Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal-Organic Frameworks

Sours, Tyler; Patel, Anjli; Nørskov, Jens; Siahrostami, Samira; Kulkarni, Ambarish

Published in:
Journal of Physical Chemistry Letters

Link to article, DOI:
10.1021/acs.jpcllett.0c02889

Publication date:
2020

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Circumventing Scaling Relations in Oxygen Electrochemistry using Metal-Organic Frameworks

Tyler Sours,†1 Anjli Patel,†2 Jens Nørskov,3 Samira Siahrostami*4 and Ambarish Kulkarni*1

1 Department of Chemical Engineering, University of California, Davis, Davis 95616, California, United States
2 SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford 94305, California, United States
3 Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
4 Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
† equal contribution

Keywords: Metal-organic frameworks, oxygen reduction reaction, fuel cells

Supporting Information Placeholder

ABSTRACT: It has been well-established that unfavorable scaling relationships between *OOH, *OH, and *O are responsible for the high overpotentials associated with oxygen electrochemistry. A number of strategies have been proposed for breaking these linear constraints for traditional electrocatalysts (e.g. metals, alloys, metal-doped carbons); such approaches have not yet been validated experimentally for heterogenous catalysts. Development of a new class of catalysts capable of circumventing such scaling relations remains an ongoing challenge in the field. In this work, we use density functional theory (DFT) calculations to demonstrate that bimetallic porphyrin-based MOFs (PMOFs) are an ideal materials platform for rationally-designing the 3D active site environments for oxygen reduction reaction (ORR). Specifically, we show that the *OOH binding energy and the theoretical limiting potential can be optimized by appropriately tuning the transition metal active site, the oxophilic spectator, and the MOF topology. Our calculations predict theoretical limiting potentials as high as 1.07 V for Fe/Cr-PMOF-Al, which exceeds the Pt/C benchmark for 4e ORR. More broadly, by highlighting their unique characteristics, this works aims to establish bimetallic porphyrin-based MOFs as a viable materials platform for future experimental and theoretical ORR studies.

Oxygen electrochemistry in the form of oxygen reduction reaction (ORR, for fuel cells) and oxygen evolution reaction (OER, for water electrolysers) lies at the heart of an environmentally sustainable hydrogen-based economy.1 However, widespread adoption of these technologies has been limited due to the high cost and thermodynamic losses associated with ORR and OER electrocatalysts (referred together as OXR). Despite large research investments, only modest improvements have been achieved in the catalyst performance over the past decade; the best catalysts show onset potentials that deviate ~ 0.3 – 0.4 V away from the ideal value (i.e. 1.23 V_RHE).2–4 These losses have been attributed to the unfavorable scaling between the binding energies of OXR intermediates, in particular *OOH vs *OH.2,5,6 Although recent discoveries of low-cost alternatives are encouraging,7,8 it is likely that their performance is also constrained by similar intrinsic limitations. Despite slight material-specific variations, the robustness of the *OOH vs *OH linear correlation across different materials and computational methods is well-established.5,10 Specifically, a slope of 0.9 - 1.0 is observed (due to the single bond with the surface), with an intercept of 2.9 – 3.2 (due to the peroxyl bond in *OOH).5,11,12 Designing materials that circumvent this linear scaling relationship is crucial for the development of the next generation of OXR electrocatalysts.11,13

A promising strategy towards this goal is the confinement of *OOH within a 3-D active site environment, which has been demonstrated for a few model systems and homogenous molecular catalysts. For instance, Rossmeisl et al.14,15 have shown that diporphyrin motifs are capable of facilitating *OOH dissociation via two closely-spaced binding sites. This approach bypasses the limitations imposed by *OOH scaling in favor of the less restrictive dissociated *O + *OH pathway. Following some of the thermodynamic optimization guidelines discussed by Calle-Vallejo and colleagues,16 we aim to preferentially stabilize *OOH (relative to *OH) by tuning the surrounding active site environment.
porous chemical environments, and topologies.30–32 Although MOF electrochemistry is a relatively nascent direction, a variety of common MOFs, such as Co-PMOF-Al33 PCN-223(Fe),34 PCN-226(Co),35 and Ni-HAB36 show intrinsic ORR activity. The experimental onset potentials range from 0.7 – 0.83 V, which is comparable with other promising catalysts. Progress in MOF electrocatalysis, including MOF stability and charge transfer, has been summarized in a number of recent reviews.37–41

In the remainder of this work, we use periodic density functional theory (DFT) calculations to show that bimetallic porphyrin-based, mixed-linker MOFs can be designed to preferentially stabilize *OOH. Specifically, by using a combination of active and oxophilic transition metal cations, we leverage the 3-D pore structure of MOFs to spatially orient the porphyrin binding sites and circumvent the scaling relations.

Figure 2a shows the structure of PMOF-Al33,42 which consists of TCPP ligands (TCPP = tetrakis(4-carboxyphenyl)porphyrin) stacked on top of each other to form a 3-D structure connected via a 1-D Al-oxide chain. PMOF-Al is water stable and has been shown to be experimentally active for ORR.33 The spacing between the two linkers is ~ 6.7 Å, which compares well with the favorable region in Fig. 1. As different linkers can be incorporated in MOFs during synthesis or using post-synthetic methods,43–45 we used DFT calculations to explore mixed-linker PMOF-Al configurations consisting of alternating TM\textsubscript{1}/TCPP and TM\textsubscript{2}/TCPP linkers (TM\textsubscript{1} = Cr, Mn, Fe, Co, Ni; TM\textsubscript{2} = Cr, Mn, Fe). Pourbaix diagrams are used to determine the coverage and oxidation states of the TMs while allowing simultaneous binding on both sides of the linker (Fig. S3). All possible spin combinations are explored to determine the lowest energy electronic structure for each TM (Table S1). Entropic corrections are calculated using the harmonic approximation (Table S2), and solvation contributions are estimated using VASPsol.46 The solvent iso-surface (Fig. S4) confirms that the solvent penetrates the MOF cavity. Other solvation approaches are possible,47 but are beyond the scope of this work. The calculated absolute and relative solvation effects are summarized in Table S3.

Figure 2b shows the DFT-calculated free energy diagram for the Co active site in monometallic and bimetallic PMOF-Al using TPSSh-D3BJ48 functional. The theoretical limiting potential for the molecular Co/TCPP analog (U\textsubscript{L} = 0.52 V) is consistent with the monometallic Co/PMOF system (U\textsubscript{L} = 0.59 V, blue). Our calculated limiting potentials agree reasonably with the experimentally measured half-wave potentials (0.55 V) and onset potentials (0.75 V),33 further confirming the suitability of the computational protocol.

Similar calculations with RPBE-D3BJ predicts incorrect spin states and TM geometry, while the HSE06-D3BJ functional under-predicts binding energies for Co/TCPP and Fe/TCPP. These findings are inconsistent with
Experimental results and are not discussed further (see SI for details). Detailed benchmarking of different functionals (e.g. *OH and *OOH) are significantly affected by the presence of the Fe spectator (Fe–OH). As shown in Fig. 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF-Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g. square planar Co vs. distorted square pyramidal Cr–OH).

More interestingly, the presence of the Fe–OH spectator results in a favorable deviation from the above scaling behavior. Specifically, we observe a preferential *OOH stabilization of up to 0.4 eV for various TM active sites (Fig. S5). A smaller deviation is observed for strongly binding TMs (e.g. Fe-*OOH, 0.07 eV). In contrast, weakly binding TMs (e.g. Ni-*OOH) are stabilized to a larger extent (0.39 eV). For a given TM active site, the extent of *OOH stabilization also depends on the identity of the spectator. For instance, Mn–OH spectator (purple, Fig. 3a) results in systematically higher stabilization than Fe–OH spectator. In all cases, the *O and *OH binding energies do not change significantly (< 0.15 eV).

The trends in *OOH stabilization can be explained by the increasing electronegativity of the spectating metal (Mn < Cr < Fe). Spectating metals with lower electronegativity allow for more charge to be localized on the spectator ligand (OH), resulting in a stronger hydrogen bond and increased stability of the *OOH intermediate. Table S4 shows the differences in the calculated bond orders for Co active site with different spectators. In particular, the H_{OOH}–O_{OH} bond order increases from 0.23 (Fe–OH spectator) to 0.33 (Mn–OH spectator) confirming a stronger hydrogen bond. Bond order analysis also reveals that the presence of the spectator localizes more charge on the *OOH adsorbate compared to the no spectator system. The Co–O_{OOH} bond order decreases from 0.57 to 0.48 with the Mn–OH spectator. Although the weakened TM–oxygen bond may favor the 2e pathway, detailed investigation of kinetic effects and product selectivity (i.e. H_{2}O_{2} vs. H_{2}O) is beyond the scope of this work.

As the spectator stabilizes *OOH, the improvement in the ORR limiting potential is well-explained by the 1-D volcano plot in Fig. 3b. Specifically, for TMs that lie on the right leg of the volcano (i.e. activity is limited by O_{2} → *OOH), the spectator stabilizes *OOH, improves the *OOH vs. *OH scaling, and favorably shifts the right leg of the volcano. This is depicted by black arrows in Fig. 3b corresponding to an improvement in the activity of Co and Cr–OH active sites due to the Fe–OH spectator (green line, filled symbols) compared to the no spectator case (black line, empty symbols). The predicted limiting potential for the bimetallic Cr/Fe–PMOF-Al catalyst is 1.07 V, which exceeds the performance of the benchmark Pt/C.

Figure 2. (a) Structure of bimetallic PMOF-Al with Co active site and Fe–OH spectator, (b) Free energy diagram (TPSSH-D3BJ) showing the preferential stabilization of *OOH. Color scheme: Co (pink), Fe (brown), C (grey), O (red), and H (white).

Compared to Co–PMOF-Al with no spectator, Fig. 2b shows that the presence of an oxophilic spectator (Fe–OH, green) improves the predicted activity. For instance, the theoretical limiting potential for the bimetallic Co/Fe–OH/PMOF-Al catalyst (0.81 V) is comparable to the Pt/C benchmark (U_{L} = 0.8 V). The improved activity originates from the additional 0.22 eV stabilization of *OOH due to the presence of the Fe–OH spectator. Simulations of other oxophilic TMs (see Mn–OH and Cr–OH in Fig. 2b) confirm that the presence of the spectator ligand significantly affects *OOH binding; the other OXR adsorbates (i.e. *OH and *O) are largely unaffected.

While the above discussion is limited to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram is used (e.g. Cr–OH, Mn–OH). As shown in Fig. 3a, we predict similar scaling slopes for TCPP (0.66, orange) and monometallic PMOF-Al (0.60, blue). The deviation from unity likely arises due to the changes in the spin states for *OOH and *OH intermediates and differences in the active site coordination geometry (e.g. square planar Co vs. distorted square pyramidal Cr–OH).
catalyst ($U_L = 0.8$ eV). TPSSh-D3BJ suggests Cr-OH active site possesses high activity for all spectator combinations, and the limiting potentials for Cr-OH TCPP (0.75 V) and no spectator (0.79 V) agree very well with the experimental half-wave potential (0.77 V) of a recently reported Cr-N₄ catalyst.¹⁴

These results are further summarized in the heat-map in Fig. 3c, which includes Mn-OH and Cr-OH spectators. While Fe-OH spectator tends to improve the 4e limiting potentials, Mn-OH and Cr-OH do not have the same effect. Specifically, Mn-OH and Cr-OH overstabilize *OOH, and the activity becomes limited by the *OOH \rightarrow *O step (see 1-D volcanoes in Fig. S6).

As the *OOH \rightarrow *O step is often not limiting for metals and alloys, we emphasize that molecular and MOF-based ORR catalysts require a more careful analysis beyond the traditional *OOH vs *OH scaling for metals and alloys. Single atom M-N₄ catalysts only allow binding of the *O intermediate at the on-top site (as opposed to the more favorable hollow sites for metallic surfaces), which has already been shown to destabilize binding of *O.¹⁵ This destabilization of *O combined with overstabilization of *OOH presents a new bottleneck for 4e ORR, where formation of *O from *OOH limits the achievable potential. While these effects are observed in all bimetallic combinations, the moderate stabilization of *OOH due to Fe-OH spectator allows for an improvement in theoretical overpotential, notably for the Co and Cr-OH active center. However, stronger stabilization seen with Mn-OH and Cr-OH spectators yields a reduction in catalytic performance as *OOH is stabilized to the point where *O formation is unfavorable.

Recognizing that this *O destabilization relative to metal surfaces may compromise the selectivity of these systems towards the 4e reduction to water, we extend our analysis to the 2e oxygen reduction reaction to form hydrogen peroxide. Figure 3d summarizes the calculated 2e limiting potentials for all active site and spectator combinations. As expected, for stronger binding active sites that lie on the left leg of the volcano (e.g. Mn-OH), incorporation of an oxophilic spectator overestabilizes *OOH and reduces the 2e ORR activity. However, for weakly binding metals on the far right of the volcano, a noticeable improvement

<table>
<thead>
<tr>
<th>Active site</th>
<th>TCPP</th>
<th>No spectator</th>
<th>Fe-OH</th>
<th>Cr-OH</th>
<th>Mn-OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>*OOH \rightarrow *OH</td>
<td>0.74</td>
<td>0.70</td>
<td>0.61</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>*OH \rightarrow H₂O</td>
<td>0.75</td>
<td>0.79</td>
<td>1.07</td>
<td>0.93</td>
<td>0.74</td>
</tr>
<tr>
<td>*O \rightarrow *OOH</td>
<td>0.61</td>
<td>0.73</td>
<td>0.75</td>
<td>0.41</td>
<td>0.29</td>
</tr>
<tr>
<td>*O \rightarrow H₂O</td>
<td>0.69</td>
<td>0.71</td>
<td>0.71</td>
<td>0.66</td>
<td>0.61</td>
</tr>
<tr>
<td>U_L (V)</td>
<td>0.52</td>
<td>0.59</td>
<td>0.81</td>
<td>0.65</td>
<td>0.55</td>
</tr>
<tr>
<td>U_L (V)</td>
<td>0.06</td>
<td>0.13</td>
<td>0.37</td>
<td>0.17</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

Figure 3. (a) Comparison of *OOH vs. *OH scaling lines for TCPP, monometallic and bimetallic PMOF-Al with different active sites and spectators, (b) 1-D volcano plot showing the improvement in activity (black arrows) due to the presence of Fe-OH spectator (filled symbols) compared to the no spectator (empty symbols) scenario. TPSSh-D3BJ calculated limiting potential for (c) 4e and (d) 2e ORR for various bimetallic MOFs.
in theoretical limiting potential is obtained. For the Ni active site, TPSSh-D3BJ predicts highly active limiting potentials of 0.53 (0.66) V when combined with Fe-OH (CrOH) spectators, which represents a 0.4 eV improvement over the no spectator scenario.

The above results indicate that porphyrin-based MOFs are a promising platform for tuning the binding energies of OXR adsorbates. Unlike metals and alloys where only the composition or strain can be varied, the 3-D active sites in MOFs offer unique degree of control that is unavailable in other materials. Specifically, in addition to appropriately choosing the bimetallic system (i.e. TM$_1$ and TM$_2$), we can now potentially design MOF topologies to further tune the adsorbate binding energies for OXR.

As an illustrative example, we consider a model system consisting of two interacting porphine molecules (Co active site, Fe-OH spectator) at varying distances. As shown in Fig. 4a, parallel configurations can be considered as analogs of PMOF-Al with different 1-D metal oxide chains (e.g. substituting Al with Ga or In), or other similar rod-based MOFs, such as MIL-173. Additionally, a pair of angled (37°) porphines is chosen to mimic the topology of the porphyrinic Zr$_6$-oxo cluster MOF, PCN-225. The distance between the TMs is varied to illustrate the reticular approach in MOF synthesis; we demonstrate the effects of varying the linker size while retaining the same topology. Fig. 4a shows a high degree of control on reaction thermodynamics can be achieved by tuning the separation distance between adjacent porphrin motifs, and the distances of several known MOFs are highlighted with vertical dotted lines. For both the parallel and angled configurations, shorter distances (~ 7 Å) enable stronger *OOH stabilization that suggest a preference towards 4e ORR. Interestingly, TPSSh-D3BJ predicts a range of *OOH binding energies that encompass the 2e ORR optimum (4.2 eV, dashed black line in Fig. 4). For the model systems considered here, we find that intrinsic catalytic activity is insensitive to small topological changes in porphyrin orientation (i.e. parallel versus angled). These results show that weakly *OOH binding active sites can be optimized for 2e peroxide synthesis by appropriately choosing the spectator transition metal, optimizing the TM$_1$-TM$_2$ separation, and changing the MOF topology. We acknowledge that these results alone are not conclusive of reaction selectivity; detailed kinetic studies and experimental measurements are necessary to validate our predictions.

By using state-of-the-art DFT calculations, we have demonstrated that porphyrin-based MOFs are an ideal materials platform for rationally designing 3-D active site environments for ORR. To the best of our knowledge, these computational predictions represent the first experimentally-synthesizable heterogenous catalysts (i.e. MOFs) where the 3-D structure of the active site can be intentionally designed to circumvent the *OOH vs. *OH scaling relations. Other factors that impact the efficacy of MOF electrocatalysts, such as charge transport, counterion and substrate diffusion, explicit solvation, etc. represent ongoing research directions in the group. We anticipate that this work will motivate further computational studies and experimental validation of MOF-based electrocatalysts for ORR.

COMPUTATIONAL METHODS

Periodic density functional theory (DFT) calculations are performed using the projector augmented wave method.
as implemented in the Vienna ab initio simulation package (VASP). All energies are calculated using a 400 eV plane-wave cutoff. Only the Γ-point is sampled owing to the large MOF unit cells. A range of generalized gradient approximation (BEEF-vdW20 BLYP22,23 RPBE21) and hybrid (B3LYP,24 HSE0625,26 and TPSSh49) functionals are used to examine the sensitivity of our results. Dispersion corrections are considered using the DFT-D3 method with Becke-Johnson damping.27–29 Electronic energies are converged to 10⁻⁶ eV. All structures are relaxed until the forces are less than 0.03 eV/Å for RPBE and 0.1 eV/Å for HSE06 and TPSSh. A lower threshold is used for the hybrid functionals owing to the high computational costs; differences in binding energies are less than 0.01 eV. All possible spin states are considered. Implicit solvation corrections are implemented using VASP’sol.46 The finite displacement method (0.015 Å) is used to calculate the entropic corrections and zero-point energies. Bond orders are calculated using the density derived electrostatic and chemical (DDEC) charge method.66,67

ASSOCIATED CONTENT
Supporting Information. DFT optimized structures are available as ase-db files.

AUTHOR INFORMATION

Corresponding Author
Samira Siahrostami: samira.siahrostami@ucalgary.ca,
Ambarish Kulkarni: arkulkarni@ucdavis.edu

Author Contributions
TS and AP contributed equally to this work.

Funding Sources
TS and AK are partially supported by startup funds provided by University of California, Davis. AP, AK, SS and JKN acknowledge partial support from the Toyota Research Institute. AP acknowledges partial support from the National Science Foundation Graduate Research Fellowship Program.

ACKNOWLEDGMENT
We are grateful to the computational resources provided by Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562 and National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

REFERENCES
