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Abstract

Precision medicine in a contemporary context implies customising healthcare based on
individual biomarkers, such as genetic variants or lifestyle factors. The purpose is to pre-
vent, diagnose or find the most effective disease treatment approaches customised for the
individual or subgroups of patients instead of a one-size-fits-all approach. As a systemised
approach, this concept has come into focus in recent years in modern translational science;
however, it should be noted that ancient medicine systems such as Ayurveda, a traditional
medicine in India, has over centuries of history looking into patient stratification in rela-
tion to disease development and treatment, and a fairly layered system to describe it that
incorporates elements of lifestyle, behaviour, diet and proxy biomarkers for underlying
genetics.

In this PhD thesis, I have 1) explored precision medicine concepts from different per-
spectives; 2) used different approaches to analyse patient clinical (application note, chap-
ter 8) and genomics data; 3) utilised genetics from genome-wide association studies and
next-generation sequencing analysis; 4) developed stratification-based models, such as
Ayurveda-based deep phenotyping, polygenic risk scores, and machine learning models;
and 5) discussed how these models could be applied in a clinical setting for prediction of
phenotypes, treatment response and late-side effects.

The first paper, presented in chapter 4, explores the use of Ayurveda medicine for pa-
tient stratification to help identify novel disease genetic variants that predispose towards
rheumatoid arthritis. The second paper, chapter 5, uses two developed and validated
adult cancer polygenic risk scores to explore risk stratification for different phenotypes in
childhood cancer. The third and fourth papers, chapters 6 and 7, respectively, focus on
the development of machine learning models to predict treatment late-side effects, specif-
ically, cisplatin-induced hearing loss and nephrotoxicity, respectively, in testicular cancer
patients, using clinical and genomics data. In chapter 9, it is presented a model that
predicts dasatinib treatment response in T-cell acute lymphoblastic leukaemia. This work
was developed at St. Jude Children’s Research hospital during my external stay.

These stratification-based models may help leverage heterogeneous clinical data and find
disease-associated genomic markers. Furthermore, implementing these models in a clinical
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context, together with medical expertise, may allow for earlier disease diagnosis, person-
alised prevention, and treatment strategies for groups of people based on their genomics
and clinical profiles. Ultimately, this will enable a better balance between treatment effi-
cacy and patient’s quality of life.
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Danske Resumé

Præcisionsmedicin betyder individualiseret medicin/behandling baseret på individuelle
biomarkører, såsom genetiske varianter eller livsstilsfaktorer, for at forbygge, diagnosticere
eller bestemme den mest effektive sygdomsbehandling til patienter i stedet for en one-size-
fits-all-tilgang. Dette koncept er kommet i fokus de seneste år. På den anden side skal det
dog bemærkes, at traditionel medicin såsom Ayurveda har over århundreder lang historie
fra Indien. Her undersøges patientens stratificering i forhold til sygdomsudvikling og be-
handling. I denne PhD afhandling har jeg 1) udforsket konceptet med præcisionsmedicin
fra forskellige perspektiver; 2) brugt forskellige tilgange til at analysere kliniske (ansøgn-
ingsnote, kapitel 8) og genomisk data, og øge genomisk forståelse ved at bruge ”Genome-
Wide Association Study” (GWAS) og næste generations sekventeringsanalyse (NGS); 3)
udviklet modeller til forudsigelse af risiko, såsom Ayurveda-baseret dyb fænotypebestem-
melse, polygenetiske risikoscorer og maskinlæringsmodeller; og 4) undersøgt, hvordan disse
modeller kan anvendes i klinikken til forudsigelse af fænotype, behandlingsrespons og sene
bivirkninger.

Den første artikel, kapitel 4, præsenterer en oversigt over Ayurveda-medicin, og hvordan
dennes patientstratificeringsmetode kan hjælpe med at identificere nye sygdomsvarianter,
specielt i leddegigt. Det andet kapitel, kapitel 5, undersøger anvendelse af to validerede
polygene risikoscorer baseret på kolon- og bryst-kræft i voksne til at stratificere risiko-
fænotyper i børn diagnosticeret med kræft. Arbejdet udviklet på St. Jude Children’s Re-
search hospital, kapitel 9, præsenterer en model, der forudsiger behandlingsrespons, speci-
fikt dasatinib-respons i T-celle akut lymfoblastisk leukæmi. Artiklel tre og fire i kapitlerne
6 og 7, fokuserer på udvikling af maskinlæringsmodeller til forudsigelse af senfølger ved be-
handling, specifikt cisplatin-induceret høretab og nefrotoksicitet hos testikelkræftpatienter
ved hjælp af kliniske og genomiske data.

Implementeringen af disse modeller i en klinisk sammenhæng kan sammen med medicinsk
ekspertise hjælpe med at løse kliniske behandlingsudfordringer, hvilket muliggør tidligere
diagnose, personlig forebyggelse og behandlingsstrategier for grupper af mennesker baseret
på deres genomiske og kliniske profiler.
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Chapter 1

Approaches to medicine and patient
data

1.1 Traditional and precision medicine – are they really

that different?

Precision medicine refers to individually tailored health care for disease prevention or
better disease treatments. It is based on individual characteristics, such as one person’s
genes, lifestyle, and environmental factors. Currently, its use in the clinic is limited, even
though a more systematic implementation is promising due to advances in genetics and
the increase of patient data [1]. There is no doubt that "precision medicine" has become
very popular recently [2]. However, physicians have tailored therapeutic recommendations
to patients’ specific characteristics for a long time. Pre-modern medical knowledge was
often personalized, and one of the first examples in medical history is Ayurveda, one of
the Indian traditional medicine documented and practised for centuries [3].

1.1.1 Ayurveda, Indian traditional medicine

Ayurveda is a traditional medicine in India and one of the oldest in the world. It is
a form of alternative medicine and likely the earliest example of predictive, preventive,
personalized, and participatory (P4) medicine [4]. According to Ayurveda, we can define
a person with a specific basic constitution at the time of birth. This basic constitution
is known as Prakriti in the Ayurveda lexicon. Prakriti classification takes into account
a person’s physical, physiological and psychological constitution, and it will define, to a
great extent, a person’s predisposition to diseases and response to the environment, diet,
and drug treatments [5] as can be observed in Figure 1.1. There are seven contrasting
phenotypic categories. Three are the so called extreme phenotypes, named vata, pitta or
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kapha. The other four categories, vata-pitta, pitta-kapha, vata-kapha, vata-pita-kapha,
are non-extreme categories [6][7].

Figure 1.1 | Illustration with examples of Prakriti characteristics. Figure from [6].

Prakriti is accessed by Ayurveda physicians and available software, such as the AyuSoft
questionnaire. AyusSoft is based on 85 questions related to individuals’ anatomy, phys-
iology, and psychology. It gives a higher weight to anatomy-related questions than the
others since those are more stable throughout life [8].

These ideas on aetiology, treatment and responses have been based on theoretical knowl-
edge. Ayurveda uses a holistic approach emphasizing health improvement, disease pre-
vention, early diagnosis and personalized treatment based on multiple aspects from herbal
medicine to advice on diet, physical exercise, and lifestyle both to improve health or treat a
disease. The ’Ayurveda pharmacopoeia of India’ documents close to a thousand Ayurveda
sources [9]. These Prakriti specific prescriptions are a form of personalized medicine [10].
One study that compared Ayurveda, methotrexate, and their combination for the treat-
ment of rheumatoid arthritis, reported that the three treatments have similar efficacy,
with the Ayurveda having fewer side effects. In this study, the patients were randomly
assigned to different groups, and it also included a placebo group. This study was also
double-blinded, meaning that neither the Ayurvedic nor the allopathic physicians had in-
formation about the treatment received by the patient [11].
In another randomized, double-blind study, two Ayurvedic treatment were compared with
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glucosamine and celecoxib for knee osteoarthritis. It was observed that Ayurvedic drugs
reduced knee pain considerably and improved knee function. Additionally, the Ayurvedic
medicines had similar efficacy when compared to glucosamine and celecoxib, widely used
for cases of knee osteoarthritis [12].
Integration of Ayurveda stratified approach in the modern world of genomics, i.e. Ayurge-
nomics could be a great complement to precision medicine [13], as there is a lot of knowl-
edge we could use from our ancestors. Indeed, literature bridging Ayurveda to western
medical contexts, with proof of principle, is growing [14][15][16][17]. However, applications
on specific diseases and with controlled patient cohorts, have been few.

Ayurgenomics

Ayurgenomics, a relatively recent concept, hypothesizes that integration of Prakriti with
genomics and modern biology can validate Ayurveda concepts and help discover genetic
markers important for disease predisposition and response to treatment [18]. There are
two main objectives of Ayurgenomics: 1) provide scientific validation of Ayurveda system
of medicine, and 2) obtain homogeneous disease cohorts for genetic analysis of common
complex traits using Prakriti-based subgrouping [19].
One of the first research studies on this area demonstrated that individuals from the three
different extreme Prakriti groups have evident differences when looking at biochemical
parameters. For example, kapha was seen to have higher levels of triglycerides or total
cholesterol, which confer a higher risk for cardiovascular diseases. Additionally, multiple
differentially expressed genes were also found in the different groups [20]. Apart from ge-
nomics, recent manuscripts are starting to appear relating different Prakriti with different
metagenomics signatures [21] and metabolomics pathways [22].
Ayurgenomics is currently a separate unit within the Institute of Genomics and Integra-
tive Biology, New Delhi, India, collaborating with other institutions such as the All India
Institute of Ayurveda, New Delhi, India.

1.1.2 Conventional medicine

Conventional medicine, also referred to as western in this thesis, refers to medicine as we
know it today in most European and Northern American countries.
Diving a little into history, it was on the 19th century during the Industrial Revolution
that many scientific discoveries in the field of biology were made. These led to medicine
as we know it today. We can take the example of Gregor Mendel and his principles of
inheritance, describing the transmission of genetic traits (1856-1863) before anyone knew
what a gene was. This knowledge was expanded, and we know today that most diseases
are complex or multifactorial, and complex methods are needed to find the multiple genes
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associated with them. These will be discussed in more detail in chapter 2.
By the end of 20th century, the Human Genome Project was initiated. After 13 years,
in 2003, its finished version was completed. This significant milestone led to a greater
understanding of medicine and the discovery of single-nucleotide polymorphisms (SNPs)
and genes associated with several phenotypes [23].
At the moment, it is much faster (1-2 days) and cheaper (2001: $100,000,000; now: $1,000)
to sequence the human genome [24]. This changed the field of genomics. Now we have the
fundamental knowledge and technologies available that allow us to a read out a patient’s
genome routinely. We are gradually figuring out how to look at patient’s genome differences
and make medical decisions based on them, opening doors for more personalized medicine.

1.1.3 Precision medicine

Precision medicine implies customized healthcare to a subgroup of patients. By screen-
ing patient data and biomarkers, such as genetic biomarkers, and identifying which ones
are specific to individual patients, we can point to better clinical decisions and resource
allocation; instead of using the "one-size-fits-all" approach. The "one-size-fits-all" system
aims to find treatments that work for the average patient. However, each of us is unique,
and we respond in different ways to treatments and develop different early or late side
effects depending on our genetic makeup.
It should be noted that some use the terms precision, personalized, P4, or stratified
medicine interchangeably [25][2], while others point out some differences between them
[26] [27].
In this PhD thesis, these terms were used interchangeably as I believe they have a com-
mon goal: develop and implement tailored healthcare for the diagnosis, prevention, and
treatment of diseases.

1.1.4 Intersection between types of medicine

Even though there is scepticism in the western culture concerning Ayurveda medicine,
Ayurveda adopted precision medicine for centuries. Ayurveda and precision medicine
share many aspects, as discussed in the current chapter. The first medical interventions
were indeed personalized; however, as there was a lack of understanding of disease biology,
these treatments were often ineffective.

The three types of medicine described here, Ayurveda, conventional and precision, can
complement each other in some ways (Figure 1.2).
Traditional medicine was used when there was no technology available; thus, it is not
data-driven but rather based on hundreds of years of traditional knowledge passed down
from generation to generation. Today, we realize that, even though one drug may work
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very well to treat some patients, the same drug can trigger early or late side effects in
others, affecting the patients quality of life significantly. Thus, we need to be aware of the
individual characteristics of each one of us and try to foresee how will a person respond
to a specific treatment and if this person is prone to develop side effects that may persist
throughout life. This viewpoint is shifting the concept of modern medicine, adopting the
same ideas defended by our ancestors, and coming back to our roots.

Figure 1.2 | Comparison between types of medicine: conventional, Ayurveda and
precision. Ayurveda and precision medicine adopt a stratified-based approach based
on different individual characteristics. Figure adapted from [28].

1.2 Clinical and genomics data: challenges and oppor-

tunities

Most complex disease development as well as individual treatment responses are the result
of the interaction between hundreds of genome variants, defined at birth, and lifestyle
behaviours, that change along the life course of the patients. Patient data is certainly
very important but also very challenging to work with it. Normally there is also not
a huge number of records, and that makes it more difficult to find patterns to better
understand disease and disease sub-groups in such heterogeneous populations. To help
with this, it is important to install a good healthcare data management system, and
healthcare professionals are open to make recording and monitoring of these files better
[29].
During my PhD, I have been working with clinical data and, in the OMICS field, genomics
(mostly) and metabolomics (‘Papers not included in the thesis’, [30]), however, the work
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on metabolomics will not be developed in this thesis, thus I will keep the focus on clinical
and genomics data only.

1.2.1 Clinical data

Clinical data refers to basic information and/or health-related patient status that is part
of the regular patient care such as age, gender, clinical biomarkers, or lifestyle behaviours
like drinking or smoking habits.
In order to find relevant information, it is important to clean the data between different
data formats, doctor’s notes, and diagnostic codes. It is quite common to find duplicates
due to an error of passing the information between paper records to electronic records, or
due to multiple name variations given to a patient. We should also make sure the data
does not contain inaccuracies and odd values. For instance, if body mass index (BMI)
takes the value of 1 or 100, we know that is most probably inaccurate. In this case, we
need to find the source of the error, which may be only a misplaced comma.

Missing data

It is very common to have sparse or incomplete clinical data; thus, extra attention is
required. We do not want to take the risk of having biased data and unreliable and mis-
leading results.
There may be different causes for the missing data. Missing at random holds the assump-
tion that missingness is random within observed background characteristics in subgroups
of the population, while missing not at random depends on unobserved variables [31][32].
It is hard to know for sure if missing values are missing at random or not. We need to
compare observed with unobserved values, and the last are unknown; however, imputa-
tion should only be done if we are quite confident that values are missing at random. For
example, if blood samples biomarkers or anthropometric measurements are missing due
to an incident in the laboratory or lost files. Suppose there is any reason to assume that
the values are not missing randomly. In that case, imputation should not be performed
since we are not aware of the true nature of the missingness, and we may end up over or
underestimating our results [33]. For example, if data is missing because the patients were
not eligible for the study.
Missing data is avoided by doing good data collection or getting back to the patients to
fill up the lacking information. This is not always possible; thus, several methods can be
used. Simple methods include single imputation, where we use the variable observed values
mean or median to replace the unobserved values. Another commonly used approaches
are complete case analysis, where we remove samples with missing data and multivariate
imputation [34]. Multivariate imputation differs from single imputation as missing data
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is filled in many iterations with different possible values estimated for each missing value.
This quantifies uncertainty by looking into the different values estimated at each iteration.
There are multiple decisions that one needs to make, such as, what should be the first
imputed value (for example, the most frequent value of the specific variable), or how many
iterations on the dataset there should be. At each iteration, a variable is labelled as output
y and the other variables input x. A linear or logistic regression is then fitted on x, y to
then predict y [35].
These approaches help deal with the complexity of missing data, but none is a gold-
standard solution. When stating one study’s results, the extent of the missing data and
the limitations should be reported clearly.

In this PhD thesis, if the phenotype or outcome was missing for one sample, this sample
was removed as we did not want to risk modelling a false outcome. If other clinical variables
were missing, the following methods were used: 1) multivariate imputation, modelling each
variable containing missing values as a function of other variables in a round-robin fashion
way (paper III, chapter 6); or 2) remove missing data, using a complete case analysis
(paper IV, chapter 7).

Single-time point vs longitudinal biological data

Clinical data can be either a single-time point measured at the time of visit, i.e., age or
gender, or if a quantifiable biological parameter, measured over time. When dealing with
a single-time point, this can be characterised by the value itself. In the case of longitu-
dinal biological data, such as glucose postprandial responses, several methods have been
developed to profile different glycemic patterns [36][37][38]. Various studies have also used
the well-known area under the curve (AUC) [39][40][41]; however, with AUC there is a
challenge capturing the fluctuation patterns of these temporal curves.
In this PhD thesis, different measurements were explored to model the dynamics of post-
prandial glucose responses. These fluctuation measurements are presented and discussed
in more detail in the application note, chapter 8. A project GitHub page was also prepared;
however, it will only be publicly available once the application note is published.

1.2.2 Genetic biomarkers

We find that 99.9% of the human genomes are the same, and it is the rest ≈ 0.1% that
makes us all unique. This can also vary in some wildly divergent loci. The human leukocyte
antigen region can reach over 10% variation across human genomes [42]. These genomic
variations may impact diseases development. Still, some are simply associated with phe-
notypic characteristics, as skin or eye colour.
The genetic variations we find the most are SNPs. However, variants that cause disease
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usually involve more than one single base-pair, such as insertions and deletions (indels),
inversions and translocations [43].
Currently, several well-known genetic biomarkers are indeed used to diagnose and manage
multiple diseases. For example, the well-known mutations in the BRCA genes that are
known to confer a higher risk of breast and ovarian cancer [43].
Genomic tools such as DNA microarrays and next-generation sequencing (NGS) (discussed
in more detail in chapter 2) allowed us to discover multiple variations associated with can-
cer and other diseases risk, evolution, and response to treatment. However, there is still a
gap between the reported variants associated with diseases and the ones used in a clinical
context. Some explanations for this gap are the use of inappropriate controls, the early
disclose of rare variants with a not clear functional consequence and without functional
validation, and the lack of replication in additional patients and laboratories [44][45].
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Chapter 2

Tools and approaches with genetic data

In the field of cancer genomics, more and more data is being generated as new high
throughout technologies become available, and sequencing becomes faster and cheaper.
This raises the importance of data science and bioinformatics tools to analyse and make
sense of all the information.
In this PhD thesis, GWASs and NGS analysis were performed to find variants associated
with the disease of study. Further, Ayurveda-based phenotyping, polygenic risk scores
(PRSs), and machine learning (ML) prediction models, integrating clinical and genomics
data, were explored as primary approaches to translate these findings clinically.
GWASs, NGS, PRSs and ML are further explained in this chapter.

2.1 Genome-wide association studies

GWASs look into the genome to find associations between genetic variations and partic-
ular traits. Until now, they have shown multiple genetic influences on different physical
characteristics [46][47], and multiple diseases and cancers [48].

2.1.1 SNP microarray

A SNP microarray is a technology used for SNP detection via hybridisation of single-
stranded DNA sequences with unique oligonucleotides called probes bounded to the mi-
croarray. There are several alternative methods that have been developed by different
companies [49][50][51].
In Illumina arrays, oligonucleotide probes targeting a specific locus in the genome are
synthesised and attached to the array surface. DNA in each of the probes is oriented
with the 5’ end attached. The sample genomic DNA is fragmented and hybridised to the
complementary sequence probe. The oligo on the probe is extended, where one of the
four hapten-labelled dideoxynucleotide triphosphates (ddNTP) is added at a time. These
haptens are detected by staining with fluorescently labelled proteins that bind each hapten
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[49]. This method allows to simultaneously analyse hundreds of thousands of variants at
locations in the genome that are known or suspected to correlate with disease.
There are many pre-made commercial available DNA arrays. Experts have selected vari-
ous variants and locations spread in the genome to analyse their correlation with several
traits.

2.1.2 Quality control

GenomeStudio software is used to process the array from raw intensity data to PLINK
format. PLINK [52] is a program that allows quality control, an important step previous
to the association analysis, to dismiss low-quality data and decrease the chance of false-
positive associations [53].
Below, I will describe some of the standard steps of quality control, which were also
performed on the research papers included in this PhD thesis.

Genotyping data preparation In this step, duplicated SNPs and those with ambiguous
genome position, strand, and alleles (compared to a reference genome) are removed. The
reference genome used in the research papers was Genome Reference Consortium Human
Build 37 (GRCh37).

Removal of individuals and SNPs with low call rate A sample with a very low SNP
call rate may indicate a poor quality DNA sample, and these samples should be removed
from the analysis. SNP genotype failing in multiple DNA samples may point to systematic
errors of array reaction or genotype-calling algorithms and SNPs in regions with a high
number of copy number variations [54]. Even though this can slightly change between
studies, a recommended threshold for SNPs call rate is 95%. For SNPs with a low minor
allele frequency (MAF < 5%), this threshold should be stricter, i.e. 99%. For the samples,
it is recommended to remove if more than 98% of the genotype is missing, but this can also
depend on factors like the type of the study, genotype platform used, and quality of the
DNA. We should determine a goal and find a balance between (minimising) the number
of samples to remove and (maximising) genotyping efficiency [55][56].

Removal of individuals with discordant sex information Few times we find that
the sex reported in the patient’s clinical file and the sex found by the sex chromosome
differ, and these samples are also considered unreliable and removed. In PLINK, a sex
check can be made by X chromosome homozygosity estimate (F statistic). By default, if
F estimate < 0.2, the sample is considered a female; otherwise, it is considered a male.

Removal of individuals with excessive heterozygosity rate Heterozygosity rate
refers to the percentage of heterozygous genotypes for a specific individual. First, we
need to calculate the heterozygosity rate for all samples and the mean heterozygosity
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rate. Samples who deviate more than, for example, 3-4 standard deviations (SD) from the
samples mean are excluded. Deviation from the samples mean may indicate DNA sample
contamination, if high heterozygosity rate, or inbreeding, if low heterozygosity rate [56].

Ancestry check GWASs can be highly confounded due to population stratification yield-
ing many false positives [57], which may be associated with the ancestry of cases versus
controls and not with the trait under study. Principal component analysis (PCA) or multi-
dimensional scaling (MDS) are two methods widely used to observe and correct population
stratification. Both compare the population genetic diversity between the studied popu-
lation and a reference genome, such as HapMap or 1000 Genomes. The HapMap Project,
developed by an international consortium, consists of a map of shared patterns of DNA
variations in the human genome, and it includes population from Africa (Kenia, Nigeria),
Asia (China, Japan), Europe (Italia), and America [58]. The 1000 Genomes Project was
another effort to include more samples diversity and perform a deeper characterisation of
the human genome sequence [59].

Removal of related individuals The presence of high genetic similarity between individ-
uals independent of the trait under study presents a source of potential bias in association
tests in population-based studies, with the risk of yielding sub-population association in-
stead of phenotype association. These samples should either be removed [60] or family
relatedness should be taken into account in the case of family-based genetic association
studies, for example, using variance components to account for family structure [61][62].
Relatedness can be accessed using identity-by-descent (IBD) and identity-by-state (IBS).
If we look at a given locus in any pair of samples, IBS can be either 1) IBS0, if there
are two different alleles (i.e., AA and BB); 2) IBS1, if there is one allele in common (i.e.,
AA and AB); or 3) IBS2, if the two alleles are the same (i.e., AA and AA). Two samples
that share one or two alleles IBS at a given locus may have inherited those alleles from
a common ancestor; thus, these alleles are identical-by-descent [63]. In PLINK, IBD is
inferred from the observed IBS states using a hidden Markov model with a small hidden
state space [64]. Subsequently, for each pair of samples, a proportion IBD (PIHAT ) is
calculated as defined in Equation 2.1, where P is probability.

PIHAT = P (IBD = 2) + 0.5× P (IBD = 1) (2.1)

Usually, a PIHAT higher than 0.25 indicates close relatives [65], but an individual is re-
moved from analysis if the PIHAT is higher than 0.1875. A PIHAT higher than 0.5 indicates
first-degree relatives, and a PIHAT of 1 shows duplicates or monozygotic twins [56].

Removal of population outliers MDS on an IBS matrix allows checking for population
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outliers. PLINK uses raw Hamming distances to calculate pairwise IBS distance between
individuals. A different threshold can be used to remove outlier samples from the analysis.
One standard approach consists of removing samples with an IBS genetic distance from
the sample mean of more than 3 SD on one or more clusters [66].

Removal of rare and non-Hardy–Weinberg equilibrium SNPs Even though low-
frequency SNPs may represent a significant and understudied component, they are hard
to detect as they are often specific to individual populations or families [67]. Rare or
low-frequency SNPs are removed from the analysis. Usually, there are not many low-
frequency alleles for traditional statistical tests, and they lead to a higher probability
of type I errors [68]. Usually, MAF thresholds of 0.01 and 0.05 are used to exclude
rare SNPs [61]. Additionally, to avoid type I errors, the Hardy-Weinberg equilibrium
(HWE) is tested. HWE is a population genetic principle that assumes that genotype
frequencies remain constant throughout generations in a random mating population [69].
If we take any dataset of a random mating population, it should not deviate from the
HWE. Otherwise, this may be caused by genotyping errors [70]. Common used thresholds
to exclude variants vary between HWE p-value < 1x10−10 (cases) or HWE p-value <
1x10−6 (controls). Stringent thresholds may cause the removal of phenotype-associated
SNPs, as the deviation from HWE can also be the results of a true genetic association.
Therefore, less strict thresholds are normally used for cases than for controls [61].

2.1.3 Genome imputation

Genome imputation refers to predicting genotypes that were not directly genotyped, as
illustrated in Figure 2.1. This has been used extensively in GWASs to enhance analysis
power for fine-mapping or to help in combining and comparing studies using meta-analysis.
Genome imputation can be done across the whole genome or in a specific region we are
interested [71].
There are multiple methods for imputing genotypes, such as IMPUTE (v1 and v2), BEA-
GLE, and MACH. I will not go through an exhaustive explanation of each method, but
rather the one used in this PhD thesis: SHAPEIT2-IMPUTE2 (paper II, chapter 5). The
human reference genome used for imputation was 1000 Genomes Project phase 3.

SHAPEIT for haplotype estimation Haplotype refers to a set of SNPs along a chro-
mosome that tends to be inherited together due to the short distance between them. These
SNPs on the same haplotype block are in linkage disequilibrium (LD), and if one of the
SNPs carry a specific allele, we can often predict the alleles carried on the SNPs in the
same block [73][74]. This is known as haplotype estimation or phasing. It can be used
for other purposes since some diseases are associated with a specific haplotype, i.e., an
exact allele arrangement found on each copy of homologous chromosomes can influence
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Figure 2.1 | Genotype imputation workflow in two samples, where regions shared
between the study samples and samples in the reference genome are identified and this
shared information is combined to fill in the missing genotype of the study samples.
Figure adapted from [72].

the gene expression of a disease-associated gene. In standard genetic studies, this will not
be detected, since phasing usually is not done in these cases, perhaps because it will add
complexity in the analysis [75].

In this PhD thesis, SHAPEIT v2 (r790) (Segment HAPlotype Estimation and Imputation
Tool) was used for haplotype estimation. Before phasing, the dataset was split by chro-
mosome using PLINK2. In SHAPEIT2, haplotypes are inferred using a Gibbs sampling
approach. At the core of this approach is a Hidden Markov model used to linearly model
the conditional distributions of the Gibbs sampler, where an individual’s haplotypes are
updated iteratively based on the haplotype estimates of all other samples [76][77].

IMPUTE2 for imputation Once phasing is done, we can infer missing genotypes by
performing imputation. IMPUTE2 also performs phasing; however, IMPUTE2 authors
recommend using SHAPEIT2 for it, followed by IMPUTE2 for imputation [78]. To reduce
computation demand, each chromosome is split into several segments or chunks of 5000
kilobases, which can be merged in the end once imputation is performed.
IMPUTE2 uses a Markov chain Monte Carlo (MCMC) method to integrate all possible
haplotypes from the phasing step and predict the alleles of missing SNPs. As a standard
procedure, 30 MCMC iterations are performed in 500 reference haplotypes [79]. These
probabilities are then averaged across iterations and produce a marginal posterior genotype
probability at each imputed SNP. Further, IMPUTE2 reports an imputation quality score,
known as INFO score, for each SNP based on posterior genotype probabilities. This INFO
score ranges between 0 and 1, where 1 means the highest certainty. The INFO score is
used to filter SNPs with low imputation accuracy [80].

2.1.4 Disease and single-nucleotide polymorphism association

Once quality control (and sometimes genotype imputation) is performed, all genotyped
variants are tested from association with the phenotype under study. The test to be used
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depends on what we want to investigate, and sometimes we do not know at the beginning
what are we looking for. Instead of trying one specific test, we rather do an exploratory
analysis using several tests.
In this PhD thesis, PLINK was used to perform the association tests. The most basic one
is the allele test chi-square (binary traits) or Wald (quantitative traits), which compares
the allele frequency or counts between cases and controls. PLINK also uses other alterna-
tive association analysis, such as Fisher’s exact test, genetic models (dominant, recessive,
and genotypic), stratified analysis when clusters have been specified, and logistic and lin-
ear models with the possibility of adding possible covariates. As thousands of SNPs are
tested, this will cause the inflation of type I error; thus, adjustment for multiple testing,
using Bonferroni, Sidak or false discovery rate (FDR), is also an option [52].
A "diagnostic plot" widely used is the quantile-quantile (Q-Q) plot of the observed vs
expected p-values on a log 10 scale. This plot indicates if there is a deviation from HWE,
i.e. if the study has generated more significant results than expected by chance. A large
inflation factor, or lambda, will be obtained in this case. This can happen due to popu-
lation stratification and relatedness between samples [81]. To facilitate the visualisation
of the analysis, a Manhattan plot is usually used to check the results from a single-locus
association analysis. In a Manhattan plot, one can easier visualise which SNPs passed the
defined thresholds for genome-wide significance.

2.2 Next-generation sequencing

NGS revolutionised the field of genomics. It describes high-throughput DNA sequencing
technologies that now dominate the DNA sequencing field, taking the place of the previous
gold-standard Sanger sequencing.
NGS allows whole-genome sequencing (WGS), or parts of the genome, i.e., whole-exome
or targeted sequencing [82]. Sanger is considered the first-generation; thus, NGS is known
as second-generation sequencing. NGS is also known as massive parallel sequencing due to
its advantage of analysing millions of DNA strands in parallel and producing large volumes
of data [83][84].

The past: Sanger sequencing is a targeted technique that uses oligonucleotides primers
to seek specific DNA regions. After DNA amplification, the double-stranded DNA is
denatured using heat, and the primers bind to the 5’ end of the single-stranded DNA.
Next, this primed DNA is dispersed in four reaction vessels and DNA polymerase, four
deoxynucleotide triphosphates (dNTPs): adenine, cytosine, tyrosine, and guanine, and
chain-terminating ddNTPs for each nucleotide is added in each vessel. The single-stranded
DNA is elongated by the dNTPs until a ddNTPs binds since ddNTP lacks a hydroxyl group
at the 3’ carbon. Each ddNTP contains a unique fluorescent label, so a laser recognises
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this fluorescent signal on the automated machine, which detects the fluorescent intensity,
translated into a “peak”. As dNTPs and ddNTPs have the same probability of binding
to the sequence, the sequences will have different lengths. In the end, polyacrylamide gel
electrophoresis is used to get the complementary sequence of the DNA sample. Sanger
sequencing is nevertheless costly compared to NGS, and it can only sequence short regions
of DNA each time [85].

In Figure 2.2, we can visualise some of the main differences between these sequencing
technologies.

Figure 2.2 | Illustration comparing Sanger sequencing and second-generation sequenc-
ing. Figure from [86].

In this PhD thesis, Illumina technology has been used for NGS in paper II, chapter 5 and
in additional work for paper IV, chapter 7. The following sub-sections are focused on the
three main steps of NGS analysis: 1) template preparation; 2) DNA sequencing; and 3)
data analysis.
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2.2.1 Template preparation

The first step for NGS is template preparation which consists of library preparation.
Libraries are created by the fragmentation of DNA in smaller fragments, i.e., between 150
to 800 base pairs, depending on the platform used [87]. Following DNA fragmentation,
DNA fragments are end-repaired and A-tailed. The A-tail allows adapters to bind. Before
sequencing, DNA fragments are amplified through bridge amplification.

2.2.2 DNA sequencing

NGS Illumina uses sequencing by synthesis approach. In sequencing by synthesis, there
is the extension of the sequencing primer. A fluorescent-label nucleotide competes to be
added to the growing strand in each sequencing cycle. Once a labelled dNTP is added to
the nucleic acid chain, a fluorescent signal is emitted. The emission wavelength along with
the signal intensity determines the base call. The number of sequencing cycles determines
the length of the read [88].

2.2.3 Data analysis

Once the samples are run through the sequencer machine, data is stored in FASTQ format
files. This is a standard file format used for sequencing data containing both the sequence
and the corresponding per base quality score or Phred quality score encoded as ASCII
characters (human-readable) [89].
The raw sequence data needs to go through several steps until the final output is generated.
A standard data analysis pipeline for NGS includes remove adapter sequences and low-
quality reads, align the data to a reference sequence or construct a genome from multiple
DNA fragments via de novo assembly, and lastly, analyse the compiled sequences. Genome
Analysis Toolkit (GATK) from the Broad Institute [90][91] is widely used for analysing
NGS data. Still, other alternatives provide faster variant calling, such as Sentieon DNASeq
(pipeline illustrated in Figure 2.3).

In this PhD thesis, Sentieon version 201808.03 was used for germline variant calling in
WGS (paper II, chapter 5) and targeted sequencing (addition to paper IV, chapter 7).
Pipeline steps are described below. GRCh37 was used as the reference genome.

Short read quality assessment using FastQC (v0.11.2) FastQC is used to access
the overall quality of the sequencing run and adapter contamination [92].

Adapter removal using AdapterRemoval (v2.1.3) If adapter contamination is found,
adapters are removed as they can interfere with the correct mapping of the read to a
reference genome and influence downstream analysis. AdapterRemoval is a widely used
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Figure 2.3 | Sentieon DNASeq pipeline. Figure from Sentieon manual support.

tool for the task and it can pre-process single and paired-end data in FASTQ format.
The adapter sequence is specified (−−adapter1 and −−adapter2) or the default Illumina
Trueseq adapters are used [93].

The following described steps were executed using Sentieon version 201808.03.

Mapping reads with BWA-MEM Burrows-Wheeler Alignment uses the maximal exact
matches (BWA-MEM) algorithm to align reads against the reference genome. It finds at
each query position the longest exact match covering this position [94].

Access metrics Multiple quality control metrics are available to access the number of
reads with low mapping quality after alignment to the reference genome. Here, the fol-
lowing algorithms and respective plots were used: MeanQualityByCycle, QualDistribu-
tion, GCBias, AlignmentStat, and InsertSizeMetricAlgo (description at Sentieon version
201808.03 support webpage).

Remove duplicate reads PCR duplicates may occur when the same DNA fragment
is sequenced two or more times. These duplicates usually are removed as they may be
counted as additional evidence and lead to false-positive variant calls [95]. Here, Locus-
Collector algorithm was used to collect read information and generate a score file. Dedup
algorithm was used to remove duplicate reads or simply mark these duplicates without
removing them (if −−rmdup is not set).

Indel realignment During alignment of each read to the reference genome, alignments
artefacts can arise. It is well known that indels close to the end of the reads are difficult
to align to the reference genome [96]. Local realignment of these problematic regions

https://support.sentieon.com/manual/DNAseq_usage/dnaseq/
https://support.sentieon.com/manual/DNAseq_usage/dnaseq/
https://support.sentieon.com/manual/DNAseq_usage/dnaseq/
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against a known reference set of indels helps mitigate false discoveries related to indel
regions. Here, given a VCF file containing known indels, the Realigner algorithm was used
to perform indel realignment.

Base Quality Score Recalibration (BQSR) Base quality scores are per-base estimated
of error emitted by the sequencing machines. These scores are subject to various sources of
errors. BQSR adjusts these quality scores of reads using ML algorithms. Here, the QualCal
algorithm was used to calculate the recalibration table, using a database of known indels
and known SNPs.

Apply the results of BQSR (optional) ReadWriter algorithm outputs the results of
applying the BQSR to a file. This step is optional as variant callers can also perform the
recalibration using the recalibrated bam and the recalibration table [97].

Variant caller Lastly, the Haplotyper algorithm is used for variant calling. In this step,
only variants that pass a specified threshold are added to the VCF file. The flags used are
−−call_conf, which determines the threshold to call a variant, and −−emit_conf, which
determines the threshold to emit a variant. VCF stands for variant call format; thus, these
files only contain variant sites as the name indicates. If we are interested in getting all
sites, the GVCFtyper algorithm can be used.

2.3 Polygenic risk score

As mentioned in the previous chapters, several complex diseases are highly polygenic.
This means that hundreds or thousands of genetic variants have a cumulative effect on
the disease risk and help understand the biological pathway(s) related to the phenotype.
These genetic variants may have enormous clinical utility and be used to predict disease
risk when combined into a PRS [98][99].

2.3.1 Calculate polygenic risk scores

A PRS is one value estimated from an individual’s genetic predisposition to a phenotype.
Standard PRSs are calculated as a weighted sum of genome-wide genotypes as shown in
Equation 2.2.

PRS =
n∑
i

χi × βi (2.2)

In Equation 2.2, χi is the allele dosage for SNP i where i ε 0, 1, 2, for 0, 1 and 2 alleles,
respectively; and βi is the effect size of SNP i estimated from the relevant GWAS data
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[99]. When calculating PRSs on a binary trait, the effect sizes are normally reported as
log odds ratios (log(ORs)); and when calculating in a continuous trait, standardized mean
differences normally are used [100].
One challenge of building a PRS is to decide which SNPs to include, as not all of them
influence the phenotype under study [101]. A widely used approach to calculating these
standard PRSs is LD-clumping and p-value thresholding. In LD-clumping, SNPs are LD-
pruned before building the PRSs to avoid redundant correlated effects between SNPs.
In p-value thresholding, only SNPs that passed a pre-determined threshold are retained.
The predictive performance of a PRS can be tested at different p-value thresholds, or one
can define a single “hard-threshold” to retain the SNPs. LD-clumping can be performed
before or after p-value thresholding. It is common to perform LD-clumping after p-value
thresholding, so if there are two correlated SNPs (for example, r2 threshold of 0.25), the
one with the lowest p-value for association is kept [102][103].
In the end, PRSs can be standardised to facilitate its interpretation and conversion of an
individual’s PRS to quantiles [104].
As a sum of SNPs with identical distributions, PRSs should look like a normal Gaussian
distribution (Figure 2.4). The majority of people will find their scores to be in the middle,
while others will be on the left (lower quantile) or right (upper quantile) tail ends, which
indicates a low or high risk, respectively, of developing the phenotype under study. When
studying cancer, people in the right tail may benefit from discussing preventive treatments
with their clinicians. It is important to remember that PRSs only provide a relative risk by
comparing a person’s risk based on the genetic constitution and not providing information
on the disease progression. On the other hand, absolute risk shows the likelihood of a
disease occurring without any comparison to any groups of people. Giving a concrete
example, if we have two people with the same PRS, and one is 20 years old while the other
is 90 years old, they will most probably have different lifetimes risks.

In paper II, chapter 5, I have calculated PRSs in two childhood cancer cohorts. These PRSs
were based on two recently published GWASs, for adult breast [105] and colon cancers
[106]. Due to pleiotropic effects and the presence of better established and validated PRSs
on the genetic predisposition of adult cancers, as opposed to childhood cancers, we have
evaluated these for stratified disease prevention in childhood cancer.
In paper IV, chapter 7, PRSice software [107] was used to calculate the PRSs. Effect
sizes were estimated from the performed GWAS. SNPs that passed a Bonferroni corrected
threshold of 8.02x10−8, and a set of SNPs in the same gene that passed a suggestive
threshold of 1x10−5, were included.



Chapter 2. Tools and approaches with genetic data 21

Figure 2.4 | Illustration representing normal distribution of polygenic risk scores.

2.3.2 PRS clinical application

There is a growing interest in the clinical implementation of PRSs to measure disease
predisposition, improve diseases diagnosis, and select the best treatment for each patient
[108].
As an example, if we develop a PRS for coronary artery disease risk and if we find a group
of patients in the upper quantile, a preventive strategy can be adopted, i.e., these patients
can adopt a healthy diet and physical exercise at an early stage [98].
At the time of writing this PhD thesis, there were 26 studies found for “polygenic risk score”
at ClinicalTrials.gov, either complete or active. These aim to validate several PRSs in mul-
tiple diseases, such as breast cancer, coronary artery disease, type 2 diabetes, schizophrenia
or ovarian cancer [accessed on 05-02-2021].
PRS is indeed a relatively cheap and non-invasive “procedure”, as it can be calculated
from a saliva sample using genotyping technologies that are becoming cheaper [99]. As
research in the field shows that PRSs may have a potential benefit in patient care and help
on clinical decision making, there is also a rising interest in incorporating genomic data
into electronic health records. Several groups have been working together on this, such as
Electronic Medical Records and Genomics (eMERGE) Network, funded in 2007, and the
Clinical Genome Resource (ClinGen) project [109].
There are already PRS commercially available, for example, for breast cancer risk (Myr-
iad Genetics) or for type 2 diabetes risk (23andMe) [110]. While some argue that PRSs
are still not ready to be implemented in a clinical setup [111], and others defend that
we should start its implementation [112][113], there are still some challenges that need to
be addressed. There is a need of having a more standardised protocol on how to present
genomics information and how to translate genomic variants into relevant phenotypes that

https://clinicaltrials.gov
https://myriadmyrisk.com/riskscore/
https://myriadmyrisk.com/riskscore/
https://www.statnews.com/2019/03/10/23andme-will-tell-you-how-your-dna-affects-your-diabetes-risk-will-it-be-useful/
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medical doctors can understand and use for patient care [109]. Additionally, more research
is needed in other non-European populations. The majority of genomic studies done un-
til now have included individuals of European ancestry, bringing a limitation for its use
worldwide [114].

2.4 Machine learning

ML is “an artificial intelligence (AI) technique that can be used to design and train software
algorithms to learn from and act on data” (FDA definition). ML and AI are terms used
interchangeable many times, and while ML methods are AI, not all AI is ML. AI is a
broader field and it is described as “the science and engineering of making intelligent
machines” [115][116]. One example of AI without ML is the chatbots, which can answer a
limited number of questions that a human previously fed.

In this PhD thesis, I will be only focusing on ML algorithms.
While previously described PRSs focus on genetic variants only, ML allows integrating
different data types handling multidimensional data [117]. ML algorithms have been
previously applied in a few GWASs [118][119][120][121], as they offer an opportunity to
find complex relationships between various genetic factors, which GWASs alone cannot
uncover. This is essential to make biological sense of the data and understand highly
complex biological systems and disease mechanisms to improve diagnosis and treatments
[122]. I have worked with ML to integrate clinical and genomics data, either independent
SNPs or combined into a PRS.

2.4.1 Data encoding

In most ML models, we need to encode the different features as numerical variables. For
clinical data, if the feature is continuous, we can use the absolute value. If the feature is
categorical without an inherent order associated with it, we can use a one-hot encoding,
generating one binary variable for each category. Furthermore, in regression and artificial
neural networks (ANN), there is a need for feature scaling if we have features with different
ranges; otherwise, features with larger values will be treated as more important while
training the model. As for random forest, each feature is evaluated independently, there
is no need for feature scaling.
For the genomic biomarkers, if we assume an additive genetic effect, we can encode each
variant as 0, 1, or 2, for homozygous for the reference allele, heterozygous, or homozygous
for the alternative allele, respectively; or use one-hot encoding, where we create three
different variables for each of the categories.
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Biological data have high inherited complexity, being highly heterogeneous and conse-
quently very noisy [123]. Also, we usually are faced with the “curse of dimensionality”,
which means that the number of variables is much higher when comparing with the num-
ber of samples in the study, leading to data sparsity, multicollinearity, multiple testing,
and overfitting [124]. Thus, it is crucial to perform feature selection, hyperparameters
tuning, have a cross-validation setup, perform randomisation, and when possible, have a
new completely independent cohort where we deploy our model in the end. Ideally, and if
possible, an external dataset. These concepts are discussed below.

2.4.2 Feature selection

Feature selection allows filtering for non-relevant and correlated features in the dataset.
This is important not only to speed up learning but also to avoid overfitting and low-
performance models [125][126].
Three main feature selection methods are filter, wrapper, and embedded methods [127].
Filter methods look at each feature and use univariate or multivariate analysis to remove
irrelevant or high correlated features. Some examples are t-test, Relief-based algorithms
and correlation-based feature selection (Pearson or Spearman correlation). Embedded
methods select optimal feature subsets to build a suitable classification model. Some
examples are least absolute shrinkage and selection operator (Lasso) and Ridge regression.
Wrapper methods use predictive models to evaluate selected features in a training-hold-out
set. These are more computationally expensive than the filter and embedded methods,
and some examples are forward or backwards feature elimination [128][129].

2.4.3 Cross-validation and hyperparameters tuning

In the models developed in papers III, chapter 6 and IV, chapter 7, a nested cross-validation
setup was used, so feature selection and hyperparameters tuning could be performed in
the internal cross-validation to avoid overfitting to the test set.
In a standard K-fold cross-validation, the dataset is split into K folds. Each K fold is used
as a test set, and the other folds (K−1) are used as the training set to build the model. A
total of K models are fit and evaluated in each test set, and the mean performance metrics
calculated on these test sets are reported [130]. The number of K’s should be a balance
between the number of folds we choose to perform with the size of the dataset we have
available. If we expect 100 samples to be enough to test our model (with a balanced num-
ber of cases and controls), we can choose a 5-outer fold if we have 500 samples available
or a 10-outer fold if we have 1000 samples available.
Each model includes one or more hyperparameters tuned to maximise the models’ pre-
dictive performance. There is no perfect way to configure these hyperparameters, and
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usually, different configurations are tested while training a ML model, using a grid-search
or random search strategies. Some examples of hyperparameters that are optimised are
the number of trees or estimators in the random forest or the number of hidden layers in
an ANN [131].
If we use the standard K-fold cross-validation to tune and select a model, we will most
probably overfit to the test set. One way of overcoming this is to apply nested cross-
validation. Nested cross-validation allows performing hyperparameter tuning and feature
selection to train an optimal prediction model. Nested cross-validation is more computa-
tionally expensive than a standard K-fold cross-validation, as it increases the number of
model evaluations to be performed [132].
In the nested cross-validation, the dataset is split in K outer folds, and each K − 1 inner-
fold is further divided into inner-training set and validation set. Hyperparameter tuning
and feature selection are fully made on the inner-fold, using the training set and the vali-
dation set to evaluate the different combinations of hyperparameters and features. In the
end, a completely unbiased model is deployed in the test set, avoiding any data leakage
while training the model and thus avoiding overfitting, as shown in Figure 2.5.

Figure 2.5 | Example of 5,5-outer, inner nested cross-validation setup.

2.4.4 Model selection and training

ML models can be either supervised or unsupervised. In supervised learning, the labels
or output is known, while in unsupervised learning, we don’t have the labels or output
available. For the supervised model, the training data is analysed and the function pro-
duced can be used to classify new samples. For the unsupervised, the idea is to unravel
hidden signals within the data by detecting clusters. If a new sample is available, it can
be assigned to the closest cluster. Apart from the two main groups, there is also semi-
supervised learning, which combines both labelled and unlabelled data. Semi-supervised
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learning algorithms learn from partially labelled data and are mainly used if it is expensive
and very time-consuming to label all data available [133].
In this PhD thesis, only supervised learning models were used.

Linear regression

A linear regression model assumes a consequent one-unit change in the outcome for each
one-unit change in the variable. Linear regression assumes linearity, normality, and ho-
moscedasticity. Violation of these assumptions lead to type I and type II errors.
Linear regression makes a prediction ŷ estimating a weighted (θ) sum of n input features
(x), and adding a constant called the bias or the intercept term (Equation 2.3).

ŷ = θ0 + θ1x1 + θ2x2 + ...+ θnxn (2.3)

The values of θ are estimated so that the model best fits the training set, i.e., find a value
of θ that minimises the residual sum of squares (RSS) (Equation 2.4).

RSS =
n∑
i=1

(ŷi − yi)2 (2.4)

Logistic regression

Regression algorithms can also be used for classification by assuming a linear dependence
between the variable (independent variables) and the logit of the outcome (dependent
variable). Like linear regression, logistic regression also estimates a weighted sum of the
input features. Instead of outputting the result directly, the output is transformed using
the logistic sigmoid function (Equation 2.5).

σ(ŷ) =
1

1 + e−(θ0+
∑n

i=1 θixi)
(2.5)

The final prediction ŷ can be made using Equation 2.6.

ŷ =


0 if σ(ŷ) < 0.5;

1 if σ(ŷ) ≥ 0.5.

(2.6)
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Random forest

Random forests are an “ensemble learning” algorithm, i.e., a combination of decision tree
predictors. Decision trees are made up of decision nodes, branches and leaf nodes. For
each node, a question is asked and the data is divided into smaller subsets until it reaches
the leaf nodes with no further divisions as shown in Figure 2.6 [134].
The two most used criterion to measure the quality of the split are Gini (Equation 2.7)
and entropy (Equation 2.8) coefficients which are based on the C total number of classes
and p the proportion of a class in the node. These are also used to measure the relative
importance of each feature, as it estimates how much impurity was reduced in the tree
nodes that used a specific feature. For each feature, its importance is calculated as the
normalised total reduction of the criterion brought by that feature [135].

Figure 2.6 | Representative example of a decision tree. Q refers to the question asked.
Gini measures the quality of the split (entropy is another possibility). Samples refer
to the total number of samples in the dataset. Value refers to the number of samples
in each category. The class value refers to the final prediction.

Gini = 1−
C∑
i=1

(pi)
2 (2.7)

Entropy =
C∑
i=1

pilog2(pi) (2.8)
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Each tree outputs a prediction for each sample, and the final prediction is the classes
mode or the mean predictions, for classification and regression problems, respectively, of
all individual trees. To avoid overfitting in the dataset, it is ensured that each decision tree
is independent of each other using bootstrapping and feature randomness. Bootstrapping
consists of random sampling with replacement from the dataset, which results in different
decision trees. Feature randomness consists of considering every possible feature from a
random set of all features to split a node and choose the one that results in the best
separation between the different classes [136][137].

Hyperparameters
There are multiple hyperparameters one can optimise for in the random forest to increase
the model’s predictive power. I will indicate some of the most common optimised hyper-
parameters [135] and indicate the default values for these hyperparameters in the sklearns
built-in random forest function [138] in parenthesis.

1. Number of decision trees: this should be large enough to allow for each feature to
be selected by the model, or until predictive performance reaches a plateau, but not
too large to not slow down computation (n_estimators=100).

2. Maximum number of features: this refers to the number of features randomly consid-
ered to split a node, and while a low value gives a chance for features with small ef-
fects to be selected, a high value reduces the risk of having too many non-informative
candidate features (max_features=

√
totalnumberoffeatures).

3. Minimum number of leaf nodes: the smaller the value, the larger decision trees we
will end up with (min_sample_leaf=1).

Artificial neural network

ANNs were inspired by the brain’s architecture. Our brain is composed of billions of
neurons that receive electrical impulses from other neurons via synapses. A neuron will
release its signal, or be excited, if it gets enough signals from other neurons. The biological
neural networks architecture is still the subject of much active research, but from previous
studies, it seems that biological neurons are organised in consecutive layers [139]. The
smallest units of ANNs are artificial neurons.
The feedforward neural network is one of the simplest ANN types and consists of one input
layer, one or more hidden layers and the output layer. If an ANN contains more than two
hidden layers, this is referred to as deep learning. There are other more complex ANNs,
such as convolutional neural networks primarily used in image recognition; and recurrent
neural networks used primarily for time series data analysis.
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In this PhD thesis, feedforward neural networks were used and described further. The
mathematical notations are from Bishop textbook [140] and [141].

Feedforward neural networks
Feedforward neural networks are, as referred above, the earliest and simplest form of a
neural network, where the data is fed forward from one layer to the next and finally to the
output layer, computing a function f on input data x, where f(x) ≈ y. The neurons are
arranged in a directed and fully connected acyclic graph. The bias neuron is added to each
layer in the neural network. A constant term is added to the calculation of the hidden and
output neurons values, which allows the network to set an individual activation threshold
for each neuron (Figure 2.7).

Figure 2.7 | Illustration of ANN with one input layer, hidden layer and output layer.

Training
For each training instance there is a series of functions transformation. M linear com-
binations of the input variables xi, ..., xn are constructed, where j = 1, ...,M , and the
superscript (1) stands for the first training example of the network. Additionally w

(1)
ji

stands for the weights and b(1) for the biases (Equation 2.9).

aj =
n∑
i=1

w
(1)
ji xi + b(1) (2.9)

In Equation 2.9, aj are known as activations. These are transformed using a differentiable
and nonlinear activation function h such that: zj = h(aj). These nonlinear functions h
can be sigmoidal (example, logistic or tanh function). Other very common used activation
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funtion is the rectified linear unit (ReLU). The output o, for a 1-hidden-layer ANN, is
defined in Equation 2.10.

o =
M∑
j=1

w
(2)
kj zj + b(2) (2.10)

In the end, the output unit activations are transformed to give an output ŷ. We can use
the identity function for regression tasks, so ŷ = o or the logistic sigmoid function for
binary tasks, as described in Equation 2.5.

Backpropagation
The backpropagation algorithm goal is to update the weights based on the loss or error
function E, allowing the information from the error function to flow backwards through the
network. The error function considers the difference between the output or predicted values
ŷ and the target value y, where n is the number of data points. Commonly used measures
are cross-entropy (binary traits, Equation 2.11) and mean squared error (quantitative
traits, Equation 2.12).

E = −
n∑
i

(yilog(ŷi) (2.11)

E =
1

n

n∑
i

(yi − ŷi)2 (2.12)

The error function’s gradient in regards to a weight w is given by the derivative of the error
function ∂E

∂w
. Here, the most commonly used algorithms are gradient descent, stochastic

gradient descent, or adaptive moment estimation.

Finally, the weights are adjusted to minimise the error by a fixed-size amount (Equation
2.13). Here, a learning rate γ controls how much the weights should be adjusted with
respect to the error gradient.

∆w = −γ ∂E
∂w

(2.13)

Hyperparameters
The flexibility of the neural network is also one of its main drawbacks, with the high
amount of hyperparameters one can choose from [139]. I will give examples of some of the
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most important and indicate the default values for these hyperparameters in the sklearns
built-in MLPClassifier function [138] in parenthesis.

1. Hidden layers size and neurons per hidden layer: this will be dependent on the size
and complexity of the input data (hidden_layer_sizes=100).

2. Activation function: this has a big impact on the prediction and performance of the
model, and while the sigmoid function performs well for classification problems, the
ReLU function avoids the vanishing gradient problem, meaning that the weights will
not be prevented from update its value (activation=relu).

3. Learning rate: if too small, the gradient descent can be slow, while if too large, it
can exceed the minimum and it may fail to converge (learning_rate_init=0.001).

2.4.5 Model evaluation

Model evaluation is an essential part of building an effective ML model and there are
several metrics used.

For continuous labels, the model can be evaluated by calculating the difference between
the predicted values ŷ, and the observed values y. One standard measure used to access
this correlation is the correlation coefficient, R2, between observed and predicted values,
where a value of 1 would mean a perfect prediction (Equation 2.14).

R2 = 1−
∑n

i=1(ŷ − y)2∑n
i=1(y − y)2

(2.14)

For binary labels, the outcome of the prediction model can be either: true positive (TP),
false negative (FN), false positive (FP), or true negative (TN). We can get these numbers
from the confusion matrix and use them to calculate multiple different error measures
(Table 2.1).

Table 2.1 | Confusion matrix and performance measures for categorical outcome.

Predicted outcome

Predicted cases Predicted controls

Actual outcome Cases True positive (TP) False positive (FP) Positive predictive value = TP/(TP+FP)

Controls False negative (FN) True negative (TN) Negative predictive value = TN/(TN+FN)

Sensitivity = TP/(TP+FN) Specificity = (TN/TN+FP)
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The definition ensures that all error measures in Table 2.1 have a range between 0 and 1,
where for all of them, a value of 1 implies an error-free classification. These measurements
look into different information from the model; thus, each is important to infer the model’s
utility.
Sensitivity looks only at cases and from those, which ones were correctly predicted as cases.
Specificity looks only at the controls and from those, which were correctly predicted as
controls. On the other hand, we have positive predictive value (PPV) and negative predic-
tive value (NPV), which look into the predicted outcome. PPV looks into the predicted
cases and from those, which ones are actual cases. NPV looks into the predicted controls
and from those, which ones are real controls.
The relationship between sensitivity and specificity can be observed with a Receiver Oper-
ating Characteristic (ROC) curve, where we have the sensitivity in the y-axis and the false
positive rate (1-specificity) in the x-axis (Figure 2.8). The relationship between sensitivity
and specificity is visualised for different classification cutoffs; thus one efficient way of
evaluating a specific model for different cutoffs is by calculating the area under the ROC
curve (ROC-AUC). The ROC-AUC ranges between 0 and 1, where 1 is the best possible
classifier and 0.5 means a random classification [142].
The default classification cutoff to calculate the performance measures referred to in the
confusion matrix is 0.5, i.e., if the model prediction score is below 0.5, the sample will be
classified as a control. Otherwise it will be classified as a case. However, other cutoffs can
be accessed and selected to find a better trade-off between a high true positive rate and a
low false-positive rate.

Figure 2.8 | Illustration of ROC curve and highlight of 0.5 threshold (red dot). A
model with random performance yields ROC-AUC of 0.5 (red dashed diagonal line).
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Chapter 3

Disease risk and risk management

In this chapter, I will briefly mention how the use of the bioinformatic analysis described
in chapter 2 can help evaluate phenotype predisposition or predict treatment response in
both short (resistant versus sensitive) or long-term (late side effects from treatment). This
is discussed in more detail in the respective papers.

3.1 Disease predisposition

Genetics may increase the likelihood of developing a particular disease due to DNA vari-
ations. Identifying these DNA variations and genes associated with disease has been
possible due to the fast expansion of multiple bioinformatics and statistical tools. This is
important to understand the mechanisms of pathogenesis and detect any risk groups early
to adopt preventive strategies.
We are well aware by now that most diseases are very complex, meaning that multiple
genes may be associated with disease appearance and progress. Recently, there has been a
growing interest in studying genetic correlations of multiple cancers together since they, to
a certain extent, have the same underlying biology. The aim is to uncover new shared ge-
netic variants and better understand the complex biological pathways that lead to cancer.
For example, a recent study had identified a link between the following cancers 1) lung
and head/neck; 2) colorectal and lung; 3) breast and lung; and 4) breast and colorectal.
A shared genetic basis was also found between breast and ovarian cancer [143]. Another
recent study also investigated pan-cancer pleiotropy in well-defined populations and found
multiple cancer pairs that showed either positive or negative genetic correlation, as well as
novel pleiotropic risk variants. Many of them were enriched for regulatory elements and
influenced cross-tissue gene expression [144].
PRSs allow us to put together information from multiple genetic variants, providing an
individual genetic predisposition profile that may influence disease prediction and strati-
fication in different risk groups. In a recent phenome-wide association study, it was found
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that PRSs for common cancers, such as breast, prostate or melanoma, were also associated
with other phenotypes [145].

The cancer burden is more challenging to quantify in children than adults; thus, in paper
II, chapter 5, the underlying biology between adult breast and colon cancer and childhood
cancer was investigated. We have calculated PRSs in two childhood cancer cohorts using
GWAS summary statistics from previously developed breast and colon cancer PRSs. The
goal was to evaluate genetic predisposition’s risk on subgroups that may reflect childhood
cancer aetiology. Furthermore, this could contribute to developing further downstream
treatment stratification in children.

3.2 Treatment response

Pharmacogenetics, which studies how a person’s genes influence their response to drug
therapy, is a field of great interest in medicine. Multiple genes have shown to influence
response to treatment in diverse diseases. While it is true that other factors are involved
in drug response, such as environmental factors, diet, lifestyle, and age, it is believed that
the genetic makeup of a person is the strongest indicator of drug response [146].

I have explored dasatinib resistance in T-cell acute lymphoblastic leukaemia (T-ALL).
This project took place during my remote external stay at St. Jude Children’s Research
Hospital in Memphis, USA, under the supervision of Jiyang Ju from Computation Biology
department and Jun J. Yang from Pharmaceutical Sciences department. My project was
inspired by the research paper previously developed at St. Jude Children’s Research
Hospital [147]. This work is described in chapter 9.

3.3 Late-side effects

Chemotherapy is the most common treatment for cancer, together with radiation therapy.
While quite effective, this is also a very aggressive treatment. After chemotherapy treat-
ment, some patients may continue living with no problems. In contrast, others end up de-
veloping long-term side effects, which can happen months or years after treatment. These
late effects vary depending on the cancer type, treatment used and amount of chemother-
apy given, and other characteristics of the patient, such as age, gender or lifestyle factors.
They can also vary from mild to severe.
Methods to identify patients at high risk of developing chemotherapy-based toxic effects
are of great interest as they allow the development of targeted therapies, which can reduce
patients’ distress and costs of treatment-related hospitalisations [148]. In recent years, re-
searchers have been working on ML-based models to predict treatment toxicity. However,
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the application of these models in the clinic is still far from being implemented, partly
due to their low interpretability and the lack of communication between data analysts and
clinicians [149].

In paper III, chapter 6 and paper IV, chapter 7, I will describe two prediction models
to classify testicular cancer survivors at high risk of developing hearing loss and nephro-
toxicity, respectively, after cisplatin-based chemotherapy. This work has been done in
close collaboration with clinicians at Rigshospitalet, Copenhagen, to better understand
the needs in the clinic.

3.4 Translating cancer genomics into precision medicine

With genome sequencing came the promise that we would understand disease biology much
better. Indeed, tremendous progress has been made in mapping genes to their function
and relating the molecular pathology of monogenic diseases to the respective phenotype.
However, we still do not understand all gene functions. Many disease markers are still
uncovered, as most clinical phenotypes are complex, meaning that multiple genes and en-
vironmental factors contribute to it. Other reasons are: 1) an inadequate description of
the clinical phenotype; 2) the high biological complexity; and 3) not enough data available,
the well-known “large p, small n” scenario in most patient-data, i.e., the total number of
predictors p is usually much larger than the sample size n [150].
We now have available several methods that help deal with some of the described chal-
lenges. GWASs made it possible to identify several risk genetic variants for complex
diseases in specific populations. NGS allowed the sequencing of the entire genome, thus,
increasing the probability of finding the gene(s) associated with a disease.
To increase our genomic understanding and develop personalised medical healthcare using
disease risk prediction models, PRSs and ML are the primary selected methods [151][152].
They aim to improve clinical decision-making for each patient using a risk stratification-
based approach; thus, communication with clinicians is an essential part of the process to
understand what is needed.
These prediction models are far from perfect, and it is essential to state the model’s limita-
tions and uncertainty concerning patient classification in risk groups. Additionally, there
are other few challenges. These include 1) the use of performance metrics that do not
demonstrate the model’s clinical relevance and clinicians are not familiar with, such as
ROC-AUC - while ROC-AUC is a good overall performance measure, it is essential to
state other performance metrics that can capture different properties of a model, such as
sensitivity, specificity, PPV and NPV; 2) difficulty in comparing algorithms as each study
reports different methods applied on populations with different characteristics; 3) logistics
related to the implementation of these models in the clinic and difficulty in combining
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data in different formats such as personal doctor’s notes or electronic health records; and
4) workforce to keep improving and updating models throughout time [153][154][155]. So,
though many of these prediction models end up not being implemented in the clinic, we
are moving that way. Being aware of these challenges is the first step to enable a model’s
safe clinical deployment, making a better and more responsible decision.

In the next part of the thesis, I will be presenting the different work developed through-
out the PhD. Each paper uses a stratification-based approach, and its potential clinical
applicability is discussed, including limitations and opportunities.
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Papers
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In this PhD thesis, I explored different sides of precision medicine and its potential appli-
cation in a clinical setting. I had close contact with 1) Ayurveda researchers and Ayurveda
clinician (paper I); 2) as well as clinicians practising evidence-based medicine in Denmark
(paper II, III, and IV).

Paper I: under review at Journal of Traditional and Complementary Medicine
In paper I, I present a genome-wide case-control study of rheumatoid arthritis in Indian
individuals. The concept of Ayurveda medicine is presented. The goal was to identify
new or constitution-specific rheumatoid arthritis biomarkers using Ayurveda-based deep
phenotyping into vata, pitta, and kapha predominant groups, and at the same time, sci-
entifically validate the principles of Ayurveda.

Paper II: in preparation
In paper II, I have calculated genetic PRSs in two childhood cancer cohorts. These PRSs
were based on published GWAS summary statistics previously used to estimate PRSs in
adults of European ancestry with colon and breast cancer. There have been various studies
showing shared biological mechanisms between multiple cancers. Furthermore, as adult
cancers have better established PRSs than children, the goal was to identify risk groups
that reflect downstream treatment stratification and prognosis in childhood cancer using
the adults-based PRSs.
This study summarises current results. This is part of an ongoing project and could not be
submitted before handing in this thesis. My main contribution consisted on data analysis,
results interpretation and manuscript draft. Parts of data analysis previously done and
not performed by me consisted of 1) quality control (NOPHO cohort) by MH and RLN;
and 2) Sentieon analysis (STAGING cohort) by AOL and JV. In 2), I have run Sentieon
pipeline for gVCF calling (last step).

Paper III: submitted to JAMA Oncology
In paper III, I have used a cohort of Danish testicular cancer survivors and have developed
a logistic regression model to classify patients into high or low risk of developing hearing
loss as part of ototoxicity, a common side-effect of cisplatin-based chemotherapy. Hearing
loss, as reported here, is not an objective medical measurement but rather a self-reported
measurement. Other more complex machine learning models, i.e., random forests and
artificial neural networks were tried, and logistic regression shown to be the most effective.

Paper IV: published in JNCI Cancer Spectrum
In paper IV, using the same patient data as in paper III, I have explored nephrotoxicity
development in testicular cancer survivors, another common late side-effect from cisplatin
treatment. I have also discussed the key genes likely to affect the development of kidney
damage.
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Abstract  

 

 Background and Aim: Genome wide association studies have scaled up both in terms of sample size 

and range of complex disorders investigated, but these have explained relatively little phenotypic 

variance. Of the several reasons, phenotypic heterogeneity seems to be a likely contributor for missing 

out genetic associations of large effects. Ayurveda, the traditional Indian system of medicine is one 

such tool which adopts a holistic deep phenotyping approach and classifies individuals based on their 

body constitution/prakriti. We hypothesized that Ayurveda based phenotypic stratification of healthy 

and diseased individuals will allow us to achieve much desired homogeneous cohorts which would 

facilitate detection of genetic association of large effects. In this proof of concept study, we performed 

a genome wide association testing of clinically diagnosed rheumatoid arthritis patients and healthy 

controls, who were re-phenotyped into Vata, Pitta and Kapha predominant prakriti sub-groups.  

Experimental Procedure: Genotypes of rheumatoid arthritis cases (Vata=49; Pitta=117; Kapha=78) 

and controls (Vata=33; Pitta=175; Kapha=85) were retrieved from the total genotype data, used in a 

recent genome-wide association study performed in our laboratory. A total of 528461 SNPs were 

included after quality control. Prakriti-wise genome-wide association analysis was employed.  

Results and Conclusion: This study identified (i) prakriti-specific novel disease risk genes of high 

effect sizes; (ii) putative candidates of novel therapeutic potential; and (iii) a good correlation between 

genetic findings and clinical knowledge in Ayurveda. Adopting Ayurveda based deep phenotyping 

may facilitate explaining hitherto undiscovered heritability in complex traits and may propel much 

needed progress in personalized medicine.  
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Background 

The inherent goal of Predictive, Preventive, Personalized and Participatory (P4) Medicine is to shift the 

paradigm in medicine from reactive and generalized to proactive and personalized and hence from 

disease to wellness. This transformation in healthcare can be achieved by (i) predicting an individual’s 
predisposition to a disease; (ii) stratifying patients to facilitate potential personalized nutritional and 

drug treatment strategies; (iii) reducing adverse drug reactions; (iv) identifying new druggable targets 

and their development; and (v) reducing the time, cost, and also failure rate of clinical trials for new 

therapies. Past decade witnessed explosion of genome-wide association studies (GWASs) of clinically 

defined cases against non-compromised individuals as controls with a hope that discovering risk genes 

in large cohorts would provide insights into patient stratification and further aid towards achieving P4 

medicine goal. Despite the apparent success of this approach in complex traits, this technology-driven 

GWAS strategy which primarily relied on large sample sizes has witnessed serious limitations such as 

non-identification of disease associated genes of large effects which contribute to missing heritability 

and also non-replication of observed associations. This limitation has been largely due to the inherent 

heterogeneity owing to endogenous and exogenous factors involved in complex disorders, and by 

increasing sample sizes, led to inadvertent scaling up of heterogeneity in parallel and hence reduced 

the statistical power to detect real associations. Different strategies are now being used to overcome the 

GWAS related limitations and these include turning the emphasis on to rare variants, epigenetic 

modifications, miRNA etc1. Phenotype resolution however seems a likely major determinant of the 

success or failure of GWAS to date. The importance of accurate phenotyping over increasing sample 

size to detect true associations has been addressed in a recent study. The authors used both simulated 

and GWAS data for Type I and Type II diabetes and demonstrated that statistical power to detect real 

association was reduced when the study cohort was heterogeneous. In another words, if GWAS were 

carried out in more homogeneous sample sets the magnitude of risk conferred by the 

marginally/modestly significant risk variants would have been larger 2.  

Phenotype definitions in modern medicine largely depend on quantifiable parameters and ignores the 

underlying heterogeneity in disease pathogenesis. Therefore, we believe it is time to revisit and adopt 

newer non-conventional phenotyping approaches which may be able to capture molecular variability 

underlying the disease. Like personalised medicine, Ayurveda (the Indian system of medicine and one 

of the oldest in the world) is not a 'one-size-fit-all' approach but on the contrary addresses inter-

individual variability effectively. It adopts a holistic approach towards healthy living on the basis of 

the concepts of Tridosha and prakriti. According to Ayurveda, all matter is comprised of the five basic 

elements or building blocks of nature: Earth, Air, Water, Fire and Space. Varying combination of these 

elements form the three basic humours/forces of human body namely Vata dosha, Pitta dosha and 

Kapha dosha collectively called as Tridoshas3. Each of these doshas have distinct properties and when 

there is balance between the constituents, they work in harmony through the body to maintain 

homeostasis. In other words, according to Ayurveda, maintenance of this balance is health and 

imbalance is disease. The innate proportion of doshas that a zygote acquires at the time of conception 

determines its prakriti, and this represents a summed-up phenotype or basic constitution type of an 

individual3. Prakriti defines physical, physiological, and psychological traits of an individual and is the 

template for individualized diet, lifestyle counselling and disease treatment. To this extent one’s prakriti 
may be considered as the Ayurvedic equivalent of describing the unique genetic constitution (genome) 

of each individual in modern biology. However, ayurveda doctrines go further and according to 

Tridosha theory, depending upon the individual or combinatorial proportions of Tridosha in each 

person, there are seven possible prakriti types namely Vata, Pitta, Kapha, Vata-Pitta, Pitta-Kapha, Vata-

Kapha and Vata-Pitta-Kapha contributing to wide phenotypic diversity highlighting their practice of 

deep phenotyping. Furthermore, according to its doctrines and practice, each of these prakriti types is 

the determinant of its own characteristic features such as metabolic profiles, disease predisposition, and 

natural history in individuals with respective prakriti4,5,6. This dosha type is also postulated to be 
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responsible for disease characteristics such as severity, therapeutic recommendations, and treatment 

outcome in individuals.  

An empirical validation of this concept has been provided by our previous pilot study on candidate 

gene associations with rheumatoid arthritis (RA; termed Amavata in Ayurveda), among three 

subgroups that were based on Ayurveda based phenotyping7. This study revealed association of 

inflammatory genes with RA among Vata predominant prakriti subjects whereas oxidative stress genes 

were associated with Pitta subgroup. Further, disease severity was significantly higher in Vata 

compared to Pitta and Kapha predominant subgroups which is in agreement with what is known for 

Amavata in Ayurveda literature.  

Significant correlations have also been established between prakriti and single nucleotide 

polymorphisms (SNPs) in genes such as HLA in healthy individuals and EGLN1 in patients suffering 

from high-altitude pulmonary edema8,9. Apropos to the above evidence, differences in genome wide 

expression and biochemical profiles have been observed between the three extreme prakriti types10. 

Interestingly, a genome-wide analysis has revealed 52 prakriti differentiating SNPs in healthy 

individuals across the three predominant prakriti groups11. Of note, another recent study utilized 

modelling methods using the phenotyping data and was able to classify healthy individuals into three 

distinct clusters, which matched with the extreme prakriti groups as classified by clinicians12. 

With this background, we hypothesize that GWAS carried out on homogeneous but small cohorts 

obtained by deep phenotyping based on Ayurveda doctrines will be more insightful since Ayurveda 

has comprehensive criteria to stratify not only controls but also cases. This approach would facilitate 

identification of genetic associations of large effect sizes which may enable filling the present 

knowledge gap in complex disease biology. In the present study, an Ayurgenomics approach was 

adopted wherein we carried out a GWAS on RA patients and healthy controls who were re-phenotyped 

for their prakriti type. Genome-wide analysis of prakriti matched RA cases and controls revealed 

potential prakriti-specific genetic associations. We believe this Ayurgenomics approach offers itself as 

a novel tool to perform prakriti based deep phenotyping of study cohorts prior to their inclusion in 

contemporary GWASs to obtain homogeneous cohorts and consequently identify true genetic 

associations with high effect sizes. 

Materials and methods 

Study Cohort 

In the present study, 244 RA cases [49 Vata; 117 Pitta; 78 Kapha] and 293 controls [33 Vata; 175 Pitta; 

85 Kapha] sub-grouped based on their predominant prakriti type (briefly described below) were 

recruited from Department of Ayurveda, Holy family hospital, New Delhi. Both cases and controls 

were matched for age, gender and ethnicity. DNA from venous blood drawn from study subjects was 

extracted according to routine phenol-chloroform protocol. This cohort has been used in two previous 

studies7,13 

Ayurveda based phenotyping 

The prakriti of each subject was assessed independently by two Ayurveda physicians using a validated 

questionnaire based on physical, physiological and psychological characteristics recommended by the 

Central Council for Research in Ayurveda and Siddha, Department of AYUSH, Ministry of health and 

family welfare, Government of India, New Delhi (http://www.ccras.nic.in/). Physique, skin texture, 

hunger, thirst, digestive capacity, temperament and memory are some of the major attributes evaluated 

to determine an individual’s prakriti. Predominant prakriti was allotted if ≥70% dominance of a single 
dosha score was obtained. Only individuals with predominance of either Vata, Pitta or Kapha doshas 

were included in the study as described previously7. Objective parameters like height, weight, body 

mass index, blood pressure, swelling, blood/serum examination, X-rays and magnetic resonance 

imaging were used in the clinical assessment of cases. In addition, visual analogue scale was used for 
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most of the subjective features like pain, swelling, burning sensation, heaviness etc. Blood was drawn 

and used for analysis of haemoglobin%, erythrocyte sedimentation rate, rheumatoid factor and anti-

cyclic citrullinated peptide antibody levels as described elsewhere7. RA diagnosis of all the patients 

thus enrolled were independently confirmed by an orthopaedic surgeon. 

Genotyping and Quality Control 

Genotype information of above mentioned cohort was retrieved from the total genotype data generated 

on Illumina Human660W Quad BeadChip v1.C (655 216 markers) genotyping platform, as described 

before13. Genomic data was filtered using standard quality control steps on PLINK (v1.9beta3)14. 

Individuals and SNPs with a call rate of < 90%, individuals with discordant/ambiguous sex, putative 

inbreeding/contaminated samples (heterozygosity rate >4±standard deviation), ethnic outliers, 

duplicates and first-degree relatives (PIHAT >0.25) and SNPs with minor allele frequency <0.01 and 

under Hardy-Weinberg disequilibrium (p-value>5 E-06) were excluded.  

Statistical Analysis 

Allele frequencies between cases and controls belonging to the same constitution type/prakriti were 

compared using Fisher’s exact test on PLINK. A p-value threshold of 1 E-05 and a Bonferroni-

corrected p-value threshold of 9.46 E-08 were considered suggestive and genome-wide significant, 

respectively. To identify potential link between the novel genetic variants identified with RA subgroups 

in this study and RA based on literature evidence, p-values were retrieved from Open Targets 

platform15. Biological interactions between genes were inferred using GeneMANIA prediction server 

which provides interactive functional association network16.  

Results 

Power analysis performed with Quanto software showed >80% power in Vata, Pitta and Kapha sub-

groups.  

Association findings 
A total of 444 individuals [229 cases (45 Vata, 113 Pitta, 71 Kapha) and 215 controls (24 Vata, 131 

Pitta, 60 Kapha)] and 528461 SNPs remained for downstream analysis after quality control 

(Supplementary figure 1). GWA analysis was performed for the total study cohort as well as for the 

three predominant Prakriti groups separately. Novel SNPs with suggestive p-value 1 E-05 [Table 1] 

were found to be associated with the three RA sub-groups. However, none of the SNPs surpassed 

Bonferroni-corrected p-value. Manhattan and Q-Q plots are shown in figure 1. It was notable that all 

the associated markers/genes were unique to each of the groups. Broad function of the gene/nearest 

gene identified in prakriti-wise analysis are also described below.  

a) Total cases vs controls 

TMEM179, TMEM18, NUAK1, TBC1D8, and LEF1-AS1, together with MZT1 (downstream of 

rs340575) and TCERG1 (downstream of rs10056189) were identified when analysing total RA cases 

and controls. Most of these were found to be associated with suggestive significance (GWAS, p-value 

1 E-05) in the three RA sub-groups [Table 1].  All six genes, except for the RNA gene LEF1-AS1, were 

associated with musculoskeletal system disease (Open Targets, p-value 0.02), which includes 

conditions that affect joints, such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, 

ankylosing spondylitis among others. Of note, we also found that all these six genes physically and 

genetically interact with each other and are co-expressed (Figure 2). Furthermore, LEF1-AS1, NUAK1, 

and TBC1D8 were seen to be associated with systemic juvenile idiopathic arthritis (Open Targets, p-

value 0.002), and a genomic marker located at C14orf180 (overlapped with TMEM179), rs4264325, 

was also seen to be significant for RA susceptibility.  

b) Vata  

Test of association between RA cases and controls categorised under Vata predominant prakriti 

identified one SNP (rs1953175) in RP11-536O18.1 and two SNPs (rs4352629 and rs7448716) in CTC-
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498M16.4 [Table 1]. None of these three Vata-specific SNPs showed association in the total group, or 

in Pitta and Kapha cohorts [Table 1]. Although no direct link was found between RA and the two 

genes, CTC-498M16.4 has been shown to be associated with attention deficit/hyperactivity disorder 

(ADHD), rs4916723 (GWAS, p-value 2.67 E-05) being the lead SNP conditioning the gene17. This is 

important considering that though ADHD is currently conceptualized as a neurodevelopmental 

disorder, recent findings18 have shown genetic connection between ADHD and immune 

alterations/autoimmune disorders. Further, the infective component in RA etiology indicates that there 

could be shared risk pathways between RA and ADHD with pleiotropic genetic effects. 

c) Pitta  

In this group, we found six genes namely TXNDC16 (rs11625685; rs11623917), PCDH8 (rs9527038), 

KLHL25 (rs4620912) NTF3 (rs10849264), RP11-93I21.3 (rs1390079), and SERTM1 (rs7323558) 

significantly associated [Table 1] and all of which were functionally relevant. Additionally, physical 

interaction, co-expression or their presence in common pathways were found among these genes 

(Figure 2).  

TXNDC16 which encodes for Thioredoxin (Trx) Domain Containing 16, is an endoplasmic reticulum-

associated glycoprotein and is believed to have putative redox activity19. A substantial number of 

studies have demonstrated the role of oxidative stress in RA pathogenesis20. It has been reported that 

cytosolic Trx system has a role in RA and Trx1 has shown to be significantly increased in the synovial 

fluid of RA patients19.  

PCDH8 is a protocadherin involved in neural development and function and it is shown to be 

dysregulated in several types of cancers and playing a critical role in tumor progression. Notably, a 

global gene expression profiling of chondrogenic tissues during in vivo development in mice showed 

involvement of Pcdh8 in chondrogenesis21, a process by which cartilage is formed.   

KLHL25 belongs to Kelch family of protein that function as substrate-specific adaptors for Cullin E3 

ubiquitin ligase (Cul3), a core component of the ubiquitin-proteasome system to regulate the protein 

turnover. It is important to mention here that our earlier study has shown an association between CUL1 

haplotype and methotrexate response in a north Indian population22. Similar findings were also 

observed in a RA cohort of Japanese origin23. Our findings lend further support to the role of ubiquitin 

pathway in autoimmunity and inflammation. Recent studies have identified mutations of several Kelch 

proteins in skeletal muscle disorders24.  Though, no direct role of KLHL25 has been implicated in RA, 

a recent study has proposed that increase in  inflammatory processes and reactive oxygen species 

production leads to skeletal muscle deterioration25 which in turn contributes to a vicious cycle of disease 

activity, muscle inflammatory signalling and disrupted remodelling, physical inactivity, and disability 

in patients with RA26. 

Protein (NT-3) encoded by NTF3 is a member of the neurotrophin family which are essential for the 

development and maintenance of the vertebrate nervous system. Neutrophins and their receptors are 

shown to be expressed in the non-neuronal cells27 supporting the role of neurotrophins beyond 

neurogenesis. A study has shown that LPS-treated mouse macrophages resulted in up-regulation of 

NT-3 leading to overproduction of nitric oxide, suggesting that NT-3 may play important roles in the 

function of macrophages during inflammatory responses and in tissue repair28. The role of NT-3 in RA 

has been empirically demonstrated by recent studies wherein over-expression of NT-3 in serum of RA 

patients29 and high expression of NTF-3 in RA synovial fibroblasts compared with healthy synovial 

fibroblasts under normoxic conditions has been observed 30.  In a recent study, NT-3 and its high affinity 

receptor TrkC were found to be highly induced at the injury site and endogenous NT-3 was found to 

promote bone repair31. In addition, NT-3 has also been implicated in neuropathic pain which is often 

poorly alleviated by first- and second-line medications due to lack of efficacy and/or dose-limiting side-

effects32. Notably, neuropathic pain in substantial number of RA patients has been associated with 
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vitamin D deficiency33 or with high disease activity and weight34. These observations are of clinical 

relevance since a better understanding of neuropathic pain mechanisms will provide a more targeted 

approach to pain treatment in RA.  

RP11-93I21.3 is a long intergenic non-coding RNA (lncRNA). Though there is no report suggesting 

direct functional involvement of RP11-93I21.3 in RA pathogenesis, several lncRNAs are shown to be 

dysregulated in RA and are correlated with disease activity35. 

SERTM1, encoding for serine rich and transmembrane domain containing 1 gene and has shown to be 

downregulated in psoriasis patients, thereby likely to play an important role in inflammation associated 

with RA patients36.  

 

d) Kapha  

Three genes namely ZBTB34 (rs3120029), ITGB8 (rs11762117), and GPR12 (rs9512378) were found 

to be significantly associated in Kapha group but not in Vata and Pitta [Table 1]. All three genes were 

found to be physically interacting or were part of common pathways [Figure 2]. Genomic markers in 

all three genes were associated with scoliosis (Open Targets, p-value 0.002), fat body mass (Open 

Targets, p-value 0.01), and also rheumatic disease (Open Targets, p-value 0.01).  

ZBTB34, a nuclear protein, is a new member of the BTB/POZ zinc finger protein family. Although 

exact role of ZBTB34 is not known, some of the proteins of this family critically regulate development 

of specific lineages in the immune system, promote oncogenesis and maintain stem cells. It has also 

been suggested that ZBTB34 might function as a transcriptional repressor37. In zebrafish, ZBTB is 

predicted to be involved in negative regulation of transcription by RNA polymerase II; regulation of 

cytokine production; and regulation of immune system process38. ZBTB34 has been shown to be 

overexpressed in the whole blood of axial spondylarthritis/ankylosing spondylitis patients compared to 

healthy controls39. Of note, our previous GWAS has shown significant association of a different SNP 

(rs561041) closest to ZBTB34 with RA13.  

GPR12 is classified as an orphan G protein-coupled receptor. Disruption of Gpr12 gene in mice has 

shown to provoke changes in both lipid and carbohydrate metabolism resulting in dyslipidemia and 

obesity 40 and therefore considered to be involved in regulating energy expenditure and important for 

future drugs that target this receptor. Of note, GPR12 has been identified as a novel target of 

Cannabidiol, which is shown to have therapeutic potential for arthritis pain-related behaviors and 

inflammation without evident side-effects41. 

ITGB8 is a member of the integrin beta chain family and has been involved in angiogenesis deregulation 

in systemic sclerosis, a chronic autoimmune rheumatic disorder42. Furthermore, importance of ITGB8 

in chondrogenesis has been previously established43,suggesting its direct involvement in RA pathology, 

as progressive loss of cartilage due to inflammatory response  is one of the disease characteristics. This 

derives further support from a gene expression study wherein ITGB8 was shown to be highly expressed 

in RA synovial fibroblasts compared with healthy synovial fibroblasts under normoxic conditions 

suggesting its role in chronic synovitis30.   

Discussion  

RA is a chronic inflammatory joint disease affecting synovial tissue in multiple joints but with poorly 

uncovered etiology. It is a clinically and biologically heterogeneous disease with respect to both disease 

course and treatment outcome suggesting distinct molecular mechanisms contributing to RA in 

different patients. For instance, differences in the activation of the STAT1 pathway between 

rheumatoid tissues confirms etiological heterogeneity44. Continuous efforts are being made to sub-

classify clinically diagnosed RA on the basis of molecular criteria/signatures using OMICS or more 

recently using phenome wide association study approach45. While we still await their deliverables, 

exploring non-conventional phenotyping approaches and providing scientific validation for their utility 
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as an adjunct could accelerate the progress in this endeavour. In this proof-of-concept study, we 

performed a GWAS of RA patients and healthy controls who were phenotypically sub-classified into 

three prakriti groups namely Vata, Pitta and Kapha predominant by employing the ancient deep 

phenotyping principles practiced in Ayurveda system4. Despite small numbers in each of the three 

subgroups, this novel Ayurgenomics approach identified prakriti-specific genes of high effect sizes 

[Table 1], most of them not hitherto identified for RA across multiple GWASs performed in large 

cohorts or even in meta-analyses data (www.ebi.ac.uk/gwas). Our results also highlight the striking 

difference in the genetic associations identified in the total group versus those in each of the three 

prakriti based subgroups (Table 1). These findings imply that even small sample size of tightly defined 

cases and controls or just precise phenotyping may have led to comparatively more genetically 

homogeneous groups which were sufficient to maximize the detection of common alleles conferring 

high risk and minimize statistical noise. This derives support from a recent report wherein a locus with 

genome-wide significance was identified near the gene encoding parathyroid hormone-like hormone 

in a GWAS performed in a cohort of only 40 patients with peripartum cardiomyopathy46. In addition, 

we also found lack of HLA markers [Supplementary table 1] which may suggest that p-values of 

genes of minor/moderate effect are largely driven by sample size. This is also witnessed in our study 

wherein GWAS p-values for HLA markers are more significant in the total cohort (n=229 cases and 

215 controls) and Pitta subgroup (n=117 cases and n=175 controls) compared to Vata and Kapha 

[Supplementary table 1].  

Taken together, the novel study findings lend credence that association studies conducted on 

homogeneous subgroups enable identification of disease specific genes of major effect size.  Of the 

genes identified in the different subgroups in our study, NTF3, KLH25, TXNDC16, PCDH8, ITGB8, 

and GPR12 [Table 1] look promising and may provide a new perspective and prompt us to explore 

their active involvement and therapeutic potential in chronic inflammatory arthritis. At the moment we 

lack clarity on the correlation between function of these genes in the different Ayurveda subgroups and 

prakriti-specific disease etiology/mechanism, yet Ayurveda wisdom (explained briefly below) supports 

our findings to some extent. 

Insights into RA biology from Ayurveda 

Stratifying healthy individuals into seven constitution types or prakriti for predicting prakriti-specific 

disease susceptibilities and clinical outcomes such as treatment response forms the basis of Ayurveda 

medical practice and also explains inter-individual variability. To elaborate this further, individuals 

with Vata prakriti are more predisposed to RA and are the most difficult group to treat compared to the 

Pitta subgroup who are less prone, manifest mild to moderate symptoms and are also easier to treat 

with better outcome47. Furthermore, disease severity is more pronounced in RA patients with Vata 

prakriti, who suffer severe throbbing pain, which worsens in cold weather; Pitta patients experience 

burning sensation, redness, swelling, and inflammation, which worsens with hot weather; and Kapha 

patients show loss of movement, itching, joint swelling and edema (without inflammation), with other 

symptoms including  dullness, heaviness and aches48.     

As for treatment, Ayurveda believes that RA (amavata) is a problem of the gut, or in other words, a 

metabolic disorder, and therefore improving the digestive capacity which varies according to 

individual’s prakriti is the primary focus of its treatment regime. This is in line with the emerging role 

of gut microbiome dysbiosis in RA. According to Ayurveda, hypo functioning of Agni/digestive power 

(corresponding to enzymes, chemicals, hormones, neurotransmitters and cytokines known to modern 

medicine) results in impaired digestion and absorption of food, which leads to the formation of 

immunologic and toxic substances called “Ama”49. This ama when circulates in the body lodges in the 

joints and leads to inflammation. Of note, Agni which is responsible for metabolism, absorption, etc is 

believed to be prakriti specific with best/strong digestive/metabolic power in Pitta (Pachaka Pitta) 

followed by Kapha (Kledaka Kapha) and then Vata (Samana Vata) sub-groups50. Therefore, the 
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treatment of Amavata focuses primarily on improving the digestive capacity, and removal of Ama 

(which in other words is treating the cause of the disease). Reducing the pain/ inflammation is a 

secondary treatment based on the disease symptoms and as mentioned above, this treatment is also 

prakriti specific.  

Conclusions 

Identification of novel prakriti specific and more importantly, functionally relevant susceptibility genes 

(as shown to be supported by other functional studies) of intermediate/high effect size for RA, suggest 

that Ayurveda based deep phenotyping could be an effective approach to achieve the highly desirable 

sample homogeneity in complex trait genetics. This may propel i) a better development of multi-omics 

signature based prognostic and diagnostic markers and ii) allow prakriti specific nutritional and 

therapeutic intervention strategies. Further, such homogeneous cohorts catalyse rare variant 

identification as the focus of genetic studies turns from common to rare variants. We strongly believe 

that using non-conventional phenotyping approaches practiced in complementary systems of medicine 

such as Ayurveda, Unani, and Chinese traditional medicine along with modern medicine 

diagnostic/therapeutic knowledge will broaden our horizon of disease biology and provide insights into 

disease genetics, which remains an urgent unmet need to break ground in complex traits and fulfil the 

P4 medicine goal. However, these novel findings endorse replication in independent cohorts. 
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Legends 

Figure 1. Manhattan plots depicting SNP associations with the (a) total RA cohort and (b-d) 

prakriti specific RA sub-groups in the north Indian population, and respective Q-Q plots. On the 

Manhattan plot, all SNPs are plotted according to their position on each chromosome on x-axis, against 

their association (-log10 (p-value)) on y-axis. The red line represents the Bonferroni-corrected threshold 

(p-value=9.46 E-08), while the blue line represents the suggestive association threshold (p=1E-05). The 

inset Q-Q plots show the observed (y-axis) against the expected (x-axis) distribution of GWAS p-values 

under the null hypothesis for the total RA cohort and prakriti sub-groups 

Figure 2.  GeneMANIA network showing potential interactions with novel RA genes identified 

in total study cohort and in prakriti-specific RA sub-groups. The genes of interest are represented 

in the middle with striped circles. Pink lines represent physical Interactions; green lines represent 

genetic interactions; purple lines represent co-expression; blue lines represent pathways  
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Table 1. Genome-wide suggestive significant (p-value < 1 E-05) variants associated with RA in 

(a) total study cohort and (b-d) prakriti specific RA groups. Positions refer to assembly GRCh37 

Supplementary Table 1: List of SNPs in and around HLA region which surpassed genome-wide 

significance (p<10-5) in our previous RA GWAS study 13 and their significance status in the three 

Ayurveda sub-groups and total cohort 

Supplementary Figure 1. Flow diagram of the quality control steps performed before the GWAS 

for individuals and SNPs 
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Table 1 
           

SNP Chr Position Location Gene/Nearest 

gene 

Risk 

allele 

PGWAS OR  (95% 

CI)* 

PGWASTotal PGWASVata PGWASPitta PGWAS 

Kapha 

Total study 

cohort 

           

rs340575 

(C>A) 

13 72876358 intergenic MZT1 C 9.7E-

08 

6.52 (2.91-

14.62) 

 
0.21 0.00002255 0.003 

rs10056189 

(C>T) 

5 145804118 intergenic TCERG1 C 1.4E-

06 

3.41 (2.02-

5.78) 

 
0.05 0.0008 0.01 

rs4956041 

(C>T) 

4 109113914 intron LEF1-AS1 T 2.1E-

06 

1.92 (1.47-

2.51) 

 
0.01 0.01 0.006 

rs4983599 

(G>A) 

14 105011436 intron TMEM179 A 2.6E-

06 

2.13 (1.55-

2.93) 

 
0.05 0.0005 0.06 

rs2867116 

(C>A) 

2 682363 upstream TMEM18 C 4.7E-

06 

4.56 (2.26-

9.23) 

 
0.0001 0.02 0.02 

rs7556762 

(T>G) 

2 101765922 intron TBC1D8 T 6.7E-

06 

2.41 (1.63-

3.55) 

 
0.01 0.002 0.06 

rs4548807 

(G>A) 

14 105040988 intron TMEM179 A 7.6E-

06 

2.12 (1.53- 

2.96) 

 
0.003 0.007 0.06 

rs3782690 

(T>G) 

12 106464063 intron NUAK1 T 8.9E-

06 

1.84 (1.41-

2.42) 

 
0.2 0.005 0.0008 

Vata 
           

rs1953175 

(G>T) 

9 13505851 intergenic RP11-

536O18.1 

T 3.7E-

06 

6.41 (2.87-

14.34) 

0.2 
 

0.2 0.3 

rs4352629 

(C>T) 

5 87756821 intron CTC-

498M16.4 

T 7E-06 5.64 (2.63-

12.08) 

0.3 
 

0.7 0.1 

rs7448716 

(A>G) 

5 87752695 intron CTC-

498M16.4 

G 7E-06 5.64 (2.63-

12.08) 

0.2 
 

0.7 0.1 

Pitta 
           

rs11625685 

(T>C) 

14 52931884 intron TXNDC16 C 1.4E-

06 

4.50 (2.35-

8.61) 

0.00005 0.4 
 

0.2 

rs11623917 

(A>G) 

14 52921896 intron TXNDC16 G 2.4E-

06 

4. 37 (2.28-

8.38) 

0.0001 0.5 
 

0.3 

rs9527038 

(A>G) 

13 53503775 intergenic PCDH8 G 3.9E-

06 

2.48  (1.69-

3.64) 

0.003 0.5 
 

0.8 

rs4620912 

(C>T) 

15 86389516 intergenic KLHL25 T 4.5E-

06 

2.80  (1.8-

4.37) 

0.00004 0.5 
 

0.5 

rs10849264 

(A>G) 

12 5531307 intergenic NTF3 G 4.8E-

06 

2.35 (1.62-

3.39) 

0.0003 0.3 
 

0.7 

rs1390079   

(T>C) 

4 125523042 intergenic RP11-93I21.3 C 5.2E-

06 

13.32 (3.09-

57.45) 

0.007 0.5 
 

0.3 

rs7323558 

(C>T) 

13 37250048 intron SERTM1 T 9.3E-

06 

2.305 (1.60-

3.33) 

0.002 0.9 
 

0.7 

Kapha 
           

rs3120029 

(G>A) 

9 129649356 downstream ZBTB34 A 6.2E-

06 

4.243 (2.21-

8.16) 

0.2 0.4 0.2 
 

rs9512378 

(A>G) 

13 27363688 intergenic GPR12 A 7.4E-

06 

4.60 (3.31-

9.15) 

0.01 0.8 0.7 
 

rs11762117 

(C>A) 

7 20391383 intron ITGB8 C 8.8E-

06 

8.74 (2.93-

26.03) 

0.02 0.3 0.6 
 

Chapter 4. Paper I: Ayurveda GWAS 54



15 
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Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) across the 13 
genome that may contribute to a person’s risk of developing diseases, although the individual contribution is very low 14 
with hazard ratio (HR) being <3, and mostly <2. This has provided understanding of which pathways influence complex 15 
conditions. Many of these variants showed association with multiple cancer types indicating pleiotropic effects and 16 
shared biological and etiologic mechanisms.  17 
Polygenic risk score (PRS) provides an overall summary estimate of the genetic propensity to a trait at the individual 18 
level, which may provide stronger and clinically applicable risk scores than individual SNPs. Thus, PRSs are useful to 19 
identify patients with a substantially increased genetic risk of a disease.  20 
Here, we hypothesized that adult cancer PRSs may provide useful risk scores for childhood cancers, as we observe 1) 21 
pleiotropic effects and the presence of well-established and validated PRSs on genetic predisposition of several adult 22 
cancers, and 2) that germline mutations predisposing to adult cancers (e.g. BRCA genes) are frequent in children with 23 
cancer. Using acute lymphoblastic leukaemia (ALL), the most common childhood cancer as a prototype, we compared 24 
these PRSs between different cancer subgroups (B or T-cell, cytogenetic alterations, and others) within a childhood ALL 25 
case cohort (NOPHO, N=1952), and differences between patients with solid tumours, haematological cancer, or CNS 26 
tumours in a Danish childhood cancer cohort (STAGING, N=425), to evaluate genetic predisposition’s risk on subgroups 27 
that reflect aetiology, but also in time could contribute to further develop a downstream treatment stratification or 28 
knowledge with prognostic implications. 29 
 30 
INTRODUCTION 31 
Cancer burden quantification is more challenging in children than in adults, since the first is rarer and often presents non-32 
specific symptoms often confused with infections and/or nutritional conditions (Spector, Pankratz, and Marcotte 33 
2015)(Johnston et al. 2021).  34 
While few environmental risk factors for childhood cancer have been established, recent studies have identified germline 35 
predisposition in established childhood cancer genes, surprisingly also enriched in known adult onset-cancer  36 
predisposition genes (Spector, Pankratz, and Marcotte 2015). In multiple types of adult-onset cancers, 5-10% of affected 37 
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patients carry a germline disposition in a high penetrant cancer gene (Lu et al. 2014), and several studies have recently 38 
confirmed a similar frequency of adult cancer predisposition syndromes in childhood-onset cancers (Zhang et al. 2015) 39 
(Parsons et al. 2016)(Byrjalsen et al. 2020), which underscores that a link could be present. 40 
Twin studies of adult-onset cancers have suggested a much higher heritability fraction (Lichtenstein et al. 2000)(Mucci et 41 
al. 2016), which partially can be explained by accumulation of single nucleotide polymorphism (SNPs), that individually 42 
only contributes with a slight increase in cancer risk.  43 
Genome-wide association studies (GWAS) have contributed to understand better genetic predisposition of cancer. These 44 
results have been used to create polygenic risk scores (PRS), which give an individual approximation of genetic 45 
propensity to develop cancer as it accounts for the estimated effect of several genetic variants (Kachuri et al. 2020). Some 46 
studies have found genetic correlations between different cancer types (Sampson et al. 2015)(Lindström et al. 2017)(Jiang 47 
et al. 2019). Furthermore, several PRSs have been evaluated in multiple different cancer types and it was possible to 48 
identify several positive correlations, indicating universal traits affecting carcinogenesis, telomere maintenance genes, 49 
haematopoiesis, inflammation, and cell migration, as well as non-cancer traits, such as obesity-induced chronic 50 
inflammation (Graff et al. 2021).  51 
Here, we hypothesized that two recently developed and validated PRSs may additionally be associated with leukaemia 52 
subgrouping of patients and/or prognosis of disease. This strategy is motivated by recent literature on genetic correlations 53 
between different cancer types and may help identify new paediatric cancer genes in rare and complex childhood cancer 54 
subgroups. These PRSs were previously associated with two of the most frequent adult onset-cancer types: breast-55 
(Mavaddat et al. 2019) and colorectal (Huyghe et al. 2019) cancer, and were independently validated. These were also 56 
utilised in cross-cancer PRS evaluation studies for breast (Kachuri et al. 2020)(Jia et al. 2020) and colorectal (Graff et al. 57 
2021) cancer.  58 
For this study, two childhood cancer cohorts were used: the Nordic Society of Pediatric Hematology and Oncology 59 
(NOPHO) cohort, consisting of children with several sub-types of leukemia etiology and the Sequencing Tumor and 60 
Germline DNA – Implications for National Guidelines (STAGING) cohort, consisting of children with multiple cancer 61 
types, such as hematological, solid, and central nervous system (CNS). 62 
 63 
MATERIALS AND METHODS 64 

Study populations  65 
NOPHO cohort 66 
For the NOPHO cohort, patients between one and 45 years old, diagnosed with ALL and treated according to the 67 
NOPHO ALL2008 protocol in Sweden, Denmark, Norway, Lithuania, Finland, Iceland, and Estonia between 2008 and 68 
2018, were registered in the NOPHO ALL2008 database. In Finland and Iceland, only children were included. This study 69 
and patient collection have been described in previous studies (Rank et al. 2018)(Toft et al. 2013)(Frandsen et al. 70 
2014)(Toft et al. 2016). Only children of the same age range as in the other used cohort (STAGING, described next) were 71 
included (age below 19 years old). 72 
From 1952 patients kept after genotype quality control (Table 1), 203 participants were > 19 years, thus 1749 were kept. 73 
Additionally, patients with ALL predisposition Downs syndrome, not following the NOPHO-ALL 2008 treatment 74 
protocol, non-European, or without given consent to be part of the study were excluded (Figure 1). Finally, 1437 75 
participants were included in this study.  76 
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Information was available for age at the time of diagnosis; sex; body-mass index (BMI); white blood cell count (WBC); 77 
DNA index (DI); immunophenotype; central nervous system (CNS) status [CNS1: no cerebrospinal fluid (CSF) blasts; 78 
CNS2: <5 leukocytes/µl CSF with blasts; CNS3: ≥5 leukocytes/µl with blasts or signs of CNS involvement]; CNS 79 
involvement type [only cells in CSF; cranial nerve palsy; clinical signs of CNS leukemia/mass on magnetic resonance 80 
imaging (MRI); combination of all]; cytogenetic information [dic(9;20); iAMP21; MLL 11q23; t(1;19); t(12;21); hyper- 81 
(>50 chromosomes) or hypodiploidy (<44 chromosomes); minimal residual disease (MRD) measured by PCR and flow 82 
cytometry as well as stratification in standard, intermediate or high-risk therapy after genetic analysis, day 15 (early 83 
response), day 29 (intermediate response) and day 79 (final stratification); and relapse leukaemia cells (bone marrow, 84 
testis, or CNS). 85 
 86 
STAGING cohort 87 
The STAGING cohort, included paediatric cancer patients diagnosed in Denmark. Details on patient collection in this 88 
Danish, prospective, nationwide study were previously described in a recent study (Byrjalsen et al. 2018). Here, 425 89 
patients from the STAGING study at Rigshospitalet (Copenhagen University Hospital, Denmark) were included. 90 
Information was available for age at the time of diagnosis, sex, cancer type [solid, CNS, hematological], and cancer 91 
predisposition syndromes (CPSs) assessed according to Jongmans criteria (Jongmans et al. 2016). 92 
 93 
Duplicated samples 94 
A genotype comparison was made between 52 duplicate samples, i.e., present in both STAGING (whole-genome 95 
sequencing) and NOPHO (genotype imputation) cohort, using the 4227 genomic positions genotype included in the 96 
PRSs. For all the duplicates tested, the similarity percentage was > 95% (Figure 2). 97 
 98 

NOPHO: Quality Control, Genotyping, and Genotype Imputation 99 
Quality control 100 
The genotype data was genotyped using Illumina InfinuimOmni 2.5 Exome chips, but as the samples were received in 101 
batches over time, not all used the same version of the SNP chip. Therefore, the batches were strand aligned and the 102 
quality control (QC) was done first individually, followed by a few extra QC steps on the merged dataset. The 103 
preprocessing of the genotype data was performed using PLINK version 1.90beta3(Chang et al. 2015). More details in 104 
Supplementary note 1 and Supplementary table 1.  105 
 106 
Imputation 107 
The genotypes were imputed after QC using SHAPEIT v2 (Delaneau, Marchini, and Zagury 2012) for phasing and 108 
IMPUTE v2.3.2 (Howie, Donnelly, and Marchini 2009) for imputation with default parameters. As a reference panel, 109 
1000 Genomes Project (Phase 3) (“A Global Reference for Human Genetic Variation” 2015) was used. 110 
Post-imputation quality was based on the imputation accuracy that is provided by IMPUTE v2.3.2 (Howie, Donnelly, and 111 
Marchini 2009) info score. This metric takes values between 0 and 1, where higher values indicate higher imputation 112 
certainty and 1 implying perfect imputation. The calling of SNPs for the imputed data was done using an info score of 113 
0.60. Afterwards, the genotype probabilities output by IMPUTE v.2.3.2 were converted into hard genotype calls using the 114 

Chapter 5. Paper II: Genetics scores in childhood cancer 60



  Cross-cancer adult-child PRS 

 This is a provisional file, not the final typeset article 

genotype with the highest likelihood. This was done in PLINK version 1.90beta3(Chang et al. 2015) using the command 115 
line “--hard-call-threshold 0.49”. 116 
 117 

STAGING: whole-genome sequencing analysis 118 
DNA extraction, library preparation, and whole-genome sequencing 119 
Genomic DNA was isolated from peripheral blood samples. Whole-genome sequencing (WGS) was performed by the 120 
Beijing Genomics Institute (Hong Kong, China) using the HiSeqX platform (Illumina, San Diego, CA, USA) for 309 121 
participants and by the Center for Genomic Medicine at Rigshospitalet (Copenhagen, Denmark) using the MiSeq Illumina 122 
platform (Illumina, San Diego, CA, USA) for 116 participants (N=425). After excluding 57 non-European participants, 123 
368 participants were included. 124 
 125 
Variant calling and filtering 126 
For each sample, mapping to the human reference genome hg19 using BWA algorithm, removal of read duplicates, 127 
realignment around insertions and deletions, and base-score recalibration and variant calling were done using Sentieon 128 
DNAseq software (Sentieon version 201808.03). Sentieon Haplotyper algorithm with option --emit_mode gvcf was used 129 
to generate a variant call format (VCF) file per sample, or in this case, a gVCF file, including non-variant positions. 130 
Afterwards, a joint variant calling was performed using Sentieon GVCFtyper algorithm. Only bases above Q30 were kept 131 
in the VCF files. For individual-level SNPs, a depth of 10 was applied using vcftools software (version 0.1.16) (Danecek 132 
et al. 2011).  133 
VCF files were filtered to include only variants referred in the PRSs using vcftools software (version 0.1.16)  (Danecek et 134 
al. 2011). 135 
 136 
Geographic variation 137 
For both STAGING and NOPHO cohorts, multidimensional scaling was used to identify ethnic outliers using PLINK 138 
version 1.90beta3(Chang et al. 2015). Datasets were filtered for minor allele frequency (MAF) > 0.01, human leukocyte 139 
antigen (HLA) region was removed and only autosomes were kept. Patients were defined as being of non-European 140 
ancestry when deviating more than 4 standard deviations (SDs) from the EU panel mean value in any of the first four 141 
genomic components (Figure 3). 1000Genomes data was used as reference for checking population ethnicities. A total of 142 
251 participants were removed from further analysis. From these, 199 were from the NOPHO cohort, while 57 were from 143 
the STAGING cohort. Five patients were duplicated in NOPHO and STAGING. 144 
 145 
Polygenic risk score 146 
We have performed PRS analysis on two childhood cancer cohorts, NOPHO and STAGING, based on two large GWAS 147 
of adult breast (Mavaddat et al. 2019) and colorectal (Huyghe et al. 2019) cancer. Both of these studies included samples 148 
of European ancestry. Effect size metrics were extracted from the respective manuscripts (Mavaddat et al. 2019) (Huyghe 149 
et al. 2019).  150 
In both studies described below, the ultimate goal was to construct a PRS as a weighted sum of the allele dosage 151 
(Mavaddat et al. 2019) or the number of risk alleles (Huyghe et al. 2019) carried by an individual, using the per-allele log 152 
OR for each variant as weights: PRS =	∑ 𝛽!𝜒!"

!#$ , where 𝛽! is the per-allele log odds ratio (OR) associated with SNP i, 153 
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𝜒% is the allele dosage (Mavaddat et al. 2019) or the number of risk alleles (Huyghe et al. 2019) for SNP k, and n is the 154 
total number of SNPs included in the PRS. 155 
 156 
Breast cancer 157 
For the breast cancer study, the authors applied two different approaches to develop a PRS using a large cohort of 94,075 158 
cases and 75,017 controls of European ancestry from 69 studies. The PRSs were further validated in an independent set of 159 
11,428 cases and 18,323 controls (10 prospective studies) and 190,040 women (UK Biobank) (Mavaddat et al. 2019). 160 
Here, we have used the best performing PRS consisting of 313 SNPs, further referred to in this study as PRS313. Briefly, 161 
this was obtained using a “hard-thresholding” approach, based on a series of stepwise regression analysis that retained 162 
SNPs significantly associated with overall breast cancer (cases vs controls) or ER-negative disease (cases only) (305 163 
SNPs) using a p-value < 10-5 in the largest available genome-wide association dataset. The SNP effect sizes were 164 
estimated in a single logistic regression model. SNPs associated with ER-position (p-value < 10-6) but not with overall 165 
breast cancer (p-value < 10-5) were added (6 SNPs). Two rarer variants (BRCA2p.Lys3326X and CHEK2 p.Ile157Tyr) 166 
which are established to confer a moderate risk of breast cancer were also added.  167 
Another approach for the PRS development was penalized regression using least absolute shrinkage and selection 168 
operator (LASSO). Here, the authors pre-selected for inclusion SNPs with p-value < 0.001 in overall breast cancer or ER-169 
negative disease in the training set, and BRCA2 p.Lys3326X and CHEK2 p.Ile157Thr were added. For overall breast 170 
cancer, variable selection and parameter estimation was carried out selecting the best penalty parameter (lambda) in the 171 
validation set. In this approach the PRS consisted of 3820 SNPs, further referred to in this study as PRS3820. 172 
Both approaches are described in more detail at (Mavaddat et al. 2019). 173 
 174 
Colorectal cancer 175 
For the colorectal cancer (CRC), the authors performed the largest and most comprehensive WGS study and GWAS 176 
meta-analysis for CRC so far combining data from three consortia: the Genetics and Epidemiology of Colorectal Cancer 177 
Consortium (GECCO), the Colorectal Cancer Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry 178 
(CCFR), and including participants from European and East Asian ancestry. The resulting stage 1 meta-analysis informed 179 
the design of a custom genotyping array which was used to genotype 12,007 CRC cases and 12,000 controls. They 180 
combined this with additional new or existing GWAS data imputed to the Haplotype Reference Consortium panel, 181 
resulting in a stage 2 meta-analysis of up to 23,262 CRC cases and 38,296 controls. They report new association signals 182 
discovered through their two-stage custom genotyping experiment and replicating at the Bonferroni significance 183 
threshold (P < 7.8×10-6). This list of 8 new loci includes the first rare variant association for sporadic CRC. Next, the 184 
authors performed a combined (stage 1 + stage 2) meta-analysis of up to 125,478 CRC samples (58,131 cases and 67,347 185 
controls) and reported all distinct association signals passing the genome-wide significance threshold of p-value <5×10-8 186 
in the combined meta-analysis. This list comprises 30 new loci, including all eight loci discovered through the custom 187 
genotyping experiment, and 10 additional signals discovered through conditional meta-analysis. 55 previously described 188 
autosomal risk variants that showed evidence for colorectal were added (Huyghe et al. 2019). A total of 95 SNPs were 189 
included to build this PRS, further referred to in this study as PRS95. 190 
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Statistical tests 191 
The utility of the PRSs for patient stratification was assessed using the different available clinical features. Samples were 192 
stratified in accordance with the PRS percentile: bottom (0-20), medium (20-90), and top (90-100). First, statistical 193 
significance of mean PRS between different groups in each clinical feature was accessed using independent two-sided t-194 
test. For the continuous variables, correlation between PRS and variable was accessed using Pearson (normal distributed) 195 
or Spearman (non-normal distribution) correlations. The OR for the different PRS-based stratified groups were calculated 196 
using Fisher’s exact test (categorical variables) and logistic regression (continuous variables). 197 
 198 
RESULTS 199 

PRS distribution in NOPHO and STAGING cohorts 200 
PRS was calculated for each patient and the overall cohort distribution approximated a normal distribution. PRSs 201 
distributions were very similar between NOPHO and STAGING cohorts (Figure 4). Some of the SNPs included in the 202 
PRS were not present in our dataset after imputation (due to info score < 0.60), or WGS (due to quality < 30 or alleles 203 
present being different from the ones referred in the (Mavaddat et al. 2019) and (Huyghe et al. 2019) (Table 2). Missing 204 
data at individual level (due to “--hard-call-threshold for NOPHO, and depth for STAGING) was removed based on 205 
samples, so all possible relevant SNPs could be kept. Only for PRS3820 in the NOPHO cohort, missing data was 206 
removed based on SNPs, otherwise only 40 samples with complete genomic data would have remained. Plots for all other 207 
variables (statistically non-significant results) can be found in Supplementary material online. 208 
 209 

Risk score for NOPHO cohort 210 
PRS313/PRS3820 and age showed to have a very weak correlation (Figure 5A-B). However, when we stratified the 211 
population according to PRS percentiles, we found significant results, as described below. 212 
 213 
Breast cancer PRS313 214 
Age at the time of diagnosis: The OR of finding younger patients in the top percentile was 1.105 (95% CI 1.066-1.146, p-215 
value 7.222x10-8) and 1.418 (95% CI 1.359-1.480, p-value 5.363x10-58) compared with the bottom or the other 216 
percentiles, respectively. 217 
 218 
Breast cancer PRS3820 219 
Age at the time of diagnosis:  The OR of finding younger patients in the top percentile was 1.09 (95% CI 1.059-1.122, p-220 
value 3.871x10-9) and 1.449 (95% CI 1.354-1.1.449, p-value 4.422x10-84) compared with the bottom or the other 221 
percentiles, respectively. 222 
Risk-group stratification at day 15 (early response): Even though mean PRS was not significantly different between 223 
participants in the two different groups (Figure 6A); the OR of finding a patient of the high-risk group in the top 224 
percentile was 1.507 (95% CI 0.904-2.496, p-value 0.1027) and 1.444 (95% CI 0.941-2.179, p-value 0.078) compared 225 
with the bottom or the other percentiles, respectively (Figure 6D). 226 
MRD measured by PCR at days 29: Mean PRS was not significantly different between participants in the two different 227 
groups (Figure 6B); however the OR of finding a patient with a higher MRD measured by PCR on day 29 in the top 228 
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percentile was 2.252 (95% CI 0.954-5.350, p-value 0.04) and 2.055 (95% CI 1.007-4.126, p-value 0.03) compared with 229 
the bottom and the others percentiles, respectively (Figure 6E). 230 
MRD measured by PCR at days 79: Mean PRS was significantly different between participants in the two different 231 
groups (p-value 0.04) (Figure 6C). The OR of finding a patient with a higher MRD measured by PCR on day 79 in the 232 
top percentile was 2.522 (95% CI 0.428-10.368, p-value 0.163) compared with the bottom percentile (Figure 6F).  233 
 234 
Risk score for STAGING cohort 235 
All PRSs and age showed to have a very weak correlation (Figure 5C-E). However, when we stratified the population 236 
according to PRS percentiles, we found significant results, as described below. 237 
 238 
Breast cancer PRS313 239 
Age at the time of diagnosis:  The OR of finding younger patients in the top percentile was 1.111 (95% CI 1.021-1.111, p-240 
value 0.003) and 1.257 (95% CI 1.198-1.318, p-value 5x10-21) compared with the bottom or the other percentiles, 241 
respectively. 242 
Diagnosis: Mean PRS was not significantly different between participants in the two different groups (Figure 7A); 243 
however the OR of finding patients with CNS tumour in the top percentile was 4.831 (95% CI 1.201-22.388, p-value 244 
0.0152) and 2.702 (95% CI 0.817-10.412, p-value 0.112) (top vs bottom and top vs others percentile, respectively) 245 
compared with the bottom or the other percentiles, respectively (Figure 7B). 246 
 247 
Breast cancer PRS3820 248 
Age at the time of diagnosis:  The OR of finding younger patients in the top percentile was 1.103 (95% CI 1.049-1.103, p-249 
value 0.0001) and 1.337 (95% CI 1.258-1.421, p-value 7.24x10-21) compared with the bottom or the other percentiles, 250 
respectively. 251 
 252 
Colorectal cancer PRS95 253 
Age at the time of diagnosis: The OR of finding younger patients in the top percentile was 1.063 (95% CI 1.018-1.111, p-254 
value 0.006) and 1.261 (95% CI 1.202-1.324, p-value 4.678x10-21) compared with the bottom or the other percentiles, 255 
respectively. 256 
 257 
DISCUSSION 258 
In this study, we found few significant PRS313, PRS3820, and PRS95-based stratification on the two childhood cancer 259 
cohorts. Those with higher genetic risk were also the younger patients, except for the PRS95 in the NOPHO cohort, 260 
where no difference was found. Additionally, using a PRS3820-based stratification on the NOPHO cohort, we found that 261 
higher PRS was also associated with high-risk group stratification at day 15 and higher MRD levels following induction 262 
(day 29) and consolidation (day 79). For the STAGING cohort, a significant stratification was found based on the 263 
PRS313, where patients with CNS tumours had a higher genetic risk score than patients with solid tumours. However, for 264 
the majority of the variables, no significant stratification was found. 265 
Genetic basis and cancer aetiology in children is still largely unknown and new strategies to identify paediatric cancer 266 
genes are much needed. These findings, being further validated, could contribute to a better understanding of disease 267 
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aetiology trajectory in childhood cancer and for the increasing hope that PRS may contribute to precision medicine in 268 
enhancing risk assessment. 269 
Furthermore, this would indicate some shared genetic basis of breast, colorectal and childhood cancer, however, further 270 
work would need to be done to understand the exact mechanism shared between these cancers in order to understand 271 
better disease progression.  272 
 273 
Limitations and further work 274 
In this study interactions between features were not accounted, when considering the risk of later outcomes. Giving a 275 
specific example, relapse may be very much dependent on both PRS and treatment, and here we simply considered PRS. 276 
Additionally, we have not accounted for any cofounders. We know for example that WBC is extremely heterogeneous 277 
and associated with age (immune system maturation), karyotype, and immunophenotype (Vaitkevičienė et al. 278 
2011)(Vrooman et al. 2018)(Toft et al. 2013). 279 
It would have been interesting to compare cancer prognosis in specific subtypes, for example, hyperdiploidy group 280 
stratified by immunophenotype (NOPHO cohort), haematological vs solid and CNS tumours (STAGING cohort) or 281 
perform this analysis in different age groups to understand if PRS-based stratification would work better in certain 282 
groups. For the age groups, other studies have stated that PRS may be a better predictor at different ages (Isgut et al. 283 
2021)(Damask et al. 2020).  284 
It is also worth noting that we expected to observe a higher risk score associated with the worst prognosis in childhood 285 
cancer, however, it could also go the other way around, where being predisposed to leukaemia makes one less 286 
predisposed to other phenotypes. Indeed, a study has shown that survivors of breast cancer who did not develop breast 287 
cancer in the future had higher probability of developing other late side effects and diseases, such as leukaemia and CNS 288 
tumours (Wang et al. 2018). 289 
The PRS-based stratification was only performed on subjects of European ancestry, thus further studies of ancestry-290 
specific genetic architectures are needed to understand if this could generalise across population substructures. Here, we 291 
only had large numbers of patients of European ancestry, but it would be interesting to explore the PRS-based 292 
stratification on the non-European samples removed from the initial analysis (n=251). 293 
As an additional study, it would be interesting to compare the PRS distribution of the childhood cancer cohort with a 294 
healthy cohort to investigate if PRS distribution is different, and if a higher PRS is observed in the childhood cancer 295 
cohort. As a more distant future study, one could also follow-up on the development of breast and colorectal cancer in the 296 
childhood cancer survivors of the NOPHO and STAGING cohort and determine if the patients in the higher percentile 297 
were indeed the ones who developed breast and colorectal cancer later in life.  298 
 299 
  300 
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  328 
Figure 1: Venn diagram representing the number of participants in each excluded group.  329 
 330 

 331 
Figure 2: Percentage similarity between pairs of duplicated samples.  332 
 333 

  334 
Figure 3: Multidimensional scaling performed in both NOPHO and STAGING cohorts. A total of 185, 29, 27, and 10 335 
participants were removed in components 1, 2, 3 and 4, respectively.  336 
 337 
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 338 
Figure 4: Polygenic risk score distribution for NOPHO (A: 952 samples, 313 SNPs; C: 1437 samples, 2663 SNPs; E: 339 
1351 samples, 93 SNPs) and STAGING (B: 368 samples, 307 SNPs; D: 368 samples, 3763 SNPs; F: 368 samples, 94 340 
SNPs) for the PRS313 (A,B), PRS3820 (C,D), and PRS95 (E,F). 341 
 342 

 343 
Figure 5: Correlation between age at the time of diagnosis (in years) and PRS. A-B: NOPHO cohort, PRS313 and 344 
PRS3820, respectively; C-E: STAGING cohort, PRS313, PRS3820 and PRS95, respectively.  345 
 346 
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 347 
Figure 6: Boxplots of PRS3820 values by risk-stratification at day 15 (A), MRD values at day 29 (B), and MRD values 348 
at day 79 (C) for the NOPHO cohort. The respective stratification in top, middle and bottom percentile is represented 349 
below in the bar plots where we can compare the percentage of samples in each percentile within groups (D-F).   350 
 351 

 352 
Figure 7: Boxplots of PRS313 values by diagnosis group (A) for the STAGING cohort and the respective stratification in 353 
top, middle and bottom percentile in the bar plot in the side, where we can compare the percentage of samples in each 354 
percentile within groups (B).   355 
  356 
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Table 1 Preprocessing of genotype data batches. This table depicts the number of patients and SNPs in each batch of 357 
genotype data during preprocessing.  358 

 
Patients SNPs 

Remove duplicate samples and SNPs 1,966 2,534,414 
QC step: SNP and sample missingness (2%) 1,966 2,146,366 
QC step: Relatedness (keep identity-by-
descent ≤ 0.1875) 

1,961 2,146,366 

QC step: Remove individuals with excess 
homozygosity 

1,952 2,146,366 

QC: quality control, SNP: single nucleotide polymorphism 359 
 360 
Table 2 Markers removed after imputation or WGS due to low quality or non-relevant alleles present.  361 

  
NOPHO (SNP array) STAGING (WGS) 

PRS313 SNPs Below info score 0.60 - -  
Below Q30 - 3  
Different alleles 0 3 

PRS3820 SNPs Below info score 0.60 2 -  
Below Q30 - 15  
Different alleles 0 42 

PRS95 SNPs Below info score 0.60 2 -  
Below Q30 - 1  
Different alleles 0 0 

SNP: single nucleotide polymorphism, WGS: whole-genome sequencing 362 

  363 
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SUPPLEMENTARY MATERIAL  364 

Supplementary note 1 Quality control description. 365 

For the individual batches, strand alignment to the PLUS strand was performed using the William Rayner (WR) strand files as reference 366 
(https://www.well.ox.ac.uk/~wrayner/strand/index.html) and human genome build 37. A check was performed to ensure that the original 367 
files were TOP strand oriented and that the alleles matched the TOP strand reference file. SNPs that were not present in the reference 368 
strand file and the SNPs found mapped to multiple locations according to the WR .multiple file, were excluded. 369 
Sample and SNP duplicates check: Each batch was checked for duplicate samples, where the sample with lower SNP missingness was 370 
kept. A check for duplicate SNPs was performed based on SNP location and alleles, where SNP identifiers were merged and remaining 371 
duplicates excluded.  372 
Quality control: The batches were subject to individual QC steps, as listed below:  373 

i) Missingness, where SNPs and samples with more than 2% missing data were removed.  374 
ii) Sex check, where samples with mismatch between genetic and clinical sex were removed. Genetic sex was determined by the 375 

inbreeding coefficient, where F < 0.2 are female and F > 0.8 are male.  376 
iii) Check for excess heterozygosity and homozygosity, where samples are removed based on the inbreeding coefficient as a 377 

measure of excess heterozygosity and homozygosity (more than 4 standard deviations away from the mean of F). This removes 378 
possibly contaminated samples and population substructure.  379 

iv) Relatedness check, where any related samples or potentially remaining duplicate samples are removed.  380 
Following the individual batch pre-processing, the genotype batches were merged and checked for duplicate SNPs and samples across 381 
batches. The merged set was then QC’ed by the steps listed below:  382 

i) Missingness, where SNPs with more than 2% missing data were excluded, before excluding samples with more than 2% 383 
missing SNPs.  384 

ii) Relatedness check, where any related samples or potentially remaining duplicate samples are removed.  385 
iii) Check for excess homozygosity, in order to remove potential population substructure in the merged dataset.  386 

 387 

Supplementary table 1 Overview of pre-processing and quality control (QC) on individually genotyped batches. The 388 
batches were genotyped using different chips, why these were initially quality controlled separately.  389 

Batch A B C D 

Genotyping chip HumanOmni2-5Exome-8-v1-1-
A 

InfiniumOmni2-5Exome-8v1-
3_A1 

InfiniumOmni2-5Exome-8v1-
3_A1 

InfiniumOmni2-5Exome-8v1-
4_A1 

  Patients SNPs Patients SNPs Patients SNPs Patients SNPs 

NOPHO genotypes 1,519 2,546,527 334 2,612,357 362 2,612,357 135 2,617,655 

Strand alignment 1,519 2,498,653 334 2,560,920 362 2,560,920 135 2,566,350 

Remove duplicate samples and SNPs 1,452 2,453,541 320 2,514,171 362 2,515,787 135 2,523,930 

QC step 1: SNP and sample missingness 1,355 2,383,820 241 2,314,622 345 2,434,130 134 2,462,363 

QC step 2: Sex mismatch 1,343 2,383,820 232 2,314,622 340 2,434,130 134 2,462,363 

QC step 3: Remove individuals with excess heterozygosity and 
homozygosity  

1,321 2,383,820 224 2,314,622 334 2,434,130 133 2,462,363 

QC step 4: Relatedness  
(keep identity-by-descent ≤ 0.1875) 

1,313 2,383,820 224 2,314,622 331 2,434,130 133 2,462,363 

QC: quality control, SNP: single nucleotide polymorphism, NOPHO: Nordic Society for Pediatric Hematology and Oncology.  390 
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Key Points  30 
Question: What is the risk of developing hearing loss after cisplatin-based chemotherapy in testicular cancer patients? 31 
Findings: In this case-control study of 433 testicular cancer patients, a predictive model that identified patients at high or low 32 
risk of developing hearing loss was built. Furthermore, a possible biological mechanism that may contribute to hearing loss is 33 
proposed. 34 
Meaning: Identification of patients with a higher risk of developing hearing loss will allow to explore other treatment 35 
strategies to mitigate or prevent this common late-side effect. 36 
 37 
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Abstract 39 
Importance: In industrialized countries, testicular cancer is the most common solid tumor in men between 20-40 years old. 40 
Even though this is a curable cancer, the long-term side effects of chemotherapy are worrisome as they may have severe 41 
impact on quality of life. Here in this research study, we focus on hearing loss. 42 
Objective: To identify testicular cancer patients at higher risk of hearing loss after cisplatin-based chemotherapy. 43 
Design: Case-control study comprising testicular cancer survivors treated with cisplatin-based chemotherapy from 1984 until 44 
2007.  45 
Setting: Data was collected from the Danish Testicular Cancer-Late cohort in October 2014. 46 
Participants: Clinical patient data on 433 individuals was collected from hospital files, and saliva samples were used for 47 
genotyping.  48 
Exposure: The standard chemotherapy treatment for disseminated testicular cancer is three to four cycles of bleomycin-49 
etoposide-cisplatin. The larger part of the patients received standard-dose cisplatin 20 mg/m2 × 5 q3w, etoposide 50 
100 mg/m2 × 5 q3w, and bleomycin 15.000 IU/m2 q1w, and 25 patients received double-dose cisplatin and etoposide: 51 
cisplatin 40 mg/m2 × 5 q3w, etoposide 200 mg/m2 × 5 q3w, and bleomycin 15.000 IU/m2q1w.  52 
Main Outcome(s) and Measure(s):  Hearing loss was classified according to the FACT/GOG-Ntx-11version 4 self-reported 53 
NTX6 question that measures difficulty in hearing. A logistic regression with inner-GWAS was developed to identify 54 
patients at high risk of developing hearing loss. 55 
Results: Of a total of 433 patients, 424 answered NTX6 and 34.4% scored 2 to 4, phenotypical ototoxicity. These patients 56 
had a median age at diagnosis (interquartile range (IQR)) of 34 (27-41) years while the non-affected patients had a median 57 
age (IQR) of 29 (26-36) years. The prediction model comprising clinical and genomics data was able to identify 67% of the 58 
patients with hearing loss, however, with a false discovery rate of 49%. For the non-affected patients, the model identified 59 
66% of the patients with a false omission rate of 19%. An area under the receiver operating characteristic curve (ROC-AUC) 60 
of 0.73 (95% CI, 0.71-0.74) was obtained, while a ROC-AUC of 0.66 (95% CI, 0.65-0.66) was obtained for the model with 61 
only clinical data.  62 
Conclusions and Relevance: A prediction model and a discussion concerning possible biological mechanism for hearing 63 
loss development are presented. This prediction model may be used in the clinic to allow for earlier detection and prevention 64 
of hearing loss. These findings need to be confirmed in larger studies before applying to clinical practice. 65 

  66 
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Introduction 67 
Testicular cancer is the most common cancer in men below 40 years of age in developed countries with a continuously rising 68 
incidence in many countries1. It is a highly curable tumor with a 5-year survival of more than 90% disregarding initial stage, 69 
which results in an increasing population of long-term testicular cancer survivors2,3. Treatment for patients with disseminated 70 
disease includes a multi-modality approach with initial surgery – orchiectomy, and either radiotherapy or chemotherapy 71 
followed by possible secondary surgery. The majority of patients receive chemotherapy in the form of bleomycin-etoposide-72 
cisplatin, which has been standard of care since early 1980’s4. Although testicular cancer is associated with a high curability, 73 
treatment with chemotherapy is hampered by late effects, such as ototoxicity, neurotoxicity, nephrotoxicity, cardiovascular 74 
disease, and psychosocial problems5,6 75 
Prevalence of ototoxicity is associated with cumulative cisplatin doses and age at diagnosis and possibly genetic factors7–9. 76 
Yet, there is a need for further identification of risk factors to identify patients at risk of ototoxicity and possibly initiate 77 
preventive measures. In this study we aimed at identifying risk factors for ototoxicity in testicular cancer survivors (TCS) via 78 
the usage of a prediction logistic regression model to address the burden of cisplatin-induced hearing loss. Using clinical and 79 
genomics data integration, we have identified a subgroup of individuals who were more predisposed to develop hearing loss. 80 
Additionally, a new biological mechanism is proposed. 81 
 82 
Material & Methods 83 

Source of the data  84 
Long-term TCS were identified in the Danish Testicular Cancer (DaTeCa)-Late cohort10 which houses patients initially 85 
treated for testicular cancer from 1984 through 2007. In October 2014, TCS were invited to fill in a questionnaire including 86 
the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACT/GOG-Ntx)-11 version 4, 87 
with 11 questions related to overall neurotoxicity, sensory neuropathy, ototoxicity, motor difficulty, and dysfunction 88 
neurotoxicity. Patients with renal function measurements before and after chemotherapy were asked to deliver a saliva sample 89 
for genotyping, as previously published, n = 43311. Clinical features were originally extracted from hospital files as registered 90 
in the DaTeCa database12.  91 
Patients gave informed consent to participate in this study, and the study was approved by the regional ethical committee 92 
(File number, H-2-2012-044), as well as the National Board of Data Protection (File number, 2012-41-0751). 93 
 94 
Treatment and clinical information 95 
All patients received bleomycin-etoposide-cisplatin for disseminated testicular cancer, three cycles or more as previously 96 
described11. 97 
Clinical information consisted of age at diagnosis, body mass index (BMI), normal dose vs double-dose bleomycin-98 
etoposide-cisplatin, glomerular filtration rate before treatment, cumulative cisplatin dose per square meter of body surface 99 
area (BSA), number of bleomycin-etoposide-cisplatin (BEP) treatment cycles, histology (seminoma vs nonseminoma), 100 
prognostic classification as per IGCCCG13, and information about alcohol consumption in number of units per week, and 101 
smoking habits (never; former; or current). BMI, alcohol and smoking information were collected at the time of the 102 
questionnaire in October 2014. Age at the time of questionnaire was highly correlated with age at diagnosis (Pearson 103 
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correlation 0.76). Normal dose vs double-dose BEP was not included in the analysis as its information is covered by 104 
cumulative cisplatin dose per square meter of BSA, and number of treatment cycles.  105 
 106 
Assessment of hearing loss  107 
Self-perceived hearing loss was assessed with the Ntx subscale of FACT/GOG-Ntx-11, version 4. The FACT/GOG-Ntx is a 108 
self-reported questionnaire in the Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System14 that 109 
evaluates the severity and impact of neuropathy. The questionnaire consists of 11 items rated from 0 (“not at all”) to 4 (“very 110 
much”). The scale can be divided into four subscales: sensory neuropathy, motor neuropathy, auditory neuropathy, and 111 
dysfunctional problems14. Auditory neuropathy comprises two different questions, where NTX6 measures difficulty hearing, 112 
and NTX7 measures tinnitus.  113 
Here, only NTX6 is further explored. NTX7 will be evaluated in a separate paper as the genotypes involved may wary 114 
between the two toxicities15,7. For NTX6, to ensure clinical relevance, the outcome was dichotomized. Two different cut-offs 115 
for the binarization of the risk group were considered: (1) low (score from 0-1) and high-risk group (score from 2-4), and (2) 116 
low (score from 0-2) and high-risk group (score from 3-4). Further results and discussion refer to (1), where better results 117 
were achieved. 118 
Additionally, the patients were asked if they recalled experiencing worse hearing during treatment (hearing change question 1 119 
(HC Q1)) and whether it returned to normal afterwards (hearing change question 2 (HC Q2)).  120 
 121 
DNA preparation and quality control 122 
DNA samples were prepared at DTU Multi-Assay Core (Lyngby, Denmark), and genotyped at AROS Applied Biotechnology 123 
A/S company (Aarhus, Denmark) using Illumina® HumanOmniExpressExome-8-v1-2-B-b37 chip (around 1 million 124 
markers).  125 
Genotyping data were converted into pedigree format using GenomeStudio® (v2011.1) with PLINK Input Report Plug-in 126 
(v2.1.3).  Quality control for both SNPs and patient samples is described in Supplementary Figure 1. 127 
 128 
SNPs data feature selection 129 
SNPs were selected via (1) inner-GWAS (described in “Statistical Analysis”) and (2) gene literature search. A systematic 130 
literature search was conducted on databases Uniprot16, DrugBank17, KEGG 18,19,20, and BioCyc21.  In the databases, literature 131 
search was done on genes associated with cisplatin metabolism and genes related to ototoxicity (Supplementary Table 1 and 132 
Supplementary Note 2). To extract the markers available in our dataset located at the literature search genes, the SNPs were 133 
annotated with Ensembl Variant Effect Predictor (VEP)22, and all SNPs from a specific gene or with a specific consequence 134 
were easily extracted. The literature search resulted in a large number of genetic features, thus SNPs were further filtering 135 
using Ensembl VEP for “IMPACT is HIGH” OR “CLIN_SIG” is drug_response, leaving a total of 19 SNPs included from 136 
literature: CYP2J2 rs11572279, MGST3 rs9333378, ABCA12 rs10498027, ABCC5 rs939336, WFS1 rs1801206, SLC44A4 137 
rs494620, NOX3 rs12195525, CEP78 rs17787781, CYP2C9 rs4917639, CYP2C8 rs2071426, SYCE1 rs2149616, ABCC8 138 
rs2074308, DUSP6 rs808820, DMXL2 rs2414105, ABCA10 rs10491178, ABCA7 rs3752229, CYP2B6 rs2279345, ERCC1 139 
rs3212986, MCM8 rs3761873. Additionally, seven SNPs reported to be associated with cisplatin ototoxicity in a recent 140 
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systematic review paper23 were also included (two SNPs were not available in our dataset): LRP2 rs2075252, LRP2 141 
rs4668123, TPMT rs1800460, SOD2 rs4880, GSTP1 rs1695, COMT rs4646316, COMT rs9332377. 142 
 143 
Statistical analysis  144 
Missing data 145 
All patients had full phenotypical data. In patients with missing values in predictors (n = 2 for BMI and smoking) a multiple 146 
imputation method with 10 iterations was used. Imputation was performed separately in the training and test sets to avoid 147 
leak of information between these two sets. 148 
 149 
Logistic regression with inner-GWAS 150 
A nested cross-validation (CV) was implemented. First, the data was split into training and test sets in an outer 5-fold CV 151 
loop. Second, the training set was further split into a training and validation subset. Forward feature selection and parameter 152 
optimization were done in the training-validation subsets, and the model was deployed on the independent test set. An inner-153 
GWAS was performed on the training set of the inner-fold to select SNPs for model training.  Each genetic variant was tested 154 
for its association with hearing loss using a logistic regression model after adjusting for potential confounding effects: age at 155 
the time of questionnaire and cisplatin per body surface area. A P value threshold of 1x10-5 was used to select SNPs for 156 
model training; however, none or very few SNPs passed this P value threshold. Thus, a less strict P value threshold of 1x10-4 157 
was used (Supplementary Figure 2). 158 
Initially, only clinical data was included. The area under the receiver operating characteristic curve (ROC-AUC) was used to 159 
evaluate the model’s prediction ability. Clinical features selected until the ROC-AUC reached a plateau were selected. The 160 
genomic data, which consisted of the SNPs filtered by literature search and inner-GWAS, were then added to the model with 161 
the selected clinical data. For the model with clinical and genomics data, the same forward feature selection approach was 162 
followed. The variables included until the model reached a plateau ROC-AUC were accessed. SHapley Additive exPlanations 163 
(SHAP) values24 were accessed to interpret the impact of each feature in the model. 164 
The dataset was randomly split 30 different times in training (inner and outer fold), validation, and test set, to ensure model 165 
reproducibility and robustness. 166 
For more information on model hyperparameters, encoding of variables and feature normalization consult Supplementary 167 
Note 1. 168 
Randomization tests were also tried to make sure the model was not fitting random noise. This was achieved by eliminating 169 
any association between the features and the outcome. For the model with clinical and genomics data, this was achieved by 170 
adding random SNPs. 171 
All statistics were calculated using SciKit-learn25 (v0.23.2) and PLINK26 (v1.9) in Python (v3.6.10). 172 
 173 

Results 174 

Population characteristics and quality control 175 
Out of all 433 patients, 424 filled in the NTX6. Of those, 146 (34.4%) scored 2 to 4 in NTX6, phenotypical ototoxicity. These 176 
affected patients had a median age at diagnosis (interquartile range [IQR]) of 34 (27-41) years while the non-affected (n = 177 
278) patients had a median age (IQR) of 29 (26-36) years. Demographical features are presented in Table 1. 178 
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After genotype quality control, 393 patients and 611129 SNP remained (Supplementary Figure 1). 179 
 180 
Prediction model – integration of clinical and genomic features 181 
First, the prediction power of the clinical features alone was assessed. One feature was added at a time, following a forward 182 
feature selection approach, until all nine features (previously referred in methods) were included in the model. The ROC-183 
AUC reached a plateau when two features were added to the model with a mean ROC-AUC of 0.66 (95% CI, 0.65-0.66) 184 
(Figure 1A,C). These two features were age at diagnosis (selected 30 times out of 30 models: one model for each random data 185 
split) and the number of treatment cycles (selected 17 times out of 30 models).  186 
 187 
Genomic feature selection (inner-GWAS) as part of the model 188 
Genomics data was then added to the model with age at diagnosis and number of treatment cycles. Again, a forward feature 189 
selection approach was followed. The ROC-AUC reached a plateau when 8 features were added into the model with a mean 190 
ROC-AUC of 0.73 (95% CI, 0.71-0.74) (Figure 1B,D and Figure 2A). Two out of the eight features were the clinical data. 191 
For the remaining six, the SNPs selected were: SOD2 rs4880, MGST3 rs9333378, intergenic rs4389005, ABCA10 192 
rs10491178, ABCA12 rs10498027, MCM8 rs3761873 (Table 2). Out of 30 models, these SNPs were selected 15, 9, 7, 6, 5, 193 
and 4 times, respectively. Genotypes SOD2 rs4880:AA and MGST3 rs9333378:AA (two most selected SNPs) were found in 194 
47% of patients who replied NTX6 = 0/1, 63% of patients who replied NTX6 = 2 and 76% of patients who replied NTX6 = 195 
3/4. 196 
For each sample, the prediction scores ranged between 0 and 1, where a value closer to 1 means higher probability of hearing 197 
loss. Using a default cut-off of 0.50, a sensitivity of 67% was reached (identification of patients with hearing loss), equivalent 198 
to a positive predictive value (PPV) of 51%. Correspondingly this resulted in a specificity of 66% and a negative predictive 199 
value (NPV) of 80% (Figure 2B). The model performed best on patients with the highest toxicity (score of 4 “very much”), 200 
Figure 2C.  201 
The most important feature for the prediction was age at diagnosis, followed by the number of treatment cycles and the SNPs 202 
in the same order of times they were selected in the model (Figure 3).  203 
For most patients, adding genomics data helped with the prediction (320 out of 393). For 18 out of 393 patients, the addition 204 
of genomics data worsened the prediction, even though 11 out of 18 were still correctly classified. For 42 out of 393 patients, 205 
genomics helped with the prediction, however this was still not enough to correctly classify these patients as either affected or 206 
non-affected. For 55 out of 393 patients, neither clinical nor genomics data seemed to help the classification (Supplementary 207 
Figure 3). 208 
 209 
Hearing loss at the time of treatment Vs. at the time of questionnaire 210 
NTX6 from the validated FACT/GOG-Ntx questionnaire correlated with the hearing loss reported from the two additional 211 
questions concerning self-perceived changes during treatment (Spearman’s rank correlation coefficient 0.56 for HC Q1 and 212 
0.76 for HC Q2). 213 
 214 
 215 
 216 
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Randomization tests 217 
Two randomization tests were applied to access model robustness. For the models with only clinical data, variables 218 
permutation was done and a mean ROC-AUC close to 0.50 was obtained (Supplementary Figure 4A). The mean ROC-AUC 219 
for the random model with 2 features (benchmark against the non-random model) was 0.50 (95% CI, 0.49-0.51) 220 
(Supplementary Figure 4B). When adding random genomic variants, ROC-AUC decreased as non-informative SNPs were 221 
being added (Supplementary Figure 4C).  Mean ROC-AUC was 0.67 (95% CI, 0.66-0.68) for the random model with 8 222 
features (Supplementary Figure 4D). 223 
 224 
Discussion 225 
In this study, we present a model for prediction of hearing loss after cisplatin-based chemotherapy based on a combination of 226 
clinical and genetic features. We observed an improvement of the prediction when including both clinical and genomics data 227 
compared to only clinical data, yet still observed misclassifications. Age at diagnosis and cisplatin dose were the most 228 
important clinical predictors, as previously reported in other studies8,9,27.  229 
 230 
SNPs and its biological importance 231 
SNPs rs4880 SOD2 and rs9333378 MGST3 were the two most selected SNPs by the model, and it is hypothesized here that 232 
they may have a combined effect on ototoxicity. 233 
The functional rs4880 SNP is located on codon 16 exon 2 of SOD2, which codes for superoxide dismutase 2, a mitochondrial 234 
protein28. SNP rs4880 is the most studied SOD2 SNP29, however there is no agreement regarding the risk allele30,31,32. 235 
The SNP rs9333378 is located in MGST3, that codes for the microsomal glutathione S-transferase 328. Between the 236 
microsomal glutathione S-transferases, MGST1, MGST2, and MGST3 have been reported to be important in the 237 
detoxification process33.  238 
SNP rs4880 (G > A) produces an amino acid change from alanine to valine (Ala16Val), which may change the structure of 239 
the SOD2 mitochondrial targeting sequencing34. Computer models have predicted a beta-sheet structure if a valine is present, 240 
and a partial alpha-helix structure if an alanine is present34. Due to partial arrest of the beta-sheet structure during transport 241 
across the inner mitochondrial membrane, this will likely inhibit efficient mitochondrial import of SOD2 precursors32,30. 242 
When platinum enters the cells, it is metabolized by the mitochondria, which will lead to the production of reactive oxygen 243 
species (ROS), such as superoxide. SOD2 will then degrade superoxide into hydrogen peroxide until complete superoxide 244 
anion degradation. However, if SOD2 is retained from entering the mitochondria due to partial arrest of beta-helix, this will 245 
lead to an accumulation of ROS. ROS cause lipid peroxidation, activation of pro-inflammatory factors, and cell death by 246 
apoptosis, including hair cells35,36. Indeed, we observed the A-allele with a higher frequency in patients who reported hearing 247 
loss (odds ratio = 1.55, 95% CI: 1.13-2.13). Furthermore, glutathione’s, including glutathione S-transferase, are known to 248 
help with complete superoxide anion degradation32. In the brain, MGST3 expression levels seem to be lower if  rs9333378:A, 249 
as reported in Genotype-Tissue Expression (GTEx)37. Thus, if there is decreasing MGST3 activity, this will enhance the 250 
accumulation of cisplatin.  251 
Additionally, potential novel variants associated with cisplatin-induced hearing loss were found. SNP rs4389005 located in 252 
an intergenic region was found in the inner-GWAS. The closest gene is GPR12 (64415 base pairs to canonical transcription 253 
start site). The other variants selected in the model were found via gene literature search. SNP ABCA10 rs10491178 and 254 
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ABCA12 rs10498027 both code for ATP-binding cassette (ABC) transporters and overexpression of ABC transporters have 255 
been associated with multidrug resistance, including cisplatin, in multiple tumors38. SNP ABCA10 rs10491178 seems to affect 256 
expression of protein ABCA6, being the genotype ABCA10 rs10491178:GG associated with lower expression of ABCA637, 257 
which can lead to higher sensitivity to cisplatin and higher toxicity39. The last SNP selected by the model, rs3761873 is 258 
located in MCM8 that codes for the mini-chromosome maintenance 8 homologous recombinant repair factor protein 259 
(MCM8), and in a recent study, it was shown that in mice, inhibition of MCM8 (and MCM9) hypersensitized cells to 260 
cisplatin40.   261 
 262 

Patients with self-reported higher levels of hearing loss 263 
Even though we observed a false discovery rate of 49% using a 0.50 cut-off, it is encouraging to see that only four out of 23 264 
patients with the highest score (NTX6=4) were misclassified. Three of them had a prediction score very close to the 0.50 cut-265 
off (2 patients with 0.48 prediction score and one with 0.49 prediction score). For the other misclassified patient, the 266 
prediction score was 0.31 and this patient was also the youngest of the 23. Furthermore, this patient received one of the 267 
lowest amounts of cisplatin (300 mg/m2 and three treatment cycles) and he was heterozygous for all SNPs, except ABCA10 268 
rs10491178 and MCM8 rs3761873 where he was homozygous for the reference allele. This may point to other relevant 269 
genetic predispositions that might be underrepresented in this dataset and hence may not have been detected. 270 
The cutoff choice will always have an impact on the tradeoff of positive and negative errors, for example, by increasing it, the 271 
number of false positives decreases, but so does the number of true positives. 272 
 273 
Limitations and strengths  274 
The diagnosis of ototoxicity is very challenging to perform and ototoxicity definition is still far from being entirely defined41. 275 
Here, several potential factors for hearing loss were not explored, such as noise, infection, or vascular problems and the 276 
toxicity was assessed several years after exposure. However, long-term toxicity also has the highest impact on quality of life 277 
and may be most important to predict.9 278 
The models were trained on labels that derive from the FACT/GOG-Ntx questionnaire, which are not objectively measured. 279 
Other measurements such as pure-tone audiometry or other hearing tests could have been done to improve precision41. On the 280 
other hand, using quality of life measures ensures that the focus is on the patient42, as objective measurement might detect the 281 
same level of toxicity between two individuals, however only one may be affected by the symptoms.  282 
As a potential limitation, body mass index as well as information about alcohol consumption and smoking habits were 283 
retrieved in 2014 when the questionnaire was done. These clinical features were used as a proxy at the time of treatment, but 284 
they may not represent the true values. While those features were not selected in the final model, we are unaware if the real 285 
values at the time of treatment could have added relevant information to the model.  286 
 287 
Conclusions 288 
Cisplatin is essential in the treatment of several neoplasms, however, the inability to predict accurately how patients will react 289 
to chemotherapy represents a major challenge.  Ototoxicity is one of the most common late-side effects of cisplatin-based 290 
chemotherapy. In this study, we present a logistic regression prediction model based on a combination of genetic and clinical 291 
features able to classify patients at high or low risk of hearing loss after cisplatin-based treatment. We also propose a new 292 
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mechanism of hearing loss development involving the SNPs SOD2 rs4880:AA and MGST3 rs9333378:AA. These SNPs have 293 
not yielded significant results when single associations between SNPs and outcome have been performed. 294 
Before application to clinical practice, confirmation in a prospective clinical setting and replication in larger studies are 295 
required. This model could be used as a complement to support the clinical decision and help on reducing hearing loss cases 296 
by adjusting treatment for patients in the high-risk group.  297 
 298 
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Table 1. Comparison of baseline characteristics between affected and non-affected patients (NTX6 FACT/GOG-Ntx). 401 
Out of 433, nine patients had not replied on NTX6, thus only 424 patients are represented in the table. Values show the median and 402 
interquartile range (IQR; 25%–75%) or number of patients and percentages (%).  403 
IQR = interquartile range; BMI = body mass index; BEP = bleomycin-etoposide-cisplatin; GFR = glomerular filtration rate; IQR = 404 
interquartile range. 405 

 Affected, No. (%) Non-affected, No. (%) P valuesa 
Number of patients 146 (34.4) 278 (65.6) - 
Age at diagnosis, median (IQR) 34 (27-41) 29 (26-36) 0.002 
BMI, median (IQR) 
Unknown: 8 Affected ; 10 Non-
affected 

21 (19-27) 22 (19-26) 0.38 

BEP regimen Normal dose 113 (78.5) 260 (95.6) 6x10-27 
Double dose 31 (21.5) 12 (4.4) 
Unknown 2 6 

GFR before treatment, median 
(IQR), mL/min/1.73m2 

Unknown: 2 Non-affected 

122 (111-135) 121 (110-133) 0.68 

Cisplatin, median (IQR), mg/m2 400 (385-403) 400 (300-400) P < .001 
Treatment 
cycles  

3 30 (20.5) 86 (30.9) 1x10-5 
4 85 (58.2) 180 (64.7) 
5 or more  9 (6.2) 10 (3.6) 
High-dose  22 (15.1) 2 (0.7) 

Histology  Seminoma 34 (23.3) 54 (19.4) 0.42 

Non-Seminoma 112 (76.7) 224 (80.6) 
Prognostic 
group 

Good 103 (70.5) 239 (86) P < .001 
Intermediate 32 (21.9) 30 (10.8) 
Poor 11 (7.5) 9  (3.2) 

Alcohol consumption in number of 
units per week 

5 (1-10) 5 (2-10) 0.30 

Smoking Never 61 (41.8) 128 (46.4) 0.40 
 Former 55 (37.7) 88 (31.9) 

Current 30 (20.5) 60 (21.7) 
Unknown - 2 

aP values were calculated by 2-sided Mann-Whitney U test for continuous or ordinal characteristics. For “histology,” P value was 406 
calculated by χ2 test. All tests are appropriate for unpaired data and in the case of continuous variables, non-normal distributed data. 407 
Distribution of continuous variables was accessed through Shapiro-Wilk normality test. 408 
 409 
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Table 2 Single-nucleotide polymorphisms (SNPs) selected on the final prediction model. SNPs are ordered by genomic 411 
position and not by the number of times selected in the model. 412 
Chr. = Chromosome; SNP = single nucleotide polymorphism; MAF = minor allele frequency; CEU = European; glomerular filtration 413 
rate; OR = odds ratio; CI = confidence interval. 414 
 415 

Chr. SNP  Genomic 

positiona 

Gene Reference 

allele 

Alternative 

allele 

Risk 

allele 

MAF 

(CEU) 

Effect OR (95% 

CI)b 

Pc 

1 rs9333378 165601466 MGST3 G A A G: 0.35 Splice 

acceptor 

1.37 (1-

1.86) 

0.0441 

2 rs10498027 215820013 ABCA12 G A G A: 0.35 Stop gained 1.11 (0.81-

1.51) 

0.5158 

6 rs4880 160113872 SOD2 A G A G: 0.41 Missense 1.55 (1.13-

2.13) 

0.007183 

13 rs4389005 27399338 GPRR12 (closest 

gene) 

A G A G: 0.31 Intergenic  2.09 (1.56-

2.89) 

7x10-6 

17 rs10491178 67149973 ABCA10 G A G A: 0.09 Stop gained 1.84 (0.80-

4.22) 

0.1525 

20 rs3761873 5939214 MCM8 A C A C: 0.12 Stop gained 1.35 (0.66-

2.75) 

0.4148 

aGenomic position based on NCBI Human Genome Build 37 coordinates. 416 
bOdds ratio with 95% Confidence Interval for the risk allele. 417 
cA logistic model was adjusted for cisplatin dosage and age at the questionnaire and P values represent how likely the variant association was by random 418 
chance. 419 
 420 
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 423 
Figure 1. ROC-AUC mean (30 random data splits) performances in each step of the forward feature selection. A: 424 
Model with clinical data with forward feature selection up until nine features. Shaded blue area indicates 95% CI. Exact 425 
ROC-AUC mean and 95% CI in C. B: Model with clinical and genomics data with forward feature selection up until 28 426 
features. Shaded areas indicate 95% CI and blue color indicates that only clinical data was added, green color that clinical and 427 
genomics data were added, and red color that ROC-AUC reached a plateau. Exact ROC-AUC mean and 95% CI in D. For 428 
illustration purposes, exact ROC-AUC mean and 95% CI are not indicated in D from 13 features. From 13-28 features, ROC-429 
AUC mean (95% CI) was 0.73 (0.71-0.75) (13-15 features); 0.73 (0.71-0.75) (14-15 features); 0.73 (0.72-0.75) (16-17 430 
features); 0.73 (0.71-0.75) (18-21 features); 0.72 (0.70-0.74) (22-25 features); 0.72 (0.70-0.73) (26 features); and 0.71 (0.69-431 
0.73) (27-28 features). 432 
ROC-AUC = area under the receiver operating characteristic curve; No. = number; CI = confidence interval. 433 
 434 
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436 
Figure 2. Final model performance measures and prediction scores. A: Model performance shown as ROC-AUC curve. 437 
Solid blue line and shaded area indicate the mean and standard deviation across 30 data splits. Dashed red line indicates a 438 
random classifier. B: ROC-AUC and other performance measures, i.e., MCC, sensitivity, specificity, PPV and NPV using a 439 
cut-off of 0.50. C: Final prediction scores (x-axis) for each patient, represented by a dot. Orange dots represent controls or 440 
non-affected patients (NTX6 score 0-1), while blue dots represent cases or affected patients (NTX6 score 2-4). Dashed 441 
vertical line represents a cut-off of 0.50, where patients with a prediction score of 0.50 or higher are considered cases.  442 
ROC-AUC = area under the receiver operating characteristic curve; MCC = Matthews correlation coefficient; PPV = positive predictive 443 
value; NPV = negative predictive value. 444 
 445 
 446 
 447 

  448 
Figure 3. SHAP value feature importance. Individual features are ranked by importance, where age at diagnosis is the most 449 
important feature. The color represents the feature value (red: high; blue: low). Negative SHAP values (x-axis) contribute 450 
towards a negative model outcome (control or non-affected), while positive SHAP values contribute towards a positive model 451 
outcome (case or affected). 452 

 453 
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 455 
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 457 
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SUPPLEMENTARY MATERIAL 460 

Supplementary Table 1 Overview of the gene literature search identifying genetic markers associated with cisplatin metabolism and 461 
ototoxicity. 462 

 Description Number of genes 
Cisplatin 

metabolism Resistance Pathway 
(KEGG Pathways) 

Overview of genes and 
interactions 

resulting in platinum-based drugs 
resistance. 

46  

Detoxification Pathway 
(BioCyc Pathway) 

Cisplatin is degraded via the 
glutathione-mediated 

detoxification 
pathway. 

9  

Glutathione Transferases 
Cytochrome P450 Enzymes 

ABC Transporters 
(Uniprot) 

The three protein groups may be 
associated with cisplatin 

introduced 
neurotoxicity, since they affect the 

uptake and disposition. Genes 
associated with the groups were 

identified with Uniprot. 

26  
61  
49  

Cisplatin (Uniprot) 
Systematic search identifying 

cisplatin-related genes conducted 
with Uniprot. 

22  

Cisplatin (DrugBank) 
The DrugBank database contains 
information on pharmaceutical 

drugs including cisplatin. 
31  

Ototoxicity Sensorineural Hearing Loss Sensorineural hearing loss-related 
genes conducted with Uniprot. 155  

Ototoxicity Ototoxicity-related genes 
conducted with Uniprot. 2  

 463 
 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
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 483 
Supplementary Figure 1. Step-by-step demonstration of genomic data quality control and information on patients where 484 
questionnaire information was missing. Single-nucleotide polymorphism (SNP) quality filtering included removal of duplicated SNPs 485 
and those with ambiguous genome position, strand, and alleles; call rate (<98%); extreme deviation from Hardy–Weinberg equilibrium (P 486 
value<5 × 10−6); and MAF (<1%). Quality controls applied on the patient samples were based on genotype (chromosome X homozygosity 487 
rate  < 20% for females and > 80% for males) and phenotype sex discordance; extreme heterozygosity or homozygosity (±4 SD from 488 
sample’s hetero-/homozygosity rate mean); outliers from the European descent using 1000 Genomes43 as reference samples; cryptic 489 
relatedness (IBD>18.75%); and population outliers (±4 SD from cluster centroid mean). European outliers were detected by 1) doing 490 
principal component analysis (PCA) to find the center of the European reference samples, and 2) remove samples whose Euclidean distance 491 
from the center > 1.5 * maximum Euclidean distance of the European reference samples44. 492 
Patients with missing questionnaire information consisted of 45 patients who received more than one line of treatment and therefore were 493 
not relevant for the present study and were not invited for the questionnaire in 2014. These were still included for the purpose of quality 494 
control only. 495 
  496 
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 497 
Supplementary Figure 2. Illustration of logistic regression model used in this study. Model was run at Computerome 2.0 498 
(https://www.computerome.dk). The 30 random data splits were run in parallel to reduce running time, thus 32 nodes were used (30 499 
allocated for each random split and 2 for other initializations).  Each node contains 2 CPUs with 20 cores/CPU. 192 GB is the memory 500 
distributed through all cores. 501 

 502 

 503 

 504 
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 506 
Supplementary Figure 3 Misclassified patients and/or patients where genomics “pushed” final classification in the wrong direction. 507 
Arrow starts at prediction score of model with only clinical data (model 1) and ends at prediction score of model with clinical and genomics 508 
data (model 2). A: Patients where genomic data “pushed” the classification in the wrong direction, even though some of them were 509 
correctly classified; B: Inclusion of genomics data helped but not enough to correctly classify these patients; C, D: Neither clinical nor 510 
genomics data helped on these patients classification (in D, score difference between model 2 and 1 was below 0.05). All other patients not 511 
represented here were correctly classified and genomic data “pushed” the classification in the right direction (or if in the wrong direction, 512 
score difference between model 2 and model 1 was below 0.05). 513 
 514 

 515 
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 517 
Supplementary Figure 4 ROC-AUC mean (30 random splits) performances for the random and real models. A: Model with random 518 
clinical data with forward feature selection up until nine features. Shaded blue area indicates 95% CI. B: Comparison between real model 519 
(mean ROC-AUC 0.66 (95% CI, 0.65-0.66, blue histogram) and random models (mean ROC-AUC 0.50 (95% CI, 0.49-0.51, orange 520 
histogram); C: Model with clinical and non-informative genomics data with forward feature selection up until 32 features. Shaded areas 521 
indicate 95% CI. D: Comparison between real model (mean ROC-AUC of 0.73 (95% CI, 0.71-0.74) and random models (mean ROC-AUC 522 
was 0.67 (95% CI, 0.66-0.68). In B and C, count (y-axis) sums up to 150 as the model consists of 5 outer folds and 30 data splits were done 523 
(5x30). 524 
ROC-AUC = area under the receiver operating characteristic curve; No.= number; CI = confidence interval. 525 
 526 
 527 
 528 
 529 
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Supplementary Note 1. Model hyperparameters, encoding, and normalization 531 

On the logistic regression model, hyperparameter optimization was done for the inverse of regularization strength. Values between 1x10-4 532 
and 1x104 were tried (20 values in total spaced evenly on a log scale). Smaller values specify stronger regularization. 533 
Ordinal categorical variables were encoded as one-column vectors, i.e. ({1,2,3,4}) for treatment cycles 3, 4, 5 or more, and high dose 534 
(double dose of chemotherapy, unspecified number of cycles) BEP cycles, respectively; ({1,2,3}) for prognosis good, intermediate, and 535 
poor, respectively; and ({0,1,2}) for smoking habits never, former, and current, respectively. The nominal variable histology was encoded 536 
in one column, ({1,2}), for non-seminoma, or seminoma, respectively. Continuous variables were represented in absolute values (age at 537 
diagnosis, body mass index, glomerular filtration rate before treatment, cumulative cisplatin dose per square meter of BSA, and alcohol 538 
consumption in number of units per week. Single-nucleotide polymorphism data was encoded as one column vector with counts of minor 539 
alleles ({0,1,2}).  540 
Features were scaled down to values between 0 and 1 using Sklearns MinMaxScaler. Rescaling of features was done separately in the 541 
training and test set to avoid leakage of the test set information.  542 
 543 
  544 
 545 
 546 
 547 
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Supplementary Note 2. Genes obtained from literature search. 549 

Resistance Pathway (KEGG Pathways*) (with aliases): 550 
GST, gst, PIK3CA, APAF1, BAD, BAX, BCL2, CASP3, REV3L, POLZ, FADD, PIK3R1, TOP2, POLH, ERK, MAPK1, TNFSF6, FASL, 551 
CD178, TNFRSF6, FAS, CD95, CASP8, CASP9, MAP3K5, ASK1, TP53, P53, AKT, BCL2L1, bcl-xL, XIAP, BIRC4, BID, ATM, TEL1, 552 
ERBB2, HER2, CD340, ABCC2, PDPK1, CDKN2A, P16, INK4A, CDKN1A, P21, CIP1, MDM2, BIRC5, MLH1, MSH2, MSH3, MSH6, 553 
CYC, PMAIP1, NOXA, BBC3, PUMA, BRCA1, XPA, ERCC1, BAK, BAK1, SLC31A1, CTR1, BIRC2, copA, ctpA, ATP7, GSTP, 554 
BIRC3, MAPK3, PIK3R3, PIK3R2, PIK3CB, PIK3CD 555 
*KEGG entry name: “Platinum drug resistance” 556 
 557 
Detoxification Pathway (BioCyc Pathway)  558 
GSTZ1, GSTA1, GSTA2, ABCC1, GGT1, GGT5, CCBL1, CCBL2, NAT8 559 
*Name of pathway in BioCyc: “glutathione-mediated detoxification I” 560 
 561 
Glutathione Transferases (Uniprot*) (with aliases) 562 
PTGES, MGST1L1, MPGES1, PGES, PIG12, MGST3, MGST2, GST2, MGST1, GST12, MGST, LANCL1, GPR69A, HPGDS, GSTS, 563 
PGDS, PTGDS2, GSTZ1, MAAI, GSTT4, GSTTP1, GSTT2B, GSTT2, GSTT2, GSTT1, GSTP1, FAEES3, GST3, GSTO2, GSTO1, 564 
GSTTLP28, GSTM5, GSTM4, GSTM3, GST5, GSTM2, GST4, GSTM1, GST1, GSTK1, HDCMD47P, GSTCD, GSTA5, GSTA4, 565 
GSTA3, GSTA2, GST2, GSTA1 566 
*search string: name:glutathione name:transferase AND reviewed:yes AND organism:"Homo sapiens (Human) [9606]" 567 
 568 
Cytochrome P450 enzymes (Uniprot*)  (with aliases) 569 
 CYP2C9, CYP2C10, CYP21A2, CYP21, CYP21B, CYP3A4, CYP3A3, CYP2C8, CYP27B1, CYP1ALPHA, CYP27B, CYP26B1, 570 
CYP26A2, P450RAI2, CYP1A1, CYP11B2, CYP4A11, CYP4A2, CYP51A1, CYP51, CYP26A1, CYP26, P450RAI1, CYP2C19, 571 
CYP17A1, CYP17, S17AH, CYP1A2, CYP11B1, S11BH, CYP2A6, CYP2A3, CYP2C18, CYP27A1, CYP27, CYP3A5, CYP2B6, 572 
CYP2D6, CYP2DL1, CYP11A1, CYP11A, CYP4F2, CYP2E1, CYP2E, CYP4B1, CYP3A7, CYP4F3, LTB4H, CYP24A1, CYP24, 573 
CYP19A1, ARO1, CYAR, CYP19, CYP2A7, CYP7A1, CYP7, CYP4A22, CYP2F1, CYP4F12, UNQ568, PRO1129, CYP39A1, 574 
CYP7B1, CYP2A13, CYP26C1, CYP46A1, CYP46, CYP2U1, POR, CYPOR, CYP4F11, CYP4F22, CYP4V2, CYP2W1, CYP2S1, 575 
UNQ891, PRO1906, CYP2J2, CYP2R1, CYP4F8, CYP1B1, CYP3A43, CYP2D7, CYP27C1, TBXAS1, CYP5, CYP5A1, CYP8B1, 576 
CYP12, CYP4X1, UNQ1929, PRO4404, CYP4Z1, UNQ3060, PRO9882, CYP2G1P, CYP2GP1, CYP20A1, UNQ667, PRO1301, 577 
CYP4Z2P, CYP4F30P, C2orf14 578 
*search string: name:cytochrome name:p450 AND reviewed:yes AND organism:"Homo sapiens (Human) [9606]" 579 
 580 
ATP binding cassette (Uniprot*) (with aliases) 581 
TAP2, ABCB3, PSF2, RING11, Y1, TAP1, ABCB2, PSF1, RING4, Y3, CFTR, ABCC7, ABCG8, ABCG5, ABCG4, WHITE2, ABCG2, 582 
ABCP, BCRP, BCRP1, MXR, ABCG1, ABC8, WHT1, ABCD4, PXMP1L, ABCD3, PMP70, PXMP1, ABCD2, ALD1, ALDL1, ALDR, 583 
ALDRP, ABCD1, ALD, ABCC9, SUR2, ABCC8, HRINS, SUR, SUR1, ABCC6, ARA, MRP6, ABCC5, MRP5, ABCC4, MRP4, ABCC3, 584 
CMOAT2, MLP2, MRP3, ABCC2, CMOAT, CMOAT1, CMRP, MRP2, ABCC12, MRP9, ABCC11, MRP8, ABCC10, MRP7, SIMRP7, 585 
ABCC1, MRP, MRP1, ABCB9, KIAA1520, ABCB8, MABC1, MITOSUR, ABCB7, ABC7, ABCB6, MTABC3, PRP, UMAT, ABCB5, 586 
ABCB4, MDR3, PGY3, ABCB11, BSEP, ABCB10, ABCB1, MDR1, PGY1, ABCA9, ABCA8, KIAA0822, ABCA7, ABCA6, ABCA5, 587 
KIAA1888, ABCA4, ABCR, ABCA3, ABC3, ABCA2, ABC2, KIAA1062, ABCA13, ABCA12, ABC12, ABCA10, ABCA1, ABC1, 588 
CERP 589 
*search string: name:atp name:binding name:cassette AND reviewed:yes AND organism:"Homo sapiens (Human) [9606]" 590 
 591 
Cisplatin (Uniprot*) (with aliases)  592 
ATP11B, ATPIF, ATPIR, KIAA0956, LRRC8D, LRRC5, UNQ213, PRO239, SSRP1, FACT80, RAD23B, SIVA1, SIVA, PRIMPOL, 593 
CCDC111, LRRC8A, KIAA1437, LRRC8, SWELL1, UNQ221, PRO247, MCM8, C20orf154, ABCC2, CMOAT, CMOAT1, CMRP, 594 
MRP2, POLH, RAD30, RAD30A, XPV, SLC22A2, OCT2, SRSF2, SFRS2, DCLRE1A, KIAA0086, SNM1, SNM1A, FAM168A, 595 
KIAA0280, TCRP1, RDM1, RAD52B, XPC, XPCC, YBX1, NSEP1, YB1, NOX3, MOX2, ADIRF, AFRO, APM2, C10orf116, 596 
DNAJC15, DNAJD1, GIG22, HSD18, TMEM205, UNQ501, PRO1018, CLPTM1L, CRR9 597 
*search string: (annotation:(type:function cisplatin) OR annotation:(type:"activity regulation" cisplatin) OR annotation:(type:disease cisplatin) 598 
OR annotation:(type:pharmaceutical cisplatin) OR annotation:(type:mutagen cisplatin)) AND reviewed:yes AND organism:"Homo sapiens 599 
(Human) [9606]" 600 
 601 
Cisplatin (Drugbank*)  602 
MPG, A2M, TF, ATOX1, MPO, XDH, CYP4A11, PTGS2, nat, CYP2C9, CYP2B6, BCHE, GSTT1, MT1A, MT2A, SOD1, GSTP1, 603 
NQO1, GSTM1, ALB, ABCC3, ABCC5, ABCC2, SLC22A2, SLC31A1, SLC31A2, ABCC6, ABCB1, ATP7B, ATP7A, ABCG2 604 
*Name of drug in Drugbank: “cisplatin” 605 
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 606 
Sensorineural hearing loss (Uniprot*) (with aliases) 607 
ABHD12, ACS4, ACSL4, ACTG, ACTG1, ADMLX, AFG2, AIE75, AIGF, ALR, AMMECR1, AMMECR2, ANOS1, AP19, AP1S1, 608 
APNH1, ARSG, ATP1A3, ATP6B1, ATP6B2, ATP6N1B, ATP6N2, ATP6V0A4, ATP6V1B1, ATP6V1B2, AXOR12, BCS1, BCS1L, 609 
BFGFR, BHLHE32, BM28, BOM, BRWD2, BV8, C14orf10, C19orf64, C1orf7, C20orf22, C20orf54, C21orf29, C6orf125, C6orf29, 610 
C6orf32, C9orf75, C9orf81, CCNL1, CD164, CDC14A, CDCL1, CDH23, CEACAM16, CEAL2, CEK, CEP2, CEP250, CEP78, CGI-47, 611 
CHD7, CIAS1, CIB2, CLAPS1, CLDN14, CLLD7, CNAP1, COI, COL11A1, COL11A2, COL2A1, COL4A6, COL9A2, COLL6, 612 
COMT2, COXI, CRYM, CTL4, DCDC2, DFNA5, DFNB31, DFNB36, DIABLO, DIAP1, DIAP3, DIAPH1, DIAPH3, DIFF48, DLX5, 613 
DMXL2, DUSP6, E4.5, ECHOS1, EDG5, EIF3F, EIF3S5, ELMOD3, ENT3, EPS8L2, EPS8R2, ESPN, EXOSC2, EYA4, FACL4, 614 
FAM65B, FER1L2, FEZ, FEZF1, FGF17, FGF8, FGFBR, FGFR1, FGFR3, FKHL7, FLG, FLRT3, FLT2, FOXC1, FP17425, FREAC3, 615 
G5PR, GAS3, GFER, GIPC3, GJB2, GJB6, GMPPB, GNRH, GNRH1, GNRHR, GPR54, GPR73L1, GRAP, GRH, GRHL2, GRHR, 616 
GSDME, HBGFR, HCCS4, HERV1, HGF, HOMER2, HPO, HPTA, HRIHFB2122, HS6ST, HS6ST1, HXB, IARS2, ICERE1, IL17RD, 617 
IL17RLM, ILDR1, IRX2A, IRX5, IRXB2, JTK4, KAL, KAL1, KALIG1, KCNE1L, KCNE5, KCNJ10, KCNQ4, KIAA0030, KIAA0386, 618 
KIAA0389, KIAA0567, KIAA0772, KIAA0856, KIAA1001, KIAA1154, KIAA1171, KIAA1351, KIAA1416, KIAA1469, KIAA1526, 619 
KIAA1662, KIAA1774, KIAA1812, KIAA1897, KIAA2034, KIP2, KISS1, KISS1R, KRML, LACS4, LHFPL5, LHRH, LP2654, LRP2, 620 
LRTOMT, MAFB, MAP3K20, MARS2, MARVELD2, MCM2, MET, MITF, MKP3, MKS3, MLTK, MNF1, MT-CO1, MTCO1, 621 
MYH14, MYH9, MYO15, MYO15A, MYO1F, MYO6, MYO7A, NALP3, NELF, NG22, NHE1, NK3R, NKNB, NLRP3, NRSF, NSMF, 622 
NTRKR1, OPA1, ORP2, OSBPL2, OTOA, OTOF, P2RX2, P2X2, PAF1, PAF3, PCDH15, PCNA, PDS, PEX1, PEX10, PEX12, PEX13, 623 
PEX2, PEX26, PEX5, PEX6, PI6, PKR2, PL48, PMP22, PMP3, PMP35, PP13181, PP4068, PP5098, PP7517, PPP2R3C, PRES, 624 
PRO1155, PRO1380, PRO1571, PRO1777, PRO1865, PRO187, PRO20026, PRO382, PRO4340, PRO874, PROK2, PROKR2, PRPS1, 625 
PTI, PTPRQ, PUS7, PXAAA1, PXMP3, PXR1, PYPAF1, PYST1, RAB40AL, RBED1, RBM29, RCBTB1, RDX, REST, RFT2, RFVT3, 626 
RIPOR2, RLGP, RNF69, RNF72, ROR1, RRP4, RU2, S1PR2, SANS, SEF, SEMA3A, SEMAD, SERPINB6, SLC17A8, SLC26A4, 627 
SLC26A5, SLC29A3, SLC44A4, SLC52A3, SLC9A1, SLITRK6, SMAC, SPAF, SPATA5, SPRY4, STRC, TAC3, TAC3R, TACR3, 628 
TADG12, TARA, TBC1D24, TBL1, TBL1Y, TECTA, TFCP2L3, THBP, TMC1, TMEM132E, TMEM67, TMHS, TMIE, TMPRSS3, 629 
TNC, TOMT, TPPT1, TPRN, TRIC, TRIOBP, TRNT1, TSPEAR, TUBB2C, TUBB4B, UNQ161, UNQ1894, UNQ323, UNQ441, 630 
UNQ585, UNQ6115, UNQ717, UNQ777, UNQ839, UNQ856, UQCC2, USH1B, USH1C, USH1F, USH1G, USH2A, VATB, VGLUT3, 631 
VPP3, VPP3, WBP2, WDR11, WDR15, WFS1, WHRN, XBR, XPNPEP3, ZAK, ZNF312B 632 
*search string: reviewed:yes AND organism:”Homo sapiens (Human) [9606]” AND (annotation:(type:disease ”sensorineural hearing loss”) OR 633 
annotation:( type:”disruption phenotype” ”sensorineural hearing loss”) OR annotation:(type:mutagen ”sensorineural hearing loss”) OR 634 
annotation:(type:function ”sensorineural hearing loss”) OR annotation:(type:pathway ”sensorineural hearing loss”)) 635 
 636 
Ototoxicity (Uniprot*) (with aliases) 637 
TRMU, MTU1, TRMT1, MYO7A USH1B 638 
*search string: reviewed:yes AND organism:”Homo sapiens (Human) [9606]” AND (annotation:(type:disease *Search string: ”ototoxicity”) OR 639 
annotation:(type:”disruption phenotype” ”ototoxicity”) OR annotation:(type:mutagen ”ototoxicity”) OR annotation:(type:function ”ototoxicity”) 640 
OR annotation:(type:pathway ”ototoxicity”)) 641 
 642 
 643 
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Abstract

Background: Cisplatin-based chemotherapy may induce nephrotoxicity. This study presents a random forest predictive
model that identifies testicular cancer patients at risk of nephrotoxicity before treatment. Methods: Clinical data and DNA
from saliva samples were collected for 433 patients. These were genotyped on Illumina HumanOmniExpressExome-8 v1.2
(964 193 markers). Clinical and genomics-based random forest models generated a risk score for each individual to develop
nephrotoxicity defined as a 20% drop in isotopic glomerular filtration rate during chemotherapy. The area under the receiver
operating characteristic curve was the primary measure to evaluate models. Sensitivity, specificity, and positive and negative
predictive values were used to discuss model clinical utility. Results: Of 433 patients assessed in this study, 26.8% developed
nephrotoxicity after bleomycin-etoposide-cisplatin treatment. Genomic markers found to be associated with nephrotoxicity
were located at NAT1, NAT2, and the intergenic region of CNTN6 and CNTN4. These, in addition to previously associated
markers located at ERCC1, ERCC2, and SLC22A2, were found to improve predictions in a clinical feature–trained random forest
model. Using only clinical data for training the model, an area under the receiver operating characteristic curve of 0.635 (95%
confidence interval [CI] ¼ 0.629 to 0.640) was obtained. Retraining the classifier by adding genomics markers increased perfor-
mance to 0.731 (95% CI ¼ 0.726 to 0.736) and 0.692 (95% CI ¼ 0.688 to 0.696) on the holdout set. Conclusions: A clinical and
genomics-based machine learning algorithm improved the ability to identify patients at risk of nephrotoxicity compared
with using clinical variables alone. Novel genetics associations with cisplatin-induced nephrotoxicity were found for NAT1,
NAT2, CNTN6, and CNTN4 that require replication in larger studies before application to clinical practice.

Standard treatment in patients with disseminated testicular
cancer is chemotherapy consisting of bleomycin-etoposide-
cisplatin (BEP). Cisplatin is also central in the treatment of
many other solid tumors such as bladder, ovarian, and lung
cancer (1). Treatment containing cisplatin has a wide range of
side effects, one of which is nephrotoxicity (2,3).

Cisplatin is excreted by the kidneys and may induce nephro-
toxicity resulting in glomerular filtration rate (GFR) decline (4).
Maintenance of sufficient renal function during treatment with
chemotherapy is vital, and identification of patients at risk for
developing nephrotoxicity could influence the treatment of
choice if alternatives exist. Additionally, impaired renal func-
tion has been associated with increased risk of cardiovascular

disease (5), which may pose a problem in long-term cancer
survivors.

Previous studies have improved the understanding of molec-
ular mechanisms of cisplatin-induced nephrotoxicity (6), and
several candidate gene studies have identified single-
nucleotide polymorphisms (SNPs) associated with cisplatin-
induced nephrotoxicity (7–9). However, these studies were
conducted with surrogate measures of GFR (creatinine clear-
ance or estimated GFR) rather than measured GFR as outcome.

The scope of this study was 2-fold: first, to conduct a
genome-wide association study (GWAS) using a linear model
controlling for cisplatin dosage (high or normal) to identify new
genetic variants associated with cisplatin-induced
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nephrotoxicity; and second, to investigate the utility of germline
genetic markers together with clinical prognostic factors to predict
nephrotoxicity using a random forest-recursive feature elimina-
tion algorithm. Patients treated for disseminated testicular cancer
were chosen for this study because this patient group does not
normally have comorbidity, which could influence renal function.

Methods

Patients

Patients were identified in the Danish Testicular Cancer-Late
cohort (10), which includes 2572 Danish patients treated for tes-
ticular cancer from 1984 through 2007. Clinical features from
433 patients were originally extracted from hospital files as reg-
istered in the Danish Testicular Cancer database (Table 1). In
2014, all patients with measurements of renal function before
and after treatment with BEP were invited to deliver a saliva
sample for DNA analysis (Supplementary Figure 1, available on-
line). Patients provided informed consent, and the study was
approved by the regional ethical committee (H-2-2012-044) and
the National Board of Data Protection (2012-41-0751).

Treatment and Renal Measurement

All 433 patients received 3 cycles or more of BEP. The majority
received normal-dose cisplatin 20 mg/m2� 5 q3w, etoposide

100 mg/m2� 5 q3w, and bleomycin 15 IU/m2 q1w, and 25
patients received double-dose cisplatin and etoposide: cisplatin
40 mg/m2� 5 q3w, etoposide 200 mg/m2� 5 q3w, and bleomycin
15 IU/m2 q1w. Hydration remained uniform over time with 2 L
isotonic saline before cisplatin and an additional 1-2 L after.
Diuretics were administered only in special cases, and no mag-
nesium was added to hydration. There was no predefined cutoff
of renal function where patients would not receive cisplatin-
based triplets; however, to ensure toxicity was related to treat-
ment, only patients with a GFR greater than 90 mL/min/1.73m2

before chemotherapy were included.
GFR was measured by the 1-sample 51Cr-ethylenediamine-

tetra acetic acid clearance technique using 2 samples
200 minutes after tracer injection and normalized to a body sur-
face area (BSA) of 1.73 m2.

Genomic Information

Genomic DNA was collected and purified using GeneFiX Saliva
DNA Midi Kit from Isohelix (Harrietsham, UK). DNA samples
were prepared at DTU Multi-Assay Core (Lyngby, Denmark) and
genotyped at AROS Applied Biotechnology A/S (Aarhus,
Denmark) using Illumina HumanOmniExpressExome-8 v1.2
chip (964 193 markers).

Genomic data were filtered using standard quality control
steps (Supplementary Figure 2, available online). GWAS testing
for single SNP association was conducted using PLINK (11)

Table 1. Comparison of baseline characteristics between affected (GFR high-drop) and nonaffected patients a

Characteristics Affected, No. (%) Nonaffected, No. (%) Pb

No. of patients 116 (26.8) 317 (73.2)
Clinical characteristics
Age, median (IQR) 34 (27-43) 30 (26-37) .001
BEP regimen

Normal dose 92 (79.3) 295 (93.4) <.001
Double dose 24 (20.7) 21 (6.6)
Unknown — 1

GFR before treatment, median (IQR), mL/min/1.73 m2 128 (115-139) 119 (110-131) .001
GFR after treatment, median (IQR), mL/min/1.73 m2 88 (75-99) 109 (100-119) <.001
Cisplatin, median (IQR), mg/m2 400 (391-410) 400 (300-400) <.001
Treatment cycles

3 20 (17.2) 97 (30.6) <.001
4 72 (62.1) 199 (62.8)
5 or more 6 (5.2) 14 (4.4)
High dose 18 (15.5) 7 (2.2)

Histology
Seminoma 23 (19.8) 68 (21.5) .78
Nonseminoma 93 (80.2) 249 (78.5)

Prognostic group
Good 71 (61.2) 277 (87.4) <.001
Intermediate 30 (25.9) 35 (11.0)
Poor 15 (12.9) 5 (1.6)

Stage
Extragonadal 15 (12.9) 15 (4.7) .87
Stage Im 7 (6.0) 30 (9.6)
Stage Iia 22 (19.1) 80 (25.5)
Stage Iib 21 (18.1) 77 (24.5)
Stage Iic 23 (19.8) 42 (13.4)
Stage III 28 (24.1) 70 (22.3)
Unknown — 3

aBEP ¼ bleomycin-etoposide-cisplatin; GFR ¼ glomerular filtration rate; IQR ¼ interquartile range.
bP values were calculated by 2-sided Mann-Whitney U test for continuous or ordinal characteristics. For “histology,” P value was calculated by v2 test.
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(v1.9beta3), with the GFR decline after chemotherapy as the
measure of toxicity and discretized cisplatin dosage as covariate
with double-dose and normal-dose groups. The cutoff of 5 cycles
was made to differentiate between normal and historically
higher doses of cisplatin.

SNPs were annotated by ANNOVAR (v2015-06-17) (12)
against the human reference genome hg19. Gene expression
profiles were retrieved from GTExPortal (13).

We used a suggestive P value threshold of 1� 10�5 (14) and a
stringent threshold of 8.02� 10�8 [Bonferroni corrected (15)].

In addition to the GWAS hits, 4 SNPs, rs11615 and rs3212986
(ERCC1), rs13181 (ERCC2), and rs316019 (SLC22A2), found in pre-
vious literature to be associated with cisplatin-induced nephro-
toxicity (9), were added to the input feature search space in the
machine learning modeling.

Clinical Information

The clinical features used as input feature variables in the ma-
chine learning model were age at time of treatment, GFR before
treatment, cumulative cisplatin dose per square meter of BSA,
normal dose vs double-dose BEP, number of treatment cycles,
histology (seminoma vs nonseminoma), prognostic classifica-
tion as per IGCCCG (16) and stage of the disease as surrogate for
size of retroperitoneal tumor size, which was represented as 3
features in the model (details on Supplementary Methods,
available online).

Statistical Analysis and Model Development

A random forest model (17), which identified different risk sub-
groups of GFR drop, was developed using SciKit-learn (18) in
Python (v3.7.1). A GFR decline of more than 20% after chemo-
therapy was chosen as outcome to indicate a clinically signifi-
cant change and to avoid selection of cases due to random
variation. A 20% decline has been associated with, for example,
cognitive deterioration (19) and risk of cardiovascular and all-
cause mortality compared with those with stable GFR (20).

As a first stage, the predictive power of a model driven by
clinical features only was established. In a second stage, geno-
mic markers were added to the model.

From all 433 individuals, about 20% (78 individuals: 20 neph-
rotoxicity affected) of the data, with no missing values, was ran-
domly separated ahead of time to be used as a holdout set.
Therefore, for machine model training, we omitted those 78
individuals present on the holdout set and excluded individuals
with missing data in either clinical or genomic data
(Supplementary Figure 1, available online). Patients’ baseline
characteristics in each of these sets are available in
Supplementary Table 2 (available online).

Training and testing of the algorithm was performed with a
5 outer, 2 inner fold nested cross-validation (21,22)
(Supplementary Figure 3, available online).

The sample-splitting process for training and testing cohorts
was random and repeated 100 times. Area under the receiver
operating characteristic curve (ROC-AUC) was used as the pri-
mary performance measure for model optimization.

A recursive backwards feature elimination approach was
used for feature selection initiated with 10 clinical features
and then reduced (23). To identify when the algorithm should
stop removing features, a paired t test (level of statistical sig-
nificance, P< .05) was calculated for each round of feature
elimination on mean ROC-AUCs (Figure 1, A and B). A

statistically significant AUC drop (P< .05) was indicative of an
important feature being eliminated. All statistical tests were
2-sided. Details on model optimization and variable impor-
tance are described in the Supplementary Methods (available
online).

The top-ranked clinical features constituted the baseline for
adding prioritized SNPs from GWAS (17 SNPs) and the literature
(4 SNPs), and feature selection was done using recursive back-
wards feature elimination approach.

Polygenic Risk Score (PRS)-Derived Models

We also calculated PRS-derived models weighted by effect sizes
estimated by the GWAS using the R-Package PRSice (24). These
were tested in the random forest models in place of individual
SNPs. Two different approaches were used: the risks associated
with all the 21 SNPs were combined to determine a PRS, and a
PRS per gene was estimated.

Model Performances and Risk Groups

The primary reported performance was assessed with a 0.50
cutoff on the random forest model scores. In addition, to deter-
mine clinical applicability, we assessed different cutoffs on the
random forest scores with a goal of 10% false discovery or omis-
sion rate (positive or negative predictive values >90%).

For the SNPs and clinical-based models from the best round,
the split that had a representative ROC-AUC close to the mean
was used to assess different cutoffs (25) (Supplementary Figure
4, available online).

Based on this, specific cutoffs for detection of 3 risk groups
were used on the holdout set: a high-risk group for developing
nephrotoxicity; a low-risk group for developing nephrotoxicity;
and an intermediate group, which refers to individuals whose
prediction is not adequately compelling to change the clinical
decision.

Results

Study Population

Overall, 433 individuals (26.8% nephrotoxicity affected) were
assessed in this study, with a median (interquartile range
[IQR]) age of 34 (27-43) years for affected patients (N¼ 116) and
30 years (26–37) for nonaffected patients (N¼ 317). The major-
ity received 3 or 4 cycles of BEP. Before treatment, the median
(IQR) GFR (mL/min/1.73 m2) was 128 (115-139) for affected and
119 (110-131) for nonaffected, and after treatment it decreased
to 88 (75-99) for affected and 109 (100-119) for nonaffected
(Table 1).

Genome-Wide Association Study

Of 433 saliva samples received, 8 failed to yield high-quality ge-
netic data. After quality control filtering, a total of 411 patients
and 623 289 SNPs were eligible for GWAS (Supplementary
Figures 1 and 2, available online).

There was no indication of population stratification or infla-
tion in the quantile-quantile plot of observed vs expected -log10

(P values) (Supplementary Figure 5, available online). GWAS
controlling for cisplatin-based chemotherapy dosage identified
17 SNPs associated with GFR decline. Seven SNPs located
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contiguous on chromosome 14 within the intergenic region be-
tween LINC00645 and FOXG1 passed a genome-wide statistical
significance threshold of P ¼ 8.02� 10�8 (Figure 2; Table 2). Nine
additional SNPs located on chromosome 8, cytoband p22, passed
a suggestive threshold of P ¼ 1� 10�5 and were located in the in-
tron and 3�untranslated region of NAT1 or the intergenic region
between NAT1 and NAT2. SNP rs17038909 (P ¼ 6.70� 10�8), lo-
cated in the intergenic region between CNTN6 and CNTN4,
passed the genome-wide statistical significance threshold.

These 17 SNPs were included in input feature space of the
machine learning models.

Risk Prediction Model

A baseline predictive model with only clinical features was
trained using random forests. Of the initial 10 clinical features,
6 features were prioritized through recursive backwards elimi-
nation (Figure 1A): age at time of treatment, GFR before treat-
ment, cumulative cisplatin-dose per square meter of BSA,

number of treatment cycles, prognostic classification as per
IGCCCG (1)2 (16), and stage of the disease, excluding group and
histology. Univariate analysis also highlighted features selected
in the random forest model (Table 1).

SNPs and Clinical-Based Model

A selection of genomic markers was added to the baseline clini-
cal prediction model: 17 SNPs from the GWAS and 4 additional
SNPs from prior literature. Through recursive backwards elimi-

nation, 15 features were prioritized (6 clinical and 9 SNPs). The
selected SNPs were rs11615 and rs3212986 (ERCC1), rs13181
(ERCC2), rs4986993, rs15561, rs8190870 (NAT1), rs1353035 (NAT1/

NAT2), rs316019 (SLC22A2), and rs17038909 (CNTN6/CNTN4)
(Figure 1, B and C). None of the SNPs located within the inter-
genic region between LINC00645 and FOXG1 were selected.

By adding genomic markers, ROC-AUC increased from 0.635
(95% confidence interval [CI] ¼ 0.629 to 0.640) to 0.731 (95% CI ¼
0.726 to 0.736) (Figure 1D for additional performance metrics).

A B

C D

Figure 1. Feature selection using random forest-recursive feature elimination algorithm and diagnostic performances. A and B) Boxplots with different number of fea-

tures, �10 to 1 and 27 to 5, for clinical and clinical plus genomics, respectively, and respective area under the receiver operating characteristic curve (ROC-AUC)

throughout 100 different replications for data shuffling. Asterisks between boxplots represent P values (paired t test) of >.05 (*), � .05 (**), and � .01 (***). All tests were

2-sided. The red arrow represents the block chosen for further analysis. C) The features chosen the most on the 15-features clinical and SNP-based models. D)

Performances obtained (mean and 95% confidence intervals) on the clinical models (6 features) and on the clinical and SNP-based models (15 features) using 0.50 cutoff

for classification for sensitivity, specificity, positive predictive value, and negative predictive value. NPV ¼ negative predictive value; Perfs. ¼ performances; PPV ¼ posi-

tive predictive value; ROC-AUC ¼ area under the receiver operating characteristic curve; SNP ¼ single-nucleotide polymorphism.

4 of 8 | JNCI Cancer Spectrum, 2020, Vol. 4, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jncics/article/4/3/pkaa032/5824303 by guest on 14 M

arch 2021

Chapter 7. Paper IV: Nephrotoxicity prediction 103



Additionally, 2 PRS were added independently to the base-
line clinical model but did not outperform the individual SNPs
(Supplementary Table 1, available online).

Model Robustness

As a further validation, we tested for random outcome, simu-
lated by permuting the labels 2000 times. This generated ran-
dom performance for the model based on the clinical traits in

combination with the 9 SNPs previously reported, with a ROC-
AUC mean of 0.498 (95% CI ¼ 0.497 to 0.500). Furthermore, to as-
sess if the SNP selection was meaningful, the performance of 9
random GWAS SNPs instead of the previously described 9 se-
lected SNPs was tested when combined with the selected clini-
cal traits; this process was repeated 2000 times. This performed
very similarly to clinical traits alone, with a ROC-AUC mean of
0.661 (95% CI ¼ 0.660 to 0.661) against the model scores with a
ROC-AUC mean of 0.742 (95% CI ¼ 0.741 to 0.743) (Figure 3).

Figure 2. Genome-wide association study. Manhattan plot for association of 623 289 single-nucleotide polymorphisms with glomerular filtration rate decline. Linear

model adjusted for cisplatin dosage was performed. The black dashed line represents a suggestive threshold: 1�10�5, and the red dashed line represents a stringent

Bonferroni corrected threshold: 8.02�10�8. Markers in a contiguous pattern that pass the suggestive threshold are marked with a dotted box.

A B

Figure 3. Benchmarking of the models. A) Test for random outcome simulated by permuting the labels 2000 times. B) Test for random single-nucleotide polymor-

phisms selection by combining 9 random markers, instead of the 9 selected markers, with the selected clinical traits. ROC-AUC ¼ area under the receiver operating

characteristic curve; SNP ¼ single nucleotide polymorphism.
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Replication Dataset

The holdout set (78 individuals: 20 nephrotoxicity affected) was
used for replication of the random forest models with clinical
and genetic features. A ROC-AUC of 0.692 (95% CI ¼ 0.688 to
0.696) was obtained on the final evaluation (Figure 4A).

A prediction cutoff of 0.90 and 0.30 for high risk and low risk,
respectively, of developing nephrotoxicity was chosen for fur-
ther analysis on 1 validation external set to discuss the model
clinical utility. A random forest score between 0.30 and 0.90 was
not enough to make a clinical decision. In the high-risk group,
we had a positive predictive value of 0.67 (33% false discovery
rate) and specificity of 0.99 while capturing 6% of all nephrotoxi-
city, whereas in the low-risk group we had a sensitivity of 0.92
and negative predictive value of 0.92 (8% false omission rate),
which captured 32% of all nonaffected patients (Figure 4B).

Discussion

In this study, we were able to predict patients at risk of develop-
ing nephrotoxicity after BEP chemotherapy based on clinical
and genetic features with a machine learning algorithm.
Clinical features selected on the random forests–driven baseline
clinical model were known risk factors of renal toxicity (2) and
were statistically significant in univariate analysis. The aim of
the baseline model was to mimic and codify clinical intuition,
which relies on the available clinical information at the time of
treatment.

When genomic markers were added to the baseline model,
prediction power substantially improved. We believe that geno-
mic information, although not being predictive on its own,
improves a baseline clinical model for identification of patients
at risk for nephrotoxicity.

PRS did not perform as well as independent SNPs when
added to the model, suggesting that nonlinear correlations be-
tween SNPs drove the increase in performance opposed to the
linear combination that PRS offer, as has also been suggested
elsewhere (26).

SNPs located in the LINC00645 and FOXG1 intergenic
regions, although strongly associated in the GWAS (P ¼
5� 10�8), were not selected in the machine learning model be-
cause of either limited contribution or low minor allele fre-
quencies (Table 2) that made it harder to detect in cross-
validated setups.

SNPs rs4986993, rs15561, and rs8190870 (NAT1), rs1353035
(NAT1/NAT2), and rs17038909 (CNTN6/CNTN4) were newly dis-
covered in the present GWAS to be associated with nephro-
toxicity and added performance to the machine learning
model.

NAT1 and NAT2 encode for arylamine N-acetyltransferases
that take part in metabolizing drugs and chemical compounds
in humans with a role in folate metabolism (27). These 2 genes
encode similar protein sequences [identity¼ 81.03%, Clustal-
Omega, Uniprot (28)], yet differ on expression profiles (13). NAT1
is ubiquitously expressed in the central nervous system, and
NAT2 is specifically expressed in the liver, colon, and small in-
testine (Supplementary Figure 6, available online). It has been
reported that cisplatin can impair NAT1 by blocking its transfer-
ase activity in human breast cancer cells and impair murine
Nat2 activity in cultured mouse tissues (liver and kidney) (29),
which on one hand contributes to the therapeutic effects of cis-
platin, but on the other hand may lead to accumulation of cis-
platin in the kidneys.

CNTN6 and CNTN4 encode for contacting proteins, which
mediate cell surface interactions during nervous system devel-
opment and have been suggested to be associated with neuro-
developmental disorders (30–32), though the association with
nephrotoxicity needs to be further explored. SNPs found previ-
ously to be associated with nephrotoxicity were incorporated in
this model. These SNPs were located at ERCC1, ERCC2, and
SLC22A2.

ERCC1 and ERCC2 encode for excision repair proteins, and
polymorphisms in ERCC1/2 have been reported to alter ERCC1/2
DNA repair function (33–35), which may affect nephron repair
capacity after cisplatin exposure during chemotherapy (36–39).
If not adequately repaired, cisplatin-induced DNA damage can
induce cell death (40,41).

A B

Figure 4. Final model evaluation (clinical and genomic markers) on the holdout set. A) Area under (AUC) the receiver operating characteristic curve (ROC; mean and

95% confidence interval) analysis of clinical risk factors and genetic variables for prediction of cisplatin-based nephrotoxicity in testicular cancer patients using the

holdout dataset. B) Diagnostic performances obtained with 3 prediction cutoffs and independent evaluation (random forest score) for each individual: 78 individuals

(�5 cross-validated models) (blue: affected; red: nonaffected). One validation external set was used. The 3 groups are represented: low-risk group (8% false negatives),

undetermined zone, and high-risk group (33% false positives). Perfs. ¼ performances; PPV ¼ positive predictive value; NPV ¼ negative predictive value; FN ¼ false nega-

tives; FP ¼ false positives.
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SLC22A2 encodes for organic cation transporter 2 (OCT2) pro-
tein, which is expressed in the proximal tubule epithelial cells
of the kidney and involved in the absorption and excretion of
xenobiotics and metabolites (42). OCT2 efficiently mediates cis-
platin cellular uptake, leading to high cisplatin accumulation in
renal proximal tubule cells (43) where cisplatin-induced neph-
rotoxicity typically occurs (44). OCT2 may be a key regulator in
the renal accumulation of cisplatin, affecting drug handling and
inducing nephrotoxicity (42,45).

During primary treatment of disseminated testicular cancer,
about one-third of the patients develop cisplatin-induced neph-
rotoxicity (46,47).

This clinical and genomics-based model could be used as an
early assessment for nephrotoxicity risk, assisting in identifying
patients at high and low nephrotoxicity risk and influencing
decisions on cisplatin chemotherapy cycles.

Using a 0.50 cutoff on the random forest model scores, we
were able to achieve a sensitivity of 0.65, positive predictive
value of 0.35, specificity of 0.60, and negative predictive value
of 0.83. Differential thresholding of the nephrotoxicity model
classified patients into high, low, and intermediate risk. For
the high-risk group, the model correctly classified 67% of the
patients who developed nephrotoxicity, yet only a small frac-
tion of affected individuals was captured (0.06 sensitivity). On
the other hand, for the low-risk group, the model correctly
classified 92% of the patients who did not develop nephrotoxi-
city and captured 32% of the nonaffected population
(Figure 4B).

Even though the model shows utility in the ability to predict
toxicity throughout the score range, extreme cutoffs to identify
the highest and lowest risk patients could point at the least dis-
ruptive implementation of such a model within current
practice.

A strength of this study is the large dataset with a good rep-
resentation of patients who developed nephrotoxicity after
cisplatin-based chemotherapy, using exact renal measure-
ments, and the first application, to our knowledge, of artificial
intelligence on predicting such a phenotype.

The machine learning models appeared to be robust with
stable performance across 100 random cross-validation splits of
the training data, demonstrating performance of 0.731 mean
ROC-AUC in cross-validation and 0.692 (95% CI ¼ 0.688 to 0.696)
ROC-AUC in the holdout set. Yet, as a limitation, the machine
learning setups use some of the association results from the
GWAS on the same cohort; therefore, replication on another co-
hort from an external dataset would be of substantial interest.
NAT1 and NAT2 appear as interesting genetic targets to priori-
tize for assaying in future nephrotoxicity studies and would
benefit from functional validation.

The ability to develop machine learning models for patient
stratification in different nephrotoxicity risk groups has the po-
tential to balance aggressive treatment against predicted toxic-
ity risk.

In the future, toxicity may play a larger role in guiding treat-
ment across several complex diseases, where data-driven pre-
diction models may aid in decision making. Some of the clinical
features used in this model, such as age at the time of treatment
and GFR before chemotherapy as well as some of the identified
genomics markers, could be applicable to other tumors types.
Cisplatin is one of the most compelling drugs used in cancer
treatment, and nephrotoxicity is a well-known side effect from
its use. Our model could be applicable to ovarian, bladder, and
lung cancer, where more elderly patients are at risk of nephro-
toxicity and early identification of toxicity risks (or lack thereof)
may influence treatment aggression or increase monitoring for
selected patients.

Table 2. Top GWAS hits and literature SNP hits for cisplatin-based nephrotoxicity in testicular cancer patientsa

SNP Gene CHR Position Region/Consequence Alleles (ref/alt) MAF (all) MAF (EUR) Pb

Top GWAS
rs17038909 CNTN6, CNTN4 3 1467145 Intergenic A/G G: 0.10 G: 0.08 6.70 � 10�8

rs8190845 NAT1 8 18078628 Intronic G/A A: 0.20 A: 0.15 1.79 � 10�6

rs15561 NAT1 8 18080651 3 UTR A/C A: 0.44 A: 0.28 2.29 � 10�7

rs4986993 NAT1 8 18080747 3 UTR T/G T: 0.44 T: 0.28 5.25 � 10�7

rs8190870 NAT1 8 18081272 Downstream C/T T: 0.14 T: 0.15 1.12 � 10�6

rs13270034 NAT1, NAT2 8 18082354 Intergenic G/A A: 0.08 A: 0.13 7.64 � 10�6

rs13277177 NAT1, NAT2 8 18086096 Intergenic A/G G: 0.06 G: 0.10 9.72 � 10�6

rs13277481 NAT1, NAT2 8 18086217 Intergenic A/G G: 0.08 G: 0.13 5.47 � 10�6

rs13270961 NAT1, NAT2 8 18139163 Intergenic T/C C: 0.08 C: 0.11 7.31 � 10-�6

rs1353035 NAT1, NAT2 8 18140633 Intergenic C/T C: 0.15 C: 0.17 5.35 � 10�6

rs17095485 LINC00645, FOXG1 14 28500775 Intergenic C/T T: 0.07 T: 0.06 1.13 � 10�8

rs17382424 LINC00645, FOXG1 14 28529219 Intergenic C/T T: 0.02 T: 0.06 1.29 � 10�8

rs4551947 LINC00645, FOXG1 14 28584430 Intergenic C/A A: 0.05 A: 0.06 2.26 � 10�8

rs8020589 LINC00645, FOXG1 14 28604708 Intergenic C/T T: 0.07 T: 0.06 1.44 � 10�8

rs10131751 LINC00645, FOXG1 14 28681216 Intergenic C/A A: 0.07 A: 0.07 1.45 � 10�8

rs9671720 LINC00645, FOXG1 14 28714229 Intergenic C/T T: 0.05 T: 0.04 8.81 � 10�9

rs12323487 LINC00645, FOXG1 14 28837771 Intergenic C/A/T A: 0.09 A: 0.05 1.19 � 10�8

Literature
rs316019 SLC22A2 6 160670282 Missense A/C A: 0.14 A: 0.11 0.21
rs13181 ERCC2 19 45854919 Stop gained T/A/G G: 0.24 G: 0.36 0.03
rs3212986 ERCC1 19 45912736 Stop gained C/A/G/T A: 0.30 A: 0.25 0.11
rs11615 ERCC1 19 45923653 Synonymous A/G A: 0.33 G: 0.38 0.004

aPositions refer to assembly GRCh37. alt ¼ alternative(s); CHR ¼ chromosome; EUR ¼ Europe; GWAS ¼ genome-wide association study; MAF ¼minor allele frequency;

ref ¼ reference; ; SNP ¼ single-nucleotide polymorphism; UTR ¼ untranslated region.
bA linear model was adjusted for cisplatin dosage and scored by P values representing how likely the variant association was by random chance.
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Additional work: Further investigation of NAT1 and

NAT2 variants in the development of cisplatin-induced

nephrotoxicity in testicular cancer patients

As a continuation of paper IV, and to explore further the genomic regions comprising
NAT1 and NAT2, a targeted NGS analysis was performed by the Beijing Genomics In-
stitute (Hong Kong, China) using the HiSeqX platform (Illumina, San Diego, CA, USA)
on the same patients. DNA probes have been previously designed to bind to several se-
quences of interest in multiple genes, and I was not part of this process. Here, due to
time restrictions, only NAT1 (chromosome 8:18027986-18081198) and NAT2 (chromo-
some 8:18248755-18258728) were explored in detail.
Sentieon DNAseq software (Sentieon version 201808.03) pipeline was used. For each sam-
ple, the following steps were performed: 1) removal of duplicates, 2) mapping to the
human reference genome hg19 using BWA algorithm, 3) realignment around insertions
and deletions, 4) base-score recalibration, and 5) variant calling. Sentieon Haplotyper
algorithm with option −−emit_mode gvcf was used to generate a gVCF file per sample.
Afterwards, a combined variant calling was performed using Sentieon GVCFtyper algo-
rithm. Only bases above Q10 were kept in the gVCF files. After the intersection with the
BED file, only markers located at chromosome 8:18027000-18259000 were included (873
variants).

There were few challenges with this dataset:

• Low coverage (below 10) for some of the samples. There are many potential reasons
for low coverage, such as low sample quality, guanine-cytosine content, and sequences
with many homologous, hypervariable and low complexity regions. Additionally,
poorly designed probes could have been an issue. Here, we observed a pattern
of every ten samples with either low or high coverage (Figure 7.1). During the
experimental setup, samples had been pooled together in blocks of 10 samples per
sequencing lane in the flow cell. Thus, the issue seems to point to the flow cell
sequencing lanes. To ensure that poorly covered variants were not included in the
analysis, the VCF file was further filtered using a depth of 10.

• Due to some lost translation between patients IDs and samples, I have written an in-
house script to compare genomic markers available in both microarray and targeted
sequencing, to match the samples with patient IDs.

Once data was "ready" to use, genomic variants present in samples with a glomerular
filtration rate drop of more than 5% after chemotherapy were retrieved (265 variants).
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This not so strict "threshold" was used to ensure no significant variants were lost in the
process. In Figure 7.2, SNPs are represented by order of frequency in the dataset, and
only SNPs that appear more than four times are present (44 variants).

Ensembl Variant Effect Predictor was used to determine the effect of each variant. Three
variants had a moderate impact: rs4987076, rs4986783 and rs56172717, meaning that they
may change protein effectiveness.
SNPs rs4987076 and rs4986783 also appeared with higher frequency in the dataset. Fur-
thermore, these SNPs are in high linkage disequilibrium [156] with the SNPs found in the
GWAS in paper IV (Figure 7.3). These two SNPs are present in the same seven samples
with glomerular filtration rate decline of 37, 23, 19, 18, 7 (x2) and 6%. SNP rs4987076 is
present in one additional sample with a glomerular filtration rate decline of 33%.
For SNP rs56172717, it was classified as malignant in both SIFT and Polyphen. This SNP
was present in two samples with glomerular filtration rate decline of 22 and 14%.

Other variants from this 44 SNP list would be worth exploring (Table 7.1). From those
44 variants, six were located in regulatory regions, and two were located in transcription
factor binding sites. None of these SNPs in Table 7.1 were considered on the GWAS in
paper IV.

Table 7.1 | Potential SNPs worth to explore in the future as for the consequence.

Uploaded variant Location MAF Consequence Impact Symbol SIFT PolyPhen

rs117733044 8:18037479 <0.01 (A) regulatory_region_variant - NAT1 - -

rs73666897 8:18053812 0.01 (C) regulatory_region_variant - NAT1 - -

rs28383681 8:18054584 0.01 (G) regulatory_region_variant - NAT1 - -

rs28383686 8:18054844 0.12 (C) regulatory_region_variant - NAT1 - -

rs28359484 8:18067876 0.05 (T) TF_binding_site_variant - NAT1 - -

rs28359489 8:18068149 0.01 (A) TF_binding_site_variant - NAT1 - -

rs4987076 8:18080001 0.02 (A) missense_variant MODERATE NAT1 1 0.003

rs4986783 8:18080196 0.02 (G) missense_variant MODERATE NAT1 0.8 0.001

rs56172717 8:18080308 <0.01 (T) missense_variant MODERATE NAT1 0 1

rs7834402 8:18145281 0.14 (C) regulatory_region_variant - - - -

rs7818916 8:18145405 0.13 (G) regulatory_region_variant - - - -
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Chr 8

17470609−
17487909

17491567−
17491687

17491682−
17491802

17500106−
17500226

17500221−
17500341

17500336−
17500456
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17500686
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17501762−
17501882
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Figure 7.1 | Representative illustration of coverage throughout targeted sequences.
Here, only 247 samples (y-axis) and few regions on genes NAT1 and NAT2 (x-axis)
are included. This pattern was observed for other regions as well. Figure generated by
Freja Dahl Hede.
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Figure 7.2 | Genomic variants (y-axis) present in patients with more than 5% drop
in glomerular filtration rate (x-axis). Each dot represents a samples and colors stand
for heterorygous (green) or homozygous for the alternative allele (yellow). Red dashed
lines stand out variants rs4987076 and rs4986783 with moderate impact.
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Figure 7.3 | Linkage disequilibrium between 11 genomic variants present in table 7.1
(black box) and genomic variants described in paper IV [157]. Plots generated from
LDlink [156].



113

Part III

Other projects



114

Chapter 8

Application note: Fluctuation measures

Sara L Garcia, Cecilia B. Jensen, Rikke Linnemann Nielsen,
Ramneek Gupta

FLUCbio: a python package for fluctuation modelling

on postprandial biological data



Application Note 

 

FLUCbio: a python package for fluctuation 

modelling on postprandial biological data 

Sara L. Garcia1, Cecilia B. Jensen1, Rikke Linnemann Nielsen1,2, and Ramneek 
Gupta1,3* 

1Department of Heath Technology, Technical University of Denmark, Kgs. Lyngby, Denmark 
2Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of 
Copenhagen, Denmark 
3Department of Computational Biology, Novo Nordisk Research Centre Oxford, Oxford, United 
Kingdom 
 
*To whom correspondence should be addressed. 

Abstract 
Motivation: Glucose and haemoglobin A1C levels over time are useful to predict clinical outcomes, 
such as pre-diabetes, type 2 diabetes and cardiovascular diseases, however, there is a challenge on 
how to capture the fluctuation patterns of these temporal curves as cardiometabolic disease progress. 
Area under the curve is still a preferred method to profile these curves, however, some information is 
lost in this translational process. Here, we present FLUCbio, a package that outputs different 
fluctuation measurements . 
Results: Our described methods captured other characteristics from postprandial curves which were 
not captured by the area under the curve approach, thus this could be used as complementary 
methods. 
Availability: FLUCbio source code is freely available at GitHub**. All code was implemented in Python. 
Contact: rmgp@novonordisk.com 
 
**Code will be made available once application note is published. 
 

 

1 Introduction  
In biological research many variables contain temporal patterns, which makes them time-dependent. In many of these 

biological processes it is important to understand the pattern and if the output is something that we want to control. For 

example, for pre-diabetes and type 2 diabetes (T2D), postprandial hyperglycaemia is a serious threat and one of the earliest 

signs of glucose homeostasis associated with T2D (American Diabetes Association 2001). Understanding the individual 

variation of glycemic measurements are important markers for early metabolic diagnosis that can help target timely lifestyle 

interventions before cardiometabolic disease progress (Brezina, Orekhova, and Weiss 1997),(Kavakiotis et al. 2017). 

Due to the huge variability of glucose responses across people, several methods (Hulman, Vistisen, et al. 2018); (Hulman, 

Witte, et al. 2018); (Hall et al. 2018); (Schüssler-Fiorenza Rose et al. 2019) have been developed for categorisation of these 

postprandial curves, and hence, classification of patients diabetes status. Several studies have also used the well-known 

area under the curve (AUC) measured by continuous glucose monitoring to profile glycemic patterns (Freckmann et al. 
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2007); (Jackson et al. 2010); (Zeevi et al. 2015); (Søndertoft et al. 2020). However, the same AUC can hide very different 

individual postprandial responses, therefore using it as the only measure may not be the most optimal approach. 

Specifically, the fluctuation of the response variables convey information on stability of glucose control, which is not 

captured by AUC.  

In this study, we developed three simple heuristic measures of curve volatility to capture the fluctuation of postprandial 

curves and we demonstrate that these measures add complementary information to AUC. 

 

Temporal curve: variation and fluctuation 

Variation and fluctuation are two terms which many times are used interchangeable (Hajime et al. 2018), however, they 

represent different characteristics of a postprandial curve (Figure 1), which are import to identify inter- and intra-

individuals responses. AUC captures the curve variation, and does a great job if we only observe steady changes over 

time; however, when observing more irregular changes over time, the AUC may not be the most optimal measure to use, 

as we will show in the next section.  

 

2 Methods  
The methods described in this application note can be used as complementary methods to the AUC, in order to capture as 

much information as possible from a temporal curve. All implementations can be found at GitHub. 

 

Fluctuation measures 
Fluctuation measure 1 

On fluctuation measure 1, we calculate the difference of the first two consecutive time points (𝛥! = time point 2 (𝑦") – 

time point 1 (𝑦!)). 𝛥!	is positive or negative, in case of a positive or negative slope, respectively. Next, we calculate the 

difference between time point 3 and time point 2 (𝛥"). Finally, we calculate the absolute difference of 𝛥! and 𝛥"	(𝛼!). If 

𝛥! and 𝛥" are both positive or negative, the absolute difference of those will be smaller than if 𝛥! and 𝛥" have opposite 

signs (Equation 1, Figure 2). A curve which changes direction constantly will therefore have a higher fluctuation 

measure. 

𝒇𝒍𝒖𝒄(𝒚) = - 𝑎𝑏𝑠((
#$%(')

)*"

𝑦) − 𝑦)+!) − 	(𝑦),! − 𝑦))) = 𝑎𝑏𝑠(𝛥! − 𝛥") + 𝑎𝑏𝑠(𝛥" − 𝛥-) + 𝑎𝑏𝑠(𝛥- − 𝛥.) + 𝑎𝑏𝑠(𝛥. − 𝛥/)

= 𝛼! + 𝛼" + 𝛼-+	𝛼. 

Equation 1: Fluctuation measure equation. 

 

Fluctuation measure 2 

On fluctuation measure 2, we use a grid analysis approach where we plotted the non-normalized temporal profile for each 

patient. The image of the temporal profile is segmented into a grid of n x n size, n being user-defined.  

All individuals should have the same number of postprandial measurements and these should be evenly-spaced over time. 

If missing data is present, interpolation is performed with function interp1d from SciPy (version 1.2.1) Python package. 
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The presence of the temporal profile line in the grid boxes is translated into 0s and 1s for non-presence and presence 

respectively. In the end, an image vector is created from the grid reading vertically from lower to upper boundary, 

concatenating the columns into one vector (Figure 3). The measurement obtained is the sum of the 1s in the vector. 

Curves with higher glycaemic fluctuation will have a higher sum.  

 

Fluctuation measure 3 

Fluctuation measure 3 is obtained by filtering the sum, and only summing up two or more consecutive 1s in the vector 

obtained in fluctuation measure 2. 

The aim of using this fluctuation measure is to remove spurious measurements, as we are taking a continuous shift in the 

amplitude. 

 

Other measures 
Using FLUCbio it is also possible to calculate the AUC or a simple variation measure. For the AUC we have used the 

trapezoidal rule performed by the function numpy.trapz (v.1.16.4). To calculate the variation of the curve, we have used 

Equation 2. 

𝑣𝑎𝑟(𝑦) = 	
∑ 𝑎𝑏𝑠(𝑦) − 𝑦)+!)
#$%(0)
)*"

𝑙𝑒𝑛(𝑦)  

Equation 2: Variation measure equation. 

 

3 Example analysis  
Example 1: methods applicability 
Fluctuation measures 2 and 3 were used in our previous paper to predict gain weight loss on individuals following a 

whole grain, low gluten or refined grain diet during 8 weeks randomized clinical trials using machine learning models 

(Nielsen et al. 2020). Briefly, the cohort consisted of generally healthy Danish adults at a cardiometabolic risk whose 

postprandial biomarkers was reported including plasma glucose concentrations measured after a standardized breakfast at 

five time points (0,30,60,120,and 180min). Data was imputed using linear imputation (available in FLUCbio package) so 

the measurements were evenly-spaced over time (in this case, every 30 minutes). Ten examples of comparisons between 

samples whose postprandial glucose curves have the same AUC, but it shows very different fluctuation responses is 

represented in Figure 4. These differences were captured using the three fluctuations measures described in “methods”. 

 

Example 2: correlation with biomarkers  
To show further utility of the presented methods, we have run FLUCbio in an online available dataset which consisted of 

glucose concentrations (in mg/dL) values from 30 minutes before a standardized meal and 2.5 hours after, drawn every 5 

minutes, thus a total of  37 time points on a total of 30 samples were available (Supporting Information, S6 from (Hall et 

al. 2018). We have only included participants who were put on the standardized meal consisting of peanut butter 

sandwich. Linear imputation was done and 100 time points were used. The correlation between several biomarkers, 

glucose AUC and glucose fluctuation measures were calculated using Spearman’s rank or Pearson’s correlation 
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depending on the normal distribution of the data. For the total cholesterol, high-density lipoprotein (HDL) cholesterol, 

and low-density lipoprotein (LDL) cholesterol, we could observe higher correlation using the glucose fluctuation 

measures than the glucose AUC, (Figure 5) emphasizing the need of having other measurements which can add extra 

information to the AUC.    

 

4 Conclusion  
The interest in the inter- and intra-individual differences in postprandial glucose responses has been gaining major interest. 

Understanding and knowing how postprandial biological data can be modelled is important in multiple fields, such as diet 

management, diabetes research and care, or to gain insights into the transition of human metabolic mechanism from normal 

to impaired glucose tolerance.  

The presented three methods shown to capture other characteristics of postprandial curves that were not captured by the 

AUC alone, thus can be used as complementary methods.   

These methods output a number which have a biological meaning, however the output depends on the units used, in this 

case, we have used glucose values. This needs to be taken into account if we want to compare between studies with 

different units. 

These methods were only tried on postprandial data, and no other types of longitudinal data. Furthermore, the examples 

used in this application note were only used for glucose values, however, this can be extended to other variables such as 

free fatty acid, insulin, HbA1c, glucagon-like peptide-1 receptor agonists.  
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Figure 1: Example illustration of variation versus fluctuation. 

 
Figure 2: Example of fluctuation calculation (refers to Equation 2). 

 
Figure 3: Grid analysis approach used in fluctuation measure 2 and 3. In this example, sum of 1’s = 12 and sum of clustered 

1’s = 6. 
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  AUC Fluc measure 1 Var_measure Fluc measure 2 Fluc measure 3 
Example 1 29 [7.7,2.69] [0.99,0.28] [31,26] [31,25] 
Example 2 31 [0.48,8.81] [0.21,0.87] [19,25] [16,22] 
Example 3 32 [0.38,4.24] [0.12,0.48] [21,34] 20,34] 
Example 4 35 [3.45,8.26] [0.52,0.95] [25,32] [22,32] 
Example 5 36 [1.21,4.25] [0.2,0.79] [25,30] [24,30] 
Example 6 37 [0.96,4.13] [0.25,0.5] [22,31] [20,31] 
Example 7 38 [7.94,0.97] [0.93,0.35] [32,24] [32,23] 
Example 8 39 [10.52,1.79] [1.25,0.51] [30,22] [30,19] 
Example 9 40 [1.8,10.8] [0.38,1.31] [22,35] [21,35] 
Example 10 41 [3.06,1.81] [0.7,0.59] [27,24] [26,23] 

Figure 4: Ten examples showing pairs of samples with the same AUC but distinct curves (top) and different fluctuation 
measures (bottom). In the table, for the fluctuation and variation measures, values are listed in square brackets for the blue 
curve and the orange curve, respectively. 
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Figure 5: Correlations between glucose fluctuation measures and AUC with total cholesterol, HDL cholesterol, and LDL 

cholesterol. AUPC = area under the postprandial curve. 

AUPC Fluctuation measure 1

Fluctuation measure 2 Fluctuation measure 3
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Chapter 9

Remote external stay: Dasatinib
resistance in T-ALL

Dasatinib resistance in T-cell acute lymphoblastic leukemia

BRIEF INTRODUCTION ALL is a cancer that affects white blood cells. It is defined
as a malignant alteration and proliferation of lymphoid progenitor cells in the bone mar-
row, blood and extramedullary sites, such as liver and spleen. Although rare, ALL is the
most common leukaemia in children (80% of cases) [158].
ALL develops relatively quick; thus, treatment begins a few days after diagnosis, and it
consists of typically three main stages. Stage 1 is remission induction, and the aim is to
destroy the leukaemia cells in the bone marrow and blood. Stage 2 is consolidation and
the aim is to eliminate any remaining leukaemia cells to avoid relapse. Stage 3 aims to
stop leukaemia from coming back, and usually, lower dosage of drugs are used than in the
two first stages.
Different treatment drugs are used depending on the lineage affected (B- or T-cell). In
B-ALL, drugs such as imatinib and dasatinib are very efficient if fusions involving B-cell re-
ceptor (BCR) and ABL class kinases are found, such as Philadelphia chromosome-positive
(BCR-ABL1 fusion gene). These drugs are strong ABL inhibitors. T-ALL, rarer than
B-ALL (12-20% of cases), is associated with a more aggressive haematological malignancy
and treatment options are more limited. T-ALL is characterized by chromosomal rear-
rangements and enhancer mutations involving transcription factor genes such as TAL1,
TAL2, HOXA, TXL1, TXL3, LMO1, and LMO2 [147].

PREVIOUS WORK[147] One recent study at St. Jude Children’s Research Hospital
has profiled leukaemia drug responses ex-vivo in ALL. Surprisingly, they found that 44.4%
of childhood T-ALL were sensitive to dasatinib, even though they did not have the BCR-
ABL1 fusion gene. Leukaemia blasts were obtained from either bone marrow or peripheral
blood collected during remission and used as germline samples as described in [147].
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In B-ALL, they found that both children and adults, who presented BCR-ABL1 fusion
gene or fusions involving ABL class genes, consistently exhibited high sensitivity to dasa-
tinib. In T-ALL, some cases were classified as dasatinib-sensitive, and surprisingly, none
of the dasatinib-sensitive T-ALLs harboured ABL class fusion genes.
Testing three other ABL inhibitors in a subset of these primary T-ALL samples, they ob-
served that dasatinib-sensitive cases were universally resistant to ABL-specific inhibitors
imatinib and nilotinib, but responded to ponatinib, which shares non-ABL targets with
dasatinib. These results firmly pointed to an ABL-independent mechanism driving dasa-
tinib sensitivity in a significant proportion of T-ALL.
Network-based Bayesian Inference of Drivers (NetBID)[159], a data-driven system biology
approach, was used to identify drivers, either transcription factors or signalling factors,
from RNA-seq-derived expression profiles. NetBID algorithm measures these drivers ac-
tivity based on the expression level of its downstream targets and infers genes activity.
A biomarker of 30 drug-sensitivity driver genes (further referred to as "30 biomarker")
were identified. These 30 drivers were obtained by first filtering the top 461 driver genes
identified by NetBID analysis against preTCR pathway genes and dasatinib targets. Sum-
ming the weighed NetBID-inferred activity of these 30 genes, a dasatinib sensitivity score
for each T-ALL case was estimated, as represented in Figure 9.1 [147].

Figure 9.1 | Biomarker score estimated from NetBID-inferred 30 genes activity for
57 T-ALL sensitive and resistant cases.

EXTERNAL STAY PROJECT In my project, I have tried to further optimize the 30
biomarker by building a model to predict dasatinib sensitivity in T-ALL with fewer driver
genes and without compromising accuracy.
The main cohort consisted of 57 T-ALL cases (19 sensitive and 38 resistant). Additionally,
a dataset of 239 T-ALL cases was available with information on molecular subtypes (Figure
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9.2) rather than dasatinib sensitivity. This cohort is part of the previously published
TARGET T-ALL cohort [160].
The network analysis on NetBID had been previously done, and I had direct access to
NetBID inferred genes activity.

Figure 9.2 | T-ALL subtypes in the 239 childhood leukemia cases from the TARGET
T-ALL cohort

Pre-feature selection As in most clinical data scenarios, the number of patients was much
lower than the number of genes (57 patients and 7689 genes). The pre-feature selection
was performed by checking the correlation between all pairs of genes. If highly corre-
lated (absolute Pearson correlation coefficient > 0.90), the gene higher correlated with
the phenotype was kept. Additionally, genes weakly associated with the phenotype were
removed from the analysis (absolute point biserial correlation coefficient < 0.50). Out of
7689 genes, 230 genes remained included in the logistic regression model.

Model development A logistic regression model using with L-BFGS optimization algorithm
was developed on SciKit-learn in Python (v3.7.6). For logistic regression optimization, an
inverse of regularization strength search space between 1x10−4 and 1x104 was used in the
inner-fold. Default values were used for the other hyperparameters, and can be assessed
at SciKit-learn library v0.23.2 – LogisticRegression.
A 2 outer, 2 inner fold nested cross-validation was used on a total of 57 samples and the
allocation of samples in the training or testing set was random and repeated five times.
A forward feature selection was performed with the 230 genes, adding one gene at a time in
the model. ROC-AUC computed on the testing set was used as the primary performance
measure. The mean ROC-AUC was then obtained from the two replication test sets. The
performance kept increasing until seven genes were added. These seven genes were: TLR9,
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TRAF3, TERT, ANP32B, IRF9, NFIB, and NAP1L1.
For the model with seven genes, a ROC-AUC of 0.954 (std.dev. 0.006) was obtained.
A logistic regression prediction score between 0 and 1 was given for each sample, where
a score closer to 1 means a higher probability of being sensitive to dasatinib. Further
performance metrics using a prediction cutoff of 0.50 (default) and 0.40 for classification
can be accessed in Table 9.1. A higher number of true positives was obtained when a
cutoff of 0.40 was used instead of the default 0.50 (Figure 9.3).

Table 9.1 | Perfomance measures obtained for the model with seven genes.

Sensitivity (0.50/0.40 cutoff) Specificity (0.50/0.40 cutoff) PPV (0.50/0.40 cutoff) NPV (0.50/0.40 cutoff) ROC-AUC test ROC-AUC train

Mean [0.537; 0.842] [0.984; 0.942] [0.957; 0.882] [0.812; 0.924] 0.9543 0.9659

Std.dev. [0.131; 0.074] [0.021; 0.026] [0.057; 0.042] [0.04; 0.033] 0.0058 0.010

std.dev.=standard deviation; PPV=positive predictive value; NPV=negative predictive value; ROC-AUC=area under the receiver operating
characteristic curve.

Figure 9.3 | Comparison between dasatinib LC50 (log scale) in T-ALL and logistic
regression score. Red: dasatinib resistant; blue: dasatinib sensitive.

Model evaluation The logistic regression model was deployed on the TARGET T-ALL
cohort, and a variation in the predicted dasatinib sensitivity was observed between the
different molecular subtypes. These results were not so different from those obtained with
the 30 biomarker (Figure 9.4). As in the 30 biomarker, a higher likelihood of responding to
dasatinib in T-ALL with overexpression of TAL1, TAL2 or LMO1/2 genes was observed.
Additionally, the total number of dasatinib responders was similar in both models. Using
a cutoff of 0.40 for classification in the logistic regression model, we ended up with a total
of 37% predicted dasatinib responders (Table 9.2), while this number was 44.4% using the
30 biomarker as referred in the paper [147].
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Table 9.2 | Number (and percentage) of predicted resistant and sensitive cases in the
total cohort and in the different molecular subtypes groups using 0.40 and 0.50 cutoffs
for classification in the logistic regression model.

Prediction cutoff = 0.50 Prediction cutoff = 0.40

TOTAL TARGET No. resistant = 195 ( 81.59 %) TOTAL TARGET No. resistant = 150 ( 62.76 %)

TOTAL TARGET No. sensitive = 44 ( 18.41 %) TOTAL TARGET No. sensitive = 89 ( 37.24 %)

TLX1 : No. resistant = 26 ( 100.0 %) TLX1 : No. resistant = 24 ( 92.31 %)

TLX1 : No. sensitive = 0 ( 0.0 %) TLX1 : No. sensitive = 2 ( 7.69 %)

TAL2 : No. resistant = 5 ( 62.5 %) TAL2 : No. resistant = 3 ( 37.5 %)

TAL2 : No. sensitive = 3 ( 37.5 %) TAL2 : No. sensitive = 5 ( 62.5 %)

HOXA : No. resistant = 29 ( 90.62 %) HOXA : No. resistant = 27 ( 84.38 %)

HOXA : No. sensitive = 3 ( 9.38 %) HOXA : No. sensitive = 5 ( 15.62 %)

TAL1 : No. resistant = 57 ( 65.52 %) TAL1 : No. resistant = 28 ( 32.18 %)

TAL1 : No. sensitive = 30 ( 34.48 %) TAL1 : No. sensitive = 59 ( 67.82 %)

NKX2_1 : No. resistant = 14 ( 100.0 %) NKX2_1 : No. resistant = 10 ( 71.43 %)

NKX2_1 : No. sensitive = 0 ( 0.0 %) NKX2_1 : No. sensitive = 4 ( 28.57 %)

TLX3 : No. resistant = 44 ( 100 %) TLX3 : No. resistant = 41 ( 93.18 %)

TLX3 : No. sensitive = 0 ( 0.0 %) TLX3 : No. sensitive = 3 ( 6.82 %)

LMO2_LYL1 : No. resistant = 16 ( 88.89 %) LMO2_LYL1 : No. resistant = 14 ( 77.78 %)

LMO2_LYL1 : No. sensitive = 2 ( 11.11 %) LMO2_LYL1 : No. sensitive = 4 ( 22.22 %)

LMO1/2 : No. resistant = 4 ( 40.0 %) LMO1/2 : No. resistant = 3 ( 30.0 %)

LMO1/2 : No. sensitive = 6 ( 60.0 %) LMO1/2 : No. sensitive = 7 ( 70.0 %)
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(a) Logistic regression (LR) score in the
TARGET T-AL cohort (n=239).

(b) Dasatinib 30 biomarker score in the
TARGET T-AL cohort (n=239).

Figure 9.4 | Comparison between dasatinib sensitivity prediction in the logistic re-
gression (LR) model versus 30 biomarker score.

Biology interpretation The model selected a total of seven genes. Gene ontology analysis
was done in Metascape [161] to understand the possible biological functions of these genes.
This was also done for the 30 genes included in the 30 biomarker to understand shared
biological pathways. Seven shared relevant pathways were found. The first two genes
selected by the model, TLR9 and TRAF3, were enriched in five of them, such as the T-
cell receptor signalling pathway, positive regulation of kinases or protein kinase B signalling
(Figure 9.5).
The involvement of TLR9 in dasatinib response was further supported by the literature.
Toll-like receptors (TLRs) are co-stimulatory receptors involved in T-cell and cytokine
production, complementing TCR-induced signals [162]. The engagement of different TLRs,
including TLR9, on helper CD4 T-cells leads to an increase of IL-2 and consequently
increases proliferation [163]. Dasatinib was seen to inhibit the secretion of tumour necrosis
factor (TNF)-α after TLR stimulation. After dasatinib treatment, TNF-α blood samples
levels were shown to decrease significantly in a multiple sclerosis mouse model [164]. Thus,
if it happens the same in ALL, this could explain the higher TLR9 activity in dasatinib
responders (Figure 9.6). Higher activity of TLR9 will lead to higher production of TNF-α,
and TNF-α is a dasatinib target.
For the third gene selected by the model, TERT, even though it was only present in
two out of seven metascape pathways, literature that may support the involvement of
this gene in dasatinib response was found. Telomerase reverse transcriptase (TERT) is
responsible for the transcription and translation of the enzyme telomerase. Telomerase
maintains the telomeres, which are composed of repeated segments of DNA found at the
end of chromosomes. Numerous drugs, including dasatinib, have been identified with off-
target effects on telomerase activity. These include drugs that act via downregulation of

http://www.metascape.org
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hTERT gene transcription [165], which could help explaining the higher activity of TERT
in sensitive samples (Figure 9.6).

Figure 9.5 | Metascape [161] gene ontology analysis for the 30 genes in the 30
biomarker and the seven genes included in my model (red box).

Figure 9.6 | Heatmap of NetBID-inferred activity of seven driver genes included in
the logistic regression model in the 57 patients cohort.

Before claiming clinical applicability in predicting dasatinib response, the seven genes
found in this study need to be further validated in a larger and external cohort. Further-
more, it would be beneficial to develop functional studies to identify the causal genes and
biological mechanisms underlying. This was not explored here. It was seen, for example,
that TLR9 activity was highly correlated (Pearson’s r=0.90) with other 22 genes, including
LCK, the main driver identified in the paper [147].

http://www.metascape.org
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Part IV

Epilogue
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Many therapies applied in western medicine are developed with a focus on the "average"
patient, or with statistically demonstrated safety and efficacy across a wide population.
At the individual level, systematic guidance for choice or application of therapy regimes is
rather limited. An individual’s response to therapy or possible short and long-term side-
effects varies greatly and is influenced by several factors, including genetic predisposition
and exposures later in life. We have seen increasing progress with high efficacy rates in
treatment strategies against certain cancers. Thus, we have now the luxury and data-
driven ability to begin a larger focus on the side effects these therapies may bring and how
they can affect these patients’ long-term quality of life. Are we now sitting on enough data
that allows us to focus on long-term quality of life, and to what extent would we dare to
adjust treatment to improve quality of life?
Since the completion of the Human Genome Project in 2003, many genetic variants have
been found to be associated with multiple phenotypes. This allowed the development of
prognostic markers, hopefully leading to more tailored interventions.
At the moment, clinical genomics analysis is only done on specific types of cancers or rare
diseases. Soon, this may become a routine procedure in clinical care and may start to be
integrated with electronic health records, as we see its high potential in multiple common
diseases for guiding prevention, diagnosis and treatment. Routine genomic sequencing will
also result in more data that can be used for research.

In this PhD thesis, I have summarised different types of medicine, starting from our roots
(traditional medicine) until now. I have described ways of analysing patient genomics and
clinical data. For clinical data, I have focused on single-time point measurements and
longitudinal data, which are touched upon in the application note, chapter 8, where I have
explored different measures that can capture fluctuation information from postprandial
temporal curves. For genomics data, I have used GWASs and NGS analysis to identify
genetic variants associated with several phenotypes.
Finally, I have explored different stratification-based approaches such as Ayurveda-based
deep phenotyping, PRSs, and ML models and discussed how these could be applied in a
clinical setting. In paper I, chapter 4, I have used an Ayurveda-based deep phenotyping
to stratify individuals in more homogeneous subgroups and facilitate the identification of
genetic associations of large effect sizes in rheumatoid arthritis. In paper II, chapter 5,
I have investigated two PRSs developed and validated in adult cancers to subgrouping
patients and disease prognosis in two childhood cancer cohorts. This was done to under-
stand disease aetiology trajectory in childhood cancer better. In papers III, chapter 6, and
paper IV, chapter 7, I have developed two prediction models for hearing loss and nephro-
toxicity, respectively, after cisplatin-based chemotherapy in testicular cancer patients. I
have integrated both clinical and genomics data in the last two papers. Putting patients



132

in different risk groups for developing these late side effects is useful for identifying toxi-
city risks, which will influence treatment intensity or monitorisation for selected patients.
Some additional work was done for paper IV, chapter 7, where I further explored NAT1
and NAT2 involvement in nephrotoxicity development.
Additionally, during my external stay in St.Jude, chapter 9, I have developed a predic-
tion model of dasatinib response in T-ALL. By identifying which patients are dasatinib
resistant, the long-term goal is to reduce adverse events and cut treatment costs.

All this work was done in close collaboration with clinicians, which I consider very mean-
ingful and has been super valuable for me to understand the considerations, opportunities
and challenges in a clinical setting. Through the different PhD projects, some of the
challenges and opportunities with patient data analyses are pointed out.

Limitations
The limitations of each project are described in more detail in each paper chapter; however,
some main and common limitations across all projects, which I also believe applies in many
other precision medicine research papers, are: 1) further validation is needed in external
datasets; 2) functional studies would have been a great addition to the projects, to facilitate
the validation and mechanistic understanding of causal variants and genes; and 3) most
studies presented here, except for paper I, chapter 4, are done in European populations;
thus its applicability in other populations may be limited.

Future directions
New therapy regimes and guidance are much needed to change the paradigm of the current
"one-size fits all" approach. If no better treatments are developed, clinicians may continue
using some that may have differential benefits on individual patients just because it is the
best available therapy at the moment across a wide population. This impacts individual
care as well as the overall burden of healthcare costs.
There are still multiple challenges that one needs to be aware of regarding the application
of data models to implement precision medicine in the clinic. These include 1) ethical reg-
ulation and how we can use and release the patient information appropriately to address
privacy and security concerns; 2) how to better approach patients to be part of the studies
- clear communication is essential so physicians and patients can understand the benefits
and trust the process; and 3) how to make the most of the limited, but very valuable
clinical datasets. Furthermore, an effort is needed to bring this to all individuals in all
parts of the world; otherwise, we risk having high racial disparities in the future regarding
health systems around the globe.
The ultimate goal of stratification-based models is to help and support clinicians in decid-
ing which treatment would be better for each patient based on their clinical characteristics
and biomarkers. We are now scratching the surface, but I believe that in the next decade,
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with close collaboration between people from different fields, such as clinicians, bioinfor-
maticians, data scientists, biologists and statisticians, we will see the continued growth and
application of these models into clinical care. This will lead to improvements in how one
defines and classifies diseases based on a more precise understanding of what is occurring
at the molecular and cellular level, as well as across more holistically for an individual.
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Part V

Appendix: Research efforts in India,
and thoughts around Ayurveda
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Ayurveda is one of the oldest disciplines in the world, with quite a lot of information
available but not compiled in scientific journals.
One of the challenges I had while working on this area was the scepticism around it. I think
that either scepticism or fanaticism, in either direction, is dangerous for the development
of science, especially if we are to be encouraged out of the box for the development of
patient stratification.
Precision medicine is promising, but success has been fewer than expected, even though
there are high hopes that there will be a significant development in the next decade. One
thing is certain; we need to have open-minded thinking to explore opportunities for patient
stratification that will eventually lead to treatment improvements and diseases prevention.
As my knowledge was limited in regards to Ayurveda medicine, and to better understand
the concept and current state of the art, different visits and studies in India were organised
to meet and find partners and collaborators. We had the opportunity to work with 1)
professor BK Thelma, from the Department of Genetics at the University of Delhi, who
had worked with Ayurveda before and published several papers on the topic; 2) Dr Bheema
Bhatta, Head of Ayurveda Department at Holy Family Hospital, who practices Ayurveda
for many years; and 3) Dr Uma Kumar, Head of Rheumatology at All India Institute of
Medical Sciences (AIIMS) who uses conventional medicine to treat rheumatoid arthritis
(RA) patients but is also very interested about Ayurveda and its patient stratification
principle. Dr Uma is also helping with patient recruitment.
We have submitted a project description (briefly described below in "Aim 1") to the
Institute Ethics Committee of AIIMS. This was approved in February 2020; thus, there
are still ongoing efforts in India concerning projects we had in mind to complete. There
were several delays due to the inability to travel to India in 2020 when COVID-19 hit.

Aim 1 (in progress) Understanding and predicting response in first-line ther-
apy patients with RA and impact of Ayurvedic stratification across the two
treatment arms: conventional therapy and Ayurveda.
Recruitment of RA patients had begun in early 2020 at the AIIMS from regular patient
visits. The study for ayurvedic examination was approved by the Ethics board at AIIMS.
The goals in this effort are 1) to understand the differential patient response to standard-
ised therapy on RA combining Ayurveda based patient Prakriti information; and 2) to
identify Prakriti specific multi-omics markers of treatment response/non-response.
a) Target group 1: 600 patients (300 responders; 300 non-responders): Response/non-
response will be measured by collecting multi-omics (genomics, metagenomics, metabolomics)
data before and after initiation of therapy, with an outcome measurement at 3 and 6
months.
b) Target group 2: 60 newly diagnosed and drug-naive RA patients to identify biomarkers
that might be associated with response/non-response by multi-omics approaches.
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Aim 2. Gut microbiome characterisation of 30 RA patients who followed
ayurvedic treatment or methotrexate (pre and post-treatment).
Blood samples and frozen stool samples have been collected. Negotiation on costs and
logistics for microbiome characterisation is underway. As we expect high inter-individual
variability in microbiome composition, this project has a lower likelihood of generating
insights across the vata, pita and kapha ayurvedic subgroups. However, it will be the first
such characterisation and thus would be the first stepping stone in this direction.
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