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Abstract

The discovery of high-performing and stable materials for sustainable energy appli-

cations is a pressing goal in catalysis and materials science. Understanding the rela-

tionship between a material’s structure and functionality is an important step in the

process, such that viable polymorphs for a given chemical composition need to be iden-

tified. Machine-learning based surrogate models have the potential to accelerate the

search for polymorphs that target specific applications. Herein, we report a readily

generalizable active-learning (AL) accelerated algorithm for identification of electro-

chemically stable iridium-oxide polymorphs of IrO2 and IrO3. The search is coupled to

a subsequent analysis of the electrochemical stability of the discovered structures for

the acidic oxygen evolution reaction (OER). Structural candidates are generated by

identifying all 956 structurally unique AB2 and AB3 prototypes in existing materials

databases (more than 38,000). Next, using an active learning approach we are able to

find 196 IrO2 polymorphs within the thermodynamic amorphous synthesizability limit

and reaffirm the global stability of the rutile structure. We find 75 synthesizable IrO3

polymorphs and report a previously unknown FeF3-type structure as the most stable,

termed α-IrO3. To test the algorithms performance, we compare to a random search of

the candidate space and report at least a twofold increase in the rate of discovery. Ad-

ditionally, the AL approach can acquire the most stable polymorphs of IrO2 and IrO3

with less than 30 density functional theory optimizations. Analysis of the structural

properties of the discovered polymorphs reveals that octahedral local coordination en-

vironments are preferred for nearly all low energy structures. Subsequent Pourbaix

Ir-H2O analysis shows that α-IrO3 is the globally stable solid phase under acidic OER

conditions and supersedes the stability of rutile IrO2. Calculation of theoretical OER

surface activities reveal ideal weaker binding of the OER intermediates on α-IrO3 than

on any other considered iridium-oxide. We emphasize that the proposed AL algorithm

can be easily generalized to search for any binary metal-oxide structure with a defined

stoichiometry.
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Introduction

To understand or simulate the properties of novel polymorphs of functional materials their

crystal structure must first be solved for, which remains a challenging problem in materi-

als science.1,2 Large high-throughput ab initio datasets3–6 have enabled approaching many

problems in materials research with machine-learning,7 but these datasets are systematically

biased towards known materials or hypothetical materials derived from common crystal pro-

totypes. Thus, there is a need for the systematic exploration of structural diversity at target

elemental compositions.

Contemporary approaches to inorganic crystal structure prediction include a variety of

methods that explore the expansive potential energy landscape, and include simulated an-

nealing, evolutionary algorithms, and particle swarm optimization.8–15 These approaches

are comprehensive, but become intractable as the number of polymorphic configurations

increases exponentially with the number and types of elements considered.16 Recent mate-

rials discovery approaches employing surrogate models in lieu of Density Functional Theory

(DFT) calculations include a tight-binding model utilizing genetic algorithms,17 agent-based

rapid generation of phase diagrams in diverse chemistries,18 and an image-based materials

representation procedure from Noh et al.,19 which was used to find stable vanadium oxide

polymorphs. Active learning (AL) frameworks in conjunction with surrogate models have

emerged as a computationally efficient approach for problems in materials science, and a

potential alternative to established crystal structure prediction (CSP) methods.20–24

In this manuscript we report a rapid crystal structure discovery approach that leverages

machine learning surrogate models and an AL framework to accelerate the discovery of

polymorphs at target chemical compositions. Our method does not rely on the existence of

past DFT data, but instead sequentially generates the minimum sized data set to effectively

search within a structurally diverse space of candidates generated from crystal structure

prototypes. We demonstrate the application of this methodology in the space of iridium

oxide polymorphs, an important class of materials with applications in electrochemistry,
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but with unresolved structure-activity properties critical for understanding their catalytic

activity. In particular, Rutile-IrO2 (R-IrO2) (Ir4+), the most stable form of iridium-oxide

at standard conditions, is a well-studied electrocatalyst for the oxygen evolution reaction

(OER).25–32 Previous studies on a SrIrO3 OER electrocatalyst demonstrated that Sr leaching

might leave behind a highly oxidized Ir6+ species which was argued to be responsible for the

observed OER activity.25 Other groups also observed reconstruction of IrOx catalysts under

reaction conditions and subsequent formation of an unknown structure.33 Highly oxidized

IrO3 phases are also formed as the terminal structure of LixIrO3 anodes.33 For these reasons,

we focused our search on stable polymorphs in the IrO2 and oxidized IrO3 stoichiometries.

Here, we first detail the generation of our candidate structures for IrO2 and IrO3 and

introduce the AL accelerated surrogate model. Next, we demonstrate the application of our

AL scheme to the IrO2 and IrO3 prototype spaces and evaluate the algorithm’s performance

towards acquiring of the most stable polymorphs. We analyze the crystallographic motifs of

the DFT-relaxed structures and identify structural trends within the most stable polymorphs.

Lastly, we incorporate discovered structures into bulk and surface Pourbaix diagrams, and

evaluate their catalytic OER performance.

Results and discussion

I. Candidate Space Generation and Active Learning Methodology

Our approach utilizes an active learning framework and surrogate models, whereby a re-

gression model is trained to compute enthalpies of formation (∆Hf) by iteratively sampling

structures from a set of polymorph candidates. Figure 1 shows a schematic overview of the

AL loop. We first generate the structure candidate space, followed by an iterative search

through the space via a continuously retrained surrogate model using Gaussian Processes

Regression (GPR), which is then used to acquire subsequent structures for DFT optimiza-

tion. No prior DFT training data is required to start the algorithm, eliminating any initial
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built-in bias in the model and allowing it to quickly respond to new acquisitions.

Figure 1: AL accelerated polymorph discovery algorithm diagram. Following the gener-
ation of the hypothetical crystal structure data set (candidate space), the AL algorithm
proceeds iteratively through: (1) candidate selection in which a subset of structures in the
candidate space are selected based on an acquisition function (in lieu of training data, the
initial candidates are randomly sampled), (2) structural relaxation into local energy minima
(∆Hf computed), (3) structure featurization to produce numerical vector for input into ML
model, (4) Machine learning (ML) model training based on acquired structures and ∆Hf,
(5) Prediction of candidate space’s ∆Hf distribution via ML model. The algorithm repeats
steps (1)-(5) until a suitable stop criteria is reached.

The candidate structure datasets for IrO2 and IrO3 were constructed by first obtaining

all AB2 and AB3 structures in the Materials Project4 and OQMD7 databases (in total 7,160

AB2 and 31,224 AB3 entries). To reduce the size of the candidate space while maintain-

ing maximum structural diversity, structurally redundant systems were removed via a space

group based structural classification scheme developed by Jain et al.34 In short, a material’s

structural identity is defined by a unique combination of the element-nonspecific stoichiom-

etry (AB2, AB3, etc.), space group symmetry, and Wyckoff positions, collectively referred

to as a materials structural prototype. Materials of the same prototype are considered to

be structurally equivalent. Eliminating these redundant materials results in orders of mag-
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nitude reduction of the search space to 697 and 259 unique prototypes for AB2 and AB3,

respectively. Finally, only structures containing less than 75 atoms (566 AB2 and 256 AB3)

were included to reduce the computational expense of subsequent DFT calculations. We next

substituted iridium and oxygen for the A and B sites, and these Ir-O adapted polymorphs

were isotropically relaxed to accommodate their atomic radii. Bulk DFT optimizations were

performed on these systems, yielding 714 relaxed bulk IrOx polymorphs (466 and 248 struc-

tures for IrO2 and IrO3, respectively), after discarding 108 non-converged structures. The

relatively small size of our candidate space allows us to tractably optimize all structures and

allows us to readily benchmark the performance of our algorithm. Full details of the can-

didate space generation and DFT calculations can be found in the Supporting Information.

All structurally unique IrOx optimized structures (575 in total) can be accessed through the

MPcontribs platform.35

The active learning algorithm proceeds through a structure featurization scheme based

on Voronoi tessellation developed by Ward et al.36 which produces a 271-length fingerprint

vector that is invariant to isotropic lattice changes and insensitive to the precise atomic

coordinates. These fingerprints encode both chemical and structural information by con-

structing attributes from elemental properties which are weighted by the local environment

of the structure via the construction of the Wigner-Seitz cell.37 Since our AL framework

focuses on fixed compositions, the dimensionality is reduced to 101 non-zero variance fea-

tures. We further reduce the dimensionality to 10 features via principal component analysis

(PCA),38 which we found to capture 80% of the variance in the full feature set while also

demonstrating an optimal cross-validation mean absolute error (MAE) (see Figure S1).

The active learning algorithm proceeds through iterative generations of ML training,

prediction, and acquisition steps that are visualized in Figure 1. To meet our primary goal

of identifying the most stable polymorphs within the candidate space, we construct the AL

framework to be (1) responsive in improving itself by learning from small batches of newly

acquired DFT data, and (2) aware of limitations in its surrogate model by incorporating un-
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certainty estimates into the acquisition decision criteria. GPR satisfies both requirements,

and we use them here with a Gaussian kernel as implemented in CatLearn.20,39 In the initial

generation (generation 0), the model is trained on a set of randomly sampled candidates

(unbiased sampling), and is then used to predict the formation enthalpy (∆Hf) of all struc-

tures in the candidate space. The predicted energy landscape is then used to choose the next

polymorphs to acquire (calculate via DFT) by selecting systems that minimize the GP-LCB

(Gaussian process lower confidence bound) acquisition function, U = µ−κσ.40 Here, µ and σ

are the predicted ∆Hf mean and uncertainty, respectively, and κ is a parameter that weights

exploitation vs. exploration of the search-space (set to 1). At every generation of the AL

loop, N structures that minimize the acquisition function are acquired for DFT optimization

and are subsequently added to the training data set, where N is the AL bin size (here set

to 5). The value of N determines the degree of parallelization of the routine. In practice

the algorithm can proceed until no more stable polymorphs are found, or after an allocated

computational budget is exhausted.

Although initially unique, the structures in the candidate set often relax into one another

over the course of the DFT optimization, introducing duplicates in the post-DFT structures.

The duplicates are removed during each generation of the AL algorithm by using the structure

similarity quantification method of Su et al.41

II. Active Learning Algorithm Applied to the Discovery of Stable

Iridium-oxide Polymorphs

We next applied the AL algorithm to the discovery of stable and unique polymorphs of IrO2

and IrO3, individually. Results for IrO2 are provided in the supporting information (Figure

S2), here we focus on IrO3, since it is a comparatively unexplored oxide system.

Figure 2a, shows a sequence of snapshots of the AL algorithm applied to IrO3 at dif-

ferent generations. Each subplot reports the predicted (grey) and DFT-derived (filled red)

formation enthalpies (∆Hf) for each structure, sorted by stability such that structures more
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likely to be selected by the acquisition criteria are farther left. As the algorithm acquires

DFT data, the GP model’s accuracy increases, as evidenced by the decreasing uncertainties

when comparing the initial and latter generations (2a.i-v). At the top of each subplot of

Figure 2a the x-axis positioning of the ten most stable polymorphs is tracked. Initially, these

ten structures are randomly distributed across the entire candidate space due to the lack of

training data for the GP model. However, after only three generations (Figure 2a.ii) the GP

model is sufficiently accurate to predict the most stable polymorphs as low energy structures.

By the sixth generation (40 DFT relaxations) 4/10 of the most stable polymorphs have been

acquired, including the globally stable phase of IrO3, which was found on average in only 4.3

generations (averaged over 100 independent runs). By the 13th generation of the algorithm

10/10 of the most stable structures were acquired.

Seven of the most stable IrO3 polymorphs discovered are shown in Figure 2b. All of

the low energy IrO3 structures are constructed from octahedrally coordinated units, with a

variety of symmetries and packing modes. The globally stable crystal structure consists of a

six-atom primitive cell with a space group number of 167 (R3c) in the rhombohedral crystal

system, has exclusively corner-sharing octahedra, and is isomorphic to FeF3.
42 Herein, this

structure will be referred to as α-IrO3. The second most stable polymorph (Figure 2b.ii) is

similar to α-IrO3, only differing by the stacking of the alternating layers orthogonal to the c

lattice vector. We label this structure α2-IrO3 in Figure 2b and it is only 2 meV/atom less

stable than α-IrO3, well within the margin of error for DFT. The fourth most stable structure

(R-IrO3) is notable for being the first in the series to have mixed edge- and corner-sharing

octahedra and is structurally similar to rutile-IrO2 (R-IrO2).

Figure 2c reports the discovery rate of the AL algorithm by plotting the number of the

ten most stable systems acquired against the number of DFT calculations with the GP-LCB

acquisition and a random acquisition scheme to serve as a baseline. The results of Figure 2c

are averaged over 100 independent runs of the AL algorithms with the standard deviation

shown. Overall, the GP-LCB runs outperform the random acquisition runs, with on average
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Figure 2: (a) The state of the AL algorithm at five generations. The enthalpy of formation
per atom (∆Hf) is plotted, ordered by stability, against all IrO3 candidates, with the 1 σ
uncertainty estimate shown for each prediction. The number of DFT training points at each
generation is displayed. Hollow grey markers indicate a GP model predicted ∆Hf while red
indicate a DFT-computed quantity. At the top of subplots a.i-v, the x-axis positions of the
ten most stable polymorphs are tracked at each generation by either red (acquired) or grey
(not acquired) vertical lines. Insets of the low energy region for each generation is displayed
below each subplot. The top ten most stable systems are colored and labeled (i-vii) to
indicate their identity. (b) Crystal structures of the 8 most stable IrO3 polymorphs (structure
iii not shown). (c) The number of most stable 10 polymorphs of IrO3 discovered (Ndiscovered)
vs. the number of DFT calculations for the GP-LCB (blue) and random (grey) acquisition
methods. The results are averaged over 100 independent runs and the 1 σ standard deviation
between these runs are displayed. All structurally unique IrOx DFT optimized structures
can be accessed through the MPcontribs platform.35

∼100 DFT calculations needed to discover the ten most stable structures. This demonstrates

over a factor of two improvement in performance compared to random acquisition, which does

not acquire the most stable structures until all ∼250 candidates are computed. The results

for IrO2 (Figure S2) show a higher discovery rate for GP-LCB compared to the random
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acquisition method, although the GP-LCB method “saturated” at 9/10 and was unable to

acquire the last structure until the candidate space was exhausted. The performance of

GP-LCB relative to random is expected to increase with the size of the candidate space,

since the probability of selecting stable structures is inversely proportional to the size of the

candidate pool.

We next evaluate the prediction accuracy of the IrO2 and IrO3 GP regression models

utilizing the full DFT optimized data set of 487 IrO2 and 249 IrO3 structures. This dataset

corresponds to the final generation of the AL algorithm in which all structures have been

acquired. Figure 3 plots the GP model predicted ∆Hf against the DFT-computed values

for two cases. Case (1) shows the predictions on the structural fingerprints prior to DFT-

optimization (grey), as is done in the regular operation of the algorithm. Case (2) shows

the prediction of the same GP model using the post-DFT optimized fingerprints (blue) with

10-fold cross-validation. It is evident that using the pre-optimization fingerprints results

in the GP model being highly inaccurate in predicting the post-relaxation ∆Hf’s of the

candidate space, with a seemingly large MAE of ∼1.5 eV/atom. In contrast, the same GP

model does comparatively much better at predicting the formation energies of post-DFT

optimized structures with an MAE of ∼0.2 eV/atom.

The drastic decrease in prediction error is not surprising, since the post-DFT fingerprints

directly correspond to the target ∆Hf values, and is primarily due to the large degree of

structural drift that occurs during DFT relaxation, the extent of which is not known a

priori. In fact, we observe that most of the predictions from pre-DFT features over-predict

the formation energy (i.e. less stable than their DFT analogous) and lie above the parity line.

This behavior is consistent with what one would expect thermodynamically: structures that

are initialized in high energy configurations will naturally reconfigure into a more stable local

configuration, resulting in discrepancies between the pre-DFT predicted and final formation

energies. In practice, our approach still performs notably well because (1) the energy tends

to decrease post-DFT relaxation, meaning favored acquisitions are likely to perform even
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Figure 3: Parity plot of the predicted and actual formation enthalpy (∆Hf) for the final
Gaussian regression ML models for IrO2 and IrO3, predicting on either the pre-optimized
(grey) or the post-optimized (blue) fingerprints. The final ML regression models are trained
on the DFT ∆Hf values for all structurally unique polymorphs and correspond to the final
generation of the AL algorithm.

better, and (2) the pre-optimized structures that are similar enough to the most stable

final equilibrium structures will not restructure considerably, meaning that their predicted

formation energies will be close enough (and low enough) to be quickly picked up by the

acquisition criteria. Additionally, the number of duplicates produced during AL is also a

factor in increasing the effective performance. For example, there are 8 duplicates of α-IrO3

produced during the full AL routine due to distinct pre-DFT candidates relaxing into the

same energy basin, and this over representation of α-IrO3 phase effectively increases the

chance of it being acquired by a factor of eight.

III. Crystal Coordination Analysis of Discovered Phases

We next assess stability trends and structural variety of the DFT optimized structures,

consisting of 384 and 191 unique IrO2 and IrO3 polymorphs. Figure 4a,b shows the DFT

computed ∆Hf for IrO2 and IrO3 plotted against the inverse density, a quantity that is

sensitive to crystal porosity and connectivity. To obtain a physically meaningful cutoff
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for ∆Hf, we computed the “amorphous limit” of Persson and coworkers for both IrO2 and

IrO3, which provides a stringent upper bound to polymorph synthesizability.43 We found

the amorphous limit for both IrO2 and IrO3 to occur at a ∆Hf of −0.34 eV/atom and are

displayed as horizontal lines in Figure 4a,b. There are 196 and 75 polymorphs for IrO2 and

IrO3, respectively, that are within the amorphous synthesizability limit.

Figure 4: ∆Hf for the 384 IrO2 (a) and 191 IrO3 (b) structurally unique DFT optimized
structures in the candidate data set plotted against the volume per atom. Insets in the low
energy region for (a) and (b) are shown. The color bar represents the average coordina-
tion number between Ir and O, with the most common, 6 (octahedra) and 4 (tetrahedral)
coordinations, highlighted. For IrO2 (c) and IrO3 (d) we highlight the structures of select
polymorphs. The amorphous limits for IrO2 and IrO3 (Figure S2) defining a strict upper
bound for synthesizability are displayed in (a) and (b) as horizontal lines.

Computed materials span a large range of densities and coordination environments. The

lowest volume (highest density) structures correspond to an atomic packing factor of roughly

0.50, which is where the most stable structures are found. The highest volume (lowest

density) systems sampled have atomic packing factors close to 0.15. However, for IrO3
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there is a comparatively weaker relationship between the energy and volume, such that even

highly porous structures are within 0.1 eV/atom of the most stable phase. This is indicative

of IrO3’s high degree of polymorphism and ability to readily form layered and/or porous

structures.

Ir-O coordination environments were classified (octahedral, square pyramidal, tetrahe-

dral, cubic, etc.) by using the chemEnv package, developed by Waroquiers et. al.44 as

implemented in the Pymatgen software.45 Our dataset contains structures with coordina-

tion numbers ranging from 2 to 10, with coordination numbers of six (octahedral, blue) and

four (tetrahedral, red) being the most prevalent (see Figure 4). The vast majority of the

most stable (within 0.1 eV/atom) structures adopt an octahedral coordination environment,

a common coordination motif found to be favorable in many other transition metal oxides.44

The arrangement of the octahedral units, which are connected through either corner- or

edge-sharing octahedra, can furthermore be used to classify the structures, which typically

have a combination of the two. Of the top ten IrO2 and IrO3 structures, 9/10 of IrO2 and

5/10 of IrO3 have a mixed corner- and edge-sharing octahedral packing. This demonstrates

that IrO2 prefers to form edge-sharing octahedra as a result of having to share more oxy-

gens to maintain its stoichiometry. IrO3 has comparatively more oxygens per unit cell, and

as such can adopt completely corner-sharing arrangements similar to cubic perovskite-type

structures.

Figure 4c,d shows a selection of metastable structures for IrO2 and IrO3, respectively.

For IrO2, we reaffirm the rutile ground state. Additionally, the experimentally synthesized

high-pressure pyrite phase of IrO2 was found in our dataset and has a ∆Hf ∼0.1 eV/atom

greater than rutile, in agreement with theoretical and experimental calorimetric data.46,47

Several common AB2 crystal structures were found within the dataset, including brookite,48

anatase49 and the recently synthesized columbite-IrO2 phase.50 For IrO3 the eight most sta-

ble systems are reported in Figure 2, and labeled as (1)-(8) in Figure 4b. In addition to the

most thermodynamically stable systems, we have identified several interesting metastable
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structures, including two dimensional (i), highly porous (iii) and one dimensional (v) poly-

morphs with varying degrees of porosity and connectivity, which are important structural

properties for applications as battery cathodes and ionic conductors.33,51

IV. Electrochemical OER Application

We next performed ab-initio thermodynamic analyses to test the OER electrochemical op-

erational stability and activity of the most stable IrOx in aqueous solution. In particular, we

compare the stability and activity of R-IrO2 to our newly discovered α-IrO3 and R-IrO3 poly-

morphs. In addition, we have also computed the stability and activity of a delithiated form

of a recently reported β-LixIrO3 structure, referred here to as β-IrO3.
33,51 The OER activity

was computed assuming the most common single-site associative OER mechanism utilizing

the thermodynamic limiting potential analysis with the computational hydrogen electrode

as described extensively in numerous previous works52–55 (see also Supporting Information

for details).

The calculated bulk Pourbaix diagram of the Ir-H2O system is shown in Figure 5. The

diagram was constructed by considering the thermodynamic equilibrium between the fol-

lowing species: Ir, R-IrO2, α-IrO3, R-IrO3, β-IrO3, and an aqueous dissolved IrO –
4 species.

To obtain free energies, we utilized a free energy correction to our calculated values to re-

produce the known experimental ∆Hf and ∆Gf of R-IrO2.
56 While Ir and R-IrO2 are most

stable at low bias, α-IrO3 becomes the thermodynamically dominant phase under the rele-

vant conditions for the OER (potentials > 1.23 V RHE and in an acidic environment). The

stability regions for the less stable β-IrO3 and R-IrO3 polymorphs (in the absence of other

IrO3 phases) are also included (unfilled solid lines). It can be seen that these phases have

a reduced, but sufficiently large, stability window relative to IrO2 and the IrO –
4 . Removal

of the IrO3 phases from the bulk Pourbaix diagram results in a completely different ther-

modynamic picture of IrO2 stability (Figure S4). In total, we have discovered 21 unique

IrO3 polymorphs with a non-zero bulk Pourbaix stability region (0 ≤ pH ≤ 14). Interest-
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ingly, these 21 structures are more stable than the most stable IrO3 structure in Materials

Project57 (which is also present in our dataset, Figure 4d.iv). We note that thermodynamic

driving force toward these IrO3 phases under OER conditions suggests that these structures

may spontaneously form under reaction conditions, especially for systems that undergo a

large degree of surface reconstruction.25

Figure 5: Revised bulk Pourbaix diagram of the Ir-H2O system as a function of applied
potential (USHE) and pH. The diagram was constructed with Ir(s) (blue), R-IrO2 (green),
various IrO3 polymorphs and a dissolved IrO –

4 ion species (dark grey). The stability regions
corresponding to the metastable R-IrO3 and β-IrO3 polymorphs (see text), in the absence
of any competing IrO3 phase, are displayed as yellow and pink lines, respectively. The ther-
modynamic onset of OER (water equilibrium at 1.23 V RHE) is also shown. To be compared
to Figure S4 without IrO3 phases. See Table S3 for the bulk formation energies (∆Gf) used
to construct the diagram.

We next computed the surface energy Pourbaix plots and OER activity for various sur-

face facets at select coverages (for simplicity we only choose bare and one monolayer of OH*

and O*) of all four systems from Figure 5; results are summarized in Figure 6. For each

polymorph, surfaces were constructed by cleaving along the Miller indices with the highest

calculated diffraction peaks, corresponding to planes with higher density of atoms. The

surface free energy Pourbaix plots identify which surface facets and surface coverage species

are thermodynamically preferred under OER conditions. Our results show that most of the
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facets prefer to have a high surface coverage of O*, therefore we consider mainly oxygen

terminated surfaces for the OER analysis. Our results are comparable to previous studies

on the electrochemical stability of IrO2 surfaces,58,59 but without considering highly recon-

structed facets such as (101). The surface stability analysis is therefore crucial for accurate

determination of the activity.

The calculated OER activities of relevant OER stable surfaces are plotted against the

∆GO-∆GOH descriptor and are shown in Figure 6b. There, we display two thermodynamic

limiting potential volcanos based on (1) the standard universal52 (black) and (2) fitted

(grey) scaling relations between the OER intermediates (Figure S5). Additionally, we have

also added a kinetic OER volcano (dashed line) from Dickens et al.63 based on the detailed

microkinetic model developed for rutile systems. The kinetic volcano is constructed at the

potential required to reach 10 mA cm−2. The thermodynamic and kinetic volcanos agree

remarkably well in the strong binding portion (left hand side) of the plot and exhibit sim-

ilar optimum value, ∆GO-∆GOH ≈ 1.55-1.65 eV. The corresponding surface structures for

selected systems featuring high oxygen coverage are visualized in Figure 6c.

In general, the R-IrO2 surfaces bind the OER intermediates relatively strongly, with

theoretical limiting potentials of ∼1.8 V RHE (overpotential of 0.57 V RHE) having the *O to

*OOH potential limiting step, in agreement with previous theoretical studies.59,64,65 The

predicted overpotentials of our R-IrO2 systems are also within the range of experimentally

observed values (horizontal lines).25,60 The surfaces of the three IrO3 polymorphs have ∆GO-

∆GOH values shifted to higher energies, indicative of overall weaker binding energetics (see

also Figure S5). On average, the adsorption of OH* and O* is weakened by 0.7 and 1.2 eV

relative to IrO2 (Table S4), respectively. The highest performing systems include the α-IrO3

(100), (110), and (211), followed by β-IrO3 (101), and then R-IrO3 (110). These surfaces

have overpotentials of ∼0.4 V RHE, which represents a ∼0.2 V RHE improvement over R-IrO2,

mirroring the observed shift in experimental onset potentials (horizontal lines).25,60 The

primary driver for the improved OER activity is the higher oxidation state of IrO3 compared
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Figure 6: Summary of OER results for the following four bulk structures of IrOx: R-IrO2

(green), α-IrO3 (purple), R-IrO3 (orange), and β-IrO3 (pink). (a) Surface energy Pourbaix
diagrams for each structure, with the surface energy of various facets and coverages shown
as a function of applied potential (V RHE). The bulk Pourbaix diagram’s bounds of stability
at pH 0 are superimposed as horizontal bars at the bottom of each subplot. The pseudo-
stability regimes for the metastable β-IrO3 and R-IrO3 are indicated by dashed vertical lines.
(b) OER activity volcano for IrOx systems considered utilizing the ∆GO-∆GOH descriptor.
The horizontal lines correspond to recent experimental OER limiting potentials for R-IrO2

(110)60 and SrIrO3,
25 at 10 mA cm−2 (extrapolated values). (c) Corresponding structural

models for selected OER surfaces at one mono-layer O* coverage used for calculation of the
overpotentials. Color legend: oxygen (red), purple (iridium), coordination motif (white).
Computational cell is displayed by black lines. All OER slab models and corresponding DFT
energies are freely available under the “FloresActive2020”61 dataset at Catalysis-hub.org.62

17



to IrO2, having only three 5d-electrons for Ir6+ as opposed to five 5d-electrons in Ir4+,

respectively. Oxygen saturated IrO3 systems thus bind OER intermediates more weakly,

which leads to positive shift in ∆GO-∆GOH. IrO2 and RhO2 are generally overbinding for

OER63 so there is consequent improvement in OER activity when compared to these oxides.

These results are consistent with Back et al., who recently computed elevated activity in

highly oxidized IrO3 catalysts.66 An added feature of α-IrO3 is comparably higher density

of active sites due to completely corner-sharing geometry. The exact improvement in the

theoretical overpotential is slightly dependent on the DFT level of theory and the inclusion

of spin polarization, and has been discussed recently.64,65

Conclusion

We have described a cogent procedure for generating and searching a structurally diverse

candidate space of bulk structural prototypes with a desired composition. Once this space

is enumerated, we show how it can be efficiently searched using an algorithm with an active

learning loop without a prior knowledge of accurate atomic positions. In most cases, the

DFT optimization of only a fraction of the candidates leads to identification of the most

stable polymorphs. In particular, this approach is well-suited for discovery in structurally

diverse structures, such as metal oxides and other metal-ligand bulk systems, where there

exits a large degree of structural diversity. The current dataset includes octahedral, tetrahe-

dral, square-pyramidal, cubic, and square-planar Ir-O conformers. We also note, that our AL

algorithm is capable of discovering experimentally known phases such as pyrite, columbite

and layered IrO2 and several recently discovered layered IrO3 phases formed by Li+ deinter-

calation. In particular, we have identified a number of previously unknown IrO3 polymorphs

below the amorphous synthesizability limit, including a new globally stable α-IrO3 phase.

This high valency Ir6+ phase is stable under OER relevant conditions and has an ideal 100%

corner-sharing octahedral structure, a short Ir-O bond length of 1.93 Å, and also has a very
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high surface coverage of active oxygens. Calculations of surface thermodynamics reveal this

structure and other OER stable IrO3 phases have much higher theoretical OER activity than

a benchmark rutile IrO2. The thermodynamic stability and high OER activity of the α-IrO3

phase may provide clues as to the nature of the yet uncharacterized structures reported

after reconstruction of SrIrO3 and IrOx precursors under OER reaction conditions. Meth-

ods combining diverse structural generation, AL-enabled accelerated searches, and ab-initio

simulation of material performance could open up new avenues for in silico material design

with application tailored structural properties.
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Göbel, M.; Schenk, S.; Degelmann, P.; André, R.; Glaum, R.; Hautier, G. Statistical
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