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A B S T R A C T

A methodology for thin-walled frame analysis using displacement modes of beams at joint interfaces has
recently been proposed. This paper introduces an implementation that uses a specific advanced beam element
based on semi-analytical beam mode solutions of a generalised beam theory. The end cross-sections of the beam
elements consist of wall elements with displacement degrees of freedom that can be joined to conventional
finite shell element models of the joints. However, before joining the beam element and joint model at the
interface, both beam and joint model are transformed into cross-section displacement mode degrees of freedom.
This transformation enables the use of a reduced mode space at the interface as well as in the beam. The
quadratic nature of the beam mode equations of the beam element leads to a non-unique number of beam
displacement modes. However, this paper introduces an exact mode selection technique that leads to a unique
set of modes. Necessary details of the beam element formulation are included in order to make a self-contained
description of the mode selection technique. Mode reduction through a length scale dependent choice of the
number of exponentially decaying distortional modes is investigated and discussed for three types of joint
design in four examples. The three joint design types investigated are based on in-plane membrane action,
flexural out-of-plane action and a combination of both membrane and flexural action.
1. Introduction

The analysis of frame structures using beam elements is standard
practice. The connections between elements at joints are modelled
based on simplifying hypotheses concerning joint rigidity. Commonly,
hinges or direct transfer of beam displacements are used without con-
sidering the effects of possible relative displacements. Analysing thin-
walled frames in this fashion may lead to erroneous results since local
torsional and distortional effects are prone to occur. Effects such as
cross-sectional distortion are not included in traditional beam ele-
ments, and the commonly assumed joint assumptions may also lead to
non-economical, oversized or incorrect designs.

This paper utilises a three-dimensional advanced beam element with
multiple nodes at each end. The beam ends are connected directly
to nodes at joints without constraint equations, and the joints are
modelled using standard finite shell elements. Since the advanced beam
elements only have nodes at each end, they model the prismatic beam
with much fewer degrees of freedom compared to the application of
shell elements. Furthermore, by using interface mode reduction, the
beams can be reduced to beam elements with even fewer degrees of
freedom or even to standard six or seven degrees of freedom beam
elements.

∗ Corresponding author.
E-mail address: jej@byg.dtu.dk (J. Jönsson).

Increased focus on steel consumption and use of cold-formed thin-
gauge steel challenges the conventional beam design methods that
rely on cross-sections keeping their shape. By using interface mode
reduction, the examples of this paper show that using standard beam
elements can lead to significant displacement errors.

The current work aims at developing advanced beam elements
and joining methods that allow an intuitive understanding of modes,
interfaces, length scales and mode reduction. This will allow engineers
to use advanced frame models in which they can easily adjust the accu-
racy (number of d.o.f) in zones of interest. The accuracy is controlled
by adjusting the locally included number of interface modes without
remodelling or modelling the whole structure or specific parts using
finite shell elements. Adjusting the number of modes will also allow
convergence analysis.

An overview of historical developments and a proposal of a method-
ology has recently been given by the authors in the paper [1]. The
specific implementation of the method used in the following is based
on the displacement modes of the thin-walled beam model introduced
in [2] and on the thin-walled beam element formulation given in [3].
The selection of unique interface modes is introduced and described in
detail in the current paper. This selection is necessary since the beam
displacement solutions have an excess number of complex interacting
https://doi.org/10.1016/j.tws.2021.108798
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cross-sectional displacement modes along the axial direction of the
beam element. Furthermore, the complexity of assembling non-aligned
beam elements is taken care of by introducing a three-dimensional
finite element joint model. The joint model is an assembly of finite
shell elements. This assembly can be adapted to complex geometries
and hence ensures that it includes the relevant mechanical behaviour.

An advantage of the method is that the use of beam displacement
modes at interfaces allows a reduction in degrees of freedom (d.o.f.) in
the numerical model of a frame structure. The mode-based formulation
is seen as a potential tool for analyses of thin-walled frame structures.
The current paper examines the influence and possibilities of interface
mode reduction for different joint designs.

Among thin-walled beam analysis methods that rely on displace-
ment mode formulations is the Generalised Beam Theory (GBT) [4,5]
which is a well established and efficient approach for analysis of the
individual thin-walled beam. An example of the vast development of
this method can be seen in the paper by Abambres et al. [6]. Within
the framework of GBT, Basaglia, Camotim and Silvestre have developed
a method for analysis of thin-walled frame structures, see [7–11].
This method retains the use of a single joint node and is efficient for
many standard steel joints. Constraint equations are used to model
the compatibility between end section distortional warping and wall
transverse bending displacements of the connected beams. As described
by Basaglia et al. many joints can be treated based on flange or web
continuity through the joint. However, in un-stiffened joints, the trans-
verse bending stiffness in relation to a joint may have to be neglected
or estimated. The method cannot easily be used for complicated joints
between more general cross-sections.

The idea of joining generalised thin-walled beam elements to a finite
shell element joint model has recently not only been pursued by the
authors but also by Bianco [12] in his PhD dissertation and by Manta,
Gonçalves & Camotim [13]. The approaches are related but differ in
methods of approach.

Bianco [12] uses a master–slave node approach to couple advanced
GBT elements to shell elements at tubular joints. As the current paper,
the GBT elements use the exact longitudinal solution functions. Multi
d.o.f. constraints couple shell and GBT elements, with the GBT cross-
section nodes as master nodes. The GBT cross-section discretisation
contains less d.o.f. compared to the shell element nodes at the interface.
Therefore, the constraint transformation matrix is formed using the
GBT’s sum of modal displacements to express the shell nodal displace-
ments. The shell elements are constrained to have compatible nodal
displacements at the interface. Bianco does not investigate interface
mode reduction even though it may also be applied in the formula-
tion; (however, one could claim it is implicit in the GBT cross-section
discretisation).

Manta et al. [13] use Lagrange multipliers to enforce compatibility
of directional nodal displacements (at linked nodes) at interfaces. How-
ever, since only the mid-surface nodal displacements of linked nodes
are constrained and not the rotations, the procedure loses compatibility
across the interface between GBT and shell elements, especially when
some nodes are not linked. By extending the macro-element joint zone,
the effect of the incompatibility is minimised. This approach is used
effectively for linear analysis and buckling analysis with extended shell
element zones. Conventional GBT elements based on cubic Hermite
interpolation in the axial direction are used, and several of these
elements are needed to model a thin-walled member. In [14], [15], the
approach is extended to include plastic analysis with adaptive mesh
refinement. In this extension, the incompatibility at the interface has
to be minimised to avoid stress concentrations at the interface. In [16]
the approach is furthermore also extended to include vibration and
dynamic analysis with accurate time–history results when compared to
shell finite element results.

In contrast to the coupling methods of Bianco and Manta et al. the
current paper directly matches the nodal d.o.f. at the joint interface.
This means that constraint equations are not used to obtain compati-

bility. However, full compatibility is not achieved since the membrane

2

part of the triangular shell element in the joint has artificial out of plane
rotational d.o.f. Membrane compatibility at a beam to shell interface is
only achieved in the limit as the element size is reduced (by refined
discretisation) whereas the flexural plate bending part of the shell
element is compatible and C1 continuous.

In the presented formulation, the transformation of nodal d.o.f.
into beam displacement mode d.o.f. at the interfaces allows the use
of interface mode reduction. The possibility of systematic interface
mode reduction is investigated using relatively simple illustrative linear
elastic examples.

The method presented does not need a considerable extension of
the super-element joint zone since it allows short length scale (plate
bending) modes to be retained systematically. Retaining short length
scale modes is at the cost of an increased number of d.o.f. However,
only one GBT element is needed to model a member between joints (at
least for linear elastic deformation analysis).

The analysis presented in this paper is performed as a first-order
linear elastic deformation analysis assuming isotropic material be-
haviour and infinitesimal displacements without second-order effects.
The methodology presented enables the use of entirely arbitrary joint
configurations. For simplicity, the current formulation considers only
direct connections representing welded connections, not including other
methods such as bolting or screwing. The frame is subdivided into beam
elements and joint models.

Besides introducing the specific implementation and the mode selec-
tion technique, the current paper aims to investigate joint modelling in
advanced beam models and the influence of interface mode reduction.
Therefore the focus of the examples is on simple frames with a single
joint. The displacement of a well-chosen key point or a few key points
is enough to investigate the influence of interface mode reduction and
the modelling techniques since the key point displacements result from
integrated deformations through the joint. The key point deformations
are validated by finite element analysis.

2. The mode-based methodology

A simple introduction to the proposed methodology is given in this
section to provide relatively self-contained explanations as we get into
details of the specific implementation.

2.1. General beam element formulation

In general, the methodology depends on the use of advanced beam
elements, which rely on the determination of cross-sectional displace-
ment modes. Such advanced beam elements have, for example, been
developed by Vieira et al. [17,18], and very similarly by Hansen et al.
in [2,3]. GBT elements [5] based on simple interpolation functions may
also be used in this context. Compared to conventional one-dimensional
beam elements with only six to seven d.o.f. at the two end nodes, the
advanced beam element formulations have wall elements with several
multiple d.o.f. nodes at the end cross-sections. Therefore, the advanced
beam elements allow the transfer of torsion and several distortional
modes with related warping displacement fields. The methodology is
based on the existence of a transformation from beam displacement
modes to nodal displacement d.o.f. at the nodes of each end cross-
section. This transformation is used at the joint interface and may be
performed with a reduced set of modes. The stiffness formulation of the
equilibrium equations of the advanced beam element can be formulated
in conventional d.o.f.-format as:

𝗞𝖡 u𝖡 = 𝗳𝖡 (1)

n which 𝗞𝖡, u𝖡 and 𝗳𝖡 are the beam stiffness matrix, the beam nodal
isplacement vector and the beam nodal load vector, respectively. The
uperscript 𝖡 is introduced to specify terms related to beam elements.
he superscript may also be followed by a number that refers to a
pecific beam element number. With respect to the displacement vector,
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Fig. 1. Illustration of the assembly of beam elements and joint model at joint interfaces.
it contains a number of conventional d.o.f. based on a discretisation of
the cross-section using generic finite wall elements and therefore, u𝖡

is a column vector with more than two times six d.o.f., dependent on
the meshing of the cross-section. The vector components are organised
such that the d.o.f. at each beam end are grouped and written as:

u𝖡 =

[

u𝖡1
u𝖡2

]

(2)

in which u𝖡1 and u𝖡2 relates to all the nodal displacements at each beam-
end cross-section, respectively. A similar separation follows for the load
vector 𝗳𝖡. For clarity, a simple two-dimensional example is shown in
Fig. 1(a). This example only considers in-plane d.o.f. and thus, for the
Advanced beam element 1, u𝖡𝟣1 and u𝖡𝟣2 contains nine d.o.f. each. The
associated beam element stiffness matrix 𝗞𝖡𝟣 is then an 18 × 18 matrix.

2.2. General formulation of a joint model

Besides the formulations of an advanced mode-based beam element,
this methodology introduces a finite element model of the joint. The
joint model is a three-dimensional super-element resulting from a mesh-
ing of the joint geometry by finite elements. These elements could, for
example, be square or triangular shell elements. Based on the standard
finite element method, a linear elastic equation system for the joint
model can be written as:

𝗞𝖩 u𝖩 = 𝗳 𝖩 (3)

in which 𝗞𝖩, u𝖩 and 𝗳 𝖩 are the joint stiffness matrix, the joint displace-
ment vector and the joint load vector, respectively. The superscript
𝖩 refers to joint model. Similar to the beam element notation, the
superscript may be followed by a number referring to a global joint
model number.

It follows that an interface between an advanced beam element and
a joint model must contain the same number of conventional d.o.f., and
hence, the d.o.f. in u𝖩 is organised such that the d.o.f. in each beam-to-

joint interface are clustered individually. Therefore, the displacement

3

vector of the joint model u𝖩 in Eq. (3) can explicitly be written as:

u𝖩 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u𝖩1
⋮

u𝖩𝑖
⋮

u𝖩𝑛I

u𝖩𝗈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

where u𝖩 without a subscript contains all d.o.f. related to a single
joint model whereas each subvector; u𝖩𝑖 relates to an interface, for
𝑖 = 1,… , 𝑛I where 𝑛I is the total number of interfaces, i.e. the number of
adjacent beam elements. The remaining d.o.f., which are internal d.o.f.
not related to any interface, are contained in u𝖩𝗈. The assembly in Eq.
(4) is illustrated, for a joint model, in the simplified two-dimensional
example in the upper hand right corner of Fig. 1(a). Here, u𝖩𝟣1 contains
nine components, u𝖩𝟣2 contains twelve d.o.f., and u𝖩𝟣𝗈 contains 36 d.o.f.
Therefore, u𝖩𝟣 is a column vector of 57 components. Separate joint
interfaces cannot have nodes in common.

2.3. Transformation and base change at interfaces

The presented approach requires that the interface between a beam
element and a joint model share the same number and location of nodes
since the d.o.f. must be the same.

The idea is that the d.o.f. at the interfaces shall be expressed in terms
of linear independent cross-section displacement modes of the beam.
Therefore, a base change is introduced from conventional nodal d.o.f.
into cross-sectional beam displacement mode-related d.o.f. These mode-
related d.o.f. represent the entire or a reduced set of beam displacement
modes. The difference between the conventional and the modal d.o.f.
is exemplified in Fig. 2. At each interface, the link between conven-
tional d.o.f., in either beam element or joint model, is established by
introducing and using the transformation:

u𝑖 = 𝐖𝑖 𝝋𝑖 (5)

where the displacement vector u𝑖 can either be u𝖡1 or u𝖡2 from Eq. (2), or
one of the vectors u𝖩𝑖 from Eq. (4) containing conventional nodal d.o.f.
related to the nodes at an interface. Accordingly, the columns in the
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Fig. 2. Visualisation of displacement fields related to the conventional d.o.f. and modal
d.o.f. at the right end of the Advanced Beam Element 1 in Fig. 1(a).

transformation matrix 𝐖𝑖 contain linear independent cross-sectional
displacement modes expressed in terms of conventional d.o.f. These
modes will be referred to as interface modes. The last term is the
column vector: 𝝋𝑖, which contains the individual intensities of the
interface modes given in 𝐖𝑖. In fact, the components in the vector 𝝋𝑖
are the new modal d.o.f.

Note that the modes chosen in this transformation matrix are gov-
erned by the beam element connected to the particular interface.
Furthermore, an advantage of the methodology is that the number of
interface modes in 𝐖𝑖 can be reduced such that the number of modal
d.o.f. is less than the number of conventional d.o.f.

At each interface, the transformation in Eq. (5) shall be applied,
meaning that a beam element, which has two interfaces, has two
transformations related to its two interfaces – one at each beam end –
and thus, the entire beam element transformation and transformation
matrix will be written as:

u𝖡 = 𝐓𝖡 𝝋𝖡 with 𝐓𝖡 =

[

𝐖𝖡
1 ⋅

⋅ 𝐖𝖡
2

]

(6)

in which 𝐖𝖡
1 and 𝐖𝖡

2 contain sets of cross-sectional displacement modes
chosen to represent the possible displacement fields of the particular
interface at each beam-end, respectively. A single dot in a matrix
represents a suitable zero-matrix.

An example of the beam element transformation matrix and its
two matrices containing the interface modes are shown in Fig. 1(b).
Furthermore, Fig. 2(b) presents the interface modes with respect to the
advanced beam element 1 from Fig. 1. In the example, these interface
modes from Fig. 2(b) are represented as columns in 𝐖𝖡𝟣

2 , which occur at
Interface 2 according to Fig. 1(b). Similar cross-sectional displacement
fields will occur in the transformation matrix 𝐖𝖡𝟣

1 .
Applying the transformations described above in Eq. (6) to the

advanced beam equation system (2) leads to the following full or
reduced number of beam element equilibrium equations:

�̃�𝖡 𝝋𝖡 = 𝗳𝖡 (7)

in which the new stiffness matrix is given as �̃�𝖡 = 𝐓𝖡𝖳𝗞𝖡 𝐓𝖡 and the
load new vector as 𝗳𝖡 = 𝐓𝖡𝖳𝐟 𝖡. Once we know the modal displacements
𝝋𝖡 we can calculate all internal, displacements, strains and stresses

within the beam.

4

With respect to a joint model, the number of interfaces, and thereby
the size of the transformation matrix needed, depends on the number
of adjacent beam elements. In accordance with Eqs. (4) and (5) the
transformation and the transformation matrix for a joint model will be:

u𝖩 = 𝐓𝖩 𝝋𝖩 (8)

with 𝐓𝖩 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐖1
⋱

𝐖𝑛I
𝐈𝗈

⎤

⎥

⎥

⎥

⎥

⎦

and 𝝋𝖩 =

⎡

⎢

⎢

⎢

⎢

⎣

𝝋𝖩
1
⋮
𝝋𝖩
𝑛I
u𝖩𝗈

⎤

⎥

⎥

⎥

⎥

⎦

Herein, 𝐈𝗈 is an identity matrix with a size equal to the number of
internal d.o.f. in the joint model – meaning those d.o.f. that are not
located at an interface. Each set of interface modes contained in the
matrices 𝐖𝑖 for 𝑖 = 1,… , 𝑛I may differ in number and size depending
on the number of nodes at each specific interface as well as the number
of interface modes to be included in the transformation. However, a
beam element and a joint model sharing the same interface must use
the same interface modes as well as the same number of modes. For
example, in Fig. 1(b), the matrix 𝐖𝖡𝟣

2 is used both in the beam element
transformation matrix 𝐓𝖡𝟣 as well as in the joint model transformation
matrix 𝐓𝖩𝟣. For clarity, it has been illustrated in Fig. 1(b) how the dif-
ferent transformation matrices are composed. Note also that nodes are
not shared between interfaces. Applying the transformations described
above, in Eq. (8), to the joint equation system in Eq. (3) leads to the
following (possibly reduced) joint model equilibrium equation system:

�̃�𝖩 𝝋𝖩 = 𝗳 𝖩 (9)

Herein, the modal joint stiffness matrix is found as �̃�𝖩 = 𝐓𝖩𝖳𝗞𝖩 𝐓𝖩, and
the load vector as 𝗳 𝖩 = 𝐓𝖩𝖳𝐟 𝖩. Once we know the modal displacements
𝝋𝖩, we can calculate the related conventional nodal displacements at
the interfaces of the joint using the transformation Eq. (8). When using
a reduced number of modes we assuming that the neglected interface
displacement modes are zero. Thereby, all internal, displacements,
strains and stresses within the joint can be calculated.

2.4. Full frame system

The entire equilibrium equation system for a frame can be assem-
bled from the modal equation systems of members and joints. The
assembly results in the linear equation system:

𝗞𝗌𝗒𝗌 𝝋𝗌𝗒𝗌 = 𝗳 𝗌𝗒𝗌 (10)

in which the system d.o.f. are given by 𝝋𝗌𝗒𝗌 corresponding to displace-
ment mode intensities at the interfaces.

This introduction to the mode-based methodology will first be
followed by a brief description of the joint model implementation.
Secondly, the advanced thin-walled beam element formulation with its
complex displacement modes will be described, and thirdly the new
selection of interface modes will be introduced.

3. Joint model implementation

In the current work, the finite element model of the joint is kept
simple by using plane triangular shell elements having three nodes and
six d.o.f. at each node, see Fig. 3. The shell element combines a plane
constant strain triangle (CST) element and a triangular plane flexural
element.

The CST-element is implemented with extra so-called drilling d.o.f.
corresponding to rotation vectors normal to the plate. The artificial
stiffness of this rotational d.o.f. is defined as a fraction of the largest
value in the element stiffness matrix diagonal. The d.o.f. related to
membrane actions are denoted by a 𝑤-subscript. For further reference,
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Fig. 3. Triangular finite shell element and its d.o.f.

ee Cook et al. [19] where a detailed description of the CST-element is
iven.

The triangular plane flexural element used is the Specht-element,
20]. This element covers the flexural displacements, and an𝛺-subscript

denotes the related d.o.f.
For a given element discretisation of the joint an entire joint model

stiffness matrix, 𝗞𝖩, with corresponding boundary and load vectors, u𝖩
and 𝗳 𝖩, respectively, can be assembled leading to the linear equation
system in Eq. (3). The conventional nodal d.o.f. given in u𝖩 can be
divided into three categories:

u𝗃 D.o.f. that are shared between joint and beam at connected inter-
faces. Hence, according to Eq. (4) we have: u𝖳

𝗃
=
[

u𝖩1
𝖳, ⋯ , u𝖩𝑛I

𝖳 ]

.
u𝖿 Joint model d.o.f. selected for boundary conditions or loading.

These must be included and remain accessible in the joint model
as part of u𝖩𝗈 in Eq. (4).

u𝗂 Internal d.o.f., that represent all the remaining d.o.f. not covered
by either u𝗃 or u𝖿 . The d.o.f. in u𝗂 will along with u𝖿 also be a part
of u𝖩𝗈 in Eq. (4). These d.o.f. may be eliminated by condensation.

Having rearranged the system in Eq. (3), based on the three categories
of d.o.f. listed above, we may write the joint equilibrium equations as
follows:

⎡

⎢

⎢

⎣

𝗞𝗃𝗃 𝗞𝗃𝖿 𝗞𝗃𝗂

𝗞𝖿 𝗃 𝗞𝖿𝖿 𝗞𝖿 𝗂

𝗞𝗂𝗃 𝗞𝗂𝖿 𝗞𝗂𝗂

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u𝗃
u𝖿
u𝗂

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝗳𝗃
𝗳𝖿
𝗳𝗂

⎤

⎥

⎥

⎦

(11)

The internal d.o.f. located in the vector u𝗂 can be eliminated such that:

𝗂 =
[

𝗞𝗂𝗂

]−1
(

𝗳𝗂 −
[

𝗞𝗂𝗃 𝗞𝗂𝖿

]

[

u𝗃

u𝖿

])

(12)

and thus, the equation system is rewritten into:

�̃�𝖩 ũ𝖩 = 𝗳 𝖩 (13)

where the stiffness matrix is computed according to Eq. (14) and the
boundary and load vectors follow in Eq. (15).

�̃�𝖩 =

[

𝗞𝗃𝗃 𝗞𝗃𝖿

𝗞𝖿 𝗃 𝗞𝖿𝖿

]

−

[

𝗞𝗃𝗂

𝗞𝖿 𝗂

]

[

𝗞𝗂𝗂

]−1 [
𝗞𝗂𝗃 𝗞𝗂𝖿

]

(14)

ũ𝖩 =

[

u𝗃

u𝖿

]

and 𝗳 𝖩 =

[

𝗳𝗃

𝗳𝖿

]

−

[

𝗞𝗃𝗂

𝗞𝖿 𝗂

]

[

𝗞𝗂𝗂

]−1
𝗳𝗂 (15)

After the elimination of internal d.o.f., the remaining ones are listed
such that we have the d.o.f. at beam interfaces followed by those d.o.f.
5

Fig. 4. Simplified two-dimensional joint model with d.o.f. according to Eq. (16).

at the boundaries and the loaded ones. Hence, the non-condensed d.o.f.
from Eq. (15) are explicitly written as:

ũ𝖩 =
[

u𝗃
u𝖿

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u𝗃1
⋮
u𝗃𝑖
⋮
u𝗃𝑛I
u𝖿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

here a vector u𝗃𝑖 having an additional subscript is a subset of u𝗃. Each
ubset contains all the conventional finite element d.o.f. at the beam-to-
oint interface 𝑖. The total number of interfaces in a specific joint model
s denoted 𝑛I. For illustration purpose, Fig. 4 shows the two-dimensional
oint model from Fig. 1(a) where the notation introduced in Eq. (16) is
pplied.

. Advanced beam implementation

The advanced beam element and thin-walled beam theory that
s applied in this study has been presented by Hansen and Jönsson
n [2,3]. As mentioned, to address and give improved explanations
f the specific implementation and especially to explain the selection
f interface modes, the formulation of the advanced beam theory and
lement will be addressed in some detail in this section.

.1. Kinematic assumptions and beam equations

An advanced thin-walled beam, including the beam and wall coor-
inate systems, is illustrated in Fig. 5. The cross-section is modelled
sing straight wall elements of constant thickness. An example of a
ross-sectional wall element is shown in Fig. 6. The division of the
ross-section into smaller elements is adopted to enhance approxima-
ion features. The wall element supports both flexural and membrane
ehaviours and is governed by six nodal d.o.f. at each end.

The displacement of a single wall element is defined from the
late element centre surface in its three local coordinate directions,
= [𝑢𝑛 𝑢𝑠 𝑢𝑧]𝖳. For each wall element these are independently

pproximated through interpolation functions along the coordinate 𝑠.
he interpolation functions are governed by the nodal displacement
omponents at the wall element ends as the d.o.f.-vectors 𝐮𝑒𝑙𝑤(𝑧) and
𝐮𝑒𝑙𝛺(𝑧), which relates to in-plane (index 𝑤) and out-of-plane (index 𝛺)
ranslations and rotations as illustrated in Fig. 6. The d.o.f. in the
ectors 𝐮𝑒𝑙𝑤(𝑧) and 𝐮𝑒𝑙𝛺(𝑧) are sums of 𝑚 displacement modes and can
e computed as:

𝐮𝑒𝑙𝑤(𝑧) =
𝑚
∑

𝑖=1
𝐯𝑒𝑙𝑤

𝑖 𝜓 𝑖(𝑧) 𝑐𝑖

𝑒𝑙
𝛺(𝑧) =

𝑚
∑

𝐯𝑒𝑙𝛺
𝑖 𝜂𝑖(𝑧) 𝑐𝑖

(17)
𝑖=1
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Fig. 5. Cartesian beam coordinate system (𝑥, 𝑦, 𝑧) and local cross-sectional coordinate
ystems (𝑛, 𝑠, 𝑧) of a thin-walled beam member.

Fig. 6. Wall element, which is used to discretise the cross-section also illustrating the
displacement components from 𝐮𝑒𝑙𝑤 and 𝐮𝑒𝑙𝛺 , respectively.

in which 𝐯𝑒𝑙𝑖𝑤 and 𝐯𝑒𝑙𝑖𝛺 are wall element mode displacement vectors, 𝜓 𝑖(𝑧)
and 𝜂𝑖(𝑧) are the axial amplitude functions, and 𝑐𝑖 is a mode intensity
factor (mode d.o.f.) used to scale the intensity of each displacement
mode. Accordingly, the displacements of a single wall element are
approximated as follows:

𝑢𝑛(𝑠, 𝑧) = 𝐍𝑛(𝑠) 𝐮𝑒𝑙𝑤(𝑧)

𝑢𝑠(𝑛, 𝑠, 𝑧) =
[

𝐍𝑠(𝑠) − 𝑛 𝐍𝑛,𝑠(𝑠)
]

𝐮𝑒𝑙𝑤(𝑧)

𝑢𝑧(𝑛, 𝑠, 𝑧) =
[

𝐍𝛺(𝑠) + 𝑛 𝐍𝛼(𝑠)
]

𝐮𝑒𝑙𝛺(𝑧)

(18)

The interpolation vectors 𝐍𝑛 and 𝐍𝛼 contain linear Lagrange interpo-
lation functions, and the vectors 𝐍𝑠 and 𝐍𝛺 includes cubic Hermite
interpolation functions, see also ref. [21]. Regarding the notation, an
𝑛 or 𝑠-index that follows a comma indicates a derivative, e.g.: ( ⋅ ),𝑠 =
𝑑( ⋅ )∕𝑑𝑠, whereas axial derivatives are denoted by using the Lagrange
notation, i.e. a prime: ( ⋅ )′ = 𝑑( ⋅ )∕𝑑𝑧.

In this particular theory, displacements are obtained under the small
displacement hypothesis, and thus, the strains are obtained as:

𝜺 =  𝒖 with 𝜺 = [ 𝜀𝑠𝑠 , 𝜀𝑧𝑧 , 𝛾𝑠𝑧 , 𝛾𝑛𝑧 ]𝖳 (19)

 =

⎡

⎢

⎢

⎢

⎢

⎢

0 𝜕
𝜕𝑠 0

0 0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑧

𝜕
𝜕𝑠

𝜕 𝜕

⎤

⎥

⎥

⎥

⎥

⎥

(20)
⎣

𝜕𝑧 0 𝜕𝑛
⎦

w

6

The stresses are formulated on the assumption of linear elastic
isotropic material properties, and the non-null stress field is found from
the constitutive relation:

𝝈 = 𝑫 𝜺 (21)

in which the non-null stress components are written in the vector
format: 𝝈 = [ 𝜎𝑠𝑠 , 𝜎𝑧𝑧 , 𝜏𝑠𝑧 , 𝜏𝑛𝑧 ]𝖳. The elastic constitutive matrix 𝑫 is
efined for a plane stress state, taking into account the Poisson effect
s follows:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝑠 𝜈𝐸𝑠 0 0

𝜈𝐸𝑠 𝐸𝑠 0 0

0 0 𝐺 0

0 0 0 𝐺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(22)

Here, 𝐸𝑠 is the plate type elastic modulus: 𝐸𝑠 = 𝐸∕(1 − 𝜈2), where 𝐸
is the modulus of elasticity; 𝜈 is the Poisson coefficient; and 𝐺 is the
shear modulus: 𝐺 = 𝐸∕(2(1 + 𝜈)).

Equilibrium for the beam element is found using the linear elastic
strain energy, derived by integrating the strain energy density over
the entire continuum 𝑉 . Hence, in its purest form, the strain energy
is expressed as:

𝑈 = 1
2 ∫𝑉

𝜺𝖳𝑫 𝜺 𝑑𝑉 (23)

The volume integral is separated into an integration over the beam
length 𝓁 along 𝑧, and an integration over each wall element thickness 𝑡𝑒𝑙
and wall element width 𝑏𝑒𝑙 being supplemented by an assembly of wall
elements. Hence, substituting Eq. (18) into the strain formulation, in
Eq. (19), and evaluating the strain energy of Eq. (23) leads to the local
wall element stiffness matrices given in Table 1. By assembling the wall
elements based on standard transformations and their d.o.f., the strain
energy from Eq. (23) is rewritten into the following expression based
on stiffness matrices and displacement vectors.

𝑈 = 1
2∫

𝓁

0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮𝑤
𝐮𝛺
𝐮′𝑤
𝐮′𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝖳
⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐊𝑠
𝑤𝑤 ⋅ ⋅ 𝐊𝑠𝜎

𝑤𝛺

⋅ 𝐊𝛾
𝛺𝛺 𝐊𝛾

𝛺𝑤 ⋅

⋅ 𝐊𝛾
𝑤𝛺 𝐊𝛾

𝑤𝑤 ⋅

𝐊𝜎𝑠
𝛺𝑤 ⋅ ⋅ 𝐊𝜎

𝛺𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮𝑤
𝐮𝛺
𝐮′𝑤
𝐮′𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑑𝑧 (24)

he superscripts 𝑠, 𝜎, and 𝛾 on the stiffness matrices identifies terms
elated to transverse, axial and shear strains, respectively.

A system of second-order beam differential equilibrium equations
s deduced from the strain energy in Eq. (24). This is done by re-
uiring the strain energy to be stationary using the principle of vari-
tion, introducing kinematical admissible virtual displacement fields
nd performing partial integration of selected terms. This results in a
omogeneous system of coupled second-order differential equations,
.e. beam equilibrium equations expressed in terms of displacement
ectors, as follows:

2𝐮′′(𝑧) + 𝐊1𝐮′(𝑧) + 𝐊0𝐮(𝑧) = 𝟎 (25)

here the matrices 𝐊0, 𝐊1 and 𝐊2 are defined as blocks of cross-
ectional stiffness matrices and the common displacement vector 𝐮(𝑧) is
ntroduced containing both the translational and warping displacement
ectors. To clarify the terms in Eq. (25) they can be written as:

0 =

[

𝐊𝑠
𝑤𝑤 ⋅

⋅ −𝐊𝛾
𝛺𝛺

]

, 𝐊2 =

[

−𝐊𝛾
𝑤𝑤 ⋅

⋅ 𝐊𝜎
𝛺𝛺

]

, (26)

1 =

[

⋅ 𝐊𝑠𝜎
𝑤𝛺 −𝐊𝛾

𝑤𝛺

𝐊𝜎𝑠
𝛺𝑤 −𝐊𝛾

𝛺𝑤 ⋅

]

, 𝐮(𝑧) =
[

𝐮𝑤(𝑧)
𝐮𝛺(𝑧)

]

ach block matrix is 𝑛 × 𝑛, where 𝑛 is six times the number of nodes

ithin a discretised beam cross-section.
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Table 1
Local stiffness matrices of a wall-element.
Stiffness matrices related to normal stresses Stiffness matrices related to shearing stresses

𝐤𝑠𝑤𝑤=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝐸𝑠𝐍𝖳
𝑠,𝑠𝐍𝑠,𝑠 +

𝑡3𝑒𝑙
12
𝐸𝑠𝐍𝖳

𝑛,𝑠𝑠𝐍𝑛,𝑠𝑠

)

𝑑𝑠 𝐤𝛾𝑤𝑤=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝐺𝐍𝖳
𝑛𝐍𝑛 + 𝑡𝑒𝑙𝐺𝐍𝖳

𝑠𝐍𝑠 +
𝑡3𝑒𝑙
12
𝐺𝐍𝖳

𝑛,𝑠𝐍𝑛,𝑠

)

𝑑𝑠

𝐤𝜎𝛺𝛺=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝐸𝑠𝐍𝖳
𝛺𝐍𝛺 + 𝑡3𝑒𝑙

12
𝐸𝑠𝐍𝖳

𝛼𝐍𝛼

)

𝑑𝑠 𝐤𝛾𝛺𝛺=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝐺𝐍𝖳
𝛼𝐍𝛼 + 𝑡𝑒𝑙𝐺𝐍𝖳

𝛺,𝑠𝐍𝛺,𝑠 +
𝑡3𝑒𝑙
12
𝐺𝐍𝖳

𝛼,𝑠𝐍𝛼,𝑠

)

𝑑𝑠

𝐤𝑠𝜎𝑤𝛺=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝜈𝐸𝑠𝐍𝖳
𝑠,𝑠𝐍𝛺 − 𝑡3𝑒𝑙

12
𝜈𝐸𝑠𝐍𝖳

𝑛,𝑠𝑠𝐍𝛼

)

𝑑𝑠 𝐤𝛾𝑤𝛺=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝐺𝐍𝖳
𝑛𝐍𝛼 + 𝑡𝑒𝑙𝐺𝐍𝖳

𝑠𝐍𝛺,𝑠 −
𝑡3𝑒𝑙
12
𝐺𝐍𝖳

𝑛,𝑠𝐍𝛼,𝑠

)

𝑑𝑠

𝐤𝜎𝑠𝛺𝑤=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝜈𝐸𝑠𝐍𝖳
𝛺𝐍𝑠,𝑠 −

𝑡3𝑒𝑙
12
𝜈𝐸𝑠𝐍𝖳

𝛼𝐍𝑛,𝑠𝑠

)

𝑑𝑠 𝐤𝛾𝛺𝑤=∫ 𝑏𝑒𝑙
0

(

𝑡𝑒𝑙𝐺𝐍𝖳
𝛼𝐍𝑛 + 𝑡𝑒𝑙𝐺𝐍𝖳

𝛺,𝑠𝐍𝑠 −
𝑡3𝑒𝑙
12
𝐺𝐍𝖳

𝛼,𝑠𝐍𝑛,𝑠

)

𝑑𝑠
w
4.2. Beam solution modes

Solutions to the differential equation system given in Eq. (25)
are found by substituting an exponential solution function into the
amplitude functions of 𝐮(𝑧), i.e. 𝜓(𝑧) = 𝜂(𝑧) = 𝑒𝜆𝑧 in Eq. (17). With this
substitution, the differential equation system turns into a polynomial
eigenvalue problem. The non-trivial solutions will have an exponential
decay pattern along the beam axis governed by the inverse length
scale parameter 𝜆. This parameter is deduced as the eigenvalue, and
the cross-sectional displacement fields are given as the corresponding
eigenvectors in the polynomial eigenvalue problem.

The solutions to the polynomial eigenvalue problem correspond to
those with a non-null eigenvalue and those with a null-eigenvalue. For
null eigenvalues, the amplitude function is expressed as a polynomial
function instead of the exponential one. This solution space will reflect
the twelve fundamental beam modes according to paper [2] whereas
the solutions with non-null eigenvalues reflect the exponential beam
modes (higher-order beam modes).

4.2.1. Fundamental beam modes
The solutions having eigenvalues equal to zero represents the fun-

damental beam modes. These modes can be described by polynomial
amplitude functions that are limited to third-order. Since these modes
share the same eigenvalue, it follows that since the algebraic and geo-
metric multiplicity of the eigenvalues do not coincide, some generalised
eigenvectors are related to these solutions as well, Strang [22]. This
was solved by Vieira [23] and by Morandini et al. [24] using a Jordan
Chain method extracting additional cross-section solution fields. These
solution fields extended the twelve eigenvectors with associated null-
eigenvalues into four sets of twelve cross-sectional displacement fields.
However, the engineering-based procedure outlined by Hansen & Jöns-
son [2] is implemented in the current work. Hence, the fundamental
beam modes are found by substituting a polynomial solution function
into the equilibrium equation, i.e. Eq. (25). Such a polynomial solution
can for solution mode 𝑗 be written as:

𝐮𝑝𝑗 (𝑧) =
(

𝑧3

3!
𝐯3𝑗 + 𝑧2

2!
𝐯2𝑗 + 𝑧𝐯1𝑗 + 𝐯0𝑗

)

𝑐𝑝𝑗 (27)

For the polynomial solution of third-order, a single displacement mode
is a combination of up to four cross-sectional displacement fields given
in the vectors 𝐯0, 𝐯1, 𝐯2, and 𝐯3, being coefficients in the polyno-
mial function. The cross-sectional displacement fields for all twelve
fundamental modes are contained in the matrix 𝐕𝑝 as:

𝐕𝑝 =
[

𝐕3 𝐕2 𝐕1 𝐕0
]

(28)

ach matrix, 𝐕0 to 𝐕3 contains twelve column vectors being the eigen-
ectors. Accordingly, the 𝑗-subscript, in Eq. (27), indicates a column
ndex in 𝐕𝑖 for 𝑖 = 0,… , 3 and 𝑗 = 1,… , 12. The 𝑐𝑝𝑗 is a constant
hat determines the intensity of each mode and is stored in its own
olumn vector 𝐜𝑝. Now, the polynomial part of the solution to Eq. (25)
s conveniently written as:

(𝑧) = 𝐕 𝜳 (𝑧) 𝐓 𝐜 (29)
𝑝 𝑝 𝑝 𝑝 𝑝
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here 𝐕𝑝 is given in Eq. (28) and the remaining components are:

𝜳 𝑝(𝑧) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧3

6 𝐈𝑝 ⋅ ⋅ ⋅

⋅ 𝑧2

2 𝐈𝑝 ⋅ ⋅

⋅ ⋅ 𝑧𝐈𝑝 ⋅

⋅ ⋅ ⋅ 𝐈𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐓𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐈𝑝
𝐈𝑝
𝐈𝑝
𝐈𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐜𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑐𝑝1
𝑐𝑝2
⋮

𝑐𝑝𝑛𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(30)

in which 𝐈𝑝 is an identity matrix of size 𝑛𝑧 × 𝑛𝑧.
Examples of the cross-sectional displacement fields given in 𝐕𝑝

are illustrated in Fig. 7. These cross-sectional displacement fields are
deduced with respect to the cross-section assessed in Example 1, Sec-
tion 6.1.

4.2.2. Exponential beam modes
The polynomial eigenvalue problem found by substituting the am-

plitude functions with exponential functions is rewritten into a gener-
alised eigenvalue problem according to Tisseur & Meerbergen [25] by
introducing a state-vector notation. The exponential solutions to Eq.
(25) are deduced as cross-sectional displacement fields corresponding
to eigenvectors with exponential amplitude functions. Therefore, the
cross-sectional displacement field has a decay pattern along the beam
axis dependent on its corresponding eigenvalue.

The eigenvectors with non-null eigenvalues are sorted in ascending
order and stored as column vectors in a matrix 𝐕𝑒. The associated
eigenvalues are substituted into exponential functions in the diagonal
of the amplitude matrix 𝜳 𝑒(𝑧) as:

𝜳 𝑒(𝑧) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑒𝜆1𝑧

𝑒𝜆𝑖𝑧

⋱

𝑒𝜆𝑛𝑒 𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(31)

where 𝜆𝑖 is the eigenvalue to solution mode 𝑖 and 𝑛𝑒 is the number of ex-
ponential solution modes. The eigenvalues correspond to inverse length
scales. Therefore, the eigenvalues are organised in ascending order
corresponding to decreasing length scales of the solution functions.

The exponential part of the solution space of Eq. (25) can be written
as:

𝐮𝑒(𝑧) = 𝐕𝑒 𝜳 𝑒(𝑧) 𝐈𝑒 𝐜𝑒 (32)

In which, 𝐈𝑒 is a ‘‘dummy’’ unit matrix of size 𝑛𝑒 × 𝑛𝑒 and has been
introduced to ease the summation with fundamental beam modes. The
mode intensity constants are stored in 𝐜𝑒 as:

𝐜𝑒 =
[

𝑐𝑒1 𝑐𝑒2 … 𝑐𝑒𝑛𝑒
]𝖳

(33)

Examples of exponential cross-sectional displacement fields are given in
Fig. 8. As for the fundamental beam modes, these modes are deduced
for the cross-section assessed in Example 1, Section 6.1.

4.2.3. Complete displacement formulation
The full homogeneous solution space of the beam equilibrium equa-

tion system (25) corresponds to a summation of the displacement
formulations in Eqs. (29) and (32). These we add together and ob-
tain a full homogeneous solution space expressed in terms of beam
displacement modes being:

𝐮(𝑧) = 𝐮 (𝑧) + 𝐮 (𝑧)
𝑝 𝑒
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Fig. 7. Cross-sectional displacement modes used to represent the fundamental beam displacement modes, which have the polynomial amplitude function. Each row represents the
content in the four matrices 𝐕3 to 𝐕0, respectively. The dashed-line-box highlights the six rigid motions adopted as part of the interface modes.
=
[

𝐕𝑝 𝐕𝑒
]

[

Ψ𝑝(𝑧) ⋅

⋅ Ψ𝑒(𝑧)

][

𝐓𝑝 ⋅

⋅ 𝐈𝑒

][

𝐜𝑝
𝐜𝑒

]

= 𝐕 Ψ(𝑧) 𝐓𝑐 𝐜 (34)

in which the individual components are defined throughout the previ-
ous two subsections, 4.2.1 and 4.2.2.

4.3. Beam stiffness matrix and equation system

Using the formulation of the beam displacement modes of Eq. (34)
we are able to integrate the strain energy in Eq. (24) using the full
set of modes. Remembering that the definition of the cross-section
displacement vector 𝐮(𝑧) is given in Eq. (26). The integration of the
strain energy using Hadamard and Kronecker products is described in
the paper [3] and results in:

𝑈 = 1
2 𝐜𝖳 𝗞𝖼 𝗰 (35)

Using Eq. (34) we have a direct relation between the end displacements
𝐮B of a beam element and the intensity constants given as:

𝐮B =

[

𝐮(0)
𝐮(𝓁)

]

= 𝐀𝐜 where 𝐀 =

[

𝐕 Ψ(0) 𝐓𝑐
𝐕 Ψ(𝓁) 𝐓𝑐

]

(36)

he transformation matrix 𝐀 is a square, positive definite and invertible
atrix. Thus, the strain energy is rewritten into conventional finite

lement format with conventional displacements as:

= 1
2 𝐮𝖡𝖳 𝗞𝖡 u𝖡 (37)

in which the beam stiffness matrix is given by:

𝗞𝖡 =
[

𝐀−1]𝖳 𝗞 𝐀−1 (38)
𝖼

8

This enables us to write the beam finite element equation system in
accordance with Eq. (1) as:

𝗞𝖡 u𝖡 = 𝗳𝖡 (39)

in which 𝗳𝖡 is the element load vector related to the d.o.f. of both end
cross-sections of the beam.

As seen in this section, the advanced beam element used has spacial
solution modes consisting of interacting cross-section displacement
modes; therefore, it is necessary to carefully select cross-sectional dis-
placement modes that are directly related to these spacial modes.
Due to the mode-based approach in the advanced beam element, it
is possible to choose (cross-section) interface modes directly related
to the length scale of the modes. The reason for formulating the full
stiffness matrix is to enable a modal reduction based on the (cross-
section) interface modes, which are directly related to the ordered
spacial modes of the advanced beam element. Other advanced beam
formulations will also need to establish the complete transformation
from mode space to conventional displacement space. However, the
transformation is easier to establish because these formulations are
based directly on the cross-section mode space and the independent
interpolation between the end cross-sections.

5. Selection of interface modes

The mode-based methodology outlined in Section 2 uses beam
cross-sectional displacement fields to formulate the transformation be-
tween conventional d.o.f. and modal d.o.f. Because the transformation
is applied at the beam end cross-sections, only the cross-sectional
displacement fields at the specific endpoints are of interest.

The beam mode determination procedure is an exact solution

method for the second-order beam differential equation system, which
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Fig. 8. The first number of cross-sectional displacement fields from 𝐕𝑒 are illustrated in (a) and (b), which have an exponential axial variation illustrated in (c). The modes are
represented by one pair of real modes (mode 13–14) and three quadruples of complex modes (mode 15–18, 19–22, and 23–26). In each of the two subfigures (a) and (b), a
column represents a cross-sectional displacement field 𝐯 = ±𝐚 ± 𝐛𝑖 that has been separated into the real part of the mode (vector 𝐚) and the imaginary part of the mode (vector
𝐛). The dashed boxes indicates the modes that are chosen as interface modes.
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is solved as a quadratic eigenvalue problem. However, as a conse-
quence, twice as many solution modes are deduced. Therefore, these
modes are not independent modes of the vector-space, which is a
requirement in the mode-based methodology presented in Section 2.
Hence, a mode selection is required to formulate the unique transfor-
mation matrix 𝐖 used in Eq. (5).

The cross-sectional beam displacement fields are given as columns
in the matrix 𝐕 (see also Eq. (34)). The modes both represent solutions
with a polynomial axial variation (Fig. 7) as well as solutions with
exponential axial variations (Fig. 8). The modes are categorised as
fundamental and exponential modes, respectively. Thus, the matrix 𝐕

ay, therefore, be subdivided into two subsets, which we write as:

=
[

𝐕𝑝 , 𝐕𝑒
]

(40)

n the following two subsections, the selection procedure for each of
hese mode types is described.

.1. Selection of fundamental modes

The polynomial modes contained in 𝐕𝑝 consists of four submatrices,
= [𝐕 𝐕 𝐕 𝐕 ], where each subscript refers to the polynomial order
𝑝 3 2 1 0 q

9

that the specific mode refers to. For clarity see also Eq. (27) and Fig. 7
in which each row represents the content of the four matrices 𝐕0 to 𝐕3,
respectively. According to ref. [3] the modes in 𝐕1, 𝐕2 and 𝐕3 can be
found as cross-sectional displacement modes already given in 𝐕0, and
therefore, the modes in 𝐕1, 𝐕2 and 𝐕3 are not relevant for the procedure
inding a set of orthogonal cross-sectional beam displacement fields.
nvestigating all modes, it can be concluded that only six cross-sectional
isplacement modes out of twelve should be chosen. Thus, the natural
hoice is only to use the(first) six rigid cross-sectional displacement
odes in 𝐕0 as interface modes in 𝐖. These six modes are highlighted

n Fig. 7 by the dashed box. The remaining independent six modes
n 𝐕0 correspond to distortional behaviours, which are due to Poisson
ffects and shear stresses. These modes are combinations of the cross-
ectional displacement fields in the exponential set of cross-sectional
isplacement fields contained in 𝐕𝑒 and thus not independent, but at
he same time not lost as a part of the solution space.

.2. Selection of exponential modes

Because the solution modes in 𝐕𝑒 are found as solutions to a

uadratic eigenvalue problem, the distortional modes are determined as
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either real pairs or complex quadruples. The cross-sectional
displacement-vectors are similar only with different signs within each
pair of modes or quadrupled set of modes. Therefore, these are not
linearly independent.

To avoid repeated modes in the transformation matrix and thereby
a singular transformation matrix, the following procedure is imple-
mented to choose the needed modes from the full set of modes in
𝐕𝑒. Accordingly, in case of a real pair of cross-sectional displacement
modes we have: [𝐯 −𝐯] ∈ 𝐕𝑒. Here, the first vector is chosen for the
transformation, and the other one is rejected (see, for example, mode
13 and 14 in Fig. 8, where mode 13 will be the chosen one and mode
14 will be rejected. As a consequence, mode 13 is a part of the interface
modes, which has been illustrated in Fig. 11 as well (as mode 7).

In the case of having a set of complex quadruples, the selection is a
bit more sophisticated. A complex set of modes can be written as:

[ 𝐯 𝐯 −𝐯 −𝐯 ] ∈ 𝐕𝑒 (41)

where a single mode can be decomposed even further into: 𝐯 = 𝐚 + 𝐛𝑖
ith 𝐚 and 𝐛 representing the real and imaginary part of the vector,

espectively. Thus, the four vectors in Eq. (41) can be expressed as
ifferent combinations of 𝐚 and 𝐛. To represent the complex quadruples
rom Eq. (41) in the transformation matrix, the vectors 𝐚 and 𝐛 are
hosen as the unique modes for the transformation and therefore added
eparately to the matrix 𝐖 (see also Fig. 8, where the modes 15, 19,
nd 23 are the modes used as interface modes, which have lead to the
nterface modes 8 to 13 in Fig. 11).

.3. Check and normalisation of interface modes

It is checked that the chosen interface modes span the full vector-
pace by conveniently computing the null-space of the mode-
ransformation-matrix 𝐖 (containing the modes column-wise). If the
ull-space of 𝐖 is an empty set, this has been confirmed. The statement
ay be written as:

(𝐖) ∈ ∅ (42)

here  ( ) is the null-space operator.
To be able to compare mode intensities when analysing a solution,

he modes in 𝐖 are normalised by letting the translational d.o.f. with
he largest absolute magnitude in each mode be equal to unity. This
oncerns both in-plane translations as well as translations out of the
ross-sectional plane.

.4. Reduction in the number of interface modes

The mode-transformation-matrix 𝐖 does not need to include all
xponential modes (as columns in the matrix). The number of modes
ay be reduced according to length scale of the beam modes by in-

luding only modes larger than a certain length scale, i.e. by including
reduced number of modes from the start of the full mode space.

he assumption is that the larger the length scale of a mode is, the
ore important it is for the overall displacement behaviour. However,

he joint design significantly influences the number of modes needed
ince the deformation of the interface depends on the distortional and
arping stiffness of the joint itself at the interface. In other words, if

he design relies on plate bending and not on the transfer of in-plane
orces, it will be necessary to include a high number of modes. This is
ue to the fact that flexural plate modes have quite small length scales
n comparison to large scale distortional modes of the connected beam.
t will be addressed further in the example section.

As discussed in the paper by Hansen & Jönsson [3], each higher-
rder beam mode has an exponential amplitude function, which is
escribed by a decay length factor being the eigenvalue determined in
he quadratic eigenvalue problem. The decay length is then given as:

𝑎 =
𝜖 (43)
𝑅𝑒(𝜆)

10
here 𝑅𝑒(𝜆) is the real part of each eigenvalue associated with each am-
litude function and 𝜖 is a sensitivity factor. In the literature, different
alues of this sensitivity factor have been argued. Nonetheless, we use
= 𝜋 due to the geometric interpretation of the modes, Jönsson [26].
direct illustration of the decay length 𝐿𝑎, for different amplitude

unctions, is shown in the graphs in Fig. 8(c).
Including modes having decay lengths that are much shorter than

he shell element size in the joint does not make sense and is not
xpected to increase the model accuracy.

. Examples and interface mode reduction

In thin-walled frame structures, the joints have to handle difficult
oundary conditions between members involving polynomial beam
odes, the exponential torsional mode as well as distortional modes. At

he very least, it is necessary that the torsional warping, i.e. the classic
eventh d.o.f. can be modelled adequately in connections between I-
eams. However, for cross-sections that have more than three walls,
t is necessary to include at least some important distortional warping
odes in the modelling. Finally, for some joints, it may be necessary

o include local distortional modes related to flexure in the walls of the
ross-sections.

The design of joints depends on the required stiffness and the mag-
itude of section forces that have to be transferred between members
f the frame structure. Stiff and strong joints, so-called rigid joints, are
ften designed utilising force transfer through in-plane membrane ac-
ion between the walls of member cross-sections and plates of the joint,
hile minimising flexural plate bending behaviour in the connected
arts. Simple, flexible welded joints, like those performed in truss
tructures between rectangular tubular members of different widths,
ely solely on the transfer of section forces through flexural (bending)
ction in the walls of the connected tubes. In contrast, joints between
ubular members of identical width rely on and effectively utilise the
ransfer of section forces through membrane action in combination with
lexural action in the walls of connected tubes.

Different joint design types will be investigated through four aca-
emic examples. In these examples, the designs lead to the transfer
f forces from cross-section walls to the joint through (a) in-plane
embrane action (mainly), (b) flexural out-of-plane action, or (c) a

ombination of membrane and flexural action.
The first example investigates four joint designs of a portal frame

orner for lipped channel sections. Three of these corners rely on (a)
n-plane membrane action, whereas one without extra stiffeners relies
n (c) a combination of both membrane and flexural action.

The second and third examples involve a beam to column joint
etween rectangular tubular sections of unequal or equal width, respec-
ively relying on (b) flexural out-of-plane action and (c) a combination
f both membrane and flexural action.

The fourth example introduced by Manta et al. [13] investigates
tapered I-section joint. This joint relies on (c) a combination of
embrane and flexural actions since it does not include stiffeners.

These academic examples have been chosen as benchmark tests to
nvestigate and illustrate the influence of joint design on interface mode
eduction. The influence of not using enough joint interface modes is
hat the displacement prediction of the frame model becomes inac-
urate or even wrong. The influence of the number of joint interface
odes will be investigated in the examples by analysing displacements

f key points in the structural model. Thus, the examples will focus
n displacements, well knowing that the predicted stress fields will be
ess accurate and depend on the mode types. Stress fields of a model
imilar to the first example but with other boundary conditions are
hown in [1].

The presented approach has been implemented using the numerical
oftware Matlab [27]. In the implementation of the triangular shell
lement shown in Fig. 3 the artificial stiffness related to the rotational
.o.f. (𝑣𝑒𝑙 , 𝑣𝑒𝑙 , 𝑣𝑒𝑙 ) has been set to 10−9 times the maximum absolute
𝑤3 𝑤6 𝑤9
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Fig. 9. Portal frame corner. All plates are 2 mm thick, and the point load is 𝑃 = 100
N. The four different primary joint designs are shown to the right.

value in the diagonal of the shell element stiffness matrix. The com-
mercial finite element software Abaqus [28] and its S3 shell element is
used to make finite element shell models of the structural examples in
order to compare the displacements found at relevant key points. In all
examples, the Young’s modulus used is 𝐸 = 210 GPa and the Poisson
ratio used is 𝜈 = 0.3.

6.1. Example 1 – portal frame corners

This example investigates four different joint designs of a rectan-
gular portal frame corner that joins a column and a beam channel
section. Three of these joints are designed to transfer section forces
through in-plane action in section walls and joint plates. However,
the last design depends on a combination of in-plane action in the
web and lips and out of plane action in the perpendicularly joined
flanges. The lipped channel section, the load and support conditions are
purely academic and have been chosen to include both torsional and
distortional warping. The example involves a rather small thin-walled
cross-section compared to normal practice, and the load magnitude was
originally chosen rather small to give the same displacement magnitude
as a similar example with alternate boundary conditions given in [1].

Fig. 9 illustrates the orthogonal assembly of the two equal length
thin-walled lipped channel sections and shows the four joint designs.
The dimensions are given in the figure and the caption text. The
frame corner is modelled by two advanced beam elements and three
joints. One primary joint at the corner and two secondary joints at
the two ‘‘free’’ beam ends. Secondary joints enable conventional nodal
boundary conditions instead of applying boundary conditions to beam
type interface modes. The boundary conditions are applied to the joints
at three individual nodes. The node at the bottom is a fixed simple
support (with all rotations free), the node at the corner of the joint is a
simple support that is movable in the 𝑍-direction, and finally, the node
at the horizontal beam end is a simple support that is movable in the
𝑌 - and 𝑍-directions. Thus, the three supports prevent the overall rigid
body movements of the frame. The structure is statically determined.
The load 𝑃 is applied as a nodal load with a magnitude of 100 N.

The four different joint configurations used to illustrate the influ-
ence of joint stiffener geometry on mode reduction are the following:

[all ] A joint fully stiffened by three stiffening plates,

[dia ] A joint with a diagonal stiffening plate,

11
Fig. 10. Mesh density of the primary joint model for the box configuration.

box ] A joint with two (box) stiffening plates,
non ] A joint without any stiffening plates.

hese four configurations are shown to the right in Fig. 9. The names
n squared parenthesis will be used to reference the specific joint
onfiguration.

The discretisations of the joint models are governed by the cross-
ection nodes of the connected beam elements. To illustrate the mesh
ensity, Fig. 10 shows a discretised primary joint model with the box
tiffeners. The beam element stiffness matrices are deduced using the
pproach outlined in Section 4 with a discretisation having eight wall
lements in each lip, eight wall elements in the flanges, and sixteen
all elements along the web. This results in a total of 294 interface
odes, i.e. d.o.f. at each interface. The discretisation of the lip has to

nable appropriate modelling of the distortional displacements of the
ip. Perhaps it has been chosen to be unnecessarily dense. The first 13
ross-sectional displacement modes used as part of the transformation
atrix 𝐖 are illustrated in Fig. 11. The order of the modes is based

n the eigenvalues that relate to the beam displacement modes (see
lso Fig. 8). The first six interface modes are the rigid displacements of
he interface, then follow the global distortional modes, and finally the
ocal displacement modes. Since the two beam elements are identical,
hey share the same stiffness matrix as well as the same cross-sectional
isplacement modes to be used when transforming the formulation into
he mode-based formulation.

.1.1. Ex. 1: Comparison with a finite element shell model
Before turning to the influence of mode reduction, the analysis

esults for a model using all interface modes are compared to the
esults of a full finite element shell model. Using Abaqus, the portal
rames with the four joint designs are meshed using a structured mesh
f triangular S3 shell elements with full integration. The maximum
lement side length of the mesh is approximately 5 mm, and in some
egions, an even finer mesh is used.
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Fig. 11. The first 13 modal-d.o.f. out of 294 modes representing the interface modes. The upper row represents the in-plane part and the lower row represents the displacements
orthogonal to the cross-sectional plane (warping).
Fig. 12. Global deformation and mode intensities at the two interfaces for the primary joint models.
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The main directional displacement at the three key locations A,
, and C, (shown in Fig. 9) have been extracted from the analysis
nd listed in Table 2 for all four joint configurations. The relative
ifference of the displacement at these points compared to the Abaqus
hell model are given as the 𝛥-values listed in the table for each joint
onfiguration. For example, for the fully stiffened joint configuration
all] the relative difference between the present model and the finite
lement shell model is found at point A to be: 𝛥𝑢𝑍 = 2.2 %, at point
to be: 𝛥𝑢𝑋 = 1.3 %, and at point C to be: 𝛥𝑢𝑋 = 1.4 %. Plots of the

rame corner deformations are shown in Fig. 12(a). Furthermore, three-
imensional visualisations of the absolute displacements are shown
sing colour scales for both present models and Abaqus models in
ig. 13. It can be observed that the models result in practically identical
isplacement patterns. Note that the colour scales deviate slightly due
o different plotting routines used in Matlab and Abaqus. From Table 2
t can be seen that there are some relatively large differences at points

and C in both the case of the box-stiffened and the non-stiffened
 w

12
rame. These are due to differences in the modelling of wall behaviour
n advanced beam elements and the triangular S3 shell elements used
n the Abaqus to model the members. The rather simple pointwise
pplication of supports and load also induce differences in the two
odelling results. However, we have chosen to note and accept these
ifferences in the current work. It does not influence the analysis of
ode intensities and interface mode reduction.

.1.2. Ex. 1: interface mode intensities
The four frame corner joint designs have been analysed using the

ull modes space. Fig. 12(a) shows the global displacements for each of
he four configurations. It is observed that increasing the stiffness by
dding stiffeners in the joint reduces the displacements at points A and
at the beam end, but it also changes the displacement field of the

olumn and the displacement at point C. It can also be observed how
he transmission of rotation and distortion is increasingly prevented
hen adding stiffeners to the joint. The intensities of each mode at
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Fig. 13. Total absolute displacements for the portal frame for the joint configurations.
Table 2
Key point displacements of the portal frame models.

Joint Key Disp. Abaqus Present Relative
design point comp method difference

[mm] [mm] 𝛥

[All] A 𝑢𝑍 −0.386 −0.394 2.1%
B 𝑢𝑋 −0.0127 −0.0122 3.9%
C 𝑢𝑋 −0.0298 −0.0295 1.0%

[Dia] A 𝑢𝑍 −0.585 −0.586 0.2%
B 𝑢𝑋 −0.305 −0.305 0.0%
C 𝑢𝑋 0.265 0.264 0.4%

[Box] A 𝑢𝑍 −0.554 −0.542 2.2%
B 𝑢𝑋 −0.395 −0.343 13.2%
C 𝑢𝑋 −0.413 −0.361 12.6%

[Non] A 𝑢𝑍 −0.816 −0.801 1.8%
B 𝑢𝑋 −1.026 −0.990 3.5%
C 𝑢𝑋 −0.229 −0.197 14.0%

the interface between a beam element and the primary (corner) joint
model are shown in Figs. 12(b) and 12(c) as bar-diagrams. These
intensities are directly extracted from 𝝋𝗌𝗒𝗌 as 𝝋𝖩, which in turn can be
subdivided into 𝝋𝖩

1 and 𝝋𝖩
2 at each interface. Each graph relates to one

of the two corner joint interfaces. One bar represents a mode, and the
intensity is given on the vertical axis. Please note that the vertical axis
is logarithmic. Common for all graphs in Fig. 12 is that the modes with
the highest intensity, i.e. the most pronounced displacement modes at

an interface, are among the first ones. This is the case for all four joint

13
configurations. The graphs indicate that the primary interface modes
being activated are those related to the rigid movements of the cross-
section (mode 1–6) and the first torsional and distortional displacement
fields (mode 7–10). However, it is observed that there are some modes
at the end of the spectrum with increasing intensities. This is a tendency
observed in all four joint configurations. Investigating the importance
and influence of these modes results in the conclusion that the modes
contribute only with a small, very localised displacement (at the end of
each lip). It is also important to note that the somewhat spurious modes
with a high mode index could be neglected since their decay length is
very short and even shorter than the finite elements used in the joint
model adjacent to the interfaces. In the current example, this means
that modes with an index higher than 169 have too small decay lengths
at the interface boundary and could be neglected for this reason. This
mode index has been indicated in the graphs of Fig. 12).

6.1.3. Ex. 1: Interface mode reduction
The number of interface modes are reduced by eliminating all

modes above a certain mode index (i.e. less than a certain decay length)
in the interface transformation matrix, i.e. Eq. (6) and (8). Reducing
the maximum number of modes from 294 modes to 280 modes, then
by twenty modes down to 60 modes and further by ten down to 10
modes and finally to 7 modes allows us to plot the influence of mode
reduction as shown in Fig. 14. The figure shows the relative difference
compared to the inclusion of all 294 modes for all four joint designs for
the main displacements at locations A, B and C. It is seen that nearly no

variation is observed for reductions down to 100 modes. This confirms
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Table 3
Relative difference in key point displacements for interface mode reduction compared
to the use of all 294 modes.

Joint
design

Key
point

Disp.
comp

Disp. all
modes [mm]

Number of included interface modes

100 50 20 10 7

[All] A 𝑢𝑍 −0.394 0.4% 0.5% 1.0% 7.5% 92%
B 𝑢𝑋 −0.0122 0.9% 1.6% 3.1% 46% 328%
C 𝑢𝑋 −0.0295 0.4% 0.8% 2.2% 13% 10%

[dia] A 𝑢𝑍 −0.586 0.2% 0.4% 0.9% 6.7% 94%
B 𝑢𝑋 −0.305 0.5% 0.9% 3.6% 15% 83%
C 𝑢𝑋 0.265 0.3% 0.7% 3.4% 21% 112%

[box] A 𝑢𝑍 −0.542 0.4% 0.6% 1.4% 7.2% 84%
B 𝑢𝑋 −0.343 0.4% 0.6% 1.7% 10% 45%
C 𝑢𝑋 −0.361 0.4% 0.6% 1.8% 10% 53%

[non] A 𝑢𝑍 −0.801 0.4% 0.6% 1.4% 5.8% 88%
B 𝑢𝑋 −0.990 0.9% 1.6% 3.8% 18% 79%
C 𝑢𝑋 −0.197 1.2% 1.1% 2.1% 3.9% 3.8%

our hypothesis that the transformation modes with the highest indices
relate to modes with very localised effects and do not influence global
deformations. Even a reduction below 50 modes can be done without
introducing relative differences above 2 % at all three locations (A, B,
C) for all four stiffening configurations ([non], [dia], [box] and [all]).

Some of the relative difference values for key points have been
assembled in Table 3. As expected, it can be seen that including only
seven interface modes leads to significant errors due to the too stiff
behaviour of the beam element resembling a classic Vlasov beam ele-
ment. This shows that transferring only beam modes or the seven d.o.f.
of Vlasov theory is not sufficient, [29]. However, it is interesting that
by including ten modes in the advanced beam elements (in other words,
by including the modes 8 and 10 related distortional displacements of
the lips of the channel section shown in Fig. 11), there is a dramatic
improvement. It can also be seen that all the four design models of the
joint have relative differences of similar magnitudes. The reason being
that all designs include the important in-plane transfer of forces in the
section. Note that some of the larger relative difference values are based
on very small displacement values and are therefore of less importance.

6.2. Example 2 – tubular joint with unequal width sections

This second academic example investigates the effect of interface
mode reduction for a connection between a cantilever tubular (RHS)
beam and a tubular (RHS) column with clamped ends, as illustrated in
Fig. 15. The unequal widths of the rectangular hollow sections mean
that plate bending action is invoked to transfer the cantilever beam
moment. The model consists of three advanced beam elements, of
which two are used for the column part and one for the cantilever
beam part. Furthermore, four joints are used. There are secondary joint
models at each free beam element end and one primary joint model
located where the three beam elements intersect. The geometry and
dimensions, as well as load and boundary conditions, are shown in
Fig. 15. The cross-section is a very thin rather small cross-section, and
the load was chosen to give the same displacement magnitude as in the
previous section. The load with a magnitude of 160 N is applied at the
secondary joint model located at the free end of the cantilever beam,
where it is evenly distributed along the two web panels. Furthermore,
all d.o.f. at each end-interface of the secondary joint models at the
column top and bottom are fully restrained (to a clamped support
condition). The remaining d.o.f. within all four joint models not being
at a connected face nor assigned for load or boundary conditions are
condensed. It follows that the discretisation of the joint models is
mainly governed by the mesh chosen for the beam elements and is
illustrated in Fig. 16. The cantilever beam cross-section is modelled
using eight wall elements in each of the four walls; this results in
32 nodes at the interface and hence, 192 interface modes. The cross-

section of the two advanced column elements has 16 wall elements

14
Fig. 14. The influence on the displacements at point A, B and C illustrated as the
relative difference when reducing the number of modes within the elements.

along the narrow sides and 12 wall elements at the wide side. This
discretisation results in 56 nodes in total within a cross-section and,
thus, a total of 336 interface modes at each column element interface.
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Fig. 15. Ex. 2 – The beam-to-column set up. The thickness of all plates are 2 mm.

Fig. 16. Ex. 2 – Visualisation of the mesh density for the four joint models.

The discretisation of the two types of beam element cross-sections are
shown in Fig. 17.

6.2.1. Ex. 2: Comparison with a finite element shell model
The vertical key point displacement at the centre of the upper

flange of the cantilevered beam has been compared to that of a finite
element model in Abaqus. The finite element model uses triangular
shell elements (S3 elements in Abaqus nomenclature) in a structured
15
Fig. 17. Ex. 2 – Discretisation of beam and column cross-sections.

Table 4
Key point displacement at the free end of the cantilever beam for examples 2 and 3.

Abaqus Present Relative
method difference

[mm] [mm] 𝛥

Example 2 𝑢𝑍 −2.026 −1.965 3.0%
Example 3 𝑢𝑍 −0.0259 −0.0282 8.9%

mesh and with full integration. The mesh is chosen such that the
column cross-section has sixteen elements in each wall, whereas the
beam has eight elements in the narrow flanges and sixteen elements in
the webs. In general, the side length of a triangular finite element is
approximately 10 mm.

The key point vertical displacement 𝑢𝑍 found at the free end of the
cantilevered beam using the present theory and Abaqus is given in
Table 4. The relative difference is found to be 3.0%. A three-dimensional
comparison of the displacement magnitudes of the two models can be
seen in Fig. 18. The colours indicate the total absolute magnitude of
the displacements found. It can be seen how the main displacements
occur at the cantilever end of the beam and that deviations between
the models are magnified at the cantilever end corresponding to the key
point. From Fig. 19 it can be clearly observed how local deformations
are induced in the column walls in both models. For both models the
displacement 𝑢𝑌 along the centre line of the connected column flange
is plotted in Fig. 19c. It can be seen that the two models agree quite
well and that the difference in the column is small and very local.

6.2.2. Ex. 2: Interface mode intensities
The beam–column structure has been analysed using the full mode

space. The overall deformation of the beam–column structure is shown
in Fig. 20 and a close-up of the deformation of the unequal width
tubular joint is shown in Fig. 21. The mode intensities at each interface
of the primary joint model are also shown on the right hand-side of
Fig. 20. Due to the different discretisations of the beam and column
elements, the number of interface modes at each interface is different.
At Interface 1 and 3, there are 336 modes, whereas, at Interface 2, there
are 192 modes. The tendency at Interface 1 and 3 is that the large
intensity modes are among the first modes, and then the intensities
decay for increasing mode indices. However, at Interface 2, a single
mode stands out from the others, that is, mode five (rotation related
to bending), and it has an intensity that is at least ten times higher
than the other modes. The other modes are not decreasing, as seen at
Interface 1 and 3. The first number of interface modes of Interface 2 are
illustrate in Fig. 22. The magnitude of the interface mode intensities is
also included in the figure. In this example, the shortest solution length
scales are in the same order of magnitude as the side lengths of the
triangular elements used in the joint model. Therefore an increase in
mode intensities is not seen for the highest mode index values.
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Fig. 18. Ex. 2 – Visualisation of the total absolute magnitude of the displacements in the two models.
Fig. 19. Ex. 2 – A column cut-out to visualise the absolute magnitude of the displacements in the two models.
.2.3. Ex. 2: Interface mode reduction
Now, as in the previous example, the influence of mode reduction is

nvestigated. The number of modes used for the analysis is decreased
y twenty modes at a time until sixty modes are left, then only ten
odes are removed in each step, and finally, an analysis is made with

even modes only. In line with the previous example, the Key point
isplacement 𝑢𝑍 at the cantilevered tip of the upper flange centre
s found after each reduction in the number of modes. A relative
ifference between the key point displacement using the reduced mode
pace and the full mode space is computed. This allows us to make the
llustration shown in Fig. 23. The thick lines correspond to this example
16
2. The number of modes and the decay lengths of this example is shown
below the graph as lower axis labels. The relative difference in the key
point displacement is also given in Table 5. It can be seen that a rapid
increase in the relative difference is seen as we reduce the number of
modes. The main reason for this rapid increase in the relative deviation
is to be found in the way the frame joint deforms. Because the beam
width does not equal the column width, the rotation that occurs at the
joint is caused by local plate bending in the column walls. The interface
modes related to this kind of behaviour are modes with high index
numbers. Thus, the induced error will be significant if these higher-

order modes are not included in the analysis. Furthermore, the main
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Fig. 20. Ex. 2 – Global deformation and intensities of the primary joint interfaces. The
eformation is magnified by a factor of 100.

able 5
elative difference of beam tip displacements for interface mode reduction compared

o the use of all modes.
Tubular
connection

Disp.
comp

Number of included interface modes

200 150 100 50 20 10 7

Example 2 Unequal width 𝑢𝑍 3% 12% 21% 58% 88% 94% 99%
Example 3 Equal width 𝑢𝑍 3% 6% 7% 14% 23% 39% 44%

reason is that the stiffness of this type of connection with unequal width
flanges is very limited.

6.3. Example 3 – tubular joint with equal width sections

This third academic example also investigates the effect of interface
mode reduction for a connection between a cantilever tubular (RHS)
beam and a tubular (RHS) column with clamped ends, as in the
second example. The only change from the second example is that
the geometry of the beam is now changed so that the beam flange
width is equal to the column width. The changed beam cross-section
and its discretisation are shown in Fig. 24. This change means that
both in-plane membrane and plate bending action are now invoked
to transfer the cantilever beam moment. Since the width of the beam
is now greater than the height, there may still be quite a large effect
from the plate bending action in transferring the flange stresses of the
cantilever beam. Nevertheless, the stiffness is increased substantially.
Therefore the load used is very small and leads to displacements that
are magnitudes lower than example 2.

With equal width cross-sections, the key point vertical displacement
at the middle of the upper flange at the free end is reduced to 1.4% of
the previous example, i.e. to 𝑢𝑍 = 0.028 mm, which is a considerable
reduction compared to the displacements of the second example, as
seen in Table 4. The stiffness of the joint has increased substantially
from second example by transferring the moment more or less directly
through the side walls (webs) of the beam and column. Of course, the

moment of inertia of the beam is increased since it is now twice as

17
Fig. 21. Ex. 2 – A close-up of the deformation at the connection and a top view
illustrating the bending of the column panels. The magnitude of the displacements are
increased 100 times.

wide. However, the influence of the flexural bending deformation of
the beam is insignificant compared to the joint deformation in these
examples.

6.3.1. Ex. 3: Comparison with a finite element shell model
Table 4 shows the key point displacement of the present method

and the Abaqus finite element model. It can be seen that the relative
difference between this and the previous example are of the same order
of magnitude.

6.3.2. Ex. 3: Interface mode intensities
Due to the changed beam width, the number of beam element

modes increased from 192 in the previous example to 288 modes. Of
course, the increased number of modes is due to an increased number
of nodes within the beam cross-section. Nevertheless, the primary inter-
face modes are similar and the extra modes added are modes related
to a displacement with short decay lengths. With the changed beam
width, the structure is analysed, and the resulting mode intensities
are found. Based on analysis using the full mode space Fig. 25 shows
the global deformation as well as the intensities of the modes at the
interfaces similar to Fig. 20 for the original design. In accordance
with the increased stiffness and the reduction in displacements, the
intensities are generally decreased compared to those in Fig. 20. Note
the difference in the scale of the vertical axis in the intensity plots. Since
the joint invokes in-plane action in the beam and column sidewalls, it
is seen that the number of high index modes having high intensities is
reduced, especially at Interface 1 and 3. At Interface 2, we also see a
decrease in the number of modes with a clear influence.

6.3.3. Ex. 3: Interface mode reduction
Reducing the number of interface modes as in the previous example

does not as markedly increase the relative difference in the key point
displacement as in the previous example. The variation in the relative
difference in the key point displacement as a function of the number
of included interface modes is shown in the graph of Fig. 23 for both
examples. The number of modes and the decay lengths of this example
is shown above the graph as top axis labels. The relative difference in
the key point displacement is also given in Table 5 for both examples.
From the graphs and the table, we can deduce that for equal width
beam and column, the local modes with a high mode index do not
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Fig. 22. Ex. 2 – The first twelve interface modes (i.e. normalised) used at Interface 2 in Fig. 20. The upper row represents the in-plane part of the displacement modes and the
ower row represents the out-of-plane displacements of the modes (warping). The numbers below indicates the actual intensities of each interface mode obtained form the analysis.
Fig. 23. Relative difference in key point displacement when reducing the number of
modes within the model in examples 2 and 3.

Fig. 24. Ex. 3 – Discretisation of the changed beam cross-section.

influence the displacement to the same extent as in the case with
unequal widths. When keeping only the first 100 modes, the relative
difference in the key point displacement is still below 8 % for equal

idth beam and column, whereas for the unequal widths (Ex. 2),
his relative difference is 28 %. However, it is also clear that part of
he moment in the cantilever beam is also transferred through plate
ction. In order to achieve accurate stiffness modelling, it is necessary
o include local plate bending modes. Of course, if accuracy in the local
tresses is important, even the full mode space may have to be included.
18
Fig. 25. Ex. 3 – Global deformation and mode intensities of the primary joint
interfaces. The deformation is magnified by a factor of 1000.

6.4. Example 4 – tapered I-section joint

This fourth academic example investigates the effect of interface
mode reduction for a tapered I-section joint without stiffeners. The
joint example is used by Manta et al. in [13]. The joint design relies
on a combination of membrane and flexural actions since the kink
in the flanges is not stiffened by a third plate stiffener. The example
allows a comparison of displacement results obtained by finite shell
elements and by Manta et al. using GBT elements based on cubic
Hermite interpolation. Two combined shell and beam models, model
A and model B, shown in Fig. 26 are used for the present method.
Model A is equivalent to the model used by Manta et al. with a joint
extension, and model B is without the joint extensions from the end
of the tapered part. Model B is used to investigate if the presented
method needs an extension of the joint. The I-section geometry and the
section discretisation are shown in Fig. 27, and the discretisation of the
joints is shown in Fig. 28. The exponential beam modes and the related
interface modes are illustrated in Fig. 29. The beam mode numbers are
shown above the cross-section modes, and the interface mode numbers
are shown in parenthesis. The first six interface modes corresponding
to the six rigid body modes of the cross section are not included in the
figure.
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Fig. 26. Ex. 4 – Tapered I-section joint modelled with joint extension in Model A and
without joint extension in Model B.

Fig. 27. Ex. 4 – Beam and column cross-section and the discretisation.

Fig. 28. Ex. 4 – Discretisation of joint models A and B.
19
Table 6
Ex. 4 – Key point displacement at the loaded upper flange tip of the beam. [mm].
Abaqus Manta et al. [13] Present method

shell shell Model A Model A Model B

S3 MITC4 MITC4+GBT All modes 40 modes All modes 40 modes

12.212 12.258 12.278 12.161 12.025 12.207 12.040

6.4.1. Ex. 4: Comparison between models
The flange tip of the cantilevered part of the beam is loaded by a

transverse load of 𝑃 = 10 kN as shown in Section 1–1 of Fig. 26. The
found key point displacement of the flange tip is given in Table 6 for the
different methods. The Abaqus model uses triangular S3 shell elements,
with a discretisation resembling that of the cross-section, Fig. 27. The
MITC4 shell model and the MITC4+GBT results are taken from [13].
For the present method, the discretisation used corresponds to all 138
modes in a cross-section. The table also includes the results in which
the number of interface modes has been reduced to 40 modes. It can be
seen that the results agree and that the present method does not need
the extension of the connection. The beam element can handle the local
deformations at the kink.

When comparing to the results of Manta et al. it has to be noted
that the methods are different and the counting method for the number
of modes also deviate. Therefore, the comparison has to be done by
the number of d.o.f. and not by the number of modes. The present
formulation of modes includes the elongation of the walls in the
cross-section plane, shear deformation, and the Poisson effect. In the
presented method, interface mode reduction is also strictly based on
length scale. Therefore more modes are needed. Manta et al.’s results
are based on Hermitian interpolation of Vlasov beam modes and five
selected local plate modes. Therefore mode reduction has already been
performed. Since five finite elements are used to model the column
and another five to model the beam, it is estimated that the prismatic
finite beam elements in Manta et al.’s model correspond to 132 d.o.f.
including the end d.o.f. The full model of this paper uses 138 interface
modes at each prismatic beam element end. Therefore with only one
beam element in the column and one for the beam, this corresponds
to 2𝑥2𝑥138 = 552 d.o.f. Introducing interface mode reduction to 40
nterface modes results in the use of 2𝑥2𝑥40 = 160 d.o.f., which is a little
igher but in the same order of magnitude as the model by Manta et al..
urthermore, the number of d.o.f. of the shell finite element model
f the prismatic beam parts (with 6 d.o.f. per node) are in the order
f magnitude of 12,000 d.o.f, which is much more than the discussed
dvanced beam models.

.4.2. Ex. 4: Interface mode intensities
The interface mode intensities and the deflection of the frame with

he tapered I-section joint between the column and beam are shown
n Fig. 30 for both models. Since the beam and column interfaces of
odel A are placed a section hight away from the kink, it is expected

hat the higher index modes have a reduced intensity compared to
odel B, in which the interface is placed at the kink. The following

ubsection shows that approximately the first 40 modes are essential
or both models. From the intensity plot, it seems that more of the first
0 modes are excited in model B.

.4.3. Ex. 4: Interface mode reduction
The influence of interface mode reduction performed as in the

revious examples is illustrated in Fig. 31. The relative key point
isplacement difference for interface mode reduction is relative to the
se of all 138 interface modes (Table 6). There is little difference
etween models A and B, and the number of modes can be reduced to
0 without compromising the accuracy. The relative difference values
f the flange tip displacements are given in Table 7.

It can be seen that using only the six beam interface modes for
his thin-walled structure leads to the 44.0–47.2% relative difference
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Fig. 29. Ex. 4 – Exponential beam modes and the related interface modes for the I-section. The related interface mode numbers are shown in parenthesis.
Table 7
Relative difference of the flange tip displacement for interface mode reduction compared to the use of all
modes.
Number of
interface modes: 100 80 60 40 30 20 10 7 6

Model A 0.52% 0.65% 0.95% 1.12% 2.61% 8.13% 11.5% 14.6% 44.0%
Model B 0.55% 0.71% 1.06% 1.37% 3.17% 9.10% 13.1% 18.3% 47.2%
in the key point displacement and including the classic seventh d.o.f.
reduces this to the 14.6–18.3% relative difference. Less than 2% rela-
tive difference can be obtained by including forty interface modes. The
previous and this example illustrate that using standard beam elements
can lead to significant displacement errors even if refined joint models
are introduced.
20
7. Discussion

Using advanced beam elements based on the solution of the
quadratic eigenvalue problem has the advantage of only introducing
nodes at the end cross-sections, not having to split a beam element
into finite beam elements with many nodes along the beam (as in con-
ventional GBT beam analysis). As long as the advanced beam element
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m

Fig. 30. Ex. 4 – Global deformation and mode intensities of the joint interfaces for

odel A and B. The deformation is magnified by a factor of 5.

Fig. 31. Ex. 4 – Relative difference in key point displacement when reducing the
number of modes used in model A and B.
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is used for linear elastic analysis, the advanced beam elements will be
effective. If the number of degrees of freedom at the end cross-sections
can be further reduced by interface mode reduction, the number of
degrees of freedom of the whole structure will be substantially reduced.

If the global modelling of larger thin-walled frame structures is to
be accurate, then modelling of joint displacements and stiffnesses must
be reasonably accurate. Interface mode reduction has to be applied
with caution and knowledge of the connection design. Displacements
and stresses converge with decreasing length scales of modes. As in
displacement modelling in finite elements, stresses converge slightly
slower and may need an increase in the number of included modes,
especially when local plate bending effects are essential. The number
of degrees of freedom needed when using advanced beam elements
is much less than when using shell elements since we have utilised
knowledge of the behaviour of the prismatic geometry.

In relation to the examples, it is seen from Example 1 that when the
joint design is mainly based on the transfer of section forces through
membrane action in the plane of the cross-section walls, then the dis-
placement and stiffness modelling remains reasonably accurate when
applying quite large interface mode reductions. However, Example 2
shows that if joints are designed based on flexural plate action, then the
displacement and stiffness modelling of the joint will be compromised
by interface mode reduction (the possible amount of interface mode
reduction will be relatively insignificant). On the other hand, Example 3
shows that as soon as just some of the cross section walls are allowed to
transfer forces through in-plane action to the joint, the interface mode
reduction may be applied to a reasonable level. In these examples, we
have only focused on a direct connection of the beams to the joint.
These direct connection interfaces can be achieved by welding. We are
aware that many possible connection designs may be appropriate and
that there is a need for further investigation.

Including modes according to decreasing length scales (equivalent
to ascending order of eigenvalues) is a natural systematic choice cor-
responding to increasing the discretisation in finite element analysis or
increasing the number of Fourier terms in series approximations. The
shorter the length scales included are, the more refined the approxi-
mation will be. Including modes of short length scale by an informed
engineering choice will often only lead to appropriate approximations
if most of the modes with larger length scales are also included.

Using beam modes as interface modes are justified by the axial
displacement part of the beam modes (flexural, torsional and distor-
tional warping modes) being very stiff (in the plane of the cross-section
walls) and therefore often inducing the related displacements to the
joint or transferring the related axial stresses to the joint. However, if
the joint does not resist through in-plane membrane action, then local
transverse (out of plane) plate action occurs in both beam element and
joint model. As shown, interface mode reduction may be difficult using
the present method. Of course, this will depend on the thickness of the
plates used in the joint.

The decay length of the essential beam modes is important in
relation to the discretisation and modelling of the joint, since the shell
element discretisation has to accommodate these decay lengths within
the joint. Thus, using the decay length as a predictor for the number of
interface modes at the joint has relevance.

Compared to the level of accuracy obtained using standard frame
analysis without including joint flexibility, the presented method gives
a proposal that can be used to successively refine the accuracy of global
frame analysis by including an increasing number of modes. However,
the accuracy is dependent on an appropriate joint design.

8. Conclussion

This paper has introduced a mode selection technique that leads to
a unique set of interface modes, for the GBT methods based on solution
of the related quadratic eigenvalue problem. Furthermore, ordering the
modes by length scales (eigenvalues) gives a natural choice of mode
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reduction by reducing the number of modes from the small length scale
end. This paper shows how interface mode reduction can substantially
reduce the number of degrees of freedom by using beam interface
modes. It has also been found that mode interface reduction has to be
applied with caution and due consideration of the joints at which it is
applied. Membrane transfer of forces allows a higher degree of mode
interface reduction.
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