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We explore the multiparticle transition probabilities in Gaussian unitaries effected by a two-mode Bogoliubov
bosonic transformation on the mode annihilation and creation operators. We show that the transition probabilities
can be characterized by remarkably simple, yet unsuspected recurrence equations involving a linear combination
of probabilities. The recurrence exhibits an interferometric suppression term—a negative probability—which
generalizes the seminal Hong-Ou-Mandel effect to more than two indistinguishable photons impinging on a
beam splitter of rational transmittance. Unexpectedly, interferences thus originate in this description from the
cancellation of probabilities instead of amplitudes. Our framework, which builds on the generating function of
the non-Gaussian matrix elements of Gaussian unitaries in Fock basis, is illustrated here for the most common
passive and active linear coupling between two optical modes driven by a beam splitter or a parametric amplifier.
Hence, it also allows us to predict unsuspected multiphoton interference effects in an optical amplifier of rational
gain. In particular, we confirm the newly found two-photon interferometric suppression effect in an amplifier of
gain 2 originating from timelike indistinguishability [Proc. Natl. Acad. Sci. 117, 33107 (2020)]. Overall, going
beyond standard two-mode optical components, we expect our method will prove valuable for describing general
quantum circuits involving Bogoliubov bosonic transformations.

DOI: 10.1103/PhysRevResearch.3.043065

I. INTRODUCTION

Quantum interference is a cornerstone of quantum physics.
While it challenges our understanding of the universe as for
instance witnessed in Young’s celebrated double slit experi-
ment, it has various applications such as quantum computing
[1], quantum cryptography [2], or superconducting quantum
interference devices [3]. Quantum interference is notably a
key to implementing future quantum technologies with pho-
tonic integrated devices, which has resulted in a vigorous
research effort on harnessing multimode multiphoton inter-
ferences over the last decade, see, e.g., [4,5]. This is also
significant in connection with the boson sampling paradigm
[6], which builds on the computational hardness of simulating
the coherent propagation of many identical bosons through
a multimode linear interferometer and holds the promise of
substantiating the advantage of quantum computers [7–10].
More generally, this has led to a revived interest for quantum
interferometry going beyond the celebrated Hong-Ou-Mandel
(HOM) effect [11], e.g., the generalized bunching effect in
linear networks [12], the signatures of nonclassicality in a

*mgija@dtu.dk
†ncerf@ulb.ac.be

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

multimode interferometer [13], the observation of intrinsically
three-photon interference [14,15], or the suppression laws in
an eight-mode optical Fourier interferometer [16].

Formally, quantum interferences originate from adding up
the amplitudes of (often a large number of) possible paths.
Since amplitudes are complex, taking the square modulus
of the resulting sum typically gives rise to constructive or
destructive interferences. The HOM effect is a paradigmatic
example of two-photon quantum interference: The probabil-
ity of detecting two photons in coincidence at the output
of a 50:50 beam splitter (one in each mode) vanishes when
one photon impinges on each of the two input modes. The
sum of the amplitudes of the two possible paths (both pho-
tons being either reflected or transmitted) vanishes, giving
rise to destructive interference. In a nutshell, when only two
paths of amplitudes α1 and α2 interfere, the resulting prob-
ability is p = |α1 + α2|2 = p1 + p2 + 2

√
p1 p2 cos θ , where

p1 = |α1|2, p2 = |α2|2, and θ is the relative phase.
In this paper we explore multiparticle quantum interfer-

ences that emerge in Bogoliubov bosonic transformations.
Bogoliubov transformations are ubiquitous in physics, appear-
ing in various fields such as superconductivity, superfluidity,
nuclear physics, and quantum field theory. They are also
essential in understanding phenomena such as Hawking radia-
tion [17,18] and the Unruh effect [19,20]. While our methods
and results could be applied in various situations involving
bosonic systems, we choose to illustrate them here by fo-
cusing on the quantum optics framework. Specifically, we
investigate the optical Gaussian unitaries effected by Bogoli-
ubov transformations in phase space, which closely model
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a great amount of operations performed in quantum optics
experiments [21]. We start by examining the generic case
of i and k photons impinging on the two input modes of a
beam splitter, one of the simplest yet most essential operations
in any optical setting. The probability B(i,k)

n of any output
pattern is known to be expressible as a multiple summa-
tion involving four binomial coefficients [see Eq. (9)]. This
complicated expression, owing to the many interfering paths,
can of course be evaluated but cannot easily be exploited
analytically. Here we derive an unexpectedly simple formula
(Theorem 1) which governs these probabilities. Counterintu-
itively it involves a simple linear combination of probabilities
(with no usual

√
p1 p2 terms) and the discrepancy with respect

to the corresponding classical formula for distinguishable
photons appears as a negative probability [22].

Our technique relies on calculating the generating function
of the matrix elements of Gaussian unitaries in Fock basis,
which can be expressed in a simple closed form with the Gaus-
sian toolbox although it encapsulates complex non-Gaussian
features such as the multiphoton transition probabilities B(i,k)

n .
It allows us to extend the HOM effect to many photons
by predicting a simple negative contribution to the transi-
tion probability. More generally, our framework is suited to
Gaussian unitaries describing the passive but also the ac-
tive linear coupling between two bosonic modes. Hence,
we predict a similar interference suppression term—a nega-
tive probability—in an optical amplifier, such as a nonlinear
crystal pumped in the nondegenerate parametric amplifica-
tion regime or a four-wave mixer (see Theorem 2). This
corroborates and extends the recent finding of a two-boson
interference effect in a gain-2 amplifier originating from time-
like indistinguishability (bosons from the past and future
cannot be distinguished) [23]. Active optical components are
essential in continuous-variable quantum information pro-
cessing [24,25] as they give access to invaluable resources
and protocols, such as universal computing with Gaussian
cluster states [26–28], optical multimode entanglement [29],
Gaussian quantum steering [30], or Gaussian quantum cloning
[31].

As a last result, we provide a further generalization of the
HOM effect and two-boson active interference effect [23] by
predicting a full interferometric suppression for any rational
value of the transmittance (or gain) of a passive (or active)
transformation provided specific photon numbers are chosen.
Furthermore, we also briefly show that the asymptotic behav-
ior of interferences with large photon numbers can easily be
accessed based on generating functions. This illustrates the
potential of our framework for describing multiparticle inter-
ferences in quantum circuits involving bosonic Bogoliubov
transformations in phase space.

II. MODEL AND DERIVATIONS

A. Bosonic Gaussian unitaries

Bosonic modes are common carriers of continuous-
variable quantum information [24,25]. A bosonic mode (e.g.,
a quantized mode of the electromagnetic field) is modeled by a
quantum harmonic oscillator in an infinite-dimensional Fock
space. It is associated with the usual pair of bosonic mode

operators â and â†, which must satisfy the commutation rela-
tion [â, â†] = I. In this context, Bogoliubov transformations
[32] (i.e., linear canonical transformations in â and â†) are
of particular interest as they correspond to Gaussian unitaries
(i.e., quadratic Hamiltonians in â and â†). They are especially
valuable in the framework of quantum optics, where they con-
serve Gaussian-shaped Wigner functions in phase space and,
most importantly, model ubiquitous transformations in exper-
imental conditions and form the core of Gaussian quantum
information [21]. They can be divided into passive and active
transformations as effected by linear optical interferometry or
parametric amplification, respectively. In this work, we illus-
trate our method for the most fundamental passive and active
two-mode Gaussian unitaries, namely the beam splitter (BS)
and two-mode squeezer (TMS). The BS unitary U BS

η effects
an energy-conserving linear coupling between two modes and
acts in the Heisenberg picture as

U BS†
η âU BS

η = √
η â +

√
1 − η b̂,

U BS†
η b̂U BS

η = −
√

1 − η â + √
η b̂,

(1)

where â and b̂ are the mode operators, while η is the transmit-
tance. Similarly, the TMS unitary U TMS

λ models the generation
of pairs of entangled photons by parametric amplification
due to the pumping of a nonlinear crystal, and acts on mode
operators as

U TMS†
λ âU TMS

λ = cosh(r) â + sinh(r) b̂†,

U TMS†
λ b̂U TMS

λ = sinh(r) â† + cosh(r) b̂.
(2)

with λ := tanh2(r) for a parametric gain g := cosh2(r). The
transformations characterized by Eqs. (1) and (2) happen to be
useful in various contexts involving the evolution of bosonic
systems. For instance, they can be exploited in black hole the-
ory, where they describe the interaction of a Gaussian bosonic
state with an already formed Schwarzchild black hole [33].

B. Generating functions

The generating function (GF) of a sequence {cn}n∈N0 is
defined as

g(z) := Tn[cn](z) =
∞∑

n=0

cn zn, z ∈ C. (3)

It is a powerful tool as g(z) encapsulates the entire sequence
via cn = n!−1(∂ng/∂zn)z=0. Here we exploit the properties of
GFs in quantum optics when applied to the squared modulus
of the matrix elements of Gaussian unitaries in Fock basis.
Unlike the matrix elements in a coherent (Gaussian) basis,
these happen to be quite difficult to handle because Fock states
are non Gaussian, so it is helpful to characterize them via
their GFs. Consider the four-dimensional sequence of transi-
tion probabilities | 〈n, m|U |i, k〉 |2 for some unitary U , where
|i〉, |k〉, |n〉, and |m〉 denote Fock states (i, k, n, m ∈ N0). Its
four-variate GF can be written as (see [34])

f (v) = Tr[(τz ⊗ τw )U (τx ⊗ τy)U †]

(1 − x)(1 − y)(1 − z)(1 − w)
, (4)
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FIG. 1. Conventions in the definition of f (x, y, z, w), which is
the generating function of the transition probability for sending the
Fock states |i〉 and |k〉, respectively, in modes â and b̂ and, after
processing through the unitary U , measuring the Fock states |n〉 and
|m〉, respectively, in modes â and b̂.

where we chose v := (x, y, z,w) such that (x, y) ∈ [0, 1)2 and
(w, z) ∈ [0, 1]2, with the conventions shown in Fig. 1. Thus,
f (v) is proportional to the overlap between two Gaussian
states, one of which being the product of two thermal states of
the form τx := (1 − x)

∑∞
n=0 xn |n〉 〈n|, while the other is the

product of two thermal states processed through the unitary U .
This makes f (v) very easy to compute when U is Gaussian,
regardless of the complexity of | 〈n, m|U |i, k〉 |2 itself, by ex-
ploiting the Gaussian formalism in phase space. Recalling that
the overlap between two zero-mean Gaussian states ρ1 and ρ2

with covariance matrices V1 and V2 is given by Tr[ρ1ρ2] =
1/

√
det[(V1 + V2)/2] [35], the GF of | 〈n, m|U BS

η |i, k〉 |2 can
be expressed using standard tools of quantum optics as [34]

f BS
η (v) = 1

1 − η(xz + yw) − η̄(xw + yz) + xyzw
, (5)

where η̄ := 1 − η, while the GF of | 〈n, m|U TMS
λ |i, k〉 |2 can

be written as [34]

f TMS
λ (v) = λ̄

1 − λ(xy + zw) − λ̄(xz + yw) + xyzw
, (6)

where λ̄ := 1 − λ. As a consistency check, we note that

f BS
η (0) = | 〈0, 0|U BS

η |0, 0〉 |2 = 1,

f TMS
λ (0) = | 〈0, 0|U TMS

λ |0, 0〉 |2 = λ̄, (7)

while normalization
∑∞

n,m=0 | 〈n, m|U |i, k〉 |2 = 1,∀i, k,
translates into

f BS/TMS(x, y, 1, 1) = (1 − x)−1(1 − y)−1. (8)

Interestingly, energy conservation in U BS
η manifests itself

through f BS
η (x, y, z,w) = f BS

η (tx, ty, z/t,w/t ), ∀t , while the
conservation of the photon number difference in U TMS

λ

is reflected by f TMS
λ (x, y, z,w) = f TMS

λ (tx, y/t, z/t, tw), ∀t ,
see [34].

C. Multiphoton transition probabilities

We use Eq. (5) to derive a surprisingly simple recurrence
equation for the multiphoton transition probabilities in a BS,
denoted as B(i,k)

n := | 〈n, i + k − n|U BS
η |i, k〉 |2, with i, k, n ∈

N0. Incidentally, note that a direct calculation yields [34]

B(i,k)
n = ηk η̄i

min(i,n)∑
m, j=max(0,n−k)

(−1)m+ j γ
(i,k)

n,m, j

(
η

η̄

)m+ j−n

, (9)

where

γ
(i,k)

n,m, j :=
(

i

m

)(
k

n − m

)(
n

j

)(
i + k − n

i − j

)
, (10)

which is quite cumbersome to manipulate. Nevertheless, the
following theorem provides an alternative.

Theorem 1. If i=k =n=0, then B(i,k)
n = 1, else,

B(i,k)
n = η B(i−1,k)

n−1 + η B(i,k−1)
n

+ η̄ B(i−1,k)
n + η̄ B(i,k−1)

n−1 − B(i−1,k−1)
n−1 . (11)

The definition of B(i,k)
n is extended here to all integers

i, k, n, setting it to zero when either of them is negative.
Proof. We set u := (x, y, z), j := (i, k, n) and denote by

gBS
η (u) the three-variate GF of B(i,k)

n with the conventions of
Fig. 1. Since gBS

η (u) = f BS
η (x, y, z, 1), Eq. (5) implies

[1 − η(xz + y) − η̄(x + yz) + xyz] gBS
η (u) = 1. (12)

Using the shifting property of the GFs and the notation of
Eq. (3), it can easily be shown that multiplying the GF by ul

for l = 1, 2, 3 corresponds to decreasing the index jl of B(i,k)
n

by one unit, so that for instance

Tj
[
B(i−1,k)

n−1

]
(u) = xz Tj

[
B(i,k)

n

]
(u) = xz gBS

η (u). (13)

In addition, we know that the three-variate GF of the product
δi,0 δk,0 δn,0 of three Kronecker deltas is 1. Using this, we see
that Eq. (12) is equivalent to the relation

B(i,k)
n − η

[
B(i−1,k)

n−1 + B(i,k−1)
n

] − η̄
[
B(i−1,k)

n + B(i,k−1)
n−1

]
+ B(i−1,k−1)

n−1 = δi,0 δk,0 δn,0,

which proves the theorem. �
This recurrence can be nicely interpreted in the context of

the HOM effect. As illustrated in Fig. 2, the first four terms
of the right-hand side of Eq. (11) corroborate the classical
intuition one may have about B(i,k)

n : One should add the prob-
abilities corresponding to the different scenarios in which the
nth photon has not reached the BS yet, multiplied by the
right probability (η or η̄) depending on which path it takes.
For example, B(i−1,k)

n−1 must be multiplied by η since the extra
photon must be injected on the input mode a and exit on
the output mode a. Crucially, as a consequence of bosonic
statistics, a fifth term appears in Eq. (11) with a minus sign
that accounts for quantum interference and may be viewed as
an interference suppression term. In the special case where
i = k = 1 and η = 1/2, we recover the standard HOM effect,

B(1,1)
1 = 1

2 B(0,1)
0 + 1

2 B(1,0)
1 + 1

2 B(0,1)
1 + 1

2 B(1,0)
0 − B(0,0)

0

= 4 × 1
2 × 1

2 − 1 = 0. (14)

Let us stress that this is a very unconventional proof of the
HOM effect as Eq. (14) does not involve a linear combination
of amplitudes but of probabilities. The first two terms account
for both photons being transmitted while the third and fourth
terms correspond to both of them being reflected. The fifth
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FIG. 2. Classical components of the recurrence formula (11) for the transition probability B(i,k)
n in a BS.

(negative) term has no classical counterpart. Note that if k = 0
and i � 0, the interference term disappears in Eq. (11) and one
gets the recurrence B(i,0)

n = η B(i−1,0)
n−1 + η̄ B(i−1,0)

n , which had
been derived in the context of majorization theory applied to
bosonic transformations [36].

D. Distinguishable photons

It is instructive to give Eq. (11) further interpretation by
juxtaposing it with its classical counterpart for distinguish-
able photons, which may for instance happen if the incident
photons occupy different temporal modes. The classical prob-
ability of detecting n photons on output mode a when i and
k photons impinge on input modes a and b is given by the
convolution pn|i,k = ∑n

n′=0 pA
n′ |i pB

n−n′ |k , where pA
n|i (or pB

n|k)
is the probability of getting n photons if i (or k) distin-
guishable photons enter mode a (or b), which itself follows
a binomial distribution of parameter η (or η̄), see [34] for
details. Hence, the three-variate GF of pn|i,k is given by
gcl

η (u) = gA
η(x, z) gB

η(y, z), where gA
η(x, z) and gB

η(y, z) are the
two-variate GFs of pA

n|i and pB
n|k . For instance, it is easy to

show that gA
η(x, z) = 1/(1 − ηxz − η̄x), so that gcl

η (u) satisfies
the relation

(1 − ηxz − η̄x) gcl
η (u) = 1(x) gB

η(y, z), (15)

where 1(x) ≡ 1 is a constant function of x. Using again the
shifting property of GFs, Eq. (15) implies the classical recur-
rence relation

pn|i,k = η pn−1|i−1,k + η̄ pn|i−1,k, i > 0, (16)

where we have used the fact that 1(x) gB
η(y, z) is the GF of

δi,0 pB
n|k and can be ignored for i > 0. Interchanging pA

n|i and
pB

n|k , a similar reasoning yields

pn|i,k = η pn|i,k−1 + η̄ pn−1|i,k−1, k > 0. (17)

We notice here that Eq. (16) coincides with the first and third
terms in Eq. (11), while Eq. (17) coincides with the second
and fourth terms. If either i = 0 or k = 0 (i.e., no photon in
one of the two input modes), then Eq. (11) reduces to the
classical recurrence [for instance, Eq. (16) covers the case
k = 0]. As advertised, the fifth (negative) term in Eq. (11)
thus captures quantum interference (it appears as soon as
i, k > 0) since it is absent from the classical formulas (16)
and (17). Note also that removing this negative quantum term
in Eq. (11) would then lead to twice the classical probability.

E. Active Gaussian transformations

An even more appealing application of our framework
is to explore multiphoton interferences in an active trans-
formation, such as a TMS. As proven in [23], a TMS

may be viewed as a BS undergoing “partial time rever-
sal,” namely 〈n, m|U TMS

λ |i, k〉 = √
1 − λ 〈n, k|U BS

1−λ |i, m〉.
Indeed, indices k and m are interchanged, which may be
interpreted as reverting the arrow of time of mode b [37]. Sim-
ilarly, interchanging variables y and w, we see that the GFs
are connected by f TMS

λ (x, y, z,w) = (1 − λ) f BS
1−λ(x,w, z, y),

which is consistent with Eqs. (5) and (6). This allows us
to write a recurrence for the transition probabilities A(i,k)

n :=
| 〈n, k − i + n|U TMS

λ |i, k〉 |2 in a TMS (the definition of A(i,k)
n

is extended to all integers i, k, n, setting it to zero when either
of them is negative).

Theorem 2. If i = k = n = 0, then A(i,k)
n = λ̄, else,

A(i,k)
n = λ A(i−1,k−1)

n + λ A(i,k)
n−1

+ λ̄ A(i−1,k)
n−1 + λ̄ A(i,k−1)

n − A(i−1,k−1)
n−1 . (18)

Proof. The relation can be easily proven by making use of
Theorem 1, exploiting the fact that A(i,k)

n = λ̄ B(i,k−i+n)
n with

η = λ̄ (or η = 1/g), see [34]. �
Equation (18) is quite intriguing at first sight, as it is

unclear how interferences take place in an active medium.
However, as illustrated in Fig. 3, we may build an interpreta-
tion of Eq. (18) by considering all possible classical scenarios.
The first term corresponds to the stimulated annihilation of an
extra input photon pair, while the second term corresponds to
the stimulated emission of an extra output photon pair (both
occurring with probability ∝λ). The third and fourth terms
correspond to an extra photon crossing the nonlinear medium
without stimulating pair emission nor absorption (both with
probability ∝ λ̄). Most importantly, the fifth (negative) term
is again responsible for an unsuspected quantum interference
effect, which has no classical counterpart. In the special case
where i = k = 1 and λ = 1/2, we predict a complete ex-
tinction of the output state |1〉 |1〉, which confirms a newly
discovered two-photon interference effect in an amplifier of
gain 2 [23] originating from timelike indistinguishability be-
tween the input and output photon pairs (exactly like the
HOM effect can be viewed as a consequence of spacelike
indistinguishability between two photons entering a BS of
transmittance 1/2). Here again we find a surprising explana-
tion of this effect based on the cancellation of probabilities
(not amplitudes), namely

A(1,1)
1 = 1

2 A(0,0)
1 + 1

2 A(1,1)
0 + 1

2 A(0,1)
0 + 1

2 A(1,0)
1 − A(0,0)

0

= 4 × 1
2 × 1

4 − 1
2 = 0. (19)

The first two terms account for events consisting of the
stimulated annihilation of the input photon pair accompanied
with the stimulated emission of a distinct output pair, while
the third and fourth terms correspond to events where both
photons cross the TMS. The fifth term is intrinsically quan-
tum. Note that for k = 0, Eq. (18) reduces to the recurrence
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FIG. 3. Classical components of the recurrence formula (18) for the transition probabilities A(i,k)
n in a TMS.

A(i,0)
n = λ A(i,0)

n−1 + λ̄ A(i−1,0)
n−1 implying a majorization relation

in a bosonic amplifier channel that was proven in [38].

F. Rational transmittance and gain

Coming back to passive BS transformations, it is easy to
predict the existence of a HOM-like suppression effect for any
rational value of the transmittance η < 1 provided some spe-
cific numbers of impinging photons are considered, namely

B(i,k)
1 = 0 if η = k/(i + k), (20)

as illustrated in Fig. 4. This can be understood as the result
of amplitude cancellation between two scenarios, taking as
a reference the situation where i − 1 photons on mode a are
reflected and k − 1 photons on mode b are transmitted. The
single photon observed on the output mode a may come from
input mode a or b. Either the ith photon on mode a is trans-
mitted (there are i possible choices) and all k photons on mode
b are transmitted, which yields an amplitude ∝ i η, or the kth
photon on mode b is reflected (there are k possible choices)
and all i photons on mode a are reflected, which yields an
amplitude ∝ k η̄. Hence, we have B(i,k)

1 ∝ (i η − k η̄)2, which
is consistent with Eq. (20). However, we provide a distinct
interpretation in terms of probability cancellation as implied
by Eq. (11), see [34]. For a quantum optical amplifier, we
observe a similar effect for any rational value of the gain
g > 1, namely

A(i,i+k−1)
1 = 0 if λ = i/(i + k), (21)

FIG. 4. Probability B(i,k)
1 of observing a single photon on

mode a at the output of a BS for k = 5 and for three different values
i = 3, 6, 9 as a function of the transmittance η. We observe a
HOM-like suppression effect for the corresponding rational values
of η = 5/8, 5/11, 5/14.

corresponding to g = 1 + i/k (see Fig. 5). This heretofore
unknown interference effect can again be viewed as a con-
sequence of probability cancellation in Eq. (18), see [34].

III. CONCLUSION AND OUTLOOK

Gaussian bosonic unitaries are readily described as affine
transformations in phase space. Yet, addressing their action on
Fock states typically leads to cumbersome calculations, which
makes multiphotonic interferences in common Gaussian opti-
cal components hard to grasp. As a consequence, it is often
an intractable task to prove fundamental entropy inequalities
for Gaussian bosonic channels, while these are of major im-
portance in optical quantum communication (see, e.g., the
entropy photon-number inequality [39–41]). Here we have
shown that the generating function of the matrix elements of a
BS or TMS in Fock space can be expressed in a closed form,
which, as a central consequence, yields simple recurrence
equations for the multiphoton transition probabilities. In spite
of the many interfering paths, Theorems 1 and 2 then provide
a simple, intuitively appealing picture of multiphoton interfer-
ence in passive and active bosonic circuits. It is amazing that
such a simple account of quantum interferences in terms of
probabilities (instead of amplitudes) in so well-studied optical
components had yet remained unnoticed.

We have then predicted several multiphoton generaliza-
tions of the HOM effect in a BS of rational transmittance and
have exploited the correspondence between a BS and TMS
under partial time reversal [23] in order to reveal the existence
of similar interferometric suppression effects in a quantum

FIG. 5. Probability A(i,i+k−1)
1 of observing a single photon on

mode a at the output of a TMS for k = 5 and for three different
values i = 3, 6, 9 as a function of the parameter λ. Note that k
denotes here the number of output photons on mode b. We observe
a suppression effect akin to the HOM effect for the corresponding
rational values of λ = 3/8, 6/11, 9/14, or equivalently for values
of the gain g = 8/5, 11/5, 14/5.
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optical amplifier of rational gain. Interestingly, these predicted
effects seem to escape the general framework for quantum
suppression laws that has been derived in Refs. [42,43].

Let us stress that the generating function of transition prob-
abilities can also be useful in studying other properties of
Gaussian unitaries, for example their asymptotic behavior. Us-
ing Tauberian theorems, which state that if g(z) ∼ 1/(1 − z)
for z → 1, then

∑n
l=0 cl ∼ n for n → ∞, it is indeed possible

to approximate B(i,i)
n when i → ∞ [34]. For η = 1/2, this

exactly coincides with the asymptotic analysis of a BS with
a large photon number in both input ports [44]. Note also that
the generating function has recently been exploited in order
to connect boson sampling with Fock-state inputs to boson
sampling with thermal-state inputs [45], which is reminiscent
of Eq. (4). Moreover, the technique developed here yields a
powerful tool for characterizing certain non-Gaussian bosonic
channels (those that are Gaussian dilatable), for example
photon-added or photon-subtracted channels [46–48] as well
as the linear coupling of a signal mode together with a passive
environment [49].

Overall, beyond the results for a BS and TMS highlighted
in this paper, we expect that our framework can be amenable
to address any Bogoliubov transformation acting on an ar-

bitrary number of modes. The special case of a multimode
linear interferometer has already been considered in [50,51].
Although it does not seem to have implications for the com-
plexity of simulating bosonic interferences, it provides a neat
description of multimode multiphoton interference involving
negative probabilities. Furthermore, we may anticipate other
applications of this framework going beyond photonic sys-
tems. The same approach should indeed prove valuable for
nonphotonic bosonic systems as well, since the transforma-
tions described by Eqs. (1) and (2) are not restricted to optical
components but have quite a broad range of applications.
In short, we have at hand a distinct approach to quantum
multiparticle interferences in (passive and active) Bogoliubov
transformations acting on any bosonic quantum systems.
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