle is 

defined as complete discharge, and charges to 100% depth of 

discharge (DoD) value is described as follows 

  1 .SoC DoD                   (1) 

If the SoC is 100% or equal to 1, it represents a fully charged 

battery, and 0% is for an empty battery. SoCi is the initial value 

of the SoC, which is calculated as 

    
1

2

1
.

t

i Batt
t

SoC SoC i dt
Q

                        (2) 

The mentioned system has two different operation modes 

versus the demand regarding battery and grid mode. In the 

battery mode, the batteries are fed by the DG, and subsequently 

the loads are also fed. Despite the fact that BESS is discharged 

up to a certain SoCmin level, the inverter dispatches the power 

from the BESS to the loads in the battery mode. On the contrary, 

in the grid mode, unless the SoC level is higher than the 

minimum value, i.e., SoCmin, the BESS needs to be charged and 

charged by the utility grid. The BESS control strategy can be 

divided into two different stages as the step-down and step-up 

stages correspond to switches in the unidirectional DC/DC 

buck-boost converter responsible for charging and discharging, 

respectively. The step-up stage is controlled and the step-down 

one is closed while discharging exists. On the contrary, step-

down one is active while charging exists. Both charging and 

discharging control modes have DC-bus voltage and current 

references for the outer and inner loops. If the DC-bus voltage 

is higher than the defined reference, the inner current loop tunes 

the duty cycle to force the current flow from the DC-bus to the 

BESS, which introduces charging the BESS. The batteries' 
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Fig. 2. Conventional control strategy with cascaded-PI for DC microgrid. 
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utilization and lifetime should be paid attention to due to their 

total cost of ownership. So, the batteries should be operated at 

a defined SoC level by 

min max .SoC SoC SoC              (3) 

Besides, the BESS is expected to dispatch power to the load 

side in the battery mode as well, once the SoC value is higher 

than SoCmax. In other words, if the desired SoC value is less than 

SoCmin, the system should switch on the grid-tied mode; 

otherwise, it should keep working in battery (standalone) mode. 

On the other hand, confining an SoC band provide a healthy 

operation eliminating overcharge and disruptive discharge [39]. 

In the grid mode, the EMS is also can send the commads to 

charge-discharge the BESSas a tertiary control with the help of 

static SG switch. Thereby, the EMS changes the static switch’s 

state (SG) to transfer power from the grid to the load side while 

energy harvesting and SoC are less than demand; vice versa i.e., 

battery mode is switched on by another static switch (SB). As 

can be seen in Fig. 2, control loops and EMS affect 

semiconductor devices’ switches that can be classified as 

follows: S1 exits in the DC/DC boost converter, S2-S3 couple 

belongs to the unidirectional DC/DC buck-boost converter, and 

lastly, the rest of switches are located in the unidirectional 

DC/AC inverter.  

Additionally, the BESS converters can also regulate the 

battery banks charging rates in grid mode. Based on the SoC 

values and the demand conditions on the load side, the 

charging-discharging current references are generated to 

regulate the current flow in the converters. To this end, the 

BESS can inject power to the DC bus or absorb power from the 

DC bus. In this case, only one current control close loop with a 

PI controller is enough to regulate the charging current. Lastly, 

the fourth (IV) one exists for inverter control, depending on the 

system mode. Each control layer affects each other indirectly to 

operate synchronously. 

III.  ARTIFICIAL NEURAL NETWORK-BASED MODEL 

PREDICTIVE CONTROL  

A.  Model Predictive Control of DC Microgrid 

MPC is using in different power applications, e.g., control of 

power converters in AC microgrids [40], dynamic stabilization 

for a DC microgrid [16], and introduced a schedule approach 

for the operation of domestic refrigerators [41]. Model 

predictive-based controllers can have advantages compared to 

conventional controllers, but MPC has the main drawback, 

making it hard to implement in the system. The MPC's main 

disadvantage is the time-consuming behavior due to using 

optimization and prediction approaches to control the system. 

MPC needs to predict the future and do optimization to find 

proper values for the manipulated variables. Therefore, it will 

do a process with a heavy computational burden, which can be 

time-consuming. In this paper, to cover MPC's drawbacks, 

ANNs are used. The ANNs are trained based on MPC-based 

data to behave as the implemented model predictive-based 

controller to overcome MPC's problem, i.e., time-consuming 

control application. The model predictive control-based 

approach attempts to predict the plant output's future values and 

uses this in an optimization process to find the proper plant 

inputs. If the state in the system is as follows: 

                       
( 1) ( ) ( )

,
( ) ( )

x k Ax k Bu k

y k Cx k

  



                          (4)   

the future values of the plan outputs can be calculated as follows 

[42], [43]: 

      ( ) ( 1) ,Y Ex k Gu k L U                (5)   

where, 

                                  

( 1)

( 2)
,

( )

y k

y k
Y

y k P

 
 


 
 
 

 

                                         (6) 

                            

( )

,

( 1)

u k

U

u k P

 
 

 
 
    

                              (7) 

                       
2 ,T PE CA CA CA                         (8) 
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T q
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         (10) 

In (4), x, u, and y represent the plant's state, manipulated 

variables, the plant's input, and the plant output. u(k) is the 

manipulated variable as long as assuming the input is generated 

by a sample and hold the device as u(t)=u(k), kh ≤ t ≤ (k+1)h. 

With respect to, t0= kh and t=(k+1)h,  it can be expressed 

x(kh)=x(k), namely, u(k) is constant on the interval [kh,(k+1)h]. 

As seen in (7), ∆U is our control objective is to form a control 

sequence as ∆U(k), ∆U(k+1), …, ∆U(k+P-1), where P is the 

prediction horizon. It is important to note that MPC uses a cost 

function to obtain the plant input's proper values, and the plant's 

prediction values can be used to make the cost function. The 

cost function can be defined as: 

        
2

2

1

( ) ( | | ) ,
P

k i k

i

I W r k i k y k i k 


         (11) 

where, 

             [ ( | ) ( 1| ) ].T T T

k kW u k k u k P k      (12) 

In (11) and (12), αi, r, λ, and θk are the weighting coefficient 

reflecting the relative importance of the controlled variable, 

reference the output, weight of the constraint violation penalty, 

and slack variable respectively. In this paper, four models of the 

predictive-based controller are implemented. The first couple is 

used to control the DC/DC power converter of the PV system. 

The third MPC is implemented to control the BESS's 

bidirectional DC/DC power converter. The fourth controller is 

used to control the AC load. Also, the plant input, plant output, 
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and the reference for the four mentioned MPCs are defined as 

follows: 

a) For the first MPC, the plant predicts reference current 

through VPV and its reference VREF, instead of the PI voltage 

controller.  

b) Similarly, the second plant utilizes IPV and IREF for 

controlling the DC/DC boost PV converter as desired. 

c) For controlling the DC/DC buck-boost BESS converter, 

another model predictive plant is developed by obtaining 

VDC_Bus and its reference VREF_Bus. 

d) The last predictive plant is deployed for operating the 

DC/AC interlinking inverter to dispatch the power from the 

DC bus to the AC loads with the help of measurements of 

VDC_Bus, VLoad, and ILoad signals. 

After compiling a normal operation to gather training data for 

ANNs, the system becomes ready for the exploitation phase 

with trained ANNs. 

B.  Implementation of ANN 

Typically, an ANN is considered a subset of artificial 

intelligence (AI) that tries to imitate the human brain's mindset. 

Dynamic ANNs contain tapped delay lines that are ready for 

nonlinear prediction. They are also appropriate for impending 

failure detection, regression problems, system identifications, 

and dynamic modeling of a physical model [37]. This study 

presents a multi-layer feedforward NN with Levenberg-

Marquardt backpropagation structure, which is a pretty simple 

structure among NNs and easy to apply, as can be seen in Fig. 

3. Thereby, with the aim of avoiding unnecessary complexity, 

we have targeted to apply one of the essential feedforward NNs 

to conduct simplicity. The reason why this ANN structure is 

adopted is that it does not make the system complex for solving 

the regression estimate problem which is faced. In particular, 

the elements of the feedforward ANNs are divided by layers. 

The signs from the input layer to the output are carried by a one-

way connection. While linking one layer to the next, any link 

does not exist in the same layer. In feedforward networks, the 

outputs of the cells in the layers are the input of the next layer. 

If the layer by layer network is examined, the input layer carries 

the information from theexternal environment to the cells in the 

intermediate (hidden) layer without making any changes. The 

output of the network is calculated by processing it in the 

hidden layers and the output layer. For the input presented to 

the network, the output of the network is compared with the 

genuine result. The difference arising from this comparison 

reveals the error value. The purpose of calculating 

backpropagation is to generate a decent output by reducing the 

error [37]. The error will be distributed to the weight ratings of 

the network every iteration. The mentioned feedforward 

networks usually meet problems such as regression, 

classification, and prediction by preferring the delta supervised 

learning rule that is predefined with the help of the known 

output dataset. 

Since nonlinear problems cannot be learned with single-

layer perception, most of the problems encountered in daily life 

are linear. In other words, the feedforward network can imitate 

static nonlinear relationships dissimilar to recurrent networks 

that are used for dynamic relationships. As static relationships 

are necessary, the feedforward NNs would be convenient. 

Referring to the operation, an ANN predicts data series of y(t) 

while obtaining past values up to delay (d) pieces of x(t) series 

as 

                      ( ) 1 ,..., ( ) .y t f x t x t d                (13) 

 The NN can be designed under four sections such as proper 

input selection, defining the paradigms, estimation, and lastly 

implementation. The backpropagation is a methodology to train 

the weights in a multi-layer feedforward NN [44]. If the 

network has n inputs, one hidden layer with m neurons, and one 

output, the generic structure of the backpropagation NN can be 

stated as follows: 

         , 1 ,k k jb b j m                (14) 

        , 1    1 ,t t ijw w i n and j m                    (15) 

        
, , , ,

1

1,2,...,
( ) ; ,

1,2,...,

n

t j t ij t i k j

i

i n
h w x b

j m

 
   

  
               (16) 

      , , , , ,

1

) ,
n

t j hidden t j t ij t i k j

i

r f h f w x b


 
   

 
            (17) 

so, the output signal can be calculated as 

         
, ,

1

( ) ; 1,2,..., ,
m

t output t j t j y

j

y f w r b j m


 
   

 
          (18) 

where, xt,i is input, ht,j, and rt,j is input and output of the hidden 

layer, bk,j and by are the bias factor (i.e., for the itk node of the 

hidden layer) and the bias factor of the neuron in the output 

layer, respectively, wt,ij and wt,i are connection weights, and yt 

is output. The schematic diagram of elucidated multi-layer 

feedforward NNs can be illustrated in Fig. 3. The structure of 

implemented NN has one hidden layer, whose sigmoid 

activation function is presented by 

          
,

,

1
,

1 t j
t j h
r

e





                   (19) 

or can also be generalized as 

        
,

,

,

1 0
.

0 0

t j

t j

t j

h
r

h


 



             (20) 

 Before proceeding, it is better to mention that proper data 

selection is the most important point in the system. In real sys-

tems, training data should be big data like days, months, or 
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Fig. 3.  Schematic structure of ANN to estimate output (W: weights, b: bias, 

and f: activation function) [44]. 
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longer to train the system properly according to the application 

type. Here, we have measured datasets, and thus we have 

embedded the scaled data into the simulation. For our study, 

one simulation period is enough for gathering the desired 

training data. The gathered data can be utilized to create input 

and output data sets, and based on which the optimized values 

of the Wt, Bk, and by can be obtained. After calculating the 

weight and bias factors, the well-tuned ANNs can be 

implemented in the system. Upon considering the performance 

criteria in (21) and (22) of the trained ANNs, to obtain high 

accuracy, the correlation coefficient (R) should reflect 

convergence to 1 (one), and mean squared error (MSE) should 

be near 0 (zero) as possible as much. 

       
1

( ) ( )1
* ,

ref

ref

m
ref y y

t y y

y t y t
R

m

 

 

  
 
 
 

          (21) 

           2

1

1
( ( ) ( )) ,

m

ref

t

MSE y t y t
m 

           (22) 

where, yref(t) is the desired value, y(t) is the estimated value of 

the proposed method, and also μ and σ are the mean and stand-

ard deviation of the values, respectively. To begin with, the out-

puts of the ANNs that belong to a static nonlinear relationship 

with inputs are chosen with the aim of estimating the data for 

the power converters. Then, suitable inputs to be chosen for 

outputs are specified. While the system operates in the training 

phase, the inputs and outputs of ANNs are gathered to be trained 

by being measured variables such as relevant meteorological, 

current, and voltage data. Obtaining satisfactory results from 

the trained ANNs is related to selection proper data, convenient 

ANN parameters, diversifying training data with enough 

sample time. After getting desirable training results, the prior 

controllers are deactivated, and the outputs of the ANNs are 

linked to the controllers in the exploitation phase. Supposing 
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Fig. 4.  Operation overview of PV-Battery-based DC microgrid with MPC and conventional-PI controllers at discrete times for training and exploitation phases. 
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Fig. 5.  Application steps of deployment of ANN-based proposed system. 
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that the ANN results look reasonable, it is better to include this 

ANN into the system permanently after validating its 

performance with different inputs and outputs obtained for the 

training. The backpropagation algorithm is performed to initiate 

the process, including inputs in the input layer, 10 hidden 

neurons in the hidden layer, and output in the output layers. The 

target classes are divided for training, validation, and testing 

parts, selected as 70%, 15%, and 15%, respectively, at 1000 

epochs. Due to being selected simulation sample time (Ts) as 

5e-9 sec and simulation period (∆T) as 4 sec, the number of 

elements can be calculated regarding (1/Ts)*(∆T). So, it is 

notable to mention that the measured training datasets from the 

measurement devices have been embedded into the simulation 

as an 800000001x(Number of inputs) matrix, representing 

dynamic data 800000001-1 time steps of input elements and 

targeted 800001x1(i.e., Number of output is equal to 1) matrix 

as output, representing dynamic output data 800000001-1 time 

steps of one element.  

Firstly, the same input datasets have been utilized for PI-

trained ANNs. Then PI-trained ANNs have been implemented 

in the test (online) phase and obtained the results as can be seen 

in Fig. 4. Secondly, after obtaining the data from measurements 

through the MPC in the training (offline) phase, the ANNs are 

trained well and ready for applying in the test i.e., exploitation 

(online) phase. The online phase corresponds to working with 

the proposed ANN-based control technique. In other words, the 

data are gathered preliminarily, trained for ANNs in the offline 

phase, then started up working through ANNs without any 

previous controllers. The trained ANNs provide the duty cycles 

for PWM signals to the power converters rapidly without any 

computation effort.  

The application steps of deployment of ANN-based 

proposed control scheme can be mainly aligned with six steps 

including proper datasets generation with PI and MPC 

techniques and defining the paradigms (Step I), dividing up the 

target timesteps (Step II), selecting training tools as a back-

propagation algorithm (Step III), training process (Step IV), 

evaluating the performance criteria with the least MSE value 

(Step V), and implementation into the system with exploitation 

phase (Step VI). After completing these all steps in Fig. 5, the 

scheme is ready to implement the well-trained ANN as the last 

stage. As shown in Table II, inputs and outputs of used ANN 

on the relevant controllers and their best performance validation 

values are given. N is the number of ANN that gives duty cycles 

(dN) as output for PWM signals to be connected to the power 

converters' switches. The duty cycle ratio is estimated with the 

ANN structure by considering the maximum duty cycle 

constraints. After providing a reliable duty cycle ratio, then the 

PWM signals are produced by the PWM generator to drive the 

converter. It is important to point out that networks are not only 

trained under normal operating conditions but also variable 

input characteristics. Thereby, well-trained ANNs desired error 

rates provide the control reliability of the system.  

IV.  SIMULATION RESULTS 

For the first application, it is considered to be that the main 

controller of the system has been adopted as a cascaded-PI 

reference voltage-current controller. Likewise, in [45], rapid 

changes can be controlled effectively using the same cascaded-

PI controller for PV-Battery-based applications. As proposed in 

[46], the evidence we have comprehended some advantages to 

prefer a cascaded-PI voltage-current controller for a hybrid 

wind-solar-battery-based microgrid. DGs' further optimal 

operations effectively provide the DC microgrids' resilient 

response, implementing cascaded-PI for BESS's primary 

control. To compare our promising results obtained through the 

applied controllers, we found it appropriate to perform 

TABLE II 

INPUTS AND OUTPUTS OF ANNS’ ELEMENTS ON RELEVANT CONTROLLER 

USED 
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TARGET 

CONTROL 
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Fig. 6. MSE value for dIII output during the training until 1000 epoch size. 

TABLE III 

PARAMETERS OF AC LOAD COMPONENTS 

AC LOADS POWERS OPERATION-TIME 
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Fig. 7. Variable inputs and outputs: (a) Temperature and solar irradiance,  and 

(b) switching state (event) of loads. 
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cascaded-PI and then MPC on the system as a solid basis. The 

simulation studies have been done in the MATLAB/Simulink 

software environment. The system has been simulated under 

variable input like irradiance, temperature, and variable output, 

i.e., considering different load conditions that do operate dis-

tinct operation-times. Due to the natural structure of ANNs, it 

is inevitable that the results of the training obtained with the 

same data sets and the same structural configurations will be 

different. During testing of the proposed method, the results of 

more than one training process with the same datasets were 

compared to each other, and the error results obtained with 

MPC-based training always outperformed lower performance 

than those obtained with PI-based training. Thus, we have 

included the best MSE result couples obtained as a result of the 

pieces of training in Table II. With a theoretical perspective, the 

best validation performance is evaluated by the best validation 

performance of MSE value as validation target timestamps are 

used to measure network generalization and to halt the training 

(c)

(b)(a)

Battery Bank

Weather Station

PV Panels

 

Fig. 8. Experimental setups in the laboratory; (a) BESS, on the roof of faculty 
building: (b) Weather station for meteorological data, and (c) PV-based DG. 

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-20

-10

0

10

20

C
u
rr

en
t 

o
f
 L

o
ad

s
 [
A

]

1.8 1.9 2 2.1 2.2 2.3

-20

-10

0

10

20 Zoomed

Load I
Load II

Load III

Load IV

Load I

 
Fig. 9. Currents of load shedding during operation. 

TABLE IV 

THE COMPARISON OFAPPLIED CONTROLLERS FOR DC-BUS VOLTAGE 

FEATURES 

CONTROLLERS 

CASCADED-

PI 
MPC 

ANN-

BASED PI 

ANN-BASED 

MPC 

Slew Rate-

V90-10/TR 

Slow 

5.84 V/ms 

Slower 

3.62 V/ms 
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2.61 V/ms 
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Voltage 

Oscilla.-∆V 

High  

3.01V 

Average 

1.90 V 

Less  

1.51 V 

Least 

1.15 V 

Comp. 

Burden 
Average High Lowest Low 

Response 

Time-TRES 
13.23 ms 14.12 ms 5.99 ms 6.60 ms 

Robustness Worse Average Good Better 
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Fig. 10. Variation of DC bus voltage under input and output (load) change.  
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Fig. 11.  Zoomed DC bus voltage under input and output (load) change. 
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process when generalization stops improving with the 

validation check. Fig. 6 shows one of the best validation 

performance of MSE results during the training process. 

Our model setup bears a close resemblance to the real 

system; thus, we have preferred to use AC loads and grid parts 

with its own EMS. In particular, the results have been analyzed 

and compared with each other in terms of steady and dynamic 

performance. Table III expresses the loads' rating power and 

their run-time during simulation to evaluate the system's 

behavior. As can be extracted from Table III, the loads' rating 

power is expressed, and the loads are involved in the system at 

different and same times.  

The PV side has two main inputs as temperature and solar 

irradiance. These variables can be shown in Fig. 7 (a), which 

give rise to unstable behavior regarding inputs and outputs 

(loads). At a definite time-interval, Load III and IV are 

connected. Then, Load I is reconnected in the same sequence, 

as shown in Fig. 7 (b). To reach realistic results, inputs have 

been measured and utilized through a weather station, as shown 

in Fig. 8 (b). Furthermore, the simulation results have been 

obtained through a strong model of the real system, as seen in 

Fig. 8 (a) and (c), measured, analyzed, and resembled its 

behavior. As seen in Fig. 9, the loads are fed smoothly.  

For distinguishing between results, the MPC and then MPC-

aided ANN was implemented in addition to conventional 

cascaded-PI controllers. Furthermore, the DC bus is supposed 

to be assessed in detail due to being the system's backbone. 

Therefore, we have focalized the DC bus variables such as 

voltage and current stress to prove the proposed method's 

effectiveness in balancing input and output changes. To this 

end, the DC bus voltage alteration, i.e., VDC_Bus can be expressed 

in Fig. 10 for all controllers. Some critical points of the load 

change were zoomed in to visualize for better illustration. The 

characteristic of the DC bus voltages for various time intervals 

can be investigated in Fig. 11. On the other hand, the DC bus 

current variation comes from the BESS converter (IBat) to the 

inverter, i.e., IDC_Bus can be examined in Fig. 12 with its zoomed 

ones in Fig. 13. 

V.  DISCUSSION AND FUTURE WORK 

 As anticipated, our results prove that the MPC-aided ANN 

carries out the system properly under unstable input and output 

conditions. For better illustration of the results for each 

controller can be aligned as:  

i. The coefficients of the cascaded-PI controller [21], [45], 

[46] can be adjusted faster, although the system can show 

unstable behavior with large gains of the PI;  

ii. PI-trained ANN controller has superior performance for 

achieving more stable oscillation when compared to 

conventional-PI;  

iii. Unlike this unstable situation, the MPC can alleviate voltage 

stress to a certain extent in DC bus without any other 

methods; nevertheless, the MPC suffers from the 

computational effort, make the system somewhat slow; 

iv. To eliminate this issue, MPC-trained ANN seems a good 

and straightforward choice for compensating the stress with 

its desired features in Table IV. Also, ANNs could be 

improved by optimized for each iteration.  

Additionally, the training datasets have been generated with the 

help of related controllers, i.e., PI-trained ANNs have been 

trained through the data that is obtained with the PI controller, 

and the MPC one has been implemented likewise. As a result, 

it is distinct that ANN-based PI shows inferior performance 

compared to the ANN-based MPC due to being trained in the 

dataset which has been formed through the conventional-PI 

controller. So far, the results have been encouraging; therefore, 

one promising application of our technique would be 

implementing this approach with both controllers in a real-time 

system. It is worth mentioning that the loads' character is critical 
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Fig. 12. Variation of DC bus current under load change condition.  
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for comprehending the system's general behavior. Before 

proceeding to future work as a control application of 

experimental setup instead of only simulating, we have 

mentioned control of the PV-based DG, BESS, and real AC 

loads models that we have, in fact, within the scope of the 

laboratory. 

VI.  CONCLUSION 

This paper investigated and compared the concept and 

phenomena of different control applications in PV-Battery-

based DC microgrid for stabilization. The results were obtained 

for comparing each performance under variable climate 

conditions. The results show different performances related to 

the training data quality that is arisen from the controller. A 

comprehensive comparison of the results proved clearly in 

terms of more robustness, faster dynamics, lower oscillation, 

and better steady-state performance, which also corresponds to 

the desired transient response, high flexibility, less 

computational effort, and better error tolerance, and no needed 

global information. The variation of VDC_Bus and IDC_Bus under 

variable input-output conditions such as different power 

generations and load conditions in the proposed method 

possesses superior performance over the other three by all 

means among tried methods. Since the obtained results exhibit 

the proposed control strategy's efficacy to lessen the instability 

issues and achieve effective attenuation of oscillations, these 

results have further strengthened our confidence in the ANN 

method, which is affiliated with strong control techniques.  
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