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Abstract

This work proposes an approach for structural Topology Opti-
mization enforcing geometrical features on optimized designs
using a predefined library of geometrical patterns. The ap-
proach applies a density-based Topology Optimization subject
to a geometrical constraint guiding the design toward shapes
matching the geometrical features found in the predefined pat-
tern library. Multiple distance measures and suitable matching
algorithms are studied to calculate local mappings between the
design in each optimization iteration and the pattern library.
An aggregated appearance constraint is evaluating the pattern
matching. The gradient of the appearance constraint, objec-
tive function and other constraints are applied in a gradient-
based optimization scheme. A parameter for the appearance
constraint dictates how closely the design should match the
patterns defined in the library. The convergence behavior is
studied on a variety of 2D and 3D optimization scenarios. The
formulation is also applied to design variables controlling the
material orientations alongside the material density as well as
other optimization objectives such as stress minimization.
Keywords: Topology Optimization, Geometrical Pattern
Library, Appearance Constraint, Fast Matching Algorithm

1 Introduction

Additive Manufacturing has seen tremendous popularity in
recent years and calls upon new 3D modeling and design ap-
proaches. The increased manufacturing freedom motivates
generative design methods such as structural Topology Opti-
mization (Bendsge and Sigmund, 2003). Traditionally, struc-
tural topology optimization targets physical and mechanical
performance such as stiffness, strength, buckling, heat con-
duction, efc. (Deng et al., 2021), (Gao and Ma, 2015). In
addition, geometrical constraints can improve the regularity or
manufacturability of the optimized designs (Wu et al., 2016),
(Langelaar, 2017), (Langelaar, 2016), (Hoffarth et al., 2017).

In certain fields such as architecture and consumer prod-

uct design, aesthetic considerations accompany the mechan-
ical performance and manufacturing requirements. Today,
such aesthetic geometrical features are rarely considered in
the topology optimization process. Visual geometrical feature
enhancement operations are often handled manually by trial
and error or as a post-processing step after the topology opti-
mization. These manual operations can greatly deteriorate the
obtained optimized mechanical performance. Therefore, it is
preferable to simultaneously optimize the mechanical perfor-
mance and aesthetics of the design. Additionally, control over
geometrical patterns appearing in the design can also serve to
enhance its overall mechanical performance, for example by
producing oriented microstructures (Wu et al., 2021). Like-
wise, it may allow to encourage certain desirable geometrical
features for manufacturing or avoid pathological defects in the
design.

Overall, the challenge lies in guiding the design using a
geometrical library mathematically and algorithmically to de-
scribe concepts like style, appearance or aesthetics of a given
design. Most methods attempting to tackle these concepts are
in the field of Computer Graphics using a guide by example
paradigm (Wei et al., 2009). Similarly, this work describes a
formulation where the optimized design is forced to exhibit
geometrical features present in a user-defined library of pat-
terns. This formulation relies on a matching algorithm and
the computation of a distance function between the design and
the pattern library, as well as its first order derivatives required
for efficiently applying gradient-based optimization schemes.
Note that the kind of geometrical pattern matching targeted in
this paper is both size and orientation sensitive. Fig. 1 illus-
trates the optimization approach for a simple problem where
the design is guided by a library of regular grid-like patterns.

This article is organized as follows. Section 2 describes re-
lated work upon which some components of the present work
are based. Section 3 describes the mathematical algorithms
used to define and solve the topology optimization subject to
an appearance constraint for a predefined geometrical pattern
library. Section 4 shows the approach on a variety of 2D and



Figure 1: (a) 2D bridge optimization having three loaded
regions at the top and two clamped regions at the bottom
corners. (b) The library of six different geometrical patterns.
(c) The optimized design exhibiting geometrical features of
the pattern library.

3D scenarios and discusses the results including the optimiza-
tion iteration convergence. Section 5 extends the approach by
applying it to optimization for orthotropic materials also hav-
ing the angles as additional design variables. Finally, Section
6 concludes on the present approach and discusses potential
future work.

2 Related work

Synthesizing images originates from the field of texture syn-
thesis creating or extending rectangular textures from small
examples. Readers may refer to (Wei et al., 2009) for a review
of such methods. The problem of synthesizing a new image
resembling a so-called exemplar is addressed using minimiza-
tion of an energy function. Pixel values of the output image are
the variables being modified through the optimization of an
Appearance energy (see (Kwatra et al., 2005)). This approach
is adopted in our work to quantify the appearance of the gen-
erated design in relation to provided predefined geometrical
patterns.

Patch-based Synthesis is an active field of research in Com-
puter Graphics where images are synthesized by copying and
assembling small regions or patches from within an exem-
plar. A comprehensive review of patch-based texture synthesis
methods up to 2017 is available in (Barnes and Zhang, 2016).
This type of local approach operates on compact regions, and
is therefore easily coupled with density based Topology Opti-

mization. The main stage in most patch-based synthesis meth-
ods is the matching phase finding suitable patches at a given
region from a geometrical pattern library. Although search in
the design domain can be done by exhaustively sampling the
search space, this strategy is computationally too expensive
for any non-trivial applications. More efficient approximation
algorithms are preferred, such as PatchMatch (Barnes et al.,
2009) which is adapted in our study and discussed later in the
paper. These techniques used in Texture Synthesis are easily
translated to density-based Topology Optimization by describ-
ing the pixel values as analogous to the design variables being
defined by the finite element discretizing of the design domain.

We propose to guide the appearance optimization from a
collection of several patterns instead of only one pattern. This
idea is derived from the WaveFunctionCollapse Github project
(Gumin, 2016) generating procedural coherent bitmaps from
tilemaps of several patterns by constraining their positions on
a fixed finite element grid. The tilemaps are constrained by
edge conditions. For example, a tile whose right side is green
can only be positioned to the left of a tile whose left side is
green. The idea is to allow the algorithm to choose between
several inputs, which are more or less locally adapted to the
generated structure. However, it is important to note that the
hard constraint of conformity at the interface of each patch
was quickly abandoned in this work as a smooth transition
through overlapping patches is better suited for gradient-based
optimization.

A few publications have considered both texture synthesis
and 3D manufacturing. The strength of a design is improved
as a post-processing step after its modelling by locally modi-
fying the thinnest parts of the geometry in (Stava et al., 2012).
Geometric patterns can be synthesized along the surface of a
3D object while ensuring it stays printable as shown in (Du-
mas et al., 2015). However, this last approach does not take
into account the amount of material and tends to fill the entire
design domain. Fine filigree is created along the surface of any
3D design to resemble a 2D exemplar in (Chen et al., 2016).

Finally, (Martinez et al., 2015) proposed a formulation for
optimizing the similarity of a 2D design or an assembly con-
sisting of 2D designs with a single pattern while applying con-
straints on mass and minimizing the objective being the sum
of compliance and pattern similarity. This approach seems to
offer the strongest coupling between aesthetics and mechani-
cal performance as both objectives are continually reevaluated
during the design optimization process.

2.1 Contribution

The present article is based on the previous work (Martinez
et al., 2015) considering a single geometrical pattern. Our
approach is generalized to operate in 3D having a library of
multiple geometrical patterns that the optimization can pick
from and with a modified distance metric for improved numer-
ical handling of low-density regions. Furthermore, we demon-
strate the numerical robustness of this formulation by applying
it to more challenging design optimization such as stress min-
imization and angle design variables. We also present an al-



ternative formulation using a soft-min aggregation letting the
optimization choose to reproduce a pattern from the library
only in the location having the smallest impact on the mechan-
ical performance. Finally, we demonstrate the formulation
on an optimization problem having an anisotropic constitutive
material model and where the design variables are not only
the material density but also its local orientation.

3 Mathematical Model

This section presents the mathematical modeling for topology
optimization subject to an additional appearance constraint.
We describe how we measure the local similarity of a gen-
erated structure to a geometrical pattern library and then we
formulate a differentiable measure of appearance. Addition-
ally, we describe a matching assignment algorithm determin-
ing which patterns from the library should be applied in a
given design.

3.1 Topology Optimization Formulation

The aim of topology optimization is to find an optimal distri-
bution of material within a given design domain according to
a set of objective and constraints. The topology optimization
formulation used in our study is based on the density-based
SIMP approach (Bendsge and Sigmund, 1999). In most of the
following examples, we are minimizing the compliance as ob-
jective function subject to a mass constraint and the proposed
Appearance constraint. In the later sections, we also show
examples where we apply an objective function to minimize
the maximum peak stress or optimize the local orientations of
anisotropic material alongside density design variables.

The design domain € is subdivided into a regular grid of
quadrilateral or hexahedral finite elements 7 in 2D and 3D, re-
spectively. This results in the following optimization problem:

argp,min J(p) = tu

s.it. K(pu=f
0<p; <1 VieQ
P . (1)
G - ieQ Pi <
(0) o G
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The effective Young modulus Y of each element i for the
assigned isotropic material Y is determined by the power law
approach Y (p;) = pf’ Yy where the penalisation exponent p =
3. The structural equilibrium associates the global stiffness
matrix K, the nodal force vector f and the nodal displacement
vector #. Then we can solve for # and calculate the objective
function J(p). The densities p are bounded between 0 and 1
by box constraints. The volume fraction G(p) is constrained
by G*. As one of our contributions, we add the appearance
constraint A(p) which is defined in section 3.2.

A filter is applied to the sensitivities (Sigmund, 1997) to
improve numerical stability, reduce erroneous checkerboard
patterns (Diaz and Sigmund, 1995) and introduce a minimum

length scale in the optimization. We use the Method of Moving
Asymptotes (MMA) (Svanberg, 1987) gradient-based math-
ematical programming approach to update the design vari-
ables. Once the design variables have been updated then the
algorithm loops back to the evaluation of the objective and
constraint functions if the stopping criteria is not fulfilled.

3.2 Appearance Constraint

In this section, we define the Appearance constraint A(p).
The appearance value is modeled as a function of the den-
sity field p and a predefined set of geometrical patterns . A
lower appearance value indicates small difference between p
and the patterns /. In other words, it means that every small
patch of p is visually very similar to at least one patch of a
geometrical pattern in /. In the following, we describe our
choices of representation and the patch discretization. After-
wards, we describe the distance metric used to compare two
patches. Then, the matching algorithm for computing a map-
ping between patches of Q and 7 is described. Finally, the
aggregated appearance function and its partial derivatives are
defined with respect to the design variables.

3.2.1 Geometrical Pattern Library

We define a library consisting of |/| geometrical patterns. In
the present numerical implementation, this library consists of
a series of PNG or OBJ files for 2D and 3D patterns. For
the 2D cases, the pixel values of the PNG files are directly
interpreted as a material density between O and 1. For the
3D cases, the surface meshes described by the OBJ files are
each voxelized by computing a signed distance field to the
surface (Barentzen and Aanes, 2002). The distance values
can then be interpreted as material densities similarly to the
2D cases. The main benefit of using the present file formats
is that it allows easily hand-painting or adjusting the patterns
using existing image processing or modeling software. The
appearance constraint of the structure generated during op-
timization is measured relatively to this geometrical pattern
library. There is no intrinsic limit to the number |/| of patterns
or their spatial resolution, but it should be noted that larger
libraries will increase computational run times.

3.2.2 Patch Discretization

A patch w; is assigned to each finite element i of the design
domain Q (see figure 3). Patches are rectangular windows of
size lw| = 2XIx+1)x (2%, +1)x(2xI;+1) where
I, 1y, 1, are integers defining the half-sizes of the patch along
each axis. Thus, w; contains all elements in the neighborhood
of i satisfying w; = {j | ||(Jx —ix)ll« < Ik, k € {x,y,z}. The
patch sizes are typically chosen manually or calculated heuris-
tically based on the input pattern sizes. This discretization is
used to describe the appearance constraint locally by consid-
ering the measure of the appearance for each patch relative to
the pattern library.



3.2.3 Distance Metric

The evaluation of the appearance constraint is based upon
computing a distance value between any patch from Q with
any patch from /. We define the mapping m as a function
m : Q — [ from between all possible patches from Q and
the matching patch from the pattern library / according to the
chosen distance metric. Given a patch centered on a given
element i € Q, we associate the element to the corresponding
matching patch in the pattern library by its central element
m(i) € I. The notation p; ; is used to refer to the density of
an element j which is in a neighborhood w; of i.

The distance metric used throughout this work (unless spec-
ified otherwise) is a density weighted sum of the normalized
squared norms and is defined as follows:

(pij = @m(i).)*
D (pi. @) = pi ’ ’ @
(fretmo ) = ,;,.ZZkew[(O-S—am(M)“

where a represents the relative densities of the corresponding
patch for the predefined geometrical pattern library 7, and the
small number € > 0 ensures the distance is defined in the
unlikely event when the patch from the pattern library 7 is of
uniform 0.5 densities.

We conducted numerical experiments for various distance
metrics and found that the present formulation provided the
most numerical advantages while remaining mathematically
simple and intuitive. The numerator (p; ; — @m(), j)2 is a
convex function, being zero when the two patches are equal
and rapidly growing if the two patches are dissimilar. The
denominator 2 3y ¢, (0.5 — & (i),x) + € is a patch-dependent
normalization coefficient scaling the impact of each patch as
well as widening the range of the appearance constraint val-
ues. The weighting factor p; guides the optimization to focus
on high-density regions while disregarding void regions. Ad-
ditionally, it has the benefit of ensuring that the appearance
constraint always has a feasible solution.

3.2.4 Brute Force Matching

The mapping function m is stored as an array of dimension |Q|.
One could search exhaustively for the best matching given a
distance metric such as Eq. 2. This would be accomplished by
evaluating the distance value of each possible pair of patches
in the design domain and pattern library, and keeping the
matches having the smallest total distance. However, such a
brute-force strategy yields a high computation time and will be
impractical for any non-trivial scenario. Indeed, an exhaustive
search for the 3D optimization problem in Fig. 8(e) requires
more than 25 x 10° evaluations of the distance function for
each optimization iteration.

As in (Martinez et al., 2015), we will instead apply the fast
randomized matching algorithm PatchMatch (Barnes et al.,
2009) that we extend to handle multiple geometrical patterns.
This matching algorithm is described in the following section.
The PatchMatch algorithm only provides an approximation
of the optimal mapping. Therefore, we compare against the

mappings obtained by the brute-force strategy to validate the
approximate scheme and adjust its parameters accordingly.

3.2.5 Fast Matching Algorithm

The original PatchMatch algorithm is an iterative process that
continually improves the matching assignment. However, in
our implementation, we run one execution of the matching
process at the start of each topology optimization iteration for
evaluating the appearance constraint. Thus, an execution of
the matching algorithm aims at both improving the matching
assignment and updating the scheme by taking into account the
design variables updates from the outer topology optimization
loop.

The fast matching algorithm relies on two key assump-
tions about the characteristic of the present matching problem.
Firstly, we assume that a good mapping at a given iteration of
the optimization process is likely to be a good starting guess
for the mapping at the next topology optimization iteration.
Apart from the first couple of topology optimization itera-
tions, where the density field is changing rapidly, we find that
this assumption is valid. Secondly, we assume that when a
good match in 7 is found for a given element of Q then it
is likely that the neighboring elements of Q would also have
good matches in the neighborhood of that first matchin /. Intu-
itively, this assumption makes sense since neighboring patches
overlap in Q and therefore, it is to be expected that their op-
timal matches tend to also overlap /. These two assumptions
are often referred to as time continuity and spatial locality,
respectively. Together, they allow to only consider a subset of
candidate patches, thus drastically reducing the search space
and total number of distance function evaluations. Specifi-
cally, when searching the match m (i) of a given element i,
using our implementation and choices of parameters, we only
consider on average 30 to 50 potential candidate patches of
the geometrical pattern library. Numerical experiments show
that these settings allow achieving optimized designs qualita-
tively equivalent to those obtained with an exhaustive search
but using a fraction of the computational cost.

The matching assignment is kept in memory after the ini-
tialization step and continually updated throughout the en-
tire topology optimization iterations. Furthermore, we ex-
tended the matching algorithm to handle multiple patterns. A
flowchart of the process is shown in Fig. 2.

Each step of the matching algorithm is described and illus-
trated in Fig. 3 as well as the gradient computation in the
following.

Initialization: Each element i € Q is assigned a match m ()
at random for the beginning of the first topology optimization
iteration. It is improbable that a random initialization would,
by chance, yield a good matching everywhere for all elements
in the design domain. However, this strategy is justified by
the fact that it is also equally unlikely that it will yield a bad
matching for all elements. Indeed, the subsequent search and
propagation steps only need a few good matches to quickly
spread and improve the matching for the entire design domain.
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Figure 2: Flowchart of the appearance constraint evaluation
including the matching update step for the patterns of the
geometrical library.

This initialization can also be done using user-defined patterns
for instance by initializing the matching assignment of certain
areas of the design domain with elements targeted in specific
patterns of the library. Then it is possible to induce a design
convergence bias promoting the chosen geometrical pattern
for a given area of the design domain.

Switch Search: This phase scans through the pattern library
allowing the algorithm to change the pattern for which it deter-
mines the nearest patch. We attempt to improve the matching
assignment by testing a set of ng patches for each other pattern
of the geometrical library. The selection follows a uniform
distribution on the subspace for the maximum dimension of
each pattern. Unless specified otherwise, we use ng = 5 for
the numerical examples.

Walk Search: We attempt to improve the matching assign-
ment by testing several patches present inside a circle of de-
creasing radius centered on its current best match. We update
the center of the search during the Walk Search if a better
match is found to improve the convergence speed as proposed
in (Panareda Busto et al., 2010). The coordinates of the tested
element are then obtained by m(i) + (%)kak where m(i)
are the coordinates of the current best matching assignment,
Ri € [-1,1] x [-1,1] x [~1, 1] is a uniform random vector,
w is the maximum search radius being equal to the maximum
pattern dimension and clamped to the bounds of the pattern.
We examine patches for k = 0, 1, 2, ... until the current search
radius (§)*w is below 1 voxel.

Propagation: If two elements are next to each other in the
design domain there is a high chance that their best matches
are also next to each other in the geometrical pattern library.
Therefore, we improve the matching assignment by using a
propagation algorithm similar to the Distance Transform algo-
rithm (Kimmel et al., 1996) (Felzenszwalb and Huttenlocher,
2004). The propagation is performed in a forward pass fol-
lowed by a backward pass using the connectivity information

of the finite element mesh to ensure a coherent spreading. The
propagation algorithm sweeps through the design domain and
visits each element sequentially. In 3D, each element i has at
most 26 neighboring elements, 13 of which have not yet been
visited by the current pass. For these 13 neighbors, a shifted
version of the matching m(7) is considered as a candidate for
a better match. Computing this propagation sequentially al-
lows potentially spreading the matching over the entire design
domain in only two passes. This means that the algorithm
performance scales linearly with the number of elements.

I
ol D=0 |
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Figure 3: Illustration of the fast randomized matching algo-
rithm. (a) Current best matches are initialized at random in
the Initialization phase. (b) Each patch randomly searches for
a better match in the other input patterns at the Switch Search
phase. (c) Each patch randomly searches for a better match
inside progressively tighter neighborhoods around its current
best match at the Walk Search phase. (d) Each patch attempts
to propagate a shifted version of its current best match to its
neighbors at the Propagation phase.

CPU Parallelization: Our implementation of the matching
algorithm is adapted to multi-threading for computational per-
formance. This is an important factor as the matching algo-
rithm is computationally expensive for the topology optimiza-
tion of high resolution 3D density fields. CPU parallelization



is trivial to implement for all phases of the matching process
with the exception of the propagation being inherently a serial
operation. Thus, we split the design domain and run the propa-
gation algorithm on one thread for each contiguous sub-space.
As the propagation operates in two passes then this domain
splitting does not prevent spreading matches through the bor-
ders of the sub-domains. In theory, the quality of the matching
obtained using the parallelized implementation of the propa-
gation algorithm should be inferior. However, in practice, we
find that the total distance of the obtained matching is essen-
tially unaffected for our numerical experiments using 8 threads
and 8 sub-domains.

Randomness: The fast matching algorithm is an iterative
scheme approximating the optimal matching and therefore,
involves randomness. Moreover, the matching process is itself
extremely non-convex. Therefore, any topology optimization
using an appearance constraint is likely to converge to a local
minimum. Experimentally, we show in a later section that al-
though the designs might differ in each local minimum, their
optimized compliance values are practically equivalent. More-
over, the pseudo-random number generators applied within the
evaluation of the appearance constraint can be deterministi-
cally seeded in order to control the randomness of the matching
assignment and obtain easily repeatable numerical results.

Low Density Areas: The matching has no impactin aregion
where material is void due to the p; weight in the distance
metric in Eq. 2. Thus, it is unnecessary to search for a
patch assignment in void regions. In our implementation,
all patches having an average density ﬁ 2jew; Pj below a
threshold value of 0.05 are excluded from the matching search
phases. This scheme has proven effective at reducing the
search space for large resolutions and for small and moderate
volume fractions, where larger areas of voids are present in

the optimized designs.

Boundary Handling: The distance between two patches is
not well-defined if one of the patches is partially outside of the
design domain Q or one of the patterns in /. We assume that
regions outside of the design domain are void and therefore,
assume their density to be zero. This zero-padding strategy
ensures that all elements of Q have well defined gradients.
However, using the same strategy for patches partially lying
outside of / leads to adverse effects and fictitious geometri-
cal features appearing in the optimized design. Therefore,
only patches lying entirely inside patterns of the library are
considered as candidates for the matching algorithm.

3.2.6 Appearance Function for constraint

Having calculated the mapping function m : Q — [ using
the fast matching algorithm, we now formulate the appearance
function for the constraint. It is constructed as an aggrega-
tion across all elements for the design domain of the distances

D(pi, @m(iy) defined in Eq. 2. Using a simple sum aggrega-
tion ensures well defined first order derivatives and yields the
following appearance constraint:

1
A(p) = o] ZD(Pi,Gm(i)) <1 (3)

ieQ

The coefficient A* €]0, 1] is the value of the appearance con-
straint, analogous to G* for the volume fraction constraint in
Eq. 1. The summed appearance in Eq. 3 is normalized by
the number of elements considered in Q. It is possible to
use other aggregation functions for the appearance constraint
to obtain different mathematical behaviors. For instance, the
effect of using a soft-min aggregation function is investigated
in Section 5.

The derivatives of the appearance function with respect to
the design variables are computed using Eq.2 and Eq.3 as
follows:

Iti=j:
D (pi.Pm(i)) (pj—aij)
T o
oA 1 Z Pi pi Yjew; (0.5-ai,j)*+e @
apj  ATIQl iljew; | Ifi#J:
(pj-aij)

P e (05-ai )7 +e

The calculated gradient are then implemented in the gradient-
based optimization scheme as shown by the flowchart in Fig.
2.

As the Fast Matching algorithm is a discontinuous opera-
tion primarily due to the switch Search and Walk Search steps,
the appearance function is non-smooth and only piece-wise
differentiable. Nevertheless, our numerical experiments show
that this expression can be used stably in our numerical frame-
work mostly thanks to the fast convergence of the matching
algorithm. This is further discussed in section 4.2.

4 Results and Analysis

The previous section described a numerical optimization im-
plementation for generating optimized structures having en-
forced geometrical appearances. The present section uses this
approach in various scenarios and highlights its advantages
and shortcomings. Initially, we discuss a methodology for
choosing the threshold value A* controlling the appearance
constraint. Afterwards, we evaluate the behavior of the op-
timization scheme through several 2D and 3D numerical ex-
periments for which we evaluate computational run time and
optimization convergence history.

4.1 Choosing Appearance constraint value A*

In the following numerical experiment, we study the op-
timized designs and their compliance value obtained us-
ing five different appearance constraint values as A* =
{0.01,0.02,0.04,0.08,0.16}. A fixed number of 100 opti-
mization iterations is chosen as the stopping criterion and all



Figure 4: Comparison of different constraint values A* on a
100 x 100 2D L-shape mesh. The design specifications are
shown in the top left with boundary conditions and loads in
blue and red, respectively. The pattern is an image of 5 dis-
connected dots. Five optimized designs and their compliance
(C), appearance (A), and volume fraction (G).

models have the same volume fraction constraint of G* = 0.5.
The optimized results are shown in Fig. 4.

It is clear for this optimization setup that a geometrical
pattern consisting of disconnected circular dots will not be op-
timal for minimized structural compliance as such a structure
will typically consist of bars. Nevertheless, it is promising
to see how the optimization formulation behaves for such a
guided geometrical pattern. Firstly, we observe that all con-
straints are satisfied in all cases and the optimized designs
exhibit the guided geometrical shape. Secondly, we see that
tighter appearance constraint values A* lead to designs having
easily recognizable patterns in the resulting optimized de-
sign, but this also causes a significant increase in compliance.
Thirdly, we observe that in order to satisfy the appearance
constraint, the element densities for the optimized design are
reduced outside of the circular dots. This justifies why the
volume fraction constraint is sometimes inactive. Other nu-

merical experiments yield similar findings and show that the
topology optimization process is quite sensitive to the choice
of A™.

In (Martinez et al., 2015) the problem formulation consists
of an objective minimizing the appearance subject to a con-
straint on compliance, for which the user chooses a threshold.
The volume constraint and the redistribution of material for
the close to void regions commonly prevent the emergence of
disconnected components when the compliance constraint is
active. However, having a high compliance threshold and a
geometrical pattern having disconnected components such as
the one shown in Fig. 4, results in designs that could have
disconnected components. A self-weight loading scenario for
such a case will eliminate this issue. However, the self-weight
loading scenario is unnecessary in our numerical framework
because the compliance is minimized as an objective func-
tion. Nevertheless, the user has to choose a threshold A* for
the appearance constraint in our problem formulation. A poor
choice of threshold value can lead to designs exhibiting non-
converged densities or unrecognizable geometrical patterns.
Therefore, we propose a heuristic method to choose the A*
constraint value.

The challenge concerning the appearance constraint lies in
the fact that it has no explicit physical meaning and instead
relies on a more abstract and subjective idea of aesthetics and
visual similarity between the optimized design and the geo-
metrical patterns of a library. In contrast, it is easy to choose
a G* value for the volume fraction constraint. Applying the
appearance constraint requires an additional effort in adjusting
A” to determine the value best suited for a given problem. We
suggest a heuristic method to determine a suitable value for
A” requiring no trial and error or additional optimization iter-
ations. Run the topology optimization for N iterations without
constraining the appearance. Then, set the appearance con-
straint value A* to a fraction vy of the current appearance score
An (p) and resume the topology optimization at iteration N+ 1
as follows:

A" =yAN(p) (&)

Unless stated otherwise, we use this approach with N = 10
and y = 0.70 in all subsequent examples.

4.2 Optimization convergence behavior

The following numerical experiment aims at evaluating the
convergence behavior of the optimization using an appear-
ance constraint. For this purpose, we use a cantilever beam
scenario on a 384 x 256 grid resolution subject to a volume
fraction constraint G* = 0.4. Comparative tests are done using
different geometrical pattern libraries including oriented pat-
tern(s) or a single detailed high-resolution pattern. The choice
for the size of both the patterns provided to the geometrical li-
brary and the patches used for the evaluation of the appearance
constraint depends on the resolution of the mesh and the detail
level for the geometrical features of the patterns. Indeed, pat-
terns with detailed geometrical features require larger patches
to ensure propagation while smaller patches are applied in the



case of repeated patterns. Finally, the value of the threshold
A* is chosen using the methodology described in Eq. 5. The
optimized structures obtained for different pattern libraries are
shown in Fig. 5.

(a)

(b)

Figure 5: (a) 2D cantilever fixed on the left side and loaded
at the bottom right. (b) Optimized design without appearance
constraint as a baseline. (c), (d), (e), (f) Optimized designs us-
ing the appearance constraint for geometrical pattern libraries
consisting of one or multiple patterns shown at the top right
corner of each design.

The settings chosen for each optimization run are summa-
rized in the following table:

Case | Pattern Patch A* | It. runtime | Compl.

5(b) - - - 5.24s 4.3 %100
5(c) | 80x80 | 31x31 | 0.18 13.35s 4.7 x10°
5) | 75x75 | 21x21 | 0.18 14.82s 5.2x 10°
5() | 80x90 | 31x31 | 0.18 15.01s 5.3%x10°
5(F) | 90%x90 | 21x21 | 0.20 10.56s 6.1x10°

The convergence history of the five cantilever designs is
shown in Fig. 6 for the compliance value, volume fraction,
and appearance constraint. Note that since the appearance
constraint is only applied after N = 10 iterations, the history
plot starts at iteration N.
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Figure 6: Convergence history for the five designs in Fig.
5. Case (b) shows the design without appearance constraint
in Fig. 5(b). Cases (c), (d), (e) and (f) correspond to the
designs in Fig. 5(c), 5(d), 5(e) and 5(f) respectively. The
appearance constraint is disabled for the first 10 iterations,
hence the convergence history starts at iteration 10.

The compliance history shows a smooth decrease across all
optimization iterations except for the peak at iteration N = 10
caused by the introduction of the appearance constraint. The
initial violation of the appearance constraint value incurs a
rapid change in the material distribution. With the exception
of iteration N, both the appearance constraint and the volume
fraction constraint are satisfied and stable during the optimiza-
tion iterations.

Naturally, Case (b) (Fig. 5(b)), having no appearance con-
straint achieves the lowest compliance. Case (d) (Fig. 5(d))
achieves the second best compliance due to its pattern li-
brary consisting of six angled grid-like patterns, analogous



to oriented orthotropic microstructures. Note, that this design
is similar results obtained with the so-called Local Volume
constraint (Wu et al., 2016) as well as recent work tackling
de-homogenization and microstructure generation reviewed
in (Wu et al., 2021). Case (f) (Fig. 5(f)) exhibits a simi-
lar result but its geometrical features are significantly thinner
and extracted from small patches inside the distorted grid pat-
tern present in the library. Finally, Case (c) (Fig. 5(c)) and
Case (e) (Fig. 5(e)) are subjected to an appearance constraint
having larger and intricate geometrical patterns leading to a
more artistic result. Case (c¢) (Fig. 5(c)) is an example where
the geometrical pattern is mostly void and the optimization
reduces the density values in order to satisfy the appearance
constraint. Therefore, the volume fraction constraint from
Case (c) is inactive and 15% lower than the constraint value.

Our numerical experiments on several other test scenarios
also show that both the patch size and the value of A* influence
the compliance optimization history. Indeed, larger patches
constrain the guided appearance of the generated structure by
penalizing the non-propagation of patterns over larger regions.
However, it is not possible to use smaller patches for patterns
having detailed geometrical features like the ones of case (c)
and (e) as these are unable to include all their detailed geomet-
rical features and thereby, fail to reproduce these geometrical
features correctly.

The update of the mapping m : Q — [ viathe Fast Matching
algorithm is a discontinuous operation. Nevertheless, the con-
vergence history for all our numerical experiments is smooth
and stable. We attribute this observation to three key fac-
tors. Firstly, the Fast Matching algorithm converges extremely
quickly. Empirically, it achieves an approximate mapping hav-
ing a total distance within 1% of the true optimal mapping in
generally less than 5 iterations. Secondly, the patches over-
lap in the design domain having the effect of averaging the
influence of each individual patch. Thirdly, the mapping is
only updated when a better match is found for a given patch
in the library. Therefore, the design updates and the mapping
updates are actually cooperating throughout the optimization
process.

4.3 Non-Convexity

Even for a simple density-based compliance topology opti-
mization problem subject to a volume faction constraint the
solution space is known to be non-convex. Despite the absence
of theoretical guarantees, the general consensus is that initial-
izing all relative densities to intermediate values combined
with length scale control and move limits is usually enough to
prevent the optimization to end up in a poor local minimum.
As discussed in Section 3, the appearance constraint sig-
nificantly increases the non-linearity and non-convexity of the
solution space. The Fast Matching algorithm introduces ran-
domness in the initialization, switch search and walk search
phases. Thus, running the same optimization scenario using
different random seeds usually results in converging toward a
different local minimum. We empirically conclude, by opti-
mizing a large number designs, that the optimized topologies

differ, but their mechanical performance is equivalent. Fig. 7
shows the compliance and designs obtained for four optimiza-
tion runs of the cantilever problem shown in Fig. 5(a) using
the same parameters but different random seeds. Note, we do
not need to run N preliminary iterations without appearance
constraint to choose an appropriate value for A* since we use
the same predetermined value of A* = 0.15 for every run of
this experiment.
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Figure 7: Comparison of the compliance optimization history
for four designs using the setup at Fig 5(a) and the geometrical
pattern library at Fig. 5(c). The converged designs from run 1
to 4 have a final compliance of 8.07x 10°, 8.19x 10, 8.13x10°
and 8.19 x 10°, respectively.

4.4 Numerical performance

The numerical implementation was done in C++. The wall-
clock execution time reported in table for Fig. 5 is mea-
sured using a laptop having all calculations running on its
six cores 2.60 GHz Intel Core i7 - 9850H CPU. The Jacobi
preconditioned gradient descent solver as well as the appear-
ance constraint are multi-threaded as discussed in Section 3.
For such optimization problems, the matching and appearance
constraint computation is roughly half of the total optimiza-
tion time. Computation time differences between each design
optimization are explained by the patch sizes and the number
of geometrical patterns in the libraries.

4.5 3D designs

We apply the appearance constraint for a 3D cubic design
domain having resolution of 102 x 102 x 102 yielding ap-
proximately 1 X 10° design variables and 3 x 10° degrees of
freedom. Loading is applied uniformly on the top of the de-
sign domain clamped at the four bottom corners as shown in
Fig. 8(a). The volume fraction constraint is set to G* = 0.5
and the value of A* is set using the methodology in Eq. 5. The
baseline model without appearance constraint is shown in Fig.
8(a). The four optimized designs subject to the appearance
constraint and the associated geometrical patterns illustrated
in blue are shown in Fig. 8(b), (c), (d) and (e).



Figure 8: 3D designs obtained using the appearance constraint
for various geometrical libraries. The model (a) without ap-
pearance constraint yielding a compliance of 1.0 as baseline.
The models (b), (c), (d) and (e) have optimized compliances
of 1.25, 1.24, 1.49, and 1.13 respectively.

We find that the appearance constraint is satisfied and the
objective function decreases smoothly during the optimization
for the 3D experiments, similarly to the previously shown 2D
examples. The baseline model 8(a) also achieves the lowest

10

compliance since it is not subject to the additional appear-
ance constraint. The appearance constraint thus succeeds at
changing the geometrical appearance of the optimized designs
to partially resemble the geometrical patterns of the various
libraries.

Designs 8(b) and (c) have a target geometrical pattern for
representing a lotus flower and a mushroom, respectively. The
two optimized designs mainly exhibit aesthetic changes near
their surfaces, where outward spikes or flat horizontal planes
appear. For design 8(d), the target geometrical pattern is a
sphere hollowed by three axis-aligned cylinders. The opti-
mized design consists of tubular membranes which split and
connect at regular intervals from the bottom to the top plate of
the design domain. Finally, design 8(e) has a pattern library
consisting of three different parallel plates aligned along the
X, Y and Z directions, respectively. The optimized design
consists of a selection of axis-aligned membranes. Note, that
only two of the three input patterns present in the library are to
be found in the optimized design. Indeed, the pattern having
plates orthogonal to the load direction is of no use when min-
imizing compliance and is quickly removed by the concurrent
optimization for the geometrical pattern mapping and design
variables.

5 Extensions

In this section, various modifications and extensions for the
proposed appearance constraint are explored. Specifically, we
change the objective function of the topology optimization
formulation, the design variable type, and the aggregation
function applied for the appearance constraint.

5.1 Stress minimization

The appearance constraint is dependent on the density field
but independent from the objective function. Here, we con-
sider stress minimization as objective instead of minimizing
compliance. A p-norm aggregation of the von Mises stress
with g-relaxation is applied using n = 10 and g = 0.5 (Duys-
inx and Bendsge, 1998) (Duysinx and Sigmund, 1998) (Lee
et al., 2011). The results for the design of an L-Shape model
when minimizing compliance versus minimizing peak stress
are shown in Fig. 9c and Fig. 9d, respectively.

Both designs 9(c) and 9(d) have the same geometrical pat-
tern and the same value A* = 0.16. The design 9(d) success-
fully avoids the stress singularity near the concave corner of
the design domain. This optimization result shows that the
appearance constraint is compatible with other objectives in
the topology optimization formulation.

5.2 Material Orientation as Design Variables

The approach can also be extended to design variables other
than element density. One such design variable is the local
orientation of anisotropic materials. For the present optimiza-
tion formulation each element is associated with a density



Figure 9: (a) L-Shape model. (b) Geometrical pattern for the
appearance constraint library. (c) Design minimizing compli-
ance. (d) Design minimizing peak stress. Design (d) has a
27% increase in compliance and a 66% decrease in relaxed
stress compared to design (c).

design variable as well as a material angle design variable
defining the orientation of the orthotropic material (Schmidt
et al., 2020). Both material density and orientation are opti-
mized using a gradient-based scheme to minimize compliance
subject to a volume fraction constraint. Two implementation
modifications are introduced due to the appearance constraint.
Firstly, the geometrical patterns of the library now contain
an angle value in addition to the density value at each point.
Secondly, the distance metric computes the difference between
two angles including the 7-symmetry of the orientation design
variables as follows:

min(2n — d, d)?
|wi| x7/2

D(pi, 0i, Ym(i)) = pi Z

JEwi

with d = abs(em(i),j - l//m(i),j)

(6)

where 6; are design variables for the material orientations
and ,,(;) are the associated patches in the pattern library,
analogous to p; and a,,(; for the material densities. The
optimization result of this formulation is shown in Fig. 10
comparing the results for a bridge model.

The model 10(c) optimized having no appearance constraint
yields a material orientation singularity at the center of the
design domain due to the multi-axial stress at this particular
region. Providing a geometrical pattern library 10(b) without
singularities enables the appearance constraint to enforce a
design where the angle design variable singularity is resolved.
Indeed, we observe that every patch of the optimized design
10(d) can be mapped to a patch inside one of the eight patterns
of the library.
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Figure 10: (a) Bridge design model having five loads at the top
and fixed boundary conditions at the bottom corners. (b) Ge-
ometrical pattern library for the appearance constraint where
local material orientations are visualized as collections of short
line segments. (c) Optimized bridge model yielding an orien-
tation singularity before applying the appearance constraint.
(d) Optimized bridge model after applying the appearance con-
straint resolving the singularity in the optimized angle design
variables. The models (c) and (d) have a final compliance of
3.57 x 10* and 3.60 x 10*.

5.3 Soft-min Aggregation

It is possible to induce different behaviors on the composition
of the geometric features in the generated design by modify-
ing the aggregation function in A (). A soft-min aggregation
function pushes the optimization to only reproduce the pat-
tern in localized regions where the appearance value is lowest.
Conceptually, this means that the soft-min constraint formula-
tion yields a design where the pattern should appear only in a
single region having a high fidelity. In contrast, the previously
applied sum aggregation formulation yields designs where the
patterns appear everywhere in the domain with lower fidelity.

To prevent the optimizer from "choosing" an empty area
as the region having minimum distance, we use a simple
quadratic form for the distance metric without multiplying
by the density of the central element p;:

(Pij = Umi).)>

@)
2 Y kew; (0.5 —amiyx) +€

D(pi, @m(iy) = Z

JEw;

The distance function D (p;, @m(;)) is shortened to D (p;) inthe
following equations for conciseness. Therefore, we have the
following formulation of the aggregated appearance function
using a soft-min expression

1 YicaD(pi)e™w)
A Y g ePP)

A(p) = )]



where we use 17 = —8 as value for the exponent controlling how
accurate the soft-min expression matches a true min function.
The gradient of this formulation is:

dA 1 Do
e 1D (pi) —
T = AT B D, LD ()
€ i|jew; (9)
Skea D (pi)eP e (Pi,j = @m(i), ;)

Y keq eMP wr) Dicw; (0.5 = am@y) +€

Fig. 11 shows the generated design on a 160 x 80 mesh
resolution using the parameters and geometrical pattern library
from Fig. 5(f).

Figure 11: Cantilever design scenario from Fig. 5(a) obtained
using a soft-min appearance aggregation function and the ge-
ometrical pattern of Fig. 5(f).

We observe that the provided geometric pattern is repro-
duced only once in the design without being present anywhere
else. An interesting application of the soft-min aggregation
function is therefore “branding”, consisting in enforcing a logo
provided as a pattern to appear once in the generated struc-
ture at a minimal stiffness cost. Our experiments reveal that
this formulation of the appearance constraint tends to have a
significantly smaller impact on the final value of the objective
function compared to the sum aggregation. Moreover, we note
that it usually takes only one instance of the pattern to appear
in the design for it to be easily recognizable at a glance. Fig.
12 illustrates this "branding" application using the soft-min
aggregation function to incorporate a logo into an optimized
design. Additionally, one should note that each pattern and
logo appears in a different location of the design domain in Fig.
11, 12(a) and 12(b). This is due to each pattern having distinct
mechanical properties. Thus, the optimization scheme aims
to find the best location to faithfully reproduce each pattern at
a minimal cost in mass and stiffness.

6 Conclusion

We propose a formulation for style transfer in density-based
topology optimization using a geometrical pattern library. Ex-
tending the pioneering work from (Martinez et al., 2015), the
approach applies a fast matching algorithm to create a map-
ping from regions of the design domain to patches of the
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Figure 12: Cantilever design scenario from Fig. 5(a) opti-
mized on a 300 X 150 mesh obtained using a soft-min appear-
ance aggregation function and a pattern library made of the
logos from the Laboratory of Mathematics at INSA (LMI) (a),
and the Technical University of Denmark (DTU) (b), respec-
tively.

geometrical patterns present in the library. A constraint con-
trols the appearance of the geometrical patterns in the de-
sign and is integrated into a gradient-based optimization loop.
The appearance constraint is demonstrated for a variety of 2D
and 3D compliance minimization scenarios. Additionally, we
demonstrate the application of the appearance constraint for
different objectives by formulating a stress minimization. The
optimization formulation is also extended to address material
orientations as design variables. Here the appearance con-
straint can prove effective at steering the optimization result
away from pathological singularities in the angles and a design
consisting of a discrete set of anisotropic materials.

Future Work

The proposed formulation is invariant to translation of the ge-
ometrical patterns but not to rotation or scaling. To allow for
patterns to appear with different orientations or scale then one
would need to pre-transform the geometrical pattern library for
rotated or scaled variations of the patterns. The drawback is a
significant increase in the computational cost for the matching
process. An alternative approach can be to employ descriptor
vectors commonly used in the field of Computer Vision since
those would encapsulate translation, rotation and scaling in-
variance at no additional computational cost when evaluating
the distance metric. However, the matching propagation would
be challenging to implement. Yet another strategy inspired by
the field of Machine Learning is to use the latent space of con-
volutional neural networks or auto-encoder networks to distill
geometrical features of patterns into compact descriptor vec-
tors. Preliminary work on this idea has been performed in
(Vulimiri et al., 2021).



Replication of Results

Unless explicitly stated in the text, all results presented in this
work apply the same default parameters: p = 3, ¥,i = 1075,
Yo = 1. We use a density filter of radius 1.5 relative to the
element size in regular 2D or 3D grid meshes consisting of
squares or cubes, respectively. The patch dimensions are [, =
8/, =8and [, =8in3Dcasesand [, =0,/, =8and [, = 8
in 2D cases. All results are obtained in our C++ Topology
Optimization prototyping framework with a dependency on
the open-source Eigen library for solving linear systems of
equations, although any other similar linear algebra library
would be equally suitable.
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