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Abstract: Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but
the relevance of this interaction for the course of infection and development of disease remains unclear.
We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and
show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral
RNA and infective particles were enriched in the cellular fraction of blood. While erythrocyte-
associated ISAV remained infectious, erythrocytes dose-dependently limited the infection of cultured
cells. Surprisingly, immunostaining of blood smears revealed expression of ISAV proteins in a small
fraction of erythrocytes in one of the examined trials, confirming that ISAV can be internalised in
this cell type and engage the cellular machinery in transcription and translation. However, viral
protein expression in erythrocytes was rare and not required for development of disease and mortality.
Furthermore, active transcription of ISAV mRNA was higher in tissues than in blood, supporting
the assumption that ISAV replication predominantly takes place in endothelial cells. In conclusion,
Atlantic salmon erythrocytes bind ISAV and sequester infective virus particles during infection, but
do not appear to significantly contribute to ISAV replication. We discuss the implications of our
findings for infection dynamics and pathogenesis of infectious salmon anaemia.

Keywords: orthomyxovirus; isavirus; red blood cell; adsorption; decoy; viral replication; nucleated
erythrocyte

1. Introduction

Infectious salmon anaemia virus (ISAV) is a segmented negative-stranded RNA virus
that belongs to the Orthomyxoviridae family. ISAV exists in two variants. The first is a
non-pathogenic variant that only appears to infect the mucosal epithelium [1]. This variant
is referred to as HPR0, based on the presence of a full-length highly polymorphic region
of segment 6. The commonly accepted hypothesis is that HPR0 represents the wild type
form of the virus, from which pathogenic ISAV arises [1,2]. The pathogenic variant is
referred to as HPR∆, based on deletions in the highly polymorphic region of segment 6 [3].
In contrast to HPR0, HPR∆ has acquired the ability to cause a generalized infection of
vascular endothelial cells and may lead to severe disease in farmed Atlantic salmon, Salmo
salar L. [3]. HPR∆ poses a serious economic and welfare concern to the global salmon
aquaculture industry, and infection with either form of ISAV is notifiable to the OIE/World
Organisation for Animal Health [4], whereas the European Union only requires notification
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of infection with HPR∆. For the rest of this article, the term ISAV will refer to the HPR∆
variant, unless otherwise noted.

The pathogenesis of infectious salmon anaemia (ISA) is characterised by severe
anaemia and circulatory disturbances. In the late stages of disease, fish commonly present
with pale gills and haematocrit values below 10% [3,5]. Other typical findings in diseased
fish include ascites, multi-organ petechial haemorrhages, and congestion of the liver, kidney,
and/or spleen [3,5,6]. The mechanism by which ISAV infection causes anaemia has not been
characterised. One hypothesis is that the binding of ISAV to erythrocytes shortens their life
span and contributes to the typical regenerative anaemia of late-stage infection [3]. ISAV
attaches to cell surfaces by the ISAV haemagglutinin esterase (HE), a viral surface protein
that binds 4-O-acetylated sialic acids. This sialic acid variant is expressed by epithelial cells,
vascular endothelium, and erythrocytes [7–9]. Following an initial replication phase in
mucosal epithelium, ISAV replicates in and buds from vascular endothelial cells [8,10,11].
Viral budding from the endothelium appears to be predominantly luminal [8,11], suggest-
ing that most endothelial-produced viral particles enter the blood stream. In line with this,
viraemia has been reported in several infection trials [2,12,13].

Many questions remain unanswered regarding how ISAV-erythrocyte interactions
influence the course of infection and the development of ISA. Like several other viruses
that target sialic acids, ISAV crosslinks erythrocytes in vitro in a reaction referred to as
haemagglutination [14]. Over a course of several hours, most haemagglutinating viruses
cleave their cellular receptor, allowing the agglutinated erythrocytes to elute from the
reaction. Like these viruses, ISAV HE has a catalytic pocket with esterase activity distant
from its receptor binding domain [9,15,16]. Accordingly, ISAV-agglutinated erythrocytes
from rainbow trout successfully elute from ISAV-mediated agglutination [14,17]. Curiously,
Atlantic salmon erythrocytes do not [14,17]. We do not currently know if this in vitro finding
also translates to a difference in how robustly ISAV associates with circulating erythrocytes
in infected fish of these species. However, extensive ISAV-coating of erythrocytes has been
observed in experimentally infected Atlantic salmon [8]. This suggests that ISAV remains
associated with erythrocytes during viraemia, at least for some time. The consequences of
such binding are poorly understood. While no evidence of causality exists, the ability to
elute from erythrocytes appears to relate inversely to the susceptibility to disease. Rainbow
trout can sustain ISAV infection [18,19], yet experimental infection does not appear to
induce signs of ISA in this species, with the exception of a single study where ISA-like
disease was observed in a few family groups [19–21]. Furthermore, the one reported case
of natural ISAV infection in rainbow trout was not associated with disease [18]. In contrast,
Atlantic salmon is the only species where natural outbreaks of ISA have been reported.

Additionally, while one research group reported ISAV endocytosis [22] and repli-
cation [23] in virus-agglutinated erythrocytes, these findings have not been confirmed.
Moreover, the studies have some limitations, including an uncertain relevance to the situa-
tion in infected fish and lack of measures to exclude non-erythrocytes from the inoculated
cell populations. Altogether, it remains unknown if circulating erythrocytes are permissive
to ISAV replication.

In this study, we analysed Atlantic salmon blood samples obtained from two inde-
pendent ISAV infection trials with different outcomes, substantiating that viraemia and
erythrocyte binding is a consistent and persisting feature of infection, and that blood-borne
ISAV predominantly remains within the cellular compartment. A fraction of erythrocytes
expressed ISAV proteins in one of the trials. However, such expression was rare and not
required for disease and mortality to develop. Furthermore, ISAV mRNA transcription
in blood was negligible, compared to that in heart and kidney. Therefore, despite a small
subset of Atlantic salmon erythrocytes being at least partly permissive to ISAV infection,
erythrocytes do not appear to contribute significantly to ISAV replication. Erythrocyte-
bound ISAV remained infectious, yet erythrocytes inhibited serial infection of cultured
cells in a decoy-like manner. Our findings raise the question of how viral-erythrocyte
interactions modulate infection dynamics and disease pathogenesis in ISA.
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2. Materials and Methods
2.1. Fish and Experimental Infection

The 2018 infection trial was recently described [24]. Briefly, Atlantic salmon postsmolts
(mean weight 80 g, Stofnfiskur, Benchmark Genetics, Iceland) were infected with ISAV
Glesvaer/2/90 by a 2-h immersion challenge (2 × 104 TCID50/mL) and maintained in tanks
supplied with filtered, UV-treated seawater (33‰ salinity). In the 2020 trial, Atlantic salmon
presmolts (mean weight 60 g, Stofnfiskur, Benchmark Genetics, Iceland) were infected with
ISAV Glesvaer/2/90 by a 2-h immersion challenge (103.5 TCID50/mL, which translates to a
6-fold lower virus concentration than the 2018 trial) and maintained in 180-litre round tanks
supplied with fresh water. Both trials used unvaccinated fish that had been tested and
found negative for the presence of common infectious agents, including ISAV, infectious
pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, and salmon gill
poxvirus. In addition, fish in the 2018 trial were tested and found negative for salmonid
alphavirus, and fish in the 2020 trial were tested and found negative for piscirickettsia
salmonis, viral haemorrhagic septicaemia virus, and infectious haematopoietic necrosis
virus. The water temperature in both trials was 12 ◦C. Blood for in vitro experiments
was collected from Atlantic salmon (weights between 100–200 g, Atlantic QTL InnOVA
SHIELD/RED, AquaGen, Trondheim, Norway) maintained in fresh water, 12–14 ◦C. All
blood sampling was performed on deeply anaesthetised fish. Anaesthesia was induced by
immersion in water containing 100 mg/mL tricaine methanesulfonate (MS-222 or Tricaine
Pharmaq, Pharmaq, Overhalla, Norway), and blood was collected from the caudal vein
in heparinised tubes. After blood sampling, fish were examined for gross pathological
changes and killed by cervical sectioning. Organs were harvested into RNAlater (#AM7021,
Thermo Fisher Scientific, Waltham, MA, USA) for nucleic acid analyses and 10% buffered
formalin for histopathology and immunohistochemistry. Haematocrits were measured
within 1–2 h after blood sampling.

2.2. Evaluation of Erythrocyte Osmotic Fragility

Erythrocyte fragility was evaluated as previously described [25], with some minor
modifications. Briefly, blood was diluted 1:1 in phosphate-buffered saline (PBS), 10 µL
of this suspension was added to 500 µL aliquots of serially diluted NaCl (concentration
3–10 g/L), mixed gently by inversion, incubated for 20 min at room temperature, and
centrifuged (800× g, 4 min, room temperature). Supernatants were transferred to 96-well
plates, and haemolysis was estimated by measuring the optical density at 405 nm by
spectrophotometry (MultiskanTM SkyHigh, Thermo Fisher Scientific).

2.3. Cells

Atlantic salmon erythrocytes (red blood cells, RBC) were purified from heparinised
blood diluted 1:2–1:10 in PBS, layered on a 51% Percoll Plus (#17-554-01, GE Healthcare Life
Sciences, Chicago, IL, USA) gradient, and centrifuged (400× g, 30 min, 4 ◦C). When used
for in vitro culture, RBC were washed (3 × PBS) and resuspended (2.0 × 107 cells/mL) in L-15
medium (#12-700F, Lonza, Basel, Switzerland) supplemented with 1% Penicillin/Streptomycin/
Amphotericin (#17-745E, Lonza), 10% FBS (Fetal Bovine Serum, #DE14-801F, Lonza), and
2% L-glutamine (#17-605E, Lonza), hereafter referred to as culture medium. The cell
suspension was transferred to 6-well cell culture plates (3 mL, i.e., 6.0 × 107 cells/well)
and incubated on a digital 2/4 microplate shaker (#0003208000, IKA-Werke GmbH & Co.
KG, Staufen, Germany) at 15 ◦C. Atlantic salmon kidney (ASK [20]) cells were maintained
in the same culture medium as the RBC, kept at 20–23 ◦C, split 1:3 every other week, and
used between passage 45 and 55.

2.4. Viruses and Generation of Infective Material

The Norwegian ISAV isolate Glesvaer/2/90 [26] (NCBI GenBank accession numbers
HQ259671.1-HQ259678.1) was used throughout this study. ISAV was propagated in ASK
cells as previously described [8,24]. Briefly, cellular monolayers were inoculated with ISAV
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in FBS-free culture medium for 4 h at 15 ◦C before addition of culture medium with 2%
FBS and incubation at 15 ◦ C. Virus supernatants were harvested and cleared by filtration
(0.2 µm) or centrifugation (3800× g, 10 min, 4 ◦C). Virus stocks were stored at −80 ◦C.
Infective titres were calculated by the 50% tissue culture infective dose (TCID50/mL)
as previously described [14]. Membrane-fractions of infected ASK cells for use in the
virus binding assay were collected as described elsewhere [8]. Briefly, cells were washed
(3 × PBS), detached by a cell scraper, and pelleted by centrifugation (500× g, 10 min, 4 ◦C).
Pellets were washed (2 × PBS), lysed by three cycles of freeze-thawing, and cleared super-
natants containing cell membrane fractions with high expression levels of ISAV surface
proteins were collected after centrifugation (10,000× g, 10 min, 4 ◦C). Haemagglutination
titres of supernatants were determined using RBC harvested from non-infected Atlantic
salmon, suspended in PBS (0.5%, i.e., 1.0 × 107 cells/mL).

2.5. Preparation of RBC Membrane Fractions

RBC membrane fractions were prepared based on a previously described protocol [27]
with some modifications. Briefly, RBC from two individual Atlantic salmon were mixed
1:1, and 100 µL of this cell suspension was lysed by 1:10 dilution in ice cold water with 1%
protease inhibitors (#P8340, Sigma-Aldrich, Merck KGaA, Burlington, MA, USA, 10 min on
ice). The cells were homogenized with a tight-fitting dounce (20 strokes). After addition of
1000 µL of buffer A (12.5 mM MgCl, 15 mM EDTA, 75 mM Tris, pH 7.5), the solution was
homogenized again. To remove nuclei and organelles, the cell suspension was centrifuged
(5000× g, 5 min), and the supernatant was transferred to an ultracentrifuge tube, placed on
ice. The homogenisation procedure was repeated three times with the cell pellet in buffer A
diluted 1:1 with water. The pooled supernatant fractions were then centrifuged (40,000× g,
30 min) and the membranous pellet resuspended in 25 µL buffer B (20 mM Tris, 2 mM
EDTA, pH 7.5) and stored at −80 ◦C.

2.6. Blotting, Virus Binding Assay, and Staining of Erythrocyte Membrane Fractions

SDS-PAGE and Western blotting (NuPage Novex system, Invitrogen, Thermo Fisher
Scientific) was performed using 10 µL of the RBC membrane lysate. Three parallel 0.45 µm
nitrocellulose membranes (#162-0115, BioRad laboratories, Hercules, CA, USA) were pre-
pared in each experiment. One membrane was used for periodic acid schiff (PAS) staining
for glycoproteins as described by the manufacturer (Pierce glycoprotein staining kit, #24562,
Thermo Fisher Scientific). The other two membranes were used for the virus binding assay:
one membrane was saponified (30 min, 0.1 m NaOH, 37 ◦C) prior to the assay to remove
acetylations. The membranes were blocked in 3% dry milk in tris-buffered saline with
0.05% Tweens (TBST, 60 min, room temperature), washed (2 × 10 min, TBST), incubated
with membrane fractions of ISAV-infected ASK cells (512 haemagglutinating units/mL,
1 h, room temperature), as described elsewhere [8], washed (3 × 15 min, TBST), incu-
bated with mouse IgG1 specific to ISAV HE (clone 3H6F8, 1:150, 1 h, room temperature),
washed (3 × 15 min, TBST), incubated with HRP-conjugated horse anti-mouse IgG (#7076,
Cell Signaling, Danvers, MA, USA, 1:1000, 1 h, room temperature), and washed again
(3 × 15 min, TBST). Virus binding was detected by chemiluminescence, using Super Signal
West pico plus substrate (#34579, Thermo scientific) and Chemidox XRS+ (BioRad laborato-
ries). Gels were stained for total protein by SimplyBlue SafeStain (#LC6060, Invitrogen).

2.7. Experimental Infection of Cells

For inoculation of plasma and RBC from infected fish, ASK cells were seeded in flat-
bottom 96-well culture plates and allowed to reach confluence. The inoculates were added
to plates in 5-fold dilutions, starting at 10 µL per well, and plates were incubated at 15 ◦C
for 5 days before fixation in 80% acetone (Sigma-Aldrich) and immunofluorescent staining
for ISAV, as described in Section 2.8. Infective titres were calculated by the 50% tissue
culture infective dose (TCID50/mL) as previously described [14]. For visualisation of viral
proteins in ASK cells, cells were seeded in 8-well µ-slides (#80826, Ibidi GmbH, Gräfelfing,
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Germany), inoculated 24 h, infected, and fixed in 4% paraformaldehyde (Sigma-Aldrich)
at the given time points. For RBC/ASK co-culture, ASK cells were seeded in flat bottom
96-well culture plates (3.0 × 103/well), incubated at 20 ◦C for 24 h, infected with ISAV
(1.0 × 103 TCID50/well), and incubated at 15 ◦C for 24 h. Next, a two-fold serial dilution
of RBC (1:2 to 1:256) was made from a 106 RBC/mL suspension, and 25 µL added per
well, exposing infected ASK cells to a range of 1 × 102–1.25 × 104 RBC/well. All samples
were incubated on a digital 2/4 microplate shaker at 15 ◦C for 48 h. Following incubation,
supernatants from each well were collected and transferred onto uninfected ASK cultures
in 96 well plates and incubated on a digital 2/4 microplate shaker at 15 ◦C for another 48 h.
After incubation, the culture plates were washed (PBS), fixed in 80% acetone and air-dried
before immunofluorescent staining for ISAV nucleoprotein, as described in Section 2.8. The
number of green fluorescent cells was counted by using the Spectramax i3x plate reader,
minimax 300 Imaging Cytometer module (Molecular devices, San Jose, CA, USA). The
binding of released ISAV to inoculated RBC was simulated by incubating serial dilutions
of RBC as described above with ISAV 1 × 103 TCID50/mL on the 2/4 digital microplate
shaker (60 min, 15 ◦C), washing the RBC in PBS, and lysing them in RLT buffer (#79216,
Qiagen, Hilden, Germany) before RNA extraction and qPCR as described in Section 2.9.

2.8. Immunostaining and Microscopy

For immunofluorescent staining of acetone-fixed blood smears and acetone- or parafor-
maldehyde-fixed cells for viral proteins, the following antibodies were used: mouse IgG1
targeting ISAV HE (clone 3H6F8 [28], 1/100) and ISAV nucleoprotein (#P10, Aquatic
Diagnostics Ltd., Stirling, Scotland, 1/500) and/or rabbit polyclonal serum reactive with
recombinant ISAV matrix protein (K806, 1/50). Goat anti-mouse IgG or IgG/IgM–Alexa 488
(#A11001 or #A10680, Molecular Probes, Thermo Fisher Scientific, used 1/400 and 1/200)
and goat anti-rabbit IgG–Alexa 594 (#A11012, Molecular Probes) were used for detecting
bound antibodies. Briefly, blood smears were incubated with 5% dry milk in PBS (30 min,
room temperature) before incubation with primary antibody diluted in blocking buffer
(60 min, room temperature), washed (3 × 5 min PBS), incubated with secondary antibody
diluted in blocking buffer (45 min, room temperature), washed (2 × 5 min PBS, 1 × 5 min
PBS with Hoechst 33,342 [Molecular Probes, 1:5000], 1 × PBS), air dried and mounted in
ProLong Gold Antifade Mountant (# 10144, Molecular Probes). The same protocol was
used for staining cells, but blocking was omitted, and antibodies were diluted in PBS only.
Wide-field fluorescent microscopy was performed using a Zeiss Axiocam 503 equipped
with a N-Achroplan 63×/0.85 Ph3 M27 objective. Confocal microscopy was performed
using a Zeiss LSM 710 equipped with a Plan-Apochromat 63×/1.40 oil DICM27 objective.
Uncropped micrographs are included as Supporting information. Original image files can
be obtained upon request.

For immunohistochemistry, sections of formalin-fixed paraffin-embedded tissues were
placed on Superfrost slides, deparaffinised, rehydrated, and heat treated (60–70 ◦C, 20 min).
Immunohistochemistry was performed as previously described [8]. Antigen retrieval was
performed by incubation in citric acid (0.1 M, pH 6.0) for 5 min in the microwave (800 W),
followed by cooling in the retrieval buffer for another 15 min. Sections were washed (TBS),
incubated with blocking buffer (2% goat serum, 5% dry milk, 20 min), incubated with rabbit
anti-ISAV nucleoprotein (K716, 1:3000, 4 ◦C, overnight), washed (TBS), and signal was
visualised by the Vectastain ABC anti-rabbit IgG AP Immunodetection kit (#AK-5001, Vector
laboratories, Burlingame, CA, USA), according to manufacturer’s instructions. Sections
were counterstained by haematoxylin, mounted, and evaluated by light microscopy, using
a Leica DM5000B.

2.9. RNA Extraction and qPCR

Three laboratories took part in RNA extractions and qPCR analyses, performed ac-
cording to each laboratory’s established protocols.
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Starting materials for qPCR analyses included full blood (both trials) density gradient-
purified RBC (2020 trial, 20 µL), plasma (2020 trial, 50 µL), head kidney (2020 trial), heart
(2020 trial), sucrose-purified ISAV, and in vitro cultured ASK cells (confluent wells, 6-well
plate) and RBC (107 cells for measuring ISAV replication and the response to infection;
RBC pellets of reducing size, according to dilution, for measuring decoy function). Full
blood from the 2020 trial was lysed and homogenized using the Indimag pathogen kit
(#SP947457, Indical biosciences, Leipzig, Germany) on the IndiMag automated platform
(Indical bioscience). Remaining samples were lysed in RLT buffer (#79216, Qiagen). In vitro
cultured ASK and RBC were homogenized using QIA-shredder spin column (#79656,
Qiagen) for 2 min at maximum speed. Blood, plasma, and tissue samples in RLT were
homogenized by 3–5 mm steel beads in a TissueLyser II (#85300, Qiagen, 24.7–30 Hz,
2 × 4–5 min).

RNA was extracted by the RNeasy Mini kit (#74106, Qiagen) (Samples for comparison
of virus levels in blood at the peak of infection in the two trials; description of infection
dynamics and viral transcription in full blood in the 2018 trial; RBC in vitro experiments),
the IndiMag Pathogen kit on the IndiMag automated platform (Indical bioscience) (Samples
for description of infection dynamics in the 2020 trial), or by the QIAsymphony RNA kit
(#931636, Qiagen) on the QIAsymphony automated platform (Qiagen) (Samples for com-
parison of virus levels in blood cells and plasma; comparison of viral transcription in blood
and tissues in the 2020 trial). After RNA extraction, a NanoDrop™ 2000 spectrophotometer
(Thermo Fisher Scientific) was used to estimate purity and yield of RNA, and samples were
stored at −80 ◦C.

One-step qPCR (Samples for description of infection dynamics in full blood in the 2020
trial; comparison of virus levels in blood cells and plasma; comparison of viral transcription
in blood and tissues in the 2020 trial) was performed either on the Stratagene MX300P
instrument (Agilent) (Samples for description of infection dynamics in the 2020 trial) with
5 µL input RNA, TaqPath 1-step RT-qPCR mastermix, CG (Thermo Fisher Scientific), 900 nM
of each primer, and 250 nM probe in a 20 µL reaction volume, or on the QuantStudio 5
real-time PCR instrument (Thermo Fisher Scientific) (Samples for comparison of virus
levels in blood cells and plasma; comparison of viral transcription in blood and organs in
the 2020 trial) with 2 µL input RNA, TaqPath 1-Step RT-qPCR Master Mix (Thermo Fisher
Scientific), 1 µM of each primer, and 200 nM probe in a 10 µL reaction volume.

For experiments based on 2-step qPCR (Samples for comparison of virus levels in
blood at the peak of infection in the two trials; description of infection dynamics and viral
transcription in full blood in the 2018 trial; RBC in vitro experiments), cDNA was synthe-
sised by the QuantiTect Reverse Transcription kit (#205311, Qiagen) with gDNA elimination,
according to manufacturer’s instructions. 0.5–1 ug RNA in a 20 µL total reaction volume
was used for cDNA synthesis, except in the experiment that measured how much ISAV
was sequestered in a RBC pellet of diminishing size, rather than the ISAV sequestered per
cell. To address this, RNA input was normalised according to volume. cDNA samples were
stored at −20 ◦C until 2-step qPCR was performed, using the CFX384 Touch Real-Time
PCR Detection System (BioRad laboratories). Samples from in vitro cultured ASK cells and
RBC were analysed in a SYBR Green assay using 2 µL (5 µg) input cDNA, 2x SsoAdvanced
Universal SYBR Green Supermix (#1725270, BioRad laboratories), and 10 µM of each primer
in a 10 µL reaction volume. Blood samples (Samples for comparison of virus levels in
blood at the peak of infection in the two trials; description of infection dynamics and viral
transcription in full blood in the 2018 trial) were analysed in TaqMan assays, using 2 µL
(5 µg) input cDNA, 2× TaqMan Fast Advanced Master Mix (#4444556, Thermo Fisher
Scientific), 10 µM of each primer, and 10 µM probe in a 10 µL reaction volume. Data were
analysed using the CFX Manager software (version 3.1.1621.0826, BioRad laboratories).

Standard curves of synthetic DNA fragments (gBlocks) containing the relevant target
sequences (Integrated DNA Technologies, Coralwille, IA, USA) were used for calculation
of copy number per µg RNA or µL sample, as relevant. Sequences for primer/probe sets
and gBlocks are provided in Supplementary Tables S1 and S2, respectively.
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2.10. Statistics

Graph Pad Prism 9 for Windows 64-bit (version 9.0.1) was used for visualisation
of data and statistics. Descriptive data were extracted from column statistics. Where
appropriate, significance testing of non-parametric data was performed by the Mann–
Whitney U, Kruskall–Wallis, or Wilcoxon matched-pairs signed ranks tests. Significance
testing of parametric data was performed by one sample t test and the RM 2-way ANOVA
with the Geisser Greenhouse correction.

3. Results
3.1. ISAV Binds Erythrocyte Membrane Glycoproteins

ISAV attaches to cellular 4-O-acetylated sialic acids [9,15]. Detection of glycoproteins
in Atlantic salmon erythrocyte membrane fractions by periodic acid-schiff (PAS) staining
revealed three clear glycoprotein-containing bands, including a diffuse band at the level of
the 80 kDa marker and two additional smaller bands located between the 50 and 60 kDa
markers (Figure 1A). A virus binding assay (Figure 1B) revealed that ISAV bound the
glycoprotein-rich band at the 80 kDa marker, the upper of the two glycoprotein-rich bands
between the 50 and 60 kDa markers (Figure 1A,B, arrow and star), and two bands at the
level of the 35 and 45 kDa molecular markers with no obvious accompanying PAS signal.
The lower glycoprotein-containing band between the 50 and 60 kDa markers did not appear
to bind ISAV. Saponification of membranes prior to the virus binding assay obliterated all
ISAV-binding, presumably by removal of 4-O-acetyl-groups (Figure 1C).
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Figure 1. ISAV binds Atlantic salmon erythrocyte membrane glycoproteins. Plasma membrane-en-
riched erythrocyte lysates were separated by gel electrophoresis under denaturing conditions and 
blotted to nitrocellulose membranes. (A) Periodic acid-schiff staining to visualise glycoproteins. The 
numbering to the left indicates the weight of the molecular marker in the left lane. (B,C) Virus bind-
ing assay to blotted membranes from parallel runs, visualising bound antigen by detection of ISAV 

Figure 1. ISAV binds Atlantic salmon erythrocyte membrane glycoproteins. Plasma membrane-
enriched erythrocyte lysates were separated by gel electrophoresis under denaturing conditions
and blotted to nitrocellulose membranes. (A) Periodic acid-schiff staining to visualise glycoproteins.
The numbering to the left indicates the weight of the molecular marker in the left lane. (B,C) Virus
binding assay to blotted membranes from parallel runs, visualising bound antigen by detection of
ISAV HE. (B) Arrow points to the predominant ISAV-binding glycoprotein-containing band; star
indicates a second ISAV-binding glycoprotein-containing band; in contrast, two ISAV-binding bands
at 35 and 45 kDa indicated by open arrowheads, did not have obvious corresponding PAS bands.
(C) Prior saponification of the blotted membrane obliterated all ISAV binding. (D) Total protein
staining of representative gel. Images show full-length lanes representative of three independent
experiments. Original images have been uploaded as supporting information.

3.2. In ISAV-Infected Fish, a Fraction of Erythrocytes Becomes Coated with Viral Particles, and the
Erythrocyte Osmotic Fragility Increases

To better characterise interactions between ISAV and erythrocytes in infected Atlantic
salmon, we analysed serial blood samples from two independent infection trials based
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on ISAV immersion challenge. The trials were performed at the Industrial and Aquatic
Laboratory (Bergen, Norway) in 2018 and at the Danish National Institute of Aquatic
Resources (Lyngby, Denmark) in 2020, respectively. Other aspects of the 2018 trial were
recently reported in another publication [24]. The outcomes of infection were very different
(Figure 2). As reported [24], infected fish in the 2018 trial started to die 12 days post
infection (d.p.i.), with mortalities rapidly progressing to 100% at 21 d.p.i. In contrast, the
2020 trial resulted in less severe disease. No fish died before 18 d.p.i., and the cumulative
mortality was 21% at 24 d.p.i.
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Figure 2. Cumulative mortality in the two ISAV infection trials used in this study. Materials
analysed in this study were harvested from two independent ISAV infection trials conducted at
different locations and in different years. (A) Cumulative mortality in the 2018 trial (results have been
published previously [24], but are included for reference). (B) Cumulative mortality in the 2020 trial.

Haematocrit values were measured in both trials and defined as reduced if below the
range observed in non-infected individuals (Figure 3A,B). In the 2018 trial (Figure 3A),
the range of haematocrit values in non-infected fish (n = 8) was 40–56% (median 49%,
interquartile range 42–52%). Reduced haematocrits were detected in 1/3 fish at 7 d.p.i.,
3/3 fish at 9 d.p.i., 1/3 fish at 11 d.p.i., 2/3 fish at 12 d.p.i., 3/3 fish at 13 d.p.i., 3/3 fish at
14 d.p.i., and 3/3 fish at 15 d.p.i. Haematocrits were severely reduced, reaching 10% in
individual fish. In the 2020 trial (Figure 3B), the range of haematocrit values in noninfected
fish (n = 48) was 37–57% (median 46%, interquartile range 43–48%). Anaemia in the
infected fish group was less pronounced and transient compared to the 2018 trial, with
reduced haematocrits detected in 3/5 fish at 13 d.p.i., 4/5 fish at 17 d.p.i., and 2/5 fish
at 24 d.p.i. Viraemia developed in both trials. Interestingly, and despite a difference in
the peak viral load in blood (Figure 3C), the infection dynamics in full blood appeared
similar, with viraemia peaking at 12–13 d.p.i. (Figure 3D). Immunostaining of blood smears
from infected fish with an antibody targeting ISAV HE revealed prominent coating of
erythrocytes with HE-positive particles in both trials. The appearance of a typical ISAV-
coated erythrocyte is shown in Figure 3E. The coating of erythrocytes was most extensive
in the 2018 trial (Figure 3F), in agreement with the blood viral loads. In both trials, ISAV-
coating of erythrocytes preceded the development of anaemia and mortality, becoming
obvious at 4 d.p.i. (2018 trial) and 13 d.p.i. (2020 trial), respectively. In line with early work
that showed increased osmotic fragility in erythrocytes from severely anaemic fish from
Norwegian ISA outbreaks in the late 1980s [25], we observed an increase in erythrocyte
osmotic fragility in both infection trials that corresponded in time to the onset of anaemia
(Figure 3G,H). The increase in osmotic fragility observed in our studies was less prominent
than that previously reported from the outbreak situation.
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3.3. ISAV Particles Are Enriched in the Erythrocyte Fraction of Blood 

Figure 3. ISAV coats erythrocytes in experimentally infected Atlantic salmon. (A,B) A reduction in
haematocrit was observed in both the 2018 (A) and 2020 (B) trials. Dots represent individual fish,
solid lines connect median values, and dotted lines indicate the range of values in the non-infected
fish group. (C) ISAV segment 8 qPCR in blood sampled at the peak of viraemia (12 + 13 d.p.i and
13 d.p.i., respectively) in the 2018 and 2020 trials. Dots represent individual fish, bars show median
values. ** p = 0.0095, Mann–Whitney U. (D) Viral infection dynamics in full blood in the 2018 and
2020 trials. Dots represent individual fish, lines connect median values. (E) Wide-field micrograph of
typical appearance of immunostaining for ISAV HE (green) in blood smear from infected fish (here:
5 d.p.i., 2018 trial). Nuclei are shown in blue. Image signal was enhanced in ImageJ [29] (version
2.1.0/1.53c; Java 1.8.0_172 [64-bit]) using the multiply function (process > maths > multiply). (F) The
percentage of HE-positive erythrocytes at the peak of viraemia in both trials. Bars show median +/−
95% confidence intervals of manual counts from 10 microscope fields. **** p < 0.0001, Mann–Whitney
U. (G,H) Osmotic fragility of erythrocytes in the infection trials. The graphs show mean erythrocyte
lysis at each NaCl concentration +/− SEM of 3 (2018) or 5 (2020) individual infected fish harvested
at 9 d.p.i (2018) or 13 d.p.i. (2020), compared to 8 (2018) or 5 (2020) non-infected controls. p-values
give the significance of the difference between control and infected fish, as assessed by a RM 2-way
ANOVA with the Geisser Greenhouse correction.

3.3. ISAV Particles Are Enriched in the Erythrocyte Fraction of Blood

We next assessed ISAV in the different blood compartments of infected Atlantic salmon.
To compare the proportion of virus that resided in the non-cellular and cellular fractions of
blood, we measured viral RNA in plasma and density gradient-purified erythrocytes from
the 2020 trial. RNA was extracted from homogenised samples containing 50 µL plasma or
20 µL erythrocytes and subjected to one-step qPCR as described in Materials and Methods.
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The number of viral copies per µL sample was normalised to the difference in sample input.
We observed that virus levels in individual fish were always highest in the erythrocyte
fraction of blood (Figure 4A). The levels of ISAV in erythrocytes remained higher than in
plasma at all tested time points (Figure 4B).
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No evidence of viral protein expression in erythrocytes was observed in blood smears 
collected during the 2020 trial or in archive blood smears from 16 ISAV-infected fish (6–

Figure 4. ISAV is enriched in the cellular fraction of blood. qPCR of density gradient-purified
erythrocytes (RBC, shown in red) and plasma (black) from individual fish in the 2020 trial showing
(A) the relationship between ISAV mRNA in RBC and plasma in all individual fish and (B) the
relationship of ISAV mRNA in RBC and plasma over the time course of the experimental infection.
Dots represent individual fish. (A) Lines connect values from the same fish. **** p < 0.0001, Wilcoxon
matched-pairs signed rank test. (B) Lines connect median values within each group. The values on
the y-axis have been adjusted for the difference in the sampled volume of RBC and plasma.

3.4. On Rare Occasions, Circulating Salmon Erythrocytes Express ISAV Proteins, but This Is Not
Required for Disease and Mortality

Immunostaining of blood smears from infected fish showed that most erythrocytes
that stained positive for ISAV HE were typical of cells in early-stage infection. These cells
showed signal in bright granular foci, compatible with aggregates of viral particles on
the cell surface and/or in endosomal compartments before fusion (Figure 5A). Never-
theless, the signal pattern in the 2018 trial was more diverse. In addition to the typical
erythrocyte-coating with viral particles (Figure 5A), a small fraction of erythrocytes showed
a homogenous signal pattern consistent with cytoplasmic and membrane localisation, com-
patible with cellular expression of HE (Figure 5B–D). The same cells also showed a positive
nuclear signal for ISAV matrix protein (Figure 5B,C). A few of the ISAV protein-producing
cells had a rounded morphology, consistent with an immature erythroid phenotype
(Figure 5C). However, the nature of these rounded erythrocyte-like cells could not be
verified, due to their rare occurrence. To illustrate the characteristic staining patterns that
correspond to the stages of infection, we have included images of ISAV HE immunos-
tainings in infected ASK cells (Figure 5E). The first hours after infection, the signal is
bright and clearly demarcated (Figure 5E, left panel), similar to the signal observed in
most HE-positive erythrocytes. Over the next 12–24 h, bright signal becomes evident in
the Golgi apparatus, representing cellular HE synthesis (Figure 5E, middle panel). Finally,
24–48 h.p.i., cellularly expressed HE in the cytoplasm and at the cell membrane is clearly
visible as homogeneous cellular signal with a brighter rim at the cell periphery (Figure 5E,
right panel).

No evidence of viral protein expression in erythrocytes was observed in blood smears
collected during the 2020 trial or in archive blood smears from 16 ISAV-infected fish
(6–21 days post infection) from a previously reported trial that resulted in mild anaemia
and 100% mortality [12,30] (data not shown). Moreover, stainings of blood smears made on-
site in numerous field outbreaks with the same antibody used here, have shown a pattern
consistent with Figure 5A, but not the patterns seen in Figure 5B,C [Knut Falk, personal



Viruses 2022, 14, 310 11 of 19

observation]. Our collected findings suggest that ISAV protein expression in erythroid
lineage cells is possible, but very rare, and not required for development of disease.
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Figure 5. Occasionally, a subset of erythrocytes in infected Atlantic salmon express ISAV proteins.
(A–C) Confocal micrographs of immunostained blood smears from ISAV-infected fish in the 2018 trial.
(A) Example of the most frequently observed pattern with extensive coating of erythrocytes with
HE-positive particles. (B,C) Examples of the few erythrocytes (B) and rare rounded erythrocyte-like
cells (C) that express ISAV HE and matrix proteins. Images show maximum intensity projections
from z-stacks. (D) Percentage of HE-expressing erythrocytes in the 2018 trial. The graph shows
medians (dots) and 95% confidence intervals (bars) calculated from manual counts of 10 microscope
fields, 3 fish per time point. (E) Confocal micrographs of immunostained ISAV-infected ASK cells
illustrate the typical change in signal pattern as the infectious cycle progresses. In the initial stage
of infection, staining reveals a bright punctuate pattern (left panel). Once cells start to express ISAV
HE protein, a bright perinuclear signal appears in the region of the Golgi apparatus (middle panel).
Finally, extensive cytoplasmic and membrane staining is present in the late stage of infection (right
panel). Images in panel E were obtained in a single z plane.

3.5. ISAV mRNA Is Predominantly Produced in Solid Organs

To further investigate the role of the blood compartment in viral replication, we esti-
mated viral mRNA transcription with the aid of a mRNA-specific qPCR that measures the
ratio between spliced and unspliced transcripts from genomic segment 7 (ORF2 and ORF1,
encoding the nuclear exporting protein and the nonstructural protein 1, respectively) [31].
We compared ISAV transcription in erythrocytes to that in heart and head kidney, both
considered major sites for ISAV replication, and to plasma and sucrose-purified virus,
where no viral transcription is expected. We observed that viral transcription in erythro-
cytes was similar to that in plasma and purified virus (Figure 6A). Moreover, the ratio
between spliced and unspliced segment 7 transcripts in full blood 12 and 13 d.p.i. in the
2018 trial was similar to that in erythrocytes 13 d.p.i. in the 2020 trial, i.e., at the peak
of viraemia (Figure 6B). In agreement with previous findings, the vascular endothelium
strongly expressed ISAV nucleoprotein (NP) in both heart and kidney, as demonstrated
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by immunohistochemistry (Figure 6C,D). In agreement with our findings in infected At-
lantic salmon, ISAV transcription in in vitro-infected salmon erythrocytes was negligible
(Figure 6E). These results suggest that despite large amounts of viral particles being se-
questered in the blood, viral replication predominantly occurs within endothelial cells of
solid organs. As reported previously, in vitro-infected salmon erythrocytes upregulated
the expression of interferon-alpha (IFNa; IFNa3-like, transcript variants X1 and X2) and
the antiviral protein Mx (transcript variant X1), but to a much lesser extent than ASK cells
(Figure 6F,G).
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show values in individual fish, bars show median and interquartile ranges. (A) ISAV transcription
in heart and kidney was higher than in RBC, plasma, and purified ISAV (13 d.p.i., 2020 trial). Stars
indicate the difference between active transcription in RBC compared to heart (** p = 0.0087) and head
kidney (** p = 0.0079), Mann–Whitney U. (B) ISAV transcription in full blood from fish harvested 12
and 13 d.p.i. in the 2018 trial (2018) and in erythrocytes harvested 13 d.p.i. in the 2020 trial (2020),
detecting no significant difference between trials. (C,D) Micrographs showing immunostaining for
ISAV nucleoprotein (NP, magenta) in formalin-fixed paraffin-embedded heart (C) and head kidney
(D) from fish harvested 13 d.p.i. in the 2020 trial. Arrows point to ISAV NP-positive endothelial cells.
Scalebars are 100 µm. (E–G) RBC from healthy fish were infected ex vivo with ISAV and harvested
1, 24, 48, and 72 h post infection (h.p.i.). qPCR was used to measure (E) ISAV segment 8, (F) IFNa,
and (G) Mx transcripts. ELF-1α was used as reference for calculating fold change in F and G by the
∆∆CT method. The graphs show means +/− standard deviations from RBC from 4 individual fish.
A representative time curve of results from infected ASK cells is included as reference.

3.6. Erythrocyte-Sequestered ISAV Remains Infectious

In support of with our qPCR findings, inoculation of ASK cells with plasma and
erythrocytes from infected fish suggested that the number of infectious particles in erythro-
cytes far exceeded that in plasma (Figure 7A). In this experiment, 10 µL plasma or 10 µL
density gradient-purified erythrocytes were added to 500 µL culture medium, stored at
−80 ◦C, and titred as described in Materials and Methods. Infective titres of blood cell
fractions were high, with levels similar to crude virus supernatants propagated in ASK cell
cultures. Our findings show that erythrocyte-bound ISAV particles remain infective. We
next added erythrocytes to infected ASK cultures 24 h.p.i. and transferred the supernatants
to uninfected ASK cells. We found that the presence of erythrocytes inhibited secondary
infection in a dose-dependent manner (Figure 7B). The reduced infectivity of supernatants
was mirrored by a rise in total erythrocyte-associated ISAV RNA, reflecting the number
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of erythrocytes in the assay (Figure 7C, red). When the erythrocyte content in the pellet
fell, ISAV RNA relative to cellular RNA increased (Figure 7C, black), suggesting that the
erythrocyte capacity to bind ISAV was not saturated at high erythrocyte concentrations.
Our findings suggest that erythrocytes can act as decoys, at least in the in vitro setting.
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Figure 7. Erythrocytes sequester infective ISAV particles and inhibit serial infection of cultured
cells. (A) Density gradient-purified erythrocytes (RBC) and plasma samples were harvested from
ISAV-infected fish (13 d.p.i. in the 2020 trial) and inoculated on ASK cells. Data points represent
samples from individual fish. ** p = 0.079, Mann–Whitney U. (B) Serially diluted RBC from healthy
fish were added to infected ASK cells 24 h p.i. and incubated another 24 h before supernatants were
transferred to new ASK cells. Infection of ASK cells 72 h.p.i. was measured by immunostaining for
ISAV NP and automated quantification of the number of infected cells (Spectramax i3x plate reader,
minimax 300 Imaging Cytometer module, Molecular devices, CA, USA). The infectivity graphs show
medians (dots) and 95% confidence intervals (bars), representative of two independent experiments.
*** p < 0.001, ** p < 0.01, one sample t test. (C) Serially diluted RBC from healthy fish were incubated
with ISAV. The total levels of ISAV RNA associated with the diminishing RBC pellets were measured
by qPCR (red, left y-axis). ISAV RNA relative to the RBC content in the pellet was calculated by
the ∆∆CT method, using ELF1α as reference gene and the highest dilution of RBC with ELF1α
CT < 35 (considered the reliable limit of detection) as reference sample (black, right y-axis, open
circle indicates ELF1α CT > 35). Data show the means of technical duplicates representative of two
independent experiments.

4. Discussion

We here show that viraemia, including coating of erythrocytes with ISAV particles,
is a consistent feature of ISA. Because the erythrocyte is the most numerous cell type in
the body and travels to every tissue, it is relevant to ask what this means for the course of
infection and the development of disease.

4.1. Erythrocytes Do Not Play a Significant Role in ISAV Replication

The first main implication of our findings is that circulating erythrocytes do not
appear to play a significant role in ISAV replication, despite occasional expression of viral
proteins in a small cellular subset. Viruses replicate by infecting permissive host cells,
hijacking the cellular machinery to reproduce themselves. Different cell types permit
replication of specific viruses, depending on properties of both the cell and the virus. For
enveloped viruses, cellular entry requires the presence of a viral receptor on the cell surface
together with the ability to fuse with the cell membrane and release viral contents to the
cytoplasm [32]. The ISAV receptor is predominantly found on erythrocytes and endothelial
cells in Atlantic salmon tissues [8]. Endothelial cells express high levels of ISAV proteins,
as demonstrated by immunohistochemistry [8]. Moreover, ultrastructural studies show
that ISAV particles bud from their luminal surface [8,11], supporting that endothelial cells
are permissive to ISAV infection and that most ISAV particles observed in blood smears
originate from viral replication in the endothelium.

In contrast, ISAV protein expression has never before been demonstrated in erythro-
cytes of infected fish. We do not know if the observed protein expression in the 2018 trial
was associated with completion of the infectious cycle and the release of new viral particles.
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For example, chicken erythrocytes produce ample viral proteins after in vitro inoculation
with avian influenza virus, but fail to generate new infective progeny [33]. Nevertheless,
the strong expression of viral proteins in a limited subset of cells demonstrate that ISAV, at
least under some circumstances, can be internalised in circulating erythrocytes of infected
Atlantic salmon and engage these cells in transcribing and translating viral gene products.

Importantly, several lines of evidence suggest that such ISAV protein-expression by
erythrocytes is a rare event that is not required for the development of anaemia and disease:
First, erythrocyte expression of ISAV proteins was only observed in one of the trials included
in our study. Second, even in that trial, the fraction of erythrocytes expressing ISAV proteins
was less than 5%, and the relative levels of viral transcription in full blood were no different
from that in erythrocytes in the less severe trial. In contrast, considerably higher ISAV
transcription levels were detected in the heart and kidney in the less severe trial. Third,
in vitro inoculation of salmon erythrocytes with ISAV did not result in viral replication.
Finally, we observed that erythrocyte-associated ISAV remained infective, suggesting that
at least a proportion of virus particles associated with circulating erythrocytes fail to fuse
with the erythrocyte membrane.

Our findings imply that most circulating Atlantic salmon erythrocytes are non-permissive
to ISAV. Similar to our observations for ISAV, rainbow trout erythrocytes appear to be non-
permissive to infectious pancreatic necrosis virus [34] and viral haemorrhagic septicaemia
virus [35]. However, this is not the case for all viruses: in the active stage of piscine
orthoreovirus infection, circulating Atlantic salmon erythrocytes appear to support both
viral transcription and protein expression [36]. Moreover, Atlantic salmon erythrocytes
inoculated with piscine orthoreovirus ex vivo support the generation of new infective viral
particles [37].

Many factors could contribute to the variation in teleost erythrocyte permissiveness
to different viruses, including the efficiency of viral entry, evasion of intrinsic antiviral
responses, complexity of the virus particle, and factors associated with engaging the
Atlantic salmon erythrocyte transcriptional and translational machinery. For example,
piscine orthoreovirus has a fully cytoplasmic replication cycle, while ISAV, like influenza
viruses and other members of the Orthomyxoviridae family, requires a stage of nuclear
transcription [38]. On the other hand, human parvovirus B12, a single-stranded DNA
virus that also requires nuclear transcription, replicates extensively in nucleated human
erythroid precursors, showing that nuclear viral replication is possible in the erythroid
lineage, at least at early stages of differentiation [39,40].

Virus-specific differences may furthermore be relevant to explain the apparent contra-
diction between the lack of ISAV replication in cultured erythrocytes in our study and a
previous study that reported replication of the North-American ISAV isolate NBISA01 in
agglutinated blood [23]. European and North-American ISAV genogroups are genetically
distinct [41], and it is possible that differences in their genetic make-up could account for
this discrepancy. However, because no purification step was reported when preparing
erythrocytes for the haemagglutination reaction in the previous study, it is also possible that
other cell types than erythrocytes may have contributed to the observed viral replication.

The erythrocyte differentiation stage should also be considered in the interpretation of
our findings. Even in teleost fish, where erythrocytes retain their nuclei throughout their
life span, young erythrocytes appear to have a more active transcriptional and translational
machinery than older subsets [42] and may as such be better suited for viral replication. For
example, in the persistent stages of piscine orthoreovirus infection when little viral protein
is associated with circulating erythrocytes, the virus replicates in early erythroid precursors
in the kidney [43]. Because of their rare occurrence, it was not possible to determine
if the ISAV protein-expressing erythrocytes detected in our study represented a distinct
erythrocyte subset. However, the erythrocyte viral protein expression was limited to the
trial with the most severely anaemic fish, suggesting high levels of immature erythrocytes
in the circulation. Moreover, we also observed ISAV protein-expression in rounded cells
that could be consistent with an immature erythroid phenotype.
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4.2. Erythrocytes Sequester Active ISAV Particles during Infection

While the contribution of erythrocytes to ISAV replication appears to be negligible, the
extensive binding of infective ISAV particles to circulating erythrocytes suggests a potential
to modulate infection dynamics and pathogenesis in ISA. Although it should be kept in
mind that a direct comparison of plasma and erythrocytes, two very different biological
substances, has some limitations, our results strongly suggest that most ISAV RNA in
blood of infected Atlantic salmon was associated with the erythrocyte fraction, rather than
free in the plasma. In support of most ISAV being found in the cellular fraction of blood,
inoculation of permissive cells with erythrocytes from infected fish resulted in productive
infection of cultured cells. Much lower infective titres were detected in plasma.

It is very relevant to ask how this association between infective viral particles and
erythrocytes influences the distribution of ISAV during infection. For example, does it
influence the circulation half-life of viral particles or the potential for viral dissemination?
Binding to erythrocytes has been studied in other viral infections. In human patients
with chronic HIV, infective HIV-1 particles remained associated with erythrocytes even
though virus levels in plasma were suppressed to undetectable levels [44]. Moreover, the
association with erythrocytes appeared to promote HIV-1 trans-infection of peripheral
blood mononuclear cells [45]. For adenovirus of the Ad5 serotype, binding to erythrocyte
coxsackievirus and adenovirus receptor prolonged the circulation half-life of the virus in
mice, but reduced the extent of hepatic infection [46]. Erythrocyte binding also modulates
the availability of other circulating molecules. For example, plasma levels of inflammatory
chemokines are buffered by their binding to erythrocyte receptors without signalling
functions [47,48].

With regards to infectivity, we found that erythrocytes sequestered infective viral
particles produced in ASK cells and limited serial infection. It is not yet clear how these
findings translate to the situation in infected Atlantic salmon. After the initial replication
phase in mucosal surface epithelium, infection with ISAV results in a disseminated pan-
endothelial infection pattern [8,10]. The exact route by which epithelial-released ISAV
infects endothelial cells has not yet been determined, but sialic acids are mainly expressed
on the luminal surface of endothelial cells [49]. It is therefore reasonable to assume that
the infection of endothelial cells in distant internal organs involves dissemination of blood-
borne virus particles. While the peak of viraemia occurs at the same time as or after
the peak of viral transcription in heart and kidney [12,24], we detected viral proteins on
erythrocytes as early as 4 d.p.i. in the most severe trial. Whether the binding of ISAV to
erythrocytes limits the ability to infect distant sites, as in our cell model system, or if it
promotes infection, by protecting the virus from antiviral factors in serum, for example,
currently remains an open question.

We observed that the ISAV-coating of erythrocytes preceded the onset of anaemia.
Accordingly, one should also consider how the binding of virus particles influences the fate
of erythrocytes. The presence of viral proteins on the erythrocyte surface could result in
targeting by complement, immune complexes, and/or scavenger receptors, thus augment-
ing the rate of erythrocyte removal from the circulation. This assumption is supported by
the observation of regenerative anaemia [25] and splenic haemophagocytosis in ISA [8].
We also observed a mild increase in erythrocyte osmotic fragility in ISAV-infected fish,
although less pronounced than in a previous report examining blood samples obtained
from Norwegian ISA outbreaks in the late 1980s [28]. The osmotic fragility assay measures
the cellular ability to take up water and swell without bursting, in response to reduced
extracellular osmotic pressure. The osmotic fragility may be influenced by a range of
factors, including erythrocyte swelling, loss of membrane components, or a reduction in
the erythrocyte plasma membrane integrity. We did not address if the observed increase in
osmotic fragility resulted from direct viral interactions with the plasma membrane. Hence,
our data do not exclude that other factors, including secreted stress hormones or other
signalling molecules, could be involved. Another interesting question for future studies is
whether the scavenging of ISAV-coated erythrocytes could have potential to modulate the



Viruses 2022, 14, 310 16 of 19

immunological response, considering that antigen-coating of mouse erythrocytes appears
to induce broad immunological tolerance [50].

4.3. The Susceptibility to Infectious Salmon Anaemia Depends on Many Factors

The development of disease and mortality was very different in the two trials included
in this study, despite viral kinetics suggesting that all exposed fish were infected at the
first exposure. The trials were performed in two different locations, using fish from the
same source, but of different year classes and reared in different locations. Hence, we were
not surprised that disease outcome, as measured by cumulative mortality, was different.
Practical experience in our research group from a large number of ISAV infection trials over
the last three decades suggests that a number of different factors, some of which remain
poorly understood, affect ISA disease outcome [personal observation, Knut Falk]. These
factors are only in part described in the literature and include the genetic background
of the fish [51,52]; the virus isolate [2,12,53]; the route and dose of infection [24,54]; trial
environmental factors such as water temperature, water quality, and experimental facility;
factors associated with the upbringing of the fish from the larval stage; and the time of year.
The two trials described here infected the fish with the same ISAV isolate administered by
the same route and at similar water temperatures. The most obvious trial design differences
were that the fish were from different year classes and reared in different locations, a
six-fold difference in infective dose, the different experimental facilities, and that one
trial was performed in salt and the other in fresh water. Note that previous trials with
the Glesvaer/2/90 isolate have resulted in 100% mortality at the same infective dose as
in the less severe experiment [2] and in both salt and fresh water [2,12]. It is therefore
tempting to speculate that other factors, perhaps associated with genetics or upbringing of
the fish, have contributed to the observed difference in cumulative mortality. In conclusion,
our observations underscore the need for better knowledge of factors contributing to the
development of disease and death after ISAV infection.

4.4. ISAV Binding to Erythrocyte Membranes

Erythrocyte membrane proteins appear to be well conserved across species, and the
most prominent ISAV-binding protein band in Atlantic salmon erythrocyte membrane
fractions resembled that of the human band 3 anion transporter [55]. This band was
observed at the level of the 80 kDa molecular marker. Note that the migration of heavily
glycosylated proteins is strongly influenced by their charge, and molecular weights cannot
be reliably estimated from migration patterns. In contrast to humans, where the most
prominent PAS-staining band (PAS-1) is located below band 3, we detected strong PAS-
staining at the same level as the band 3-like band. This is similar to previous observations
in carp and trout [27,55]. Of two other clearly PAS-positive bands between the 50 and
60 kDa markers, only the upper one bound ISAV, most likely reflecting the presence of 4-O-
acetyled sialic acid [9]. We also detected two lower ISAV-binding bands with no obvious
associated PAS staining. Nevertheless, 4-O-acetylated sialic acid remains the only known
receptor for ISAV [9], and de-acetylation by saponification obliterated all ISAV-binding to
the membrane. We propose that the two lowest ISAV-binding bands most likely contain
glycoproteins, but at levels below the detection limit of the glycoprotein staining assay.
Teleost membrane glycoproteins are poorly characterised, and it is not known whether they
oligomerise, but based on knowledge from human erythrocyte glycoproteins [55], some of
the ISAV-binding bands could represent different –meric states of the same glycoprotein.

5. Conclusions

Our study sheds light on several aspects of ISAV-erythrocyte interactions: first, by
documenting that coating of circulating erythrocytes with infective viral particles is a
consistent feature of ISA; second, by suggesting that erythrocytes do not significantly
contribute to ISAV replication; and third, by discussing possible mechanisms by which the



Viruses 2022, 14, 310 17 of 19

documented binding of ISAV to circulating erythrocytes could modulate ISAV infection
dynamics and ISA pathogenesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14020310/s1, Table S1: Primers/probe sets. Table S2: Synthetic DNA used for standard
curve (gBlocks).
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