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Abstract: The desire to reduce the mass per unit length and to increase phase stability
of coaxial radio-frequency (RF) power cables for space application motivates to replace
solid dielectric with a periodic chain of hollow pearls. The design of the dielectric pearls
must allow for bending flexibility of the cable even if they are made from a stiff material
such as silicon glass. An important requirement of RF power cables for space applications
is their phase stability, which is influenced by the material-dielectric-constant tolerance
over a large temperature range as well as by changes in geometry. This paper presents
a closed-form model based on rigid-body motion to predict the kinematic response of
dielectric pearls to the bending of the cable. Particularly, the model maps the eccentricity
of the inner and outer conductors with respect to each other and the axial strain of the
bent cable along its centerline.
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1 Introduction

1.1 Coaxial RF cables for space applications

The typical coaxial cable consists of an inner conductor
surrounded by a tubular insulation layer, called
dielectric, that in turn is surrounded by a conducting
shield. The primary task of the dielectric is to hold
the inner conductor in place with respect to the
outer one. In vacuum or near-vacuum conditions radio-
frequency fields can accelerate electrons resulting in
an electron avalanche caused by secondary electron
emission. This phenomenon is known as multipactor
effect [1]. For space application, where multipactor is a
critical issue, the dielectric material or structure must
separate inner and outer conductors so that no gaps
exist. Typical state-of-the-art cables use a solid dielectric
made from PTFE [2], which undergoes a structural
phase change at 20◦ C that causes a nonlinear phase
change with temperature due to the changing dielectric
constant. Earlier attempts of reducing weight by e.g.
reducing the mass of the dielectric (foamed or sintered
material with large amount of air in the volume) led to
lower mechanical stability and impaired phase linearity.
Moreover, when operating cables at high power levels the
temperature inside the cable becomes high. This high
temperature, together with a high thermal-expansion
mismatch between the dielectric and the conductors,
causes undesired phase shifts of the electrical signal and,
consequently, significant distortion of the signal quality.
Better heat evacuation is an advantage of dielectric
structures over solid or foamed dielectrics, and earlier
design suggestions for dielectric structures can be found
in the handbook by Spergel [3].

1.2 Summary of present work

The present work responds to the necessity of being able
to predict the eccentricity between the inner and outer
conductors which is caused by bending of the coaxial
cable where the periodic dielectric structure indicated
in Fig. 1 is formed by a chain of spherical bodies
named SucoPearls by [4]. It focuses on the development
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Figure 1 SucoPearl dielectric geometric design principle
(with venting holes indicated)

of an analytical model which is based on kinematic
considerations, the verification of the model, and the
presentation of its results on the industrial designs SP304

and SP306 developed by Karstensen et al. [5, 6].
The mental picture leading to the model is that the inner
conductor is bent to a perfectly circular shape and that
the periodically arranged SucoPearls undergo rigid body
motions as they adapt to the new positions on the bent
inner conductor under the constraints imposed by the
interactions with adjacent SucoPearls.
The model assumptions are justifiable if the inner
conductor is much stiffer than all other cable
components, and the SucoPearls are much stiffer than
the components of which the outer parts of the cable
are made. The conditions are closely approximated if the
inner conductor tube is made from solid Invar R© steel and
the outer conductor is made from wound copper band
and the shield jacket from aluminum weave, which is the
current design.

1.3 Paper structure

Section 2 Geometry defines the SucoPearl shape
parameters as well as the periodic structure formed
by the chain of SucoPearls. The description of shape
and periodicity immediately yields formulas for volume
fraction with respect to the volume consumed by a solid-
dielectric, and the corresponding mass fractions. Section
3 bending kinematics develops a closed-form model that
predicts relative SucoPearl rotations limited by the
constraint that gaps must not occur, eccentricity of inner
and outer conductors with respect to each other, axial
SucoPearl stretching, and contacting ring elongation, all
due to bending. Section 4 Results for relevant geometries
and bending is dedicated to the two sample cable designs
SP304 and SP306 developed by Huber+Suhner [4]. The
systematic eccentricity imminent to the SucoPearl design
is compared to an estimate of eccentricity occurring
in solid PTFE dielectric designs in Section 5 Critical
discussion. Section 6 Conclusion and outlook is followed
by a list of symbols.

2 Geometry

2.1 Parameters, periodic length, and volume
fraction

Fig. 2 presents the parameterization scheme of the
SucoPearls. The wall thickness is assumed to be constant
over the whole spherical domain. The mean radius of the
SucoPearl is

rM =
1

2
(rI + rO) . (1)

Two cut-outs bound the spherical domain: There is the
necessity to allow the inner conductor with radius rIC
to pass through the SucoPearls, and there is also the
necessity to allow two adjacent SucoPearls to interact
with each other in a kinematically defined way. The
spacing between any two adjacent SucoPearls, or the
periodic-structure unit-cell length, ΔSP follows from the
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Figure 2 SucoPearl geometry parameters

condition that the SucoPearl to the right contacts the
opening of the adjacent SucoPearl to the left at the point

xcont = rO cosϕ rcont = rO sinϕ . (2)

The sketches in Fig. 3 suggest that the surfaces of the
openings be manufactured so that the open contacting
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Figure 3 Adjacent SucoPearls for various opening angles

surfaces take spherical shapes. Figs. 2 and 3 illustrate
that the choice of contacting points being located at
the outer surface on both sides of each sphere gives the
spacing of sphere centers ΔSP :

ΔSP = 2rO cosϕ ; 0 ≤ ϕ < ϕmax , (3)

where the upper bound ϕmax follows from the constraint
that adjacent spheres, at r = 0, must not penetrate
themselves:

2rO cosϕ≥ rO − rI ⇒ ϕmax = acos

(
rO − rI
2rO

)
. (4)

Each individual SucoPearl occupies a length LSP :

LSP = (1 + cosϕ) rO ; 0 ≤ ϕ < ϕmax . (5)

As the SucoPearls repeat themselves with periodicity
ΔSP , and each one has a length LSP , the real number of
spheres within one unit cell of length ΔSP is given by:

NSP =
1 + cosϕ

2cosϕ
. (6)

When the spheres are closest to each other, ϕ = ϕmax,
NSP becomes:

NSP (ϕmax) =
3rO − rI
2rO − 2rI

. (7)

For a solid sphere, rI = 0, ϕmax = 60◦ and Nsphere =
3
2 .

2.2 Volume fraction

Within the length LSP of one SucoPearl, a compact solid
dielectric would form a cylinder of volume Vcyl:

Vcyl = π
(
r2O − r2IC

)
LSP (8)

The same length is populated by Ns SucoPearls each of
which has a volume of VSP , so that the volume fraction
follows from

vf =
VSP

Vcyl
NSP . (9)

Fig. 4 shows a SucoPearl to the left whose opening shape
at its right fits the spherical outer surface of its neighbor
to the right. The curved triangle whose vertexes are
marked with solid circles follows from subtracting the
intersecting areas of the two adjacent SucoPearls. The
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Figure 4 Calculation of the volume of one SucoPearl

axial coordinates of the vertexes are given by:

x0 =
ΔSP

2
− r2O − r2I

2ΔSP
; x1 = rO cosϕ . (10)

The resulting net volume of the incomplete SucoPearl
can be calculated by the method of integrating
infinitesimal slices of the three different regions:

VSP = V1 + V2 + V3

V1 = π

∫ −rI

−rO

(
r2O − x2

)
dx

V2 = π

∫ x0

−rI

[(
r2O − x2

)− (
r2I − x2

)]
dx

V3 = π

∫ x1

x0

[(
r2O − x2

)− (
r2O − (ΔSP − x)

2
)]

dx

(11)

Carrying out the integrations one obtains:

V1 =
π

3

(
2r3O + r3I − 3r2OrI

)

V2 = π
(
r2O − r2I

)(
rI + rO cosϕ− r2O − r2I

4rO cosϕ

)

V3 = π

(
r2O − r2I

)2
8rO cosϕ

. (12)
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The volumes of the solid cylinder (8), of the SucoPearl
(11), and the volume fraction (9) are plotted versus the
opening angle in Fig. 5. Whereas the volume fraction

Figure 5 Normalized volumes of SucoPearls and solid
cylinder, and volume fraction vf . Data: rO = 1.93,
rI = 1.73, rIC = 0.815

is normalized per se, the other two volumes Vcyl and
VSP are both normalized with respect to the maximum
value of Vcyl(ϕ = 0). The cylinder volume decreases
proportionally with decreasing length of one SucoPearl
and the SucoPearl volume increases because the real
number of SucoPearls within the length of an individual
SucoPearl increases. Mass fractions per unit length are

mf =
ρSP VSP

ρcyl Vcyl

NSP

LSP
, (13)

where ρSP and ρcyl are the mass densities of SucoPearls
and the solid-dielectric, respectively. Fig. 6 illustrates the

ϕ = 35◦ vf = 54% ϕ = 50◦ vf = 61%

ϕ = 75◦ vf = 90% ϕ = 80◦ vf = 99%

Figure 6 SucoPearl shapes and volume fractions

relation between SucoPearl opening angle and volume
fraction for a SucoPearl with large sphere-shell thickness.

3 Bending kinematics

During bending action, adjacent SucoPearls slide on
each other so that large rotations can be described
with trigonometric relations. Because of the rotation,
the SucoPearl sphere center points must be on a circle
with radius RCP that cannot be the same as the

nominal radius RN of the circle that is formed by the
bent inner conductor. The eccentricity is kinematically
coupled with axial stretch. Both effects are influenced
by the position of the ring-shaped contact at which
the SucoPearl contacts the inner conductor. Inherent
verification of the model equations is given with the
deformed-configuration plots.

3.1 Large rotation of a SucoPearl about its
neighbor

Let the center line of the inner conductor be bent to a
circle with nominal radius RN . The center points C of
the small holes of the SucoPearls are on that circle. Due
to their a spherical contour, the ring-shaped edge of the
large hole of one SucoPearl on the spherical surface of
its neighbor is possible without creating a gap between
the two bodies appearing, as Fig. 7 illustrates. The same
figure also shows that the sliding motion of the SucoPearl
with center point B, where the prime denotes deformed
configuration, is simply a rotation about its neighboring
SucoPearl’s center point A.

�
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Figure 7 Sliding of a SucoPearl on its adjacent neighbor

3.2 Bending radii of inner and outer conductors

The kinematic analysis is based on the insight that the
points A, B, and C must be connected by a straight line
in all configurations. Because of their spherical shape,
the SucoPearl center points must be on the same radius
as the bent outer-conductor center line RCP . Figure 8
illustrates that the two radii cannot be the same and
that the radius of the inner-conductor center line must
be larger than the outer-conductor centerline, or RN >
RCP . The difference between the two radii creates the
eccentricity e of the cross-sectional centers of the inner
and outer conductors:

e = RN −RCP . (14)

The objective of the following derivations is to find the
radius RCP as it depends on the nominal bending radius
RN and geometric parameters. The point coordinates in
reference coordinates are:

xA =RCP yA = 0

xB =RCP cosαB yB =RCP sinαB

xC =RN cosαC yC =RN sinαC

. (15)
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Figure 8 The sphere centers lie on a smaller radius than
the inner conductor center line

If the inner conductor is made from a much stiffer
material than other cable components, it may be
assumed that its centerline length will not change with
deformation. Therefore, the arc length of the bent
centerline,

αCRN = ΔSP + rM ⇒ αC =
ΔSP + rM

RN
, (16)

is a constant, which circumstance determines with the
angle αC the coordinates of point C in (15). The rotation
must not be so large as to open a gap between inner and
outer conductors:

αC ≤ αlim = asin

(
rIC
RO

)
. (17)

The maximum rotation αlim corresponds with a
minimum nominal bending radius Rlim:

RN ≥ Rlim =
ΔSP + rM

αlim
. (18)

3.3 Axial stretch due to bending

As a consequence of assuming that the inner conductor’s
length remains constant, the straight line connecting
points A, B, and C is smaller in the deformed than in the
reference configurations, respectively. We assume that all
other parts change length by the same global stretch λ:

λ =
AC

RNαC
. (19)

A second simplifying assumption is that the radius RCP

on which the Sucopearl’s center points lie is related to
the nominal bending radius RN by the same stretch as
that of the axial direction of individual SucoPearls:

RCP = λRN =
AC

αC
(20)

Both SucoPearl-center points A and B lie on the same
radius RCP . The dotted line in Figure 8 connects
the origin x = y = 0 with the center of both points,
is therefore perpendicular to the line connecting the
points A and B, and bisects the angle αB . This allows

connecting the latter with the distance between points
A and B:

ΔSP −ΔL= 2RCP sin
(
1
2αB

)

⇒ sin
(
1
2αB

)
=

ΔSPλ

2RCP
=

ΔSP

2RN
= K

⇒ cos
(
1
2αB

)
=
√
1−K2

. (21)

The trigonometric functions of the half angle are related
to those of the full angle by:

sin (αB) = 2sin
(
1
2αB

)
cos

(
1
2αB

)
= 2K

√
1−K2

cos (αB) = cos2
(
1
2αB

)− sin2
(
1
2αB

)
= 1−K2 −K2

= 1− 2K2

. (22)

The radius RCP is determined by the requirement that
points A, B, and C must be on a straight line which is
expressed by the rule of proportion:

(yC − yA) (xB − xA) = (yB − yA) (xC − xA)

yC (xB − xA) = yB (xC − xA)

yC (cosαB − 1) = sinαB (xC −RCP )

RCP = xC +
1− cosαB

sinαB
yC

(23)

3.4 Inner-conductor contact position modeling

The SucoPearl center points lie on the radius RCP (23)
that is given by the closed-form expression,

RCP =

[
cos αC +

ΔSP√
4R2

N −Δ2
SP

sinαC

]
RN , (24)

that depends on the SucoPearl geometric characteristics,
where αC is given by (16). Fig. 9 illustrates the kinematic
model for a relatively thick-walled SucoPearl with a wide
opening angle. Both plots show that adjacent SucoPearl
rotate about each other so that the condition illustrated
in Fig. 7 and formulated in (21) is satisfied. Also, both
plots indicate that the bore through which the inner
conductor passes should not have the cylindrical shape as
it was assumed for volume calculations. Rather, its shape
should be tapered so that the SucoPearl contacts the
inner conductor along the smallest bore circumference,
or the contact line. Plot (a) in Fig. 9 shows the version
where the contact line is placed at the mid-surface, and
Plot (b) shows the second version with contact line at
the inner SucoPearl surface. This version is described by
redefining the angle αC in (16) to

αC =
ΔSP + rI

RN
. (25)

Note that both eccentricity e and average strain ε̄
along the bent centerline are significantly smaller if the
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a) ε = 505μ, ē = −5.0% b) ε = 355μ, ē = −3.6%

Figure 9 Kinematic theory applied to rO = 3, rI = 2,
rIC = 0.5, ϕ = 75, rn = 20. Sucopearl attached to
inner conductor at midplane (a) or at inner sphere
radius (b).

SucoPearl is supported at the inner surface.
The necessary degree of tapering is dictated by the
intended maximum bending curvature, or minimum
bending radius. If the support is at the sphere’s
midplane, the bore is widened equally at the inner and
outer surfaces as can be seen in Fig. 9a). The widening
depends on the relative rotation between the SucoPearl
and the inner conductor,

αrel = αC

(
1 +

rO − rM
RN

)
− αB

2
(26)

where the second term in parentheses considers the
change of angle along the curved inner-conductor center
line. The tapering is then described by the widening
factor

ftaper = 1 + 2tan(αrel) (rO − rM ) . (27)

If the support is at the sphere’s inner surface, the bore is
widened at the outer surface only as can be seen in Fig.
9b). Then, the relative rotation between the SucoPearl
and the inner conductor becomes,

αrel = αC

(
1 +

rO − rI
RN

)
− αB

2
(28)

and the tapering is described by the widening factor

ftaper = 1 + 2tanαrel (rO − rI) . (29)

The line of contact, ring-shaped in the reference
configuration, will become an ellipse due to the rotation
of the SucoPearl with respect to the inner-conductor.
The elongation ε© of the contact ring is approximately
described by:

ε© =
1

cos
(
αC − αB

2

) . (30)

4 Results for relevant geometries and
bending

4.1 Geometric parameter study

The study is conducted on two geometric SucoPearl
versions, namely SP304 and SP306 given in Table

1. Bore and sphere outer surface radii agree with
dielectric radii of existing co-axial cables [4]. We consider

Table 1 Geometries of SP304 and SP306

RI [mm] RO[mm] RCI [mm]

SP304 1.730 1.930 0.815

SP306 2.525 2.825 1.190

the influence of the opening angle ϕ on geometric
properties where the shapes are illustrated in Fig. 10.
The geometries of the two SucoPearl types are shown
with identical scaling to give a visual impression of the
relative size. The geometric parameter ratios of both
types are very similar, which is observable from nearly
identical values of volume fraction and limit rotation.
Impractical designs are found with very small (ϕ = 31◦)
and large (ϕ = 86◦) opening angles: The design with ϕ =
31◦ will create straight lines of unshielded view between
inner and outer conductors at small relative SucoPearl
rotations whereas the other design with ϕ = 86◦ provides
no mass advantage over solid dielectrics as it fills all of
the space with material. The values shown in Fig. 10 are
used for the illustrative plots in Fig. 11 and 12: Fig. 11
contains the plot of the periodic spacing ΔSP . It must
be noted that the number of needed SucoPearls increases
with decreasing periodic spacing. Fig. 12 contains the
plot of the volume fraction vf versus the opening angle
ϕ. It can be seen that the desired advantage of the
SucoPearl design, namely to save mass with respect to
solid-dielectric designs, vanishes as the opening angle
approaches its upper limit.

4.2 Kinematic results of the parameter study

All geometric versions are subjected to bending that
is measured in terms of the nominal inner-conductor
bending radius RN . As eccentricity of the outer
conductor with respect to the inner conductor is
critical for the electric performance, the bending radii
are adjusted for each design to create the tolerated

eccentricities e
(SP304)
crit = 40μ and e

(SP306)
crit = 70μ,

respectively. The results are listed in Table 2 and
visualized by the plots in Fig. 13. It can be seen that
limit bending radii decrease with increasing opening
angle and that supporting the SucoPearls at their inner
sphere surface allows for smaller radii than supporting
them at the sphere’s midplane.
Table 3 shows that axial compressive strain,
kinematically enforced by bending kinematics under the
assumption that the inner conductor be much stiffer
than other cable components, increases with opening
angles. The larger design version SP306 suffers higher
strains than the smaller version SP304, and the support
at the inner sphere surface lead to higher strains than
the other support. Fig. 14 visualizes the data of Table 3.
Because of the rotation of SucoPearls on the inner
conductor the contact line cannot remain circular.
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vf = 23.5% ΔSP = 3.309mm vf = 24.0% ΔSP = 4.843mm

vf = 24.8% ΔSP = 2.957mm vf = 25.3% ΔSP = 4.328mm

vf = 27.2% ΔSP = 2.481mm vf = 27.7% ΔSP = 3.632mm

vf = 31.2% ΔSP = 1.930mm vf = 31.9% ΔSP = 2.825mm

vf = 39.3% ΔSP = 1.320mm vf = 40.1% ΔSP = 1.932mm

vf = 61.1% ΔSP = 0.670mm vf = 62.2% ΔSP = 0.981mm

vf = 98.2% ΔSP = 0.269mm vf = 98.8% ΔSP = 0.394mm

Figure 10 SucoPearl shapes, volume fractions, and limit
rotations. Opening angles ϕ from top to bottom:
31◦, 40◦, 50◦, 60◦, 70◦, 80◦, 86◦.

Rather, the one axis remains constants whereas the other
axis must become longer. The elongation is expressed
in terms of strain. Table 4 lists the values and Fig. 15
visualizes them. Except for the sign, the trends observed
from this table are similar to those of the averaged axial
strains. It can be concluded that, at the respective limit
bending radii, the larger SucoPearls SP306 suffer higher

Figure 11 Periodic spacing ΔSP versus opening angle ϕ

Figure 12 Volume fraction vf versus opening angle ϕ

Table 2 Bending radii RN [mm] for maximum tolerated
eccentricities. Superscripts refer to positions of
contact lines to inner conductor.

SP304 SP306

ϕ R
(1)
lim R

(2)
lim R

(1)
lim R

(2)
lim

31 117.6 109.0 143.8 133.0

40 109.6 101.4 133.9 123.7

50 98.7 91.1 120.6 111.1

60 86.1 79.2 105.2 96.6

70 72.1 66.0 88.1 80.4

80 57.2 51.9 69.9 63.3

86 48.1 43.3 58.7 52.7

strains than the smaller SP304. Within the interesting
range of opening angles, say 40◦ ≤ ϕ ≤ 60◦, all average
strains do not exceed 0.1%.
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Figure 13 Limit bending radii RN versus opening angle
ϕ. The limits refer to tolerated eccentricities
e = 40μ and e = 70μ for the types SP304 and
SP306, respectively.

Table 3 Axial strains ε̄axial[%] for maximum tolerated
eccentricities. Superscripts refer to positions of
contact lines to inner conductor.

SP304 SP306

ϕ ε̄
(1)
axial ε̄

(2)
axial ε̄

(1)
axial ε̄

(2)
axial

31 −0.0340 −0.0367 −0.0486 −0.0526
40 −0.0365 −0.0394 −0.0523 −0.0566
50 −0.0405 −0.0439 −0.0580 −0.0630
60 −0.0464 −0.0505 −0.0665 −0.0724
70 −0.0555 −0.0606 −0.0794 −0.0871
80 −0.0699 −0.0770 −0.1000 −0.1105
86 −0.0830 −0.0922 −0.1191 −0.1327

Figure 14 Average axial strain ε̄axial versus opening
angle ϕ.

5 Critical discussion

5.1 Basic performance properties

The model assumptions are justified by the current cable
design, where the stiffness values of the outer conductor
and jacket materials are so small that their interaction

Table 4 Deviation ε©[%] away from a circular shape to
an ellipse of contact lines. Superscripts refer to
positions of contact lines to inner conductor.

SP304 SP306

ϕ ε
(1)
© ε

(2)
© ε

(1)
© ε

(2)
©

31 0.0439 0.0482 0.0628 0.0692

40 0.0456 0.0500 0.0653 0.0719

50 0.0484 0.0532 0.0694 0.0764

60 0.0527 0.0579 0.0755 0.0831

70 0.0597 0.0665 0.0855 0.0944

80 0.0717 0.0792 0.11026 0.1136

86 0.0835 0.0928 0.1198 0.1335

Figure 15 Contact-ring elongation ε© versus opening
angle ϕ.

with the SucoPearl does not have much influence on the
deformation of the latter. The cables can be bent to a
radius almost as small as ten times the cable diameter
if the SucoPearls are rather short. If the SucoPearls are
desired to be longer, the minimum radii are restricted
to be somewhat larger. In any case, the study shows
that the SucoPearl concept is feasible as the eccentricity
due to bending is kinematically controlled and will stay
within the required limits. From a practical point-of-
view, the advantage of the SucoPearl design, namely
mass saving, is quite significant in view of launching
cost for satellites. On the other hand, eccentricity due to
layout bending is higher than with solid dielectric design.

5.2 Mass and eccentricity: Conflict of objectives

Dielectric-mass reduction of co-axial radio-frequency
cables for space applications is the driving motivation
of this research. Apart from the size dictated by the
outer diameter of the inner conductor and the inner
diameter of the outer conductor, the SucoPearl wall
thickness and the opening angle ϕ remain as design
parameters. The latter provokes a conflict of objectives:
Smallest values of ϕ promise the highest mass reduction
but restrict the bending to large radii that might be
impracticable when it comes to laying cables within a
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satellite. As the bending is restricted by tolerated values
of eccentricity, it is interesting to compare the SucoPearl-
design with solid dielectric designs, where bending-
driven eccentricity is traced back to the transverse-
strain effect. Teflon, a material often used for space
applications, has a Poisson-ratio value of about ν = 0.46.
Fig. 16 illustrates a much simplified model assumption

�
� 

�
�

Figure 16 Illustration of simplified substitute model for
estimating transverse-strain effect in co-axial cable

for estimating eccentricity in a coaxial cable by a
laminated-plate analogy. The shaded areas in the figure
indicate the dielectric material whereas the white areas
stand for the inner-conductor material. Under cylindrical
bending, the absolute though-thickness displacement of
the outer-layer surfaces is given by

esolid =− 1

RN

(∫ rIC

0

νICzdz +

∫ rO

rIC

νDEzdz

)

= − 1

2RN

(
r2ICνIC +

(
r2O − r2IC

)
νDE

) . (31)

We use this result to roughly estimate the eccentricity
of the cable. Fig. 17 shows the eccentricities of the
cables with solid-Teflon dielectric design at the same
nominal bending radii RN at which the respective
SucoPearls designs experience their limit eccentricities.
Versions 1 and 2 refer to the bore shapes (a) and (b)

Figure 17 Comparison of estimated eccentricities:
solid-Teflon designs are represented by marked
lines. The SucoPearl limit eccentricities are
indicated by horizontal unmarked lines.

illustrated in Fig. 9, respectively. The solid-dielectric-
design eccentricities are always significantly smaller
than those of the SucoPearl designs indicated with
the horizontal lines. The SucoPearl-design advantage of
mass savings is in conflict with its limitations regarding
bending, or layout flexibility.

5.3 Axial strain and the risk of damage

The strength of the model lies in its simplicity.
The simplifying assumptions include that the averaged
strains along the curved lines of inner and outer
conductor must be different and the model does not
answer the question how the mismatch of the averaged
strains translates into local deformations and strains
of the cable constituents. The question touches the
problem of material strength and answers can be found
by applying the theory of elasticity with the help
of numerical analysis with the finite-element method
(FEM).

5.4 Manufacturing

The SucoPearl shape with proposed constant shell
thickness and undercut poses a manufacturing challenge.

6 Conclusion and outlook

A closed-form exact model for analyzing the kinematic
behavior of a co-axial cable with a periodic dielectric
structure consisting of a chain of pearls has been
developed and the cable design analyzed. The
overall conclusion is that the SucoPearl design is
feasible as the eccentricity due to bending can be
kinematically controlled and will stay within the
required specifications. A critical discussion followed
from the analysis and addressed the problem that
the remaining question of an average strain mismatch,
causing local strains in all cable constituents, requires a
theory-of-elasticity approach. The elastic analysis of the
present problem will be considered in the near future.
An opportunity for better model verification will be
provided by comparing the predictions of the closed-form
kinematic and the numerical elasticity models.

Nomenclature

e eccentricity of conductors due to bending

esolid eccentricity of conductors with solid dielectric

ftaper widening factor to describe bore tapering

mf mass fraction of sucopearl to cylindric dielectric

rcont sucopearl-contact point radial position

rI sucopearl inner surface radius

rIC inner-conductor radius

rM sucopearl mid-surface radius

rO sucopearl outer surface radius

vf volume fraction of sucopearl to cylindric dielectric

x, y reference system coordinates
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xcont sucopearl-contact point axial position

A, B center points of adjacent sucopearls

C point at inner conductor and sucopearl contact

LSP sucopearl length

NSP number of sucopearls per periodic length Δ

NSP number of sucopearls per periodic length Δ

RCP bending radius of sucopearl center line

Rlim limit bending radius for preserving shielding

RN bending radius of inner-conductor center line

Vcyl cylindric dielectric volume over sucopearl length

VSP sucopearl volume

αB angular position of point B in bent configuration

αC angular position of point C in bent configuration

αlim limit angle for preserving shielding

αrel rotation of sucopearl against inner conductor

ε̄ axial deformation discrepancy per unit length

ε© elongation of contacting circle due to bending

ϕ opening angle

ϕmax maximum opening angle

νDE Poisson’s ratio of solid dielectric material

νIC Poisson’s ratio of inner-conductor material

ρcyl sucopearl-material mass density

ρSP cylindric dielectric mass density

θ angle variable about axial direction

ΔL sucopearl spacing or periodic length

ΔSP sucopearl spacing or periodic length
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