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ract

echanical anisotropy created by additive manufacturing (AM) is not yet fully unde
and can depend on many factors, such as powder material, manufacturing technolog
rinting parameters. In this work, the anisotropic mechanical properties of as-bui
owder bed fusion (LPBF) austenitic stainless steel 316L and titanium alloy Ti-6A

e investigated through crystal plasticity simulations. Periodic representative volum
nts (RVEs) are used that are specific to each material. The RVE for austenitic stainle
onsists of FCC crystals with a crystallographic texture measured by X-ray diffractio
′ martensite microstructure of Ti-6Al-4V is captured with a multi-scale RVE, inclu
ternal lamellar structures, using HCP crystals and a synthetically generated textur
th materials, the crystal plasticity parameters are calibrated against tensile tests ca

ut on dog-bone specimens printed in different orientations. The RVEs, calibrated
ments, are applied in virtual material testing and subjected to multiple load cases
te the Hill-48 and Yld2004-18p yield surfaces of the materials.

ords: Yield surface, Crystal plasticity, Anisotropy, Titanium alloy, Stainless steel,
ive manufacturing.

troduction

etal additive manufacturing (AM) facilitates customisation, flexible, small-scale pr
n and complex, light-weight components, which offer high potential primarily in th
ace, automobile and biomedical sectors. The unique, cyclic thermal history in th
rocess creates a heterogeneous microstructure, which leads to anisotropic mechanic
rties. For most of the functional engineering applications, anisotropy is unfavourab
as to be accounted for in stress analysis [1, 2].
e microstructure and the mechanical properties of the most common AM metall
ials, i.e. aluminium, stainless steel and titanium alloys, have been thoroughly inve
d. The extensive studies of AM metals are necessary because they are significant
nt from traditional cast, rolled and extruded materials. In addition, the powder m
the specific AM technology, the scanning strategy, and the building parameters an
t submitted to European Journal of Mechanics / A Solids December 7, 20
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ion also have considerable impact on the microstructure and important contributio
mechanical properties [3–5]. This work focuses on the austenitic stainless steel, 316
e most common titanium alloy, Ti-6Al-4V, produced by the laser powder bed fusio

F) process.
has been clearly demonstrated that the AM of 316L creates a microstructure with elo
columnar grains with the [110] crystallographic direction preferentially being parall
building direction (BD) [6, 7]. In most studies, the microstructure is characterise
ingle austenitic face centered cubic (FCC) phase [8, 9], although a tiny fraction
rrite phase with body centered cubic (BCC) structure has also been reported [10
rain size of 10-100 µm allows for local texture measurements with electron backscatt
tion (EBSD), and also measurements of the bulk texture based on X-ray diffractio
) [10, 11]. In addition to the crystallographic texture, defects such as inclusions an
ties, and the grain aspect ratio in relation to the Hall-Petch effect, have been co
d as possible sources of anisotropy [7]. Further factors could be the highly oriente
r subgrain structures, residual stresses and melt pool boundaries [12]. In the ca
6Al-4V, AM can also lead to columnar grains parallel to the BD, which contain fin
nsite platelets at multiple scales with well-defined orientations [13, 14]. However, du
very fine microstructure, it is difficult to experimentally obtain statistically represe
crystal orientation distribution (COD) data. In addition, for LPBF Ti-6Al-4V, mo

ble studies reported a single phase α′ hexagonal-closed-packed (HCP) lattice structu
negligible amount of the β phase [15].
establish a link between the material microstructure and the macroscopically observe
nical strength, crystal plasticity has become an essential tool, which enables a detaile
ption of plastic deformation mechanisms. Due to the same chemical compositio
stinct mechanical properties created by the AM compared to conventional processe
l plasticity has recently been applied to various AM materials, such as 316L, T

and high-manganese steels [16–18]. The most commonly used crystal plastici
tutive model is the relatively simple power-law rate-dependent model [19, 20]. Mo
ex, recent models can also capture effects of grain boundaries, such as the Hall-Pat
thening [21], using length-scale dependent constitutive laws. Regarding the numeric
entation, besides the classic finite element method, fast Fourier transform (FFT

spectral methods have become popular, due to their high efficiency in solving period
ary value problems [22, 23].
larger scales, the homogenised behaviour of the heterogeneous microstructure
etals can be described by a homogeneous elastic-plastic material model, using a

ropic yield function to govern the plastic behaviour. The anisotropic yield criterio
determined from crystal plasticity simulations or experiments. Numerous anisotrop

criteria are available in the current state-of-the-art, using quadratic or non-quadrat
functions with a different number of adjustable parameters and tailored to specifi
ials, e.g. steels or aluminium alloys [24–26]. In general, the higher the number
eters that are present in the applied yield function, the more complex and flexib
On the other hand, the calibration of multiple parameters requires extensive exper
l testing, which is both expensive and time consuming, especially for AM materia

2



Journal Pre-proof

Furth l-66

ibratio of67

expen )68

or uni69

Al n-70

tion b y71

simult d72

anisot e73

anisot p-74

ported es75

are di re76

genera ty77

simula e78

same.79

Th in80

Sectio ty81

in Sec e82

calibr s83

of str g84

remar85

2. Ex86

2.1. M87

Th e88

AISI e89

Ti-6A le90

diame .91

Chem d92

more el93

stripe b.94

Furth ef95

was p al96

from t97

Mat

Ti-6

AIS
 Jo
ur

na
l P

re
-p

ro
of

ermore, even the same AM technology and powder material could require different ca
ns depending on the printing parameters and scanning strategy. Therefore, instead

sive experiments, virtual material testing using representative volume element (RVE
t cell simulations can be advantageous [26].
though crystal plasticity studies of AM materials have received a great deal of atte
y the research community, only a limited number of studies have dealt with anisotrop
aneously with simulations and experiments. Even fewer studies have determine
ropic yield surfaces for AM materials [7, 27–29]. The present work investigates th
ropic yield properties of LPBF 316L and Ti-6Al-4V by means of RVE simulations su

by uniaxial tensile experiments. While essential elements of the numerical studi
fferent for the two materials, such as the grain morphology, the method of textu
tion and the crystal structure, the overall methodology of applying crystal plastici
tions based on RVEs to determine different types of anisotropic yield criteria is th

e paper is organised as follows. Firstly, the experimental procedure is presented
n 2, followed by the constitutive model and numerical framework of crystal plastici
tion 3. The anisotropic yield criteria are described in Section 4 together with th
ation method based on virtual material tests. Section 5 presents the results in term
ess-strain curves and yield surfaces, which are discussed in Section 6. Concludin
ks are provided in Section 7.

perimental procedure

aterials and manufacturing

e commercial LPBF systems SLM280 and SLM500 were used in this study with th
316L and Ti-6Al-4V ELI powder materials from the SLM Solutions Group AG. Th
l-4V ELI powder material, also referred to as a grade 23 material, had a mean partic
ter of 47 µm, while the AISI 316L powder material had a mean diameter of 34 µm
ical compositions of the powders were in the ranges specified by the supplier, an
details can be found in [30, 31]. For both materials, a scanning strategy with parall
s was used, with a 67° rotation between subsequent layers as illustrated in Figure 1
er relevant build parameters are summarised in Table 1. After printing, stress reli
erformed at 550 °C for 2 hours to prevent the specimens from warping upon remov
he build plate.

Table 1: Build parameters

erial Speed [mm/s] Power [W] Hatch distance [mm] Layer height [mm]

Al-4V ELI 1100 350 0.12 0.06

I 316L 700 235 0.12 0.05

3
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e specimens were printed in two different orientations with their longest axis pe
cular (horizontal, 90◦) and parallel (vertical, 0◦) to the BD. To ensure similar surfa
ness for the horizontal and vertical specimens, all of them were printed with an ove
f 1 mm. The support structure and the over-size (Figure 1c) were then removed b
ical Discharge Machining (EDM) to obtain the final cross-section.

ensile testing

e tensile tests were carried out with the same testing parameters, set-up and dog-bon
en geometry for both 316L and Ti-6Al-4V. They were conducted according to th
E8/E8M standard [32] at room temperature on MTS 312.21 100 kN servo-hydraul

g machine under displacement control mode with a loading rate of 0.05 mm/s. Th
ens were clamped with MTS 647 side-loading hydraulic wedges, using 100 bar gr
re. The longitudinal strain was measured with an Instron extensometer with a gau
of 12.5 mm, as shown in Figure 1d. The reduced section of the machined tensile b

length of 23 mm with a cross-section of 5× 6 mm2 (Figure 1a).

a)

b)

c)

d)

1: Summary of experimental details: a) Geometry of dog bone specimen printed in different orie
, b) Applied scanning strategy with 67◦ rotation, c) As-built block of horizontal specimens befo
d) Gripped tensile specimen with attached extensometer.

icrostructure characterisation

what follows, the methods and results of the material characterisation are summarise
results are used in the RVE simulations presented in Section 3.3. More details on th

structure of Ti-6Al-4V and 316L can be found in [30] and [33], respectively. For bo
ials, light optical microscopy (LOM) was conducted on an Olympus GX41, revealin
ted columnar grains parallel to the building direction, as shown in Figure 2a and c

4
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e primary grains of Ti-6Al-4V are quite elongated with an aspect ratio of approx
y 2, where the longer dimension is in the order of 200 µm. The high cooling rate

range 103-105 K/s, are inherent to the LPBF process and they cause a martensit
rostructure for the as-built Ti-6Al-4V [34]. This is in contrast to the two-phase α
ure commonly reported for cast titanium alloys. The absence of a significant amount
se in the tested components has been confirmed through scanning electron microscop
) and XRD measurements in agreement with other studies of as-built LPBF Ti-6Al-4
6]. Martensitic structures are obtained at different scales depending on the level
ioning of the primary grain, leading to so-called primary, secondary and tertiary
ures, which can be observed in the LOM micrographs in Figure 2b. These hierarchic
nsite plates tend to align in mutually orthogonal directions within the same prima

The obtained LOM micrographs suggest a preferred orientation of the martensit
normals of 55◦ and 35◦ with respect to the BD, corresponding to the primary an
ary plates shown in Figure 2b. The result is an average dominant direction of 45
is commonly reported for as-built LPBF Ti-6Al-4V [15].

5
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a) b)

c) d)

2: Microstructural characterisation of LPBF metals: a) and b) LOM micrographs of Ti-6Al-4
ens, c) and d) LOM micrograph and EBSD map of 316L. BD is bottom to top. For the EBSD ma
gle grain boundaries (> 15◦) are marked in black and low angle grain boundaries (2-15◦) in white.T
pole figure (IPF) colour code respresents the crystallographic direction of the Z axis.

e LOM micrographs and EBSD maps of 316L reveal a grain aspect ratio of appro
ly 1.6 and an equivalent grain size of 70 µm, as illustrated in Figure 2c and d. Th

measurement was conducted on a Zeiss Supra FEGSEM using an acceleration vol
20 kV and an aperture with a 60 µm diameter. The map was acquired with a ste

f 1 µm. As shown in the LOM micrographs, the as-built microstructure of the 316
ss steel consists of elongated austenite grains, semi-circular melt pool boundaries an

archical cellular subgrain structure. This cellular structure is fully austenitic with
tial of slight misorientation with regards to the parent grain as seen in the EBSD ma
he low angle grain boundaries within the elongated austenite grains.
e XRD texture analyses were carried out on a Bruker D8 Discovery diffractomet
ed with CrKα radiation. A 0-70◦ ψ tilt and 0-360◦ φ rotation were applied with a

ize and 1.5 s counting time for each combination of tilt and rotation angle. Due to th

6
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ne and hierarchical microstructure of Ti-6Al-4V, statistically representative cryst
ation data by means of XRD could not be achieved, and were thus only obtained f
The pole figures of [111], [200] and [220] reflections of 316L were measured for cro

ns with their normal parallel to BD. Considering Figure 3, a preferred alignment of th
irection can be observed with respect to the BD. In addition, a 67◦ rotation betwee

ghest intensity points appears in the texture, particularly for the [111] pole figur
can be attributed to the effect of the scanning pattern, due to the same 67◦ rotatio

en the consecutive layers [30].

3: Pole figures of as-built LPBF 316L measured by XRD with BD in the centre of the pole figur

nstitutive and numerical modelling of crystal plasticity

the present section, the single- and polycrystal plasticity models are outlined, whi
ed for virtual testing of the two investigated AM materials. The main component
E simulations is the crystal plasticity model at the lower scale, including the sing

ls with the appropriate slip systems. On the RVE level, besides the single cryst
ity parameters, the crystallographic texture and grain morphology can also play a
tant role in the mechanical properties. To determine the macroscopic mechanic
iour, homogenised quantities are defined, which are directly applied for the generatio
sotropic yield surfaces in Section 4.

ingle crystal plasticity

e crystal plasticity model accounts for infinitesimal elastic deformations and fini
deformations; however, it does not include grain boundary strengthening effects. Th

tions of this study were carried out using the DAMASK software [23] with the we
ished rate-dependent crystal plasticity model from [37]. The kinematics is describe
usual multiplicative decomposition of the deformation gradient

F = FeFp (

Fe is the elastic part of the deformation gradient, containing the elastic stretchin
igid body rotation of the crystal lattice, and Fp is the net plastic deformation an
on, due to shear in multiple slip systems.

7
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e elastic part of the mechanical response of the crystal is based on the Saint Venan
hoff model [23]

S = C : (FT
e Fe − I)/2 (

S is the second Piola-Kirchhoff stress and C is the fourth order elastic stiffness tenso
ng the symmetry of the cubic and hexagonal crystals, C can be reduced to thr
ve independent elastic constants, respectively. Applying Voigt notation, the elast
ients of the 316L FCC crystals are given by C11, C12 and C44, while for the Ti-6Al-4
crystals the additional coefficients are C13 and C33.
e plastic part of the deformation gradient is obtained by integration of the shear stra
i of the different slip systems, contributing to the rate of Fp. For a crystal with Ns

stems indexed with i, the plastic flow is defined by

ḞpF
−1
p =

Nsys∑

i=1

γ̇i
(
sis ⊗ ni

s

)
(

sis and ni
s are unit vectors along the slip direction and slip plane normal, respectivel

esolved shear stress, τ i is defined by the Schmid’s law:

τ i = S
(
sis ⊗ ni

s

)
(

lip rate is modelled through the phenomenological power law relationship [19], define

γ̇i = γ̇0

∣∣∣∣
τ i

τ ic

∣∣∣∣
n

sgn
(
τ i
)

(

γ̇0 is the reference slip rate, n is the power law exponent and τ ic is the critical resolve
stress.
e work-hardening rule is based on an evolution of the slip resistance τ ic from a system
dent initial value τ i0 to a saturation value τ i∞ according to the following expression:

τ̇c
i = h0

(
1 + hiint

) Ns∑

j=1

∣∣γ̇j
∣∣
∣∣∣∣1−

τ jc
τ j∞

∣∣∣∣
a−1(

1− τ jc
τ j∞

)
hij (

a is the work-hardening exponent, and h0 is an overall hardening parameter of un
. The dimensionless parameters hiint are slip system specific corrections to h0. Late
lf hardening are represented by the dimensionless factors hij, which are typically equ
for the interaction of a slip system with itself, i.e. hii = 1.

onstitutive model parameters on the single crystal level

e to the high cooling rates of the LPBF process, as-built Ti-6Al-4V typically exhibi
ly martensitic α′ HCP microstructure [33, 38], while 316L displays elongated auste

ains with FCC crystal structure [30, 39]. Therefore, a single phase material mod
med for both of the materials, based on the performed X-ray measurements and

8
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ent with [7, 13]. The crystal plasticity parameters are calibrated against the exper
l results, and the identification procedure for Ti-6Al-4V is described in detail in [40
me parameter calibration method was conducted for 316L, but was simplified becau
C crystal has a lower number of elastic and plastic parameters.

Table 2: Elastic constants of the single crystals [40, 41]

Material Crystal C11 C12 C13 C33 C44 [GPa]

Ti-6Al-4V HCP 153.9 87.4 65.5 170.7 47.7

316L FCC 198 125 122

e elastic constants of Ti-6Al-4V are adopted from [42] with a 5% decrease to match th
mental results. A similar fit has been obtained for 316L with the elastic parameters
ithout any additional scaling. The elastic parameters of both materials are reporte
le 2. The HCP crystal of Ti-6Al-4V includes the basal, prismatic and pyramidal sl
s with relatively high slip resistances, summarised in Table 3.

Table 3: Slip systems and determined initial slip resistance values

Slip system Number τ i0 [MPa]

T
i-

6A
l-

4V

Basal 〈a〉 3 470

Prismatic 〈a〉 3 470

Pyramidal
〈c+ a〉 12 750

316L {111} 〈110〉 12 210

e high slip resistance values are in agreement with recent studies of LPBF Ti-6Al-4
4], due to their yield strength being superior to conventional titanium alloys. Th
slip resistance of 316L is chosen within the common range from the literature [7, 4

tch the experimentally observed macroscopic yielding.
ble 4 contains all remaining crystal plasticity parameters of both materials, whi
quired for the simulations. For Ti-6Al-4V a low hardening parameter h0 is adopte
rly to [42], because neither self hardening nor softening have been observed.The HC
aspect ratio, c/a, is taken from the literature [38]. The 316L material exhibits su

al hardening and the applied numerical values are in a complete agreement with th
of Charmi et al. [7].

9



Journal Pre-proof

3.3. R217

Th ve218

volum s219

consis d220

prima d221

b. In ly222

isotro se223

pole fi n224

the su M225

and X al226

invest d227

not in er228

rotati g229

strate rs230

are av231

DR g232

a norm e233

grain M234

for bo235

Fo ly236

to obt =237

0.07. e238

prescr in239

each p n240

in Fig in241

morph to242

prima y,243

which e244

surfac e245

layer ry246

α′ pla is247

55◦ w248

Re al249

orient In250
 Jo
ur

na
l P

re
-p

ro
of

Table 4: Crystal plasticity parameters

Material n a γ̇0 [s−1] c/a h0 [MPa] hij

Ti-6Al-4V 80 2 0.001 1.587 100 1

316L 20 2.25 0.001 - 300
1 if i = j

1.4 if i 6= j

VE and texture generation

e crystal plasticity simulations are conducted on periodic, synthetic representati
e elements generated in the DREAM.3D software [46]. For both materials, the RVE
t of 128×128×128 voxels and account for the observed grain morphology with elongate
ry grains along the building direction, i.e. the Z axis, as illustrated in Figure 4a an
addition to the grain morphology, the texture is also assumed to be transverse

pic with respect to the BD for both materials; thus only the corresponding inver
gure (IPF) maps are presented in Figure 4c and d. Due to the 67◦ rotation betwee
bsequent layers, transverse isotropy is assumed, which is also justified by the LO
RD measurements (Figures 2 and 3). Other studies with more detailed experiment
igations also mostly consider the anisotropy perpendicular to the building plane an
the building plane, independent of the scanning strategy. However, the applied lay

on with 67◦ is a better process to ensure isotropy in the XY plane than scannin
gies with e.g. 90◦ or 45◦ rotations, because identical scan paths in subsequent laye
oided [47].
EAM.3D generates grains of varying size with an equivalent sphere diameter followin
al distribution with a mean value, µESD, and a standard deviation, σESD. Besides th

size, the grain aspect ratio can easily be prescribed, which was determined by LO
th materials (Figure 2).
r the RVE of Ti-6Al-4V the average grain size, µESD, has been determined iterative
ain a sufficient number of grains for the final RVE using a fixed ratio of σESD/µESD

This procedure resulted in an RVE containing 184 elongated primary grains with th
ibed aspect ratio of 2.2. In addition, α′ martensite plates are also considered with
rimary grain, with a layer thickness approximately 5% of the RVE edge, as show
ure 4a. The layered morphology is obtained by post-processing the primary gra
ology, using a simple 3D sine-wave function, as a threshold, to divide each grain in
ry and secondary layers. The modified multi-scale RVE still maintains periodicit
was ensured with appropriate translation of the sine-wave mask of the grains on th

e of the RVE [40]. The layering is based on a prescribed statistical distribution of th
normal vectors, n, of the grains, reproducing the dominant orientation of the prima
tes with respect to the building plane. The mean value of this normal distribution
ith the standard deviation of 8◦.
garding the texture, each primary grain contains two mutually orthogonal cryst
ations corresponding to primary and secondary layers, as shown in Figure 4c.

10



Journal Pre-proof

Figure d)
reconst

the pr le251

betwe d252

in Fig P253

crysta ly254

isotro m255

distrib Y256

plane, k,257

mesh d,258

see [40259
 Jo
ur

na
l P

re
-p

ro
of

(a) (b)

(c) (d)

4: Generated RVEs for (a) Ti-6Al-4V and (b) 316L, (c) synthetic IPF map of Ti-6Al-4V and (
ructed IPF map of 316L with respect to BD

imary layers, the [11̄00] direction of the HCP crystal is parallel to n and the ang
en the [0001] direction and the global Z axis is the closest possible to 0◦, as illustrate
ure 4a. This orientation is rotated −90◦ around the [112̄0] direction of the HC
l to obtain the orientation of the secondary layers. The ensuing texture is transverse
pic with the hardest [0001] direction of the HCP crystal having a uniformly rando
ution projected onto theXY plane and a preferred alignment perpendicular to theX
as shown in Figure 5. Prior to completing the Ti-6Al-4V RVE applied in this wor

convergence studies and case studies with different layer orientations were conducte
] for further details.
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5: Histograms for the angle between the HCP crystal z axis, i.e. the [0001] direction, and the bu
i.e. the global XY plane, for the the secondary and primary layers of Ti-6Al-4V [40].

ly primary grains are considered for 316L, since the size of the subgrain dendrite ce
ure is two orders of magnitude lower and not visible in the EBSD measurements. Th
r grain morphology of 316L as compared to Ti-6Al-4V, allowed for approximately fo
the number of grains in the RVE, namely about 800 grains with an aspect ratio
he texture characterised by XRD was employed for generating an RVE with a simil
e. Firstly, the orientation distribution obtained by XRD measurement was reproduce
representative set of 100 grains. Subsequently, this set of grains was replicated 5 time
rystal orientations repeatedly rotated by 67◦ around the Z axis, in order to simula
inting scan strategy and approximate transverse isotropy. The thereby created bu
e, including 500 grains, aims at representing the crystal orientations of five consecuti
ng layers. Finally, providing this cumulated crystal orientation distribution togeth
he desired grain size and aspect ratio as input to the DREAM.3D software, the gra
tion and texture of an RVE were directly obtained. The pole figures of the generate
or 316L are shown in Figure 6, and they are in good agreement with the pole figur
ed by XRD (Figure 3).

Figure 6: Pole figures [111,200,220] of 316L RVE based on XRD with BD ⊥ to the plane

12
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nsidering Figures 2 and 4, assuming transverse isotropy, the primary grain size
aterials is in the order of 100 µm in the build plane. As a result, the RVEs can b

ered to have a physical size of 0.7 mm3 for Ti-6Al-4V and 2.5 mm3 for 316L. Howeve
scale effects are not accounted for in the applied crystal plasticity model (Section 3.1
us the numerical results are independent of the size of the RVEs.

VE homogenisation

evaluate the macroscopic mechanical properties, homogenised quantities need to b
d from the crystal plasticity simulations of the RVEs. To this end, the homogenise

y stress tensor, σ, deformation gradient, F and plastic power per unit volume, Ẇ
fined as the volume average over all constituents by

σ =

Ng∑

g=1

vgσ
(g), F =

Ng∑

g=1

vgF
(g), Ẇp =

Ng∑

g=1

vgẆ(g)
p (

Ng is the total number of voxels and vg represents the volume fraction of voxel g. Th
power per unit volume is determined using the work conjugacy of the plastic Mand

, M
(g)
p , and the plastic velocity gradient, L

(g)
p , at material point g [23]:

Ẇ(g)
p = M(g)

p · L(g)
p (

enomenological polycrystal plasticity

this section, two anisotropic yield criteria, namely the quadratic Hill-48 criterion [2
he non-quadratic Yld2004-18p criterion [25], are calibrated based on virtual testin
the established RVEs. The calibration procedure adopted in this study is based o
ethod proposed by Frodal et al. [26]. The aim is to derive yield surfaces that describ
mogenised response at the RVE level.

onstitutive laws

astic yielding at the RVE level can be formulated using the volume-average Cauch
tensor and assuming pressure independence as

Φ(σ) ≡ ϕ(σ)− σy = 0 (

ϕ(σ) is the equivalent stress, as defined by the applied yield function, and σy is th
stress. The isotropic von Mises yield criterion defines ϕ(σ) in terms of the deviator
tensor s, by

ϕ(σ) =

√
3

2
s : s (1

s is defined as

s = σ − 1

3
tr(σ)I (1

13
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denoting the second order identity tensor.
r anisotropic materials, Barlat et al. [25] proposed to use linear transformations of th
oric stress tensor to account for the anisotropy

s′ = C′ : s, s′′ = C′′ : s (1

the fourth order tensors C′ and C′′ contain the plastic anisotropy coefficients. A
g an orthotropic material, the matrix form of the linear transformations reads as




s′XX

s′Y Y

s′ZZ

s′XY

s′Y Z

s′ZX




=




0 −c′12 −c′13 0 0 0

−c′21 0 −c′23 0 0 0

−c′31 −c′32 0 0 0 0

0 0 0 c′44 0 0

0 0 0 0 c′55 0

0 0 0 0 0 c′66







sXX

sY Y

sZZ

sXY

sY Z

sZX




(1




s′′XX

s′′Y Y

s′′ZZ

s′′XY

s′′Y Z

s′′ZX




=




0 −c′′12 −c′′13 0 0 0

−c′′21 0 −c′′23 0 0 0

−c′′31 −c′′32 0 0 0 0

0 0 0 c′′44 0 0

0 0 0 0 c′′55 0

0 0 0 0 0 c′′66







sXX

sY Y

sZZ

sXY

sY Z

sZX




(1

the stress components are given with respect to the principal axes of anisotropy aligne
he global Cartesian coordinate system XY Z. Among the 18 anisotropy coefficien
ed in C′ and C′′, only 16 are independent [48]. Owing to the microstructure
roduced materials, transverse isotropy with respect to the XY plane is assumed,
sed in Section 3.3, and the number of independent parameters can be further reduce
y the symmetry conditions

c′13 = c′23, c′31 = c′32, c′12 = c′21, c′55 = c′66 (1

c′′13 = c′′23, c′′31 = c′′32, c′′12 = c′′21, c′′55 = c′′66 (1

quivalent stress defined by the Yld2004-18p yield function of Barlat et al. [25] is give

ϕ(σ) =

(
1

4

3∑

k=1

3∑

l=1

|S ′k − S ′′l |a
) 1

a

(1

the exponent a determines the curvature of the yield surface, while S ′k and S ′′l are th
pal values of the tensors s′ and s′′, respectively. Due to the relatively high number

14
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eters, the Yld2004-18p yield criterion is expected to provide an accurate estimatio
yield surfaces for the AM materials of interest. On the other hand, the yield criterio
es a substantial number of simulations (or physical experiments) to determine th
ients and it is usually not available in commercial finite element software.
erefore, besides the rather complex Yld2004-18p yield criterion, the more simpl
atic Hill-48 yield criterion [24] is also adopted to describe the anisotropic plastici
iour, which is defined as

) =

√
F (σY Y − σZZ)

2
+G (σZZ − σXX)

2
+H (σXX − σY Y )

2
+ 2Lσ2

Y Z + 2Mσ2
ZX + 2Nσ2

XY (1

F , G, H, L, M and N are material parameters. Again, invoking transverse isotrop
espect to the XY plane, the number of parameters can be reduced to four from th
mmetry conditions

F = G, L = M (1

alibration of yield surfaces

determine all parameters of the Yld2004-18p yield criterion, usually a large number
mental tests are required [49, 50]. However, following the procedure proposed by Fr
al. [26], virtual material testing is performed instead of extensive experimental testin
esult, the yield surfaces are calibrated based on crystal plasticity simulations with th
described in Sections 3.1 and 3.3. The series of numerical tests to be performed [2
ts of seven uniaxial tension tests in the XZ plane, namely in 15◦ increments from th
s to the Z axis, and balanced biaxial tension in the same plane. From these tests, b
he initial yield stresses, the Lankford coefficients are also used for calibration. Furth
ases are simple shear tests and uniaxial tension tests at 45◦ in XY and Y Z planes. T
high accuracy, plane-strain tension tests are carried out in the XZ plane with loadin

ions parallel to X and Z axes. In the same plane, a plane-stress balanced biaxial stra
included, i.e. ε̇ZZ/ε̇XX = 1. Finally, additional five tests are performed along th
Z axes with the following strain-rate ratios: ε̇ZZ/ε̇XX = −2.00,−1.57,−1.00,−0.6

.50.
e uniaxial tension test along the Z axis, aligned with the BD, is considered as a re
load case that is used to normalise the results of all the other test cases. The yie
of each test is derived from the volume-average Cauchy stress tensor at a volum
e plastic work, derived from Equation (8), corresponding to 0.2% plastic strain
ference load case. The Lankford coefficient is determined as an average within th

% range of the plastic work at yielding. The yield surface is calibrated using th
d proposed by Frodal et al. [26]. Briefly, the method uses an error function, define

e normalised volume-average Cauchy stress tensors at yielding, the Lankford coeffi
and the equivalent stress, depending on the yield surface parameters c′ij, c

′′
ij, and

ing to Equation (17). These yield surface parameters are determined by means
al minimisation of the error function, applying the basin-hopping algorithm of th
Python package.
e calibration of the Hill-48 yield criterion is based on the same crystal plastici
tions and volume averaged plastic work as the Yld2004-18p yield surface. Howeve
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libration requires only four load cases, since the model has only four independe
eters due to the transverse isotropy. Simulations of two uniaxial tensile tests a

d out to determine the coefficients F and H, according to the following equations:

F =
1

2(σy
ZZ)2

, H =
1

2(σy
XX)2

(2

σy
ZZ and σy

XX are the normal yield stresses in the Z and X directions. In additio
tions of two shear tests are performed to obtain the coefficients L and N :

L =
1

2(σy
Y Z)2

, N =
1

2(σy
XY )2

(2

σy
Y Z and σy

XY are yield stresses in shear with respect to the axes of anisotropy. Th
eters of the Hill-48 yield criterion can also be calculated using the Lankford coefficien
d of the yield stresses. However, the yield surfaces calibrated based on the Lankfo
ients gave a poor approximation of the RVE simulations, and are therefore omitted

sults

is section describes the numerical and experimental results, in the same manner f
PBF manufactured Ti-6Al-4V and 316L. Firstly, the experimental stress-strain curv
esented that serve as the basis for the RVE calibration. Secondly, these calibratio
aluated by a comparison between simulated and experimental stress-strain curves
one specimens printed with their axis perpendicular to the BD (90◦) and parallel
D (0◦), respectively. Finally, the obtained Yld2004-18p and Hill-48 yield surfaces
aterials, which are fitted to the yielding points of the RVE simulations, are presente

xperimental and numerical uniaxial tension tests

e experimental uniaxial tension tests comprised at least four repetitions for each m
and build direction, and the measured stress-strain curves of all of these tests a
ted in Figure 7. To determine Young’s modulus, E, a linear fit was performed for ea

-strain curve. The range of the fit was 150−500 MPa for Ti-6Al-4V and 50−200 MP
6L. The conventional yield points, corresponding to 0.2% plastic strain, were dete
by offsetting the fitted lines. The average of these yield points for both materials an

directions are marked in Figure 7. Table 5 summarises all experimentally obtaine
nical properties with their average values and standard deviations.

16
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(a) 316L (b) 316L (zoom-in) (c) Ti-6Al-4V

7: Experimental stress-strain curves for (a,b) 316L and (c) Ti-6Al-4V specimens printed vertica
rizontally, the symbol ”∗” denotes average value of the yield stress σy.

(a) 316L (b) Ti-6Al-4V

8: Comparison of averaged experimental and numerical stress-strain curves up to an engineeri
of 2.5% for (a) 316L and (b) Ti-6Al-4V, the symbol ”∗” denotes average value of the yield stress σ

e experimental and numerical stress-strain curves are compared in Figure 8. Firstl
all experimental stress-strain curves, averaged experimental curves were obtained u
% engineering strain for both materials and loading directions. From the RVE sim
ns, the volume averaged Cauchy stresses were exported at each strain increment an
rted to engineering stresses. The results show that the RVEs of both materials ca
re the experimentally observed anisotropic tensile properties with reasonable accurac
theless, for the 316L elastic anisotropy could not be obtained by the simulations, an
astic anisotropy is also slightly underestimated (Figure 8a). The anisotropic yie
es have opposite ratios for 316L and Ti-6Al-4V, despite the same AM process an
ing strategy being used. LPBF Ti-6Al-4V is stronger along the BD, while LPB
is weaker along the BD, compared to the yield limit in directions parallel to the X

The different anisotropy must primarily stem from the different textures and cryst
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ures, since length-scale effects are neglected. This finding supports that the man
ing process with almost identical thermal history creates substantially distinct cryst
ations for the different crystals.

Table 5: Experimental tensile test results of as-built LPBF Ti-6Al-4V and 316L

Material BD E [GPa] σy [MPa] σUTS [MPa] εmax [%]

Ti-6Al-4V
0◦ 120.7±6.7 1208±21 1292±18.8 7.6±2.9

90◦ 111.6±4.8 1170±12 1258±24.8 8.1±1.0

316L
0◦ 173.2±28.9 514±20 621±8 53±12

90◦ 215.9±11.76 545±12 681±5 59±3

valuation of yield surfaces

this section, the yield limits of several load cases predicted by the experimental
ted RVEs are used to determine the Hill-48 and Yld2004-18p anisotropic yield surfac
e two materials. Figure 9 shows for both materials the isolines of the generated Hill-4
ld2004-18p yield surfaces in the XZ plane, together with the normalised yield stress
irections of the plastic flow. The corresponding yield surface parameters are given
s 6 and 7.
e different character of the plastic anisotropy of the two materials is illustrated
10, which shows the normalised yield stresses and Lankford coefficients as functio

tensile direction in the XZ plane. The RVE simulations (dots) predict minor streng
ropy for both materials, while the anisotropy in plastic flow, represented by the Lan
oefficient, is substantial with opposite distribution for the two materials.
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b)

d)

9: Generated yield surfaces of (a, c) 316L and (b, d) Ti-6Al-4V, projected onto the XZ plane. T
ce yield stress σ0 is taken along the Z axis. Contours of the normalised shear stress σXZ/σ0 a

in 0.1 increments and the maximum value is shown in the centre. The von Mises yield locus
with a red dashed line.

e results obtained by the fitted yield surfaces show that only the Yld2004-18p yie
e is able to accurately capture the plastic anisotropy predicted in the RVE simulation

scussion

nsidering the experimental results given in Table 5, a significant elastic and plast
ropy can be observed for both LPBF 316L and Ti-6Al-4V. Despite using the sam
facturing process, the materials show opposite elastic and plastic anisotropy, which
eement with the results reported in the literature [7, 13] and also supported by th
l plasticity simulations.
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a) b)

c) d)

‖ BD ⊥ BD

10: Normalised yield stress and Lankford coefficient from RVE simulations and fitted yield surfac
tion of tensile direction in the XZ plane for (a,c) 316L and (b,d) Ti-6Al-4V, where the 0◦ directi
onds to the reference direction taken along the Z axis (‖ BD).

Table 6: Calibrated parameters for the transversely isotropic Hill-48 yield criterion

Parameter Ti-6Al-4V 316L

F = G 0.5 0.5

H 0.56 0.44

L = M 1.30 1.65

N 1.47 1.71

though the RVE for Ti-6Al-4V can precisely reproduce the experimental stress-stra
(Figure 8b), the number of adjustable parameters in the modelling was much high

or 316L. One main contributor is the crystal structure because the HCP crystal h
er number of elastic and plastic parameters than the FCC crystal. In addition, th

20



Journal Pre-proof

textur y422

to ach d423

elastic424

In s,425

provid a-426

sured ly427

well r ts428

that t d429

by [7] ic430

anisot d431

elastic e432

result re433

provid c-434

ity ten ty435

tensor e436

compu il437

in [52438

Th al439

strain In440

additi ve441

argua ts442

confir nt443
 Jo
ur

na
l P

re
-p

ro
of

Table 7: Calibrated parameters for the transversely isotropic Yld2004-18p yield criterion

Parameter Ti-6Al-4V 316 L

a 7.97 12.71

c′12 = c′21 0.6725 0.6821

c′13 = c′23 1.0714 0.8420

c′31 = c′32 1.0000 1.0000

c′44 -0.5433 -0.8677

c′55 = c′66 -1.2553 -1.0821

c′′12 = c′′21 1.2785 1.1873

c′′13 = c′′23 1.1999 0.8413

c′′31 = c′′32 -0.5503 1.0774

c′′44 -1.3179 1.0862

c′′55 = c′′66 0.4792 -0.8530

e of Ti-6Al-4V is synthetically generated and the result of a detailed parametric stud
ieve the best possible match with the experimental results using commonly reporte
parameters [40].

contrast, the crystallographic texture of 316L was obtained from XRD measurement
ing statistically representative data. The crystal plasticity simulations using the me
texture data and the single slip resistance parameter of the FCC crystal can fair

eproduce the experimental yield points, as shown in Figure 8a. This finding sugges
he texture is the main factor responsible for the plastic anisotropy, which is supporte
but in contradiction to [8]. However, the substantial experimentally observed elast
ropy, reported in Table 5, could not be captured numerically. Regardless of the applie
constants and the software used for simulations, i.e. DAMASK or MTEX [51], th

s yield approximately elastic isotropy with the measured texture. The MTEX softwa
es three different options (Voigt, Hill and Reuss) to estimate the homogenised elasti
sor for a given texture and elastic constants of the crystal. All three derived elastici
s exhibited high elastic stiffness (above 230 GPa) with a minor 2% anisotropy. Th
tational methods and the related usage of the MTEX software are described in deta

].
e source of the elastic anisotropy of LPBF 316L has not been established. Residu
s could play a role in the elastic regime but have not yet been widely reported [6, 8].
on, the elastic properties obtained by the performed standard uniaxial tensile tests ha
ble accuracy. However, Charmi et al. [7] recently reported similar experimental resul
med also by simulations, using the same numerical methods as applied in the prese
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The difference between the simulated elastic properties of this and the referred stud
be explained by different texture data. Namely, the texture determined by loc
measurements in [7] is more dominant than the texture of this study obtained b
This hypotheses is justified by the work of Leicht et al. [47], which showed that th
e of specimens built by a scanning strategy with a rotation of 90◦, as used by [7
ificantly stronger than with the 67◦ rotation used in this work. Furthermore, eve
perimental yield stresses of [7] show a much stronger anisotropy, approximately 16
red to the 6% of the present study. This indicates that the scanning strategy do
ly effect the crystallographic texture, but also the mechanical anisotropy. Since th
ted plastic anisotropy underestimates the measured one as shown in Figure 8a, a
onal conclusion is that other factors such as grain boundaries and precipitates shou
ounted for.
nsidering Figures 9 and 10, the opposite trends in terms of normalised yield stresses
◦ direction are clearly visible for 316L and Ti-6Al-4V. Additionally, the shape of th
urfaces, the maximum shear stresses and the normalised stress at 45◦ are also differe
e two materials. For 316L, the yield stress in the 45◦ direction is approximately th
e of the yield stresses in the 0◦ and 90◦ directions (Figure 10a), which is in comple
ent with the result of [7]. The RVE of Ti-6Al-4V predicts the highest yield streng

45◦ direction (Figure 10b), which is also validated experimentally by Agius et al. [13
ugh the corresponding numerical stress-strain curve is not included for brevity, it h
investigated, as the applied synthetic texture has a dominant [0001] alignment
ith respect to the BD. It was found that the elastic stiffness in the 45◦ direction
ximately the average of the stiffness values in the 0◦ and 90◦ directions, which is al
med by [13]. In addition, preliminary parametric studies showed that the yield stre

45◦ direction can easily be increased even more with higher slip resistance of th
idal system, τpyr〈c+a〉, without substantially modifying the yield stresses in the 0◦

rections. On the other hand, an increased τpyr〈c+a〉 leads to a substantial hardenin
monly reported.

garding the performance of the different types of yield surfaces, the Yld2004-18p
sly superior to the Hill-48 for both materials, due to the higher number of fitte
eters. The constraint of transverse isotropy reduces the independent parameters
04-18p from 16 to 8, and for Hill-48 from 6 to 4. An important limitation of th
atic Hill-48 yield criterion is that it cannot account for uniaxial loading in the 4
ion, which is a specific point of interest for AM materials. Furthermore, it also giv
r estimation of the Lankford coefficients, as shown in Figure 10c and d.
wever, considering the AM process and transversely isotropic materials, the Hill-4
on is a natural first choice in recent studies [28, 29, 53]. The experimental resul
he determined Hill-48 parameters reported in this work are in good agreement wi
r investigations of Ti-6Al-4V [28, 29]. Nevertheless, these works lack detailed virtu
erimental material tests to reveal the limitations of the yield criterion. In case of th
316L, the available literature is more limited to tensile experiments and simulation

ence a direct comparison of the yield surfaces has not been performed [7, 53]. In the
ular cases, the percentage of anisotropy is comparable to the error introduced by th
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8 criterion, which implies that the Hill-48 criterion is not always superior even to
rd isotropic yield criterion. Therefore, it might be a good strategy, depending on th

ation, either to choose a precise anisotropic yield criterion such as the Yld2004-18
riterion, or opt for simplicity and use an isotropic yield criterion. Taking into accou
latively high value of the yield surface exponent, a, of the Yld2004-18p criterion f
aterials, the Hershey-Hosford yield criterion [54, 55] seems to be the most appropria
among the isotropic yield criteria.

ncluding remarks

e anisotropic mechanical properties of laser powder bed fusion (LPBF) austenint
ss steel 316L and titanium alloy Ti-6Al-4V have been investigated by means of expe

al and numerical methods. Crystal plasticity simulations were carried out on RVEs
empt to represent the observed microstructural properties such as grain morpholog
rystallographic texture. The obtained RVEs are applied to calibrate the Hill-48 an
04-18p anisotropic yield surfaces for the two materials. The main conclusions of th
are summarised as follows:

Both LPBF 316L and Ti-6Al-4V exhibit elastic and plastic anisotropy but with o
posite trends. The 316L material reveals lower strength and stiffness for specime
loaded parallel to the build direction (vertical) and the opposite effect is observe
for Ti-6Al-4V, supported by several references [2, 7]. Therefore, our work sugges
for specific applications, e.g. quality assurance, that Ti-6Al-4V is preferably teste
horizontally and 316L vertically to be conservative.

Crystal plasticity simulations with RVEs are able to precisely capture the elastic an
plastic anisotropy of the various materials. However, this method has limitations wi
relatively weak crystallographic texture, as demonstrated with the measured textu
of 316L. In that case the simulations showed underestimated plastic anisotropy an
elastic isotropy.

The virtual testing of the AM materials reveals a non-quadratic yield surface shap
with yield function exponent a considerably larger than 2.

Considering the shape of the yield surfaces and the thoroughly investigated prope
ties in the 45◦ direction with respect to the build direction, one has to be caref
with the application of the orthotropic Hill-48 criterion. In the present case to pr
cisely capture the anisotropy, the choice of the Yld2004-18p is justified among the tw
anisotropic models. However, for distinct anisotropy and including the 45◦ directio
for the calibration of the yield surface, the Hill-48 criterion might be acceptable.

The degree of anisotropy of AM materials highly depends on the printing paramete
and scanning strategy. In our particular case with limited anisotropy, the 5% error
the yield stresses introduced by using the von Mises yield function was in the sam
range as the error of the anisotropic Hill-48 yield function.
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portant to note that with the present numerical model, the experimentally observe
anisotropy is attributed to the crystallographic texture for both materials. Th

employed account for the observed grain morphology, but they lack an importa
Using conventional crystal plasticity, they do not include material length scale, th

boundary effects are neglected. Despite the minor role of microstructure morpholog
rted by related studies [7, 42], strain gradient plasticity or dislocation based plastici
provide further insights. Although the primary grain aspect ratios are similar, th
ropic properties exhibit opposite trends for the two materials investigated. Therefor
ting grain boundary effects seems reasonable for the modelling of Ti-6Al-4V, but n
arily for 316L.
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LPBF 316L and Ti-6Al-4V materials are investigated with crystal plasticity
Moderate elastic and plastic anisotropy with opposite tendencies for the 
materials
Main governing factor of the simulated anisotropy is the crystallographic 
texture
RVE simulations for virtual material testing to calibrate anisotropic yield 
criteria
Yld2004-18p, Hill-48 and von Mises yield criteria are compared
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