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Abstract 

For low failure probability prediction, subset simulation can reduce the number of simulations 

significantly compared to the traditional MCS method for a target prediction error limit.  To further 

reduce the computational effort for cases where the performance function evaluation is tedious and 

time-consuming, the performance function is approximated by a sequentially updated (instead of a 

global) Kriging model.  For this purpose, an active learning technique with a new learning and 

stopping criterion is employed to efficiently select points to train the computationally cheaper Kriging 

model at each simulation level, which is used to estimate the intermediate threshold and generate a 

new simulation sample.  The updated Kriging model at the final subset simulation level is used to 

compute the conditional failure probability.  The failure probability is estimated based on an initial 

simulation sample size N, and an updated N is computed and employed to obtain the final failure 

probability within a desired bound on the variability.  The efficiency (in terms of the number of 

expensive evaluations using the actual performance function) and prediction error (represented by the 

mean square error (MSE)) of the proposed method are benchmarked using several examples.  The 

method is shown to be more efficient (using lesser expensive evaluations) with smaller MSE for 

problems having low failure probabilities compared with selected existing methods.   

Keywords: active learning, Kriging model, subset simulation, low failure probability  
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Highlights 

 Active learning technique with new learning and stopping criteria is employed to facilitate the use 

of small number of expensive evaluations for updating the Kriging model at each simulation level.  

The computationally expensive training points are re-used at subsequent levels for better 

efficiency. 

 Kriging model is used to determine the intermediate threshold for the generation of a new 

simulation sample as well as the estimation of the conditional failure probability at the final subset 

simulation level with a low computational cost. 

 Simulation sample size is estimated based on a desired limit in the variability of the failure 

probability. 

 Method yields better results than those from the method of Ling et al. [14] in terms of efficiency 

and prediction error.    
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1. Introduction 

In reliability analysis, the failure probability PF is calculated by the integral 

 
   dF

F

P P F f


   


  
  (1) 

in which is an nd-dimensional random vector with a joint probability density function (pdf) f; F is 

the failure domain defined by G()  0, where G(.) is the performance function.  The calculation of 

the integral in Eq. (1) is tedious when the integration domain F is complex (highly nonlinear and/or 

discontinuous) and/or implicit (represented through a numerical model as such the finite element 

model). 

The direct Monte Carlo Simulation (MCS) method evaluates the integral via random sampling 

to yield an unbiased estimate of PF given by 

 1

1ˆ ( )
N

F n
n

P I
N 

  
 (2) 

where n denotes a random vector sampled from f, N is the sample size, and I(.) is an indicator 

function taking on a value of 0 or 1 depending on whether n falls in the safe or failure domain, 

respectively.  Based on the strong law of large numbers, 𝑃෠ி converges almost surely to PF, and an 

estimate of the coefficient of variation (c.o.v.) of 𝑃෠ி, 𝛿ெ஼ௌ,  is given by [1] 

 

1 F
MCS

F

P

P N
 


 (3) 

Generally, 𝛿ெ஼ௌ does not depend on the dimension of  or the complexity of G(.), making the 

MCS approach simple, versatile, and attractive in solving many structural reliability analysis 

problems.  However, for low failure probability (e.g., PF < 10-4) prediction, N needs to be large (e.g., 

N > 106) to ensure that 𝛿ெ஼ௌ is sufficiently small.  

Many researchers thus focused on methods that can achieve the same accuracy with much 

smaller N, such as importance sampling [2], univariate dimension reduction [3], directional simulation 

[4], and subset simulation (SS) [5].  SS is a popular and efficient method that computes low failure 
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probability as the product of a sequence of high conditional failure probabilities, where the latter can 

be estimated using a small sample.  

Despite the small N used in these methods, the cost to compute the performance function for 

each sample can be high if G(.) is complex (such as being highly nonlinear, comprising a set of 

functions, multiple constraints, and/or difficult to be explicitly expressed).  This leads to the use of 

computationally cheaper surrogate models to approximate G(.), which can be built using methods 

such as support vector machine (SVM), Kriging, and neural network.  In some of these methods 

(other than SS), direct MCS is used to evaluate PF, albeit using an approximated and ‘easy to 

compute’ limit state function (LSF), but the curse of low PF remains.  

Using a random sample to train a surrogate model to approximate the LSF or performance 

function directly for low failure probability prediction is inefficient and may not produce a good 

model.  This is due to a much higher number of points falling in the safe domain compared to the 

number in the failure domain such that the model may not be optimal for extrapolating into the failure 

domain.  As such, active learning techniques have recently been adopted to efficiently select the 

training points.  Pedroni and Zio [6] employed SS and an artificial neural network to estimate the 

importance sampling density for computing the failure probability.  Pan and Dias [7] proposed using a 

SVM model enriched by an active learning method to approximate G(.) before using MCS to estimate 

the failure probability.  Similarly, Echard et al. [8] proposed using the Kriging model enriched by an 

active learning method to replace G(.) before employing MCS (denoted as AK-MCS method).  

Subsequently, Echard et al. [9] coupled importance sampling with the active learning Kriging model 

to further improve its efficiency.  Lelièvre et al. [10] addressed the drawbacks of AK-MCS, namely 

the inaccuracy associated with small failure probability and non-parallelized computation, by using 

sequential MCS and a clustering technique. 

As SS is more efficient than the crude MCS, a natural improvement to the AK-MCS method is 

the AK-SS method proposed by Huang et al. [11], which used the Kriging model enriched by an 

active learning method to approximate G(.) before applying SS.  AK-MCS and AK-SS both 
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approximate G(.) using a single updated Kriging model over the entire domain with active learning 

technique, which may not always be suitable for low failure probability prediction.  This is because 

the active learning technique may not necessarily add points close to the limit state function, resulting 

in the latter not being well approximated at where it matters most.  Even though increasing the 

simulation sample size could possibly ensure enough simulation points fall in the failure domain, this 

will substantially increase the computational cost.  

Most recent efforts concentrated on improving the accuracy further in these SS coupled with 

machine learning reliability computational techniques by using a surrogate model at each simulation 

level.  Papadopoulos et al. [12] used a neural network, which was trained at subdomains defined by 

the bounds of the data, to obtain the surrogate model at each simulation level.  Cui and Ghosn [13] 

applied Kriging to approximate the performance function at each simulation level, and the local 

Kriging models are trained based on a clustering algorithm.  However, the choice of the number of 

clusters remains to be addressed for practical applications.  Ling et al. [14] coupled SS with an active 

learning Kriging model for failure probability estimation, where a new Kriging model is used at each 

simulation level.  The SS used is different from that proposed by Au and Beck [5], and the active 

learning framework adopted can be improved in terms of efficiency and prediction error.  To improve 

the method of SS with a surrogate model for low failure probability prediction, the intermediate 

threshold at each simulation level should be more accurately calculated, the simulation sample should 

be appropriately generated, and the limit state function should be well approximated to reduce the 

prediction error.  The number of evaluations using the actual (not the surrogate) performance function 

for training the surrogate model, which is costly, should be as small as possible to increase efficiency.  

The objective of this paper is to develop an improved algorithm for SS in conjunction with an 

active learning Kriging model to predict low failure probability using a small number of costly 

performance function evaluations.  An active learning framework with new learning and stopping 

criteria is used to efficiently update the Kriging model, which is used to determine the intermediate 

threshold and generate a simulation sample for the next simulation level.  The intermediate threshold 

is calculated with a predefined conditional failure probability (e.g., 0.1).  The conditional failure 
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probability at the last simulation level is computed using the final updated Kriging model.  The 

training set at each simulation level is updated and passed to the next simulation level, to approximate 

the performance function over a wider domain.  The simulation sample size is estimated based on 

maintaining a specified limit on the prediction variability.  The performance of the proposed 

procedure is investigated statistically using a variety of examples, including the dynamic response of 

an offshore drilling riser system, and compared with results from some existing methods.  

2. Background methodologies 

2.1 Subset simulation (SS) 

The key ideas of SS [5] are summarized herein.  Given a failure event F, and a sequence of 

other “failure” events, F1, F2, …, Fm, such that F1  F2 … Fm = F, the failure probability is given 

by  

 
     

1

1 1
1

|
m

F m i i
i

P P F P F P F F




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 (4) 

where P(F1) is estimated by MCS as in Eq. (2) and denoted by  𝑃෠ଵ with an initial simulation sample 

ቄθk
ሺ0ሻ: k = 1, 2, …, Nቅ.  The conditional failure probability is calculated as: 

 
    11 1

1

1ˆ|
i

N
i

i i i F k
k

P F F P I
N  



   
 (5) 

where ቄ𝛉௞
ሺ௜ሻ: 𝑘 ൌ  1, 2, … ,𝑁ቅ is the Markov chain sample at the ith conditional level, 1  i  m–1.  For 

ease of implementation, only 𝑃෠௠ is evaluated by Eq. (5) with the target threshold, while all other 

intermediate probabilities are fixed at 0.1 for simplicity (that is, 𝑃෠௜ = 0.1 for i = 1, 2, …, m-1), from 

which the corresponding intermediate thresholds yi are determined.  The simulation sample Θ(i) = 

{θk
(i): k = 1, 2, …, N; i = 1, 2, …, m-1} is generated using the modified Metropolis algorithm [15], 

with each of the Nc Markov chains generating Ns (= N/Nc) points.  For the case of Pi = 0.1, Nc = 0.1*N 

and Ns = 10.  The advantage of SS over direct MCS lies in the controlled generation of simulation 

samples in the intermediate failure domain, thus increasing its efficiency associated with high failure 

probability.  The failure probability is estimated as 
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The theoretical lower bound of the c.o.v. of  𝑃෠ி, when the conditional probabilities at different levels 

are uncorrelated, is given by 
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m
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where 1 is the c.o.v. of 𝑃෠ଵ, given theoretically by 

 

1
1

1
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P N
 
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  (8) 

and i, 2  i  m, is the c.o.v. of 𝑃෠௜, given theoretically by 

 
 1
1i

i i
i

P

PN
 
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  (9) 

in which i is the correlation factor [5].  

2.2 Active learning with Kriging model (AK) 

Given the role of the Kriging model in this paper, the key equations are summarized herein and 

more details can be found in [8,11,16].  Kriging is a Gaussian process regression method which 

generates a spatial interpolation function based on a covariance or variogram model derived from the 

data.  Generally used for a prediction purpose, the model comprises a regression expression and a 

deviation term described by a random process.  Treating the dependent variable as a stochastic 

process Y(x), it can be mathematically expressed as  

 
     

1

p

k k
k

Y f z


 x x x
  (10) 

where the first term represents the trend, and fk(x) and βk with k = 1, 2, …, p are the basis functions 

and regression coefficients respectively.  For convenience, denote F(x) = [f1(x), f2(x), …, fp(x)] and β 

= [β1, β2, …, βp].  The random process z(x) is assumed to have mean zero, and the covariance between 

z(x(i)) and z(x(j)) is given by 
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   ( ) ( ) 2 ( ) ( ), , ,i j i j

zV Rx x x x
  (11) 

where σz
2 is the process variance and Ri,j = R(θ, x(i), x(j)) is the correlation computed from the 

correlation model R with parameter 𝛉෩.  The deterministic response, denoted by y(x), is treated as a 

realization of Y(x).   

For a design of experiments [𝐱ሺଵሻ, 𝐱ሺଶሻ, … , 𝐱ሺ௡ሻ], 𝐘 ൌ ൣ𝑌൫𝐱ሺଵሻ൯,𝑌൫𝐱ሺଶሻ൯, … ,𝑌൫𝐱ሺ୬ሻ൯൧
୘

, the 

Kriging estimator at an unknown point x(*) is given by 

      T T( ) ( ) ( )ˆ ˆŷ    x F x r x 
  (12) 

where r(x(*)) is a vector with components 𝑟௜ ൌ 𝑅൫𝛉, 𝐱ሺ∗ሻ, 𝐱ሺ௜ሻ൯ and γො is computed as γො ൌ 𝐑ିଵ൫𝐘 െ 𝐅𝛃෡൯.

The MSE (which is the same as the Kriging variance since the Kriging estimator is theoretically 

unbiased) of the predictor is 

 
  12 2 T T 1 T 11z 

   u F R F u r R r
  (13) 

where 𝐮 ൌ 𝐅୘𝐑ିଵ𝐫 െ 𝐅ሺ𝐱ሺ∗ሻሻ.  Computations can be performed using the Kriging Toolbox DACE 

[17,18] in MATLAB. 

One challenge in using a surrogate model to approximate the performance function is in 

employing a small number of training points to yield a model with a small prediction error.  

Techniques such as Latin hypercube sampling (LHS) as well as other design of experiment methods 

may be used instead of conventional random sampling.  However, the sample size of LHS is difficult 

to pre-determine to obtain a surrogate model within the desired prediction error.  To improve the 

surrogate model trained using a sample from LHS, additional sampling points may be employed but 

the challenge is how to select such points to achieve maximum impact.  Recently, the active learning 

technique has been proposed which incorporates information from previously used points to 

sequentially locate where a new training point is to be added to increase the accuracy of the model 

[19].  Starting with a few initial training points, a query strategy or learning criterion locates where the 

trained model has the maximum uncertainty to add a new training point.  The process is repeated until 

a stopping criterion is met, where different criteria have been proposed.  
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AK-MCS [8] iteratively adds training points close to the LSF to train the Kriging model so that 

it can approximate the LSF for classifying sample points that are in the safe or failure domain.  Two 

learning functions have been proposed, namely, the expected feasibility function (EFF), which 

originated from the EGRA method [20], and the U function. 

EFF is computed through an optimization algorithm which balances between the global search 

over the whole domain and the local search close to the limit state function [8].  The expression for 

EFF is given by 
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  (14) 

where  is the standard normal cumulative distribution function, is the standard normal pdf, 𝐺෠ሺ𝛉ሻ is 

the predicted response at location  and 𝜎 ෠ீሺ𝛉ሻ is the predicted standard deviation.  The value of EFF 

indicates how well the actual performance function value at location  is expected to satisfy 𝐺෠ሺθሻ ൌ α 

over the region .  A large EFF value implies a high level of uncertainty in the predicted 

performance function value [20].  Hence,  corresponding to the maximum EFF is selected as the 

point to be added to the training set, until the stopping criterion of max(EFF(Θ))  0.001 is met (see 

Table 1). The empirical value of 0.001 was recommended by Echard et al. [8].  

The other learning function U has been defined as [8]: 

 

 
 
 Ĝ

G
U










. (15) 

It measures the number of standard deviations that the predicted 𝐺෠ሺ𝛉ሻ is from 0.  Using a stopping 

criterion of min(U(Θ))  2 (see Table 1) as recommended by Echard et al. [8] ensures that only 
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additional points that have absolute performance values smaller than twice the standard deviation are 

appended into the set of training data as they have higher contributions to the failure probability.  The 

threshold value of 2 is associated with points having an outlier probability of at most 1-(2) = 0.023 

on either side of the LSF.   

 

Table 1  Definition of learning function and stopping criterion for AK-MCS 

 EFF U 

Learning function max(EFF(Θ)) min(U(Θ)) 

Stopping criterion max(EFF(Θ)) ≤ 0.001 min(U(Θ)) ≥ 2 

 

To train a Kriging model with a large simulation sample size is computationally challenging.  

The AK-MCS [8] and AK-SS [11] reduce the computational effort in evaluating the performance 

function values but do not overcome the limitation of requiring a large simulation sample size 

associated with a low failure probability, and the reasons are given as follows:    

Firstly, the AK-MCS [8] is similar with MCS but requires much less performance function 

evaluations.  For a problem with a target failure probability PF, its simulation sample size N should be 

larger than 100/PF to have a prediction c.o.v. of 𝑃෠ி smaller than 0.1 (see Eq. (3)).  Secondly, the 

Kriging model is a regression model, which has limitations for extrapolation, and enough training 

points should come from the failure domain to approximate the limit state function over the entire 

domain of interest.   A large simulation sample size is required to have enough points in the failure 

domain, as the sample are generated using the MCS method.  The problem is compounded by the fact 

that the failure probability is not known a priori.  Starting with a small N, the simulation sample size 

to use is increased iteratively with random sampling, which is also computationally costly. 

Even training a Kriging model with a large N is possible, the active learning procedures 

provided in AK-MCS [8] do not guarantee a new training point is selected, which could result a 

failure of the algorithm.  
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Taking advantage of the SS method in dealing with small failure probabilities, the AK-SS 

method [11] evaluates failure probability with SS using the trained Kriging model from AK-MCS.  

Since AK-SS uses the trained Kriging model from AK-MCS, the above-mentioned issues remain 

unaddressed. 

It should be pointed out that the target failure probabilities of most of the examples in AK-MCS 

[8] and AK-SS [11] are larger than 10-4, and the only example with PF < 10-4 in AK-SS [11] is 

estimated with different initial training sample size and stopping criterion used with other high failure 

probability examples. 

2.3 Improved active learning Kriging model with subset simulation (I-AK-SS) 

Ling et al. [14] proposed further improvement by approximating the performance function at 

each simulation level with a corresponding surrogate model instead of a global model.  However, 

unlike SS [5], which uses a fixed conditional failure probability to calculate the intermediate 

threshold, Ling et al. [14] uses an estimated intermediate threshold to calculate conditional failure 

probability at each simulation level.  The first intermediate threshold y1 is determined from 1 out of 

only 10 training points used.  At simulation level i, the Kriging model Ki is updated with points 

selected based on the active learning function 

 

 
 
 ˆ

i

G

G y
U












.  (16) 

The model is used to compute the conditional failure probability associated with this threshold, 

whereas most researchers fixed the conditional failure probability at 0.1 to find the threshold. MCMC 

algorithm is applied to generate a new sample, which is evaluated using Ki to obtain yi+1. The process 

is repeated until yi is in the failure domain.  

There are three improvements which can be made.  First, in Ling et al. [14], the intermediate 

threshold is determined before updating the Kriging model.  The first intermediate threshold is 

calculated using only 10 points and thus may compromise the accuracy of the method.  Second, at 

each simulation level, the Kriging model is updated using Eq. (16) for the calculation of conditional 
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failure probability with extra training points, which leads to more evaluations using the 

computationally expensive actual performance functions.  Third, the simulation sample size is a key 

factor for balancing the accuracy and efficiency of the method, but no proper way of determining the 

sample size is given. All three aspects are addressed in this paper.  

3. Proposed method 

The proposed method in this paper approximates the performance function at each simulation 

level using a Kriging model, updated with a new active learning technique.  At simulation level i (i = 

1, 2, …, m), the Kriging model Mi is updated with training points selected from the simulation sample 

Θ(i-1) using the proposed active learning technique.  To determine the intermediate threshold based on 

a fixed conditional failure probability of 0.1, Mi is used to compute the performance function values.  

MCMS is employed to generate the simulation sample Θ(i) and the process is repeated until yi is in the 

failure domain.  The conditional failure probability at the final level 𝑃෠௠ is evaluated using Mm 

associated with the target threshold.  The failure probability 𝑃෠ி and its associated c.o.v. (Eqs. (6) and 

(7)) are estimated.  The whole procedure is repeated with an increased simulation sample size N 

(estimated using Eq. (18) given below) until the desired prediction variability (c.o.v. 0.05) is 

achieved. The proposed method is detailed below.  

1) Generate the simulation sample and form the training set. 

Generate the simulation sample, k
: k = 1, 2, …, N following f.  Next, select n0 

training points, Xxk: k = 1, 2, …, n0by LHS and evaluate the associated performance 

function values Y = G(X) to form the training set S ={X, Y}.  The number of evaluations Ncall 

using the actual performance function is n0.  As active learning technique will be used later to 

add training points, a small value of n0, with a good spread of selected points based on LHS, 

is used.  

2) Train the Kriging model at current simulation level i with active learning technique.  

Train the Kriging model Mi with training set S.  The DACE toolbox [17,18] is used for this 

purpose.  On the choice of new training points (which are selected from the simulation sample 
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ito include for improving the Kriging model, one criterion is to consider a point which 

contributes most to the uncertainty in the model.  

Each point k of the simulation sample ik
i: k = 1, 2, …, N is a potential training 

point  As such for each point, evaluate the performance value G෡ሺ𝛉௞ሻ using the trained 

Kriging model (see Eq. (12)) and the associated mean square error (MSE) 𝜎෠ீ
ଶሺ𝛉௞ሻ (see Eq. 

(13))Given that the value of G෡ሺ𝛉௞ሻ for each k is different, a normalized measure 𝐶ሺ𝛉௞ሻ of 

its variability is adopted, given by  

 

 
 

 
 

ĜMSE
C

G G


  




 
  (17) 

The maximum 𝐶ሺ𝛉௞ሻ over the N candidate points is used to determine whether an additional 

training point needs to be selected.  A threshold of 0.1 is used in this paper.  No new point 

will be added to the training set if (a) max ቀC൫Θሺ௜ିଵሻ൯ቁ ൑ 0.1, or  (b) majority of points in the 

failure domain remains unchanged (99% points in the failure domain remain the same after 10 

new training points are added).   If neither of the criteria is satisfied, the point with the highest 

C, say {xc, yc}, where yc = G(xc), is added to the current training set.  Since yc is computed 

using the actual performance function, update Ncall = Ncall+1.  This will yield a re-trained 

Kriging model Mi and the process is repeated until one of the criteria is met.  Note that C at 

the last level is identical to the reciprocal of the 𝑈 function proposed in [8], where a threshold 

value of 2 (giving a reciprocal value of 0.5) was proposed.   

3) Calculate the intermediate threshold.  

If the intermediate threshold yi corresponding to the conditional failure probability p0 is to be 

determined, the procedure is to rank 𝐺෠൫𝚯ሺ௜ିଵሻ൯ in ascending order and use the average of the 

(Np0)th and (Np0+1)th value as yi.  A conditional failure probability with a fixed value p0 = 

0.1, which is not recalculated based on the intermediate threshold associated with p0 = 0.1, is 

adopted.     

4) Generate the simulation sample and select the training set for the next simulation level.   
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If yi is positive (i.e., the associated random vector is within the safe domain), use the modified 

Metropolis algorithm to generate a new simulation sample ik
i: k = 1, 2, …, N.  Note 

that the generated points are evaluated using the Kriging model Mi (instead of the actual 

performance function) for acceptance and rejection, based on whether they are within the 

‘failure’ domain at the current simulation level.  Each of the Nc (=Np0) Markov chains is used 

to generate Ns (= 1/p0) points to get a total of N points.  All the training points selected from 

the first to the current simulation level (where the G(x) values have already been computed 

using the actual performance function) are kept as the training points for the next simulation 

level.  Repeat steps 2-4 until yi is smaller than 0 (associated with the failure domain of the 

original problem). 

5) Calculate the failure probability and its corresponding c.o.v..   

The conditional failure probability corresponding to the target threshold of 0 is calculated 

using Eq. (5) via the updated Kriging model.  The failure probability and the corresponding 

c.o.v. SS are estimated based on Eqs. (6) and (7) respectively.  IfSS greater than the target 

c.o.v. δ෨SS (set as 0.05 in this paper), go to step 2 and repeat each step thereafter but with a 

larger sample size N.  Assuming that P෡i and γi do not change much as N increases, the new 

sample size is estimated as 

 

 1
2

21

ˆˆ 111
1

ˆ ˆ

m
i

i
iSS i

PP
N

P P


 

 
   

 


, (18) 

and N is rounded up to the next value of 1000 to ensure that Nc is an integer.  For 

computational efficiency, all the existing training points are kept and used where appropriate.  

6) End of simulation. 

The computation ends whenSS is not more than the target c.o.v. δ෨SS.  

The flow chart of the proposed method is summarized in Fig. 1.  
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Fig. 1 Flow chart of proposed method 

 

4. Key points to note  

4.1 The general framework 

The proposed method adopts the procedure commonly used in most SS algorithms, where the 

conditional failure probability is set to 0.1 and the associated intermediate threshold is determined.  

The Kriging model used to determine the threshold at each simulation level is based on an updated 
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model trained with points selected by the proposed active learning technique.  In the proposed 

method, a large sample size N is used in conjunction with the updated Kriging model to give a good 

estimate of the intermediate threshold (including the first threshold) while the probability is fixed at 

0.1.  The learning criterion in the proposed method selects the point with the largest uncertainty, 

which is quantified by the relative standard deviation.  The active learning algorithm stops when all 

points have small prediction variability or the majority of the points in the failure domain remain 

unchanged.  All training points are kept and re-used at subsequent levels.  This gives more points in 

the training with little additional computational cost to yield a Kriging model that is fitted with data 

covering a wide domain.  This results in a better-quality sample generated by MCMC for the final 

simulation level to determine the conditional failure probability.  The simulation sample size is 

updated to achieve a theoretical prediction variability limit.  

There are differences between the proposed method and that in Ling et al. [14].  In the method 

of Ling et al. [14], the first intermediate threshold is calculated based on 10 training points; the 

threshold at each level (except the first) is determined using the Kriging model from the previous 

level with a fixed conditional failure probability 0.1, and the conditional failure probability is 

recomputed using the respective improved Kriging model with the threshold; the learning function 

and the stopping criterion are fundamentally different from the proposed method; and the simulation 

sample size is not updated.  

4.2 Learning function and stopping criteria 

The Kriging model is used to calculate the intermediate threshold with limited prediction error 

and classify the simulation sample into safe and failure domain at each simulation level.   

The learning function C given in Eq. (17) selects the point with maximum uncertainty to be 

added to the training set, which yields a desired Kriging model.  The training set at the current 

simulation level is passed to subsequent levels.  The points added by the learning algorithm make 

improvements for the Kriging model over the domain of the current simulation sample.    
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Two stopping criteria are provided for the proposed method, and the active learning stops when 

either one of the criteria is satisfied.  The first stopping criterion max ቀC൫Θሺ௜ିଵሻ൯ቁ ൑ 0.1 limits the 

Kriging model prediction error for the simulation sample, which reduces the error of intermediate 

threshold estimation.  The threshold 0.1 yields a small prediction error of the proposed method.  If a 

value of 0.2 is chosen, the learning algorithm will stop with fewer additional points whereas if the 

value is 0.05, more points will be added.  The smaller threshold 0.1 will not select unnecessary points 

with the help of the second stopping criterion.  The second stopping criterion requires that 99% of the 

points in the failure domain remain the same after 10 new training points are added, which means the 

active learning stops when it does not improve the Kriging model in terms of classifying the 

simulation sample into safe and failure domains.  The choice of parameters in the stopping criteria, 

i.e., 0.1, 99% and 10, is a matter of balance between prediction error and computational cost and 

might not be optimal for all the applications.  

4.3 Simulation sample size 

The choice of the initial training set size at the first simulation level is intended to be small (n0 

= nd+12) as (a) the actual performance will be used to compute the values at these points which are 

expensive, (b) these few points are selected using LHS thus ensuring an appropriate broad 

representation over the domain, (c) additional points will be included using an active learning 

algorithm to ensure that they are optimally selected to improve the model, and (d) n0 should be at least 

larger than the dimension of the problem.  

To minimize computational cost, the Kriging model is used to compute performance function 

values for estimating (a) the threshold at each simulation level corresponding to a fixed probability 

value of 0.1, and (b) the conditional failure probability at the final simulation level.  In terms of 

computing the final conditional failure probability with an order of magnitude of 0.1, a sample with 

size N = 104 would produce a good initial estimate.  High N will produce a more accurate threshold 

for the generation of the simulation sample, but with more training points selected.  Given the much 

lower cost in the determination of the threshold and conditional failure probability compared to the 
 



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

18 

much higher overall computational cost (mostly in using the actual performance function to evaluate 

Ncall training points for the Kriging models), N = 104 is chosen for less prediction error with little 

additional cost compared N = 103. 

From the initial estimate of the failure probability with N = 104, Eq. (18) can be used to 

determine an updated simulation sample size N to yield a theoretically acceptable c.o.v. of the 

estimator 𝑃෠ி.  The choice of the c.o.v. is again a balance of prediction error and computational cost.  

In this study, a small value of 0.05 is chosen.   

5. Examples 

5.1 General considerations 

Numerical examples are shown in this section to compare the results with those obtained using 

other existing SS-based structural reliability methods.  The examples cover five numerical problems 

and a real-world application, with low or high dimensional variables, linear or nonlinear performance 

functions, and continuous or discontinuous limit state functions. 

To compare the performance amongst the SS, the method in Ling et al. [14], and the proposed 

method, the number of computations using the actual (not surrogate) performance function (which is 

expensive), Ncall, and the mean square error (MSE) are examined in the examples.  The MSE of the 

estimator 𝑃෠ி, given by 𝑀𝑆𝐸൫𝑃෠ி൯ ൌ 𝐸 ቂ൫𝑃෠ி െ 𝑃ி൯
ଶ
ቃ, is a function of its variance, 𝑉൫𝑃෠ி൯, and bias, 

𝐵൫𝑃෠ி൯ ൌ 𝐸൫𝑃෠ி൯ െ 𝑃ி; that is, 𝑀𝑆𝐸൫𝑃෠ி൯ ൌ 𝑉൫𝑃෠ி൯ ൅ ൣ𝐵൫𝑃෠ி൯൧
ଶ
 [21].  For the unbiased case, the MSE 

and predictor variance are the same.   

To estimate these statistics for each example, each method is repeatedly simulated 100 times.  

The mean of the computed failure probabilities from 100 runs using the direct MCS method is taken 

as the reference failure probability 𝑃ி  to compare with.  The mean estimated failure 

probabilities 𝐸൫𝑃෠ி൯ from each method, the prediction variance V, the square of the bias B2 and the 

mean number of evaluations using the actual performance function E(Ncall) for a specified simulation 

sample size N, are estimated accordingly.   
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For the proposed method, a fixed simulation sample size 104 is first used to provide one level of 

comparison, and it is next simulated with an updated simulation sample size to meet a target 

variability level.  For a fair comparison, SS is simulated using the same initial simulation sample as 

the proposed method and the method in Ling et al. [14] is simulated using a fixed simulation sample 

size 104.  The spread of the predicted failure probabilities is also summarized in a box plot, where the 

center line in the box represents the median, the top edge represents 75th percentile, the bottom edge 

represents 25th percentile, and the outliers are plotted as '+' symbol. 

For the Kriging-based methods, the regression model used is linear for the high-dimensional 

problem, and zero-order polynomial for the other examples.  The correlation function is assumed as 

Gaussian.  The Kriging model in the proposed method is mainly intended to help efficiently calculate 

intermediate thresholds, generate simulation samples, and calculate the conditional failure probability 

at the final level.  For Kriging model error estimation, please refer to [22,23].  An indication of the 

overall contribution of the active learning Kriging procedure to the MSE of the proposed method may 

be obtained by comparing the MSE from the SS method against that from the proposed method for the 

same initial simulation sample. 

5.2 Series system with four branches 

Consider a system comprising several subsystems or components, where the failure of the 

system is defined as the failure of any component.  That is, the failure event is represented by the 

union of all the component failure events.  Such formulation is applicable to many civil engineering 

problems.  The first example [8, 24] is a system comprising four subsystems, two with linear and two 

with nonlinear performance functions.  The performance function of this system with random 

variables 𝜃1 and 𝜃ଶ following the standard normal distribution is given by: 
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where m = 4.8 and n = 10. 

The computation starts in step 1 with the generation of a simulation sample Θ(0) with size N = 

104 at simulation level i = 1.  The training points, with an initial size of n0 = 14 (section 4.3 discusses 

this choice), are evaluated using Eq. (19) to form the first training set.  The Kriging model is trained 

and updated in step 2, where new training points are added.  This results in 38 training points, where 

24 new training points (shown in parenthesis in Table 2 and marked as “x” in Fig. 2(a)) have been 

added based on the active learning technique.  The updated Kriging model (which is computationally 

cheaper) is then used to compute the performance values 𝐺෠൫𝚯ሺ௜ିଵሻ൯ using the large set of simulation 

sample (of size N = 104) from which the intermediate threshold y1 is estimated.  For the conditional 

failure probability of 0.1, y1 = 3.197 is obtained (step 3).  As shown in Fig. 2(a), the surrogate model 

plotted at y1 = 3.197 is in good agreement with that of the actual performance function.  In step 4, a 

new simulation sample Θ(1) for level i = 2 is generated using the modified Metropolis algorithm 

conditioned on y1 = 3.197.  Steps 2 to 4 are repeated until yi is smaller than 0 (Fig. 2(b) to 2(f)).  The 

failure probability (P෩F = 1.416×10-6) and the associatedSS are computed in step 5.  As SS > 0.05, the 

sample size N is increased to 60,000 (based on Eq. (18)), and the entire simulation is repeated untilSS 

 0.05.  For this entire simulation run, the final solution is 1.521×10-6 using a total of Ncall = 152 

expensive evaluations via the actual performance function.  The results are summarized in Table 2 

and Figs. 2 and 3.                                

Table 2 gives the threshold values and cumulative Ncall at each of the six levels including the 

number of points added based on the active learning algorithm for the initial sample size N of 104 and 
 



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

21 

the next and final recommended sample size of 60,000.  All the 125 training points from the first 

iteration (N = 104) are passed to the next iteration (with N = 60,000) which explains why the 

corresponding additional training points are small for the second iteration.    

 

Table 2  Results at each simulation level with 2 simulation sample sizes (N) 

N i 1 2 3 4 5 6 𝑃෨ி 

104 Pi 0.1 0.1 0.1 0.1 0.1 0.1416 1.416×10-6 

Ncall  38 (24) 50 (12) 68 (18) 94 (26) 109 (15) 125 (16)  

yi 3.197 2.345 1.601 0.976 0.455 0  

60,000  Pi 0.1 0.1 0.1 0.1 0.1 0.1521 1.521×10-6 

Ncall  126 (1) 127 (1) 127 (0) 132 (5) 142(10) 152 (10)  

yi 3.109 2.314 1.602 0.977 0.424 0  

 

Figs. 2 and 3 show that the sample points are well distributed based on the proposed procedure.  

The points added by the active learning algorithm are close to the contours associated with the 

respective thresholds.   The plot of the Kriging model at each simulation level shows that it can 

represent the actual performance function well, with some discrepancies at locations where the 

contributions to the failure probability are small (away from the simulation sample).   

As discussed in section 5.1, 100 runs of this example are performed for comparison.  The 

results using crude MCS, SS method [5], method of Ling et al. [14] and the proposed method are 

shown in Table 3. In Table 3, the 𝐸൫𝑃෠ி൯ of MCS results is taken as a reference failure probability to 

compute the prediction error for other methods; the result for the proposed method is shown at the last 

row of the table, and the SS [5] using the same initial simulation sample as the proposed method is 

shown at the second row. The results for the proposed method and the method in Ling et al. [14] using 

the fixed simulation size 104 are also compared. The box plot of the predicted failure probabilities 

from different methods is shown in Fig. 4.  The figure shows that PF predicted by the proposed 

method has less variability than the method of Ling et al. [14].  
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(a)                                                                                (b) 

 
(c)                                                                                (d) 

 
(e)                                                                                (f) 

 
Fig. 2 Results of subset simulation levels for with N = 104 (yellow asterisk ‘*’: simulation sample; 

green square: existing training set; magenta cross ‘x’: new training points; red solid line: performance 

function with yi value; blue dashed line: Kriging model with yi value). 
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(a)                                                                                (b) 

 
(c)                                                                                (d) 

 
(e)                                                                                (f) 

 
Fig. 3 Results of subset simulation levels for N = 60,000 (legend as in Fig. 2) 
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The MSE value from the proposed method is only 15% of the method of Ling et al. [14] 

(1.64×10-14 vs 1.10×10-13) and Ncall is less than half of Ling et al [14] (172 vs 385).  Hence, the 

proposed method is computationally cheaper with less prediction error than the method of Ling et al. 

[14].  When using the same simulation sample size 104, the proposed method has MSE around 20% 

higher than that of Ling et al [14] (1.34×10-13 vs 1.10×10-13) using only one-third Ncall (127 vs 385).  

Compared to SS [5], the proposed method only uses 0.06% Ncall  (172 vs 305,981) with similar MSE 

(1.64×10-14 vs 1.69×10-14), which indicates that the effect of the prediction error of the Kriging model 

on the failure probability prediction error is negligible.   

 

Table 3  Comparison of results for series system with four branches example 

Method N 𝐸൫𝑃෠ி൯  E(Ncall) V B2(%MSE) MSE 

MCS  1.495×10-6 108 1.55×10-14   

SS [5] 60,740 1.478×10-6  305,981 1.66×10-14 3.01×10-16 (1.8) 1.69×10-14 

Ling et al. [14] 104 1.450×10-6  385 1.08×10-13 2.07×10-15 (1.9) 1.10×10-13 

Proposed 

 

104 1.520×10-6  127 1.33×10-13 6.15×10-16 (0.5) 1.34×10-13 

60,740 1.515×10-6  172 1.60×10-14 3.98×10-16 (2.4) 1.64×10-14 

 

 

Fig. 4 Box plot of PF for series system with four branches example  
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Theoretically, the bias should be independent of N, but small variations are observed in all 

methods as it is estimated numerically and constitutes only a small percentage (<3%) of the MSE 

(shown in parenthesis in Table 3).  With regards to the initial sample size, as an illustration, if the 

simulation starts with a smaller N of 103 instead of 104, the final MSE obtained is slightly higher 

(1.67×10-14 vs 1.64×10-14) and with a similar mean Ncall (170 vs 172), which implies the results with 

initial N equals to 103 and 104 are similar. 

No new training point is selected to update the Kriging model and the predicted 𝑃෠ி = 0 when N 

= 103 and 104 using AK-MCS [8] and AK-SS [11].  As discussed in section 2.2, a large simulation 

sample size N is required for estimating low failure probability, and increasing N does not guarantee a 

new training point is selected following the active learning procedures in AK-MCS [8] and AK-SS 

[11].  With an initial N = 107, no new training point is selected (min(U(Θ)) = 4.54 using learning 

function U, and max(EFF(Θ)) = 6.10×10-5 using learning function EFF, see Table 1), and the 

predicted 𝑃෠ி = 0.  After the N is iteratively increased to 4×107, still no training point is selected, and 

the algorithm could not continue (“out of memory” error with a 16 GB RAM computer) as training 

Kriging model using DACE toolbox in MATLAB [8] with a sample size this large is infeasible with 

limited computational power.  Further increasing N without changing the active learning procedure 

does not address the issue.     

As AK-SS is based on AK-MCS with learning function U, it inherits the same limitation.  The 

use of a global Kriging model works for problems with higher failure probability, where for the case 

of m = 3 and n = 7 (in Eq. (19)), AK-MCS and AK-SS predict a failure probability of 2.222 ൈ 10-3, 

where the required simulation sample size is relatively small.  Fig. 5(b) shows that there are sufficient 

training points in both the safe and failure domains and the global Kriging model matches the actual 

LSF well to achieve a good estimation. 
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(a)                                                                                (b) 

 

Fig. 5    AK-MCS for series system with four branches example (a) m = 4.8, n = 10, (b) m = 3, n = 7. 

 

5.3 Modified Rastrigin function 

To test the versatility of the proposed method, the computationally challenging Rastrigin 

function [25] is used here where the performance function is highly nonlinear and non-convex with 

disconnected failure domains (see Fig. 6).  The Rastrigin function was originally used as a difficult 

performance test example for optimization algorithms in the domain of mathematical optimization, as 

it is a non-linear multimodal function with many local minima and a large search space.  The 

performance function is given by 
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G 25   
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  (20) 

where 𝜃1 and 𝜃ଶ are standard normal distributed random variables.  
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Fig. 6 Performance function and surface with threshold of 15.722 for modified Rastrigin function 

example (indicated as +) 

 

In Fig. 6. the contour of the function at a threshold of 15.722 is illustrated in red color, and also 

plotted in a plan view (red color) in Fig. 7(a).  This corresponds to the first level intermediate 

threshold simulated in the proposed method.  In Fig. 7, The corresponding contour from the Kriging 

model is shown in dotted blue color where the match is very good (the blue and red curves virtually 

coincide) except outside the domain of simulation sample, which is not relevant.  Despite the 

complexity of the performance function in terms of its nonlinearity and the discontinuity of the failure 

domains, Fig. 7 shows the suitability of the Kriging models at each simulation level.  

The results are summarized in Table 4.  The computational effort by the proposed method and 

that of Ling et al. [14] are similar (Ncall = 633 vs 673) but the MSE from the proposed method is only 

5% of Ling et al. [14] (1.05×10-11 vs 2.01×10-10).  If the proposed method does not update the 

simulation sample size, i.e., using a fixed size 104, the prediction error is ~15 times larger (1.62×10-10 

vs 1.05×10-11), with around 20% reduction of Ncall (516 vs 633).  The B2 contributes 54% of the MSE, 

where the mean prediction (2.258×10-5) deviates significantly from the reference value (3.197×10-5).  

This demonstrates the necessity to update the simulation sample size as described in section 4.3.   

Comparing the proposed method with SS [5] using the same simulation sample size, the proposed 
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method uses 0.20% Ncall (633 vs 315,206) with 10% more MSE (1.05×10-11 vs 9.57×10-12), which 

partially results from the regression prediction error of the Kriging model.  

The AK-MCS [8] with learning function U and AK-SS [11] are unable to update the training 

sample even with a large initial simulation sample size N = 107.  The AK-MCS [8] with learning 

function EFF is able to select a few training points but the training of Kriging model fails due to the 

large sample size before the learning stopping criterion is met.   For the method of Ling et al. [14], 

there are 23 out of 100 runs that do not predict reasonable results (giving PF <10-7) due to the 

intermediate thresholds not being able to evolve close to the final threshold.  This could be due to the 

low number of points used to determine the initial threshold y1.  In this case, y1 calculated from the 

few points is associated with a small conditional failure probability.  This will result in an insufficient 

number of points in the ‘failure’ domain to serve as chains for the generation of a new simulation 

sample.  If the size of the initial set of 10 is increased, the efficiency of the method will decrease.  No 

procedure for determining the size of the initial set is provided in Ling et al. [14]. 

Fig. 8 shows the box plot of PF predicted by the different methods. The proposed method has 

similar variability with SS [5], whereas the method in Ling et al. [14] has much larger prediction 

variability.  
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(a)                                                                                (b) 

   

(c)                                                                                (d) 

   

(e)                                                                                 

  

Fig. 7 Different simulation levels at last iteration for modified Rastrigin function example (legend as 
in Fig. 2) 
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Table 4  Comparison of results for modified Rastrigin function example 

Method N 𝐸൫𝑃෠ி൯  E(Ncall) V   B2(%MSE) MSE 

MCS  3.197×10-5 108 3.01×10-13   

SS [5] 72,870 3.179×10-5 315,206 9.53×10-12 3.47×10-14 (0.4) 9.57×10-12 

Ling et al. [14] 104 2.393×10-5 673 1.36×10-10 6.48×10-11 (32) 2.01×10-10 

Proposed 

 

104 2.258×10-5 516 7.40×10-11 8.82×10-11 (54) 1.62×10-10 

72,870 3.132×10-5 633 1.01×10-11 4.31×10-13 (4.1) 1.05×10-11 

 

  

Fig. 8 Box plot of PF for modified Rastrigin function example 

 

5.4 Response of a non-linear oscillator  

A SDOF oscillator (Fig. 9) with nonlinear restoring force and pulse load with random physical 

parameters is considered. The performance function of the response of the non-linear oscillator is 

given by [8,24,26,27]: 

 

  0 11
1 2 1 1 max 2

0

2
, , , , , 3 3 sin

2

tF
G c c m r t F r z r

m




      
    (21) 

where r is the displacement at which one of the springs yields, zmax is the maximum displacement and

1 2
0

c c

m
 
 . The statistics of the random variables are listed in Table 5 and the results are tabulated 

in Table 6. 
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Fig. 9 Nonlinear SDOF oscillator  

 

The MSE value from the proposed method is less than 10% (1.68×10-14 vs 1.94×10-13) and Ncall 

is less than two-thirds of Ling et al [14] (198 vs 324).  When using the same simulation sample size 

104, the proposed method has a smaller MSE than Ling et al [14] (8.57×10-14 vs 1.94×10-13) using less 

than 40% of Ncall (123 vs 324).  Compared to SS [5], the proposed method only uses 0.07% Ncall  (198 

vs 291,293) with 10% higher MSE (1.68×10-14 vs 1.51×10-14), which partially results from the 

regression prediction error of the Kriging model.  Same as the previous examples, the AK-MCS [8] 

and AK-SS [11] have limited capabilities to apply on this example.  

If N starts with 103 for the proposed method, the MSE increases more than 40% (2.39×10-14 vs 

1.68×10-14) with mean Ncall decreased by 3% (193 vs 198), implying a slight decrease in the 

computational effort with a large increase in MSE.  Using 104 is a better choice.   
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Table 5  Statistics of random variables for non-linear oscillator example 

Variable Mean Standard deviation Distribution type 

m 1 0.05 Normal 

c1 1 0.1 Normal 

c2 0.1 0.01 Normal 

r 0.85 0.05 Normal 

F1 1 0.2 Normal 

t1 1 0.2 Normal 

 

Table 6  Comparison of results for response of non-linear oscillator example 

Method N 𝐸൫𝑃෠ி൯  E(Ncall) V  B2(%MSE) MSE 

MCS  1.908×10-6 108 2.06×10-14   

SS [5] 52,970 1.925×10-6 291,293 1.48×10-14 2.83×10-16 (1.9) 1.51×10-14 

Ling et al. [14] 104 1.861×10-6 324 1.92×10-13 2.18×10-15 (1.1) 1.94×10-13 

Proposed 

 

104 1.885×10-6 123 8.52×10-14 5.22×10-16 (0.6) 8.57×10-14 

52,970 1.927×10-6 198 1.64×10-14 3.74×10-16 (2.2) 1.68×10-14 

 

Fig. 10 shows the box plot of PF predicted by the different methods. The proposed method 

has similar variability with SS [5] but without outliers, whereas the method in Ling et al. [14] has 

much larger prediction variability with outliers.  

 

Fig. 10 Box plot of PF for response of non-linear oscillator example 
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5.5 Ten-bar truss 

Consider a ten-bar truss structure [28] illustrated in Fig. 11.  The cross-sectional areas of 

horizontal, vertical, and diagonal members are A1, A2, and A3 respectively, each with the same 

modulus of elasticity, denoted by E.  The length of each horizontal and vertical member is L.  The 

response variable of interest is the vertical displacement at node 2 (assuming the truss remain elastic) 

shown in Fig. 11, and the performance function is given by [28] 

 
   
    

3 2 2 3 2 2
1 2 3 3 1 2

2 2
1 3 1 2 3 1 1 2 3 3 1 2

4 2 24 7 26
0.076

4 20 76 10 2 25 29T

A A A A A ABPL
G

A A ED A A A A A A A A A A

        
     

  (22) 

where 𝐷் ൌ 4𝐴ଶ
ଶሺ8𝐴ଵ

ଶ ൅ 𝐴ଷ
ଶሻ ൅ 4√2𝐴ଵ𝐴ଶ𝐴ଷሺ3𝐴ଵ ൅ 4𝐴ଶሻ ൅ 𝐴ଵ𝐴ଷ

ଶሺ𝐴ଵ ൅ 6𝐴ଶሻ.  It is assumed that A1, 

A2, A3, B and E are independent random variables, in which B accounts for model uncertainty, the 

uncertainties due to manufacturing tolerances are modelled in A1, A2, and A3, and the uncertainty in 

material property modelled in E.  The distributions of the random variables are provided in Table 7.  

The static load P = 2.5×105 N and the length L = 9 m are assumed to be deterministic.  

 

 

Fig. 11 Ten-bar truss structure  
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Table 7  Distributions of random variables for ten-bar truss example 

Variable Mean c.o.v. Distribution type 

A1 1×10-2 m2 0.05 Normal 

A2 1.5×10-3 m2 0.05 Normal 

A3 6×10-3 m2 0.05 Normal 

B  1.0 0.1 Normal 

E 6.9×104 MPa 0.05 Lognormal 

 

The results are compared in Table 8 and Fig. 12.  The MSE value from the proposed method is 

less than 10% (5.29×10-14 vs 5.59×10-13) and Ncall is less than 80% of Ling et al [14] (126 vs 160).  

When using the same simulation sample size 104, the proposed method has MSE of 2.59×10-13 which 

is 46% of 5.59×10-13 from the method of Ling et al [14] while using smaller Ncall (74 vs 160).  

Compared to SS [5], the proposed method only uses 0.05% in terms of Ncall  (126 vs 289,377) with 

30% higher MSE (5.29×10-14 vs 4.09×10-14), which is partially due to the regression from the Kriging 

model.  The box plot in Fig. 12 shows the proposed method and SS [5] have similar prediction 

variability, while the method in Ling et al [14] has larger variability with outliers.  The AK-MCS [8] 

and AK-SS [11] have limited capabilities to apply on this example as the target failure probability is 

small.  

If N starts with 103 for the proposed method, the MSE is increased by more than 50% 

(8.09×10-14 vs 5.29×10-14) with one less mean Ncall (125 vs 126), implying 104 is a better choice as an 

initial simulation sample size.  With regards to the threshold for the stopping criterion in Eq. (17), 

decreasing the threshold from 0.1 to 0.05 renders 6% more Ncall (134 vs 126), and 30% less MSE 

(3.59×10-14 vs 5.29×10-14); on the other hand, increasing the threshold from 0.1 to 0.2 renders 2% less 

mean Ncall (123 vs 126) and ~2.2 times MSE (1.19×10-13 vs 5.29×10-14).  For this example, 0.2 is not 

appropriate, and whether to use a threshold smaller than 0.1 is a matter of choice.   
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Table 8  Comparison of results for ten-bar truss example 

Method N 𝐸൫𝑃෠ி൯  E(Ncall) V  B2(%MSE) MSE 

MCS  2.767×10-6 108 2.25×10-14   

SS [5] 52,650 2.762×10-6 289,377 4.09×10-14 2.24×10-17 (0.1) 4.09×10-14 

Ling et al. [14] 104 2.633×10-6 160 5.41×10-13 1.80×10-14 (3.2) 5.59×10-13 

Proposed 

 

104 2.779×10-6 74 2.59×10-13 1.62×10-16 (0.1) 2.59×10-13 

52,650 2.756×10-6 126 5.28×10-14 1.11×10-16 (0.2) 5.29×10-14 

 

 

Fig. 12  Box plot of PF for ten-bar truss example 

 

5.6 High-dimensional problem 

This example illustrates some issues that may be encountered with high-dimensional problems. 

The performance function of a problem with 50 dimensions modified from [11] is used, given by 

     3
1 2 1 2

1

, , ..., 3
d

d

n

n d d i
i

G n n      


      (23) 

where nd  = 50 and the nd random variables each follows a lognormal distribution with mean value 1 

and standard deviation 𝜎 = 0.2.   The last two terms make the original performance function in [11] 

nonlinear.  A linear regression model is used in the Kriging model and the initial training size n0 = 62 

is used (see section 4.3).   
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The results are compared in Table 9 and Fig. 13.  The MSE value from the proposed method is 

less than 15% of the method of Ling et al. [14] (8.57×10-13 vs 5.90×10-12) and Ncall is around 40% of 

Ling et al [14] (138 vs 334).  When using the same simulation sample size 104, the proposed method 

has MSE that is less than 60% of Ling et al [14] (8.57×10-13 vs 5.90×10-12) using around 40% Ncall 

(138 vs 334).  Compared to SS [5], the proposed method only uses 0.07% Ncall  (138 vs 205,114) with 

around 30% higher MSE (8.57×10-13 vs 6.51×10-13), which partially results from the regression 

prediction error of the Kriging model. For AK-MCS [8] and AK-SS [11], even though the target 

failure probability is higher than the previous examples, but with a much higher dimension, the 

training of the Kriging model fails without a new training point being selected.  The box plot in Fig. 

13 shows the proposed method and SS [5] have similar prediction variability, whereas the method in 

Ling et al. [14] has much larger prediction variability.  

 

Table 9  Comparison of results for high dimensional problem example 

Method N 𝐸൫𝑃෠ி൯  E(Ncall) V  B2(%MSE) MSE 

MCS  1.251×10-5 108 1.37×10-13   

SS [5] 44,590 1.245×10-5 205,114 6.47×10-13 3.46×10-15 (0.5) 6.51×10-13 

Ling et al. [14] 104 1.293×10-5 334 5.72×10-12 1.75×10-13 (3.0) 5.90×10-12 

Proposed 

 

104 1.284×10-5 95 3.33×10-12 1.12×10-13 (3.3) 3.44×10-12 

44,590 1.250×10-5 138 8.57×10-13 1.60×10-17 (0.0) 8.57×10-13 

 

 

 

Fig. 13  Box plot of PF for high-dimensional problem 
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5.7 Dynamic analysis of an offshore drilling riser system  

The reliability of an offshore drilling riser system subjected to environmental wave loads is 

investigated, where time domain dynamic analyses are performed using the finite element software 

OrcaFlex [29].  Fig. 14 shows the model of the drilling riser system. The water depth considered is 

1200m and the casing is 1000m deep.  The top end of the riser is connected to the drillship, while the 

bottom end is fixed at the seabed.  The main uncertainties arise from the wave height H and wave 

period T of the incoming waves described by Dean’s stream regular wave function [29].  H is 

modelled by the Rayleigh distribution (with scale parameter 1.8 m), and T follows the three-parameter 

Weibull distribution (with location parameter 4 s, scale parameter 25 s, and shape parameter 6 s.).  

The mean of T is 27.193 s, the duration of the simulation time history for each run is set as 3 time of 

T. 

The first-order vessel motions are simulated using the Response Amplitude Operator (RAO) 

while the waves loads are simulated using OrcaFlex.  One potential failure mechanism of a drilling 

riser system is at the upper flex joint.  Failure is defined by the exceedance of the allowable limit of 

the absolute maximum upper flex joint angle |𝜀୫ୟ୶|.  The LSF is given by 

   max, 2.52G H T     (24) 
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Fig. 14  Drilling riser modelled in OrcaFlex 

One key issue is the excessive computational time taken to evaluate Eq. (24) as it requires the 

extraction of extreme values from nonlinear time domain analyses.  One single MCS run takes ~2 

weeks with parallel computing using 24 threads.  As such, only a single run with a sample size of 106 

is used to estimate PF, and the prediction variance 1.37×10-10 is approximated based on Eq. (3).   The 

mean time for each run using the proposed method is ~4 h (much less than ~2 weeks).  The initial 

training size for the proposed method is 14 (section 4.3 discusses this choice).  The method of Ling et 

al. [14] is compared, while SS [5] is not run 100 times for comparison due to its large number of 

performance function evaluations required.  From one of the 100 simulations, the last iteration of the 

proposed method is plotted in Fig. 15.  The absolute maximum upper flex joint angle is governed by 

the surge motion of the vessel, where the maximum surge resonant response occurs when the wave 

period T is around 15s.  It could be seen that the training points are spread across the whole domain 

while more points are close to the limit state function.    
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(a)                                                                                (b) 

 
(c)                                                                                (d) 

 
Fig. 15 Results of subset simulation levels for N = 40,000 (legend as in Fig. 2, θ1 is H and θ2 is T) 

 

The results are compared in Table 10.  The MSE value from the proposed method is less than 

20% of the method of Ling et al. [14] (1.02×10-10 vs 4.96×10-10) and Ncall is around 55% of Ling et al 

[14] (356 vs 647).  When using the same simulation sample size 104, the proposed method has ~2.5 

times MSE than Ling et al [14] (1.24×10-9 vs 4.96×10-10) using around 30% Ncall (356 vs 647).   

Even with a large initial simulation sample size N = 107 for AK-MCS [8] with learning function 

U, the stopping criterion is met (min(U(Θ)) = 5.88) with no new training point being selected, and 

when the enriched simulation sample size reaches 4×107, the Kriging model training fails.  AK-SS 

[11] has the same limitation.  The results from AK-MCS [8] with learning function EFF (with initial 

N = 106) are listed in Table 10, and it has the lowest number Ncall with the smallest MSE.  It shows its 
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better efficiency over other methods for this relatively high failure probability problem (PF > 10-4) as 

only a global Kriging model is trained instead of multiple Kriging models on different simulation 

levels.  But it has limitations on low failure probability problems as are discussed in previous 

examples.     

 

Table 10  Results for offshore drilling riser example 

Method N 𝑃෡𝐹/𝐸ሺ𝑃෡𝐹ሻ  E(Ncall) V  B2(%MSE) MSE 

MCS  1.370×10-4 106 1.37×10-10*   

AK-MCS [8] 3.3×106 1.346×10-4 79 1.70×10-11 5.94×10-12 (26) 2.29×10-11 

Ling et al. 

[14] 

104 1.305×10-4 647 4.54×10-10 4.19×10-11 (8.5) 4.96×10-10 

Proposed 

 

104 1.236×10-4 205 1.06×10-9 1.79×10-10 (14) 1.24×10-9 

3.9×104 1.345×10-4 356 9.58×10-11 6.47×10-12 (6.3) 1.02×10-10 

*Calculated based on Eq. (3). 

 

6. Conclusions 

This paper presents an improved method coupling SS with an active learning Kriging model for 

low failure probability prediction.  An active learning technique with new learning and stopping 

criteria to select training points based on the prediction uncertainty associated with each point is 

employed to efficiently update the Kriging model for approximating the performance function at each 

simulation level.  The Kriging model facilitates the estimation the intermediate threshold as well as 

the conditional failure probability associated with the target threshold to be determined with low 

prediction error and computational cost.  This large sample size (N) is estimated based on a specified 

coefficient of variation of the predicted failure probability, whereas the number of costly performance 

function evaluations (Ncall), is determined by the proposed active learning technique.  The training 

points at a simulation level are passed to the subsequent level without no increase in the computation 

cost.  
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The proposed method, the method of Ling et al. [14] and the SS [5] are compared in terms of 

efficiency (number of expensive computation calls, Ncall) and prediction error (MSE).  For low failure 

probability prediction with AK-MCS [8] and AK-SS [11], a large simulation sample size is required, 

which makes the Kriging model training computationally expensive or even infeasible; and the active 

learning procedures do not guarantee a new training point is selected, which could lead to the failure 

of the algorithms. The limitations are demonstrated in the series system with four branches example 

(see section 5.2) and discussed in the other examples, justifying the use of different Kriging models at 

different simulation levels with a new active learning technique in the proposed method.  It is shown 

that the original SS method produced the lowest MSE but with much higher Ncall, and the proposed 

method requires lower Ncall and has lower MSE than that of Ling et al. [14].  For the proposed method, 

the effect of simulation sample size N and the prediction error introduced by the Kriging model are 

also discussed.  Using an initial simulation sample size N of 103 has more than 40% higher MSE than 

104 (as is discussed in section 5.4 and 5.5) with similar Ncall, which shows 104 is a better choice as N.  

With the use of active learning technique, the initial training set need not be large as more points will 

be added subsequently.  The active learning threshold of 0.1 seems appropriate when compared with 

results from thresholds of 0.01 and 0.2 as demonstrated in the ten-bar truss example (see section 5.5).   

The proposed method hinges on the quality of the surrogate model that can be derived from 

Kriging and the number of training points recommended by the active learning technique.  In section 

5.6, the proposed method is shown to work for a problem with dimensions of 50.  Although the issue 

of high dimensionality in the original SS method has already been resolved to some extent by 

researchers, the capability of the Kriging model to approximate high dimensional performance 

function (such as a SDOF linear oscillator subjected to white noise excitation with thousands of 

random variables [5]) without using a sizeable training set remains a challenge and needs further 

research.  Another limitation relates to an interest in getting the whole CDF curve covering the entire 

domain based on a single run of the proposed method, where the number of thresholds used is small 

and hence may not have adequate points to approximate the CDF.  The first intermediate threshold 

corresponds to a probability of 0.1, with the next one with a probability of 0.01, and so on.  Hence, the 
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tail of the CDF near the failure domain may be approximated fairly well but not the entire CDF.   To 

get the CDF from a single run, other reliability methods (such as density estimation based methods) 

should be adopted.  
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Figure Captions 

Fig. 1 Flow chart of proposed method 

Fig. 2 Results of subset simulation levels for with N = 104 (yellow asterisk ‘*’: simulation sample; 

green square: existing training set; magenta cross ‘x’: new training points; red solid line: 

performance function with yi value; blue dashed line: Kriging model with yi value). 

Fig. 3 Results of subset simulation levels for N = 60,000 (legend as in Fig. 2) 

Fig. 4 Box plot of PF for series system with four branches example 

Fig. 5    AK-MCS for series system with four branches example (a) m = 4.8, n = 10, (b) m = 3, n = 7. 

Fig. 6 Performance function and surface with threshold of 15.722 for modified Rastrigin function 

example (indicated as +) 

Fig. 7 Different simulation levels at last iteration for modified Rastrigin function example (legend as 

in Fig. 2) 

Fig. 8 Box plot of PF for modified Rastrigin function example 

Fig. 9 Nonlinear SDOF oscillator  

Fig. 10 Box plot of PF for response of non-linear oscillator example 

Fig. 11 Ten-bar truss structure  

Fig. 12  Box plot of PF for ten-bar truss example 

Fig. 13  Box plot of PF for high-dimensional problem 

Fig. 14  Drilling riser modelled in OrcaFlex  

Fig. 15  Results of subset simulation levels for N = 40,000 (legend as in Fig. 2, θ1 is H and θ2 is T) 

 

 

 

 

 

 



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

46 

Table Captions 

Table 1    Definition of learning function and stopping criterion for AK-MCS 

Table 2    Results at each simulation level with 2 simulation sample sizes (N) 

Table 3    Comparison of results for series system with four branches example 

Table 4    Comparison of results for modified Rastrigin function example 

Table 5    Statistics of random variables for non-linear oscillator example 

Table 6    Comparison of results for response of non-linear oscillator example 

Table 7    Distributions of random variables for ten-bar truss example 

Table 8    Comparison of results for ten-bar truss example 

Table 9    Comparison of results for high dimensional problem example 

Table 10  Results for offshore drilling riser example 

 

 

 

 

 

 

 


	Efficient subset simulation with active learning Kriging model for low failure probability prediction

