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Abstract

The cost for bunker fuel represents a major part of the daily running costs of
liner shipping vessels. The vessels, sailing on a fixed roundtrip of ports, can lift
bunker at these ports, but prices in each port may be differing and fluctuating.
The stock of bunker on a vessel is subject to a number of operational constraints
such as capacity limits, reserve requirements and sulphur content. Contracts are
often used for bunker purchasing, ensuring supply and often giving a discounted
price. A contract can supply any vessel in a period and port, and is thus a
shared resource between vessels, which must be distributed optimally to reduce
overall costs. An overview of formulations and solution methods is given, and
computational results are reported for some representative models.

Keywords: Bunker purchasing, Liner shipping, Mathematical programming,
Maritime optimization, Decomposition methods

1. Introduction

Liner shipping companies are at the core of the major supply chains in the
world, providing relatively cheap and reliable transport to and from any corner
of the world. This industry has grown massively in the last decades, often with
two digit percentage growth rates. Lately the supply of vessels have exceeded
the demand for container transport, resulting in many liner carriers being loss
giving. The profit margins in liner shipping are very slim, with marginal changes
resulting in a company loss instead of profit.

This has shifted the shipping industry from a revenue optimizing focus, to
use more resources on controlling and minimizing their costs. An example is
the spend on bunker fuel, as this constitutes a very large part of the variable
operating cost for the vessels. Also, the inventory holding costs of the bunker
on board may constitute a significant expense to the liner shipping company.
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Figure 1: The ASAS 2 Service, transporting containers between East Coast South America,
South Africa and the Far East.

For liner shipping companies in particular, the purchasing of bunkers can
be planned some months ahead, as the vessels are sailing on a fixed schedule
allowing for planning, as opposed to other types of shipping. An example of
a liner shipping service can be seen in Figure 1, where the vessels are sailing
between East Coast South America, South Africa and the Far East. This service
allows for bunkering in three distinct markets, making it attractive to plan with
a long time horizon.

Bunker prices are fluctuating and generally correlated with the crude oil
price, but there are significant price differences between ports of up to 100 $/mt
(of a ≈ 600 $/mt price). The price differences between ports are not stable, and
the cheapest port on a roundtrip today may not be the cheapest tomorrow. In
Figure 2 the prices for five important ports have been plotted for a time period
of 18 months, illustrating how much the prices fluctuate. This creates the need
for frequent (daily) reoptimization of the bunker plan for a vessel, to ensure the
lowest bunker costs.

Figure 2: Bunker prices in New York, Singapore, Balboa, Rotterdam and Algeciras plotted
from January 2008 to June 2009. On January 1st 2009, Balboa was almost 30% more expensive
than Rotterdam and New York.
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Port Id Departure stock (mt) Consumption (mt) Purchase (mt) Spot Price ($/mt)
LSFO HSFO LSFO HSFO LSFO HSFO LSFO HSFO

NLROT 462 648 5 0 0 0 481 455
DEBRV 457 648 100 0 0 0 500 490
GBFXS 357 648 97 648 0 0 1000 675
USNWK 260 1004 0 134 0 186+818 491 465
USCHS 260 870 0 425 0 0 490 477
USSAV 260 445 0 74 0 0 493 457
USMIA 260 371 0 211 0 0 1000 1000
USHOU 260 1456 0 122 0 1296 1000 442
USMOB 260 1334 183 201 0 0 1000 1000
USNFK 77 1133 24 555 0 0 484 469
GBFXS 53 578 8 0 0 0 1000 641
NLROT 1053 4314 0 2340 1008 3737 442 421
DEBRV 1053 1974 0 447 0 0 457 447
USNWK 1053 1527 2 110 0 0 490 466
USCHS 1051 1417 0 25 0 0 495 482
USSAV 1051 1392 0 82 0 0 502 471
USMIA 1051 1310 0 211 0 0 1000 1000
USHOU 1051 1099 0 128 0 0 1000 451
USMOB 1051 971 0 365 0 0 1000 1000
USNFK 1051 606 221 606 0 0 510 495
NLROT 830 4021 21 0 0 4021 436 415
GBFXS 809 4021 65 0 0 0 1000 652
DEBRV 744 4021 98 511 0 0 467 456
USNWK 646 3510 0 161 0 0 485 464
USCHS 646 3349 0 19 0 0 496 483
USSAV 646 3330 0 98 0 0 499 468
USMIA 646 3232 0 183 0 0 1000 1000
USHOU 646 3049 0 135 0 0 1000 465
USMOB 646 2914 0 388 0 0 1000 1000

Table 1: An example of a bunker plan for a vessel operating a schedule with 29 ports.

The bunker purchasing problem is to satisfy the vessels consumption by
purchasing bunkers at the minimum overall cost, while considering reserve re-
quirements, and other operational constraints. Bunker can be purchased on the
spot market when arriving to a port, but normally it is purchased some weeks
ahead of arrival. Long-term contracts between a liner shipping company and a
port can result in reduced bunkering costs by committing the company to pur-
chase a given amount of bunker. Bunkering contracts may cover several vessels
sailing on different services, making the planning quite complex.

An example of a bunkering plan can be seen in Table 1. Departure stock
is the stock of bunker at departure of the port, as calculated by the model.
Consumption is, the estimated consumption of bunker from this port to the
next. Purchase is the quantity of bunker purchased at the port and SpotPrice
is the market price of bunker at the spot market. LSFO denotes low sulphur
bunker, while HSFO denotes high sulphur bunker. Quantities are given in metric
tonnes (mt). Possible bunker contracts are not shown. At the fourth port call
186 mt HSFO is bought at the spot market and 818 mt HSFO through a contract.

Literature. For a broad introduction to shipping and the importance of bunker
spend refer to Stopford [27] and for an introduction to operations research within
the maritime industry Christiansen et al. [8], Christiansen et al. [9] and Chris-
tiansen et al. [10] provide excellent overviews. A detailed description of Liner
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Shipping Network Design and the impact of bunker usage and other relevant
factors appears in Brouer et al. [5]. The authors also introduce LINER-LIB
2012, a benchmark data suite, consisting of liner shipping relevant data and
benchmarks specifically for liner shipping network design problems. The work
of Plum et al. [24] designs a liner shipping network taking bunker consumption
into account. Details on the bunkering industry in relation to shipping can be
found in Boutsikas [4].

The effect of the bunker price on Liner Shipping Network Design has been
studied in a number of recent papers, as Wang and Meng [32] and Meng et al.
[19]. The effect of bunker usage by the maritime industry in relation to the
bunker price is investigated by Corbett et al. [11] with the aim of reducing CO2

emissions by imposing tax on bunkers. The work of Acosta et al. [2] considers
factors impacting the choice of bunker port. Fagerholt et al. [12] considers the
optimal speed and route for a ship with respect to bunker costs. Other work
on bunker costs and its impact on maritime transportation includes Notteboom
and Vernimmen [20], who consider how slow steaming and the cost structure
of liner shipping networks are affected by changes in bunker costs, and Ronen
[25], who considers the bunker price’s effect on speed and fleet size. The recent
work of Wang et al. [33] provides an overview of available bunker optimization
methods in shipping.

Fuel Purchasing. The problem of reducing fuel costs by optimizing fuel pur-
chase has been investigated in a number of papers, studying different transport
modes. Vilhelmsen et al. [31] investigated how tramp ships can be routed, while
considering the impact on bunker costs. Oh and Karimi [21] plan bunker pur-
chases for multi parcel tankers considering a fixed route under uncertain prices.
This problems resembles bunker purchasing for liner vessels except that the ves-
sel must make route deviations for bunker purchasing, thus making the problem
partly a route selection problem, giving a different problem structure.

Research investigating how to refuel a transportation fleet has also been done
for other transportation areas as the airline industry (Stroup and Wollmer [28],
Abdelghany et al. [1]), trucking industry (Suzuki [29], Suzuki [30]) and in more
general (Lin [17]). These papers take offset in the specific operational reality
of the transport mode and possibly generates routes for the transport vehicle
at the same time. This gives somewhat different optimization problems, not
directly applicable to liner shipping bunker purchasing problems.

Bunker Purchasing in liner shipping. For a vessel sailing on a given port to
port voyage at a given speed, the bunker consumption can be fairly accurately
predicted. This gives an advantage in bunker purchasing, when a vessel has
a stable schedule known for some months ahead. The regularity in the vessel
schedules in liner shipping allows for detailed planning of a specific vessel, as
considered in the works of Plum and Jensen [22], Besbes and Savin [3], Kim
et al. [16], Kim [15], Sheng et al. [26] and Yao et al. [34]. These papers consider
variants of a bunker optimization problem considering a single vessel.

4



Besbes and Savin [3] consider different refueling policies for liner vessels and
presents some interesting considerations on the modeling of stochastic bunker
prices using Markov processes. This is used to show that the bunkering problem
in liner shipping can be seen as a stochastic capacitated inventory management
problem. Capacity is the only considered operational constraint.

The work of Plum and Jensen [22] considers multiple tanks in the vessel and
stochasticity of both prices and consumption, as well as a range of operational
constraints. Yao et al. [34] does not consider stochastic elements nor tanks,
but has vessel speed as an variable of the model. The work of Kim et al. [16]
minimizes bunker costs as well as startup costs and inventory costs for a single
liner shipping vessel. This is done by choosing bunker ports and bunker volumes
but also having vessel roundtrip speed (and thus the number of vessels on the
service) as an variable of the model; Kim [15] presents a different algorithm for
a similar problem scoping.

In Sheng et al. [26] a model is developed which considers the uncertainty of
bunker prices and bunker consumption, modelling their uncertainty by markov
processes in a scenario tree. The work can be seen as an extension of Yao et al.
[34], as it considers vessel speed as a variable within the same time window
bounds. Capacity and fixed bunkering costs is considered, as is the holding /
tied capital cost of the bunkers. Improved solutions are found, as compared
to Yao et al. [34], credited to the uncertainty modelling. It only plans bunker
purchases for a single roundtrip.

The studies described above do not consider bunker contracts, and all model
the bunker purchasing for a single vessel. The work of Farina [13] is an extension
of Plum and Jensen [22] with the additional consideration of bunker contracts,
where a MIP model is presented capable of solving a 50 vessel instance for a 6
month period, falling short of solving real world instances of hundreds of vessels.
Plum et al. [23] presents a decomposition algorithm for bunker purchasing with
contracts, and showed that the model is able to solve even very large real-life
instances involving more than 500 vessels, 40,000 port calls, and 750 contracts.

In the following section we will define the basics of bunker purchasing in
liner shipping, and discuss all relevant constraints. The next section presents
a basic model for bunker purchasing of a single vessel, using spot prices, and
discuss extensions and variations presented in the literature. Finally, the model
is extended to handle several vessels having shared contracts for buying bunker
at fixed prices. This problem is more complex, and a decomposition model is
needed to solve the problem to optimality for large instances. Finally, the chap-
ter is concluded with a summary of the most important results, and directions
for future research.

2. The bunkering problem

In this section we define the bunkering problem more formally, and introduce
all relevant terms and constraints: We first introduce different bunker grades,
and then describe how the prices for bunker at given dates and ports are ob-
tained. Next, we describe the rules dictating how bunker is requested, ordered
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Figure 3: A simple example of a service starting and ending in Rotterdam.

and delivered. We then describe how the vessels’ bunker consumption is cal-
culated, the tanks used for storage, and bunker reserve. Finally we describe
the testing of bunker and the quarantine periods this invokes, and various con-
straints for mixing different bunkers.

A vessel sails along a path of ports during a period of time. A path of length
n can be divided into n − 1 legs. A service is a path starting and ending in
the same port, a round trip. An example can be seen in Figure 3. For each
port visit the vessel arrives and departs at specific dates and times, these are
estimated time of arrival (ETA) and estimated time of departure (ETD).

All paths and the corresponding ETA and ETD are assumed to be fixed and
can thus not be changed by a bunker purchasing model. The services of the
vessels are constructed by shipping company considering other factors such as
market demand for container transportation, etc.

It follows from this that interaction between vessels is impossible. Each
vessel follows its own path and visits the ports at the specified times. Since no
interaction is possible between the vessels we do only need to consider exactly
one vessel in the model.

We have a given set of bunkers available (described in Section 2.1) in each
port, and since we know exactly when the vessel visited each port, we can apply
a fixed price for each bunker, for each port. This implies that we do not need to
include time in the model, since we for each port visited have a fixed mapping
from a bunker to a price.

2.1. Bunker Grades
Crude oil is refined into a variety of different products, ranging from jet fuel

to gasoline, to bunker, to asphalt, see Figure 4. Bunker fuel oil is one of the
heavier distillates from the distillation process.

Bunker fuel is sold in different grades, mainly distinguished by their viscosity,
but also characteristics such as density, sulphur content and others are relevant.
Some characteristics of the main bunker grades can be seen in Table 2. We
mention RMF 180, RMG 380 etc. simply as 180, 380 and 700. For the case of
RMG 380 15 we say 380 low sulphur.

Two of the characteristics are relevant for the optimization problem: the
viscosity of the bunker and its sulphur content. The rest of the factors do not
affect the modelling or the solution.

We will assume that all bunker types show approximately the same fuel
efficiency. If this is not the case, it is easy to modify the proposed models to
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Figure 4: Illustration of the distillates from crude oil (source: Wikimedia).

take into account the efficiency. Since vessels generally only use one viscosity
of bunker, the bunker consumption per nautical mile is easily adjusted to the
designed bunker type.

2.1.1. Viscosity
Because of the high viscosity of bunker fuel oil, it is heated to 60-80◦C prior

to injection into the engine. The vessel’s engine is designed to handle bunker of
a certain viscosity, thus an engine can always burn more viscous bunker than
the minimum grade it can take, but not less viscous bunker. E.g. a vessel engine
which can burn a 380 bunker as the lowest quality grade, can also burn any 180

Parameter Unit Limit RMF 180 RMG 380 RMG 380 15 RMK 700
Density at 15 ◦C kg/m3 Max 991.0 991.0 1010.0 1010.0

Viscosity at 50 ◦C mm2/s Max 180.0 380.0 380.0 700.0
Water % V/V Max 0.5 0.5 0.5 0.5

Sulphur % (m/m) Max 4.5 4.5 1.5 4.5
Alum. + Silicon mg/kg Max 80 80 80 80

Flash point ◦C Min 60 60 60 60
Pour point, Summer ◦C Max 30 30 30 30
Pour point, Winter ◦C Max 30 30 30 30

Table 2: Characteristics of typical bunker grades. The RMG 380 15 is a low sulphur bunker
and the rest are high sulphur bunkers.
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bunker, but not a 700 bunker.
The prices of the bunkers are directly proportional with their viscosity, so

a shipping company will always purchase the bunker with the lowest quality
grade / highest viscosity available, which can be burned in the vessel’s engine.
Moreover, since bunker above the engine’s viscosity limit cannot be burned,
these bunkering options can be removed in a preprocessing phase.

2.1.2. Sulphur contents
Apart from categorizing a bunker by its density, viscosity, etc. it can be

categorized by its sulphur content. Bunkers containing sulphur below a given
limit are classified as low sulphur bunker. In certain parts of the world, known
as SECA-areas (SOx Emission Control Area), vessels are only allowed to burn
low sulphur bunkers to limit air pollution. The Baltic Sea has been a SECA-
area since May 19th 2006 by the MARPOL Annex VI protocol The North Sea
became a SECA-area by November 22nd 2007. Also an area of 24 miles of
California coast is a SECA area. The sulphur limits for fuel in SECA are 1.0%
until January 2015, and 0.1% after January 2015. The general sulphur limits in
other sea areas are 3.5% until January 2020, and 0.5% after January 2020. The
future dates may be postponed if political agreement cannot be reached.

2.2. Bunker Prices
In practice there are two types of orders done by bunker traders: spot and

contract orders. Spot orders are handled by a trader requesting bunker prices
from one or more suppliers of the day and then places an order based on the
price quotes. Contract orders are done on the basis of a contract, where the
shipping company is obliged to purchase a certain volume of bunker within a
certain period of time.

The market for bunker trading is commoditized and liquid, the use of con-
tracts for a specified amount, port and price (or discount to some price-index) is
widespread. This is done to reduce both delivery and price risk and to leverage
the strength of being a large player on this market.

Liner shipping companies engage in contracts for the purchase of bunkers at
ports where they have a large and regular demand. This is done both to gain
a discount compared to the spot market, by leveraging on the large volumes
involved, and to increase supply certainty. Bunker contracts will usually con-
cern total lifted volumes within a calendar month, with specified minimum and
maximal quantities.

The price can be agreed on in different manners, usually by using a fixed
discount below the monthly average of a bunker index (Bunkerwire [6]) of the
port in question. A contract is for one or more bunker grades and one or more
ports, which usually will be located geographically close and considered as the
same market. Many contracts can be available in a port for a bunkering vessel,
and it must then be chosen which, if any, to purchase bunker from. Spot bunker
is assumed freely available at all ports with a given price quotes. For an example
of the bunker price development see Figure 5.
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Port Rotterdam Algeciras Suez Singapore Hong Kong
price price price price price price price price price price

Grade low high low high low high low high low high
380 327 330 339 349 345 347 355 356 368 370
180 350 352 364 365 357 359 365 366 381 382
Marine Diesel 590 595 672 677 647 650 645 650 645 650

Table 3: Price quotes per metric tonne for 5 ports on April 24th 2006.

2.2.1. Ordering Time Window
An order for bunker must be placed before the vessel arrives at port. In

order to prepare the suppliers and ensure that the bunker is available when the
vessel enters the port, the order must be placed at some time interval before
arrival (generally 72 hours). The order can be placed up to two weeks before
the vessel arrives at the port, but normally happens 3-7 days before.

2.2.2. Price Structure
The objective of all bunker purchasing models is to minimize the total cost

of bunker purchases. When calculating the bunker purchase costs, a number of
factors should be taken into account:

Barge, Startup Costs
Generally the bunker pricing scheme differs between ports in America and ports
in the rest of the world. European and other ports will price a fixed cost times
the amount of bunker purchased. US ports will add a barging cost, for each of
the barging vessels used to load bunker onto the vessel. (usually a vessel gets
the bunker from barges holding around 2000 tons of bunker, which sails up to
the vessel). This could be modelled using a piecewise linear objective function.

Different Price Over/Under 500 Tons
Some bunker retailers operate with different per ton price for purchases over and
under 500 tons of bunker. This is a different version of the non-linear pricing

Figure 5: Price development for bunker oil over the last 10 years. The index was started at
1,000 on January 1st 1986, and represents the global price movement of bunkers.
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structure mentioned above, but less used. This structure can also be modeled
with a piecewise linear objective function.

Cost Of Capital Tie Up
The amount of bunker in a fully loaded vessel can represent a value of several
million dollars. This value is tied-up in the bunker and cannot be used to
generate interest nor be invested elsewhere. This represents a loss of profit
which can be modelled by including the capital tie up term in the objective
function.

Cost Of Bunker Carriage
The heavier a vessel is, the more bunker it will consume.

Bunker Tests
The price of a bunker is related to its specifications as described in Section
2.1.1. This gives the vendors of bunker an incentive to dilute their products
with heavier components until it is just barely fulfilling the requirements of the
bunker’s ISO specifications. Hence it sometimes happens that the vendors sell
products that does not satisfy the specifications they claim. These bunkers
are off-spec. The consequences of burning off-spec bunker can be grave if the
bunker already was the lowest possible burnable in the engine. The engine can
malfunction and leave the vessel immobilized.

In many major ports it is possible to purchase bunker already tested by
independent laboratories, so called pre-tested bunker. When this is available it
can be trusted that the bunker is within the specification limits as claimed by the
vendor, and the vessel can hence use the bunker immediately after purchasing.

For any purchased bunker a post-test is also carried out at an appointed
analysis institute. This is also the case even for bunkers for which pre-test is
available. Usually this process will take at most 5 days. The purchased bunker
cannot be used in this time period.

2.2.3. Purchasing Limits
Other constraints apply to the bunkering in a port. A vessel will usually stay

in a port between 12 and 24 hours from arrival to departure. The bunker can
be loaded onto the vessel in 2 different ways. Larger ports have piping facilities
in the actual docks, which can be connected to the vessel directly, and through
these pipes large volumes of bunker can quite quickly be loaded onto the vessel.
But this only exists in larger ports and only at certain anchorage places. When
the vessel is lying at other ports or anchorage places, the bunkering is done with
barges loading bunker from large land-side tanks, sailing to the vessel and then
loading onto the vessel. The barges will usually take up to 2000 mt. of bunker
each.

At busy times the maneuverability of the barges can be hindered by traffic
from other vessels and port congestion can prevent the barges from sailing to
the vessels, and thus prevent bunker from being loaded onto the vessel. Other
minor ports might not have enough barges available. Together, these factors may
impose a limit on how much bunker can be loaded onto the vessel. Therefore,

10



a model should be able to handle an upper limit on the bunkering capacity,
although most ports in reality do not have an upper limit.

A proper model should also enforce that some ports have a minimum amount
of bunker that can be purchased, since vendors will refuse selling too small
quantities of bunker. Typically this lower limit is 200 mt.

2.3. Bunker Consumption
The consumption of the vessel can (roughly) be regarded as a function of

bunker type, weight of bunker, weather conditions, ocean currents, container
load and speed of the vessel. Typically, the bunker type, speed of vessel and
approximate container load is known some time in advance, while weather con-
ditions and currents can change the bunker consumption significantly. A de-
terministic model for bunker purchasing must use average historic values to
estimate bunker purchasing. The bunker consumption can also be considered
as a stochastic variable in a model, leading to a more correct formulation that,
however, is more difficult to solve.

2.4. Bunker Tanks
The vessels have multiple tanks. Some of these, typically four to 16 tanks,

are larger tanks, holding up to some thousands of metric tonnes. A number
of smaller special tanks in close connection to the vessel’s engine exist as well,
among these the day-tank which is directly connected to the engine, and holds
enough bunker for 24 hours usage.

Some tanks are placed symmetrically at each side of the vessel. In order
to keep the vessel’s balance stable during travel, consumption must take place
more or less symmetrically.

Certain tanks can be dedicated for some types of bunkers. Specifically since
we are purchasing more expensive low sulphur bunkers such as RMK 380 15
to use when the vessel is sailing in the SECA area, we need to ensure that
this bunker is not contaminated with bunker with a higher sulphur content.
Therefore vessels sailing in the SECA area will have at least one tank dedicated
to low sulphur bunkers. We can still use low sulphur bunker outside the SECA
area.

2.4.1. Tank Limits
The volume of bunker grows with increasing temperature, so in order to avoid

overflowing tanks, the tanks may only be filled to around 98% of their maximal
capacity (at 25◦C). This can easily be handled in a preprocessing phase, where
the volume of the tanks is decreased to compensate for the fill limit.

The suction systems of the tanks are relying on the weight of the bunker in
the tanks to extract the bunker to the engine. This means that under normal
conditions the tanks cannot be emptied completely.

It is possible to move bunker between tanks, and this could be an advantage
for an optimization model in some cases in order to avoid quarantine or mixing
situations.
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2.4.2. Bunker Reserves
When the vessel is sailing on the ocean it is paramount for any solution that

the vessel can overcome any eventualities on its own. The cost of recovering a
stranded vessel far exceeds any cost to the actual bunker. Therefore a solution
needs to ensure that the vessel carries adequate reserves of tested bunker at all
times.

Shipping companies have a number of requirements to bunker reserves which
a valid fueling strategy must satisfy. Generally a vessel must hold 8 days of
bunker in reserve at all times. This requirement can be lowered to 4 days
reserve, when the next port on the vessel’s service offers pre-tested bunker, see
Section 2.2.2.

The actual amounts needed to be kept in reserve should be calculated for
each port in the preprocessing face, based on the estimated consumptions per
day of the vessel.

2.5. Bunker Quarantine Time
It is needed to ensure, that the bunker is not off-spec before it is used as

fuel. As described in Section 2.2.2 this is done by possibly pre-testing and
post-testing, which can take up to 5 days.

Meanwhile we cannot use the bunker, and it is therefore quarantined for 5
days. If we have mixed the bunker it is also quarantined, see the next section.

We only detail our model to how much bunker we use at which leg of the
vessel’s service, hence the 5 days quarantine will be translated to how many legs
on the service the bunker must be in quarantine before we can use it. This can
be calculated effectively for each port in preprocessing.

2.6. Mixing Of Bunkers
As mentioned in Section 2.4 each vessel is equipped with a number of tanks

in different sizes. It is desirable to store the different bunker types separately,
i.e. in different tanks in order to avoid the mixing of different bunker types.
Two bunkers are considered as different types if at least one of the following
properties holds:

• Differing fuel grades (density, viscosity, sulphur content, etc.)

• Same fuel grade bought at different ports

• Same fuel grade bought in the same port at different times

• Same fuel grade bought in the same port at different bunker vendors.

If two incompatible bunker types are mixed it will cause the creation of sedi-
ments, in this context asphalt, which when injected into the engine of the vessel
can cause its malfunction. In this case the warranty from the manufacturer of
the engine does not cover and shipping company will have to pay for a new
engine plus they will loose money from lost earnings.
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The risk of producing a bad mix is proportional to the density and viscosity
of the bunkers and also depends on the ratio of the mixed bunkers. E.g. there
is low risk of producing a bad mix when blending bunkers with low density, low
viscosity and one bunker being added in a higher proportion than the other.

When a tank with a bunker volume less than 10% of the tank capacity
subsequently is filled with at least 9 times as much bunker of a different type it
is not considered a mixing of bunkers. The tank is then considered as containing
the bunker of the highest volume. We call this a 9:1 mix.

It is only permissible to mix two bunkers at a time, so mixes with three or
more constituents should not be considered. This also implies that two mixed
bunkers, cannot be mixed again.

The amount of tanks where mixing takes place should be minimized. This
takes precedence over minimizing the ratio of mixture. A scenario could be
considered where the ratio of mixture is lowered by spreading the original bunker
over a number of tanks, and mixing in each of these. This strategy should not
be encouraged by an optimization model.

3. A model for single-vessel bunker purchasing

We will now introduce a basic model for bunker purchasing considering only
one vessel. This means that bunker is bought on the spot market, or through
contracts only covering the studied vessel.

We use a deterministic model, based on the formulations from Besbes and
Savin [3] and Plum and Jensen [22], hence assuming that the bunker consump-
tion for every leg is known in advance. We will also assume that a sufficient
amount of tanks are present for each vessel, so that the mixing constraints dis-
cussed in Section 2.6 does not need to be taken into account. This is the case
for most large vessels. The basic model is given without special cost structures
such as piece-wise linear bunker costs and capital start up cost. Also some
operational constraints are omitted, such as quarantine requirements, several
bunker tanks and possibility of mixing bunkers. These cost structures and op-
erational constraints are described in Section 4 as extensions to this basic bunker
purchasing model.

We introduce the mathematical notation used throughout this chapter. Let
v ∈ V be the set of vessels. Let i ∈ I be an ordered set of port calls, the vessel’s
schedule. A port call i will be uniquely defined by a port, a vessel, v(i) and the
date of arrival. Let init(v) and term(v) be the first and last considered port
call of vessel v. Let b ∈ B = {L,H} be the two considered bunker types. The
startup cost for bunkering at a port call i is startcosti. Each vessel, v has a
capacity Dv,b for each bunker type, b. For each leg i of the schedule, the vessel
consumes Fi,b bunker, between port call i and i+ 1.

Variables used in the model are as follows: li,b is the purchase of bunker for
each port i, bunker type b. The binary variable δi,b is set to one iff a purchase
of a bunker type b is made at a port call i. The volume hi,b of bunker after
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a vessel leaves port is a continuous variable, as is the consumption fi,b of each
bunker type on vessel between port i and i+ 1.

3.1. Model
A basic model for Bunker Purchasing for Liner Shipping can be formulated

as the following Mixed Integer Program:

min
∑
i∈I

∑
b∈B

(δi,b · startcosti) +
∑
i∈I

∑
b∈B

(pi,b · li,b)

Subject to

hi,b = hi−1,b + li,b − fi−1,b ∀i, b (1)
fi,b ≤ hi,b ∀i, b (2)∑

b∈B

fi,b = Fi,H ∀i (3)

fi,L ≥ Fi,L ∀i (4)
hi,b ≤ Dv(i),b ∀i, b (5)

li,b ≤ δi,b ·Dv(i),b ∀i, b (6)

The objective minimizes startup costs and bunker cost. The constraint (1)
ensures flow conservation at each port, vessel and bunker type. Constraint (2)
ensures that no more bunker than available is used between port i and i + 1.
Constraints (3) and (4) maintains the consumption of bunker, allowing LSFO
to substitute HSFO, but not the other way around. The bunker capacity of the
vessels are enforced by constraint (5). The decision variables δi,b, indicating if
any bunker is purchased by vessel b at port i, are set by constraint (6).

Finally, initialization and termination criteria for start and end bunker vol-
umes must also be set. Let Sv,b and Tv,b be the start and terminal volume of
bunker b on vessel v. This leads to the following constraints:

hinit(v),b = Sv,b ∀v, b (7)∑
b∈B

hterm(v),b ≥
∑
b∈B

Tv,b ∀v (8)

hterm(v),L ≥ Tv,L ∀v (9)

Constraint (7) sets the start volume for both bunker types. Constraint (9) is
the terminal volume for low sulphur bunker, while constraint (8) is the terminal
volume for high sulphur bunker, allowing substitution.

The domains of the variables are:

hi,b, li,b, fi,b ∈ R+ ∀i, b (10)
δi,b ∈ {0, 1} ∀i, b (11)
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A usual time horizon for a single vessel model is 3 to 6 months, where a vessel
may call up to a 100 ports. The MIP resulting from such problem instances can
be solved by state of the art commercial MIP solvers, usually in a matter of
seconds.

4. Operational Constraints

In practice bunker purchasing in liner shipping is influenced by a wide range
of operational, commercial and financial factors, which dictates the properties of
a good bunker plan. Some of these factors are modeled as MIP constraints in the
following. Refer to the earlier mentioned literature for an elaborate discussion
of other factors.

Bunker Reserves and Startup costs
As the consumption of bunker on a leg is an uncertain parameter due to factors
as changed schedule (and thus speed), wind, current, waves and hull roughness,
a good bunker plan will allow for variation in the bunker consumption. A way
to handle this is to enforce a minimum reserve requirement of bunker at port
arrival. This can be modeled as in (12), where Fi,b is the minimal reserve
requirement at port arrival.

Besides the startup cost for bunkering, startcosti, bunker suppliers will usu-
ally require a minimum quantity to be purchased at each bunkering, this can
be handled with constraints (13), where Li,b is the minimal quantity.

Fi,b ≤
∑
b∈B

(hi,b − li,b) ∀i, b (12)

δi,b · Li,b ≤ li,b ∀i, b (13)

Capital and carriage cost
The capital costs of bunker is extensive, due to the large volumes and high
prices. A model could consider this by adding this cost (or lacking interest)
to the objective, proportional to the average load of bunker on the vessels.
Assuming an interest rate of α and a bunker cost of C $/mt, we can estimate a
daily capital cost per mt of bunker as:

(365
√
1 + α− 1) · C $/mt (14)

A typical value for the interest rate is α = 10% and a typical value of bunker
cost is 600 $/mt, leading to the daily capital cost per mt of bunker:

(
365
√
1.1− 1) · 600 $/mt = 0.157 $/(day ·mt) (15)

Let di denote the number of days a vessel uses to travel from port i to port
i+ 1. Then the cost of capital tie up can be included in the objective function
as:
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0.157 · di(
∑
b∈B

hi,b −
Fi,b

2
) (16)

Similarly a vessel carrying a large volume of bunker will, all things equal,
have a larger draft. This will in general (but not always, due to specifics in the
vessels design as the bulb) imply an increased bunker consumption proportional
to an increased load. This term could be considered in the objective in the same
manner as the capital costs.

Alternatively this can be modeled directly as an increased consumption pro-
portional to increased bunker load. If we assume an increased consumption of
γ ·mtextra/(day ·mtcarried), the corrected bunker consumption per leg, F corr

i,b

becomes:

F corr
i,b = Fi,b + γ di(

∑
b∈B

hi,b −
Fi,b

2
) (17)

We can then replace the term Fi,b with F corr
i,b to model the increased cost of

carrying bunker.

California sales tax
The California bunker sales tax, as described by California Legislative Analyst’s
Office [7], imposes a tax on bunker bought in California, which necessarily must
be used en-journey to the first out of state port. I.e. if a vessel arrives with 1000
mt at an Californian port and requires 2000 mt to reach the first non-Californian
port on its schedule, it must pay a tax for the first 1000 mt purchased. With
additional decision variables this can be modelled and included in the objective.

Quarantine
A sample is usually taken from purchased bunker, to be analyzed for its specific
content of carbohydrates, sulphur, water, ashes, etc. The sample must be within
the ISO specifications of the purchased bunker grade. Until the result of the
laboratory test are received, the bunker may not be used. This test can take
three to five days. This can be handled by increasing the reserve requirements
at port calls with bunker purchased within the last five days, i′ ∈ Quar(i):

Fi,b ≤
∑
b∈B

hi,b − li,b − ∑
i′∈Quar(i)

li′,b

 ∀i, b (18)

Other Constraints
Other more detailed operational constraints can be handled in preprocessing of
data for the model or by adding new constraints. This includes:

• Vessels that cannot bunker at a port due to wielding works imposing fire
hazards. In such ports the maxlift limit can be set to: Li,b = 0.
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• Ports with limited quantity k1 of bunkers available can be handled by
setting the maxlift limit to: Li,b = k1.

• Vessels with stability or air draft requirements requiring high drafts. This
can be imposed by forcing k2 mt of bunkers at arrival by increasing the
reserve requirements Fi = k2.

• Tank fill limits can be handled by lowering the tank limits as follows:
D∗v,b = 0.98 ·Dv,b.

• A maximal number NBunker of bunkerings can be enforced by the con-
straint:

∑
i∈I

∑
b∈B δi,b ≤ NBunker.

The above constraints can be added to the model without increasing its com-
plexity significantly. All of them can be formulated linearly and only relate to
a single vessel at a time, allowing them to be considered in a vessel specific
subproblem.

4.1. Complexity
The problem (1) to (6) is NP-hard to solve, which can be seen by reduction

from the knapsack problem. The knapsack problem in minimization form as
described in Kellerer et al. [14] can be formulated as follows: Given a set N of
items having profit pi and weight wi and a knapsack of capacity c, the problem
is to fill the knapsack at minimum overall profit, such that the overall weight is
at least c. Given an instance of the knapsack problem, we construct an instance
of the bunker purchasing problem by having one vessel, visiting N ports. The
fuel consumption between each pair of ports is 0, except the leg after the last
port visit, where the consumption is c. In each port, we have a contract of
maximum wi, and the minimum limit for lifting bunker is also wi. The cost of
buying the quantity wi is pi. It is easily seen that solving the bunker purchasing
problem also solves the knapsack problem.

5. Bunker Purchasing with Contracts

The single-vessel model presented in the previous section does not take into
account volume refueling discounts, which can only be fully exploited using more
than one vessel. Thus we will now present a multi-vessel optimization model,
taking into account various contracts covering multiple vessels.

The model considered in this chapter uses a crystal ball approach, i.e. using
data not known at decision time, to benchmark the quality of already executed
decisions. As the actual price of the contract is not known before a month has
passed, the model will use after-the-fact prices for calculations.
Contract bunker
Contract bunker must be purchased according to details given by a number of
contracts c ∈ C, minimal and maximal quantities are given by q

c
and qc. The

specified quantities are soft constraints, which can be violated by paying a high
cost, w, for violating the minimum volume and a lower cost for breaking the
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maximal constraint, w. Contract c may cover several ports and multiple vessels
can call at these ports in the duration of the contract. Each contract will give
rise to a number of purchase options, m ∈ M , i.e. discrete events where a
specific port call i, and thus vessel v, calls within a time period, allowing it
to purchase bunker from a contract c. Purchases on a purchase option m will
be done at a price pm, specified by the contract c. To simplify modelling and
to increase the density of the derived model, the sets of port calls, i ∈ I and
purchase options, m ∈ M will be used instead of their underlying sets: ports,
vessels and contracts, which could give an equivalent but much larger model.

The possibility of purchasing on the spot market, is considered as a special
type of contract. The minimal and maximal volumes are relaxed as q

c
= 0 and

qc =∞. All port calls i have two spot purchase options m for LSFO and HSFO,
with prices set at the corresponding spot price of the day and port. For ports
where bunker prices are not published, we assume a high cost.

The model makes use of the following variables: lm is the purchase of bunker
for each purchase option m. The binary variable δi,b is set iff a purchase of a
bunker type b is made at a port call i. The volume hi,b of bunker b after a vessel
leaves port i is a continuous variable, as is the consumption fi,b of each bunker
type b between port i and i+1. The contract violation or slack variables are sc
and sc. We let M(c) denote the set of purchase options specified by contract c,
and M(i, b) the set of purchase options for bunker b in port i.

5.1. Model
The Bunker Purchasing with Contracts Problem (BPCP) can be formulated

as the following Mixed Integer Program:

min
∑
i∈I

∑
b∈B

(δi,b · startcosti) +
∑
m∈M

(pm · lm) +
∑
c∈C

(sc · w + sc · w)

subject to

hi,b = hi−1,b +
∑

m∈M(i,b)

lm − fi−1,b ∀i, b (19)

fi,b ≤ hi,b ∀i, b (20)∑
b∈B

fi,b = Fi,H ∀i (21)

fi,L ≥ Fi,L ∀i (22)
hi,b ≤ Dv(i),b ∀i, b (23)

q
c
− sc ≤

∑
m∈M(c)

lm ≤ qc + sc ∀c (24)

∑
m∈M(i,b)

lm ≤ δi,b ·Dv(i),b ∀i, b (25)
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The objective minimizes startup costs, bunker cost and contract violation
penalties. Constraint (19) ensures flow conservation at each port, for the given
vessel and bunker type. Constraint (20) ensures that between port i and i + 1
bunker can only be used if available. Constraints (21) and (22) maintains the
consumption of bunker, allowing LSFO to substitute HSFO, but not opposite.
The bunker capacity of the vessels are enforced by constraint (23). The minimal
and maximal quantity required by the contracts are ensured by the double sided
constraints (24), allowing for violations. The decision variables δi,b are set by
constraint (25).

Initialization and termination criteria for start and end bunker volumes must
also be set:

hinit(v),b = Sv,b ∀v, b (26)∑
b∈B

hterm(v),b ≥
∑
b∈B

Tv,b ∀v (27)

hterm(v),L ≥ Tv,L ∀v (28)

The first constraint defines the start volume, while the last two constraints define
the terminal volume, allowing low sulphur bunker to substitute high sulphur
bunker.

Finally the domain of the variables is given as follows:

hi,b, lm, fi,b, sc, sc ∈ R+ ∀i, b,m, c (29)
δi,b ∈ {0, 1} ∀i, b (30)

5.2. Bunker Contracts - Operational Constraints
Contracts may have minimum and maximal volumes that must be lifted per

purchase, N i,b,c and N i,b,c. This can be modelled similarly to the minimum lift
constraints. As can purchases at port calls have maximal lift restrictions, Li,b,
due to short port stays or limited supply:

δi,b ·N i,b,c ≤
∑

m∈M(i,b,c)

lm ∀i, b, c (31)

∑
m∈M(i,b,c)

lm ≤ δi,b ·N i,b,c ∀i, b, c (32)

∑
m∈M(i,b)

lm ≤ δi,b · Li,b ∀i, b (33)

6. Advanced Model Extensions

In order to get a closer correspondence with reality, the model can be ex-
tended to handle uncertainty in bunker consumption and prices. Moreover mod-
elling of multiple bunker tanks and the properties of mixing different batches
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of bunker can add precision to the model. However, not all shipping companies
have sufficient data quality to justify these extensions. Vessel speed can also be
considered a variable which can be adjusted by the model.

6.1. Uncertainty
The previously described models assumes deterministic problem instances.

Like in all models of real world problems this is an approximation of the full
problem. In particular the uncertainty applies for the consumption of bunker
and the price of bunkers, neither of which are deterministic.

Consumption Uncertainty
The bunker consumption for a given vessel, distance, speed and displacement
can be fairly accurately predicted. Still the bunker consumption is affected by
uncertainty due to factors as: unforseen changes in distance (changed schedule),
speed (earlier / later arrival), displacement (more or less cargo), uneven speed
(lowest consumption is attained at an even speed throughout), weather and
many other factors.

The model can be translated into a multi stage stochastic program, working
on a generated scenario tree taking offset in the consumption estimates. For
more details on this please refer to Plum and Jensen [22] or Sheng et al. [26].

Price Uncertainty
Bunker prices which are correlated with crude oil prices are also stochastic
and much harder to predict than bunker consumption, though some interesting
atempts are done in Sheng et al. [26]. A wealth of literature and experts devote
their time in how to predict such commodity prices and this text will not add to
this. Instead we use the current bunker price at a port as the basic estimator for
the future price. One enhancement could be to use the direction of the bunker
forward price for the region of the port to predict the direction of the price.

6.2. Bunker Tanks
The vessels have multiple tanks as described in Section 2.4. Handling the

tanks in an optimization model imposes a number of extra constraints.

Tank Limits
The volume of bunker grows with increasing temperature, so in order to avoid
overflowing tanks, the tanks may only be filled to around 98 % of their maximal
capacity (at 25 C). As mentioned, this should be considered in a data prepro-
cessing phase, where the volume of the tanks should be decreased accordingly.

The suction systems of the tanks cannot be empty the tanks completely,
leaving about 1 % of the capacity. This can be implemented as a reserve limit
specific for each tank.

Commingling of bunkers
In general commingling of bunkers of different supplier, grade or batch is inad-
visable as the combined properties are hard to predict and may form sediments
or have unpredictable properties which the engine system can not handle. The
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constant mL indicates the limit for when a mixing is hazardous, and mL = 9 in-
dicates that if bunker is mixed at a ratio greater than 9 to 1, it is not considered
a commingling.

Two approaches can be taken to ensure that bunker commingling does not
take place:

• Tanks are not modelled explicitly, but it is assumed that the number of
tanks will allow vessel crew to easily find a feasible solution of a concrete
bunker plan.

• Bunker tanks can be modelled explicitly, adding constraints to ensure that
commingling cannot take place.

Modelling bunker tanks
Bunker tanks can be modelled by adding an extra index t ∈ T for each bunker
tank t. This means that parameters and variables lm, δi,b, hi,b, fi,b, and Dv,b

are replaced by lm,t, δi,b,t, hi,b,t, fi,b,t, and Dv,b,t.
The original constraints will be replaced by a constraint for each t ∈ T where

applicable. The mixing constraint then becomes:

mL · (hi−1,b,t − fi−1,b,t)− lm,t ≤ (1− δi,b,t + γi,b,t) ·mL ·Dv,b,t (34)

The mixing constraint forces the volume lm,t of newly bought bunker in
tank t, to be at least mL times as much as the current volume of bunker,
hi−1,b,t − fi−1,b,t, unless a penalty indicated by γi,b,t is paid in the objective. It
is not practice to dilute 9 units of bunker with one unit of newly bought bunker,
so this is not modelled. The term∑

i∈I

∑
b∈B

∑
t∈T

mixpen · γi,b,t (35)

should be added to the objective, where mixpen is the penalty for mixing.
To avoid mixing the penalty should be set as mixpen = ∞. It is possible to
move bunker between tanks, which can be used to avoid quarantine or mixing
situations.

6.3. Speed Adjustment
The work of Yao et al. [34] extent the bunker purchasing problem by con-

sidering the speeds of the vessels on a fixed itinerary of ports, but with some
flexibility on the departure and arrival times at the ports. The model of Kim
et al. [16] control the full roundtrip speed and thus the roundtrip time and num-
ber of vessels assigned. This results in very slow service speeds, which arguably
can be uncompetitive commercially. The variable speed is considered by letting
the constant Fi,b be a variable F var

i,b dependent on vessel speed following the
equation:

F var
i,b = kb(k1V

3
i + k2) (36)
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Where Vi is the speed from port i to port i+1, k1 and k2 are constants and
0 ≤ kb ≤ 1 is the fraction of bunker of bunker type b used on leg b. Additional
constraints impact Vi :

vmin ≤ Vi ≤ vmax ∀i ∈ I (37)

Ai + ti +
di
Vi

= Ai+1 ∀i ∈ I (38)

ei ≤ Ai ≤ li ∀i ∈ I (39)

Where constraint (37) ensures that the vessel does not exceed its min speed
vmin and its max speed vmax on any legs. Constraint (38) sets the arrival times
Ai and Ai+1 in relation to the speed Vi, distance di and port time ti. Constraint
(39) ensures that the arrival time Ai are within the time windows of the port
call ei and li.

This model is cubic, but can be linearized as it is a convex function being
minimized. For details please refer to Yao et al. [34]. For single vessel instances
this problem can be solved by commercial solvers.

It should be noted that in practice the choice of port arrival time is impacted
by many other factors than minimizing bunker costs. This could be the amount
of cargo that needs to be loaded / unloaded at the port; When vessels that
containers must be transshipped to arrive; When the port berth is available,
etc. Due to the cubic nature of the bunker consumption curve, the best sailing
speed for a vessel on a given rotation, will be an even speed throughout the
rotation. This dictates that when buffer time is available at a port the leg, the
leg with highest speed before / after the port, should use the buffer to lower the
speed. This could easily be handled in preprocessing for the problem.

7. Solving the multi-vessel model

The fleet of a global liner shipping company may consist of hundreds of
vessels, with many of these having overlapping schedules visiting the same hub
ports. This means that the full problem can be of a very large size, making the
MIP model impossible to solve for large instances as observed by Plum et al.
[23]. This makes it interesting to consider a decomposition of the MIP model,
to solve these large problem instances.

The arc flow model given by (19) - (30) is Dantzig-Wolfe decomposed on the
variables lm. Let Rv be the set of all feasible bunkering patterns for a vessel
v, satisfying constraints (19) - (30), except (24). This set has an exponential
number of elements. Each pattern r ∈ Rv is denoted as a set of bunkerings.
Let ur =

∑
m∈M (pm · lm) +

∑
i∈I

∑
v∈V

∑
b∈B(δi,b · startcosti) be the cost for

pattern r ∈ Rv. Let λr be a binary variable, set to 1 iff the bunkering pattern
r is used. Let or,c be the quantity purchased of contract c by pattern r. The
BPCP can then be formulated as:
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min
∑
v∈V

∑
r∈Rv

λr · ur +
∑
c∈C

(sc · w + sc · w) (40)

Subject to

q
c
− sc ≤

∑
v∈V

∑
r∈Rv

λr · or,c ≤ qc + sc ∀c (41)

∑
r∈Rv

λr = 1 ∀v (42)

λr ∈ {0, 1} ∀r (43)

The objective minimizes the costs of purchased bunker, startup costs and
slack costs. Constraints (41) ensures that all contracts are fulfilled. Convexity
constraints (42) ensure that exactly one bunker pattern is chosen for each vessel.

7.1. Pricing Problem
Let πc ≤ 0 and πc ≤ 0 be the dual variables for the upper and lower contract

constraints (41), due to the structure of these constraints at least one of these
will be 0 for each contract c. Let θv ∈ R be dual variables for the convexity
constraints (42). Then the pricing problem becomes:

Min: ur +
∑
c∈C

(πc − πc)− θv (44)

Subject to constraints (19) - (30), except (24).
This pricing problem is a Mixed Integer Program, considering a single vessel.

This size of problem can be solved in reasonable time by a standard MIP solver,
as done in Plum and Jensen [22]. Columns λr with negative reduced cost will
then be added to the master problem, also solved as a MIP.

7.2. Column Generation Algorithm
Due to the large number of columns in model (41) to (43) Plum et al. [23]

proposed to solve the LP relaxed model by Column Generation. Using the
generated columns from the LP-solution, the resulting problem is then solved
to integer optimality using a MIP solver, leading to a heuristic solution for the
original problem.

Initially all dual variables are set to zero, a subproblem is constructed for
each vessel and solved as a MIP problem. The first master problem is then
constructed with one solution for each vessel as columns. This master is solved
and the first dual values are found. The subproblems are resolved for all ves-
sels (only the objective coefficients for the contracts needs updating) and new
columns are generated for the master. This continues until no negative reduced
cost columns can be generated, and the LP optimal solution is achieved.
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In the next step, the problem is solved as a MIP, providing an integral so-
lution. The subproblems only need to find a negative reduced costs column,
to ensure progress of the algorithm. This means that initially they are allowed
to return solutions with considerable subproblem gaps. As the algorithm pro-
gresses, the allowable subproblem gap is reduced, until it reaches the tolerance
level.

7.3. Dual stabilization
A simple form of dual stabilization has been used in the implementation by

Plum et al. [23] to speed up convergence. The Box-step method described in
Marsten et al. [18] imposes a box around the dual variables, which are limited
from changing more than πmax per iteration. This has been motivated by the
dual variables only taking on values {−w,w, 0} in the first iteration, these then
stabilize at smaller numerical values in subsequent iterations.

7.4. Interpretation of dual values
The dual variables πc and πc for the upper and lower contract constraints

(41) can be used to evaluate the gain of a given contract.
Using best estimates for bunker consumption and prices (current prices for

instance) together with known or expected contracts, a baseline bunker pur-
chasing plan could be run. A new scenario could then be constructed with
the addition of the considered contract and by analyzing the output, it could be
seen whether the overall costs of the scenario increased or decreased as compared
with the baseline.

Another investigation could be to solely consider the baseline’s final dual
variables, πc and πc, and depending on the magnitude of these evaluate the
contracts effect. As these dual values are the same for all subproblems, they
can be interpreted as balancing out the price of the contract, increasing the
price if it is a popular contract or decreasing it otherwise, converging when they
are in balance. The magnitude of this will be proportional to the contracts gain.

8. Computational Results

According to Plum and Jensen [22] the simple model proposed in Section 3.1
can be solved in a couple of seconds, since every vessel is considered indepen-
dently.

The model with bunker contract presented in Section 5 is more difficult to
solve as reported in Plum et al. [23]. To give an impression of the complexity,
we will now present computational results for a number of real-life instances
including up to 500 vessels, 40.000 ports, and 750 contracts. These instances
are representative for what problems need to be solved in a major liner shipping
company.

The MIP model described in Section 3.1 has been implemented in CPLEX
12.2, while the column generation algorithm outlined in Section 7.2 has been im-
plemented in ILOG OPL as modelling language and CPLEX 12.2 as LP/MIP
solver. We will use DW to denote the column generation implementation.
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Real life data for a large number of liner vessels describing their schedules,
consumptions, tank capacities and other relevant data has been made available
by Maersk Oil Trading, who have also supplied data on a large number of
actual bunker contracts and spot prices available in a range of ports. Based on
these data a number of instances have been constructed to test the scalability
and performance of the implementations. Due to confidentiality reasons the
price’s have been distorted by ±10%. This small amount of noise, however,
does not affect the main structure of the problem. The penalty w for violating
minimum volume is set at 200 $/mt, and the penalty w for breaking the maximal
constraint at 50 $/mt. If a bunker price is not available at a port, the price is
set at 1000 $/mt. Details about the instances can be seen in Table 4.

Instance Size V P C

RULED Small 6 1048 29
FRFSM Small 8 2128 10
ZADUR Small 49 5973 35
US_WC Small 32 6022 68
USNWK Medium 49 9048 69
USSAV Medium 50 9194 23
PABLB Medium 65 9817 27
AEJAL Medium 80 15442 9
09_H2 Large 408 16214 307
11_H2 Large 572 18426 254
10_H1 Large 469 18704 332
10_H2 Large 534 21907 424
11_H1 Large 609 23453 376
HKHKG Large 158 29177 20
10_FY Large 535 40611 756

Table 4: Instances of varying sizes for the BPCP. Instance is the name of the instance, Size
is a grouping of the instances. V the number of vessels, P the number of port calls, C the
number of Contracts.

An overview of the performance and results can be found in Table 5. It can
be seen that the DW model is able to solve the problem for all instances. For
larger instances MIP runs out of memory and finds no solution, due to the size
of the instances and their resulting MIPs. Both models find solutions with very
small gaps, but still considerable absolute gap’s to the optimal solution. MIP
only finds optimal solutions for the smallest instances, for all medium and large
instances the solver runs out of memory before it has closed the gap. DW is
able to find solutions with relatively small gaps for even the largest problem
instances covering all vessels and all contracts on a global level. In practice
the resulting gaps of the algorithms, can be much smaller since we benchmark
against a lower bound and not against the optimal solution.
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Instance ObjMIP LBMIP GapMIP tMIP ObjDW LBDW GapDW tDW

RULED 5.404 e+7 5.404 e+7 0.00 % 1083 5.408 e+7 5.404 e+7 0.08 % 118
FRFSM 1.319 e+8 1.319 e+8 0.00 % 21 1.321 e+8 1.319 e+8 0.20 % 86
ZADUR 7.064 e+8 7.063 e+8 0.02 % 609 7.071 e+8 7.064 e+8 0.10 % 653
US_WC 6.628 e+8 6.626 e+8 0.03 % 481 6.654 e+8 6.627 e+8 0.41 % 1142
USNWK 9.067 e+8 9.063 e+8 0.03 % 834 9.077 e+8 9.066 e+8 0.11 % 1114
USSAV 9,830 e+8 9.826 e+8 0.04 % 775 9.830 e+8 9.829 e+8 0.00 % 399
PABLB 1.108 e+9 1.107 e+9 0.06 % 906 1.108 e+9 1.108 e+9 0.01 % 672
AEJAL 1.490 e+9 1.489 e+9 0.03 % 686 1.490 e+9 1.490 e+9 0.00 % 415
09_H2 2.115 e+9 2.113 e+9 0.10 % 1160 2.120 e+9 2.115 e+9 0.22 % 8642
11_H2 2.478 e+9 2.475 e+9 0.09 % 1107 2.479 e+9 2.477 e+9 0.07 % 9411
10_H1 2.255 e+9 2.253 e+9 0.09 % 1181 2.259 e+9 2.255 e+9 0.19 % 7267
10_H2 Out of Mem 2.529 e+9 2.526 e+9 0.12 % 10649
11_H1 Out of Mem 3.217 e+9 3.214 e+9 0.09 % 10075
HKHKG Out of Mem 3.427 e+9 3.427 e+9 0.00 % 4344
10_FY Out of Mem 4.835 e+9 4.807 e+9 0.59 % 28922

Table 5: Results and performance of MIP and DW implementation. Instance is the instance
name. ObjMIP is the best found solution for the MIP algorithm, and LBMIP is the best
found lower bound. GapMIP is the resulting gap between upper and lower bound and tMIP

is the time used in seconds. ObjDW is the best found solution for the DW algorithm, and
LBDW is the best found lower bound. GapDW is the resulting gap between upper and lower
bound and tDW is the time used in seconds.

9. Conclusion and Further work

We have given an in-depth description of how to optimize bunker purchasing
in liner shipping. First, a mathematical model for bunker bought on the spot
market was presented, and various extensions from the literature were discussed.
Next, a model for bunker purchasing with contracts was presented, and a novel
solution approach based on decomposition was described.

Since bunker prices are stochastic of nature, future research should be fo-
cused on modeling the price fluctuation. However, the models tend to become
quite complex and difficult to solve as observed by Plum and Jensen [22], while
only adding small extra improvements to the results. So a trade-off must be
done between model complexity and gain in bunker costs. The work of Sheng
et al. [26] shows some promising developments in this important direction.

Also, instruments from finance could be used to control risk in bunker pur-
chasing, and to increase the margins on oil trade. Bunker purchasing for liner
ships constitutes such a big market that it deserves a professional trading ap-
proach.
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