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Abstract 20 

Production of high-quality offspring from farm-raised broodstock is fundamental to 21 

establish a closed-cycle hatchery production of European eel, Anguilla anguilla. While 22 

development of larval culture technologies progresses, the present study focused on effects of 23 

essential fatty acid (EFA) composition of eggs on offspring quality. Three reproduction 24 

experiments were conducted, two of which included farm-raised broodstock fed different 25 

diets for different periods of time and one wild-caught broodstock, using size-matched 26 

females. The formulated diets varied in levels and ratios of three essential fatty acids, 27 

arachidonic acid (20:4n-6; ARA), eicosapentaenoic acid (20:5n-3; EPA), and 28 

docosahexaenoic acid (22:6n-3; DHA), while feeding periods lasted either 55 or 79 weeks. 29 

Dietary influences on egg and offspring fatty acid composition and offspring quality were 30 

evaluated and results of the most successful dietary regime was compared to those of wild-31 

caught females. Results showed that elevated dietary levels of ARA were reflected in 32 

unfertilized eggs, with high ARA diets significantly increasing the amounts of floating eggs, 33 

total lipid content in eggs, fertilization success, and embryonic survival. Further EFA 34 

enhancements and prolonged feeding resulted in higher ARA and lower EPA levels in the 35 

unfertilized eggs, while DHA levels did not change. Females with prolonged feeding 36 

produced offspring of higher quality, i.e. higher egg dry weight and larval survival. Overall, 37 

offspring of farm-raised females showed higher EFA levels than those of wild-caught 38 

females. However, while fertilization success was comparable, offspring of farm-raised 39 

females had significantly lower embryonic survival and hatch success as well as higher 40 

proportions of cleavage abnormalities. These results identified embryonic development as the 41 

main bottleneck in offspring production from farm-raised females. Once hatched, larval 42 

survival and quality was comparable between farm-raised and wild-caught females. Notably, 43 
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enhancement of essential fatty acids in female broodstock diets in combination with a long 44 

feeding period improved the production of high quality offspring. 45 

Keywords 46 

Anguilla anguilla; broodstock nutrition; assisted reproduction; embryogenesis; cell cleavage  47 

 48 

 49 

1 Introduction 50 

Aquaculture has experienced remarkable development over the past decades, where it 51 

has become the fastest growing food production sector, with ~600 species being cultured 52 

worldwide (FAO, 2018). This is largely owed to year-round production and breeding 53 

programs enabled by closing the life cycle of targeted species in captivity. In Europe, the 54 

impact of aquaculture is increasing, but still it provides only 18% of total seafood 55 

consumption, compared to 46% worldwide (FAO, 2018). Here, European aquaculture 56 

production has substantial potential to expand through species diversification and 57 

domestication, while at the same time reducing pressure on wild populations (COM, 2013; 58 

STECF, 2014). 59 

European eel, Anguilla anguilla, a high-value species for aquaculture, has lost markets, 60 

because it relies on wild-caught glass eels. This, in combination with a general decline in the 61 

stock (ICES, 2017; Jacoby and Gollock, 2014), calls for development of breeding and 62 

hatchery technology for sustainable aquaculture, as well as conservation measures. However, 63 

eels do not reproduce naturally in captivity due to dopaminergic inhibition at the brain-64 

pituitary level impeding sexual maturation (Dufour et al., 2003; Vidal et al., 2004). 65 

Nonetheless, gametogenesis and offspring production for the European eel has been realized 66 

through hormonal therapy, including extensive research on assisted reproductive 67 
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technologies, breeding protocols, and culturing techniques (Mordenti et al., 2014; Palstra et 68 

al., 2005; Pedersen, 2004, 2003; Tomkiewicz, 2012; Tomkiewicz et al., 2019). This has led to 69 

a stable production of viable offspring entering first-feeding experiments (Butts et al., 2016, 70 

2014; Politis et al., 2018). Even so, variability in egg quality affects viable offspring 71 

production, in particular for farm-raised broodstock. For future aquaculture of European eel, 72 

hatchery production of high-quality eggs and larvae will be essential for closing the life cycle 73 

in captivity. 74 

In fish, egg quality can be defined as the potential for an egg to be fertilized and 75 

produce viable offspring (Bobe and Labbé, 2010). Here, high mortality during the embryonic 76 

and yolk sac stage tends to impede hatchery production (Kjørsvik et al., 2003; Lazo et al., 77 

2011; Lubzens et al., 2010). Important factors influencing egg quality include (among others) 78 

female size (Chambers and Leggett, 1996; Heinimaa and Heinimaa, 2004), age (Berkeley et 79 

al., 2004), nutrition (Izquierdo et al., 2001), genetics (Stoddard et al., 2005), origin (Lanes et 80 

al., 2012; Salze et al., 2005), environmental conditions (e.g. temperature, photoperiod, 81 

salinity) (Aegerter and Jalabert, 2004; Bonnet et al., 2007; Bromage et al., 2001), assisted 82 

reproduction techniques (Agulleiro et al., 2006; Mylonas et al., 2010), and stress (Campbell 83 

et al., 1992). Of these, nutrition plays a key role, as nutrients required for offspring 84 

development are incorporated into the egg prior to or during vitellogenesis (Izquierdo et al., 85 

2001; Migaud et al., 2018). Embryonic demands for fatty acids and amino acids must be met. 86 

In particular, long-chain polyunsaturated fatty acids (LC-PUFAs), such as arachidonic acid 87 

(ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 88 

22:6n-3) are essential for structure and composition of cell membranes, organogenesis (i.e. 89 

brain, retina, muscle), and/or synthesis of eicosanoid hormones (Glencross, 2009; Sargent et 90 

al., 1995; Tocher, 2010). LC-PUFAs are characterized by ≥ 20 carbon atoms and ≥ 3 bonds. 91 

Marine teleosts have limited ability to synthesize LC-PUFAs (Sargent et al., 1993) and intake 92 
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of essential fatty acids (EFA) occurs mainly through the diet. This includes ARA, EPA, and 93 

DHA, important n-3 and n-6 fatty acids, as well as the overall ratio of n-6 to n-3 (Izquierdo et 94 

al., 2001; Sargent et al., 1993; Tocher, 2010) as this also may impact early life history traits 95 

(Henrotte et al., 2010; Lund and Steenfeldt, 2011; Mazorra et al., 2003; Norberg et al., 2017).  96 

Studies on dietary impacts on eel broodstock reproductive success are limited to 97 

Japanese eel female broodstock (Furuita et al., 2007, 2006), European eel female broodstock 98 

(Støttrup et al., 2016, 2013), and European eel male broodstock (Baeza et al., 2015a, 2015b; 99 

Butts et al., 2019, 2015). The first attempt to develop European eel female broodstock diets 100 

was made using the fatty acid composition of wild-caught silver eels as a baseline for 101 

enhancement of EFA levels in the diet of farm-raised eels (Støttrup et al., 2013). The study 102 

showed that EFA composition in muscle and ovarian tissue could be altered, but that it 103 

required a long feeding period leading to gradual changes over 44 weeks (Støttrup et al., 104 

2013). Furthermore, increased ARA content in the broodstock diet elevated ARA levels in 105 

the eggs and enhanced the relative frequency of females producing embryos and larvae 106 

(Støttrup et al., 2016). Particular to captive reproduction of eels, the integration of dietary 107 

components needs to take place prior to induction of sexual maturation and ovarian 108 

development. Here, feeding is stopped at the onset of hormonal treatments, mimicking nature 109 

where European eels cease feeding concomitant with the onset of silvering and their long 110 

spawning migration to reproduce in the Sargasso Sea (Tesch, 2003). Thus, accumulation of 111 

lipids in the form of oil droplets in oocytes (lipidation) (Hiramatsu et al., 2015) is initiated 112 

during the immature stage, while follicular development is completed, drawing on resources 113 

accumulated in muscle, viscera, etc. Therefore, provision of suitable feeds for establishment 114 

of high performance farm-raised broodstock must take place during their on-growing period 115 

in order to ensure adequate egg quality and offspring viability (Støttrup et al., 2016, 2013).  116 
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While striving to close the life cycle of aquaculture species in captivity, egg quality and 117 

offspring viability of wild-caught broodstock frequently exceed that of farmed (Hauville et 118 

al., 2015; Lanes et al., 2012; Lund et al., 2008; Pickova et al., 1999; Salze et al., 2005). In 119 

marine species, studies comparing biochemical composition of eggs from broodstock of 120 

different origin have shown distinct differences in EFA (Lanes et al., 2012; Zupa et al., 121 

2017). This also appears to apply to the catadromous eel, where tissue levels of ARA were 122 

higher in wild-caught female European eel in the silvering stage than in farm-raised female 123 

eels reared on a commercial diet, while farm-raised eels showed higher levels of EPA and 124 

DHA than their wild-caught counterparts (Støttrup et al., 2013). Here, wild-caught female 125 

eels were used as baseline, considering that natural reproductive and early life history stages 126 

remain unknown for this species.  127 

Taking advantage of the progress in reproductive success and offspring production of 128 

European eel, this study aimed at i) assessing: the impact of maternal dietary levels of ARA, 129 

EPA, and DHA and dietary regimes on reproductive success, egg and offspring quality and ii) 130 

comparing EFA, reproductive success and offspring quality of farm-raised females on the 131 

best performing diet with wild-caught females, using the latter as benchmark. Here, total lipid 132 

and fatty acid composition in eggs and larvae were assessed and egg production, dry weight, 133 

fertilization success, embryonic survival, cleavage abnormalities, hatch success, larval 134 

survival, and larval morphology were used as offspring quality indicators.   135 

 136 

2 Materials and methods 137 

2.1 Ethics statements 138 

All fish were handled in accordance with the European Union regulations concerning 139 

the protection of experimental animals (Dir 2010/63/EU). Eel experimental protocols were 140 
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approved by the Animal Experiments Inspectorate (AEI), Danish Ministry of Food, 141 

Agriculture and Fisheries (permit number: 2015-15-0201-00696). Individual fish were 142 

anesthetized before tagging, biopsy, and stripping of gametes, and euthanized after stripping 143 

(females) or at the end of the experiment (males) using an aqueous solution of ethyl p-144 

aminobenzoate (benzocaine, 20 mg L-1, Sigma Aldrich, Germany). Larvae were anesthetized 145 

and euthanized using tricaine methanesulfonate (MS-222, Sigma Aldrich, Germany) at a 146 

concentration of 7.5 and 15 mg L-1, respectively.  147 

2.2 Fish and experimental design  148 

 Experimental overview 149 

Three assisted reproduction experiments were conducted using standardized 150 

experimental conditions and selection of size-matched female broodstock. Two reproduction 151 

experiments used farm-raised eels fed the three different diets characterized by different EFA 152 

levels (Table 1). The first experiment used females fed over a period of 55 weeks (Feeding 153 

Trial 1) and the other females fed for 79 weeks with further enhanced diets during the latter 154 

period (Feeding Trial 2). The third reproduction experiment included wild-caught female 155 

silver eels for comparison among farm-raised and wild-caught females, i.e. broodstock origin. 156 

Male broodstock eels in the reproduction experiments were farm-raised eels fed a standard 157 

on-growing diet. 158 

 Diets 159 

Broodstock diets were formulated with the purpose to generate three dietary regimes by 160 

modifying levels and ratios of ARA, EPA, and DHA in eggs and yolk sac larvae. Diet 1 161 

aimed at the highest levels of ARA and DHA and intermediate EPA levels. Diet 2 comprised 162 

the lowest ARA level, but the highest EPA and intermediate DHA levels. Therefore, the 163 

aimed EPA:ARA ratio was the highest in this diet, while the DHA:EPA ratio was the lowest. 164 
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Diet 3 had an intermediate ARA level, while having the lowest EPA and DHA levels. 165 

Ingredients and proximate composition are provided in Table 1. The feed was produced as 2 166 

mm extruded pellets at BioMar A/S (Brande, Denmark) in two productions (Table 1). While 167 

aiming at similar levels and composition of ARA, EPA, and DHA, capelin ingredients were 168 

replaced in the second production due to unavailability of sources. Thus, fish meal NA LT 169 

91.1-91.5 and fish oil NA STD replaced capelin fish meal NA LT (71%) and capelin fish oil 170 

NA STD. In order to balance differences in LC-PUFA, DHA Liquid substituted EPAX. From 171 

each production, one feed sample per diet was taken at the onset of feeding, and subsequently 172 

analyzed for fatty acid composition.  173 

 174 

Table 1. Ingredients and proximate composition of Diet 1, Diet 2, and Diet 3 that was 175 

fed to European eel, Anguilla anguilla broodstock.   176 

Ingredients (%) Diet 11 Diet 12 Diet 21 Diet 22 Diet 31 Diet 32 

Fish Meal NA LT (71%) Capelin 53.4 - 55.5 - 52.5 - 

Fish Meal NA LT 91.1-91.5 - 52.8 - 52.2 - 52.3 

Fish Peptones, NA Concentrate, CPSP 3.0 3.0 3.0 3.0 3.0 3.0 

Wheat, Gluten (min. 80%) 9.0 9.0 6.0 9.0 6.0 9.0 

Wheat, Milling quality 17.6 19.0 17.8 18.0 20.6 21.0 

Fish Oil, NA STD, Capelin 9.7 - 11.0 - 8.2 - 

Fish Oil, NA STD - 5.3 - 9.2 - 6.8 

Rapeseed Oil, Crude - 2.7 - 2.0 3.2 3.2 

Vevodar (35%), DSM 2.1 2.2 1.2 1.3 1.6 1.6 

Premix 3053 0.7 0.7 0.7 0.7 0.7 0.7 

Mono-calcium Phosphate (MCP) 0.7 1.3 1.6 1.3 1.6 0.3 

DL-Methionine (99%) 0.1 0.3 0.1 0.3 0.2 - 

Water change 0.2 -1.6 0.1 -1.4 -0.8 -2.8 

Lecithin, liquid 0.5 0.5 0.5 0.5 0.5 0.5 

EPAX 1050G 2.9 - 2.4 - 2.6 - 

DHA Liquid 25/5 - 4.5 - 3.5 - 4.0 

Proximate composition (%)       

Moisture  6.5 6.5 6.5 6.5 6.0 5.5 

Protein-crude  48.0 48.2 47.0 47.7 47.0 47.8 

Fat-crude  23.0 22.1 23.0 23.3 23.0 23.0 

Diets labels refer to 1: 1st production of feed, 2: 2nd production of feed 177 

 178 
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 Feeding trials and broodstock 179 

Female eels for the two feeding trials were reared at Stensgård Eel Farm A/S, Denmark. 180 

Stocked as wild-caught glass eels, they were reared in freshwater recirculation aquaculture 181 

systems (RAS) on a commercial eel diet (DAN-EX 2848, BioMar A/S) for approximately 182 

three years at a temperature of ~23°C. At the onset of the feeding trial, three times ~400 183 

female eels of an average size (length: 63.8 ± 2.4 cm; weight: 520.8 ± 79.7 g) were 184 

transferred into three 2800 L tanks, and provided Diet 11, 21 or 31, respectively. The first 185 

feeding trial (Trial 1) was completed after 55 weeks, where a proportion of females reached a 186 

size range of 60-85 cm length and weight of 600-1200 g (Diet 11, n = 26; Diet 21, n = 27; Diet 187 

31, n = 22). The remaining females in the tanks received prolonged dietary feeding for 188 

another 24 weeks, introducing the second production of feeds, Diet 12, 22, or 32. After 79 189 

weeks, the second feeding trial was completed (Trial 2) and females that had reached the 190 

same size range were selected (Diet 11+2, n = 15; Diet 21+2, n = 18; Diet 31+2, n = 20).  191 

Wild-caught broodstock included migrating female silver eels (n = 27) caught at Lower 192 

Bann, Toomebridge, a donation by the Lough Neagh Fishermen's Co-operative Society, 193 

Ireland and selected matching the same size criteria as the farm-raised females. All three 194 

reproduction experiments involved farm-raised male broodstock obtained from Stensgård Eel 195 

Farm, where they were reared approximately three years on DAN-EX 2848, BioMar A/S at a 196 

temperature of ~23°C (1st batch, n = 62, weight = 108.7 ± 12.9 g; 2nd batch, n = 63, weight = 197 

124.9 ± 17.4 g). 198 

 Reproduction experiments 199 

For the reproduction experiments, female broodstock were transported in an aerated 200 

freshwater tank to the EEL-HATCH experimental facility of the Technical University of 201 

Denmark, Hirtshals, Denmark. For the three reproduction experiments, farm-raised females 202 

from feeding Trial 1, farm-raised females from feeding Trial 2, and wild-caught females, 203 



10 

 

were conducted independently following the same assisted reproduction and rearing 204 

protocols. Within each experiment, female eels were distributed into two RAS systems each 205 

with three 1080 L tanks at a density of 10-15 females per tank; one tank per system was 206 

allotted to each dietary treatment per system. Male eels were held in a similar RAS with four 207 

tanks (450 L) at a density of ~15 males per tank. Fish were not fed after the transfer. For 208 

acclimatization, salinity was gradually increased from 10 to 36 PSU over 14 days using 209 

Tropic Marin Sea Salt (Dr. Biener GmbH, Wartenberg, Germany). Subsequently, each 210 

individual was anaesthetized and tagged with a passive integrated transponder (PIT tag) in 211 

the dorsal muscle, and initial length and weight were recorded. At the facility, broodstock 212 

were reared at ~20°C and ~36 PSU under 12 h light / 12 h dark photoperiod regime with a 30 213 

min twilight in the morning and evening to resemble the Sargasso Sea. Vitellogenesis was 214 

induced in female broodstock by weekly intramuscular injections of salmon pituitary extract 215 

(SPE) at 18.75 mg kg-1 initial body weight (BW) for 11-21 weeks until weight-increase, 216 

indicating initiation of oocyte hydration (da Silva et al., 2018b; Tomkiewicz, 2012). 217 

Thereafter, follicular maturation and ovulation was induced, using ovarian biopsies obtained 218 

from females under anesthesia to time the injection of 17α,20ß-dihydroxy-4-pregnen-3-one 219 

(DHP) at 2 mg kg-1 body weight (da Silva et al., 2018b; Ohta et al., 1996; Palstra et al., 220 

2005). Male eels received weekly injections of human chorionic gonadotropin (Sigma-221 

Aldrich, Missouri, USA) at 150 IU/fish (Asturiano et al., 2006; Tomkiewicz, 2012). Prior to 222 

spawning, milt from 3-5 males was collected, sperm concentration standardized, and kept in 223 

an immobilizing medium (Peñaranda et al., 2010; Sørensen et al., 2013).  224 

Eggs were strip-spawned and fertilized using a standardized sperm to egg ratio (Butts et 225 

al., 2014; Sørensen et al., 2016a). After five min, eggs were transferred to 20 L buckets filled 226 

with ~15 L of reverse osmosis water salted to ~36 PSU with Red Sea Salt (Red Sea 227 

International, Eilat, Israel) at ~19°C. After 60 min, the floating layer of eggs was further 228 
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transferred to a second bucket (as above) and kept for 60 min. For each female, the amount of 229 

stripped eggs (% of initial weight) was documented. Subsequently, 30 min after fertilization, 230 

the amount of floating eggs (%) was determined in a 25 mL volumetric column. Samples of 231 

unfertilized eggs (4 × ~100 eggs) were obtained immediately after stripping and frozen at -232 

40°C for lipid and fatty acid analyses. For determination of dry weight of unfertilized eggs (3 233 

x ~200 eggs), samples were kept in an oven at 60°C for 24 h and weighed. 234 

 Fertilization success, embryonic development, and hatch success  235 

Eggs were obtained from the floating layer of the separation bucket and incubated in 236 

200 mL sterile tissue culture flasks filled with filtered UV-treated seawater (FUV seawater; 237 

filter size: 10, 5, 1 µm) and supplemented with rifampicin and ampicillin (each 50 mg L-1, 238 

Sigma-Aldrich, Missouri, USA) at 18°C (Politis et al., 2017) and 36 PSU. Here, 3 flasks were 239 

stocked with ~2500 eggs to follow embryonic development and an additional 3 flasks were 240 

stocked with ~600 eggs to analyze hatch success. For quantification of fertilization success [4 241 

hours post fertilization (hpf)] and embryonic development digital images were taken at 4, 8, 242 

16, 24, 32, 40, and 48 hpf using a Nikon Eclipse 55i microscope equipped with a Nikon 243 

digital sight DS-Fi1 Camera. The latter sampling point represents the time shortly before 244 

onset of hatching as peak hatch occurs at ~56 hpf at 18°C. Eggs were categorized as fertilized 245 

when >4 blastomeres could be observed and fertilization success was calculated as the 246 

percentage of fertilized eggs divided by the total number of eggs. Moreover, morphological 247 

measurements were conducted at 4 hpf, where total egg area, yolk area, and oil droplet area 248 

were measured using NIS Elements image software (Nikon Corporation, Tokyo, Japan). 249 

Cleavage abnormalities were determined by counting the number of eggs with regular and 250 

irregular cell cleavages. Cleavages were considered abnormal, when cell sizes were uneven 251 

or cell adhesion was lacking. Embryonic survival was measured at each sampling point, 252 

where the number of dead and alive eggs were counted and expressed as a percentage. Hatch 253 
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success was expressed as the number of hatched larvae divided by the total number of 254 

stocked eggs.  255 

 Larval ontogeny 256 

To monitor larval survival, 20 larvae were kept in triplicate beakers with 90 mL of 257 

FUV seawater supplemented with rifampicin and ampicillin (each 50 mg L-1, Sigma-Aldrich, 258 

Missouri, USA). Beakers were kept in a temperature incubator at 18°C and 36 PSU (Politis et 259 

al., 2017). Every other day, each beaker was checked for mortality and dead larvae were 260 

counted and removed. Additionally, larvae were kept in sterile tissue culture flasks filled with 261 

FUV seawater and supplemented with the above antibiotic cocktail. At 0 and 5 dph, digital 262 

images of 3 × 15 larvae were captured with a Nikon Eclipse 55i microscope equipped with a 263 

Nikon Digital Sight DS-Fi1 camera for the following morphological measurements: 1) 264 

Standard length (LS) measured from the lower jaw (excluding protruding teeth) to the tip of 265 

the notochord; 2) total body area; and 3) oil droplet area. For determination of dry weight of 266 

larvae at 0 and 5 dph (~50 larvae each), samples were kept in the oven at 60°C for 24 h and 267 

weighed. Furthermore, 2 × 50 larvae from each female were sampled at 0 and 5 dph and 268 

stored at -80°C for fatty acid analyses. 269 

2.3 Lipid extraction and fatty acid composition 270 

Total lipids and lipids for fatty acid composition were extracted from feed samples (~5 271 

g), unfertilized eggs, and larvae at 0 and 5 dph following Folch et al. (1957). In brief, 0.1 mL 272 

of unfertilized eggs or ~50 larvae at 0 and 5 dph were diluted in chloroform/methanol (2:1 273 

v/v) and disintegrated with help of sonication in an ice-water bath. Samples were kept at -274 

20°C for 24 h to extract the lipids. Lipids were extracted into pre-weighed vials and 275 

evaporated by applying nitrogen. Finally, extracts were weighed on a Mettler Toledo MT5 276 

scale (Mettler Toledo A/S, Glostrup, Denmark; d = 0.1 µg). The amount of total lipid was 277 
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calculated as the percentage of dry weight (mg ind-1). For fatty acid composition, a 1 mL 278 

mixture of chloroform/methanol (2:1 v/v) was added to the samples with 40 µL internal 279 

standard of methyl tricosanoate (C23:0) in chloroform. Samples were placed in an ice-water 280 

bath, sonicated in a 2510 Branson ultrasound cleaner for 25-30 min, and subsequently kept 281 

for 24 h at -20°C to extract lipids. The sample was then transferred to 1.5 mL autosampler 282 

vials with Butyl/PFTE septa screw caps and all liquid evaporated at 60°C by applying a flow 283 

of nitrogen from a needle into the mouth of the vial for ~20 min with a 9 port Reacti-Vap 284 

Evaporator in a Pierce Reacti-Therm heating module. Thereafter, 1 mL of a toluene, 285 

methanol, and acetyl chloride solution (40: 50: 10) was added to the sample and heated for 2 286 

h at 95°C. The vials then received 0.5 mL of aqueous NaHCO3. After shaking the sample, the 287 

layer containing the fatty acid methyl esters was removed. The extraction was repeated twice 288 

by the addition of 0.5 mL heptane, and the combined sample was added to 2 mL screw top 289 

vials with Silicone/PFTE septa and evaporated at 60°C with additional nitrogen flow. Finally, 290 

the fatty acid methyl esters were re-suspended in 0.5 mL of chloroform and analyzed by GC-291 

FID consisting of a HP 7890A gas chromatograph (Hewlett-Packard, Palo Aalto, CA, USA) 292 

equipped with an Omegawax 320 (30 m 9 3.2 mm 9 0.25 lm) column from Supelco 293 

(Bellefonte, PA, USA) using AOCS method Ce 1b-89 (1998). The oven temperature was 294 

15°C min-1 to 160°C, hold 2 min, 3°C min-1 to 200°C, hold 1 min, and 3°C min-1 to 220°C, 295 

hold 17 min. A split ratio of 1:50 was used. Fatty acids were subsequently identified by 296 

comparison of peaks on a chromatogram with retention times of a mixture of known 297 

standards of all fatty acids. Fatty acid content was quantified by calculating the peak area 298 

relative to the total area and was expressed as the % fatty acid to the total content of fatty 299 

acids.  300 
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2.4 Statistical analyses 301 

Data from the three reproduction experiments were analyzed through a series of 302 

ANOVA models (Keppel, 1991) using SAS Statistical Software (version 9.4; SAS Institute 303 

Inc., Cary, North Carolina). Prior to analysis, residuals were tested for normality (Shapiro–304 

Wilk test) and homogeneity of variances (plot of residuals vs. fitted values). Data deviating 305 

from normality or homoscedasticity were log10 or arcsine square-root-transformed. Alpha 306 

was set at 0.05. Tukey’s analysis was used to compare least-squares means between 307 

treatments. Akaike’s (AIC) and Bayesian (BIC) information criteria were used to assess 308 

which covariance structure was fitting the data most appropriately (Littell et al., 1996).  309 

Female ID (individual females and their offspring) was considered random in all 310 

models. No significant interactions were detected for any of the tested dependent variables 311 

and all models were re-run with the interaction effects removed, analyzing main effects 312 

separately (Yossa and Verdegem, 2015). Hence, we analyzed the main effects dietary regime 313 

(Diet 1, Diet 2, Diet 3), feeding trial (Trial 1, Trial 2), or broodstock origin (Diet 1 Trial 1, 314 

Diet 1 Trial 2, wild-caught) on offspring quality in terms of different dependent variables 315 

(Table 2). Model 1 tested the effect of dietary regime (Diet 1, Diet 2, Diet 3) and feeding trial 316 

(Trial 1, Trial 2) on parameters for reproductive output and egg quality, while model 2 tested 317 

the effect of broodstock origin (best performing diet of Trial 1 and Trial 2, and wild-caught 318 

fish; Table 2) on the same dependent variables. If a significant effect was detected for female 319 

initial length or weight, a linear regression function was used to test the relationship between 320 

length or weight and fertilization success as well as hatch success. Model 3 tested the effects 321 

of dietary regime and feeding trial on lipid content and fatty acid composition of unfertilized 322 

eggs, while Model 4 tested the effect of broodstock origin on these traits (Table 2).  323 

Furthermore, a series of one-way ANOVA models was used to analyze the fatty acid 324 

data in Table A.3 and A.4 for the unfertilized eggs, and larvae at 0 and 5 dph. Model 5 tested 325 
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the effect of dietary regime and feeding trial on embryonic survival and Model 7 tested 326 

parameters characterizing embryonic development. The effect of broodstock origin on the 327 

same traits was tested in Model 6 and 8 (Table 2). Moreover, a linear regression function was 328 

used to analyze the relationship between cleavage abnormalities at 4 hpf and embryonic 329 

survival at 48 hpf. Due to low numbers of hatched larvae, insufficient larval data were 330 

obtained for Diet 2 and 3. Therefore, only the effect of broodstock origin on larval survival 331 

and morphology was tested in Models 9 and 10, respectively (Table 2).  332 
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Table 2. Statistical models and tested effects of dietary regime (Diet 1, Diet 2, Diet 3), feeding trial (Trial 1, Trial 2) and broodstock 333 

origin (Diet 1 Trial 1, Diet 1 Trial 2, Wild-caught) on egg quality and offspring performance in European eel, Anguilla anguilla 334 

Model  Traits Dependent variable(s) Statistical model Main effect 1 (Levels) 
Main effect 2 
(Levels) 

Main effect 3 
(Levels) 

1 
Reproductive 
output and egg 
production 

Initial length and weight of females, 
amount of stripped eggs, amount of 
floating eggs, dry weight of unfertilized 
eggs, fertilization success  

Series of two-way 
ANOVAs 

Dietary regime (Diet 1, 
Diet 2, Diet 3) 

Feeding trial 
(Trial 1, Trial 2)  

2 
Reproductive 
output and egg 
production 

Initial length and weight of females, 
amount of stripped eggs, amount of 
floating eggs, dry weight of unfertilized 
eggs, fertilization success  

Series of one-way 
ANOVAs 

Origin (Diet 1 Trial 1, 
Diet 1 Trial 2, Wild-
caught) 

  

3 Lipids and EFA Total lipid, ARA, EPA, DHA 
Series of two-way 
ANOVAs 

Dietary regime (Diet 1, 
Diet 2, Diet 3) 

Feeding trial 
(Trial 1, Trial 2)  

4 Lipids and EFA Total lipid, ARA, EPA, DHA 
Series of repeated 
measures mixed-effect 
model ANOVAs 

Origin (Diet 1 Trial 1, 
Diet 1 Trial 2, Wild-
caught) 

Age (unfertilized 
egg, 0, or 5 
dph), repeated 
factor 

 

5 
Embryonic 
development 

Embryonic survival  
Three-way repeated 
measures mixed model 
ANOVA 

Dietary regime (Diet 1, 
Diet 2, Diet 3) 

Feeding trial 
(Trial 1, Trial 2) 

Age (4 to 48 
hpf), repeated 
factor  

6 
Embryonic 
development 

Embryonic survival 
Two-way repeated 
measures mixed model 
ANOVA 

Origin (Diet 1 Trial 1, 
Diet 1 Trial 2, Wild-
caught) 

Age (4 to 48 
hpf), repeated 
factor 

 

7 
Embryonic 
development 

Egg area, yolk area, oil droplet size, 
cleavage abnormalities at 4 hpf, hatch 
success 

Series of two-way 
ANOVAs 

Dietary regime (Diet 1, 
Diet 2, Diet 3) 

Feeding trial 
(Trial 1, Trial 2)  

8 
Embryonic 
development 

Egg area, yolk area, oil droplet size, 
cleavage abnormalities at 4 hpf, hatch 
success 

Series of one-way 
ANOVAs 

Origin (Diet 1 Trial 1, 
Diet 1 Trial 2, Wild-
caught) 

  

9 
Larval 
development 

Larval survival  
Two-way repeated 
measures mixed model 
ANOVA  

Origin (Diet 1 Trial 1, 
Diet 1 Trial 2, Wild-
caught) 

Age (2 to 14 
dph), repeated 
factor 

 

10 Larval morphology  
Standard length, body area, oil droplet 
area 

Series of two-way 
repeated measures 
mixed model ANOVAs  

Origin (Diet 1 Trial 1, 
Diet 1 Trial 2, Wild-
caught) 

Age (0, 5 dph),  
repeated factor 

  

EFA: Essential fatty acids; ARA: arachidonic acid (20:4n-6); EPA: eicosapentaenoic acid (20:5n-3); DHA: docosahexaenoic acid (22:6n-3), hpf: hours post 335 

fertilization; dph: days post hatch  336 
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In total, samples of 46 stripped females were obtained and used in the analyses (Diet 1 337 

Trial 1, n = 6; Diet 1 Trial 2, n = 8; Diet 2 Trial 1, n = 3; Diet 2 Trial 2, n = 6; Diet 3 Trial 1, 338 

n = 4; Diet 3 Trial 2, n = 6; wild-caught, n = 13). Offspring were monitored throughout 339 

ontogeny and survival recorded until 14 days post hatch (dph) or 100% mortality. A detailed 340 

description of sample sizes per treatment for each analyses is given in Table A.1. 341 

 342 

3 Results 343 

3.1 Diets and broodstock  344 

Levels of the EFA are summarized in Table 3 for both productions of the diets. In both 345 

productions, Diet 1 contained the highest levels of ARA and DHA, while having intermediate 346 

EPA levels. Diet 2 had the lowest levels of ARA, the highest EPA and intermediate DHA 347 

levels. Diet 3 contained intermediate levels of ARA, while having the lowest EPA and DHA 348 

levels. Levels of ARA, EPA (except Diet 1), and DHA in the second production were higher 349 

than in the first one. The sum of all monounsaturated fatty acids (MUFAs) was also lower in 350 

the second production, while the sum of all PUFAs was higher. Furthermore, the sums of n-3 351 

and in particular n-6 fatty acids were higher in the second production of feed among other 352 

due to higher levels of 18:2 (n-6). Levels of 18:1 (n-9) were also higher, while 20:1 (n-9, n-353 

11) and 22:1 (n-11) levels were lower in the second feed production. The complete fatty acid 354 

composition for both productions of the three diets is shown in Table A.2. 355 

 356 

Table 3. Essential fatty acid composition (% of total fatty acids) of total lipids extracted 357 

from production 1 and 2 of the three experimental diets that were fed to European eel, 358 

Anguilla anguilla broodstock. 359 

Diet 11 Diet 12 Diet 21 Diet 22 Diet 31 Diet 32 

Fatty acid             

ARA 3.91±0.02 4.41±0.01 2.39±0.03 2.72±0.08 3.06±0.00 3.18±0.01 

EPA 6.19±0.01 6.11±0.03 6.54±0.09 7.06±0.01 5.60±0.01 6.35±0.03 

DHA 9.35±0.02 10.49±0.05 9.08±0.09 10.43±0.03 8.51±0.04 10.13±0.03 

EPA:ARA 1.58±0.00 1.38±0.00 2.74±0.00 2.60±0.07 1.83±0.00 2.00±0.01 
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DHA:EPA 1.51±0.01 1.72±0.00 1.39±0.01 1.48±0.00 1.52±0.00 1.60±0.00 

SUM MUFA 46.28±0.46 32.72±0.02 49.05±0.43 33.92±0.17 48.75±0.16 32.86±0.14 

SUM PUFA 30.34±0.18 40.19±0.01 27.93±0.12 37.39±0.04 30.64±0.12 39.77±0.16 

SUM n-3 19.16±0.01 22.31±0.01 19.29±0.12 23.62±0.01 17.22±0.04 22.51±0.11 

SUM n-6 9.15±0.15 16.84±0.00 6.77±0.04 12.65±0.03 10.33±0.12 16.20±0.01 

n-6:n-3 0.48±0.01 0.75±0.00 0.35±0.00 0.54±0.00 0.60±0.01 0.72±0.00 

Values represent average ± SD; ARA: arachidonic acid (20:4n-6); EPA: eicosapentaenoic acid (20:5n-360 

3); DHA: docosahexaenoic acid (22:6n-3), MUFA: monounsaturated fatty acids; PUFA: 361 

polyunsaturated fatty acids; 1: 1st production of feed, 2: 2nd production of feed 362 

 363 

3.2 Female broodstock traits and egg production 364 

Initial length of stripped females did not differ between diets (p = 0.152) nor between 365 

Trial 1 and Trial 2 across the diets (p = 0.214; Table 4; Model 1). Overall, initial body weight 366 

of the selected females of the three different dietary regimes was also similar (p = 0.089), 367 

while females from Trial 1 weighed on average more than those from Trial 2 (p = 0.013). 368 

However, neither fertilization success (R2 = 0.004, p = 0.781) nor hatch success (R2 = 0.05, p 369 

= 0.275) were related to initial female weight. Thus, female body weight was not included as 370 

a potential factor influencing offspring quality in this study.  371 

 372 

  373 
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Table 4. Characteristics of European eel, Anguilla anguilla broodstock, eggs, and offspring from females fed on three different diets 374 

during Trial 1 and Trial 2, and Wild-caught females. 375 

 Diet 1 Trial 1 Diet 1 Trial 2 Diet 2 Trial 1 Diet 2 Trial 2 Diet 3 Trial 1 Diet 3 Trial 2 Wild-caught 

Initial length – all females (cm) 73.6±3.8 72.1±4.0 73.9±3.6 75.1±5.1 74.0±4.3 73.1±4.7 76.2±1.3 

Initial weight – all females (g) 944±145 816±137 905±126 887±177 934±148 847±139 950.6±41 

Initial length – stripped females (cm) 71.4±1.9 70.6±1.2 74.0±2.5 75.0±2.3 77.8±1.5 71.2±2.4 74.2±1.4 

Initial weight – stripped females (g) 869±48 790±26 919±47 895±59 1071±42 827±64 951±52 

Stripped eggs (% initial weight) 37.7±4.8 33.24±4.7 36.3±5.1 30.5±4.3 33.7±1.6 29.1±2.6 38.1±4.3 

Floating eggs (%) 88.3±8.8 70.6±13.2 35.7±19.5 67.3±17.1 52.5±18.3 32.8±13.9 74.1±11.4 

Fertilization success (%) 69.35±15.78 61.49±12.49 37.46±0.60 46.55±13.34 23.28±9.28 57.58±30.49 57.02±23.11 

Hatch success (%) 3.02±2.78 7.81±11.01 0.00±0.00 2.42±2.22 4.17±6.65 0.47±0.66 40.57±34.09 

Dry weight (mg egg-1) 0.053±0.003 0.062±0.002 0.056±0.000 0.062±0.002 0.059±0.001 0.062±0.003 0.059±0.003 

Dry weight (mg 0 dph larva-1) 0.058±0.004 0.062±0.001 n.d. n.d. n.d. n.d. 0.063±0.001 

Dry weight (mg 5 dph larva-1) 0.055±0.002 0.063±0.002 n.d. n.d. n.d. n.d. 0.063±0.001 

Values represent average ± SD; n.d. no data available376 
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The amount of stripped eggs (% initial weight) did neither differ between females from 377 

the different dietary regimes (p = 0.586) nor between females from Trial 1 and Trial 2 (p = 378 

0.161; Table 4; Model 1). In contrast, the amount of floating eggs was higher for females fed 379 

Diet 1 compared to those fed Diet 3 (p = 0.049) and intermediate for females reared on Diet 380 

2, with no difference between feeding trials (p = 0.672). Dry weight of unfertilized eggs was 381 

not related to dietary regime (p = 0.582), while eggs of females from Trial 2 had higher dry 382 

weight than those of Trial 1 (p = 0.006; Table 4). 383 

Initial weight of females of different broodstock origin did not differ (p = 0.057), while 384 

initial length differed with wild-caught eels being larger than Diet 1 Trial 2 (p = 0.024), 385 

whereas Diet 1 Trial 1 females showed intermediate values (Table 4, Model 2). There was no 386 

relationship between initial length and fertilization success (R2 = 0.02, p = 0.621), or hatch 387 

success (R2 = 0.02, p = 0.601). Thus, female length was not included as a potential factor 388 

influencing offspring quality. Likewise, the amount of stripped eggs (p = 0.696) and the 389 

amount of floating eggs (p = 0.593) did not differ among Diet 1 Trial 1, Diet 1 Trial 2, and 390 

wild-caught females (Table 4). On the contrary, dry weight of unfertilized eggs as well as 391 

larvae at 0 and 5 dph depended on broodstock origin, with the lowest values for offspring of 392 

Diet 1 Trial 1, while higher values were found for offspring of Diet 1 Trial 2 and those of 393 

wild-caught origin (p = 0.008). Within trials, dry weight did not change over time from 394 

unfertilized eggs to larvae (p = 0.377; Table 4).   395 

 396 

3.3 Total lipids of eggs and larvae 397 

Total lipid content (% dry weight; Fig. 1) of unfertilized eggs differed among dietary 398 

regimes (p = 0.033), such that eggs from females reared on Diet 1 had significantly higher 399 

lipid content than those from females reared on Diet 3, whereas Diet 2 eggs were 400 
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intermediate (Fig. 1A; Model 3). On the other hand, total lipid content was similar for 401 

females from Trial 1 and Trial 2 (p = 0.486; Fig. 1B). Moreover, total lipid in unfertilized 402 

eggs, larvae at 0 dph, and larvae at 5 dph did not differ among Diet 1 Trial 1, Diet 1 Trial 2, 403 

and wild-caught females (Fig. 1C; Model 4). Since no significant interaction was observed, 404 

the main effects for the groups were combined and are shown in the figure 1D, where larvae 405 

at 5 dph showed significantly lower lipid content than unfertilized eggs and newly hatched 406 

larvae (p < 0.0001; Fig. 1D). 407 

 408 

3.4 Fatty acid composition in eggs and larvae 409 

Unfertilized eggs reflected dietary regime (p < 0.0001), where eggs from females 410 

reared on Diet 1 had the highest relative ARA levels and those of Diet 2 the lowest (Fig. 2A; 411 

Model 3). Notably, eggs obtained from females of Trial 2 had higher ARA levels than those 412 

of Trial 1 (p = 0.007; Fig. 2B). Similarly, dietary regime (p = 0.012) affected EPA levels of 413 

unfertilized eggs, whereas eggs from females reared on Diet 2 showed higher EPA levels 414 

than eggs from those reared on Diet 3, while values for eggs obtained from females fed Diet 1 415 

were intermediate (Fig. 2C). In contrast, EPA levels of eggs from Trial 2 females were lower 416 

than those from Trial 1 females (p = 0.040; Fig. 2D). Moreover, DHA levels of unfertilized 417 

eggs differed between the dietary regimes (p = 0.006), such that those from females reared on 418 

Diet 2 had higher DHA content than those obtained from Diet 1 or Diet 3 (Fig. 2E), while 419 

eggs from Trial 1 and 2 females did not differ in this respect (p = 0.163; Fig. 2F). The relative 420 

fatty acid content of unfertilized eggs from the seven groups of females is given in Table A.3. 421 

The relative ARA levels of unfertilized eggs, larvae at 0 dph, and larvae at 5 dph also 422 

differed among Diet 1 Trial 1, Diet 1 Trial 2, and wild-caught broodstock. Since no 423 

significant interaction was observed, the main effects for the groups were combined. Thus, 424 

the highest ARA levels related to eggs from Trial 2 females reared on Diet 1, and the lowest 425 
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to wild-caught female eggs (p < 0.0001; Fig. 2G; Model 4), while ARA levels were similar in 426 

unfertilized eggs and larvae at 0 dph, but relatively higher in larvae at 5 dph (p < 0.0001; Fig. 427 

2H). Similarly, main effects for the groups were combined for EPA levels and were higher in 428 

eggs and offspring of females reared on Diet 1 compared to those of wild-caught (p < 0.0001; 429 

Fig. 2I), while no difference was found between unfertilized eggs, larvae at 0 dph, and larvae 430 

at 5 dph  (p = 0.287; Fig. 2J). Furthermore, no significant interaction was observed for DHA 431 

levels and the main effects for the groups were combined. Thus, eggs and larvae of farm-432 

raised females in Trial 1 fed Diet 1 showed highest DHA levels, while wild-caught females 433 

showed lowest (p < 0.0001; Fig. 2K). DHA levels were similar for unfertilized eggs and 434 

larvae at 0 dph (Diet 1 Trial 1, Diet 1 Trial 2, wild-caught broodstock), while the relative 435 

content was higher in larvae at 5 dph (p < 0.0001; Fig. 2L). The relative fatty acid 436 

composition of larvae at 0 and 5 dph from the three groups of females is given in Table A.4. 437 

Overall, eggs and larvae from farm-raised females fed Diet 1 showed higher amounts of 438 

PUFA, while certain saturated fatty acids and MUFA levels were lower than in those of wild-439 

caught females (Tables A.3 and A.4). For instance, the levels of palmitoleic acid, 16:1 (n-7), 440 

oleic acid, 18-1 (n-9), and cis-vaccenic acid, 18-1 (n-7) were consistently lower in eggs as 441 

well as larvae at 0 and 5 dph in offspring from farm-raised females fed Diet 1 compared to 442 

those of wild-caught females. During the first 5 dph, saturated fatty acid and MUFA levels of 443 

Diet 1 Trial 1 and 2, as well as wild-caught females decreased slightly, while PUFA levels 444 

increased in the percentage of total fatty acids. The sum of n-3 and n-6 fatty acids were 445 

higher in eggs and larvae obtained from farm-raised females fed Diet 1, showing a higher n-6 446 

to n-3 ratio compared to those of wild-caught. Comparing eggs of farm-raised females, eggs 447 

obtained from females fed Diet 2 had the lowest n-6 to n-3 ratio. The EPA:ARA ratio was 448 

lowest in Diet 1, in particular Diet 1 Trial 2, and highest in Diet 2. Throughout life stages, i.e. 449 
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unfertilized eggs, larvae at 0 and 5 dph, the EPA:ARA was similar between wild-caught and 450 

Diet 1 offspring. 451 

 452 

3.5 Fertilization success 453 

Dietary regime affected fertilization success (Model 1). In this case, fertilization 454 

success of eggs related to Diet 1 females was higher than for Diet 2 and 3 (p = 0.011; Fig 455 

3A), while there was no difference between Trial 1 and Trial 2 (p = 0.543; Fig. 3B). 456 

Moreover, the fertilization success of eggs from females fed Diet 1 in Trial 1 and 2 was 457 

similar to wild-caught broodstock (p = 0.483; Fig. 3C; Model 2).   458 

 459 

3.6 Embryonic development 460 

 Survival 461 

Similar to fertilization success, embryonic survival differed between the three dietary 462 

regimes, such that embryos obtained from females reared on Diet 1 showed the highest 463 

survival (p < 0.0001; Fig. 4A; Model 5), while no effect of feeding trial on embryonic 464 

survival was detected (p = 0.902; Fig. 4B). During embryonic development, the survival rate 465 

declined slightly from 4 to 8 hpf, followed by a steep decline from 8 to 16 hpf after which 466 

survival stabilized (p < 0.0001; Fig. 4C). Furthermore, embryonic survival varied 467 

considerably among offspring from individual females in particular for Diet 3 (Fig. 4D-F). 468 

Furthermore, embryonic survival was lower for Diet 1 females than for wild-caught 469 

females (p < 0.001; Fig. 4G; Model 6). As above, embryonic mortality was highest in the 470 

early stages and stabilized thereafter (p < 0.0001; Fig. 4H). The variability among offspring 471 

from individual females was high for embryonic survival, especially for the wild-caught 472 

broodstock (Fig. 4I-K). Notably, offspring from farm-raised broodstock fed Diet 1 showed 473 
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the previously observed decline in survival between 8 and 16 hpf. In contrast, wild-caught 474 

broodstock with >50% fertilization success at 4 hpf had consistently higher survival 475 

throughout development (Fig. 4K). 476 

 477 

 Morphology 478 

Morphological characteristics of embryos at 4 hpf did not differ among offspring 479 

derived from different dietary regimes in terms of egg area (Diet 1: 1.46 ± 0.08 mm2, Diet 2: 480 

1.54 ± 0.11 mm2, Diet 3: 1.09 ± 0.16 mm2; p = 0.08), yolk area (Diet 1: 0.67 ± 0.01 mm2, 481 

Diet 2: 0.66 ± 0.01 mm2, Diet 3: 0.65 ± 0.02 mm2; p = 0.814), and oil droplet area (Diet 1: 482 

0.098 ± 0.001 mm2, Diet 2: 0.1 ± 0.002 mm2, Diet 3: 0.105 ± 0.003 mm2; p = 0.139; Model 483 

7). Neither did these measures differ between feeding trials, i.e. egg area (Trial 1: 1.32 ± 0.10 484 

mm2, Trial 2: 1.41 ± 0.08 mm2; p = 0.479), yolk area (Trial 1: 0.65 ± 0.01 mm2, Trial 2: 0.67 485 

± 0.01 mm2; p = 0.333), and oil droplet area (Trial 1: 0.099 ± 0.002 mm2, Trial 2: 0.103 ± 486 

0.002 mm2; p = 0.168). Data at 48 hpf were excluded from these analyses as the number of 487 

embryos available was insufficient.  488 

Embryonic morphology at 4 hpf also did not differ among broodstock origin in terms of 489 

egg area (Diet 1 Trial 1: 1.40 ± 0.14 mm2, Diet 1 Trial 2: 1.53 ± 0.14 mm2, wild-caught: 1.74 490 

± 0.14 mm2, p = 0.271), yolk area (Diet 1 Trial 1: 0.65 ± 0.02 mm2, Diet 1 Trial 2: 0.68 ± 491 

0.02 mm2, wild-caught: 0.65 ± 0.02 mm2, p = 0.405), and oil droplet area (Diet 1 Trial 1: 492 

0.096 ± 0.002 mm2, Diet 1 Trial 2: 0.099 ± 0.002 mm2, wild-caught: 0.101 ± 0.002 mm2, p = 493 

0.144; Model 8). Also, egg area at 48 hpf was similar (Diet 1 Trial 1: 1.53 ± 0.16 mm2, Diet 1 494 

Trial 2: 1.69 ± 0.16 mm2, wild-caught: 1.81 ± 0.16, p = 0.446).  495 
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 Cleavage abnormalities 496 

Abnormal cleavage patterns of embryos, recorded at 4 hpf, included uneven cell sizes 497 

or lack of adhesion among cells, resulting in cells principally moving freely (Fig. 5A). These 498 

cleavage abnormalities occurred on average less frequently in embryos from females fed Diet 499 

1 than Diet 2 and 3, however, female variability was high and no significant effects of dietary 500 

regime (p = 0.059; Fig. 5B) nor feeding trial was found (p = 0.121; Fig. 5C; Model 7). 501 

Moreover, the proportion of embryos with cleavage abnormalities was higher for Diet 1 Trial 502 

1 females than for wild-caught broodstock (p = 0.013, Fig. 5D; Model 8), while Diet 1 Trial 2 503 

did not differ significantly. A highly significant relationship between abnormalities and 504 

survival at 48 hpf was found when pooling data from all females independent of origin (Fig. 505 

5E). No significant relationship was found for embryos from the farm-raised females fed Diet 506 

1 in Trial 1 individually (Fig. 5F), while cleavage abnormalities were related to embryonic 507 

survival for farm-raised females fed Diet 1 in Trial 2 (Fig. 5G) and wild-caught females (Fig. 508 

5H).  509 

 510 

3.7 Hatch success 511 

Hatch success was neither related to broodstock dietary regime (p = 0.409; Fig. 6A) nor 512 

to feeding trial (p = 0.432; Fig. 6B; Model 7). However, hatch success obtained from wild-513 

caught females were 8-fold higher than for Diet 1 Trial 2 and 13-fold higher than for Diet 1 514 

Trial 1 females fed Diet 1 (p = 0.014; Fig. 6C; Model 8).  515 

 516 

3.8 Larval development 517 

Numbers of hatched larvae for Diet 2 and 3 were limited, therefore statistical analyses 518 

of larval development were only conducted for larvae obtained from Diet 1 Trial 1 and 2 and 519 
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wild-caught females. Early larval development of European eel during the yolk sac phase 520 

ranges from newly hatched larvae to larvae that commence exogenous feeding around 12-14 521 

dph (Fig. 7A). Larval survival was higher for larvae from Diet 1 Trial 2 females compared to 522 

Trial 1, while larval survival from wild-caught females was intermediate (p < 0.0001; Fig. 523 

7B; Model 9). Generally, larval survival decreased over time with the highest survival at 2 524 

and 4 dph and the lowest at 14 dph (p < 0.0001; Fig. 7C). However, variability was high 525 

amongst individual female offspring depending on origin (Fig. 7D-F). Although limited in 526 

numbers, larvae from Diet 1 Trial 2 females showed the most stable survival throughout 527 

development (Fig. 7E) with levels corresponding to the upper range of the wild-caught (Fig. 528 

7F). In contrast, larvae from Diet 1 Trial 1 females showed a drastic decline in survival from 529 

4 to 8 dph and hardly any survival at 14 dph (Fig. 7D). Larval standard length also depended 530 

on broodstock origin (p = 0.011; Fig. 7G; Model 10), where larvae obtained from Diet 1 Trial 531 

2 females were longer than those from Trial 1, while larvae from wild-caught females were 532 

intermediate. In general, larval standard length doubled over time from hatch to 5 dph (p < 533 

0.0001; Fig. 7H). Likewise, body area related to broodstock origin, with the biggest larvae 534 

obtained from Diet 1 Trial 2 females, which were larger than those of wild-caught females (p 535 

= 0.037; Fig. 7I), while those of Diet 1 Trial 1 females were intermediate. Overall, body area 536 

more than doubled from hatch to 5 dph (p < 0.0001; Fig. 7J). In contrast, oil droplet size 537 

decreased during the yolk sac stage in all treatments (p < 0.0001; Fig. 7L) with no impact of 538 

broodstock origin (p = 0.262; Fig. 7K).  539 

 540 

4 Discussion 541 

 542 
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In this study, we tested the effects of enhanced broodstock diets and two feeding 543 

periods on egg characteristics and early offspring performance from farm-raised European eel 544 

broodstock. The results of the best performing diet (Diet 1) were then compared to wild-545 

caught broodstock, as benchmark. Overall, using size-matched broodstock in assisted 546 

reproduction experiments, this is the most comprehensive study to quantify maternal 547 

nutritional effects on egg composition and offspring performance of anguillid eels. 548 

Specifically, we report several key findings: (1) Diets enhanced in EFA composition 549 

increased the total lipid content of eggs, the amount of floating eggs, fertilization success, and 550 

embryonic survival; (2) longer feeding duration and further EFA enhancement led to higher 551 

egg ARA levels and dry weight as well as improved larval survival; (3) low survival during 552 

the maternal-to-zygotic transition phase (8 to 16 hpf) impeded larval production, especially 553 

for the farm-raised broodstock; and (4) larvae from broodstock fed EFA enriched diets with 554 

prolonged feeding reached similar quality as those of their wild-caught counterparts. 555 

Among the farm-raised females, the manipulation of EFA in the diet influenced egg 556 

total lipid, the proportion of floating eggs, fertilization success and embryonic performance. 557 

Thus, the total lipid content of eggs from females fed Diet 1 was higher than those of Diet 2 558 

and 3 independent of production and feeding duration and despite similar lipid levels in the 559 

diets. In Japanese eel, high quality eggs from females fed a commercial diet were correlated 560 

to low total lipid levels in unfertilized eggs (Furuita et al., 2006, 2003). However, in the 561 

present study, total lipid levels in Diet 1 did not exceed the levels of high quality eggs in the 562 

aforementioned Japanese study, indicating that the levels reached in Diet 1 approached the 563 

optimum. In accordance, the obtained lipid levels in eggs from farm-raised females on the 564 

best performing diet were similar to those of wild-caught females in our study.  565 

Moreover, the fatty acid composition of the egg lipid resource affects offspring 566 

performance emphasizing the importance of EFA in broodstock nutrition (Sargent et al., 567 
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1995). In the current study, increased levels of ARA in Diet 1 increased egg ARA content 568 

and improved fertilization success and embryonic survival, which compares to results for 569 

other species with marine larvae. For instance, in Atlantic halibut, Hippoglossus 570 

hippoglossus, (Mazorra et al., 2003) and Atlantic cod (Røjbek et al., 2014) broodstock fed 571 

ARA enhanced diets produced offspring with higher fertilization and hatch success than 572 

broodstock fed lower ARA levels. Similarly, for European sea bass, Dicentrarchus labrax, 573 

embryos obtained from females fed an ARA enriched diet had significantly higher embryonic 574 

survival at 48 hpf (Bruce et al., 1999). Hereby, the study extends, previous results on 575 

European eel showing that i) ARA levels in the muscle and ovary can be enhanced through 576 

enhanced dietary EFA composition in the diet prior to induced gonadal development 577 

(Støttrup et al., 2013); and ii) that feeding high dietary ARA levels for 24 weeks prior to 578 

induction of development increased the prevalence of females/stripped egg batches resulting 579 

in fertilized eggs, embryo and larvae, measured on a binomial scale (Støttrup et al., 2016). 580 

However, too high levels may hamper egg quality. In Japanese eel, ARA levels between 2.8 581 

and 4.0 % of total FA in the unfertilized eggs represented high quality, whereas too high 582 

ARA levels (4.6 – 5.6 % of total FA) could be detrimental to offspring performance (Furuita 583 

et al., 2007, 2006). In this context, dietary ARA at the highest levels (3.32 % of total FA in 584 

unfertilized eggs) in the present study represented the high quality category found in Japanese 585 

eel and relative ARA contents at this level similarly appeared to promote offspring 586 

developmental competence and larval survival in European eel. In particular, the ARA level 587 

attained in the eggs, embryos and larvae from Diet 1 females exceeded that of wild-caught 588 

females in contrast to the previous study of Støttrup et al. (2013).  589 

Levels of EPA and DHA in broodstock diets may also affect egg quality and offspring 590 

performance. For instance, in gilthead seabream, Sparus aurata EPA levels were positively 591 

correlated with egg fertilization rates (Fernandez-Palacios, 1995), while in other cases too 592 
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high  levels may hamper reproductive success, as EPA may compete with ARA (Sargent et 593 

al., 1999a). Thus, in anguillid species, decreasing EPA levels by intake of dietary lipids have 594 

been found to enhance egg quality (Furuita et al., 2007; Støttrup et al., 2016) indicating EPA 595 

might have been supplied in excess. In the present study, intermediate EPA levels in the best 596 

performing diet, Diet 1, were reflected in the unfertilized eggs. Still, levels may benefit from 597 

some adjustment as the EPA levels were higher than in the unfertilized eggs obtained from 598 

wild-caught females. On the other hand, DHA levels have been positively correlated to egg 599 

quality parameters in Japanese eel  (Furuita et al., 2006). In the current study, DHA levels 600 

also were highest in Diet 1, however in the unfertilized eggs, highest levels were found in 601 

eggs obtained from females fed Diet 2. Nonetheless, the better performance of offspring from 602 

Diet 1 indicated that DHA levels in this diet were sufficient or might not affect egg quality as 603 

crucially as ARA in this case, not least taking into account that DHA levels in offspring from 604 

Diet 1 females were still higher than those from wild-caught females. 605 

In addition to the EFA levels, their ratios are crucially important in broodstock nutrition 606 

(Bell et al., 1997). Here, ratios of DHA/EPA are recommended to be >1 and EPA/ARA <3, 607 

which was the case in all diets used in this study. Moreover, the overall n-3 to n-6 ratio might 608 

be of importance, which has been shown in Japanese eel, where a too high ratio of n-6 to n-3 609 

fatty acids had a negative impact on embryonic development (Furuita et al., 2007). However, 610 

the ratio in the diets leading to lower offspring quality in Japanese eel was considerably 611 

higher (n6:n3: 2.2) than in our study (highest n6:n3 ratio 0.75) and feeding duration may 612 

similarly affect results. 613 

The females in the present study, which required an extended feeding period to reach 614 

the same size, while receiving further enhanced diets, accumulated more ARA and produced 615 

egg and offspring of higher quality, considering unfertilized eggs up to the larval stage. Due 616 

to the increase in EFA in the second feed production, it cannot be concluded from this 617 
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experiment, if the females accumulated ARA in a more efficient way or the increase in the 618 

ARA content of the eggs was a direct dietary effect. In support of the first interpretation, two 619 

previous studies found a selective accumulation of ARA over time and importance of long 620 

feeding periods in European eel (Støttrup et al. 2013; 2016). At the same time, the differences 621 

in EFA, including higher ARA levels, in the second production may have contributed to the 622 

higher quality of offspring from Trial 2 females. In light of this, the size-matched approach 623 

applied in this study added new insights into the interaction between dietary effects and 624 

feeding duration of interest in broodstock management, while future experiments are needed 625 

to disentangle effects of diets, growth, and feeding duration. In this context, it is worth 626 

considering that eels in nature build up resources and cease feeding prior to spawning 627 

migration and presumably their reproduction.   628 

In diadromous, semelparous fishes, reproductive strategies may be a trade-off between 629 

growth and reproduction, which in eels may lead to differences in age and size at the onset of 630 

spawning migration (Yokouchi et al., 2018). It is still questioned as to whether eels reach the 631 

migration stage at the earliest possible point as suggested by Svedang et al. (1996) or may 632 

risk spending extra time in their growth habitats under good conditions to reach a larger body 633 

size (Yokouchi et al., 2018). Certainly, eels show extensively varying growth rates and 634 

flexible timing of silvering (Bevacqua et al., 2012; Vøllestad, 1992; Yokouchi et al., 2018). 635 

This also applies to aquaculture under controlled conditions, where growth rates differ 636 

substantially. While fast growth is commonly targeted in aquaculture, it may not necessarily 637 

favor broodstock performance due to trade-offs in allocation of resources to growth and 638 

reproduction (Folkvord et al., 2014), as also indicated in the present study.  639 

The size-matched females fed enhanced diets over the prolonged feeding period 640 

furthermore produced eggs of higher dry weight. Egg size and dry weight are often 641 

influenced by maternal size and used as quality indicators, as they affect early life history in 642 
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marine fishes (Bobe and Labbé, 2010; Kjørsvik et al., 1990; Rideout et al., 2005; Trippel, 643 

1998). For instance, in Atlantic cod, egg dry weight and fecundity was lower in poor 644 

condition females (Lambert and Dutil, 2000; Ouellet et al., 2001). On the other hand, egg dry 645 

weight was negatively correlated to cell clarity (Penney et al., 2006). Previous studies on 646 

European eel did not find any relation between dry weight and offspring quality (da Silva et 647 

al., 2018a; Rozenfeld et al., 2016). However, the results of this more comprehensive study 648 

indicate that dry weight might play a role in defining embryonic developmental competence 649 

and thus, dry weight in combination with EFA levels may prove useful as quality indicators 650 

in European eel. 651 

In accordance with these egg quality parameters, the larvae obtained from farm-raised 652 

broodstock fed Diet 1 with prolonged feeding reached similar quality as those of their wild-653 

caught counterparts. Notably, once hatched, larval survival was comparable between wild-654 

caught and farm-raised females fed Diet 1 for the prolonged feeding period, and the body 655 

area of larvae from these farm-raised females was even significantly higher than of those 656 

from wild-caught females. The study further revealed a selective retention of ARA and DHA 657 

during early larval development reflecting important roles of these fatty acids, e.g. in 658 

structural development, especially neural and visual functions (Sargent et al., 1999b). This is 659 

similar to other studies on Florida pompano, Trachinotus carolinus, and common snook, 660 

Centropomus undecimalis (Hauville et al., 2016), as well as Atlantic bluefin tuna, Thunnus 661 

thynnus (Morais et al., 2011) where relative levels of ARA and DHA increased during the 662 

first 4-6 dph together with utilization of total lipids as an energy source. The effect of EFA 663 

levels on larval survival and development appears to be highly species specific. While a 664 

positive effect of DHA is widely distributed (Glencross, 2009), the effect of ARA reaches 665 

from positive (Mazorra et al., 2003), over neutral (Hauville et al., 2016) to negative (Røjbek 666 

et al., 2014). In the Atlantic halibut, larval survival was found to be significantly higher from 667 
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females fed with an ARA enhanced diet (Mazorra et al., 2003), which coincides with our 668 

results. In the European eel, overall, PUFAs were preserved in the larvae of the two farmed 669 

as well as the wild caught groups, while mainly saturated fatty acids and MUFAs were used 670 

during early larval development.  671 

The most prominent difference between the wild-caught and farm-raised broodstock 672 

was differences in embryonic survival and hatch success. The lower survival of offspring 673 

from farm-raised females was related to a higher percentage of cleavage abnormalities 674 

assessed at 4 hpf. Abnormal cleavage patterns have been shown to cause higher embryonic 675 

mortality in Atlantic cod (Avery et al., 2009), yellowtail flounder, Limanda ferruginea 676 

(Avery and Brown, 2005), and turbot, Scophthalmus maximus (Kjørsvik et al., 2003). Also in 677 

the present case, the abnormal cleavages impeded embryonic development leading to a sharp 678 

decline in survival between 8 hpf and 16 hpf, resulting in low hatch success. 679 

This suggest that zygotic and early embryonic development in European eel subjected 680 

to assisted reproduction is influenced by more factors than maternal nutrition and resulting 681 

egg dry weight, lipid content and fatty acid composition (Mylonas et al. 2010). Here, an 682 

important step in embryonic development is characterized by the maternal to zygotic 683 

transition (MZT), in which developmental control is taken over by the activation of zygotic 684 

transcription (Newport and Kirschner, 1982). This change takes place during the mid-blastula 685 

transition, which in European eel occurs at ~10 hpf at 18°C (Sørensen et al., 2016b). Until 686 

this point, maternal gene products are the most essential drivers for early embryonic 687 

development. Studies have shown essential impacts of the abundance of specific mRNA 688 

transcripts on egg quality and embryonic development (Aegerter et al., 2004; Lanes et al., 689 

2013; Rozenfeld et al., 2016; Škugor et al., 2014). The observed decline in survival of 690 

embryos from farm-raised females around this time in embryonic development indicates 691 

possible failure of the embryonic transcription as suggested by a previous study (Rozenfeld et 692 
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al., 2016). Further research should focus on detecting causes of the here revealed bottleneck 693 

of farm-raised eels throughout embryonic development in order to develop sustainable 694 

aquaculture for European eel. 695 

Generally, wild-caught females produce gametes and offspring of higher quality 696 

including higher fertilization capacity of eggs and larval survival, exemplified by Atlantic 697 

cod (Lanes et al., 2012; Salze et al., 2005) and common sole, Solea solea (Lund et al., 2008). 698 

A possible explanation why wild-caught females might respond better to assisted 699 

reproduction procedures and produce eggs and offspring of higher quality may include 700 

differences in the endocrinological state of the females at the time of onset of therapy. This is 701 

also the background for feminization of eel that are later selected for broodstock. Here, 702 

estradiol is provided in the feed of juvenile eels for a period time to synchronize ovarian 703 

development in Japanese eel (Okamura et al., 2014; Tanaka, 2015). Likewise, the progress of 704 

early oocyte development and silvering-related changes may be stimulated by administration 705 

of androgens, e.g. 11-ketotestosterone (Di Biase et al., 2017; Lokman et al., 2015; Mordenti 706 

et al., 2018; Sudo et al., 2012). Such studies show that the androgen-pretreatment can 707 

enhance responsiveness to gonadotropic treatment, yet future research is needed to clarify, if 708 

such treatment would decrease embryonic development failure in farm-raised fish. 709 

Benchmarking the nutritional aspects, our results show that by modifying EFA content in the 710 

broodstock diet of farm-raised eels, nutritional egg quality parameters and fertilization rates 711 

comparable to wild-caught eels could be achieved. Particularly, larval survival was 712 

comparable and larval body area from farm-raised females fed Diet 1 for prolonged feeding 713 

was significantly higher than that of wild-caught females. These results indicate that once 714 

embryos undergo the MZT successfully and develop to completion, resulting larvae from 715 

farm-raised females fed enhanced diets are viable and of high quality up to the first feeding 716 

stage.  717 
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 718 

5 Conclusion 719 

The enhanced diet composition and feeding regimes in the present study improved egg 720 

quality and offspring performance originating from farm-raised female European eel 721 

broodstock. By following embryonic and larval development, we documented the importance 722 

of egg dry weight, lipid content, and EFA during early ontogeny. Thus, the applied dietary 723 

levels of ARA, EPA and DHA enhanced the egg quality and offspring performance 724 

significantly in farm-raised broodstock highlighting, in particular, the importance of ARA. 725 

The results furthermore emphasized the importance of a long feeding duration in eel prior to 726 

onset of assisted reproduction. Not least, the dietary EFA levels combined with slow growth 727 

proved superior enhancing effects on egg and offspring quality. Additionally, comparing 728 

offspring quality between farm-raised and wild-caught broodstock in European eel revealed 729 

that the primary bottleneck in farm-raised offspring is during early embryonic development, 730 

where survival decreased significantly after 8 hpf. Thus, several factors besides nutritional 731 

factors may influence farm-raised broodstock performance and cause inferior embryonic 732 

development competence, e.g. the endocrinological state of the females at the onset of the 733 

induced maturation. Once hatched, however, larval survival was comparable between farm-734 

raised females reared on the high ARA diet for a prolonged period and wild-caught 735 

broodstock. Notably, ARA and DHA were retained in the yolk sac larvae signifying their 736 

importance during early ontogeny. Together, findings of this study can be used in future 737 

experimental work to ascertain high offspring quality from farm-raised broodstock aiming at 738 

a closed cycle production in captivity. 739 
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Figure Captions 1115 

Fig. 1 Total lipid content in eggs and larvae of European eel, Anguilla anguilla. Effects 1116 

of maternal dietary regime (A) and feeding trial (B) on total lipid (TL) in % dry weight (DW) 1117 

of unfertilized eggs from farm-raised eels (n = 34). Effects of female broodstock origin (Diet 1118 

1 Trial 1 and Trial 2; wild-caught fish) (C), offspring age (Diet 1 Trial 1 and Trial 2; wild-1119 

caught fish) on TL of unfertilized eggs and larvae at 0 and 5 days post hatch (dph; D) (n = 1120 

24). Values represent means (± SEM) among females at each sampling point and treatment. 1121 

Different lower-case letters represent a significant statistical difference (p ˂ 0.05). 1122 

 1123 

Fig. 2. Relative fatty acid content in unfertilized eggs and larvae of European eel, 1124 

Anguilla anguilla. Effects of maternal dietary regime and feeding trial on unfertilized egg 1125 

levels (%) of ARA (A, B), EPA (C, D) and DHA (E, F) (n = 33). Effects of broodstock origin 1126 

and age on eggs and larvae (Diet 1 Trial 1 and Trial 2; wild-caught fish) for ARA (G, H), 1127 

EPA (I, J), and DHA (K, L). (n = 25). Values represent means (± SEM) among females at 1128 

each age and treatment. Different lower-case letters represent a significant statistical 1129 

difference (p ˂ 0.05). 1130 

 1131 

Fig. 3. Fertilization success in European eel, Anguilla anguilla. Effects of maternal dietary 1132 

regime (A), and feeding trial (B) of farm-raised females (n = 23) as well as broodstock origin 1133 

on fertilization success (C) (n = 19). Values represent means (± SEM) among females at each 1134 

sampling time and treatment. Different lower-case letters represent a significant statistical 1135 

difference (p ˂ 0.05). 1136 

 1137 

Fig. 4. Embryonic survival in European eel, Anguilla anguilla. Effects of maternal dietary 1138 

regime (A), feeding trial (B), and offspring age (4-48 hours post fertilization; C) on 1139 

embryonic survival as well as their survival over time for individual females fed Diet 1 (D), 1140 

Diet 2 (E), and Diet 3 (F) (n = 26). Effects of broodstock origin (G) and offspring age (H) on 1141 

embryonic survival for individual females fed Diet 1 Trial 1 (I), Diet 1 Trial 2 (J) and wild-1142 

caught females (K) (n = 18). Values for bar plots represent means (± SEM) among females at 1143 

each age and treatment. Different lower-case letters represent a significant statistical 1144 

difference (p ˂ 0.05). 1145 

 1146 

Fig. 5 Cleavage abnormalities in European eel, Anguilla anguilla. Normal (upper left) as 1147 

well as typical abnormal cleavage patterns (A), effects of maternal dietary regime (B) and 1148 

feeding trial (C) in farm-raised female eels (n = 22) as well as broodstock origin (D) (n = 19) 1149 

on proportion of cleavage abnormalities in offspring at 4 hours post fertilization (hpf). 1150 

Relationships between cleavage abnormalities at 4 hpf and embryonic survival at 48 hpf 1151 

display offspring of individual females for all three treatments pooled (E), as well as 1152 

individual treatments, Diet 1 Trial 1 (F), Diet 1 Trial 2 (G), wild-caught (H). Values for bar 1153 
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plots represent means (± SEM) among female offspring at each age and treatment. Different 1154 

lower-case letters represent a significant statistical difference (p ˂ 0.05). 1155 

 1156 

Fig. 6. Hatch success in European eel, Anguilla anguilla. Effects of maternal dietary 1157 

regime (A), feeding trial (B) (n = 24), and broodstock origin (C) (n = 18) on hatch success 1158 

(%). Values represent means (± SEM) among females at each sampling point and treatment. 1159 

Different lower-case letters represent a significant statistical difference (p ˂ 0.05). 1160 

 1161 

Fig. 7. Larval survival and development in European eel, Anguilla anguilla. Larval 1162 

development throughout yolk sac stage (A), effects of broodstock origin (B) and offspring 1163 

age (days post hatch, dph; C) on larval survival (n = 14). Survival of larvae from individual 1164 

females in relation to maternal origin is displayed; Diet 1 Trial 1 (D), Diet 1 Trial 2 (E), and 1165 

wild-caught females (F). Effects of broodstock origin and offspring age on standard length 1166 

(mm; G, H), body area (mm2; I, J), and oil droplet area (mm2; K, L) (n = 13). Values for bar 1167 

plots represent means (± SEM) among females at each age and treatment. Different lower-1168 

case letters represent a significant statistical difference (p ˂ 0.05). 1169 
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