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Interindividual variability of electric 
fields during transcranial temporal 
interference stimulation (tTIS)
Jill von Conta1, Florian H. Kasten1,2, Branislava Ćurčić‑Blake3, André Aleman3, 
Axel Thielscher4,5 & Christoph S. Herrmann1,2,6*

Transcranial temporal interference stimulation (tTIS) is a novel non‑invasive brain stimulation 
technique for electrical stimulation of neurons at depth. Deep brain regions are generally small in 
size, making precise targeting a necessity. The variability of electric fields across individual subjects 
resulting from the same tTIS montages is unknown so far and may be of major concern for precise 
tTIS targeting. Therefore, the aim of the current study is to investigate the variability of the electric 
fields due to tTIS across 25 subjects. To this end, the electric fields of different electrode montages 
consisting of two electrode pairs with different center frequencies were simulated in order to target 
selected regions‑of‑interest (ROIs) with tTIS. Moreover, we set out to compare the electric fields of 
tTIS with the electric fields of conventional tACS. The latter were also based on two electrode pairs, 
which, however, were driven in phase at a common frequency. Our results showed that the electric 
field strengths inside the ROIs (left hippocampus, left motor area and thalamus) during tTIS are 
variable on single subject level. In addition, tTIS stimulates more focally as compared to tACS with 
much weaker co‑stimulation of cortical areas close to the stimulation electrodes. Electric fields inside 
the ROI were, however, comparable for both methods. Overall, our results emphasize the potential 
benefits of tTIS for the stimulation of deep targets, over conventional tACS. However, they also 
indicate a need for individualized stimulation montages to leverage the method to its fullest potential.

Electric brain stimulation techniques, such as transcranial alternating current stimulation (tACS), are widely 
used to modulate human brain activity on a cortical  level1–3. It is, however, not possible to reach deep brain 
structures non-invasively without stimulating the overlaying cortex. Currently, it is solely possible to target deep 
brain structures focally with an invasive brain stimulation technique, namely deep brain stimulation (DBS). 
DBS is used as a powerful therapeutical technique for several clinical disorders such as Parkinson’s  disease4–6, 
treatment-resistant  depression7–12, or Alzheimer’s  disease13–15. However, DBS is based on a different mechanism 
of action (supra-threshold activation) as compared to non-invasive electric brain stimulation techniques, like 
tACS (sub-threshold modulation).

Based on similar mechanism of action as tACS, transcranial temporal interference stimulation (tTIS) has been 
developed as a new non-invasive brain stimulation technique to electrically stimulate neurons at  depth16. For 
tTIS, electric currents are applied through multiple electrode pairs at two different high frequencies  (f1,  f2, with 
 f1 <  f2) that are not in the range of regular neural frequencies (i.e., > 600 Hz) but they do penetrate the skull and 
brain  tissue17. The applied currents stimulate with slightly different frequencies. The beat frequency of these two 
currents oscillates at  fdiff  (fdiff =  f2 −  f1), which represents the target stimulation frequency. This beat frequency is 
maximal when the two signals overlap with same strength and the field vectors have the same direction (Fig. 1a). 
It was demonstrated that tTIS triggers neural firing in the hippocampus of mice at  fdiff

16. Moreover, it has been 
shown that neurons were activated only in deep brain structures (where both stimulation frequencies overlap 
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with same strength), without stimulating the overlaying  cortex16. Furthermore, it was shown that tTIS over the 
left motor cortex led to motor activity in  mice16. However, it could be challenging to translate knowledge gained 

Figure 1.  Concept of temporal interference stimulation (tTIS) and selected electrode montages to target three 
different regions of interest (ROIs). (a) For tTIS, two pairs of stimulation electrodes are attached to the scalp. 
Between the electrodes of each electrode pair, a high frequency alternating current is applied at e.g., 1 kHz 
and 1.01 kHz. The superposition of the signals causes an amplitude modulation oscillating at the difference of 
both frequencies (in this case 10 Hz). (b) Anatomical locations (in red) of the defined ROIs on the MNI brain: 
left hippocampus, left motor cortex and thalamus. (c) The electrode montages targeting the left hippocampus 
and the left motor cortex were adapted from Rampersad et al.26 for tTIS and for tACS. The electrode montage 
targeting the thalamus was defined with F7-PO7, and F8-PO8 for tTIS and for tACS.
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in animal studies to humans: two-electrode tES is approx. 100-times stronger in the cortex of a mouse than in 
the human model. Generally, electric field strength due to tES strongly decreases from smaller to larger head 
 sizes18. In contrast to mice, the human brain cannot be stimulated with supra-threshold field strength (as the 
mice in the tTIS study mentioned  above16).

The efficacy of tTIS to modulate neural oscillations in the human brain has not been investigated so far and 
current research is limited to animal studies, computational models and electric field simulations. The putative 
neurobiological mechanisms of tTIS has been  investigated19 using a single neuron computational model. In this 
model, classical Hodgkin–Huxley squid neurons and some mammalian cells exhibited effects during temporal 
interference stimulation. However, some of the mammalian cells in the study did not show an effect to temporal 
interference stimulation. Another study showed that pure high frequency sinusoids resulted in a current balance 
between inward and outward current in single neuron  models20. This current balance restrains the membrane 
potential from spiking. The fast-changing envelope, resulting when both high frequency sinusoids overlap, acti-
vates fast depolarizing currents without giving slow outward currents time to respond. This imbalance causes 
the neuron to fire (note that this study is based on a single neuron model and field strength achievable with 
available non-invasive electric brain stimulation techniques are far too week to cause neuron firing in humans). 
Other research investigated the suprathreshold and subthreshold membrane dynamics of neurons in response 
to interferential stimulation and the authors showed in a neuron model that tTIS was able to modulate spiking 
activity and facilitated phase synchronization similar to a relatively well-established brain stimulation technique, 
namely transcranial alternating current stimulation (tACS)21. Compared to conventional tACS, it should be noted 
though, that the modulatory effects were less potent for tTIS at similar field intensities, which is in line with 
other simulation work on the effect of electric stimulation with amplitude modulated  signals22. A study based on 
hippocampal slices of rats showed that the spatial selectivity of tTIS (superficial brain regions stay unmodulated 
and only deep brain targets are modulated) depends on phasic modulation of neural oscillations in deep brain 
 structures23. Another study suggested that the mechanism of tTIS is based on an ion-channel mediated signal 
rectification process, instead of passive membrane filtering (as suggested in previous studies)24.

In addition to the investigation of the neurobiological mechanisms of tTIS, simulation studies focused on the 
exploration of the resulting electric fields during tTIS in humans. These showed that the stimulation intensity of 
tTIS might be similar to conventional transcranial alternating current stimulation (tACS)25,26. However, it was 
also shown that tTIS goes beyond superficial areas and may reach deeper  areas26, in addition to producing more 
focal fields than conventional tES methods. A recent study proposed to use optimization algorithms to target 
desired ROI’s inside the brain when stimulating with  tTIS27. With such algorithms, the authors showed that tTIS 
has the potential for focal non-invasive deep brain stimulation. Another study showed that optimal stimulation 
conditions with temporal interfering fields are inconsistent across subjects and suggested to consider individual 
anatomical  differences28. However, the study is based on only three individual subjects and the used optimiza-
tion algorithm seems to be time-consuming. Therefore, further research is needed to investigate the individual 
variability of the resulting electrical field during tTIS on a larger population.

A computational  study26 that aimed to optimize tTIS electrode montages for target field strength and focality 
investigated how different parameters influence the electric field of tTIS. Therefore, the electrode montages (88 
electrode positions) and the stimulation current strength were systematically varied (146 M current patterns). 
Optimized electrode positions to maximize the electric field with tTIS in three brain regions were developed: the 
pallidum, the left hippocampus and the left motor cortex. However, optimal electrode placements were analyzed 
for a single subject, indicating the necessity for simulations across multiple subjects.

In order to optimize stimulation effects of non-invasive electric stimulation techniques, important parameters 
that have a crucial influence on the effect have to be considered. These include the strength of the electric field 
and its direction. Stimulation effects are reported for electric field strength inside the human brain of approx. 
0.1–0.3 V/m29–31. Moreover, it was shown that neurons respond preferentially to stimulation when the field is 
oriented along the predominant direction of the  neuron32–34. Therefore, the direction of the applied electric 
field has also to be considered when applying different brain stimulation techniques. Overall, the localization of 
the target (where are the neurons located that are related to the expected effect?), the strength of the electrical 
stimulation (which strength is needed in the target location?), and the preferred direction of the electric field 
(which direction of the electric field is needed in the target location?) have to be defined in order to achieve 
optimal stimulation effects with non-invasive electric brain stimulation techniques.

Effects of different non-invasive brain stimulation techniques are controversially discussed in current litera-
ture. This discrepancy might be in part due to the variability of electric fields due to different non-invasive brain 
stimulation  techniques35, that leads to variable effects across subjects and studies. Due to the different brain 
anatomies across individuals, it might be beneficial to individually adjust electrode placement in order to target 
the region of interest (ROI) inside the brain and achieve similar stimulation effects across subjects and studies. 
In order to target deep brain structures (which require relatively focal stimulation due to their small size), target-
ing the ROI precisely is inevitable in order to achieve comparable effects. A recent study investigated whether 
individual differences across subjects regarding the electrical field lead to different stimulation effects for  tACS35. 
Since tTIS likely has a similar mechanism of action as tACS and, moreover, the electric fields of tTIS seem to 
be more  focal26, it is important to investigate whether the electric fields also differ across subjects with the same 
electrode  montage26. Individual differences of the electric fields due to tTIS could lead to variable stimulation 
effects. However, the variability of electric fields across individual subjects is nearly unknown for tTIS. Therefore, 
the aim of the current study is to investigate the variability of the electric fields due to tTIS across subjects. Due 
to similar underlying mechanisms of action, we set out to compare the electrical field of conventional tACS with 
the electrical field of tTIS.
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Methods
To investigate the variability of the electric fields across subjects, the electric fields of three different electrode 
montages were simulated in order to target three different predefined regions-of-interest (ROIs) with tTIS. In a 
first step, we aimed to identify electrode montages that maximize the electric field inside the defined ROI, and 
simultaneously, minimize the electric field outside the ROI. Since efficient optimization algorithms are currently 
not available for tTIS, we adapted optimized electrode positions from the literature in order to target our ROIs 
with tTIS. The different electrode montages were simulated for different subjects and the resulting electric fields 
were compared. Additionally, the electric field simulations for tTIS were compared to the electric field simula-
tions for conventional tACS, targeting the same ROIs, with optimized electrode positions for both stimulation 
 techniques26. Since we expect physiological effects in the gray matter of the brain, we restricted our analysis to 
this compartment.

Participants. To test the variability of the electric fields of tTIS across subjects, we simulated different 
electrode montages on structural MRI scans of 25 different subjects taken from an existing dataset (structural 
MRIs taken from Kasten et al.35). The data was initially acquired from 40 healthy volunteers (age: 24 ± 3 years), 
recruited at the Carl von Ossietzky University of Oldenburg and was counterbalanced for sex. All subjects were 
right-handed, without history of neurological and psychiatric disorder, non-smoker, medication free at the days 
of recordings and had normal or corrected to normal vision. Participants gave written informed consent. The 
study by Kasten et al.35 was approved by the committee for Research Impact assessment and Ethics of the Uni-
versity of Oldenburg and conducted in accordance with the declaration of Helsinki.

MRI images were acquired using a Siemens Magnetom Prisma 3 T whole-body MRI scanner (Siemens, 
Erlangen, Germany). A T1-weighted 3-D sequence (MPRAGE, TR = 2000 ms, TE = 2.07 ms) with a slice thick-
ness of 0.75 mm was used.

Electric field simulations. Electric field simulations were performed with MATLAB R2018b and the Sim-
NIBS 3.0  toolbox36. A tetrahedral head mesh was created from the MRIs (for detailed information see “Partici-
pants”) using SimNIBS’s headreco that integrates SPM12 and CAT12 for segmentation with meshfix and gmsh 
for meshing. After visual inspection of the segmentation results (specifically, we focused on the skull segmenta-
tion), we excluded 15 subjects due to obvious segmentation errors, resulting in 25 subjects (age: 25 ± 3 years, 12 
females, 13 males). Default conductivities of the toolbox were used for the different compartments (0.126 S/m 
for white matter, 0.275 S/m for gray matter, 1.654 S/m for csf, 0.01 S/m for bone, 0.465 S/m for skin)36. The 
values of the conductivities represent average values from several references (e.g. see Table 1 in Wagner et al.37). 
They fall well within the range of conductivities observed in measurements from fresh or live tissues near body 
temperature for frequencies ranging from 0 to 100  kHz38. For the finite-element methods (FEM)-based electric 
field calculations, rubber stimulation electrodes with a diameter of 1  cm and conductivity of 29.4 S/m were 
placed at known 10–20 EEG system electrode sites. The electrically conductive, adhesive paste (conductivity of 
1 S/m) underneath the electrodes were estimated with a thickness of 2 mm. SimNIBS 3.0 was used to simulate 
the electrical fields for each electrode pair separately. In order to investigate the distribution of the total electric 
field generated from the temporal interfering fields of two electrode pairs, further calculation steps were neces-
sary. The spatial distribution of the envelope modulation amplitude was computed with the formula used by 
Grossmann et al.16

where E1(r) and E2(r) are the two electrical fields generated for the first and second electrode pairs at location 
r(x,y,z) r(x,y,z), 
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The equations were adapted from Grossman et al. 16 and Rampersad et al.26 and implemented in a MATLAB 
function (function is implemented in the SimNIBS toolbox).

Simulation of the electric field during tTIS on the MNI brain. Several studies use the well-known 
Montreal Neurological Institute (MNI) average  brain39 (brain template, that is created from 3D brain MRI 
images of 152 normal subjects) in order to predict the electric field distribution and strength of different brain 
stimulation techniques. Therefore, we simulated the electric field of different electrode montages targeting differ-
ent ROIs on the MNI brain in order to investigate the spatial distribution and the strength of the electric field due 
to different electrode montages stimulating predefined ROIs with tTIS. The ROIs were defined as the left hip-
pocampus, the left motor cortex and the thalamus (see Fig. 1b for the positions and sizes of the ROIs). In order 
to target the left hippocampus and the left motor cortex, we used the optimized electrode montages developed by 
Rampersad et al.26. The authors showed that the optimal electrode positions for tTIS to target the left hippocam-
pus are AFz/P7, and AF4/P9 (see Fig. 1c) and for the left motor cortex F1/CP1, and FC1/CP3 (see Fig. 1c). These 
electrode montages lead to the maximal electric field strength over all directions  (Ex,  Ey,  Ez) in the ROI. The 
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authors also showed other electrode montages considering that neurons respond preferentially to stimulation 
when the field is oriented along the predominant direction of the neuron. However, the current study simulates 
the electrode montages that maximize the electric field strength in a given location over all directions. In addi-
tion, we aimed to simulate the electric field in order to target the thalamus. To this end, we simulated different 
electrode montages (we limited the electrode positions to frontal and parietal/occipital electrode positions) and 
chose the electrode montage that maximizes the electric field inside the thalamus while minimizing the electric 
field outside the thalamus by visual inspection. We end up with the electrode positions F7/PO7, and F8/PO8 
(see Fig. 1c). We used the same electrode positions for tACS in order to target the thalamus. For all electric field 
simulations, the current strength was defined at 1 mA per electrode pair.

In order to characterize the electric field distribution and strength, we calculated the mean electric field inside 
the ROI’s, as well as the maximum of the electric field inside vs. outside the ROI by using the AAL-atlas40. Non-
invasive electric brain stimulation with a current strength of 1 mA leads typically to an electric field of approx. 
0.1–0.3 V/m inside the  brain29–31. Since tTIS is based on similar mechanisms of action as tACS, we aim to achieve 
comparable electric field strength with tTIS than with well-known and established non-invasive brain stimulation 
techniques. Based on this knowledge, we characterized the focality of the different simulations: we calculated the 
proportion of voxel inside the ROI that exposed to field strength greater than 0.1 V/m, and 0.2 V/m. In order to 
complement our analyses with an index of focality, we also computed the proportion of voxels that exposed to 
field strength with greater than 0.1 V/m, and 0.2 V/m inside the whole gray matter volume.

Simulation of the electric field during tTIS on individual brains. To evaluate the variability across 
subjects, we computed spatial correlations between different electric field simulations of the subjects and the 
predicted electric field, simulated on the MNI brain. Additionally, we computed spatial correlations across the 
electric field simulations of the different subjects and calculated characteristics of the electric fields (mean elec-
tric field inside the ROI, maximum of the electric field inside/outside the ROI, proportion of voxel that exposed 
to field strength > 0.1 V/m, and 0.2 V/m in the ROI and for the whole gray mater volume, as explained in “Simu-
lation of the electric field during tTIS on the MNI brain”).

Comparison of the electric fields during tTIS and conventional tACS. In addition to the optimal 
electrode montages for tTIS, Rampersad et al.26 showed the optimal electrode montages for tACS to target the 
left hippocampus and the left motor cortex. The maximal total current strength was defined to be 2 mA. For 
tACS, the optimal current ratio (current ratio between both electrode pairs), to target the left hippocampus is 
0.1 (AF3/P7 stimulate with 1.8 mA; AFz/TP7 stimulate with 0.18 mA). In order to target the left motor area with 
tACS, the optimal current ratio is 10 (F1/CP1 stimulate with 0.18 mA; FC1/CP3 stimulate with 1.8 mA). The 
adapted electrode montages of tACS are visualized in Fig. 1c. For tTIS, the current ratio for all ROI’s is 1 (result-
ing in 1 mA per electrode pair). To compare the electric fields of tTIS with conventional tACS, we contrasted 
the electric field simulations of tTIS with the electric field simulations of tACS for the left hippocampus, the left 
motor cortex and the thalamus. We compared the spatial distribution and electric field strength of both brain 
stimulation techniques by contrasting the characteristics of the electric field of tTIS and tACS (mean electric 
field inside the ROI, maximum of the electric field inside/outside the ROI, proportion of voxel that exposed to 
field strength greater than 0.1 V/m and 0.2 V/m inside the ROI and for the whole gray mater volume).

Results
For the analysis, we investigated the amplitude of the low frequency envelope of tTIS (calculated as explained 
in “Electric field simulations”), in contrast to the amplitude of tACS. Note that the electric fields of the tTIS 
montages have a different distribution and strength for the total electric field itself, resulting from both electrode 
pairs oscillating at slightly different high frequencies. However, the focus of the current study is to compare the 
electric field of the envelope frequency of tTIS across subjects, and against tACS.

ROI: left hippocampus. The electric fields for both brain stimulation methods, tTIS and tACS, targeting 
the left hippocampus on the MNI brain are visualized in Fig. 2a. Overall, tTIS and tACS induce similar mean 
electric field strength (difference of 0.01 V/m), as well as to similar maxima of the electric field inside the left 
Hippocampus (difference of 0.03 V/m). However, tACS results in a higher maximum of the electric field outside 
the left hippocampus (difference of 0.1 V/m). For tACS, approx. 15% more of the voxels inside the left hippocam-
pus, as well as for the whole gray matter volume, are exposed to electric field strengths of greater than 0.1 V/m 
(see Table 1, left Hippocampus).

For tTIS, the electric field simulations targeting the left hippocampus are visualized for two representa-
tive subjects in Fig. 2b. The electric fields of the individual brains correlate with a mean of r = 0.85 (std = 0.01, 
median = 0.84, 75th percentile = 0.86, 25th percentile = 0.83, minimum = 0.83, maximum = 0.87, outliers = 0) with 
the predicted electric field on the MNI brain. The averaged correlation between individual simulation results in 
r = 0.85 (std = 0.01, median = 0.85, 75th percentile = 0.86, 25th percentile = 0.82, minimum = 0.77, maximum = 0.9, 
outliers = 2). The individual correlation coefficients are displayed in Fig. 2b.

The values for single subjects (mean electric fields inside left hippocampus and maxima of electric fields 
inside/outside left hippocampus, proportion of voxel that exposed to field strength greater than 0.1 V/m inside 
the ROI, as well as for the whole gray matter volume) are visualized in Fig. 2c. Overall, similar patterns are shown 
for the individual brains as for the MNI brain. However, while also in the same direction, the difference of voxels 
that expose to field strength greater than 0.1 V/m inside the left hippocampus is approx. 25% between tTIS and 
tACS (see Table 2, left hippocampus).
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Figure 2.  Electric field simulation results for transcranial temporal interference stimulation (tTIS) and 
transcranial alternating current stimulation (tACS), targeting the left hippocampus. (a) Electric field distribution 
on the MNI brain for tTIS and tACS. (b) Electric field distribution for two representative subjects targeting the 
left hippocampus for tTIS (left). Spatial correlation of the electric fields over the whole brain across all subjects 
(right). (c) Parameter that characterize the electric field simulations for tTIS and tACS (mean electric field 
inside the ROIs—bottom left, the maximum of the electric fields inside vs. outside the ROIs—bottom middle, 
proportion of voxel that exposed to field strength greater than 0.1 V/m inside the ROIs and for the whole gray 
matter—bottom right). Violin plots indicate the distribution of the underlying data. Note that the violin plots 
include a boxplot (in the center of the violin with the median (white dots), 25% quartile and 75% quartile, 
upper- and lower adjacent value. Additionally, individual data points are overlayed (black dots).

Table 1.  MNI brain. Summary of the parameter that characterize the electric field distribution on the MNI 
brain for the left hippocampus, the left motor area and the thalamus: The mean electric field inside the ROI 
(mean e ROI), the maximum of the electric field inside vs. outside the ROI (max e ROI/max e gm), and the 
proportion of voxel that exposed to field strength greater than 0.1 V/m inside the ROI and for the whole gray 
matter (ROI > 0.1 V/m/Gm > 0.1 V/m).

Left hippocampus Left motor area Thalamus

tTIS tACS tTIS tACS tTIS tACS

Mean e ROI (in V/m) 0.11 0.12 0.1 0.12 0.09 0.09

Max e ROI (in V/m) 0.17 0.2 0.17 0.21 0.18 0.19

Max e gm (in V/m) 0.28 0.37 0.26 0.28 0.27 0.31

ROI > 0.1 V/m (in %) 61.44 77.33 30 78.7 21.01 32.15

ROI > 0.2 V/m (in %) 0 0 0 0.3 0 0

Gm > 0.1 V/m (in %) 39.3 52.71 5.5 14.3 1.22 32.1

Gm > 0.2 V/m (in %) 0.04 2.29 0.13 0.21 0 0.2
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Table 2.  Individual brains. Summary of the parameter that characterize the electric field distribution across 
subjects for the left hippocampus, the left motor area and the thalamus: The mean electric field for all subjects 
inside the ROI (mean e ROI), the maximum of the electric field for all subjects inside vs. outside the ROI 
(max e ROI/max e gm), and the proportion of voxel that exposed to field strength greater than 0.1 V/m inside 
the ROI and for the whole gray matter (ROI > 0.1 V/m/Gm > 0.1 V/m). Standard deviations are displayed in 
brackets.

Left hippocampus Left motor area Thalamus

tTIS tACS tTIS tACS tTIS tACS

Mean e ROI (in V/m) 0.1 (0.01) 0.1 (0.01) 0.13 (0.02) 0.14 (0.02) 0.08 (0.01) 0.09 (0.01)

Max e ROI (in V/m) 0.21 (0.04) 0.24 (0.03) 0.25 (0.04) 0.25 (0.04) 0.2 (0.03) 0.21 (0.03)

Max e gm (in V/m) 0.36 (0.09) 0.43 (0.08) 0.36 (0.08) 0.43 (0.09) 0.27 (0.04) 0.36 (0.08)

ROI > 0.1 V/m (in %) 52.04 (25.33) 78.57 (20.34) 81.42 (22.2) 85.64 (19.84) 10.77 (13.38) 24.93 (27.16)

ROI > 0.2 V/m (in %) 0.43 (0.65) 1.57 (1.75) 5.19 (6.19) 7.13 (8.91) 0.03 (0.05) 0.04 (0.06)

Gm > 0.1 V/m (in %) 43.26 (12.51) 57.35 (11.87) 15.11 (5.52) 17.52 (5.69) 1.68 (1.99) 39.53 (18.62)

Gm > 0.2 V/m (in %) 1.44 (1.59) 6.2 (4.24) 1.23 (0.91) 2.43 (1.56) 0 (0) 0.79 (0.67)

Figure 3.  Electric field simulation results for transcranial temporal interference stimulation (tTIS) and 
transcranial alternating current stimulation (tACS), targeting the left motor area. (a) Electric field distribution 
on the MNI brain for tTIS and tACS. (b) Electric field distribution for two representative subjects targeting the 
left motor area for tTIS (left). Spatial correlation of the electric fields over the whole brain across all subjects 
(right). (c) Parameters that characterize the electric field simulations for tTIS and tACS (mean electric field 
inside the ROIs—bottom left, the maximum of the electric fields inside vs. outside the ROIs—bottom middle, 
proportion of voxel that exposed to field strength greater than 0.1 V/m inside the ROIs and for the whole gray 
matter—bottom right).
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ROI: left motor area. The electric fields for both stimulation methods, tTIS and tACS, targeting the left 
motor area on the MNI brain are visualized in Fig. 3a. Overall, the results are in line with the results for the left 
hippocampus: similar mean- and maxima of the electric fields inside the left motor area, as well as higher per-
centage of voxels that expose to field strength greater than 0.1 V/m inside the left motor area, and for the whole 
gray matter volume for tACS. However, while also in the same direction, the difference of voxels that expose to 
field strength greater than 0.1 V/m inside the left motor area is nearly 50% between tTIS and tACS. The maxi-
mum of the electric field inside the left motor area is similar for both tTIS and tACS (difference of 0.02 V/m).

For tTIS, the electric field simulations targeting the left motor area are visualized for two representative 
subjects in Fig. 3b. The electric fields of the individual brains correlate with a mean of r = 0.94 (std = 0.01, 
median = 0.94, 75th percentile = 0.94, 25th percentile = 0.93, minimum = 0.92, maximum = 0.95, outliers = 0) with 
the predicted electric field on the MNI brain. The mean correlation across all subjects is r = 0.93 (std = 0.002, 
median = 0.92, 75th percentile = 0.93, 25th percentile = 0.92, minimum = 0.88, maximum = 0.94, outliers = 6). The 
individual correlation coefficients are displayed in Fig. 3b.

The values for single subjects (mean electric fields inside left motor area and maxima of electric fields inside/
outside left motor area, proportion of voxel that exposed to field strength greater than 0.1 V/m inside the ROI, 
as well as for the whole gray matter) are visualized in Fig. 3c.

Overall, similar patterns are shown for both ROIs (left hippocampus and left motor area) regarding the param-
eter characterizing the electric field distribution and strength, when comparing tTIS with tACS: tACS resulted 
in only slightly stronger, or the same mean electric fields inside ROIs compared to tTIS, and only slightly higher, 
or the same maximal electric field inside the ROIs. However, tACS led to higher maximal electric field outside 
the ROI (see Table 2, left motor area).

Figure 4.  Electric field simulation results for transcranial temporal interference stimulation (tTIS) and 
transcranial alternating current stimulation (tACS), targeting the thalamus. (a) Electric field distribution 
on the MNI brain for tTIS and tACS. (b) Electric field distribution for two representative subjects targeting 
thalamus for tTIS (left). Spatial correlation of the electric fields over the whole brain across all subjects (right). 
(c) Parameter that characterize the electric field simulations for tTIS and tACS (mean electric field inside the 
ROIs—bottom left, the maximum of the electric fields inside vs. outside the ROIs—bottom middle, proportion 
of voxel that exposed to field strength greater than 0.1 V/m inside the ROIs and for the whole gray matter—
bottom right).
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ROI: thalamus. The electric fields for both stimulation methods, tTIS and tACS, targeting thalamus on the 
MNI brain are visualized in Fig. 4a. Overall, the results are in line with the patterns shown for the left hippocam-
pus and the left motor area. However, only 1.22% of the voxel of the whole gray matter volume expose to a field 
strength greater than 0.1 V/m for tTIS. In contrast, 32.1% of the voxel of the whole gray matter volume expose 
to a field strength greater than 0.1 V/m for tACS (see Table 1, thalamus).

The electric field simulations targeting the thalamus are visualized for two representative subjects in Fig. 4b. 
For tTIS, the electric fields of the individual brains correlate with a mean of r = 0.77 (std = 0.03, median = 0.78, 
75th percentile = 0.79, 25th percentile = 0.77, minimum = 0.67, maximum = 0.82, outliers = 2) with the predicted 
electric field of the MNI brain. The mean correlation across all subjects is r = 0.79 (std = 0.01, median = 0.79, 
75th percentile = 0.81, 25th percentile = 0.76, minimum = 0.57, maximum = 0.84, outliers = 13). The individual 
correlation coefficients are displayed in Fig. 4b.

The values for single subjects are visualized in Fig. 4c (mean electric fields inside thalamus and maxima of 
electric fields inside/outside thalamus, proportion of voxel that exposed to field strength greater than 0.1 V/m 
inside the ROI, as well as for the whole gray matter).

Overall, similar patterns are shown for all ROIs (left hippocampus, left motor area and thalamus) regarding 
the parameter characterizing the electric field distribution and strength. However, similar to the results on the 
MNI brain for the thalamus: only 1.68% (std = 1.99) of the voxel of the whole gray matter volume expose to a 
field strength greater than 0.1 V/m for tTIS. In contrast, 39.53% (std = 18.62) of the voxel of the whole gray matter 
volume expose to a field strength greater than 0.1 V/m for tACS (see Table 2, thalamus).

Discussion
The variability of electric fields resulting from stimulation using the relatively new brain stimulation technique 
tTIS across different subjects has hitherto not been extensively studied. It is important, however, to investigate 
how the electric fields differ across subjects with the same electrode  montage26 in order to account for plausible 
differences regarding the stimulation effect. Differences regarding the electric field could lead to different stimula-
tion  effects35. Therefore, the aim of the current study was to investigate the variability of electric fields due to tTIS 
across 25 subjects. Moreover, we compared the electric fields of tTIS with the electric fields of conventional tACS 
by targeting different ROI’s with both brain stimulation technique. In this study we found that the electric fields 
generated by tTIS have variable strengths on single subject level inside the ROIs (left hippocampus, left motor 
area and thalamus). In addition, when compared to tACS, tTIS stimulates more focally meaning that it induces 
much weaker co-stimulation of cortical areas close to the stimulation electrodes. Electric fields generated inside 
the ROI were, however, comparable for both methods.

Overall, electric fields during tTIS targeting different ROIs (left hippocampus, left motor area and thalamus) 
correlate highly across all subjects irrespective of the target ROI (averaged correlation coefficient across subjects 
ranging from 0.79 to 0.93). However, the individual correlation coefficients range from 0.57 to 0.94, indicating 
variability of the electric field distribution across individuals. A similar result can be seen when considering the 
strength of the electric field. The mean electric field across subjects ranged from 0.08 V/m to more than 0.13 V/m 
inside the different ROIs. On single subject level, the strength of the electric fields are highly variable, especially 
the proportion of voxels showing more than 0.1 V/m. For several subjects, more than 80% of the voxels inside 
the different ROIs are stimulated over 0.1 V/m, whereas in other subjects less than 10% of the voxels inside the 
ROIs exposed to field strength stronger than 0.1 V/m. The variability of the results indicates that a precise and 
individual electrode montage is necessary to achieve similar electric field strengths inside the target area across 
subjects.

It was shown that multi-channel tTIS increase the focality while reducing scalp sensations in computational 
modeling- and animal-experiments41. Therefore, further research to develop optimization algorithms (addressing 
single-channel and multi-channel tTIS strategies) could be promising in order to individually adjust the electrode 
montages and ensure consistent stimulation of relatively small deep brain targets. However, presumably due to 
the high conductivity of CSF, targeting deep brain areas precisely, without stimulating brain regions outside the 
ROI will likely remain challenging.

Interindividual variability of electric fields have been investigated for established non-invasive electric brain 
stimulation techniques like tACS/tDCS in previous studies. Possible anatomical characteristics that affect the 
electric field distribution, and especially the focality, differently across subjects might be the thickness of cerebro-
spinal  fluid42. In addition, higher head-, skin-, and skull-volume seems to be associated with lower electric field 
strength inside the  brain43. Since tTIS is based on similar mechanisms of action as conventional non-invasive 
electric brain stimulation techniques, similar anatomical characteristics are likely to be responsible for interin-
dividual differences as well.

By comparing the electric fields of tTIS with the electric fields of conventional tACS, we showed that tTIS is 
more focal by substantially reducing co-stimulation in cortical areas in the proximity of stimulation electrodes 
(e.g. see electric field distributions for tTIS and tACS on the MNI brain in Fig. 2a). Across all subjects, electric 
field simulations for tACS resulted in only slightly stronger mean electric fields inside ROIs as compared to 
tTIS and, additionally, only slightly higher maximal electric field inside the ROIs. However, tACS led to higher 
maximal electric fields outside the ROI, especially noticeable for deep brain structures like the left hippocampus 
montage (on average 0.43 V/m, std = 0.08 for tACS, and 0.36 V/m, std = 0.09 for tTIS) and the thalamus (on aver-
age 0.36 V/m, std = 0.08 for tACS, and 0.27 V/m, std = 0.04 for tTIS). Overall, tTIS is more focal (i.e., having much 
weaker stimulation outside the ROIs) as compared to tACS, when using the optimization strategy put forward 
by Rampersad et al.26. Due to the development of different systematic optimization approaches, especially the 
tACS electrode montages could probably be optimized more effectively. While tTIS and tACS have comparable 
electric fields inside the ROI (mean/max inside ROI), the maximal electric field outside the ROI is higher for 
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tACS. In addition, the proportion of voxels of the whole gray matter volume (for deep brain structures, such as 
the hippocampus and the thalamus) is higher for tACS, especially noticeable for the thalamus. The direct com-
parison of the electric fields of tTIS and tACS are, however, challenging. Whereas the tACS stimulation waveform 
is close to a perfect sine wave (e.g. stimulation with 10 Hz), the envelope of the amplitude modulated signal of 
tTIS is not perfectly sinusoidal (Fig. 1a, right panel). Moreover, the electric field distribution of the envelope 
frequency of tTIS is smaller than the total electric field itself, resulting from both electrode pairs oscillating at 
slightly different high frequencies. Therefore, the influence of the non-sinusoidal signal, as well as the influence 
of the high frequencies has to be investigated in humans.

Further research should also investigate the effects of a simultaneous stimulation of non-target cortical areas. 
Namely, there may be some clinical situations, where it might be especially important to stimulate a deep brain 
area as strongly as possible, while the specificity (i.e. the stimulation of additional cortical areas) is less prob-
lematic. With respect to research questions, the co-stimulation of tACS seems to be more problematic since the 
effects of stimulation cannot be ascribed solely to the stimulation of the deep brain  structure44. However, control 
stimulation conditions targeting only the co-stimulated cortical areas might help to investigate this question.

The results of the current study indicate that the maxima of the electric fields outside the ROIs are slightly 
higher than inside the ROIs, even when stimulating with tTIS (however, the difference is much lower compared 
to tACS). The use of optimization algorithms might address this issue in further studies. One major limitation 
of the current study is, that we did not use an optimization algorithm in order to target the defined ROIs. There 
might be electrode positions that target the ROI more precisely on the MNI brain. The used electrode montages 
by Rampersad et al.26 are optimized for one single subject. Therefore, it would be especially promising for further 
research to develop an optimization algorithm to maximize the electric field inside the ROI, while minimizing 
the electrical field outside the ROI using tTIS. Additionally, since only T1 MRI scans were used for the current 
study, the accuracy of the skull segmentation could be improved, e.g. with an additional T2 MRI scan. However, 
we ruled out by visual inspection that low correlations with mean fields, as seen in some of the subjects, were 
cause by obvious segmentation errors. Moreover, since stimulation with high frequencies leads to less soma-
tosensory sensations, a higher current could be used in order to target deep brain areas with tTIS. Lee et al.24 
employed realistic finite head models for the optimization of tTIS. They suggested that customized tTIS based on 
numerical field analysis is expected to enhance the overall effectiveness of noninvasive deep brain stimulation.

It has to be noted that the robustness of the results of the current study is linked to the electric field threshold 
choice of 0.1 V/m resulting from a stimulation intensity of 1 mA per electrode pair. Based on  literature29–31, 
we used different thresholds in order to characterize the electric field distribution and strength. As there is no 
common agreement which stimulation intensities are required for tACS and tTIS to modulate brain activity, 
this approach describes the general coverage of the electric fields due to the different electric brain stimulation 
techniques. Therefore, we calculated the proportions of voxels that expose to field strength greater than 0.1 V/m, 
and 0.2 V/m. However, further research is needed to investigate this concern more precisely. Obviously, given the 
linear dependence of the electric field on the stimulation current, identical results for focality would be obtained 
for a threshold of 0.2 V/m, and 0.3 V/m when doubling the stimulation currents to 2 mA per electrode pair, 
which is still in a practically feasible range. Moreover, the electric fields were simulated for electrode montages 
that maximize the electric field strength in given locations (three different ROIs) over all directions  (Ex,  Ey,  Ez). 
This does not consider that neurons respond preferentially to stimulation when the field is oriented along the 
predominant direction of the neuron. Overall, further research is needed to investigate precise parameters of 
the electric field that correlate with stimulation effects (e.g. electric field strength, direction of electric field).

Also the ability of transcranial magnetic stimulation (TMS) to reach deep brain structures has been tested 
and specific TMS coils have been made available that maximize the electric field  intensities45. However, also TMS 
of deeper structures suffers from a low focality and a substantial co-stimulation of more superficial  structures46. 
tTIS addresses this issue by stimulating deep brain structures while reducing stimulation of the overlaying cor-
tex. However, as shown in this study, individual electrode montages are necessary. In addition, the mechanisms 
of action differ between TMS (capable of supra-threshold stimulation) and tTIS (sub-threshold stimulation), 
suggesting that they might have partly complementary application profiles.

Since current tTIS studies are limited to electric field simulations, animal studies, or computational 
 models16,19–21,23,26–28, it is still unknown whether and how tTIS leads to stimulation effects in humans. More 
specifically, it is unclear whether tTIS works in humans similar to the experiments in  mice16,41, due to the fun-
damental differences between mice and human regarding the size and anatomy of the brain. To this end, further 
research is essential in order to investigate the stimulation effects of tTIS in the human brain.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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