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A B S T R A C T   

Power-to-Methanol is a newly emerging technology to decarbonize hard-to-abate sectors. However, little 
research on its flexible and optimal operation has been proposed. In this paper, a grid-connected Power-to- 
Methanol system is introduced, modeled, simulated and optimized for its daily operation by considering its 
participation in day-ahead electricity markets. The system builds on a real-life application in Denmark. We first 
predict the electricity prices and then strategically schedule the involved components taking advantage of the 
potential flexibilities. The uncertainty of electricity price prediction is handled by introducing a Wasserstein 
metric-based data-driven robust optimization. We further compare the proposed approach with widely-used 
stochastic and robust optimization. The results show that, for the selected case, the proposed data-driven 
method could reduce the operational cost by 4.5% compared to the imperfect prediction, and it moderately 
outperforms stochastic and robust optimization. Using the optimal operation strategy, we find that the levelized 
cost of methanol ranges from 584 to 1146€/t. Both CO2 price and the renewable electricity proportion signifi-
cantly affect the cost.   

1. Introduction 

Power-to-X has been viewed as a promising pathway to store 
excessive renewable energy and to cope with increasing challenges from 
climate change via decarbonizing different sectors. The ‘X’ hereby refers 
to various chemical products incorporating hydrogen, methane, meth-
anol and ammonia etc. Methanol, also known as liquid sunshine, is a 
promising alternative among others [1]. This liquid fuel bears following 
benefits [2]: 1). It has a comparatively high energy density (16.9 MJ/L) 
and thus could serve as storage for renewable energy. 2). It could 
contribute to CO2 valorisation. Methanol could be produced from the 
catalytic reduction of CO2 and offer an opportunity for a sustainable 
carbon cycle. As a value-added commodity, it also makes the CO2 more 
valuable and creates revenues from CO2[3]. 3). Methanol is widely used 
in different sectors, e.g. formaldehyde and acetic acid production, a fuel 
for fuel cell and residential heating. 4). The storage and transport of 
methanol are much easier and less costly than hydrogen. 

Although power-to-methanol (PtMeOH) is attractive in the sense of 
sustainability, a critical barrier for its advancement is the poor cost- 
competitiveness. Owing to the relatively low prices of natural gas, the 

costs of traditional methanol production are rather low where natural 
gas is reformed to syngas and further converted to methanol. This fuel- 
based methanol (fMeOH) has accounted for most of the methanol 
market and makes the adoption and market entry for electricity-based 
methanol (eMeOH) difficult. The typical price of fMeOH is 300–500€/ 
t [4] while it is 800€/t or more for eMeOH [5]. Consequently, reducing 
the cost of eMeOH production is a central pathway to facilitate the 
deployment of PtMeOH. 

For a grid-connected PtMeOH system, electricity consumption cost is 
the major operational cost and thus should be minimized during oper-
ation. For example, this could be achieved by energy arbitrage in the 
day-ahead electricity market. The key problem here is how to make 
optimal operation with imperfect forecast and limited flexibility of such 
a system. 

Recent studies have claimed that flexibility in chemical production 
can benefit its economies [6–8]. It is well-known that electrolysers hold 
high flexibility implying that the owners could reduce costs by strate-
gically regulating their power consumption. In a PtMeOH scheme 
without very large hydrogen storage (which is quite expensive), how-
ever, the methanol production plant should also follow a flexible 
schedule. In this regard, little research has focused on the identification 
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of flexibility from methanol synthesis. The only available knowledge is 
that methanol synthesis seemingly possesses certain flexibility in terms 
of partial load properties, ramping up/down and on/off properties. 
Lurgi AG, a German chemical company, has claimed that its steam 
raising methanol converters could be operated with a partial load as low 
as 10%-15% and a load change from zero to full within a few minutes 
[9]. Dieterich etc. reported a liquid phase methanol converter allowing 
variable feed flows (5% of nominal flow per minute) [10]. These data 
argue that PtMeOH has a certain flexibility. 

While researchers have been focusing on the flexible operation of 
hydrogen production, little attention has been paid to the optimal 
operation of a PtMeOH system, nor to its modeling which enables the 
consideration of flexible operation and steady characterization. It is 
plausible that the ideas for hydrogen production are also applicable to 
PtMeOH systems. For example, Pengfei Xiao showed that an integrated 
grid-connected wind-hydrogen system is profitable given that the elec-
trolysers can be flexibly operated and hydrogen price is relative high 
[11]. However, the cost of storing and transporting hydrogen is not 
involved, which may reduce the profitability. Replacing the hydrogen 
with methanol is a good alternative while few discussion is available 
now. The most attention paid to PtMeOH is the techno-economical 
assessment [12], system design [13] and simulation [14]. It is impor-
tant to find out the potential of flexible operation of methanol produc-
tion especially in the context of on-grid methanol production. 

Another challenge for optimal scheduling lies in the uncertainties 

caused by electricity markets. Uncertainties have been widely investi-
gated by stochastic optimization (SO) [15,16] and robust optimization 
(RO) [17] as well as methods derived from them, such as distributed 
robust optimization (DRO) and data-driven robust optimization 
(DDRO). SO relies on assumed probability distributions of uncertain 
parameters to generate scenarios or evaluate the probability of chance 
constraints [18]. As the true distribution is usually unknown, the SO 
models may have poor statistical performance. RO does not depend on a 
pre-specified probability distribution but an uncertain set, thereby of-
fering more reliable results. The drawback of RO is its conservativeness 
in most cases and the data are not fully utilized because only the worst- 
case is considered. Both the DRO and DDRO are proposed to build a 
bridge between SO and RO and are based on the conception of ambiguity 
set. Their difference lies in how the ambiguity set is established. These 
two notations are not well distinguished sometimes. As suggested by 
[19], in this paper, the DRO is referred to as the ones using moment- 
based ambiguity sets (also called Chebyshev ambiguity sets) while 
DDRO is regarding the Φ-divergence or Wasserstein metric (WM) based 
ambiguity sets. 

In DRO, however, [20] argues that Chebyshev ambiguity sets remain 
conservative as they do not shrink to a singleton even though the 
number of samples approaches infinity. This problem can be alleviated 
by DDRO. Owing to its superiority, DDRO is widely used in unit 
commitment [21–24], reactive power optimization [25] and integrated 
energy systems [26,27]. 

Nomenclature 

Parameters 
A Sectional area of methanol synthesis plant (m2) 
αi Power consumption per unit mass flow of compressor i 

(MW/(kg/h)) 
Δt Time resolution (h) 

ξ̇MSP
min ,ξ̇MSP

max Lower and upper bound of extent of reaction for methanol 
synthesis (kmol/h) 

ṁCO2 ,bi
t Mass flow rate of CO2 from biogas plant (kg/h) 

ηCon Efficiency of converter 
π̂DA

t Predicted electricity prices (€/MWh) 
aMSP
(⋅) Constants related to methanol synthesis 

bMSP
(⋅) Constants related to material balance 

CCO2 Cost of required CO2 (€) 
CCS,CHS Cost of electrolyser cold start and hot start (€) 
Cp,i Heat capacity at constant pressure of component i (J/(kg 

K)) 
DMe Daily demand of methanol (kg) 
F,ηf Faraday constant (C/mol) and Faraday efficiency 
hi,0 Standard enthalpy of formation of component i (J/kg) 
Ib Electrolyser current at breakpoint b (A) 
k(⋅) Kinetics constants 
MWi Molar weight of component i (kg/kmol) 
MH2 ,MCO2 Capacity of hydrogen tank and CO2 tank (kg) 
ns Number of electrolyser stacks 
Ps Power consumption of electrolyser at standby state (MW) 
Pw

t Power from wind turbines (MW) 
PEle

b Electrolyser power at breakpoint b (MW) 
RD,RU Ramping down and up limits for methanol production (kg/ 

h) 
R Molar gas constant (J/(kmol K)) 
T0 Reference temperature (K) 

π̃
DA
t Prediction errors of electricity prices (€/MWh) 

I, I Lower and upper bound of electrolyser current (A) 
Pu,Pu Lower and upper bound of transmission line (MW) 
Φ Porosity 

Variables 
ρmix Density of mixed gases (kg/m3) 

ξ̇MSP
t Hourly extent of methanol synthesis reaction (kmol/h) 

ṁMe
t Mass flow rate of produced methanol (kg/h) 

ṁCO2
t Mass flow rate of CO2from tank (kg/h) 

ṁH2 ,b
t Mass flow rate of hydrogen through by-pass (kg/h) 

ṁH2 ,Ele
t Mass flow rate of produced hydrogen from electrolyser 

(kg/h) 
Cu

t Cost of electricity from utility grid (€) 
h Enthalpy of mixed gases (J/kg) 
It Current of electrolyser (A) 
P Total pressure (Pa) 
Pi Partial pressure of component i (Pa) 
pb

t , sb
t , i

b
t Binaries indicating production, standby and off state for 

electrolyser 
Pu

t Power from utility grid (MW) 
PCon

t Power consumed by converters (MW) 
PDis

t Power consumed by distillation plants (MW) 
PEle

t Power consumed by electrolysers (MW) 
PMSP

t Power consumed by methanol synthesis (MW) 
Pci

t Power consumed by compressor i (MW) 
r′

(⋅) reaction rate (kg/(kmolcat s)) 

SOCCO2
t State of charge of CO2 tank 

SOCH2
t , State of charge of hydrogen tank 

T Temperature (K) 
u Flow velocity (m/s) 
wb,t Weight of breakpoint b at time t 
Yi Mass fraction of component i 
yb

t , zb
t Binaries indicating hot start and cold start  
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This work focuses on modeling, analyzing and optimizing a PtMeOH 
system and handling the uncertainty by solving a WM-based worst-case 
expectation (WCE) problem. It contributes to the state-of-arts as follows:  

1. We build an optimization model for the operation of a typical on-grid 
PtMeOH system including a detailed electrolyser model, methanol 
converter model, energy flow balance and material flow balance.  

2. We improve the performance of day-ahead scheduling by addressing 
the uncertainties. The uncertainty from price fluctuation is handled 
by optimizing worst-case expectations.  

3. We investigate the influence of key parameters on the levelized cost 
of methanol to reveal the trade-off between cost-effectiveness and 
low carbon emissions. 

The remainder of this paper is organized as follows: An overview of 
the concepts in power to methanol system is provided in Section 2. 
Section 3 introduces the modeling of key components. In Section 4, we 
consider a day-ahead optimal operation problem and reformulate it into 
tractable mixed-integer programming in the presence of uncertainty. 
Section 5 presents the main results and discusses the system economics. 
Section 6 concludes this work. 

2. Concept overview 

A PtMeOH system typically incorporates an electricity source, an 
electrolysis unit, a carbon source, a methanol synthesis plant and a 
distillation plant. In accordance with whether connected to a utility grid, 
PtMeOH systems could be classified into off-grid and grid-connected. 
Under the former configuration, the large volatility from renewable 
generation entails large hydrogen storage to ensure energy and material 
balance. The grid-connected configuration enables a PtMeOH system to 
purchase or sell electricity to a utility grid, reducing the need for large 
storage and bringing energy arbitrage opportunities in the electricity 
spot market. 

CO2 is a raw material for methanol synthesis. In fact, one of the 
contributions of PtMeOH is the reuse and valorisation of CO2. The 
sources of CO2 are various, including biogas treatment plants, ammonia 
plants, air, flue gas, lime and cement furnaces, acid neutralisation 
plants, ethylene oxide plants, natural gas purification plants etc [28]. As 
per the composition, temperature and pressure of different CO2-con-
taining gas streams, several technologies, such as absorption, adsorption 
and membrane are utilized to separate CO2. For example, in the process 
of biogas upgrade, CO2 is separated from biogas that is mainly composed 
of CH4 and CO2 to get pure CH4. In the case of ammonia production, CO2 
is an intermediate product from steam reforming and subsequent 
water–gas shift reactor and it has to be removed to obtain hydrogen. 
Direct removal of CO2 from air is another CO2 source that bears the 
advantage of closing the carbon cycle [29]. However, it is still cost- 
intensive and thus not a good choice for the cost reduction of PtMeOH 
system. The costs of the CO2 used for methanol production also varies by 
its sources and by the policies towards CO2 reduction support. 

Electrolysis is used to produce hydrogen. Three electrolysis tech-
nologies are available at present: alkaline electrolysis(AEL), proton ex-
change membrane electrolysis (PEM) and solid oxide electrolysis 
(SOEC). While SOEC is still at the R&D stage, the former two have been 
commercially available. AEL bears high technological readiness and 
relatively low costs while PEM can provide higher operating flexibility 
and current density. Despite that PEM shows better dynamic operating 
properties such as following fast load changes and a wider range of 
variable loads, we believe that the flexible operation of a PtMeOH sys-
tem is limited by other components. Therefore, the less costly AEL may 
be preferable. 

The produced hydrogen and CO2 from the carbon source are further 
converted to methanol in a methanol synthesis plant (MSP). This process 
is highly exothermic implying that lower temperature is preferred for 
equilibrium conversion while the kinetics require high temperature. 

Consequently, cooling is needed and recycling of unconverted feed gas is 
important to raise the conversion rate. The generated crude methanol 
has to go through a distillation plant to meet purity demands. 

3. Problem description and system modeling 

In this research, we particularly focus on a conceptional PtMeOH 
system based on a real-life implementation that is under construction in 
Denmark, as shown in Fig. 1a and 1b. This is a typical grid-connected 
system with renewable energy involved. The stable power supply from 
the utility grid enables continuous operation but the power is not 
necessarily green and such e-MeOH is actually accompanied by carbon 
emission. It is also noted that in this configuration the electrolysers and 
wind turbines share the same point of interconnection thereby reducing 
the grid interconnection charge, which is more favorable than the case 
with wind turbines and electrolysers located in different areas. 

The CO2 derived from a biogas upgrading plant is compressed to pre- 
specified pressure and temporarily stored in a buffer tank. The required 
hydrogen is obtained from an alkaline electrolyser (AEL). Part of the 
hydrogen is directly compressed and supplied to methanol synthesis 
while another part is stored in a buffer tank. Finally, methanol is ob-
tained in the synthesis reactor and treated in the distillation plant. 

Since operation optimization is the main concern and the critical 
problem addressed by this work is how to model and schedule such a 
system to reduce operational costs considering the fluctuating prices, we 
inherit the sizing parameters from the real-life project. The key pa-
rameters are summarized in Table 1. 

3.1. Wind turbine 

The available data is the time series of wind speed in the area in 
Denmark. Therefore, we use the most classical wind turbine model for 
simulation and convert wind speed to power output. More details of the 
model can be found in [30]. The technical specifications of the adopted 
wind turbines are given in Table 2. One could also find these parameters 
in [31] but the hub height and rated speed are not available. Here we 
assume the hub height to be 50 m and estimate the rated speed based on 
the reported rated power. 

3.2. Electrolysis 

An AEL model is introduced to quantify the conversion from elec-
tricity to hydrogen. To link hydrogen production rate ṁH2 ,Ele with power 
consumption of an electrolyser PEle, the simplest way is to assume that 
they have a linear relationship. This assumption however is not able to 
capture the efficiency increase with relatively lower current. Therefore, 
in this work we choose a piece-wise linear function to describe the 
relation between ṁH2 ,Ele and PEle. 

In addition, to enable the start-up and shutdown of an electrolyser, 
we define three operating states: production state, standby state and off 
state. Production state is referred to the normal working state where 
piece-wise linear relation between ṁH2 ,Ele and PEle applies. In the standby 
state, hydrogen is not produced while a small amount of power is 
consumed to maintain both the pressure and temperature of an elec-
trolyser. The standby state is typically followed by a hot start soon. No 
power consumption is needed in the off state which generally implies a 
long-time shutdown where pressure and temperature would decline 
[32]. Both the mutual transitions among different states and the piece- 
wise linear approximation are surmised in Fig. 2. In parallel, Table 3 
provides detailed information of the utilized alkaline electrolyser. 

3.3. Methanol synthesis 

From the point of system operation, it is important to reveal the input 
and output of a methanol synthesis plant, i.e. how much methanol could 
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be obtained given a specific H2and CO2 input. A trivial estimation can be 
established based on the stoichiometry of the main reaction, but this 
may not be accurate due to the existence of side reactions and limita-
tions from chemical equilibrium. In this work, we tackle the problem by 
considering a first-principle model for methanol production. Two main 
reactions are happening in the reactor: 

CO2 + 3H2→CH3OH+H2O ΔH∘ = − 49.3 kJ/mol (1)  

CO2 +H2→CO+H2O ΔH∘ = + 41 kJ/mol (2) 

Reaction (1) is the hydrogenation of CO2, the main process of pro-
ducing methanol while the competing reaction (2) is the reversed 
water–gas shift reaction. The existence of reaction (2) means CO2 cannot 
be completely converted to methanol. In this paper, we build a one- 
dimension plug flow model (see Fig. 1d) d) to represent the methanol 
synthesis process, as follows: 

d(ρmixuA)

dx
= 0 (3)  

dP
dx

+ ρmixu
du
dx

= 0 (4)  

d
(

h + u2

2

)

dx
= 0 (5) 

Fig. 1. (a) The location of the real-life system in Skive, Denmark. (b) Process flow diagram of the power-to-methanol system. The gray dot line includes the 
components owned by the system operator. (c) Configuration of the methanol synthesis reactor with recycled gas flow. (d) The one-dimensional plug-flow model to 
calculate the inlet and outlet flow of methanol synthesis reactor. 

Table 1 
The key parameters of the studied PtMeOH system.  

Parameter Value Unit 

Wind turbine capacity 4.2 MW 
Number of wind turbines 13  
Converter efficiency 0.95  
Electrolyser capacity 8.1 kg/h 
Number of electrolysers 50  
Hydrogen tank size 200 kg 
CO2 tank size 6000 kg 
Capacity of methanol synthesis plant 1984.5 kg/h 
Daily methanol demand 38102 kg 
Compressor c1 1.32 MW 
Compressor c2 1.32 MW 
Compressor c3 0.327 MW  

Table 2 
Technical specifications of the wind turbine.  

Parameter Value Unit 

Cut-in speed 3 m/s 
Cut-out speed 22.5 m/s 
Rated speed 14.32 m/s 
Rotor diameter 150 m 
Hub height 50 m 
Rated power 4.2 MW 
Carbon Footprint 7.3 gCO2e/kWh  
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d(ṁYi)

dx
− AΦρcatMWi

(

r′

1 + r′

2

)

= 0 (6) 

Eq. (3) describes mass conservation where ρmix is the density of mixed 
gases, u is the fluid velocity and A is the sectional area of the reactor; Eq. 
(4) is the one-dimension representation of the Euler equation of ideal 
fluids with P denoting pressure. Energy conservation is included in Eq. 
(5) where h is the enthalpy of mixed gases. Note that we assume the 
reactor is adiabatic thus there is no heat loss. Eq. (6) describes the specie 
conservation where the first term is the mass transport incurred by flow 
and the second term is the mass change caused by chemical reactions. 
Here, ṁ is the mass flow rate; Yi the mass fraction of component i; ρcat the 
density of catalyst; MWi the molar mass of mixed gases; r′

1, r
′

2 the reac-
tion rates: 

r
′

1 =
k1PCO2 PH2 − k6PH2OPMeOHP− 2

H2
(

1 + k2PH2OP− 1
H2

+ k3P0.5
H2

+ k4PH2O

)3

⎡

⎢
⎣

kmol
kgcats

⎤

⎥
⎦ (7)  

r
′

2 =
k5PCO2 − k7PH2OPCOP− 1

H2

1 + k2PH2OP− 1
H2

+ k3P0.5
H2

+ k4PH2O

[
kmol
kgcats

]

(8)  

in which k(⋅) is the kinetic constant and Pi is the partial pressure of each 
component. The calculation of k(⋅) could be found in [36]. It is worth 
noting that pressure is given in Pa and temperature in K. Two more 
equations are required to close the group of Eqs. (3)–(8). Based on the 
assumption of ideal gases, we have the ideal gas state equation and 
enthalpy of mixed ideal gas as: 

P = ρmixRT
∑

i

Yi

MWi
(9)  

h =
∑

i

(

h0
i +Cp,i

(

T − T0

))

(10)  

where h0
i is the standard enthalpy of formation for component i and Cp,i 

is the heat capacity at constant pressure. To verify the effectiveness of 
this model, we compare it with the results in Aspen Plus provided by 
[36], where the reactor design parameters and catalyst properties are 
also available. It is shown in Fig. 3 that our model could successfully 
describe the change of molar fraction for each component along the 
reactor. 

Fig. 2. (a) State transitions of an electrolyser. (b) A piece-wise linear function 
with five breakpoints (in blue) is used to approximate the non-linear power- 
current density curve. 

Table 3 
Stack parameters of the utilized alkaline electrolyser.  

Parameters Value Unit Source 

Hydrogen pressure 35 bar [33] 
Hydrogen production rate 90(8.1) Nm3(kg)/hour [33] 
Stack current at 100% load 1800 A [33] 
Minimal current density 1000 A/m2 Estimation 
Maximal current density 5000 A/m2 Estimation 
Power consumption at 100% load 48.1 kWh/kg [33] 
Power consumption at 50% load 45 kWh/kg [33] 
Power consumption at 25% load 42.7 kWh/kg [33] 
Liquid cooling requirements 120 kW [33] 
Temperature 90 ◦C 

[34] 
Ramping rate ±20%/s nominal load 

[35] 
Hot-start time 30 s [34] 
Cold-start time 20 min [34]  

Fig. 3. Comparison of the proposed reactor model and Aspen kinetic 
models [36]. 
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The one-dimensional plug flow model is able to quantify the rela-
tionship between inlet and outlet flow of methanol synthesis reactor. 
However, due to the limitation of chemical equilibrium, the conversion 
rate of reactants is quite low thus a reaction-separation-recycle scheme 
is required to raise methanol production [37]. The reactor outlet flow 
consists of products as well as unreacted COx and H2. The condensable 
products are then separated in flash vessel and the COx and H2 stream is 
recycled back to the reactor. Note that a small percentage (e.g. 1%) of 
the recycled stream is purged to avoid the accumulation of inert gas. The 
recycle stream is then mixed with fresh feed for further reaction. 

For the recycle plug-flow model, the recycle ratio is an important 
parameter affecting reactor performance, which is defined as [38]: 

Recycle ratio =
recycle flow rate

fresh feed flow rate
(11) 

Recycle ratio being zero means that no gas is recycled and a very 
large recycle ratio means nearly all reactor feed is recycled gas. Given a 
recycle ratio, we could obtain the final methanol production and reac-
tant conversion rates. In this paper, the parameter of the methanol 
synthesis process is inherited from [39]. The catalytic reactor is operated 
at 210◦C and 76 bar, with the fresh feed flow having H2 : CO2 ratio as 
3 : 1. However, the recycle ratio can not be directly found in [39] and we 
estimated the value according to the table B7 and B8 in the reference, 
which is calculated to be 4.115. In Table 4 we compare the results from 
our model with that from the literature. These results are adopted in the 
following optimization scheme to quantify the relation among 
hydrogen, carbon dioxide and methanol. 

To identify the flexibility of such a methanol converter, a key 
problem is to compare the chemical reaction timescale and transport 
rate. Provided that the reaction rate is much faster than transport, then 
the change of inlet feedstock will be balanced very soon. Damköhler 
number is the dimensionless number to quantify the relationship be-
tween reaction rate and transport rate, which is defined as [40]: 

Da =
r′

1ρcatΦL
ρmixu

∑

i

Yi
MWi

(12)  

with L the length of the reactor. Da is calculated to be as high as 45 at the 
inlet of the reactor implying that the flexibility is not limited by the 
chemical kinetics of MSP. However, as other ancillary devices are not 
taken into account, we assume moderate ramping limits for MSP, i.e. ±
20%/h of its nominal production. In fact, there is currently no literature 
reporting the ramping limits of an MSP, this value is estimated as per 
work for ammonia reactors [41]. 

4. Optimization problem formulation 

In this paper, it is assumed that the daily methanol demand is fixed 
and the key problem here is how to minimize operational costs by uti-
lizing flexibility. The system operator participates in the day-ahead 
market, predicts spot prices and makes decisions based on the price 
forecast. 

4.1. Objective function 

The operator aims at minimizing daily operational costs: 

min
x

∑24

t
Cu

t +CHSyb
t +CCSzb

t +CCO2 ṁCO2 ,bi
t Δt (13) 

The time resolution Δt takes one hour and the time horizon is 24 h in 
this work. Cu

t is the cost of purchasing electricity, negative for the case of 
net export; CHS and CCS are the hot start cost and cold start cost for the 
electrolyser, respectively; yb

t and zb
t are binary variables indicating hot 

start and cold start. CCO2 is the cost of the consumed CO2, depending on 
the carbon source and related policies. It could be either negative, 
positive or zero under different scenarios. 

To be specific, Cu
t could be expressed as: 

Cu
t = Pu

t Δt
(

π̂DA
t +Δπ̃

DA
t

)
(14)  

with Pu
t denoting the power purchased from utility grid; π̂DA

t the pre-

dicted day-ahead spot prices; Δπ̃
DA
t the forecast error, which is regarded 

as an uncertain parameter. The decision variables for such a problem are 
collectively written as: 

x =
[
PEle,Pu,Pc1,Pc2,Pc3,PMSP,PDis,PCon, ṁH2 ,Ele

, ṁH2 ,t, ṁH2 ,b, ṁCO2 ,bi
,

ṁCO2 ,t, ṁMeyb, zb, pb, sb, ib] (15)  

and will be explained afterwards. 

4.2. Constraints 

Problem (13) is subject to a series of constraints, mainly energy and 
material balance, process flexibility limitations and physical properties 
of each component. The active power balance is involved as follows: 

Pw
t +Pu

t = PCon
t +Pc1

t +Pc2
t +Pc3

t +PMSP
t +PDis

t (16)  

where Pw
t is the wind power. PCon

t ,PMSP
t ,PDis

t are the power consumption 
of the converter, methanol synthesis plant and distillation plant 
respectively. Note that according to [42], PDis

t is a fixed value regardless 
of methanol mass flow rate. Pc1

t ,Pc2
t ,Pc3

t are the power consumed by the 
corresponding compressors in Fig. 1. The purchased power Pu

t is 
restricted by the transmission capacity of the line linking the PtMeOH 
system and external grid, which is written as: 

Pu⩽Pu
t ⩽Pu (17) 

PCon
t depends on the electrolyser power and they are linked as 

follows: 

PCon
t ηCon = nsPEle

t (18)  

with ηCon the efficiency of the converter, a fixed value for simplicity; PEle
t 

the power consumption of the AEL. 
By assuming an adiabatic process in the compressors, we have the 

relation between power consumption and mass flow rate of the com-
pressors as: 

Pc1
t = α1

(
ṁH2 ,Ele

t − ṁH2 ,b
t

)
(19)  

Pc2
t = α2ṁH2 ,b

t (20)  

Pc3
t = α3ṁCO2 ,bi

t (21)  

where α1,α2, α3 are constant values. ṁ(⋅)
t is the mass flow rate related to 

each compressor. The electrolyser is a key component in a PtMeOH 
system and thus requires a more detailed model. Hereafter we refer to pb

t ,

sb
t ,i

b
t , three binary variables, as indicators of production, standby and off 

Table 4 
Technological metrics comparison of the methanol synthesis plant.   

The proposed model Model from [39] 

mass balance (t/tMeOH)   
inlet CO2 1.49 1.46 
inlet H2 0.204 0.199 
outlet MeOH 1 1 
conversion rate (%)   
CO2 convR1 20.73 21.97 
CO2 convP2 93.63 93.85 

1. Reactor conversion rate. 
2. Process conversion rate. 

Y. Zheng et al.                                                                                                                                                                                                                                   



Energy Conversion and Management 256 (2022) 115338

7

state; It as the current and ṁH2 ,Ele
t as the mass flow rate of the generated 

hydrogen. We first introduce a piece-wise representation of the relation 
between PEle

t and It: 

PEle
t =

∑

b
wb,tPEle

b (22)  

It =
∑

b
wb,tIb (23)  

∑

b
wb,t = 1 (24)  

wb,t ∈ SOS2 (25)  

where PEle
b and Ib are the power and current at breakpoint b. wb,t is the 

weight of breakpoint b at time t, belonging to a special ordered set of 
type two (SOS2), where at most two adjacent components are non-zero. 
SOS2 could be expressed by introducing binary variables. It should be 
noted that Eq. (22) and Eq. (23) are only applicable when the electro-
lyser is operated at production state and should be relaxed in stand-by or 
off state, as could be achieved by adding slack variables sP

t and sI
t : 

PEle
t =

∑

b
wb,tPEle

b + sP
t (26)  

It =
∑

b
wb,tIb + sI

t (27)  

−
(
sb

t + ib
t

)
M⩽sP

t , s
I
t ⩽
(
sb

t + ib
t

)
M (28) 

Eq. (28) enables s(⋅)t to be sufficiently large or small with either sb
t or ibt 

taken one, where M is a sufficiently large constant. Other constraints for 
the electrolyser are surmised as follows: 

pb
t + sb

t + ib
t = 1 (29)  

pb
t I⩽It⩽pb

t I (30)  

sb
t Ps⩽PEle

t ⩽pb
t M+ sb

t Ps (31)  

sb
t + ib

t− 1⩽1 ∀t⩾1 (32)  

ṁH2 ,Ele
t = ηf MWH2

nsIt

2F
(33)  

yb
t− 1 = sb

t− 1pb
t ∀t⩾1 (34)  

zb
t− 1 = ib

t− 1pb
t ∀t⩾1 (35) 

Eq. (29) indicates that the three states are not compatible. The 
electrolyser current is limited to feasible range under production state, 
which is included in Eq. (30). The next equation enforces that electro-
lyser power is zero in off state, and is Ps in standby state and limited to an 
upper bound in production state. Eq. (32) grantees the transition from 
off state to standby state is not permitted. Constraint (33) is the Fara-
day’s law linking hydrogen production with electrolyser current. The 
last two equations are the definitions of hot start (indicated by yb

t ) and 
cold start (zb

t ), which could be reformulated into linear forms with extra 
binaries. 

For the hydrogen storage and CO2 buffer tank, we have: 

ṁH2 ,Ele
t − ṁH2 ,b

t − ṁH2 ,t
t =

(
SOCH2

t − SOCH2
t− 1
)
MH2 ∀t ≥ 2 (36)  

ṁH2 ,Ele
t − ṁH2 ,b

t − ṁH2 ,t
t =

(
SOCH2

t − SOCH2
ini
)
MH2 t = 1 (37)  

ṁCO2 ,bi
t − ṁCO2 ,t

t =
(
SOCCO2

t − SOCCO2
t− 1
)
MCO2 ∀t ≥ 2 (38)  

ṁCO2 ,bi
t − ṁCO2 ,t

t =
(
SOCCO2

t − SOCCO2
ini
)
MCO2 t = 1 (39)  

SOCH2
t = SOCH2

ini t = 24 (40)  

SOCCO2
t = SOCCO2

ini t = 24 (41) 

For simplicity, it is assumed that material loss during storage is quite 
small and could be neglected. Here, MH2 and MCO2 are the tank sizes. Eq. 
(36)–(37) quantify the SOC change of the tanks while Eq. (40) and (41) 
are related to continuous operation. The next group of equations 
describe the power consumption of MSP and related material balance. 

PMSP
t = aMSP

1 + aMSP
2 ṁH2 ,b

t + aMSP
3 ξ̇

MSP
t (42)  

ξ̇
MSP
min ⩽ξ̇

MSP
t ⩽ξ̇

MSP
max (43)  

ṁH2 ,t
t + ṁH2 ,b

t = bMSP
1 ξ̇

MSP
t (44)  

ṁMe
t = bMSP

2

(
ṁH2 ,t

t + ṁH2 ,b
t

)
(45)  

ṁCO2 ,t
t = bMSP

3

(
ṁH2 ,t

t + ṁH2 ,b
t

)
(46)  

RD⩽ṁMe
t − ṁMe

t− 1⩽RU (47)  

∑T

t=0
ṁMe

t Δt = DMe (48)  

in which Eq. (42) calculates the power consumption of a MSP where 
aMSP

i (i = 1, 2,3) is a constant that is derived in accordance with [42] and 

ξ̇MSP
t is the hourly extent of reaction. Eq. (43) defines the range of partial 

loads for MSP. The relation of inlet H2,CO2 and outlet methanol is 
described in Eq. (44)–(46) where bMSP

i is estimated using the proposed 
MSP model. The ramping up and ramping down limits are included in 
Eq. (47) and the last constraint poses a restriction on daily methanol 
production. 

4.3. Data-driven robust optimization 

To fully understand the structure of the above-mentioned optimi-
zation problem, the primal mixed integer programming is surmised in a 
compact form as follows: 

max
x

c̃
T
x + ds.t. Ax⪯b (49) 

Here without loss of generality, the equality constraints are replaced 
by their inequality representations and we consider a maximization 
problem, i.e. maximizing profits. The symbol .̃ indicates the vector 
involving an uncertain parameter. To highlight the uncertainty, the 
whole optimization problem is hereby rewritten by separating the 
deterministic and uncertain parameters, and for notational convenience 

Δπ̃
DA

is replaced by ζ. 

max
x

− ζT Pu + cT x + d
s.t. Ax⪯b

(50) 

The fluctuating electricity prices (to be precise, price prediction er-
rors) occur in the objective function, highly influencing the strategy of 
exchanging power with utility grid. This paper handles it by considering 
a worst-case expectation problem (WCP) that builds upon Wasserstein 
metrics. Let Q be the possible probability distribution of ζ and P̂N the 
observed empirical distribution. Problem (50) is considered as: 

max
x

min
Q∈B∊

(P̂N)EQ

(

− ζT Pu + cT x + d
)

s.t. Ax⪯b
(51) 

This reformulation argues that the decision variable x is chosen to 
maximize the expectation of objective function with respect to all 
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possible distributions Q of parameter ζ, in which Q falls in a Wasserstein 
ball centered at P̂N with radius ∊. The inner minimization problem is 
equivalent to: 

min
Q

EQ

(

− ζT Pu + cT x + d
)

=
∑∞

k=1

(

− ζT Pu + cT x + d

)

Qk

s.t. dw(Q, P̂N)⩽∊

(52) 

In the spirit of the paper [43], we demonstrate that this problem 
could be represented as a mixed integer programming. Detailed deri-
vation is provided in Appendix A. The final form of problem (50) 
becomes: 

max
x, λ⩾0, vl, sl,

θ1, θ2⪰0

∑N

l
− sl

1
N
− λ∊

s.t. Ax⪯b

sl⩾ −
(
cT x + d

)
+ vT

l ζ l + θT
2 ζ − θT

1 ζ

∀l ∈ [N]

− Pu + vl − θ1 + θ2 = 0 ∀l ∈ [N]

vl⩽λ1 ∀l ∈ [N]

vl⩾ − λ1 ∀l ∈ [N]

(53)  

where N is the number of observed data and [N] = {1,2,⋯,N}; λ, vl, sl,

θ1, θ2 are dual variables obtained during the theoretical derivation. 
Optimization problem (53) is finally a tractable reformulation of 

primal problem (49), and could be solved using the off-the -shelf MILP 
solvers, such as Gurobi and Cplex. 

5. Results and discussion 

5.1. System parameters 

In addition to the parameters mentioned in Section 2, some fixed 
parameters that are used in the optimization are provided in Table 5. 
The hourly electricity price is also required for the day-ahead scheduling 
decision. Herein, we use a multi-layer perception neural network 
(MLPNN) to complete this task. Since this is not the main focus of this 
paper, the details may not be discussed here. On the whole, the MLPNN 
model takes the previous seven-day historical hourly data as the input (a 
vector in R168) and the hourly data for the next day as output (a vector in 
R24) to perform a time series forecast. The model is first trained using a 
dataset generated from recent historical data and then utilized for pre-
diction. The training dataset changes with a moving time window to get 
better performance. The structure of MLPNN and prediction process are 
briefly described in Fig. 4a. The predicted electricity prices as known 

parameters are presented in Fig. 4b, where the observed data is also 
presented. 

5.2. Results 

5.2.1. Base scenarios 
In this paper, we try to mimic the operator of such a PtMeOH system 

who aims to minimize operational costs by optimally bidding in the day- 
ahead market and scheduling the owned components. The available data 
for the operator are only electricity prices predicted by the MLPNN, 
upon which the day-ahead decisions have to be made. To show the in-
fluence of the forecast errors, the case based on a perfect forecast is also 
provided. 

Fig. 5a presents the predicted prices along with the real observed 
prices (or perfect forecast) for a specific day. It is clearly shown that the 
prediction is rather precise during the first half-day, which is especially 
true in the sense of price fluctuating trends. After 13:00, however, the 
predicted prices exhibit a second price peak at 20:00, which does not 
exist in a reality where the prices hold very low in the remained half- 
day. It is found that such forecast errors are not very common when 
we span the results during the whole year while the comparatively large 
errors on this specific day do highlight the uncertainty of the forecast. 

Table 5 
Parameters related to compressors and methanol synthesis plant.  

Parameters Value Unit 

Compressor   
α1 3.7 × 10− 4 MWh/kg 
α2 3.7 × 10− 4 MWh/kg 
α3 1.3 × 10− 4 MWh/kg 
Methanol synthesis plant   
aMSP

1 0.34 MW 
aMSP

2 1.22× 10− 4 MWh/kg 
aMSP

3 8.49× 10− 5 MWh/kmol 
bMSP

1 6.528 kg/kmol 
bMSP

2 4.9 - 
bMSP

3 7.3 - 
RU,RP ±%20 Nominal production/h  

Fig. 4. (a) The utilized neural network for price prediction along with its 
training data sets, input and output definition. (b) Predicted prices vs observed 
prices across a year. 
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The imperfect prediction leads to non-optimal scheduling strategies, as 
is shown in Fig. 5b where the trajectory of the electrolyser is presented. 
In the case of perfect prediction, to avoid the single price peak, the 
electrolyser works in partial load from 7:00 to 12:00 and gradually in-
creases its production as the prices go down. With imperfect prediction, 
the electrolyser strategically reduces its load during the two price peaks. 
The resulted scheduling strategy is of course non-optimal since the 
second price peak would not happen. The operational cost is found to be 
75€ given the perfect strategy while it goes up to 319€ when adopting 
the strategy based on an imperfect forecast. In parallel, it is worth noting 
that although the electrolyser has unlimited ramping rates, the step-wise 
adjustment is a result of less flexible methanol synthesis. 

We then look into more details regarding the buffer tanks for 
hydrogen and CO2 as well as the methanol synthesis plant in the case of 
imperfect prediction. The buffer tanks offer the possibility to decouple 
the production of raw material (H2 and CO2) and production of meth-
anol, enabling the maximal utilization of components with distinct 
flexibility. It is observed from Fig. 6a that the hydrogen tank is charged 
before the two price peaks and discharged when the prices are high. 
CO2tank exhibits an opposite trend of total hydrogen production. When 
the electrolyser works at a high load, it is discharged and when the 
electrolyser produces less hydrogen, it is charged. It is worth noting that 
every time the tanks reach lower or upper bound, it means that the raw 

material provision and methanol production are strongly coupled. It 
could be inferred that sufficiently large buffer tanks would completely 
decouple these components. However, it is rather costly. This trade-off 
should be discussed at the planning stage while it is outside the scope 
of this paper. 

5.2.2. WCE scenario 
Here we show how the decisions based on imperfect prediction could 

be improved by considering uncertainties. Fig. 7 provides the daily costs 
given different Wasserstein ball radii and the number of historical 
samples. Notably, the radius is plotted on a logarithmic coordinate. The 
first observation is that the daily operational cost has reduced to nearly 
171€ with best-tuned parameters, higher than the perfect result but 
moderately lower than that based on imperfect prediction, i.e. 319€. The 
reduction of costs is achieved by obtaining more knowledge of the 
MLPNN model from its historical performance. 

Further insights into the proposed DDRO approach are provided by 
examining the influence of DDRO-related parameters. While insufficient 
samples result in higher daily costs, a large enough sample set has better 

Fig. 5. (a) The biased prediction with notable errors for a specific day. (b) The 
operational strategies for electrolyser based on perfect and imper-
fect prediction. 

Fig. 6. (a) Charge and discharge schedule of the H2and CO2tanks. (b) The 
optimized schedule for methanol production. 
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performance. Nevertheless, the increase of the performance halts when 
the number of samples reaches a certain level, e.g. nearly 200 in this 
figure. Such trends have been observed in a range of research on DDRO 
and imply that given limited computational resources, a larger sample 
set is not always better [24,23]. The radius ∊ also imposes great effects 
on the performance. It is illustrated that within a certain range, a larger 
radius is beneficial to approach the real distribution. For instance given 
a specific sample number, the optimum cost declines as the radius rises. 
Too large radius (more than 100), however, appears to be less favorable 
and leads to a considerably higher cost. This could be caused by the 
involvement of pathological distributions in the Wasserstein ball [43]. 
On the whole, it is suggested the radius should be chosen around 10 and 
the sample size less than 300. 

5.2.3. Comparison with SO and RO 
To further evaluate the effectiveness of the DDRO approach, we 

compare it with SO and RO. SO is built as a scenario-based two-stage 
stochastic programming, where the scenarios are generated from the 
same historical data set. RO builds on the assumption that the price 
prediction errors fall in a polyhedron uncertainty set. 

Table 6 gives the minimal daily costs during ten consecutive days 
obtained from different approaches. For reference, the costs based on 
perfect and imperfect forecasts (indicated as PF and IPF) are also 
available in this table. It is found that: 1. The MLPNN model offers a 
precise prediction for such day-ahead scheduling decisions. In most 
cases, the resulting minimal costs of PF and IPF are very close, and the 
IPF are only hundreds of euros higher than that for PF or even less. 2. In 
most cases, DDRO results in fewer costs than SO, RO and IPF, and the 
overall costs of DDRO are also the fewest. However, it is not always true. 
For example, SO outperforms DDRO on the fifth day; RO gives better 

results on the second day. Therefore, to be precise, DDRO is superior to 
SO and RO concerning the expectation of minimal costs. 3. RO 
frequently holds the worst performance, as the price of robustness. 

In the main, DDRO results in the optimal costs that are closest to the 
best results and on average outperform imperfect forecast. Notably, the 
accurate prediction eclipses the methods handling uncertainty. De-
cisions based on imperfect prediction is also acceptable. One reason is 
that the decisions are mainly made based on the trend of price trajectory 
rather than the specific value, which reduces the need for high accuracy 
prediction. Nevertheless, the proposed DDRO method further reduces 
costs and brings benefits to the system. The operational costs over the 
ten days are reduced by 4.5% using the DDRO methods compared to 
imperfect prediction. It is also expected that the DDRO method would be 
more significant provided that the prediction is less accurate or other 
uncertainties are also handled. 

5.3. Discussion on economics 

In this section, we investigate the production cost of methanol and 
examine the influence from critical system parameters. 

The levelized cost of methanol (LCOMe) is defined as [2]: 

LCOMe =
Annuity(€) + Annual operational costs(€)

Annual production of MeOH(kg)
(54) 

Since the wind turbines are considered to be owned by the same 
system operator, the annuity calculation should also contain the CAPEX 
of wind turbines. The operational costs are comprised of those from 
trading electricity in spot market (which can be both positive and 
negative), CO2 sources and maintenance of components. By investi-
gating the everyday operation in 2016, we obtained the yearly elec-
tricity costs as the sum of daily electricity costs. The less important 
operational costs are not accounted in this work, such as the cost of 
water, employees, land, building etc. Potential revenues from selling the 
by-products of electrolysis, i.e oxygen or heat, are also not involved. One 
could refer to [2] where the credit for O2 is assumed to be 50€/t. To sum 
up, the financial parameters are presented in Table 7. 

Fig. 8 illustrates the LCOMe given a different number of wind tur-
bines and CO2 prices. It is shown that with more wind turbines 
employed, methanol becomes more costly. For more wind turbines, 
although operational costs fall as less electricity is required from the 
day-ahead market, the annuity grows because of the increasing CAPEX. 
The former reduces LCOMe while the latter raises it. As the results 
suggested, the increase of CAPEX dominates and more wind turbines are 
not preferable for better economics. The CO2 prices, from another 
aspect, exert influence on the LCOMe. Higher CO2 prices significantly 
make methanol more costly. These results show that the methanol 
would not be cost-competitive with fossil-based methanol, which is 

Fig. 7. Daily costs as a function of the number of utilized samples and Was-
serstein ball radii. 

Table 6 
The minimal daily costs (€) derived from different approaches.  

Day DDRO SO RO PF IPF 

1 171 377 413 75 319 
2 -8388 -8204 -8425 -8535 -8105 
3 -29783 -29719 -29299 -29784 -29632 
4 -20440 -20335 -19993 -20469 -20255 
5 11769 11741 11703 11607 11853 
6 8281 8313 8295 8118 8413 
7 -24420 -24367 -24134 -24459 -24257 
8 -227 -170 -196 -276 -76 
9 15981 16028 15991 15800 16120 
10 10521 10574 10511 10442 10671 
Sum -36535 − 35762 –34997 − 37481 -34949  

Table 7 
Financial parameters of the components.  

Parameters Value 

Annuity related  
Unit CAPEX of wind turbine 1432€/kW [44] 
Unit CAPEX of electrolyser 1000€/kW [5] 
Unit CAPEX of compressor 343200 + 1.9RP1.5€(Rated power in kW) [45] 
Unit CAPEX of methanol plant 532€/(t/a) [46] 
Unit CAPEX of CO2 tank 3450€/t [47] 
Unit CAPEX of H2 tank 500€/kg [48] 
Unit CAPEX of converter 528€/100 kW [49] 
Discount rate 0.05 
Project lifetime 20 
Operational cost related  
O&M cost 0.03 CAPEX/year 
CO2 prices 0 to 150 €/t 
Electricity prices Dynamic pricing1€/MWh 

1The electricity price time series is derived from the Nordpool day-ahead market 
in 2016. 
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consistent with the mainstream view. 
Although more wind turbines are not favorable in terms of eco-

nomics, they contribute a lot to CO2 avoidance. The electricity from 
wind turbines, as shown in Table 2, is associated with CO2 footprint 
being 7.3 g/kWh. The utility electricity, however, is accompanied by a 
much higher CO2 footprint, as is on average 200 g/kWh [50]. The 
methanol becomes greener using more renewable energy. The annual 
CO2 emission for every ton of produced methanol is shown in Fig. 9, as a 
function of the number of wind turbines. These discussions indicate that 
there is a trade-off between economics and sustainability in such an e- 
MeOH production system. 

6. Conclusion 

PtMeOH is believed to be a promising technology for deep decar-

bonization. This paper investigates the optimal operation of a typical 
grid-connected PtMeOH system. For such configuration, a key problem 
is the reduction of operational costs, which are mostly derived from 
electricity costs. To this end, we build up a first-principle model to 
quantify the methanol production given specific composition of inlet 
feedstocks, i.e. H2 and CO2. We further validate the model using data 
from the literature, which shows that our model is reliable. 

Based on the model we then consider the participation of the system 
in the day-ahead electricity market. The spot prices are firstly predicted 
using an MLPNN model. Furthermore, an optimal scheduling problem is 
built, solved and the solution is further improved by handling the un-
certainty from price prediction via DDRO. The results show that the 
proposed model could capture the behaviours of such a system and the 
day-ahead scheduling works well in cost reduction. The introduced 
DDRO method is demonstrated to be able to further improve the per-
formance of the day-ahead scheduling optimization. Comparing DDRO 
with SO and RO also indicates the superiority of DDRO. 

Considering the operational strategies, we then discussed the pro-
duction cost of methanol. We find that the LCOMe varies from 584€/t to 
1146€/t given different CO2 prices and the number of wind turbines. 
This suggests that the produced eMeOH is not yet cost-efficient. It is also 
observed that more renewable electricity leads to higher LCOMe but 
fewer CO2 emissions. The operators need to make a trade-off between 
economics and sustainability. 

For futher work, from the perspective of operational research, more 
uncertainties, e.g. wind power output, could be considered by using the 
proposed DDRO method. It is also possible to simplify and discretize the 
differential equations describing the methanol production process for a 
more flexible operation. On the other hand, the optimal design of such a 
PtMeOH system could be of great value since methanol is gaining more 
and more attention. Research on the methanol or hydrogen supply 
chains would also be of interest where the benefits from methanol 
transportation and storage would be valued. 
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Appendix A. Reformulation of data-driven robust worst expectation problem 

The primal problem is repeated as: 

max
x

min
Q

EQ

(

− ζT Pu + cT x + d
)

=
∑∞

k=1

(

− ζT
k Pu + cT x + d

)

Qk

s.t. dw(Q, P̂N)⩽∊

(55) 

If the inner optimization could be converted to a maximization problem, the whole problem would be simplified. To do this, we focus on the inner 
minimization problem. The Wasserstein distance between Q and empirical distribution P̂n in discrete form is: 

dw

(

Q, P̂N

)

= min
Π⩾0

∑∞

k=1

∑N

l=1
‖ζk − ζ l‖Πkl

s.t.
∑∞

k=1
Πkl = (P̂N)l ∀l ∈

[

N

]

∑N

l=1
Πkl = Qk ∀k

(56) 

Here, Π is a joint distribution of Q and P̂N. The Wasserstein distance is the minimum cost of shifting distribution P̂N and Q by finding the best 
possible bi-variate distribution. The constraints mean that the two marginal distributions of Π are exactly Q and P̂N. Since P̂N is the empirical dis-
tribution which has same probability on all N samples, the Wasserstein distance is reformulated as: 

dw

(

Q,P

)

= min
Π⩾0

∑∞

k=1

∑N

l=1
‖ζk − ζ l‖Πkl

s.t.
∑∞

k=1
Πkl =

1
N

∀l ∈

[

N

]

∑N

l=1
Πkl = Qk ∀k

(57) 

In Eq. (55), we have dw(Q, P̂N)⩽∊. The minimum value of a function being less than a constant is equivalent to the fact that there exists a point on 
this function that is less than the constant. Hence, the minimization symbol could be simply dropped and by replacing Q with the second constraint in 
Eq. (57), we rewrite the inner problem (55) as: 

min
Π⩾0

∑∞

k=1

∑N

l=1

(

− ζT
k Pu + cT x + d

)

Πkl

s.t.
∑∞

k=1
Πkl =

1
N

∀l ∈

[

N

]

: sl

∑∞

k=1

∑N

l=1

⃦
⃦
⃦
⃦
⃦

ζk − ζ l

⃦
⃦
⃦
⃦
⃦

Πkl⩽∊ : λ

(58)  

with sl and λ denoting dual variables. There are infinite decision variables and limited constraints in this problem. To cope with this, we have its dual 
problem as: 

max
λ⩾0,sl

∑N

l
− sl

1
N
− λ∊

s.t.
(
− ζT

k Pu + cT x + d
)
+ sl + λ‖ζk − ζ l‖ ≥ 0 ∀l ∈

[
N
]
, ∀k

(59) 

The constraint is transformed to: 

sl⩾ −
(
− ζT

k Pu + cT x+ d
)
− λ‖ζk − ζ l‖ ∀l ∈

[
N
]
, ∀k (60) 

The norm in this formulation could be replaced by its equivalent dual form according to: 

λ‖ζk − ζ l‖ = max
‖v‖*⩽λ

(ζk − ζ l)
T v (61) 

Hence 

sl⩾max
ζk

(

−

(

− ζT
k Pu + cT x + d

)

− max
‖vl‖*⩽λ

(ζk − ζ l)
T vl

)

, ∀l ∈
[

N
]

= min
‖vl‖*⩽λ

max
ζk

(

−

(

− ζT
k Pu + cT x + d

)

− (ζk − ζ l)
T vl

)

, ∀l ∈
[

N
] (62) 
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This is equivalent to: 

sl⩾max
ζk

(

−

(

− ζT
k Pu + cT x+d

)

− (ζk − ζ l)
T vl

)

,∀l ∈
[

N
]

,∃‖vl‖*⩽λ (63) 

Problem (59) could be re-expressed as: 

max
λ⩾0,sl ,‖vl‖*⩽λ

∑N

l
− sl

1
N
− λ∊

s.t. sl⩾max
ζ

[

−

(

− ζT Pu + cT x + d
)

− (ζ − ζ l)
T vl

]

,∀l ∈
[

N
]

(64) 

Still, there is a sub-maximization problem in the constraint, which could in fact be expressed as a minimization problem via its dual problem. 
Assuming ζ falls in a polyhedral, we have the sub-problem as: 

sl⩾max
ζ

[

−

(

− ζT Pu + cT x + d
)

− (ζ − ζ l)
T vl

]

, ∀l ∈
[

N
]

s.t. ζ⪯ζ : θ1

ζ⪯ζ : θ2

(65) 

The dual counterpart of this linear programming is: 

min
θ1 ,θ2⪰0

− c′T y − d + vT
l ζ l + θT

2 ζ − θT
1 ζ

s.t. − Pu + vl − θ1 + θ2 = 0
(66) 

Again, we can move θ1 and θ2 to variables of outer layer to remove the minimization problem. Optimization (64) becomes: 

max
0λ⩾0, ‖vl‖*⩽λ, sl,

θ1⪰0, θ2⪰0

∑N

l
− sl

1
N
− λ∊

s.t. sl⩾ −
(
cT x + d

)
+ vT

l ζ l + θT
2 ζ − θT

1 ζ ∀l ∈
[
N
]

− Pu + vl − θ1 + θ2 = 0 ∀l ∈ [N]

(67) 

‖⋅‖* is referred to ‖⋅‖∞ so that this optimization can be solved by linear programming. To elaborate this, problem (67) is rewritten as: 

max
λ⩾0,vl ,sl ,θ1 ,θ2⪰0

∑N

l
− sl

1
N
− λ∊

s.t. sl⩾ −
(
cT x + d

)
+ vT

l ζ l + θT
2 ζ ∀l ∈

[
N
]

− Pu + vl − θ1 + θ2 = 0 ∀l ∈ [N]

vl⩽λ1T ∀l ∈
[
N
]

vl⩾ − λ1T ∀l ∈
[
N
]

(68)  
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