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Continuous-variable measurement-based quantum computation on cluster states has in recent years
shown great potential for scalable, universal, and fault-tolerant quantum computation when combined
with the Gottesman-Kitaev-Preskill (GKP) code and quantum error correction. However, no complete
fault-tolerant architecture exists that includes everything from cluster-state generation with finite squeez-
ing to gate implementations with realistic noise and error correction. In this work, we propose a simple
architecture for the preparation of a cluster state in three dimensions in which gates can be efficiently
implemented by gate teleportation. To accommodate scalability, we propose architectures that allow both
spatial and temporal multiplexing, with the temporally encoded version requiring as little as two squeezed
light sources. Because of its three-dimensional structure, the architecture supports topological qubit error
correction, while GKP error correction is efficiently realized within the architecture by teleportation. To
validate fault tolerance, the architecture is simulated using surface-GKP codes, including noise from GKP
states as well as gate noise caused by finite squeezing in the cluster state. We find a fault-tolerant squeezing
threshold of 12.7 dB, with room for further improvement.

DOI: 10.1103/PRXQuantum.2.030325

I. INTRODUCTION

In measurement-based quantum computation (MBQC),
gates are implemented by projective measurements on
a multimode entangled cluster state, circumventing the
complex coherent unitary dynamics required in conven-
tional gate-based quantum computation [1]. As such, the
cluster state is a critical resource for MBQC, and its num-
ber of modes and structural design define the size of a
potential measurement-induced algorithm. A particularly
promising platform for scaling and controlling the struc-
ture of a cluster state is the optical-continuous-variable
(CV) platform [2,3], where large cluster states can be
deterministically generated and controlled, and efficiently
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measured by homodyne detection. This has been proven
by realizations of large-scale CV cluster states in both one
dimension [4–6] and two dimensions [7,8]. Moreover, the
versatility of the CV optical platform has been further cor-
roborated by recent demonstrations of single-mode and
multimode gates using high-efficiency projective measure-
ments on one-dimensional [9] and two-dimensional [10]
cluster states.

MBQC based on the CV platform is, however, inher-
ently noisy due to the impossibility of generating max-
imally entangled CV cluster states: the generation of
maximal CV entanglement requires squeezed states of infi-
nite squeezing and thereby infinite energy, which is not
feasible. Therefore, inevitably, Gaussian noise is added
to the quantum information during computation. To com-
bat this additive noise, information is encoded as special
qubits in CV bosonic modes of infinite dimension. By
encoding such qubits into the bosonic modes, using, e.g.,
a cat-code [11], a binomial code [12], or the Gottesman-
Kitaev-Preskill (GKP) code [13], this Gaussian noise can
be corrected at the cost of being converted into Pauli
errors in the encoded qubit. These Pauli qubit errors must
then be corrected by some qubit quantum error-correction
scheme. Implementing qubit error correction efficiently
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in MBQC puts stringent requirements on the underlying
cluster state. As an example, the local connectivity in
the cluster states supports only coupling between nearest-
neighbor modes, so topological error correction is a natural
choice for qubit error correction [14]. This, in turn, requires
a three-dimensional (3D) cluster state for MBQC [15–17].

Several different proposals for 3D cluster-state gen-
eration and topological MBQC exist. Fukui et al. [18]
suggested a scheme for fault-tolerant MBQC based on
topological error correction, but their scheme assumes
the availability of a highly complex 3D cluster state of
encoded qubits. Wu et al. [19] proposed an optical setup
for the generation of a 3D cluster state using time and
frequency multiplexing. However, in their proposal, gates
are implemented by gate teleportation through four-mode
square cluster states, leading to increased gate noise. In
another publication by Fukui et al. [20], an all-temporally
encoded 3D cluster state was proposed, but this scheme is
experimentally highly challenging, as it requires the con-
struction of 12 squeezing sources and real-time feedfor-
ward operations. Moreover, no schemes for qubit encoding
and qubit error correction were put forward. The most
complete work on CV MBQC to date has been carried
out by Bourassa et al. [21], in which a computational
architecture for the generation of a 3D cluster state com-
bined with topological MBQC is proposed. However, the
suggested architecture is based on spatial encoding, ren-
dering the amount of spatial resources required very large
(as this number scales linearly with the computation size).
Moreover, their scheme relies on a very large number of
experimentally challenging online swap and sum gates,
which they assume to be ideal. Experimental work towards
topological quantum computation has been demonstrated
on other platforms, including a nine-qubit code on a pho-
tonic platform with polarization-encoded qubits [22], and a
seven-qubit code on an ion-trap platform [23] and a super-
conducting platform [24]. Still, thousands of qubits are
required for large fault-tolerant codes [25].

In our work, we propose a simple, scalable, and com-
plete architecture for topological MBQC and validate the
fault tolerance of the computation scheme. The scheme
is based on gate teleportation on parallel one-dimensional
(1D) cluster states, or wires, arranged in a 3D lattice and
coupled by variable beam splitters for two-mode gates. As
such, the setup is a variation of the well-demonstrated 1D
cluster-state generation [4,7,9] with added variable beam
splitters. Combined with GKP-encoded qubits [13], the
scheme allows universal computation, while fault toler-
ance is achievable by encoding logical qubits in a topo-
logical surface code [25–27]. Furthermore, the scheme,
being based on gate teleportation, is compatible with a
recently proposed GKP correction protocol that dispenses
with demanding coupling to ancillary GKP qubits [28].
We validate the fault tolerance of the full scheme by a
thorough simulation that includes both noise in the GKP

qubits and, unlike previous work, gate noise caused by
finite squeezing in the cluster state. As a result, when the
topological surface code is combined with GKP error cor-
rection in the surface-GKP code [29], we find a squeezing
threshold of 17.3 dB. We continue by proposing a varia-
tion of the surface-GKP code—the surface-4-GKP code,
with four GKP corrections during the surface-code syn-
drome measurements—by means of which we upgrade the
squeezing threshold to 12.7 dB while leaving room for fur-
ther improvement. Related schemes in Refs. [18,21] have
better thresholds, but they assume an ideal cluster state,
i.e., without gate noise. We obtain a comparable threshold
of 10.2 dB when we ignore gate noise.

The paper is organized as follows. In Sec. II, we present
the computation scheme and describe the implementa-
tion of the required gates. In Sec. III, we focus on GKP
error correction within the computation scheme, and in
Sec. IV we present the implementation of the surface code
for qubit error correction and our validation of the fault-
tolerance properties by performing simulations. In Sec. VI,
we discuss the results and conclude the paper.

II. COMPUTATION SCHEME

The concept of our computation scheme is illustrated in
Fig. 1. The scheme consists of parallel wires, each corre-
sponding to temporally encoded one-dimensional cluster
states [4,6] on which single-mode gates can be imple-
mented by projective measurements using a beam splitter

sq

sq

FIG. 1. Conceptual illustration of the computation scheme.
n× m wires of two-mode entangled states are prepared in n× m
resource-preparation gadgets (“Res. prep.”). States with input
information for computation, |ψin〉GKP, are switched into each
wire for computation using an optical switch. With a beam
splitter (marked with a red arrow) and two detectors for each
wire, single-mode gates are implemented in each wire when
the resource-preparation gadget is fed with squeezed states,
|0〉sq [9,30]. Feeding the resource-preparation gadget with spe-
cial GKP states, namely qunaught states, |∅〉GKP, allows GKP
quadrature correction of encoded GKP qubits [28]. Neighboring
wire setups are connected using variable beam splitters (VBSs),
allowing tunable coupling for implementing two-mode gates and
thereby enabling multimode computation.
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FIG. 2. (a) Temporally encoded computational setup for our scheme. The scheme consists of three parts: the resource-preparation
gadget; the computational level, where the computation takes place; and the temporally delocalized measurement device (TDMD) for
gate implementation by projective measurements. This scheme utilizes temporal multiplexing of two spatial modes, A and B, marked
in the computational level. (b) Wires of two-mode entanglement at the computational level shown in the time domain, here for the
simple case of nm = 9. The bold lines represent two-mode entanglement, while the thin lines indicate the temporal overlap of A and
B. The wires begin with nm input states in temporal modes 0 to 8, switched in using an optical switch in A in the computational level.
The colors of the wires have no physical meaning and are used merely to indicate different wires. (c) Wires rearranged into a 3D time
lattice, where the input is encoded onto the n× m end surface, while gates are implemented by teleportation along the wires in the
third dimension. Here, the red arrows represent the first beam splitter of the TDMD, while the dotted blue and green arrows represent
the variable beam splitters of the TDMD. The first ten temporal modes in (b) from 0 to 9 are labeled in (c).

(marked in Fig. 1 with a red arrow) and two detectors
[9,30]. Input states, |ψin〉, can be swapped into each wire
for computation using an optical switch. To enable mul-
timode computation, the setups of neighboring wires are
connected with variable beam splitters, which allow tun-
able coupling of wires for implementing two-mode gates.
This architecture may be implemented spatially as depicted
in Fig. 1, with a large grid of wire setups forming a 3D
cluster state encoded in (space)2 × time. Such a spatial
encoding requires spatially scalable resources and may be
possible with integrated photonics. As an alternative, in
Fig. 2 we propose an all-temporally encoded version of
the computation scheme that allows a simple experimen-
tal implementation and easy scalability. In the following,
while we focus on the temporally encoded architecture
when describing the computation scheme in detail, all the
methods, results, and conclusions presented also hold true
for the spatially encoded architecture—even a combina-
tion of the spatial and temporal encoding architectures
might lead to a similar computation scheme with identical
conclusions.

The temporally encoded scheme in Fig. 2 consists of
three parts: the preparation of resource states, the injection
of input states at the computational level, and the measure-
ments, enabled by a temporally delocalized measurement
device. Note that the term “computational level” refers to
the location in the setup at which information is encoded
and computation takes place. In some of our previous
work, this computational level was referred to as the “logic
level” [10,31]. However, in the present work we reserve
the term “logic” for the qubit error correction presented in
Sec. IV. As ancillary input for the resource preparation,

we switch between squeezed vacuum states, |0〉sq, when
implementing gates by projective measurements, and GKP
qunaught states [28], |∅〉GKP, when performing GKP error
correction. In Sec. III, GKP error correction with ancil-
lary |∅〉GKP states is described, while throughout this
section we focus on gate implementation with ancillary
|0〉sq states.

In the resource-preparation stage, the spatial modes A
and B are initially occupied by squeezed vacuum states,
|0〉sq, which are squeezed along the orthogonal quadra-
tures (q̂− p̂)/

√
2 and (q̂+ p̂)/

√
2, respectively. Here, q̂

and p̂ are the electric field amplitude and phase (or posi-
tion and momentum) quadratures, for which we use the
� = 1 convention, corresponding to a vacuum variance of
1/2. Each pair of squeezed states is then interfered on
a balanced beam splitter, leading to two-mode entangle-
ment with q̂p̂ correlations. This is an approximate cluster
state equivalent to a conventional two-mode squeezed state
(with q̂q̂ and p̂ p̂ correlations) that is phase-rotated by π/4
in both modes [32,33]. As a unitary operator for the bal-
anced beam splitter, we use B̂ = e−iπ(q̂i⊗p̂j−p̂i⊗q̂j )/4, with
the corresponding symplectic matrix

B = 1√
2

⎛
⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎠ (1)

acting on quadrature vectors (q̂i, q̂j , p̂i, p̂j )
T, represented

graphically by an arrow pointing from mode i to j . Note
that in this work we prepare two-mode cluster states; how-
ever, we could just as well have considered preparation of
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conventional two-mode squeezed states (with q̂q̂ and p̂ p̂
correlations), which are equivalent to cluster states under
phase rotation that may be absorbed into the measurement
bases.

After interference at the beam splitter, the modes of A
are delayed by nm temporal modes, leading to synchro-
nization of the modes A and B of two-mode entangled
states that initially are separated by nm temporal modes
[34]. The result is nm decoupled wires of two-mode entan-
gled states, illustrated in the time domain in Fig. 2(b)
for nm = 9. Here, each color indicates a different wire,
with the bold lines indicating two-mode entanglement,
while the thin lines indicate temporal overlap of A and
B. The nm wires constitute the computational level, in
which computation is performed. Using an optical switch,
nm input modes to the computation can be switched into
the computational level at A—optical switching has been
demonstrated in a continuous-variable quantum setting in
Refs. [35,36]. In Fig. 2(b), nine input modes are switched
into A in temporal modes 0 to 8.

The nm wires can be arranged in a 2D grid such that
they form a 3D square lattice, as shown in Fig. 2(c).
The third dimension is, in principle, arbitrarily deep. As
such, information is encoded on a surface, while compu-
tation proceeds along the third dimension by teleportation
using the TDMD. The TDMD consists of a balanced beam
splitter, two VBSs, two delays of 1 and n− 1 temporal
modes, and two homodyne detectors (HDs) measuring A
and B in bases q̂(θ) = q̂ cos θ + p̂ sin θ . The arrangement
is illustrated in Fig. 2(a). Each VBS can vary between
two settings: when single-mode gates are implemented,
the VBSs are left “open” such that the modes A and
B do not interfere, corresponding to ÎA ⊗ ÎB; when two-
mode gates are implemented, one of the two VBSs is
“enabled” to function as a balanced beam splitter, with
the symplectic matrix in Eq. (1) interfering A and B. Such
a variable beam splitter may be implemented in various
ways, for instance as a Mach-Zehnder interferometer with
a controllable phase in one arm, or by polarization con-
trol combined with polarization-dependent beam splitters
[36–38].

When the VBSs are left open, the TDMD simply imple-
ments a two-mode joint Bell measurement, which enacts
a single-mode gate teleportation through the two-mode
entangled resource state [9,30]. The state in the compu-
tation is teleported from temporal mode k in A, (A, k), to
mode (A, k + nm). In this process, depending on the HD
basis settings θA,k and θB,k, the gate operation

R̂ (θ+) Ŝ (tan θ−) R̂ (θ+) (2)

is implemented on the teleported state, where θ± =
(±θA,k + θB,k)/2 [39]. Here R̂(θ) = e−iθ(q̂2+p̂2)/2 and

Ŝ(s) = ei ln(s)(q̂p̂+p̂ q̂)/2 are the rotation and squeezing oper-
ators. Note that k labels the temporal modes at the compu-
tational level, while at the HDs, modes in A are delayed by
n temporal modes relative to modes in B. All single-mode
Gaussian gates can be implemented with two iterations of
Eq. (2) [40].

By enabling one of the two VBSs, two-mode gates can
be implemented between nearest neighbors in the 3D time
lattice. Two-mode gates between (A, k) and (A, k + 1) are
implemented by enabling the first VBS, while enabling the
second VBS allows two-mode gates between (A, k) and
(A, k + n). In the 3D time lattice in Fig. 2(c), the VBSs are
represented by dotted arrows. To encode the surface code
described in Sec. IV, we implement two different symmet-
ric two-mode gates: ĈZ(g) = eigq̂⊗q̂ and ĈX (g) = e−igp̂⊗p̂ .
These are controlled-phase gates that displace one mode
in p̂ (or q̂) by an amount gq̂ (or gp̂), controlled by the
other mode. We note that ĈX (g) does not correspond to a
controlled-NOT gate. ĈZ(g), or ĈX (g), constitutes together
with Eq. (2) a universal Gaussian gate set. In practice,
ĈZ(g) and ĈX (g) cannot be implemented in a single com-
putation step without some Fourier by-products of π/2
phase rotations, F̂ = R̂(π/2). To implement the surface
code in Sec. IV with a minimum number of computa-
tion steps, we make use of four variations of ĈZ(g) and
ĈX (g) with different by-products, each listed in Table I
with the basis settings required for implementation. These
have by-products of F̂ ⊗ F̂† or F̂† ⊗ F̂ when implemented
on modes (A, k)⊗ (A, k + j ), where j = 1 or n depend-
ing on which VBS is enabled. When the surface code is
implemented, the gates are arranged such that the Fourier
by-products cancel.

TABLE I. Two-mode gates with input and output in modes
(A, k)⊗ (A, k + j ) and (A, k + nm)⊗ (A, k + nm+ j ), respec-
tively, and their required basis settings. Here, j = 1 when the first
VBS (marked by blue in Fig. 2) is enabled, and j = n when the
second VBS (marked by green in Fig. 2) is enabled. The order of
the tensor products is arranged with earlier temporal modes first.
Note that, as apparent from the basis settings, (F̂† ⊗ F̂)ĈZ(g) =
ĈX (g)(F̂† ⊗ F̂) and ĈZ(g)(F̂ ⊗ F̂†) = ĈX (g)(F̂† ⊗ F̂). How-
ever, when the gates are implemented in the surface code in
Sec. IV, it is useful to consider them individually, as we have
Fourier by-products to cancel.

Two-mode gate Basis setting, (θA,k, θB,k , θA,k+j , θB,k+j )

(F̂† ⊗ F̂)ĈZ(g)
(
− arctan 2

g , 0, 0, arctan 2
g

)

ĈZ(g)(F̂ ⊗ F̂†)
(
−π

2 + arctan 2
g , π2 ,−π

2 , π2 − arctan 2
g

)

(F̂ ⊗ F̂†)ĈX (g)
(
−π

2 + arctan 2
g , π2 ,−π

2 , π2 − arctan 2
g

)

ĈX (g)(F̂† ⊗ F̂)
(
− arctan 2

g , 0, 0, arctan 2
g

)

030325-4



FAULT-TOLERANT CONTINUOUS-VARIABLE MEASUREMENT... PRX QUANTUM 2, 030325 (2021)

Finally, as the resource squeezed states |0〉sq are finitely
squeezed, all gate implementations inevitably produce
excess noise, which accumulates in the computational
modes throughout the computation. Because of the Gaus-
sian nature of the quadrature distribution of |0〉sq, this gate
noise leads to a Gaussian convolution of the quadratures
of all computational modes [10,30,31]. Assuming the vari-
ance of the squeezed quadrature of |0〉sq to be σ 2 = e−2r/2
(where r is the squeezing parameter), the variance of the
uncorrelated gate noise is

σ 2
gate = 2σ 2 = e−2r, (3)

which is added symmetrically in each quadrature of
the computational modes. In addition to gate noise, an
implemented gate also results in a displacement of the
computational modes depending on the outcomes of the
projective measurements. Since the measurement out-
comes are known, this displacement can be compensated
for by another cancelling displacement operation. How-
ever, in practice, these ubiquitous displacement opera-
tions need not be executed directly on the output modes;
they can simply be accounted for in postprocessing of
the measurement outcomes. Therefore, in this work, we
ignore these displacements, while for practical implemen-
tation, one has to keep these in mind when analysing the
measurement outcomes.

For a derivation of implemented gates considered in
this section, together with their resulting gate noise and
displacements, see Appendix A.

III. GKP QUADRATURE CORRECTION

As mentioned above, noise is added to the computa-
tion modes at each gate implementation due to the finite
amount of squeezing of the resource states. To correct for
this noise and thus prevent noise accumulation, we con-
sider a quadrature noise-correction scheme that relies on
bosonic qubit encoding in the infinite-dimensional Hilbert
space. This noise-correction scheme, however, comes at
the cost of introducing qubit errors, which must be subse-
quently corrected by a qubit error-correction scheme. The
first correction layer, the quadrature correction scheme, is
discussed in this section, while the second correction layer,
the qubit error correction, is the subject of Sec. IV.

Several schemes for encoding qubits into bosonic har-
monic oscillators of infinite Hilbert-space dimension exist,
including cat-codes [11], binomial codes [12], and the
GKP code [13]. Since the gate noise in our computation
scheme is additive quadrature noise, GKP encoding, where
a qubit is encoded in the mode quadratures as Dirac combs,
is most suitable. The GKP code is also suitable for cor-
recting excitation-loss errors, since excitation loss can be
converted via quantum-limited amplification into additive
quadrature noise [41–44]. Furthermore, as the gate noise

(with its variance given in Eq. (3)) is added symmetrically
in phase space, we consider GKP qubits encoded on square
grids in phase space with a 2

√
π × 2

√
π unit cell. For such

encoded qubits, a universal Clifford gate set is realized
by the Gaussian gates {R̂(π/2), P̂(1), ĈZ(1)} together with√
π displacements in phase space. For a comprehensive

review of the GKP code, see Refs. [13,45,46].
Information encoded in GKP qubit states, |ψin〉GKP, is

launched into the computation scheme at the computa-
tional level as shown in Fig. 2(a). These states are not ideal,
as they are subject to finite-energy constraints (similarly to
the squeezed states). This means that the uncertainties in
the individual spikes of the quadrature comb in the GKP
state are not zero but have a finite value. Mathematically,
the delta functions of the Dirac comb in the GKP-state
quadrature wave function are replaced by finitely squeezed
Gaussian functions, each with a variance of σ 2

GKP, such that
the q̂-quadrature wave functions of the approximate GKP
Pauli-Z eigenstates, |j̄GKP〉 (where j = 0, 1), are

ψj (q) ∝ E(q)
∞∑

n=−∞
exp

[−[q− (2n+ j )
√
π ]2

2σ 2
GKP

]
, j = 0, 1.

(4)

Here E(q) is an overall envelope that can be chosen to
satisfy the Fourier relations between the orthogonal q̂
and p̂ quadratures with equally squeezed spikes—different
finitely squeezed approximations of GKP states exist with
different envelopes [47]. In the following, for the sake of
simplifying the simulation of the fault-tolerance squeezing
threshold in Sec. IV, we ignore the overall envelope, i.e.,
we set E(q) = 1. Doing so corresponds to a noisier GKP
state that is an incoherent mixture of ideal GKP states.
This is therefore a conservative assumption that does not
lead to false positive results in the noise model [29]. More-
over, for the small σGKP values considered in this work,
the envelopes are correspondingly broad, and we expect
that ignoring these will have little effect on the simulated
error thresholds presented here. We further assume that
the squeezing of the GKP spikes in both the q̂ and the p̂
quadratures is the same as that of the |0〉sq states in the
resource preparation,

σ 2
GKP = σ 2 = e−2r/2. (5)

The Gaussian noise accompanying gate implementation
results in the variance of the GKP spikes increasing by σ 2

gate
in both quadratures for every single gate. To prevent this,
GKP quadrature correction is performed, preferably after
every gate. Traditionally, this is done by coupling each
quadrature to ancillary GKP states, which are then mea-
sured, and the result is fed forward to displacements of the
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computational qubit (or compensated for in following mea-
surement outcomes) [13]. However, this on-demand cou-
pling of desired modes with encoded GKP qubits to ancil-
lary GKP states requires either active squeezing, which
is experimentally hard to realize, or projective measure-
ments, which add noise. Instead, we use a new approach
presented by Walshe et al. [28], where GKP quadrature
correction is realized by qubit teleportation using ancillary
GKP qunaught states and is directly compatible with our
computation scheme. The GKP qunaught state, |∅〉GKP, is
the one-level version of the generalized GKP qudit state
with a

√
2π spacing between the spikes in the quadrature

wave functions [28,48]:

ψ∅(q) ∝
∞∑

n=−∞
exp

[
−(q− n

√
2π)2

2σ 2
GKP

]
,

where the overall envelope is ignored as well, and we
assume the spike squeezing in both quadratures to equal
that of the GKP qubit states with variance σ 2

GKP. As such,
|∅〉GKP holds no information, but interfering two |∅〉GKP
states on a beam splitter results in a two-mode GKP-qubit
Bell state—for more information, see Ref. [28]. This state
can then be used for GKP-qubit teleportation with sup-
port only on the GKP grid in phase space, so that a noisy
GKP qubit is projected into a purified GKP qubit by the
teleportation.

The implementation of the GKP quadrature correction
in Ref. [28] is shown in Fig. 3. In the resource-preparation
gadget, we switch from |0〉sq to |∅〉GKP states. After inter-
ference on the first beam splitter, a GKP Bell state is
prepared at the computational level instead of a two-mode
CV cluster state. For teleportation of a noisy GKP qubit
through the GKP Bell state, a Bell measurement of the
noisy GKP qubit and one mode of the Bell state needs
to be carried out by the TDMD. This is done by leav-
ing the two VBSs open and measuring in the q̂ and p̂
bases in spatial modes A and B, respectively. The corre-
sponding graph in a small section of the 3D time lattice
is shown in Fig. 3 together with the corresponding circuit.
The resulting Kraus operator,

K̂(mA, mB) = N ˆ̄�GKPX̂ (−mA
√

2)Ẑ(−mB
√

2), (6)

projects the noisy input state into a purified GKP qubit
state. Here, X̂ (−mA

√
2) = eimA

√
2p̂ and Ẑ(−mB

√
2) =

e−imB
√

2q̂ are displacements in the q̂ and p̂ quadratures,
respectively, depending on the measurement outcomes mA
and mB; N is a normalization factor, also depending on the
measurement outcomes; and

ˆ̄�GKP = |0̄GKP〉 〈0̄GKP| + |1̄GKP〉 〈1̄GKP|
is a noisy GKP projector (here, the |j̄GKP〉 are the approx-
imate GKP Pauli-Z eigenstates for the quadrature wave

in GKP

mA

mB

GKPK(m A,m B)

=

p mB

q mA

p

q

nm

sq

sq

FIG. 3. Implementation of GKP quadrature correction by
qubit teleportation. Qunaught states, |∅〉GKP, are injected into
the resource-preparation gadget, thereby preparing a two-mode
GKP-qubit Bell state, shown as two connected rectangles before
the nm delay. In the computational level, after the nm delay, one
part of the Bell state overlaps in time with the GKP-qubit state
to be corrected, |ψ〉GKP, shown as a circle. When the TDMD is
set to perform a Bell measurement (the two VBSs are open and
left out in the figure), |ψ〉GKP is teleported through the Bell state
and projected into a purified GKP qubit state by the Kraus oper-
ator in Eq. (6). At the bottom is the corresponding graph as it
would appear in the 3D time lattice in Fig. 2(c), as well as the
corresponding circuit diagram.

function in Eq. (4), assuming E(q) = 1 and equal squeez-
ing of spikes in the q̂ and p̂ quadratures).

The output values, mA and mB, are integer multiples of√
π/2 plus some noise associated with the finite squeez-

ing of the GKP qubit and qunaught states. As such, the
X̂ (−mA

√
2) and Ẑ(−mB

√
2) displacements in Eq. (6) cor-

respond mainly to Pauli-X and Pauli-Z operations on the
encoded qubit, and are a natural result of the telepor-
tation similar to the case of regular qubit teleportation.
These displacements may be compensated for by unitar-
ily displacing the teleported state back in q̂(p̂) by mA(B)

√
2

rounded to the nearest integer multiple of
√
π , or simply by

shifting the final measurement outcomes. However, due to
the inevitable noise in mA and mB, occasionally mA(B)

√
2 is

rounded to the wrong integer multiple of
√
π , which then

results in a faulty displacement operation. This induces a
qubit error. The probability for this error to occur is [29]

pσ (z) =
∑

n∈Z exp
{−[z − (2n+ 1)

√
π ]2/(2σ 2)

}
∑

n∈Z exp
[−(z − n

√
π)2/(2σ 2)

] , (7)

where the residual analog information, z = R(mA(B)
√

2),
when rounding is done is given by

R(mA(B)
√

2) = mA(B)
√

2−√π
⌊

mA(B)
√

2√
π
+ 1

2

⌋
. (8)

In Eq. (7), σ 2 = σ 2
in + σ 2

GKP is the variance of z, with σ 2
in

being the spike variance of the GKP qubit before tele-
portation. For example, if the GKP qubit to be corrected
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has gone through one gate, then σ 2
in = σ 2

GKP + σ 2
gate, where

σ 2
GKP was the GKP qubit spike variance before the gate and
σ 2

gate is the gate noise variance in Eq. (3). In Ref. [49], it
was proposed to use the analog information from the GKP
quadrature correction to improve the concatenated qubit
error correction. Here, similarly to Ref. [29], we use this
analog information through the probability in Eq. (7) to
improve the second layer of error correction, the surface
code, which is the subject of the next section.

IV. SURFACE CODE

In Sec. III, we showed how to project the continuous-
variable noise from the finite squeezing in Sec. II into qubit
Pauli errors by GKP quadrature correction. However, in
order to perform fault-tolerant quantum computation, such
Pauli errors must then be corrected using an additional
quantum error-correcting code operating at the qubit level.
Given the nearest-neighbor interactions of the computation
scheme in Sec. II, topological qubit error correction is a
natural choice for correcting the Pauli errors. With infor-
mation encoded on a surface of the computation scheme’s
3D time lattice, and gates implemented in the third dimen-
sion, we consider a surface code [25–27]. Specifically, to
compute logical X or Z error rates, we implement the sim-
ulation methods of Ref. [29] applied to a rotated surface
code [50,51]. Such simulation methods are adapted to the
computation scheme as described in Appendices B and C.
We note that the rotated surface code may not be the most
resource-efficient code for our computation scheme, since
it is rotated by 45◦ with respect to the 3D time lattice, and,
thereby, computation modes located in the corner of the 3D
time lattice may not be utilized—the rotated surface code
is chosen in order to easily adapt the simulation method
of Ref. [29]. Below, in Sec. IV A, we first describe the
implementation of the surface code, and then consider it
combined with GKP quadrature correction. In Sec. IV B,
we then present simulation results for logical error rates
and provide a squeezing threshold.

A. Implementation of the rotated surface code

A logical qubit is shown in Fig. 4(a) for a rotated sur-
face code with distance d = 5. Information is encoded in
d2 data qubits (white and gray circles). The stabilizers
of the code are measured using (d2 − 1)/2 ancilla qubits
prepared in |+〉GKP (green circles) and (d2 − 1)/2 ancilla
qubits prepared in |0〉GKP (red circles). In what follows,
we refer to the green and red ancillas as measure-Z and
measure-X ancillas, respectively.

One round of Z- and X-type stabilizer measurements is
shown in Figs. 4(b) and 4(c). Each stabilizer measurement
consists of four two-qubit gates and is thus implemented
in four time steps along the third dimension of the 3D
time lattice in which the surface code is implemented, as

shown in Fig. 4(d). Using the optical input switch in spa-
tial mode A of the setup described in Sec. II, the ancilla
qubits, initialized beforehand in the |0〉GKP and |+〉GKP ∝
|0〉GKP + |1〉GKP states, are switched into the computational
level in the temporal modes corresponding to ancillary
modes of the surface code. The measure-Z and measure-X
ancillas are then coupled to neighboring data qubits using
ĈZ(1) = eiq̂⊗q̂ and ĈX (±1) = e∓ip̂⊗p̂ gates, before being
measured in the p̂ and q̂ bases, respectively. To measure
such ancillas using the TDMD, the VBSs are left open,
while the same basis is chosen in spatial modes A and B,
in which case the measurements commute with the beam
splitter of the TDMD. Note that the state initialization and
measurement bases for the ancillas are the opposite of what
are traditionally used in the surface code, since they are
coupled to data qubits via ĈZ and ĈX gates instead of sum
gates, ĈNOT = e−iq̂⊗p̂ . The reason for not using sum gates
is that such gates cannot be implemented in the MBQC
scheme considered in this work in a single set of projec-
tive measurements. As such, using sum gates would lead
to larger gate error rates compared with the error rates of
the ĈZ and ĈX gates.

While the measure-Z ancillas are coupled to data qubits
with a constant coupling rate through ĈZ(1), the measure-
X ancillas are coupled to data qubits with ĈX (1) in steps
1 and 4 and ĈX (−1) in steps 2 and 3. This is to prevent
the propagation of finite squeezing noise among measure
qubits [29] (though this does not matter in the case of
GKP quadrature correction during the stabilizer measure-
ments, as discussed later). Furthermore, since the ĈZ(1)
and ĈX (±1) gates cannot be implemented in a single com-
putation step without Fourier by-products, as described in
Sec. II, the surface code is implemented with the two-mode
gates listed in Table I, and so, for the different two-mode
gates in Fig. 4 we use

steps 1 and 3
steps 2 and 4

step 1
step 4

step 3
step 2 (9)

where the first term in the tensor products is the ear-
lier temporal mode in the computational level. In this
way, the Fourier by-products of steps 1 (3) and 2 (4)
cancel, as F̂F̂† = F̂†F̂ = Î on measure-Z and odd data
qubits, and become F̂F̂ = F̂†F̂† = −Î on measure-X and
even data qubits. Hence, such terms have no influence
on the encoded information and do not propagate errors.
For CV noise, −Î on even data qubits cancels with −Î
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FIG. 4. (a) Illustration of a logical qubit for the d = 5 rotated surface code. The white and gray circles represent odd and even data
qubits, respectively. The green and red circles represent Z- and X -measure qubits, respectively. The two-mode gate operations are
listed in Eq. (9), and the labels 1 to 4 indicate the time steps in which those gates are implemented. (b),(c) Illustration of one round
of syndrome measurements, including the initialization of the encoded GKP ancilla qubits, four time steps for the coupling between
the data and ancilla qubits by four measurement-induced two-mode gates, and a measurement using the TDMD. For the surface-GKP
code, GKP quadrature corrections are performed on data qubits at the beginning of a surface-code syndrome measurement cycle. For
the surface-4-GKP code, GKP quadrature corrections are performed on all data and ancilla qubits after each gate. (d) Orientation of the
surface code in the 3D time lattice of the computation scheme shown in Fig. 2. Here, the surface code is encoded in two dimensions of
the time lattice with vertices corresponding to encoded GKP qubits, while gates are encoded in each step along the third dimension of
the time lattice. (e,f) Example of qubit errors induced by GKP quadrature correction in the surface-4-GKP code. In (e), an X̂ Pauli error
occurs in a measure-Z ancilla after the first two-mode gate of a surface-code syndrome measurement round. The error then propagates
to neighboring data and measure-X ancillas via the subsequent two-mode gates used to measure the surface-code stabilizers. In (f), a
Ẑ Pauli error occurs in a data qubit after the first two-mode gate and propagates to two measure-X ancillas. See Appendix C for an
examination of all possible Pauli errors, how they propagate, and the corresponding edges in the matching graphs for decoding.

on measure-X qubits when phase-space displacements
propagate between measure qubits.

We proceed to combine the surface code with GKP
quadrature correction, to obtain the so-called surface-GKP
code. Commonly, in the surface-GKP code, each round of
syndrome measurements consists of correction of the GKP
data qubits followed by measurements of the surface-code
stabilizers. In this way, qubit errors induced in the GKP
quadrature correction are corrected by the surface code
[18,29,52]. However, in the usual surface-GKP code, gate
noise accumulates during all four gates of the stabilizer
measurements in Figs. 4(b) and 4(c). We propose to modify
the scheme to perform GKP quadrature correction of each
mode after every implemented gate. In other words, for
each Z- and X -stabilizer measurement, GKP quadrature
correction is performed four times, and we refer to this as
the surface-4-GKP code. Unfortunately, when this is done,
qubit errors are induced during the surface-code stabilizer
measurements, with a large impact on the fault-tolerant
error threshold [25]. Two examples of induced qubit errors,
and how they propagate during the stabilizer measure-
ments, are shown in Figs. 4(e) and 4(f). Here, a qubit X̂
error in a measure-Z qubit, induced in the GKP quadrature

correction after the first gate of the stabilizer measurement,
propagates to three data qubits as Ẑ errors through the ĈZ
gates (while an initial Ẑ error will not propagate through
ĈZ). From there, it propagates further to two measure-X
qubits through ĈX gates. Similarly, a Ẑ error in a data
qubit after the first two-mode gate propagates as X̂ errors
to measure-X qubits through ĈX . These errors may lead to
faulty syndrome measurements and can therefore lead to
wrong error recovery, inducing logic errors, but even then,
we find a significant improvement of the surface-4-GKP
code over the surface-GKP code. All possible Pauli errors
induced by GKP quadrature correction, and their effect on
the stabilizer measurements, are described in Appendix C.
Note that in the case here, with GKP quadrature correction
after every gate, having a coupling rate of−1 in ĈX (−1) in
steps 2 and 3 is unnecessary, as all CV noise is immediately
corrected. However, since a −1 coupling rate requires no
extra resources and is controlled solely by the basis settings
in Table I, we keep things this way in order to compare the
results with the surface-GKP code.

Finally, the surface-code Z- and X -stabilizer measure-
ment outcomes from d rounds of syndrome measurements
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are recorded in the vertices of 3D Z and X matching
graphs with edges corresponding to possible Pauli errors,
as described in Appendix C. For simplicity, here we con-
sider only edges corresponding to single uncorrelated Pauli
errors and ignore possible, but less likely, two-qubit Pauli
errors correlated by two-mode gates. Minimum-weight
perfect matching (MWPM) [53,54] on these matching
graphs is then used as the decoding algorithm to determine
data qubit errors and perform the resulting error recovery.
In practice, the error recovery is handled simply by using
and updating a Pauli frame [55–58], similarly to how feed-
forward can be handled in MBQC by compensating for
by-products in the following measurement outcomes [2,3].
For the MWPM to find error paths of highest probability,
the edges of the matching graphs are dynamically weighted
using Eq. (7) with the residual analog information from
each GKP quadrature correction. In this way, we can infer
the probabilities of having induced the Pauli errors rep-
resented by each edge (described in Appendix C). With
each edge representing multiple Pauli errors induced in
different GKP quadrature corrections, multiple Pauli-error
probabilities are combined in each edge weight as

ptot = 1
2

(
1−

∏
i

[1− 2pi]

)
, (10)

where pi is the probability given by Eq. (7) for one GKP
quadrature correction, taking values between 0 (no error)
and 1/2 (minimal error information). For the combined
probabilities of multiple edges to add up correctly in an
error path determined by the MWPM, the edge weights in
the matching graphs are finally taken to be log2(ptot).

B. Simulation results

To establish a fault-tolerant error threshold, we numer-
ically simulate the complete scheme. The GKP-encoded
data and measure qubits and the qunaught states, |∅〉GKP,
are all initialized with variance σ 2

GKP = σ 2 = e−2r/2 of
the wave functions’ GKP spikes, as described in Sec. III.
The ancillary squeezed vacuum states for gate implemen-
tation, |0〉sq, are also squeezed by σ 2 = e−2r/2, leading
to quadrature-symmetric gate noise of variance σ 2

gate =
2σ 2 = e−2r as described in Sec. II. Using a Monte Carlo
method, logical qubit error rates are simulated as a func-
tion of squeezing using up to 100 000 simulation samples,
with a stopping condition at the occurrence of 500 com-
bined logical Ẑ and X̂ qubit error events. The resulting
logical Ẑ or X̂ error rate (the two rates are equal) is shown
in Fig. 5(a) for different code distances d as a function
of the squeezing level, while the logical Ŷ error rate is
smaller. The decibel scale is defined relative to the vac-
uum variance, 10 log10[σ 2/(1/2)]. The resulting squeez-
ing threshold from where the logical error rate decreases
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FIG. 5. (a) Simulated logical Ẑ and X̂ error probabilities for
the surface-4-GKP code as a function of the (identical) squeez-
ing of the |0〉sq states used for gate implementation, the GKP
qubits encoding the surface code, and the |∅〉GKP states used
for quadrature correction. The logical error probability is shown
for different code distances d, and the fault-tolerant threshold
where the logical error rate decreases with increasing code dis-
tance is seen to be at 12.7 dB of squeezing. The error bars of
standard deviation are estimated by bootstrapping. (b) Squeezing
threshold of the surface-4-GKP code as a function of the proba-
bility with which a |∅〉GKP state is replaced with a |0〉sq state in
the resource preparation. Here, the threshold is estimated as the
crossing point of the d = 7 and d = 9 logical error rates. For zero
replacement probability, the threshold is that in (a).

with increasing code distance is found to be 12.7 dB of
squeezing.

For comparison, in Appendix B we also present sim-
ulations of the error rates in other scenarios, with the
simulation results shown in Fig. 6. For the surface-GKP
code with a single GKP quadrature correction before
the surface-code stabilizer measurements, the squeezing
threshold increases to 17.3 dB. This is significantly higher
than the 12.7-dB squeezing threshold for the surface-
4-GKP code due to accumulation of gate noise during
the stabilizer measurements. To compare this with other
MBQC schemes with topological error correction, where
gate noise is typically not taken into account, and so
only finite squeezing noise from GKP states is included,
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we simulate the surface-4-GKP code with σ 2
gate = 0. The

resulting threshold is 10.2 dB of squeezing, which agrees
well with the 10 dB reported in Ref. [18] and the 10.5 dB
reported in Ref. [21]. Finally, to see the impact of using
the residual analog information about the GKP quadra-
ture correction in the weighting of the matching graphs for
MWPM decoding, we simulate the surface-4-GKP code
with a fixed weighting based on the variances of each
mode at each point in the code, similarly to Ref. [29]. As
expected, the result is a slightly larger squeezing threshold
of 13.6 dB.

While the GKP code has been experimentally realized in
trapped-ion and circuit QED systems [59–61], GKP-state
generation on optical platforms is yet to be demonstrated,
although there have been many recent proposals [45,62–
67]. At first, GKP-state generation is most likely going to
be probabilistic. In Ref. [21], it is proposed to combine
multiple GKP-state generators with optical switches, and
then to switch between generators with a successful prepa-
ration of a GKP state. In this way, the success probability
of the generation of a GKP state, p∅, can in principle be
brought arbitrarily close to 1. Since the surface-4-GKP
code requires a large supply of |∅〉GKP states, we con-
sider in our final analysis the multi-GKP-state generation
scheme of Ref. [21] for |∅〉GKP resource-state prepara-
tion. If all the generators fail to prepare a |∅〉GKP state in
a given temporal mode for GKP correction, a determin-
istically generated squeezed vacuum state, |0〉sq, is used
instead. In this case, if |∅〉GKP is replaced by |0〉sq in spa-
tial mode A (B), only the q̂ (p̂) quadrature is corrected in
the GKP quadrature correction, while the other quadrature
accumulates gate noise of variance σ 2

gate during the correc-
tion [28]. The resulting fault-tolerance squeezing threshold
is shown in Fig. 5(b) as a function of the probability
1− p∅ of replacing |∅〉GKP states by |0〉sq states. Here,
a squeezing threshold is seen to exist over a large range
of 1− p∅ > 0, allowing a probabilistic supply of |∅〉GKP
states, while for increasing replacement probability, the
squeezing-threshold level increases as expected—above
28 dB of squeezing, it is hard for us to simulate the squeez-
ing threshold due to low error rates of less than 10−7. Note
that here we still assume successful encoding of the surface
code. That is, the data and measure qubits switched into
the setup as |ψin〉GKP in Fig. 2(a) are successfully prepared
as GKP qubit states. With probabilistic optical GKP-state
generation, this may be possible using state storage of a
probabilistically prepared GKP state until it is switched
into the computation scheme [68–71].

V. DISCUSSION

The squeezing thresholds in this work are derived by
assuming a particular noise model in which all resource
states are finitely squeezed, while all optical propagation
and detection losses are set to zero. In practice, however,

losses cannot be neglected. Let us denote the transmission
of the setup by η. For Gaussian states, 0 < η < 1 leads
to the formation of mixed states with reduced effective
squeezing. This can be reformulated as an ideal lossless
setup (η = 1) with mixed squeezed vacuum states as input
having a lower effective squeezing, and some excess anti-
squeezing that does not affect the measurement-based com-
putation [72]. As a result, for η < 1 the 12.7-dB squeezing
threshold corresponds to the effectively measured squeez-
ing. Now, for the GKP states, besides a Gaussian con-
volution in the quadratures, η < 1 leads to a “shrinking”
of a GKP state in phase space. To see this, consider the
Heisenberg picture with η modeled as a beam splitter of
transmission η. In this case, an amount 1− η of vacuum is
mixed into the state, adding noise to the quadratures, while
a share 1− η of the state is lost, “shrinking” the state in
the quadratures by

√
η. The quadrature shrinking is more

detrimental to GKP spikes far from the phase-space ori-
gin, which are naturally delimited in GKP states of finite
squeezing due to the overall envelope in the quadrature
wave function. For GKP states with 12.7 dB of squeez-
ing, we assume the effect on the qubit error probabilities
to be negligible for reasonably high efficiencies—we esti-
mate η � 0.95 to be doable on optical platforms. We also
note that the shrinking effect can be counteracted by lin-
ear amplification, which, on the other hand, further reduces
the amount of squeezing [41–44], effectively resetting η to
unity at the cost of lowering the effective squeezing and the
purity of the GKP state. Again, the estimated threshold of
12.7 dB refers to the required squeezing after such actions
have been implemented. Another detrimental effect that is
not directly accounted for is interferometric phase fluctua-
tions. Similarly to optical loss, phase fluctuations lead to
mixed squeezed states of reduced squeezing and excess
antisqueezing, as well as mixed GKP states, with an impact
that increases with the quadrature value.

Finally, we comment on the scalability of the compu-
tation scheme. For the temporal encoding in Fig. 2, the
number of modes in which GKP qubits can be encoded
for computation, i.e., the size of the encoding plane in
the 3D time lattice, depends on the nm delay in the
resource-preparation gadget. Increasing the delay length
increases the number of encoding modes. However, doing
so also increases the optical propagation loss, which puts
a limit on the useful delay length. Thus, to continue scal-
ing up, nm must be increased by shortening the temporal
modes, in turn increasing the demands on the squeez-
ing and detection bandwidth. In Ref. [73], squeezed light
with a bandwidth of 2.5 THz was demonstrated, lim-
ited by the phase-matching condition for the nonlinear
down-conversion process, while in Ref. [74], detection of
squeezing up to a 3-THz sideband frequency was demon-
strated. Assuming proper squeezing, experimental control,
and detection in a 2.5-THz bandwidth defining temporal
modes of approximately 1/2.5 THz duration, and assuming
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a propagation efficiency above 0.95 (0.23 dB attenuation)
in a low-loss optical fiber with a low optical attenuation of
0.15 dB/km, up to nm ≈ 107 computation modes may be
realized in the temporally encoded computation scheme.
For the spatial architecture in Fig. 1, the scalability is sim-
ilar to that of other schemes based on spatial encoding.
It relies on the availability of resources, and this archi-
tecture is suitable for integrated photonics [75]. Finally,
temporal and spatial encoding may be combined: Con-
sider multiple temporally encoded computational devices,
each as in Fig. 2. Using the optical switch in the com-
putational level of the setup, computation modes can be
switched in and out between different devices. Since the
setup is optical, the devices are simply connected by opti-
cal fibers between the switches of each device, without
the need for quantum transducers. Furthermore, with the
switch being mode-selective, each mode of an encoded
logical qubit in the surface code can be transferred with-
out the need for decoding and reencoding of the logical
quantum state, while measurement of the surface-code sta-
bilizers after transfer may be used for error-correcting the
transfer line. This is not only suitable for combining tem-
poral and spatial encoding for up-scaling, but also useful
in a quantum internet scheme [76,77], and is made pos-
sible by the optical architecture combined with temporal
multiplexing on the transfer lines.

VI. CONCLUSION

In this work, we propose a simple but complete and
scalable architecture for optical CV MBQC that includes
quadrature noise correction and qubit error correction
using topological codes. The setup consists of simple opti-
cal devices such as beam splitters, delays, optical switches,
and variable beam splitters, where the latter two can be
decomposed into beam splitters and optical phase shifters.
The scheme allows both spatial and temporal encoding,
with the temporally encoded version requiring just two
squeezing sources. A universal Gaussian gate set is directly
implementable, while universal qubit computation is made
possible by feeding the setup with GKP states, thereby
supplying the required non-Gaussianity [78–80]. As the
computation scheme is based on gate teleportation on
wires of two-mode entangled states, the setup naturally
supports the new GKP quadrature correction scheme pre-
sented in Ref. [28], circumventing the need for online
two-mode gates coupled to ancillary GKP states. Finally,
by arranging the GKP qubits in a 2D plane of the cluster
state that allows nearest-neighbor interactions, topologi-
cal codes can be realized. By encoding a variation of the
surface-GKP code—the surface-4-GKP code—we show
fault-tolerant computation to be possible above a certain
squeezing threshold by simulating a logical qubit memory,
or an identity gate, of the surface-4-GKP code. In the sur-
face code, Clifford gates can be implemented by braiding

[25] or lattice surgery [81], which is implemented by reg-
ulating the surface-code syndrome measurements, while
non-Clifford gates may be realized using magic states dis-
tilled from GKP qubits prepared in a magic state [78,79]
and injected into the surface code as input states [25,82].

The fault-tolerant squeezing threshold is found to be
12.7 dB. The estimation of this number takes into account
the finite squeezing values of GKP states, as well as the
gate noise stemming from the finite squeezing values of the
generated cluster state on which gates are implemented by
projective measurements. However, this squeezing thresh-
old leaves room for improvement: In the matching graph
of the decoding algorithm, we consider only single uncor-
related Pauli errors. As an improvement, assuming the sur-
face code to consist of two-mode gates, we may consider a
matching graph taking two-qubit error events into account
[83–86]. Furthermore, when weighting the matching-graph
edges with analog information from the GKP quadrature
correction, we simply consider uncorrelated noise in the
individual GKP corrections. However, since each mode
is subjected to a two-mode gate prior to GKP correction,
leading to correlated noise on neighboring GKP qubits, we
may improve the estimation of the Pauli-error probabilities
used in the matching-graph weighting by jointly consid-
ering the analog information from neighboring GKP cor-
rections, as recently proposed in Ref. [87]. Note that such
modifications are implemented solely at the software level
of the error-correction decoder and thus require no modi-
fications to the setup. Another improvement may be found
in the gate implementation: Because of the similarity of the
GKP quadrature correction and the gate implementation,
it might be possible to combine the two transformations
into one step, that is, to implement a gate while correct-
ing the quadratures. Although the quadrature correction is
considered only on single wires [28], it might be possible
to generalize it to the two-wire case, whereby two-mode
gates could be implemented during GKP quadrature cor-
rection, thereby eliminating the gate noise caused by finite
squeezing. If this is possible while maintaining the quality
of the GKP quadrature correction in Ref. [28], the result-
ing squeezing threshold reduces to 10.2 dB, as shown in
Appendix B.
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APPENDIX A: GATES BY PROJECTIVE
MEASUREMENTS

To derive the gates implemented by projective measure-
ments in Sec. II, consider one computation step on two
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parallel wires,

(A1)

where the red arrows represent the first beam splitter in the
TDMD, and the gray arrow represents the blue or green
VBS in the TDMD for j = 1 or j = n, respectively. Here, a
two-mode input state (which may or may not be separable)
is encoded in modes (A, k), (A, k + j ), while the two-mode
entangled states are prepared in the resource-preparation
gadget, and can be written as

where |0〉q−p and |0〉q+p are squeezed vacuum states,
squeezed along the (q̂− p̂)/

√
2 and (q̂+ p̂)/

√
2 quadra-

tures, respectively, and, similarly, |0〉q and |0〉p are
squeezed along q̂ and p̂ , respectively. As such, the two-
mode entangled states correspond to two-mode squeezed
states rotated in phase space by π/4, turning them into
approximate cluster states with edge weight tanh 2r and
self-loops i sech 2r, where r is the squeezing parameter of
the initial squeezed vacuum states [19,33]. Alternatively,
we can consider the two-mode entangled states more gen-
erally as cluster-type states [32], here with edge weight
1, for which the implemented gate is independent of the
squeezing r, which then affects only the gate noise [10].
The two situations are equivalent: one can change from
the former to the latter by normalizing the edge weight
[30]. Here, we consider cluster-type states, since imple-
menting a desired gate in practice (without considering the
resulting gate noise) then requires no prior knowledge of
the squeezing level.

For single-mode gates, the VBSs of the TDMD are
left open, and the dashed arrow in Eq. (A1) represents
ÎA,k ⊗ ÎB,k+j . In this case, we can ignore the second wire,
and focus on a joint projective measurement of the input
mode (A, k) and one mode of the two-mode entangled
state, (B, k), resulting in gate teleportation to the output
mode (A, k + nm)—exactly the same derivation can be
done for the second wire for modes (A, k + j ), (B, k + j ),
and (B, k + nm+ j ). The corresponding circuit is

where |0〉q in (A, k + nm) is replaced by R̂(π/2) |0〉p only
to follow the traditional convention of using cluster states
with an initial squeezing in the p̂ quadratures. Using the
method of Appendix A of Ref. [31], with (θA,k, θB,k) being
the basis setting determining the implemented gate, the
corresponding quadrature transformation in the Heisen-
berg picture can be derived as
(

q̂′A,k+nm
p̂ ′A,k+nm

)
= G

(
q̂A,k
p̂A,k

)
+ N

(
p̂B,k

p̂A,k+nm

)
+ D

(
mA,k
mB,k

)
.

Here, G is the symplectic matrix corresponding to the
desired single-mode gate operation in Eq. (2),

N =
(

1 1
1 −1

)

is a gate-noise matrix, and

D =
√

2
sin(2θ−)

(− cos θB,k − cos θA,k
sin θB,k sin θA,k

)

is a displacement matrix. Since (θA,k, θB,k), mA,k, and mB,k
are known, D(mA,k, mB,k)

T can be compensated for by dis-
placing the teleported state back by −D(mA,k, mB,k)

T, or
simply by taking this displacement into account in the fol-
lowing measurement outcomes. With finite squeezing in
the ancillary modes such that Var{p̂B,k} = Var{p̂A,k+nm} =
σ 2 = e−2r/2, the noise term N(p̂B,k, p̂A,k+nm)

T leads to
quadrature-symmetric gate noise in q̂′A,k+nm and p̂ ′A,k+nm of

σ 2
gate = Var{p̂B,k} + Var{p̂A,k+nm} = e−2r.

In the Wigner-function picture, this gate noise corresponds
to convolutions in both quadratures by a Gaussian function
of variance σ 2

gate, each followed by the application of a cor-
responding Gaussian envelope due to the Fourier relation
between q̂ and p̂ [30,31].

When two-mode gates are implemented by enabling
the first or second VBS of the TDMD, the corresponding
circuit is
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We do not derive a general expression for the
implemented gate as a function of the basis setting
(θA,k, θB,k, θA,k+j , θB,k+j ). Instead, we use the method
described in Ref. [31]: a cost function is defined based
on the implemented gate, a desired target gate, and the
gate noise, which is then used in a global search to find
the basis setting that implements a desired gate with the
minimum gate noise. The resulting basis settings for the
gates required to implement the surface code are shown
in Table I. We note that those settings implement only
two different gates, since (F̂† ⊗ F̂)ĈZ(g) = ĈX (g)(F̂† ⊗
F̂) and ĈZ(g)(F̂ ⊗ F̂†) = (F̂ ⊗ F̂†)ĈX (g). The reason for
considering them as four different gates is to make the
implementation of the surface code more intuitive. The
basis settings are not unique: other settings exist that
implement the same gates with equal gate noise.

The quadrature transformation when the basis settings
for two-mode gates are applied is

⎛
⎜⎜⎝

q̂′A,k+nm
q̂′A,k+nm+j
p̂ ′A,k+nm

p̂ ′A,k+nm+j

⎞
⎟⎟⎠ = G

⎛
⎜⎝

q̂A,k
q̂A,k+j
p̂A,k

p̂A,k+j

⎞
⎟⎠+ N

⎛
⎜⎝

p̂B,k
p̂A,k+nm
p̂B,k+j

p̂A,k+nm+j

⎞
⎟⎠

+ D

⎛
⎜⎝

mA,k
mB,k

mA,k+j
mB,k+j

⎞
⎟⎠ .

Again, G is the symplectic matrix corresponding to the
implemented two-mode gate. D(mA,k, mB,k, mA,k+j , mB,k+j)

T

is a displacement in phase space, with

D =

⎛
⎜⎜⎝

−√5/2 0 1/
√

2
√

5/2
−√5/2 −1/

√
2 0 −√5/2

0 −√2 0 0
0 0

√
2 0

⎞
⎟⎟⎠

for (F̂† ⊗ F̂)ĈZ(g) and ĈX (g)(F̂† ⊗ F̂), and

D =

⎛
⎜⎜⎝

0 −√2 0 0
0 0 −√2 0√
5/2 0 −1/

√
2
√

5/2√
5/2 −1/

√
2 0 −√5/2

⎞
⎟⎟⎠

for ĈZ(g)(F̂ ⊗ F̂†) and (F̂ ⊗ F̂†)ĈX (g), both of which
can be compensated for, just as for single-mode gates.
N(p̂B,k, p̂A,k+nm, p̂B,k+j , p̂A,k+nm+j )

T represents gate noise,
where

N =

⎛
⎜⎝

1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎞
⎟⎠

leads to quadrature-symmetric gate noise of variance

σ 2
gate = Var{p̂B,k} + Var{p̂A,k+nm}
= Var{p̂B,k+j } + Var{p̂A,k+nm+j }
= e−2r,

which conveniently equals the gate-noise variance of
single-mode gates.

APPENDIX B: SIMULATION

To simulate the logical qubit error rate of the surface
code, we adopt and modify the simulation presented in
Ref. [29] for the computation scheme of this work. The
simulation method is well described in Appendix B of
Ref. [29] and is summarized here with focus on the modifi-
cations. In the simulation, quadrature noise is simulated as
stochastic normally distributed variables for each quadra-
ture of each mode i, ξ i

q and ξ i
p . For GKP states, ξ i

q and
ξ i

p are initialized with random samples from N (0, σGKP),
where N (0, σ) is a normal distribution with zero mean and
variance σ 2. After each gate, independent random samples
from N (0, σgate) are added to ξ i

q and ξ i
p as gate noise. For

homodyne measurements, ξ i
q or ξ i

p is read out, and the logic
value is determined from the closest integer multiple of√
π . Note that, unlike in Ref. [29], we do not consider mea-

sure noise or idle noise. On optical platforms, homodyne
measurements are carried out with near-unity efficiency
(any loss is assumed to just degrade the squeezing, as dis-
cussed in Sec. V). Furthermore, in MBQC no modes are
idle, since modes not performing any tasks still have to
be teleported through the computation step, and thereby
acquire gate noise instead of idle noise.

For the two-mode gates in the surface code, the simula-
tion here differs from that in Ref. [29] by using ĈZ(1) and
ĈX (±1) gates instead of sum gates. For a two-mode gate
between modes i and j , the quadrature noise variables are
updated as follows:

ĈZ(1) :

ξ i
q ← ξ i

q + randG(σ 2
gate),

ξ i
q ← ξ i

p + ξ j
q + randG(σ 2

gate),
ξ

j
q ← ξ

j
q + randG(σ 2

gate),
ξ

j
q ← ξ

j
p + ξ i

q + randG(σ 2
gate),

ĈX (±1) :

ξ i
q ← ξ i

q ± ξ j
p + randG(σ 2

gate),
ξ i

q ← ξ i
p + randG(σ 2

gate),
ξ

j
q ← ξ

j
q ± ξ i

p + randG(σ 2
gate),

ξ
j
q ← ξ

j
p + randG(σ 2

gate),

where randG(σ 2) returns a random value from N (0, σ).
For GKP quadrature correction, instead of being cou-

pled to ancillary GKP qubits through sum gates as in
Ref. [29], the mode to be corrected is teleported through
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a two-mode GKP qubit Bell state as described in Sec. III.
The Bell state is prepared by interfering two GKP
qunaught states, denoted by ∅1 and ∅2, where

ξ∅1
q = randG(σ 2

GKP),
ξ∅1

p = randG(σ 2
GKP),

ξ∅2
q = randG(σ 2

GKP),
ξ∅2

p = randG(σ 2
GKP),

on a beam splitter:

ξ∅1
q ← (ξ∅1

q − ξ∅2
q )/
√

2,

ξ∅1
p ← (ξ∅1

p − ξ∅2
p )/
√

2,

ξ∅2
q ← (ξ∅1

q + ξ∅2
q )/
√

2,

ξ∅2
p ← (ξ∅1

p + ξ∅2
p )/
√

2.

To perform the teleportation, the mode to be corrected, i,
and ∅1 are interfered on a beam splitter and measured in q̂
and p̂ , respectively, with outcomes

mA = (ξ i
q − ξ∅1

q )/
√

2, mB = (ξ i
p + ξ∅1

p )/
√

2.

Finally, to compensate for the Pauli by-products of the
qubit teleportation (displacements by

√
π), mA

√
2 and

mB
√

2 are rounded to the nearest integer multiple of
√
π ,

i.e.,

P(mA(B)
√

2) = √π
⌊

mA(B)
√

2√
π
+ 1

2

⌋
, (B1)

which is then used to displace the teleportation output
mode, ∅2, back:

ξ∅2
q ← ξ∅2

q + P(mA
√

2),

ξ∅2
p ← ξ∅2

p + P(mB
√

2).

For the sake of simulation, we pass the corrected output
mode to the input mode, i.e., ξ i

q ← ξ∅2
q and ξ i

p ← ξ∅2
p ,

such that mode i can be reused in the following simulation.
The probability of having induced a qubit error by round-
ing to a wrong integer multiple of

√
π in Eq. (B1) due to

input noise in ξ i
q and ξ i

p , together with initialization noise in
ξ∅1

q , ξ∅1
p , ξ∅2

q , and ξ∅2
p , is inferred using the residual ana-

log information, R(mA(B)
√

2) = mA(B)
√

2− P(mA(B)
√

2),
in Eq. (8) through the probability in Eq. (7). Finally, this
probability is used for weighting the matching graphs of
stabilizer measurement outcomes for the MWPM decoding
as described in Appendix C. Here, σ 2

in in σ 2 = σ 2
in + σ 2

GKP
of Eq. (7) is the quadrature variance of the input mode,
and is carefully kept track of in the simulation based on
previous gates and corrections.

In one simulation, d + 1 rounds of surface-code stabi-
lizer measurements are carried out. Data GKP qubits are
initialized in round 1 with variance σ 2

GKP. To stabilize the
data qubits, measure GKP qubits and qunaught states are
initialized in rounds 1 to d with variance σ 2

GKP, followed
by noisy gates and measurements to build up the match-
ing graphs. In the last round, d + 1, measure GKP qubits
and qunaught states are initialized with zero variance to
carry out ideal syndrome measurements for determining
the logical qubit errors induced in rounds 1 to d. To build
up statistics, for each squeezing level and code distance d,
this process is repeated 100 000 times or until a total of 500
logical X̂ and Ẑ errors are detected.

We simulate four different cases, shown in Fig. 6. In
three cases, GKP states (qubits and qunaught states) and
squeezed vacuum states are initialized with equal vari-
ance, σ 2

GKP = σ 2 = e−2r/2, which from Eqs. (3) and (5)
leads to σ 2

gate = 2σ 2
GKP. In this way, the surface-GKP code

with GKP quadrature correction before the surface-code
stabilizer measurements and the surface-4-GKP code with
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FIG. 6. Simulation results for all four simulated cases. Here, the case of the surface-4-GKP code using pσ (z) gives the results shown
in the main text in Fig. 5. The error bars of standard deviation are estimated by bootstrapping.
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four GKP quadrature corrections during the stabilizer mea-
surements are simulated. To see the impact of using the
analog information from the GKP correction in the weight-
ing of the matching graphs, the surface-4-GKP code is
simulated using

perr(σ ) =
∑
n∈Z

1√
2πσ 2

∫ (2n+3/2)
√
π

(2n+1/2)
√
π

dξ e−ξ
2/(2σ 2) (B2)

instead of Eq. (7) [29]. By integrating the wave-function
marginal distribution in the odd GKP bins, perr(σ ) infers
the qubit error probability based only on variances, without
taking the projective-measurement outcome into account.
Finally, to compare the results with other MBQC schemes
supporting topological error correction, but taking only
noise from GKP states into account, the surface-4-GKP
code is simulated using σ 2

gate = 0.

APPENDIX C: DECODING GRAPHS

In this appendix, we describe the matching graphs used
in the MWPM decoding. Sections of the Z and X match-
ing graphs are shown in Fig. 7. Each vertex corresponds
to a syndrome measurement and is highlighted when the
measurement outcome changes relative to the previous
measurement of the same measure qubit, indicating an
error event. The edges correspond to possible errors, and
the job of the decoder is to match pairs of highlighted
vertices with the most likely error path, which is then
translated into corrections of data qubits.

Each horizontal plane of the matching graphs in Fig. 7
corresponds to one round, i, of the syndrome measure-
ments in Figs. 4(b) and 4(c). We distinguish between four
different types of edge: horizontal edges, h; vertical edges,
v; diagonal edges, d; and cross edges, c. In the case where
errors occur only in between syndrome measurements
[i.e., before and after the syndrome-measurement circuits
in Figs. 4(b) and 4(c)], errors in data qubits correspond
to h edges, while errors in the syndrome-measurement
readout correspond to v edges. These are often the only
edges included in the surface-code matching graphs when
errors during the syndrome measurements are not con-
sidered. However, for the surface-4-GKP code with GKP
quadrature correction during the syndrome measurements,
most qubit errors are induced during the syndrome mea-
surements, requiring the additional d and c edges (often
referred to as space-time edges) in the matching graphs for
optimal decoding [83].

Below, we go through all possible qubit errors that
may be induced by each GKP quadrature correction in
each of the four steps in the syndrome measurements, and
describe the corresponding edge in the matching graphs.
For simplicity, in this work we consider only uncorrelated
single-qubit errors. Since the surface code consists of two-
mode gates, two-qubit errors are possible as well, but we
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FIG. 7. Sections of the Z (a) and X (b) matching graphs, here
with labels corresponding to the code distance d = 5 similarly to
Fig. 4. Each two-mode gate is labeled with a number correspond-
ing to the step in the ith round of syndrome measurements.

assume them to be negligible in the squeezing range con-
sidered. The effect of two-qubit errors on the matching
graphs is shown in Ref. [83]. Finally, in Sec. 5, we com-
ment on the graph boundaries, edge weighting, and qubit
correction.

1. Step 1

After the first set of two-mode gates in the syn-
drome measurements (step 1), we perform GKP quadrature
correction. At this point, we consider single-qubit Pauli-X
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errors, X̂ = e±i
√
π p̂ , and Pauli-Z errors, Ẑ = e±i

√
π q̂ (corre-

sponding to displacements of
√
π in q̂ and p̂ , respectively),

in each data and measure qubit. In all the following, we
refer to the j th data, measure-Z, and measure-X qubits
as Dj , Zj , and Xj , respectively, and we use the label-
ing in Fig. 7 for the code with distance d = 5 as an
example.

For an odd data qubit, say D13, an X̂ error is detected
by Z5 in step 4 of the current round, i, while it is detected
by Z8 in step 1 of the following round, i+ 1. As a result,
this error corresponds to the edge di

13 of the Z graph. A Ẑ
error is detected in X8 and X5 in steps 2 and 3 of the current
round i and corresponds to hi

13 in the X graph.
For an even data qubit, say D8, an X̂ error is detected

by Z2 and Z5 in steps 2 and 3 of the current round, i, and
corresponds to hi

8 in the Z graph. A Ẑ error is detected by
X7 in step 4 of the current round, i, and by X5 in step 1 of
the following round, i+ 1. Thus this error corresponds to
di

8 in the X graph.
For the measure-Z qubit Z5, an X̂ error propagates

to D8,13,14 through ĈZ(1) in steps 2, 3, and 4, where it
causes a Ẑ error, which eventually highlights X7 and X11
in step 4 of this round i, indicating a false error in D9
instead of in D8,13,14. However, applying a Ẑ correction
to D9 constitutes, together with the Ẑ errors in D8,13,14,
a code stabilizer, and the error is successfully corrected.
Thus, an X̂ error in Z5 corresponds to hi

9 in the X graph.
A Ẑ error in Z5 does not propagate through the ĈZ(1)
gates, and becomes instead a detection error at the end of
the syndrome measurement, corresponding to vi

5 in the Z
graph.

For the measure-X qubit X5, an X̂ error does not prop-
agate through the ĈX (±1) gates, and becomes a detection
error at the end of the syndrome measurement, correspond-
ing to vi

5 in the X graph. A Ẑ error propagates as X̂ errors
to D7,12,13 through ĈX (±1) gates, which eventually high-
lights Z2 and Z5 in step 4 of this round, indicating a false
error in D8. Applying an X̂ correction to D8 constitutes,
together with the X̂ errors in D7,12,13, a code stabilizer, and
the error is successfully corrected. Thus a Ẑ error in X5
corresponds to hi

8 in the Z graph.

2. Step 2

Below, we consider single-qubit errors induced in the
GKP quadrature correction after the second set of two-
mode gates in the syndrome measurements (step 2).

An X̂ error in an odd data qubit is detected similarly
to an X̂ error induced in step 1. A Ẑ error in an odd data
qubit, say D13, is detected by X5 in step 3 of this round, i,
while it is detected by X8 in step 2 of round i+ 1. Thus the
corresponding edge is di

13 in the X graph.
An X̂ error in an even data qubit, say D8, is detected by

Z5 in step 3 of this round, i, while it is detected by Z2 in

step 2 of round i+ 1, and the corresponding edge is di
8 in

the Z graph. A Ẑ error in an even data qubit is detected in
the same way as a Ẑ error induced in step 1.

An X̂ error in the measure-Z qubit Z5 propagates
through ĈZ(1) to D8 and D13 in steps 3 and 4 as a Ẑ error.
The Ẑ error in D8 is detected by X7 in step 4 of this round,
i, while the Ẑ error in D13 is detected by X8 in step 2 of
round i+ 1. As a result, the corresponding edge is ci

5 in
the X graph. Similarly to step 1, a Ẑ error corresponds to a
detection error, i.e., vi

5 in the Z graph.
An X̂ error in the measure qubit X5, similarly to step 1,

corresponds to a detection error, i.e., vi
5 in the X graph. A

Ẑ error in X5 propagates through ĈX (±1) to D12 and D13 in
steps 3 and 4 as an X̂ error. The X̂ error in D13 is detected
at Z5 in step 4 of this round, i, while the X̂ error in D12 is
detected by Z4 in step 2 of the following round, i+ 1. As a
result, the corresponding edge is ci

5 in the Z graph.

3. Step 3

Below, we consider single-qubit errors induced in the
GKP quadrature correction after the third set of two-mode
gates in the syndrome measurements (step 3).

An X̂ error in an odd data qubit is detected similarly to
an X̂ error induced in steps 1 and 2. A Ẑ error in an odd
data qubit, say D13, is detected by X8 and X5 in steps 2 and
3 in the following round, i+ 1, and the corresponding edge
is hi+1

13 in the X graph.
An X̂ error in an even data qubit, say D8, is detected by

Z2 and Z5 in steps 2 and 3 of the following round, i+ 1, and
the corresponding edge is hi+1

8 in the Z graph. A Ẑ error in
an even data qubit is detected in the same way as a Ẑ error
induced in steps 1 and 2.

An X̂ error in the measure-Z qubit Z5 propagates
through ĈZ(1) to D13 in step 4 as a Ẑ error and is detected
by X8 and X5 in steps 2 and 3 of the following round, i+ 1.
Thus the corresponding edge is hi+1

13 in the X graph. Simi-
larly to steps 1 and 2, a Ẑ error corresponds to a detection
error, i.e., vi

5 in the Z graph.
An X̂ error in the measure qubit X5, similarly to steps 1

and 2, corresponds to a measure, i.e., vi
5 in the X graph. A Ẑ

error in X5 propagates through ĈX (1) as an X̂ error to D12
in step 4, where it is detected by Z4 and Z8 in steps 2 and 3
of the following round, i+ 1. Thus the corresponding edge
is hi+1

12 in the Z graph.

4. Step 4

Errors in data qubits Dj induced in the GKP quadrature
correction after the fourth and final set of two-mode gates
in the syndrome measurements (step 4) are detected only
in the following round, i+ 1, and the corresponding edges
are hi+1

j in the X and Z graphs.
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Since measure qubits are now to be measured after this
fourth step of the syndrome measurements, they do not go
through GKP quadrature correction, and we do not induce
any qubit error. Measure-Z qubits are measured in the p̂
quadrature, and a wrong measurement outcome (caused
by finite squeezing of the GKP spikes in the measured
quadrature) corresponds to vi

j in the Z graph. Similarly,
measure-X qubits are measured in the q̂ quadrature, and
a wrong measurement outcome corresponds to vi

j in the X
graph.

5. Graph boundaries, weighting, and correction

As described in Secs. III and IV A and in Appendix B,
from the residual analog information in the GKP quadra-
ture correction, we can infer the probability of having
induced a qubit error during the GKP quadrature cor-
rection, which we then use for weighting of the corre-
sponding edges (described above) in the matching graphs.
With each edge corresponding to several different errors,
the probabilities from multiple GKP quadrature correc-
tions are combined into ptot by use of Eq. (10) for each
edge, and the corresponding edge is finally weighted by
log2(ptot).

At the boundary of the code, not all diagonal edges are
used. Instead, the corresponding horizontal edge in the fol-
lowing round, i+ 1, is used. As an example, consider an
X̂ error induced in D3 in the code with distance d = 5
[see Fig. 4(a) for the labeling]. This error is detected by
Z2 in round i+ 1, but there are no other measure-Z qubits
to detect the error in the current round, i. Thus, instead of
weighting di

3, in this case the error probability is included
in the weight of hi+1

3 .
In the final round, i = d + 1, where an ideal syndrome

measurement is performed, all data qubits are first cor-
rected with perfect GKP quadrature corrections (using
|∅〉GKP states of infinite squeezing) before the stabilizers
of the surface code are measured using measure qubits of
GKP states with infinite squeezing. As a result, this final
round requires only horizontal edges.

After the MWPM decoding, vertices in the matching
graphs are matched with error paths following the edges
with the most likely errors based on the edge weighting. A
vertical edge in an error path, corresponding to a detection
error, requires no correction to data qubits. A horizontal or
diagonal edge hi

j or di
j in an error path in the Z or X graph

requires an X̂ or Ẑ correction, respectively, to data qubit
Dj . Finally, a cross edge ci

j in an error path in the Z or X
graph requires two X̂ or two Ẑ corrections, respectively,
to neighboring data qubits. As an example, including ci

5 in
Fig. 7(a) in an error path requires X̂ corrections to D7 and
D8 or to D12 and D13. Similarly, including ci

5 in Fig. 7(b)
in an error path requires Ẑ corrections to D8 and D13 or to
D9 and D14.
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