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Summary (English)

Nearly 20 million people around the world were diagnosed with cancer in 2020
causing almost 10 million lives to be lost. Female breast cancer has surpassed
lung cancer as the most frequent type with 2.3 million women diagnosed with
breast cancer every year. The total global cancer burden is expected to rise
by 47% from 2020 to be 28.4 million cases in 2040. The machine learning
community has an obligation to use the power of deep neural networks to look
for novel and sustainable solutions that make a true impact on the field of
pathology - the rock bed of cancer research and diagnostics. Currently, the leaps
in development are often confined to the proof-of-concept stage, never reaching
the end-users. The main challenges are related to both complex diagnostic
regimes, lack of standardization, and the cost of obtaining training data. These
aspects make it difficult to build algorithms that generalize into the clinical
domain.

The goal of this thesis is to investigate some of the challenges of bringing algo-
rithms into real-world settings in pathology. By studying realistic shifts in data
distributions, we show that deep neural networks can generalize to and pro-
vide reliable uncertainty estimates within the cancer indication it was trained
on. On the contrary, they fail to report rare abnormalities, and other systems
need to inspect incoming data for signs of significant changes in input distri-
butions. Moreover, we demonstrate that it is possible to create an automatic
computational approach to quantify the tumor infiltrating lymphocytes (TILs)
that could help in standardizing the prognostic assessment. In turn, this can
support clinicians in treatment decisions to provide better patient outcomes.
Meanwhile, we also investigate a more objective and scalable method to create
training labels. Finally, we assess some of the remaining challenges of using
machine learning, and how these can be overcome with further research.
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Summary (Danish)

Omtrent 20 millioner mennesker blev i 2020 diagnosticeret med cancer på ver-
densplan, hvilket resulterede i tab af næsten 10 millioner menneskeliv. Brystcan-
cer blandt kvinder har overgået lungecancer som den hyppigste cancerform med
2,3 mio. diagnosticerede kvinder årligt. Den globale cancerbyrde forventes at
stige med 47% fra år 2020 til 28,4 millioner cases i 2040. Machine learning feltet
er forpligtet til at anvende mulighederne ved dybe neurale netværk til at afsøge
nye og vedvarende løsninger, som har en reel indvirkning på patologifeltet –
fundamentet for cancerforskning og -diagnostik. For nuværende, er udviklingen
ofte begrænset til prototyper, som aldrig når slutbrugeren. De største udfordrin-
ger er relaterede til komplekse diagnostiske regimer, manglende standardisering
samt omkostninger forbundet med indsamling af træningsdata. Disse aspekter
vanskeliggør udviklingen af algoritmer, der kan generalisere tilstrækkelig med
henblik på klinisk anvendelse.

Formålet med denne afhandling er at undersøge nogle af de udfordringer, der
ligger i at overføre algoritmer til virkelighedens patologi-verden. Ved at under-
søge realistiske forskydninger i datafordelingen, viser vi, at dybe neurale net-
værk kan generalisere og bidrage med pålidelige usikkerhedsestimater inden for
den cancerform, de er trænet på. Derimod er de ikke i stand til at rapportere
sjældne abnormiteter, hvorfor andre systemer må inspicere tegn på signifikante
ændringer på fordelingen af indkomne data. Vi demonstrerer herudover, at det
er muligt at skabe en fuldt automatisk computerbaseret tilgang til kvantifice-
ring af tumorinfiltrerende lymfocytter, som kan bidrage til en standardisering
af prognostiske vurderinger. Dette kan støtte klinikerne til at identificere den
mest hensigtsmæssige behandlingsstrategi for den enkelte patient. På samme
tid undersøger vi en mere objektiv og skalerbar metode til at skabe træningsek-
sempler. Slutteligt, afsøger vi nogle af de resterende udfordringer i anvendelsen
af machine learning, og hvordan disse kan overkommes ved hjælp af yderligere
forskning.
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Preface
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Chapter 1

Introduction

Pathology is the cornerstone of biomedical research and clinical cancer diagnos-
tics. With any suspicion of abnormal changes in human tissues, e.g. a feeling of
a lump in a breast or a nodule on a lung x-ray, a tissue biopsy is always acquired
to examine the cells and tissue structures microscopically before making a fi-
nal diagnosis. Such diagnostic discipline relies heavily on the expert training of
specialized doctors (pathologists) to recognize patterns, and interpret patterns
in the wider context of each patient. Even though it is a necessary prerequisite
for any reliable treatment of diseases such as cancer and is, by far, the least
expensive diagnostic procedure, reproducibility among pathologists is not opti-
mal. Meanwhile, there is an increasing shortage of pathologists, their workload
is worsening as a result of larger numbers of cases, and the requirements are
increasing for more extensive diagnoses to identify the optimal treatment for
patients in the age of precision medicine.

Machine learning-based algorithms have early on been destined (and promised)
to change the medical practice of pathology. With the last decade’s recent
progress in the digitization of data acquisition, image-based learning algorithms,
and computing infrastructure, the realization of this impact is gradually hap-
pening - also in areas that were previously thought to be exclusive to medically
trained human experts. However, many applications still never leave the aca-
demic prototype stage or proof-of-concept product stage, and therefore do not
deliver value to the pathologists, the patients, or the healthcare system as a
whole. Whereas many technical challenges have been overcome in a grand chal-
lenge setting with a fixed training and testing set, several real-world hurdles still
have to be overcome on the road towards clinical usefulness.
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The generalizability of algorithms is still of the biggest challenges in pathology,
mainly due to the lack of standardization causing a high degree of variabil-
ity present in data. This makes it inherently difficult to create large enough
datasets that encapsulate all important characteristics needed to make them
representative of the data encountered in clinical practice. There have been
many proposed solutions to solve this ranging from removing variability at test
time with normalization to introducing more variability at training time with
data augmentation [1]. These methods definitely help to increase generalization
but do not take into account the high variability of tissue, and especially the
endless possible phenotypical morphology of cancer cells. Therefore, they do
not replace the benefits of incorporating the natural data variability of large
multi-institutional datasets.

Assume now, no matter the impracticability, that a high enough number of
laboratories are included in a dataset that should be representative of real-
world settings. First, how do we use the data in such a way that we create
a computational algorithm that brings clinical utility? In the dawning era of
personalized medicine, advanced biomarkers have become critical gatekeepers
to the use of new personalized prognostics and treatment options. Naturally,
this can result in complex and ambiguous scoring guidelines that restrict future
biomarker candidates to progress into the routine clinical management of cancer
patients. Therefore, addressing the increased complexity and ambiguousness in
clinical assessments of predictive biomarkers is a critical component to ensure
reliable reporting. Moreover, how do we obtain the training data needed to
deliver such an algorithm? Especially in pathology, where pathologists have
limited time, and when do they do, they suffer from reproducibility issues on
certain labeling tasks. Collecting training labels also remains one of the main
barriers of scaling of algorithms, where especially label consistency (removing
noisy data) is the most important aspect to get right in an increasing trend of
data-centric machine learning development. Imagine next, that we have found a
way to solve a valuable task and labeled all the data in such a way that we can
develop and deploy the algorithm. How do we know that we have included all
the variability representative of the type of data that is encountered in clinical
practice? This brings us to the final aspect; can we possibly know that? No
matter how much data, we include into the development dataset, there will
always be situations where there are inputs not seen before or there is not
necessarily a definitive answer. When a pathologist in unsure on a cases, they
can ask of a second opinion or further investigate the case with more advanced
tests. However, in these situations, we want to know how a deployed model
behaves; does it fail silently and provide false information to the pathologists or
can it let us know when there is something that it doesn’t know? These aspects
lead to the aim and objectives of this thesis.
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1.1 Aim & Objectives

The primary aim of this Ph.D. project is to investigate some of the unknowns
and challenges of bringing algorithms into real-world settings in pathology as
mentioned above. The focus has therefore been on 3 different aspects listed
below:

• Objective 1: Investigate what happens under deployment settings where
unknown changes to the data distribution might occur unknowingly, and
do the current deep neural network models know what they do not know?
(related to the paper A)

• Objective 2: Investigate what it takes to translate an emerging biomarker
into a fully automated computational-derived biomarker? (related to pa-
per B and C)

• Objective 3: Investigate ways to create better training data with less effort
for pathologists (related to paper B)

1.2 Structure of thesis

We expect the reader to read the entire thesis including our research papers
appended in Appendix A, B and C which we consider our main work of this
thesis. Hence, the chapters are meant to set up these contributions and are not
a reformatting of our papers. The thesis is organized as follows:

Chapter 2 sets the scene of the thesis by providing background knowledge on
breast cancer pathology and diagnosis as its the main type of cancer-related to
our research, as well as introducing computational pathology and deep neural
networks.

Chapter 3 introduces the underlying methods of uncertainty quantification,
and how this is influenced by certain aspects of realistic changes in data that
can occur in a day-to-day pathology laboratory. It lays the foundation of our
work on uncertainty quantification and dataset shifts (c.f. Appendix A).

Chapter 4 introduces a pathology guideline for quantifying how immune cells
infiltrate a certain subtype of breast cancer and presents the technical meth-
ods used to develop and evaluate a fully automated algorithm that adheres to
such guidelines. In addition, the chapter summarizes the key contributions and
findings of Appendix B and Appendix C.



4 Introduction

Chapter 5 summarizes and discusses the implications of the work in detail. In
addition, the chapter outlines the opportunities for future research in the area.

Chapter 6 draws the final conclusions of the thesis.



Chapter 2

Background

In this chapter, we provide general background knowledge of breast cancer
pathology and computational pathology to set the Ph.D. project into context.
We also introduce deep neural networks to familiarize the reader with notations
that are used in later chapters.

2.1 Breast cancer pathology

Breast cancer is the most prevalent cancer worldwide with more than 2.3 million
women receiving a diagnosis and 685.000 deaths in 2020 [2] and is the leading
cause of death from any type of cancer among women age 20-39 [3]. It origi-
nates in the epithelial cells of the ducts (85%) or lobules (15%) in the glands of
the breast [4]. Its progression starts from normal epithelial cells evolving into
malignant invasive carcinoma via a pre-invasive in-situ stage. In-situ refers to
lesions, where the cancerous cells are kept within the ducts (ductal carcinoma
in situ (DCIS)) or lobules (lobular carcinoma in situ (LCIS)) [5], see Figure 2.1.
While the clinical and pathological importance of DCIS/LCIS lesion is still an
open research question, the current practice defines a lesion as malignant when
it progresses and invades the surrounding breast tissue. The survival chances
are generally high as the treatment options can be highly effective, mainly due
to advances since the 1980s in the earlier diagnosis through screening programs
and better profiling of breast cancer subtypes that allows for more targeting
treatments [4].
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Invasive carcinomaDuctal carcinoma in situNormal duct

Figure 2.1: Progression of breast cancer stages from normal epithelium to in-
vasive carcinoma where ductal carcinoma in situ and invasive carcinoma are
considered abnormal ducts. Here stained with hematoxylin and eosin (H&E).
Top pane illustration graphics from [5]

2.1.1 Current diagnostic paradigm

Currently, the diagnosis is based on thorough examinations of cells or tissue
sampled by a core biopsy or fine-needle aspiration. Simplified, there are three
high-level diagnostic aspects relevant for this thesis; the determination of (i) the
pathologic stage, (ii) histologic grade, and (iii) intrinsic subtype of cancer. The
goal is to obtain data that help a multi-disciplinary team to give the patient a
prognosis and provide the best treatment options possible.

Pathologic stage uses information about the primary tumor (T), involvements
of lymph node metastases (N), and distant metastases (M) to provide a score
of the stage. The pathological T-score (pT) is based on the size of the tumor,
and the localization of the cancer cells (skin or chest wall). The pN-stage is
determined by the number and localization of lymph nodes classified as positive
for metastasized cancer cells and the size of metastases. The pM-stage is a binary
score based on the confirmed presence of metastases in a distant localization.
The TNM system is an internationally used scoring guideline where a higher
score means more advanced disease and worse prognosis [5].

Histologic stage is the pathologist’s assessment of tubule/gland formation,
nuclear pleomorphism, and mitotic count. These features capture how similar
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the cancer cells organize, look, and proliferate compared to normal cells. Higher
grade tumors tend to grow and metastasize more aggressively [5].

Intrinsic subtypes is a more novel classification of breast cancer than only
histological appearances and other clinical parameters [6]. Originally, gene ex-
pression was used to categorize breast cancers as either luminal A, luminal B,
HER2-enriched, or basal-like. The subtyping facilitates both prognostic and
predictive information for treatment response, i.e. does a patient respond to
a certain treatment, e.g., Herceptin [7]. Today, cheaper and more accessible
immunohistochemical (IHC) stains1 are used as surrogate biomarkers for sub-
typing; two hormone receptors, estrogen (ER) and progesterone (PR), human
epidermal growth factor receptor 2 (HER2), and a proliferation marker (Ki67).
By assessing the biomarkers, breast cancer expressing ER or PR are hormone-
positive (HR+) while HER2 expressing tumors are simply called HER2+. If
cancer does not express any of these biomarkers, they are classified as triple-
negative breast cancers (TNBC). Ki67 is an alternative to mitotic counting in
histologic grading. See Figure 2.2 for general classification scheme. Not only
are these biomarkers associated with prognosis, but there are special treatment
options for ER+, PR+, and HER2+ cancers [5]. Similar Ki67 is used clinically
to decide which HR+ patients to give chemotherapy [8]. However, around 15%
of all breast cancers are TNBC, for whom there, until recently [9], have not
been any special medications. In general, luminal A is the most frequent sub-
type ( 70%) and also has best prognosis [10]. TNBC ( 15%) and HER2 enriched
( 10%) cancers are considered to be more aggressive with a poorer prognosis
than the other types of breast cancers [10].

There are lots of details and methods left out in this introduction such as the
field of molecular pathology and genetic analysis of cancers, which is not directly
relevant for this thesis. The N-stage and histologic grading are relevant for
Chapter 3, while Chapter 4 looks closer at the prognosis of TNBC. But for
both pathologic and histologic staging and the semi-quantitative assessment of
biomarkers, extensive efforts have been made towards standardization. However,
manual assessment can be subjective and suffer from inter- and intra-observer
variability. For example, pathology review by experts changed the nodal status
in 24% of patients [11]. Besides being subject to these factors, pathologists are
also experiencing an increased workload due to larger numbers of cases, that also
require more extensive diagnoses using highly complex biomarkers to identify
the best treatment options for patients.

1Sometimes referred to as IHC4
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All breast cancers

HR – ( ER- PR-) HR + ( ER+ or PR+)

HER2 -

Triple 
Negative/
Basal like

HER2 + HER2 +

Luminal A

HER2 -

Luminal BHER2-enriched

Ki67 high Ki67 low

Figure 2.2: Intrinsic subtypes of breast cancer and their IHC classification.
Luminal A is the most common subtype, followed by TNBC and Luminal B
with HER2-enriched being the least common subtype. Note that the definition
of Ki67 might be different depending on regional guidelines.

2.1.2 The immune tumor microenvironment

There is an ongoing shift from mainly investigating the tumor as described
above towards focusing on the host in which it exists, often referred to as the
immune tumor microenvironment (TME). Specifically, immunotherapy, a cer-
tain line of new treatments, has changed the understanding of the uniqueness of
each patient’s immune TME. Especially, ways a patient’s immune system can
be unleashed as a novel method to treat cancer. One of the breakthroughs is
the understanding of how some immune cells contribute to the anti-tumor re-
sponse while others promote cancer growth [12]. To a certain extent, this all
happens from the bidirectional influence that immune and cancer cells have on
each other [13]. Therefore, there is evidence that the characterization of the
density, location, and organization of immune cells, the so-called immune land-
scape, can be used as a surrogate to evaluate a patient’s immune response and
tumor immunogenicity [14]. The association between one immune cell type,
lymphocytes, and survival of patients was noticed almost 100-years ago [15],
but then forgotten until the early 1990s [16] where the association between tu-
mor infiltrating lymphocytes (TIL) and outcome in breast cancer was reported.
Since then, many studies have studied the prognostic and predictive value of
TIL in different breast cancer subtypes, but it was only recently that the clini-
cal validity for early-stage TNBC became well-established through clinical trials
[17, 18, 19]. The evaluation of TILs was recommended in the 2019 St. Gallen
International Breast Cancer Conference for routine diagnostics of TNBC [20],
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and in Denmark, the evaluation of TILs is now incorporated in national guide-
lines as an optional item for TNBC diagnostics. This biomarker is the topic of
Chapter 4.

We have left out a lot of recent research and details on the topic of the im-
mune TME, but refer the reader to an overview of TILs from the International
Immuno-Oncology Biomarker Working Group on Breast Cancer [14], and Huss
et al. (2021) [13] for a review of the relevance to understand the tumor hetero-
geneity and diagnostic profiling for new therapies. However, there is a hope that
recent breakthroughs in computerized image analysis could potentially address
these aspects of the immune TME.

2.2 Computational precision pathology

In this section, we briefly introduce key concepts and terminology when using
image analysis to analyze tissue sections - often referred to as computational
pathology. First, we give an overview of the data generation process before
introducing the different tasks that computational pathology can be applied to.
Here, we also provide a perspective on the requirements to standardization and
automation are needed to deliver effective results for specific diagnostic tasks.

2.2.1 Understanding the data

The procedure for obtaining the tissue sections for microscopic investigates is
complex with many individual manual and automated steps. First, tissue sec-
tions are prepared by the following steps: (i) sampling the tissue removed from
the body for diagnosis. (ii) fixating it to preserve the state of the tissue. (iii)
embedding the tissue in paraffin. (iv) sectioning the tissue into thin (3-5 µm)
sections, and finally (v) mounted onto glass slides. Until here, each step in-
volves many variables that, if changed or are different between two patients,
might introduce variability in the final data. We will refer to these as preanalyt-
ical variables. After step (v), the tissue is colorless without much information
and the slide needs to be stained and then digitized. We will refer to these two
factors as analytical variables that also suffer from the lack of standardization
and might also introduce variability in the data.

Staining introduce contrast and highlight important features of the other-
wise transparent tissue such as special stains, multiplexed immunofluorescence
(mIF), IHC, and hematoxylin, and eosin (H&E). We will only cover the two later
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here. H&E is the most common staining in pathology used for at least a century
to create contrast between various tissue components [21]. Hematoxylin stains
cell nuclei blue/purple, and eosin stains non-nuclear components in different
shades of pink. H&E staining is non-specific, meaning that it stains most of the
cells similarly and does not target a specific protein. This is the basic principle
behind IHC that utilizes antibody-antigen specificity to selectively stain specific
chemical compounds or molecules e.g., receptor proteins. Most commonly, an
antibody is tagged with an enzyme that catalyzes specific coloring [22], making
it possible to capture the signal of specific cellular components within a cell or
tissue. H&E is considered the golden standard for many diagnostic tasks, while
IHC is used for certain biomarkers (e.g., IHC4) or to investigate the origin of
cancer cells.

Whole slide imaging is the process of creating digitized versions of glass slides
called whole slide images (WSIs), giga-pixel images stored in a pyramidal multi-
resolution file structure, see Figure 2.3. Even though the technology has been
around for 30 years, it is only recently that a minority of hospitals are start-
ing to digitize their glass after recent advances in scanning speed, quality, and
cost. Also, as part of the data generation process, there is a lack of standardiza-
tion. There are efforts towards DICOM [23], but most different manufacturers
still have proprietary WSI formats, where acquisition parameters such as size,
contrast enhancement and gamma adjustment are format specific. Even with
these challenges, there are many advantages of digitization such as remote diag-
nostics during a pandemic. However, it is a requirement before computational
pathology can be applied to assist the pathologists on certain tasks.

2.2.2 Standardization and automation

There are 4 main use cases where image analysis can aid pathologists and pathol-
ogy laboratories:

1. Optimize routine workflow in pathology: Tedious and time-consuming
tasks that require a high level of accuracy such as detection of metastases
in lymph node sections. Here, cases could be triaged by an automatic
detection system so the pathologist can focus on the most important tasks,
and sign-off cases faster.

2. Predict outcome and treatment response: Standardized quantification of
biomarkers that provide value for patient treatment management.

3. Enable scientific insights: Infer new biological insight from images not di-
rectly known to pathologists such as genetic alterations and spatial tumor



2.2 Computational precision pathology 11

Figure 2.3: A typical WSI used for diagnostic reading is scanned at 40x (0.25
µm/pixel) or 20x (0.50 µm/pixel) magnification, generating a giga-pixel image
( 200.000x100.000 pixels) stored in a multi-resolution pyramid structure ensuring
image access e.g., zooming, panning, etc. For comparison, a single WSI includes
the same amount of data as more than 1500 modern smartphones images.

heterogeneity.

4. Improve the quality of preanalytical and analytical variables: Detect,
quantify, and provide feedback of quality issues such as stain proficiency
[24] or artifacts [25].

There are different value-propositions but also requirements for these use-cases,
also from a regulatory perspective [26]. This thesis mainly focuses on the appli-
cations from the first two but also discusses aspects of the other when relevant.
One general consideration is the need to create robust and high throughput al-
gorithms that increase standardization of pathology and integrates seamlessly in
the currently established workflow without introducing more manual work. At
a high level, there have been three different ways of integrating computational
pathology in the workflow:

• Workflow 1: The pathologist should manually draw the regions that should
be analyzed, and then wait for the analysis to complete. Both these aspects
could be time-consuming depending on the complexity of the analysis.
The final accuracy depends on the precision of the manual drawing, hence
limits standardization.

• Workflow 2: Here, the entire slide is pre-analyzed by the algorithm before
the pathologist manually draws the regions, hence decreasing the wait time
of the analysis. However, the manual drawing is still time-consuming and
affects the accuracy similar to workflow 1.
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• Workflow 3: The entire slide is pre-analyzed, where the algorithm both
outlines the regions, replacing the manual drawing step, and analyzes
within those regions. Therefore, the manual time-consuming tasks are
completely removed and there is an increase in standardization as all cases
are analyzed in the same manner. The purpose of these types of algorithms
is that they provide the full analysis results for when the pathologist opens
the case for the first review.

There are differences depending on the use-case, but the general trend is towards
workflow 3 to ensure a higher degree of automation and standardization. The
underlying advancement in technology that enables this trend is deep neural
networks with their ability to learn patterns directly from images. In the next
section, we will introduce the topic of deep neural networks.

2.3 Deep neural networks

In this section, we give a brief introduction to deep neural networks with a special
focus on the notation and variants used in our research. This section is not an
in-depth walk-through of all aspects related to this field. We only introduce
models based on gradient descent optimization algorithms that in a supervised
setting use a set of N training examples of inputs x = {x1, x2, ..., xN} and labels
y = {y1, y2, ..., yN}. We denote the model’s learnable parameters θ. The term
deep in deep neural network refers to structural stacking of layer functions, where
each layer is a linear model h(·) with its own learnable parameters θl combined
with non-linear activation function σ(·). Let z be the final-layer output, then a
deep neural network with L layers can be written as:

z = zθ(x) = hl(hl−1(...h2(h1(x))...) (2.1)

For most classification tasks, we pass the final-layer output a softmax activation
function σy(·) to give the model’s predictions p(y|x, θ)) = σy(z) ∈ [0, 1]K ,

σy(z)i =
ezi∑K
j=1 e

z
j

(2.2)

for K output classes. That is, the deep neural network is a function that maps
an input x through multiple non-linear transformations to an output prediction
ŷ = argmaxy p(y|x, θ).

For different types of input data, there exist variants of this model that take ad-
vantage of the inherent structure of the data. Specifically for images, the main
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variant is a convolutional neural network (CNN) [27], with the key difference
that the layer function is a convolution operation that only summarises local
spatial information. This is enabled through weight sharing to keep the num-
ber of parameters manageable when scaling to high-dimensional images. There
does not necessarily exist an analytical solution to the optimal model parame-
ters θ as the parameter space is too big and non-convex. Therefore, training the
model is done through stepwise optimization. In the research of this thesis, we
have used the ADAM optimizer [28] to train CNNs with different composition
of the number of layers and flow of information between the layers. There are
many different architectures that are suitable for pathology and WSIs, where
classification, detection and segmentation networks are considered a high-level
categorization. Each of these have different variations, especially of the output
layer, that let them model a problem better than the other, while still shar-
ing some fundamental principles in the feature extraction. For more detailed
description on deep neural networks for computational pathology, we refer the
reader to Srinidhi et al. (2021) [29].
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Chapter 3

Uncertainty and dataset
shifts

In this chapter, we focus on aspects and risks that are relevant during a deploy-
ment setting of computational pathology, and how we potentially can mitigate
these with current methods. We will give an introduction to uncertainty in
deep neural networks, and some of the most popular approaches to quantifying
it. Next, we will take a specific application in pathology, lymph node metastasis
detection, and introduce some of the dataset shifts that appear "in-the-wild" in
pathology under different deployment scenarios. Finally, we discuss the impact
our contribution (c.f. Appendix A) has on future directions of these topics.

This chapter cites the first of the contributions of the thesis:

A. Thagaard, J., Hauberg, S., van der Vegt, B., Ebstrup, T., Hansen,
J. D., & Dahl, A. B. (2020). Can you trust predictive uncertainty
under real dataset shifts in digital pathology? In Proceedings of
23rd International Conference on Medical Image Computing and
Computer Assisted Intervention (pp. 824-833)
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3.1 Uncertainty in neural networks

For safety-critical autonomous systems, we desire to have a quantitative mea-
sure of how much the system does not know about the problem. It will allow
us to plan accordingly when we surpass a certain confidence threshold. This is
the goal of uncertainty quantification (UQ), an active field of research because
it is often remarked that neural networks fail to increase their uncertainty when
predicting data far from the training distribution [30]. Whilst in everyday us-
age, uncertainty refers to being unsure, we can model it as the variation of y
when drawn from a predictive distribution p(y|x, θ). Further, we can decom-
pose it into two types for modeling purposes: aleatoric and epistemic [31, 30].
Aleatoric, also called data uncertainty, covers the uncertainty due to classes that
overlap in input space, which originates from the data generation process. For
example, a network trained on MNIST 1 should have aleatoric uncertainty if
asked to classify an input appearing between ‘1’ and ‘7’ [32]. Epistemic refers
to uncertainty about the model or its parameters, usually as a result of not
collecting all possible data. E.g. if the same MNIST network is asked to classify
an image of clothing, it should be uncertain due to a lack of knowledge about
how to handle this type of input [32] because it was not in the data distribu-
tion. Therefore, this type of uncertainty is also sometimes referred to as model
uncertainty.

While the concept of data and model uncertainty is well established from a
theoretical point of view, we need to highlight that there are still no definitive
answers in the literature on how these should be obtained in practice. In this
thesis, we take a pragmatic approach and settle for estimating the predictive
uncertainty as to the sum of the two types of uncertainty. In the next sections,
we cover different popular approaches to obtain predictive uncertainty in deep
neural networks.

3.1.1 Non-Baysian vs. Bayesian approaches

At a very high level, there are Bayesian and non-Bayesian methods, where one
could argue that there are varying degrees of Bayesian as well. We mention the
Bayesian approach here to easier relate the other methods, but it is not a focus
in this thesis or Appendix A as these have not shown results that match other
more heuristic methods on real-world applications, yet.

Bayesian neural networks [33] assume a prior distribution p(θ) over the
network weights θ, and approximate the posterior distribution via the likelihood

1classical ML dataset of handwritten digits
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function p(y|θ). Both coming up with a good prior, and performing inference
to obtain the posterior of large models are fundamentally difficult. Even with
advances in approximate inference [28], it is yet to be seen that the methods
scale to large models in computational pathology.

Monte Carlo Dropout, originally proposed by Gal & Ghahramani (2016) [30],
is a (rough) approximation of variational inference to obtain a distribution over
functions. The basic idea is to take advantage of Dropout [34], an existing neu-
ral network regularization technique, to approximate the predictive uncertainty.
Dropout formulates a simple layer operation, where a Bernoulli variable with a
parameter p is element-wise multiplied with the output of the previous layer,
hence randomly "dropping out" units. When these layers are added to the net-
work during training, we avoid overfitting to the training data noise, i.e. obtain
higher robustness to small perturbations. Now, remember that one forward-
pass through a neural network is a point prediction of the function fitted with
the network. To infer stochasticity into this framework, Gal & Ghahramani
proposed to keep these Dropout layers during inference, and instead of making
one single forward-pass, we make M stochastic forward passes. That is, for an
input x′, we can approximate the predictive mean

Eq(y′|x′,θ) =
1

M

M∑

m=1

qm(y′|x′) (3.1)

with variance as

V arq(y′|x′,θ) = τ−1 +
1

M

M∑

m=1

(qm(y′|x′)− Eq(y′|x′,θ))
2 (3.2)

where τ is a scaling hyperparameter for the model’s precision on the data [30],
typically found with cross-validation.

The method has obvious advantages as it re-purposes a layer already existing in
many neural networks and allows us to use a single model during deployment.
However, its drawbacks include hyperparameter tuning of p, τ , and also the
optimal number and position of dropout layers in the network. All these are
potentially very dataset dependent, and might not let the approach scale to so
large models than originally published on.

Deep Ensembles are also an approximation to obtain the distribution over
functions, yet more explicit and simpler than MC-Dropout. Lakshminarayanan
et al. (2017) [35] popularized ensembles [36] for uncertainty quantification, and
proposed to independently train M networks with the random initialization,
letting each model m output a point prediction such that the predictive mean



18 Uncertainty and dataset shifts

can be approximated as

Eq(y′|x′,θ) =
1

M

M∑

m=1

qm(y′|x′) (3.3)

with variance as

V arq(y′|x′,θ) =
1

M

M∑

m=1

(qm(y′|x′)− Eq(y′|x′,θ))
2 (3.4)

where the final prediction is a simple averaging of M deterministic functions
trained on the same data. Deep ensembles have clear benefits in their sim-
plicity and parallelism opportunities - both from a training and deployment
perspective. There is also empirical evidence that deep ensembles improve both
predictive classification and quality of UQ [35]. The main drawback is the com-
putational requirement for training M -independent models, and the theoretical
understanding of why deep ensembles just trained random initialization work so
well in practice. However, Fort et al. (2020) recently hypothesized it is due to
how the method diversifies the function space within training trajectories [37].
By investigating the loss landscape of neural networks, i.e. the space of weights
that the network navigates during training, they showed that deep ensembles
explore different modes in function space. They also showed that so-called sub-
space sampling methods (e.g. Monte Carlo dropout) remain similar in function
space, which produces an insufficiently diverse set of predictions. This gives
some insights to understanding the dynamics of these methods, but there exist
many different views of this subject.

3.1.2 Other views on uncertainty

A general aspect of many neural networks is the combination of a softmax out-
put and cross-entropy loss for classification. For many papers, and ours included
(Appendix A), softmax output is interpreted as model confidence and used as
a baseline in experiments. The above methods are alternatives to this interpre-
tation as it can have several pitfalls; the networks are generally overconfident
[38], subject to manipulation by adversarial examples [39], and have issues with
handling data outside the training distribution [30]. Nevertheless, it empirically
performs moderately well as an indicator of predictive uncertainty. In brief, a
softmax layer in isolation can learn to output a probability in between 0 and
1 to catch overlapping classes (aleatoric) but fails to decrease its confidence if
queried far from the training data (epistemic) [32]. Whilst, softmax confidence
remains an imperfect measure of uncertainty, recent experiments on standard
benchmark tasks suggested final-layer feature overlap is more responsible for
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failures than softmax extrapolations [32]. In the work of this thesis, we have
also looked at how the curvature of the loss landscape (i.e. smoothness), in
addition to input and feature overlap impacts the quality of UQ.

Mixup was introduced as data augmentations technique [40], and have been em-
pirically shown to improve predictive performance, and robustness to adversarial
noise [40, 41, 42]. First, we recap the definition of Mixup. Consider a training
set of input and output pairs S = {(x1, y1), ..., (xn, yn)} where xi ∈ χ ⊆ Rp and
yi ∈ χ ⊆ Rm drawn from a joint distribution Px,y. During training, two random
inputs (xi, xj) and their corresponding labels (yi, yj) are "mixed" together:

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj (3.5)

where λ ∈ [0, 1] determines the mixing ratio of the linear interpolation. λ is
commonly drawn from a symmetric Beta distribution Beta(α, α) for α > 0 con-
trolling the strength of the input interpolation and the label smoothing. This
means that the method generates new samples by linear interpolation of mul-
tiple samples and their labels. Recently, it has also been shown to introduce
improvement in UQ, where networks trained with Mixup show less overconfi-
dence [43]. The authors suggest that this is a consequence of training with
smooth labels compared to hard labels. However, Zhang et al. (2021) show
that Mixup augmentation is a data-adaptive regularization on the loss function,
which can reduce overfitting and lead to better generalization behaviors than
those of standard training [41].

Other (failed) approaches to UQ were also considered during this thesis. Stud-
ies have shown links between softmax unreliability and adversarial examples
[39], we were inspired to look at methods that combat these vulnerabilities. We
have not focused on adversarial robustness, but in brief, neural networks can
be very sensitive to human imperceptible perturbations that easily flip output
predictions [44], e.g. adversarial examples make an image of a panda be classi-
fied as a gibbon with high confidence. One approach that leads to adversarial
robustness [45] studied a new regularizer that directly minimizes the curvature
of the loss surface. They hypothesized that sharp changes in the geometry of the
classification landscape and decision boundaries contribute to the small changes
in input space leads to catastrophic changes in the output. They showed the ex-
istence of a strong correlation between small curvature and robustness and using
second-order curvature regularization improved adversarial robustness. There-
fore, we hypothesized that the same sharpness would restrain any "slack" on
decision boundary between classes, hence only allowing the neural network to
output high confident predictions. Our experiments (not shown in this thesis)
indicated that such explicit regularization of the loss landscape indeed impacted
UQ. However, enforcing high smoothness also acts as a strong regularization that
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significantly deteriorates the predictive performance - to such a degree that the
performance is no longer relevant for any practical use in pathology.

3.1.3 Evaluation of uncertainty quantification

In this section, we recap different tasks and/or metrics that allow us to quantify
any improvement that the methods contribute. In general, uncertainty is closely
tied to calibration [38], but in this thesis, we are also interested in learning
what it would practically influence or allow us to do when creating pathology
applications. Therefore, we also use tasks, that if solvable by UQ improvements,
would have great applicable benefits in practice.

Uncertainty calibration refers to the problem of predictive probability esti-
mates that are representative of the true correctness likelihood [38]. Intuitively,
if we consider a set of predictions that have average confidence of 60%, does this
mean that we can expect 60% of the predictions to be correct? This is the no-
tion of Expected Calibration Error (ECE) [46], a convenient summary statistic
capturing the difference in expectation between accuracy and confidence. First,
we compute the confidence of each of N observation denoted p(ŷn), and bin
these into H bins. We then calculate the ECE by comparing the content of each
bin to its average accuracy. Let Bh be the set of indices for bin h. We calculate
the bin accuracy

acc(Bh) = |Bh|−1
∑

n∈Bh

δ(ŷn − y∗n) (3.6)

and the bin confidence

conf(Bh) = |Bh|−1
∑

n∈Bh

pn(ŷ) . (3.7)

Finally, we calculate the weighted average of difference between the bins’ accu-
racy and confidence:

ECE =
1

N

H∑

h=1

|Bh| · |acc(Bh)− conf(Bh)| (3.8)

=
1

N

H∑

h=1

∣∣∣∣∣
∑

n∈Bh

pn(y)−
∑

n∈Bh

δ(ŷn − y∗n)
∣∣∣∣∣ (3.9)

where δ(x) = 1 if x = 0 or δ(x) = 0 if x 6= 0, and y∗n is the true label. This metric
allows us the quantify the calibration gap, where perfect calibration (complete
agreement between accuracy and confidence) is zero and increasing ECE is a
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(c) ECE = 1.17

Figure 3.1: Examples of three differently calibrated models from Appendix A.
(a) shows an overconfident model, which leads to higher ECE. (b) shows a less
overconfident model. (c) shows an almost perfectly calibrated model with ECE
close to zero.

measure of higher miscalibration, see Figure 3.1. Together with standard pre-
dictive performance metrics, we could use this metric to quantify the impact of
our experimental setup on calibration.

Misclassification detection involves downstream evaluation of uncertainty
estimation on a specific problem and acts as a proxy task of UQ quality rele-
vant for many real-world applications. As the name alludes to, it is a binary
classification problem of detecting wrong predictions, hence Appendix A uses
conventional metrics for binary classification. As pointed out by Ashukha et al.
(2020), there are several challenges to use this to compare the quality of UQ
between different methods. Every method induces its binary classification prob-
lem as the individual correct and incorrect predictions are model-specific, i.e.
the dataset is not kept constant across methods, hence they solve different clas-
sification problems [47]. Even though it might be an imperfect measure between
methods, we chose to keep it in Appendix A because it still provides valuable
insights into one of the most relevant attributes from an automation perspec-
tive. If the model could pass relevant misclassified examples to a secondary
backup (e.g. manual review) without burden it (e.g. passing all predictions to
secondary), we would improve the safety of the system by avoiding potential
catastrophic failures. At the same time, we also postulate that a system that
has a high performance in misclassification detection would increase trust with
the end-user (e.g. pathology department) when adopting automatic systems.

Out-of-distribution detection is another relevant task for pathology appli-
cations as neural networks can assign high-confidence predictions to inputs that
did not belong to one of the training classes [39]. These examples are termed
out-of-distribution (OOD) inputs. This behavior is not optimal in any high-
stake application such as pathology because rare incidental findings, which are
clinically relevant, may then be missed by an algorithm because they are outside
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the distribution of the training set. For deep learning in general, there has been
a decent amount of research on this topic [48, 49, 50, 51, 41]. But as pointed out
by Winkens et al. (2020) [52], the difficulty level depends on how semantically
close the OOD inputs are to the training classes. They propose to distinguish
between far-OOD (easy) and near-OOD tasks (harder). As with most research
in machine learning, OOD research has been driven by benchmark datasets. UQ
has used mostly far-OOD tasks, e.g. training on MNIST and detecting SVHM2

as OOD inputs. Training on CIFAR103 and detecting novel classes from CI-
FAR1004 as OOD inputs is an example of a near-OOD task. In the research
thesis, we wanted to study a near-OOD case as this is clinically more relevant,
and it is a realistic task considering the dataset shifts that occur in pathology.

3.2 Dataset shifts in pathology

Dataset shifts occur when the input and/or output distributions differ between
what neural network was trained on and what is seen during testing or deploy-
ment. It is a common problem present in most predictive modeling applications
due to many different reasons ranging from pre-analytical errors to uncalibrated
cameras and potential (un)intentional biases in the training data. Because of
the high complexity of pathology, we postulate that dataset shifts are more fre-
quent and diverse than in most other fields and are probably the single most
contributing factor for the lack of generalization. It is mainly due to the natural
biological variance of cellular level data, but also due to the lack of standard-
ization, especially on pre-analytical and analytical variables (see section 2.2.1).

The hope is that well-designed systems will alarm when a significant dataset
shift occurs. However, as previously mentioned, neural networks tend to fail
silently, and unfortunately, in practice, machine learning pipelines rarely in-
spect incoming data for signs of distribution shifts. The uncertainty methods
described in the previous section are all attempts to embed this desired prop-
erty into the UQ of the model itself. For this thesis, we aimed to investigate
relevant dataset shifts in pathology that were as realistic as possible for clinical
applications. Therefore, we used a concrete example application.

2Dataset of house street numbers
3Dataset of 10 different classes such as airplanes, cars, birds, cats, deer, dogs, frogs, horses,

ships, and trucks.
4Similar to CIFAR10 but with 100 distinct classes
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H&ECK IHC stain

Figure 3.2: Example of a lymph node metastasis in a lymph node section. Left
shows it stained with cytokeratin (CK). Right shows the same metastasis in a
H&E stained section.

3.2.1 Lymph node metastases detection

The presence of lymph node metastases is an important prognostic factor for
cancer patients and is integrated into the TNM-diagnostic grading system (sec-
tion 2.1.1). The manual examination process is time-consuming and can lead to
small metastases being missed. It is probably one of the most known problems
within pathology from a machine learning perspective due to the CAMELYON
challenge [53, 54] - an ImageNet-like impact on the field of computational pathol-
ogy. In brief, the aim was to develop systems for the detection of breast cancer
metastases in lymph nodes, and the organizers released one of the largest la-
beled WSI datasets [55]. Since then, multiple research studies [56, 57, 58] have
shown promise and commercially available algorithms have either been clinically
approved as a medical device [59] or are under research-use-only development
[60]. Taking all of this into account, this application was an obvious choice to
study because it allowed us to focus on unknown aspects outside the regular
predictive performance. Moreover, we had a unique change of utilizing public
and private datasets to create a controlled real-world experimental setup.



24 Uncertainty and dataset shifts

3.2.2 In-distribution dataset shifts

We define in-distribution shifts as valid changes in the input distributions that
primarily originate from the data generation process under different settings.
This involves any change in pre-analytical steps such as fixation and sectioning,
e.g. if the sectioning thickness is modified. Other common changes are related
to analytical steps such as staining, especially variability in H&E staining, but
also different scanners impact the appearance of the input data [61]. We decided
to capture some of these in a realistic development setup, where a dataset shift
might happen when going from the training data to the test data of different
origins. For any clinical pathology application, we usually perform internal
and external validation. Internal refers to testing on data originating from
the same hospitals as the training data, and external refers to testing on data
generated on a different hospital. These testing schemes are usually to validate
the generalizability of the predictive performance. External testing allows us to
investigate what happens in a valid product deployment scenario (not to confuse
with prospective clinical validation).

Other changes in the data distribution are inherent to pathology. Cancer his-
tology is a complex classification of tumors based on the type of cells in which
cancer originates (histological type). For simplification, we only focus on the
most common type; malignancies of epithelial tissue called carcinoma. This type
refers to a malignant neoplasm of epithelial origin or cancer of the internal or ex-
ternal lining of the body. Carcinomas account for 80 to 90 percent of all cancer
cases [62]. Carcinomas are divided into two major subtypes: adenocarcinoma
and squamous cell carcinoma, which originates in a gland, and the squamous
epithelium, respectively. Most carcinomas affect organs or glands capable of
secretion, such as the breasts, which produce milk, or the lungs, which secrete
mucus, or colon or prostate or bladder. Because the same cancer subtype can
originate from different organs and metastasize to lymph nodes regardless of ori-
gin, we collected lymph node sections with adenocarcinoma from colon cancer.
Hence, by training a model to recognize adenocarcinoma from breast cancer on
lymph node sections, and testing on adenocarcinoma from colon cancer, we keep
the fundamental biological factors of the input and output distribution fixed,
but we implicitly introduce a small shift in the input distribution.

3.2.3 Out-of-distribution dataset shifts

Similarly, we define out-of-distribution shifts as unexpected changes in the joint
distribution of inputs and outputs making them fundamentally different than
the training distribution. Especially, near-OOD inputs are relevant to study in
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pathology because it is characterized by large amounts of possible anomalies.
Making sure that these do not significantly impact the intended use of a trained
(specialized) model is crucial for successful implementation into practice. Some
rare findings might be clinically relevant to report (e.g. other malignancies),
where others such as scanning artifacts simply need to be ignored.

To study this as realistically as possible, we collected lymph node sections with
squamous cell carcinoma from head and neck cancer. This can be seen as near-
OOD inputs as it is still cancerous cells, however, the histo-morphological char-
acteristics are different than adenocarcinoma, i.e. they do not necessarily look
the same. To make it even more difficult, the subtypes are also graded ranging
from well- to poorly differentiated. The morphology of well-differentiated cancer
cells is more like the normal cells in the tissue they started to grow in, e.g. a
well-differentiated adenocarcinoma will look similar to normal epithelial cells.
Poorly or undifferentiated cancer cells look very morphological different from
their origin normal cells. These cells look immature, undeveloped, or irregu-
lar and are not organized in the same pattern as normal cells [4]. Moderately
differentiated cancer cells look and behave somewhere between well- and undif-
ferentiated cancer cells. When taking these considerations into account, we can
look at the morphology variability between adeno- and squamous cell carcinoma
(SCC) as a spectrum (see Figure 3.3 graphical representation with examples).
This makes our experiments in Appendix A interesting because we mimic a
day-to-day task that a pathologist would and can perform. Concurrently with
our work, Linmans et al. (2020) [63] proposed a similar experiment with diffuse
large B-cell lymphoma, which is a different tumor classification than carcinoma.
This can also be deemed a clinically relevant near-OOD task. They propose a
more computationally efficient version of an ensemble and find similar results to
our findings in Appendix A. In general, many applications in pathology will
have near-OOD inputs, where fine-grained details in cell and tissue patterns
introduce dataset shifts. It only enforces the need to study this phenomenon in
computational pathology.

3.3 Experimental findings (Appendix A)

In this section, we provide a high-level summary of the experimental findings in
Appendix A. All current state-of-the-art methods can generalize in terms of
predictive accuracy from the internal test set to the external dataset with only a
small impact on the calibration of the predictive uncertainty. When introducing
near-OOD inputs, all investigated methods show both decreased performance
and higher overconfidence. For the in-distribution dataset shift, we found a
similar behavior even though the performance decrease was smaller than under
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Spectrum between two carcinoma subtypes
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Figure 3.3: Examples of morphological differences between adenocarcinoma
(blue) and squamous cell carcinoma (SCC) (green). Adenocarcinoma has ten-
dency to grow in glandular structures, whereas SCC have a swirling pattern, but
when both become poorly differentiated, they loose their original characteristics
(middle).

the out-of-distribution shift. Our experiments also showed minimal benefits of
two of the methods intended to improve UQ compared to the baseline method,
and MC-Dropout can potentially hurt the calibration performance on all dataset
shifts. We refer to Appendix A for the full detailed description of our findings.

3.4 Concluding remarks

Our main contribution to the topic of uncertainty and dataset shifts in pathology
is a thorough investigation of several state-of-the-art methods’ ability to quantify
uncertainty while keeping high accuracy. This has only been covered in previous
investigations on popular benchmark datasets of natural images [64, 65]. How-
ever, this is insufficient for pathology evaluation because the appearance and
variation resulting from distributional shifts of histopathology images are very
different from those of natural images. Therefore, we extended our evaluation
to a unique multi-hospital single indication training set and performed an ex-
tensive evaluation on both internal and external test sets and clinically plausible
distributional shifts. We believe that our contribution has shed new lights on
how we can evaluate existing and future UQ methods in a realistic real-world
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pathology setting.

There still remains a lot of recent research not included in this thesis such as
investigating the generative models [66, 28], contrastive learning [67, 52], and
newer architectures [68, 37] in relation to capturing models’ uncertainty and
ability to use this on practical tasks. Similar, an open question is how the
uncertainty component impacts fields like active learning [69], where we aim
to collect more data in unexplored and uncertain regions to lower the manual
annotation burden while improving the predictive performance of the model.
There is still much work to be done to understand how different dataset shifts
in pathology affect a deep neural network, and how we use that information
beneficially, e.g. by mitigating the risks of silent failures. Here, normalization
and augmentation schemes seem to handle in-distribution shifts such as minor
staining and scanning variability in H&E stain. However, one aspect not cov-
ered in this thesis is how to monitor and adjust for adequate staining on IHC
biomarkers, where a normalization might introduce false-positive biological sig-
nals or the expression is not reflecting the true signal due to staining procedures.
All the research in this chapter aims to get the predictive model to also handle
out-of-distribution shifts but other alternative approaches should be explored,
such as upstream monitoring of dataset shifts.
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Chapter 4

Prognosis of cancer by
quantifying the immune

system

In the previous chapter, we introduced and investigated the influence of cer-
tain dataset shifts that can happen when deploying an algorithm for a well-
established pathology application. In this chapter, we take a look at what it
takes to develop an algorithm for a new emerging biomarker, and what pit-
falls and challenges are associated with doing so. There are many biomarker
candidates, but this thesis focused on tumor infiltrating lymphocytes (TILs)
for TNBC patients for several reasons: (i) It is associated with prognostic and
predictive capabilities for TNBC and HER2+ patients. (ii) Its hierarchical
complexity allows us to identify, and document the experience of adopting a
guideline for implementation. (iii) It is a biomarker not yet fully implemented
in the clinic, hence pathologists’ could be more apt to consider it than asking
them to apply an ML tool for a biomarker that they have assessed differently
for decades already. First, we will give an introduction to the requirements of
following a pathology guideline and the variability of data used inAppendix B.
Secondly, we describe some of the deep learning methods developed to comply
with the guideline, and how biomarker quantification is used for survival anal-
ysis of patients. Last, we will discuss some of the challenges and pitfalls (c.f.
Appendix C) associated with ML for this specific biomarker, and what the fu-
ture perspectives of our findings have for TILs and other similar computational
biomarkers.
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This chapter cites the second and third contributions of the thesis:

B. Thagaard, J., Stovgaard, E.S., Vognsen, L.G., Hauberg, S., Dahl,
A., Ebstrup, T., Doré, J., Vincentz, R.E., Jepsen, R.K., Roslind,
A., Kümler, I., Nielsen, D., & Balslev, E. (2021) Automated Quan-
tification of sTIL Density with H&E-Based Digital Image Analysis
Has Prognostic Potential in Triple-Negative Breast Cancers. In
Cancers 13(12):3050.

C. Thagaard, J., Hauberg, S., Dahl, A., Ebstrup, T., Doré, J.,
Roslind, A., Nielsen, D., Balslev, E., Salgado, R., ..., & Stovgaard,
E.S. (2021) Pitfalls in Machine Learning-assessment of stromal tu-
mor infiltrating lymphocytes in breast cancer. To be submitted.

4.1 Pathology guidelines

In this section, we briefly recap the purpose of guidelines, the basics of the
current international guideline on TIL assessment in breast cancer, and how
these can also help in the development of computationally approaches.

Pathology is an inherent complex medical discipline that requires extensive
training of medical practitioners to even specialize in a subarea, e.g. breast
cancer. Guidelines are usually specific to a certain combination of indica-
tion and biomarker and offer guidance on how to interpret the combination
in clinical practice. They are often created by regional or national organiza-
tions (e.g., American Society of Clinical Oncology (ASCO), College of Ameri-
can Pathologists (CAP), European Society for Medical Oncology (ESMO), etc.)
or self-organizing working groups of pathologists (e.g., International Immuno-
Oncology Biomarker Working Group on Breast Cancer (TIL-WG)). Adopting
these evidence-based guidelines help pathologists and other clinicians to make
more informed and standardized decisions about diagnosis and optimal treat-
ment for the patients.

In this thesis, we focus on the guideline proposed by TIL-WG [70] but many of
the general considerations can be applied to other indications. The purpose of
the guideline is to answer the following questions: (i) why are TILs clinically im-
portant and (ii) how to score TILs manually? In section 2.1.2, we summarized
the answer to the first question. Interestingly, the answer to the second is a
step-by-step manual guide - an algorithm - with inclusion and exclusion criteria
for assessing TILs in breast cancer [70]. Briefly, it states to distinguish between
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intratumoral TILs (iTILs) in direct contact with tumor cells, and stromal TILs
(sTILs), which are located in the stromal tissue between islands of tumor cells.
The recommendation is to focus on sTILs, as evaluation of these is more repro-
ducible [19, 71]. sTILs are then assessed as a percentage area coverage of total
stromal tumor area and reported as a continuous variable (see Table 4.1 for
all steps). Even though standardization and training efforts have been shown
to increase the reproducibility of manual scoring [18, 19, 72, 73], there exist
inherent pitfalls that could hinder the implementation into the routine clinical
management of breast cancer [74]. Therefore, there has been an expectation
of the promise and potential of automated image analysis to overcome some of
the limitations of visual TIL assessment (VTA) [75]. The TIL-WG has been
actively working with the ML community and even produced a report on how
computational assessment of TILs could be designed [76]. The recommendation
of this work is that; "computational TIL assessment (CTA) algorithms need to
account for the complexity involved in TIL-scoring procedures, and to closely
follow guidelines for visual assessment where appropriate" [76]. However, all
existing studies on CTA have proposed alternative quantitative metrics (e.g.,
lymphocyte percentage, spatial patterns of lymphocyte distribution) for sTILs
assessment rather than being consistent with the guideline. Also, they all in-
volved some aspect of manual work (e.g. define the tumor region, exclusion of
DCIS), hence still prone to intra- and interobserver variability while not being
suited for workflow 3 implementation (section 2.2.2). These aspects are key to
our contribution in Appendix B.

Because the guidelines closely resembles algorithmic-steps, they serve well as
a recipe to develop computational approaches. It does require some interpre-
tation, e.g. in step 8 (Table 4.1), the definition of a hotspot is not specified
quantitatively. Due to the guideline’s hierarchical structure with both tissue-
and cell-level requirements, it requires some specific design considerations and
methods to recognize some of the tissue and cells classes relevant for TILs in
TNBC, see Figure 4.1 for an overview.

4.2 Different problems require different methods

In this section, we introduce the software platform used in Appendix B and
describe the fundamental methods used to covert the guideline into a computa-
tional algorithm.
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1. TILs should be reported for the stromal compartment (=% stromal TILs).
The denominator used to determine the % stromal TILs is the area of stromal
tissue (i.e. area occupied by mononuclear inflammatory cells over the total
intratumoral stromal area), not the number of stromal cells (i.e. fraction of
total stromal nuclei that represent mononuclear inflammatory cell nuclei).

2. TILs should be evaluated within the borders of the invasive tumor.

3. Exclude TILs outside of the tumor border and around DCIS and normal lob-
ules.

4. Exclude TILs in tumor zones with crush artifacts, necrosis, regressive hyalin-
ization as well as in the previous core biopsy site.

5. All mononuclear cells (including lymphocytes and plasma cells) should be
scored, but polymorphonuclear leukocytes are excluded.

6. One section (4–5 µm, magnification ×200–400) per patient is currently con-
sidered to be sufficient.

7. Full sections are preferred over biopsies whenever possible. Cores can be used
in the pretherapeutic neoadjuvant setting; currently, no validated methodology
has been developed to score TILs after neoadjuvant treatment.

8. A full assessment of average TILs in the tumor area by the pathologist should
be used. Do not focus on hotspots.

9. The working group’s consensus is that TILs may provide more biologically rel-
evant information when scored as a continuous variable since this will allow
more accurate statistical analyses, which can later be categorized around differ-
ent thresholds. However, in daily practice, most pathologists will rarely report
for example 13.5% and will round up to the nearest 5%–10%, in this example
thus 15%. The pathologist should report their scores in as much detail as the
pathologist feels comfortable with.

10. TILs should be assessed as a continuous parameter. The percentage of stromal
TILs is a semiquantitative parameter for this assessment, for example, 80%
stromal TILs means that 80% of the stromal area shows a dense mononuclear
infiltrate. For assessment of percentage values, the dissociated growth pattern
of lymphocytes needs to be taken into account. Lymphocytes typically do not
form solid cellular aggregates; therefore, the designation ‘100% stromal TILs’
would still allow some empty tissue space between the individual lymphocytes.

11. No formal recommendation for a clinically relevant TIL threshold(s) can be
given at this stage. The consensus was that a valid methodology is currently
more important than issues of thresholds for clinical use, which will be deter-
mined once a solid methodology is in place. Lymphocyte predominant breast
cancer can be used as a descriptive term for tumors that contain ‘more lym-
phocytes than tumor cells. However, the thresholds vary between 50% and
60% stromal lymphocytes.

Table 4.1: Recommendations for manual assessing TILs in breast cancer from
Salgado et al., (2014) [70]
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Figure 4.1: Example images of the variability of structures which tissue- and
cell-level model need to comprehend.

4.2.1 Visiopharm AI platform

The Visiopharm AI platform is a general-purpose image analysis platform,
specifically tailored to create and deploy algorithms for pathology images. The
platform uses general concepts that enable us to go from a digital image to
quantitative output results. These steps include [77]:

1. Preprocessing includes aspects such as noise removal, image normaliza-
tion, etc. where the image information is not changed significantly.

2. Feature engineering enhance certain signals in the image, e.g. a blob-
filter enhances the signal for round objects in the image, or image decon-
volution, where the DAB signal in the image is isolated from the hema-
toxylin.

3. Classification assign a certain class to each entity (pixels, objects, or
entire field-of-view), using (learned) rules that go from the input (pre-
processed image or feature image) to the output, e.g. segmentation.

4. Post-processing is a powerful step in any image analysis algorithm,
where the output of the classification can be further processed, and object-
level heuristic and objective rules can easily be incorporated into the anal-
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ysis pipeline, e.g. removing small nuclei below a certain area or other
histology relevant rules that apply to the problem at hand.

5. Output calculation is usually the last step of any image analysis al-
gorithm as until now we have not quantified the objects from the clas-
sification and post-processing steps. Most importantly, these are usually
human interpretable formulas e.g. counting of TILs, measuring the area
of stroma area, or the combination to obtain the density of TILs in the
stroma as a number per mm2.

These concepts are written here as high-level as possible as most image analysis
algorithms can be described by either one or more combinations of these. Most
importantly, we have in this thesis used deep neural networks to combine the
feature engineering and classification concepts, replacing most of the difficult
and tedious work of translating rules into the computer while still being com-
plemented by the rest of the concepts. However, as Oscar Wilde writes, “the
truth is rarely pure and never simple” (“The Importance of Being Earnest”, 1895)
because most real-life applications of image analysis in pathology exist across
several conceptual levels. In practical terms that means that we have used both
deep neural networks alongside more classical rule-based approaches to arrive
at the most efficient and robust algorithm (c.f. Appendix B; Appendix C).

4.2.2 Differences in model architectures are important for
histology

In Appendix B, we proposed to use two different deep neural network archi-
tectures to create a CTA algorithm. In this section, we recap the differences
of these, for which problems they are well suited for, and why. We could have
chosen to just use one type but initial experiments showed that it was benefi-
cial to use different models. The main reason for that is how well the network
architecture suited the tasks they should learn to solve.

U-Net is a popular CNN architecture in medical image analysis, originally pro-
posed to segment cells in electron microscopic images [78]. The core structure
is a contracting (encoder) and upsampling (decoder) neural network. The con-
tracting pathway learns to extract and compress a feature representation of the
image, whereas the upsampling, in a step-wise manner, learns to propagate low-
level features in the bottleneck (deepest part of the encoder before decoder) with
the contracting path information until the features are increased to the resolu-
tion of the input. In Appendix B, we chose this model for cell-level problems
as it generates more precise outputs with fewer training images than other al-
ternatives [78]. We also found that by using step-wise down- and upscaling,
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we were able to use more simple and easier obtainable training data (covered
in section 4.3) which information would otherwise be lost in more aggressive
sampling.

DeepLabV3+ [79] is also an encoder-decoder CNN architecture with one dis-
tinct difference compared to the U-Net; an Atrous Spatial Pyramid Pooling
(ASPP) block in the bottleneck. The ASPP introduces a parallel multi-scale
feature extractor across the entire spatial dimensions of the activation maps at
the end of the encoder. The multi-scaling aspect is obtained by having parallel
branches of a global average pooling (GAP) layer, and 4 different dilated/atrous
convolution layers. The intuition behind the GAP layer is to capture features
representing the entire image, e.g. a network trained to segment tumor cells
gets an input with no tumor cells present, then it can use this feature to enforce
that no other branch should be used to output any tumor cell segmentation.
The purpose of the dilated convolution branches is to create features that rep-
resent different scales in the input image [80]. These two attributes make the
DeepLabV3+ architecture well suited for tissue-level recognition and segmen-
tation as it can use all contextual information in the input image at different
scales without having many down sampling layers.

Several studies [81, 82] have shown that U-Net surpasses object detection ar-
chitectures for the detection of lymphocytes in IHC and IF images. Similarly,
DeepLabV+3 has been shown to outperform U-Nets on tissue-level segmentation
tasks, e.g. for lymph node metastases [60], gastric cancer [83], and dermatitis
[84]. Could we have selected different models, and created the same algorithm
as in Appendix B? Probably, but these architectures are selected due that
U-Net and DeepLabV3+ seem to fit modeling cell- and tissue-level patterns in
pathology images.

4.2.3 Rule-based methods to infer object logic

Deep neural networks should be used to what it is good at and not everything.
It is very difficult to make handcrafted robust features for tasks such as recogniz-
ing and classifying different cell types or segmentation of highly heterogeneous
tumor regions. Here, it makes sense to use the predictive power of deep neural
networks. However, there are also tasks where less complex methods are more
suitable. For example, in step 2 (Table 4.1), to define the "borders" of the inva-
sive tumor, we proposed in Appendix B to use morphological operations such
as closing and opening [85] with a fitting kernel size on the segmented invasive
tumor objects. It was implemented as post-processing steps and can be seen as
a simple version of a closed concave hull algorithm [86] on all the invasive tumor
cell nests, see Figure 4.2.
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Figure 4.2: Illustration of the approximation of the concave hull using post-
processing on the segmented invasive tumor regions. This creates a smooth
macro-tumor outline around all the tumor nests similar to what a pathologist
would define as the tumor border. In comparison to the convex hull, which
would include too much stroma not associated with the tumor regions.

Another example is step 3 (Table 4.1), where TILs outside the tumor border
and around DCIS and normal glands should be excluded. In Appendix B, we
obtained the invasive tumor, DCIS, and normal glands as segmented objects,
hence we could easily create a margin zone around these objects by using a
distance-based rule via dilation, where we should not include TILs, see Figure
4.3. We refer the reader to Appendix B for a full description of the entire
algorithm.

Even though the most difficult image analysis tasks are moved to deep neural
networks, it does not come for free. Most of the work of creating an image
analysis algorithm is now spend creating the training dataset, which can be a
challenging task as well.

4.3 Obtaining objective training data

A key focus of this thesis was to investigate methods to create better train-
ing data with less effort for pathologists. We quickly discovered that creating
manual pathologist training labels on H&E for the cell- and tissue-level CNNs
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Excluded zoneDCIS region

Figure 4.3: Example of how simple dilation from detected DCIS objects (yelllow)
can create a zone around them (orange) where all TILs are excluded. This allow
us to only include TILs stromal region (cyan) associated with invasive tumor
nests (blue).

would not be sufficient to train models with high enough performance on these
tasks. The two main reasons were pathologists’ time (cost), and inconsisten-
cies in manual labels for TILs detection. Therefore, we early on proposed two
different strategies to obtain more consistent labels that only required a pathol-
ogist to review the final training data, namely (i) serial section or (ii) stain
re-staining. The principle for both is to utilize an IHC-based strategy that also
produces more objective ground truth compared to manual labels. This possi-
bility is unique to pathology. The only, but important, difference between the
two methods is either use of a serial section or the reuse of the same section,
see Figure 4.4. For tissue-level tasks, serial sections are sufficient because ep-
ithelial cells are relatively large so the general structures are likely to be present
between the two sections, and the shift is easily compensated for during regis-
tration. However, for the cell-level task, lymphocytes are so small that there is
a high risk that one cell present in the first section is not present in the next.
The stain re-staining approach allowed us to generate objective cell-level data
for the two cell types defining TILs (see step 5 in Table 4.1).

Similar approaches have been used in other pathology studies [87, 88], however,
one of our main contributions in Appendix B is to use physical double staining
(PDS) to obtain epithelial regions (cytokeratin positive) and discriminating be-
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Figure 4.4: Examples of the two different IHC schemes used in Appendix B.
(a) shows the serial section approach for tissue-level label generation. (b) shows
the stain re-staining methodology for cell-level label generation.
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tween invasive and DCIS and normal lobules (loss of P63 positive myoepithelial
cells) for the tissue-level labels. Similar, we could transfer both lymphocytes
(CD3 positive) and plasma cells (CD79a positive) objectively to the primary
H&E. Generally, we showed that IHC stains can be used during development
to help guide semi-automatic labels transfer onto the H&E slide, which means
that the models then can be trained and deployed on H&E only - one of the
requirements of the VTA guideline.

4.4 Survival analysis

As recently discussed by Arcs et al. (2021), it is still an open question how
to best validate CTA algorithms [89]. In Appendix B, we sanity-checked the
concordance between manual TILs-scores and the automated approach but used
the outcome of the patients to investigate the clinical impact. In this section,
we describe the concepts of survival analysis in more detail.

The primary endpoint for assessing a biomarker is to associate the score of each
patient to the time of an event of interest [90] with time to overall survival (OS)
and relapse-free survival (RFS) commonly used as the events of interest. For
OS and RFS, the definition of time is from surgery until the death of any cause,
and until local or distant relapse of disease, respectively. An important term
is censoring that captures if not all included individuals in the study who have
experienced the event. The last visit date can be used to capture if a patient was
lost in follow-up during the study period, but also death accounts as censoring
for RFS. To study these endpoints, we used two standard statistics; (i) Kaplan-
Meier survival estimate [91], and (ii) Cox proportional hazards (PH) regression
analysis [92].

Kaplan-Meier survival estimate is a non-parametric model of survival prob-
ability S(t) usually visualized in survival curves, where S(t) is plotted against
time t for different patient stratification. Let t1 < t2 < ... < tk be independent
events (e.g. death) of k patients, then:

S(ti) = S(ti−1)

(
1− D(ti)

N(ti)

)
(4.1)

where t0 = 0 and S(0) = 1 with D and N being the number of events and
number of patients alive at certain time-point ti, respectively [90]. This results
in a step function that changes between events every time a patient experience
an event.

Cox PH regression analysis is a simple statistical non-parametric regression
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model that allows us to investigate the effect of several clinical factors’ associ-
ation with an event simultaneously. The risk of an event at time t is modelled
by the hazard function:

h(t) = h0(t)× eb1x1+b2x2+...+bpxp (4.2)

where h0 is the baseline hazard and {x1, x2, ..., xp} is a set of p variables (the
biomarkers) [93]. From this, we can obtain the hazard ratios (HR) as ebi that
allow us to interpret if a biomarker is positively or negatively associated with
an event. A biomarker can either have no effect (HR=1), increased (HR>1), or
reduced (HR<1) risk of an event. For example, if HR=1.2 of a specific biomarker
and the event is death, it means that for every unit increase of the biomarker
value, there is a 20% increased risk of dying. The Cox model is practically a
multiple linear regression of the log of the hazard on the variables xi, with h0
being an ‘intercept’ term that varies with time [93].

4.5 Experimental findings (Appendix B & C)

In this section, we provide a high-level summary of the experimental findings.
We demonstrated that CTA can provide a quantitative and interpretable score
that correlates with the manual pathologist-derived sTIL status. However, a
more influential finding, is that a CTA score can be prognostic for OS in patients
with TNBC (HR: 0.81 CI: 0.72-0.92 p=0.001) independent of age, tumor size,
nodal status, and tumor type in statistical modeling. We also showed that the
quality and consistency of the labels generated with IHC labeling schemes were
higher than manual annotations. Lastly, CTA was found to address some of
the challenges of VTA such as reproducibility, but can suffer from pitfalls, e.g.
challenges with technical factors and achieving high enough generalization to
all variability seen in pathology. However, we also layout that many of these
challenges can be solved as long as the right model, training data, and validation
considerations are taken into account. For the full detailed description of our
findings, we refer the reader to Appendix B and Appendix C.

4.6 Concluding remarks

Our main contribution is a complete development effort to adapt a manual
guideline for assessing TILs in breast cancer into an automated method. We
studied and documented a thorough strategy to create objective training data,
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enabling scaling of the process that usually is the largest obstruction for com-
putational pathology. We collected and digitized a large retrospective dataset
on which we successfully showed that a fully automated workflow 3 algorithm
for TIL assessment is associated with overall survival, confirming the prognos-
tic potential of TILs for TNBC patients. In Appendix C, as a follow up
on Appendix B, we identified several challenges and pitfalls that can impact
the performance, generalizability and cause discrepancies on outcome estimates
when transferring a manual VTA guideline into a CTA algorithm. We hope our
contributions highlight the potential and pitfalls in using machine learning for
TIL assessment, and future studies will be armed to find the answers needed to
ensure reliable and reproducible CTA into the routine clinical management of
breast cancer.

There remains a lot of work to further develop and validate CTA in clinical
studies [89]. Here, the insights from Chapter 3 should be included and studied
further. With recent research not included in this thesis, there is also poten-
tial to study TILs further, such in combination with other biomarkers (e.g.
tumor-stroma ratio [94]) or its predictive potential toward immunotherapy [95].
Another avenue to pursue is to discover information not possible for a patholo-
gist to quantify, e.g. using recently advanced in geometric deep learning [96] to
interrogate the heterogeneity and spatial distribution of TILs, or use all infor-
mation to train a model to directly predict prognosis [97, 98].
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Chapter 5

General discussion

In the work of this thesis, we explored several aspects of bringing deep learning-
based algorithms into real-world settings. In this chapter, we discuss our results
and conclusions in the larger context of the aim of this thesis, before we look at
what we don’t know yet as the foundation for providing future perspectives of
this thesis.

5.1 Studying the impact of dataset shifts when
deploying an algorithm into clinical practice

From a deployment and safety perspective, it is highly valuable to be able to
report what the system can and cannot handle with high confidence. Therefore,
in the early days of this PhD project, our expectation was high in terms of
the state-of-the-art methods’ ability to obtain reliable uncertainty estimations
in deep neural networks. We identified several major gaps from the traditional
studies in the field to the world of pathology. First, we noticed that the tasks
were not representative of the difficulty of pathology as most benchmark datasets
were so-called far-OOD inputs. Therefore, we set out to create representative
tasks in pathology, which, if solvable, would bring immediate value to the diag-
nostic algorithms for detecting lymph node metastases. Secondly, the current
research had only started scaling these methods to larger models coping with
natural images, so we also wanted to investigate if these methods also apply to
the appearance of pathology images.
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Our research shows that the investigated methods can only provide reliable un-
certainty estimates if used within the same data distribution as included in the
training set, but one should not expect current methods to alarm novel abnor-
malities or all error cases. This means that currently, other steps need to be
taken to ensure that incoming data is inspected for signs of distribution shifts.
Here, interoperability to laboratory information systems (LIS) will become criti-
cal such that metadata can be verified. Good laboratory practices should ensure
that processes and controls are in place to mitigate several of these datasets shift
after the initial validation of the algorithm, with a stated goal of standardiz-
ing the diagnostic process. These include quality systems, the use of controls,
continuous training, and enrolment in external quality assessment (EQA) pro-
grams. If such systems are implemented, we see that algorithms can be adopted
into the workflow as an assistance tool with pathologists reviewing the results
as a minimum. This means that fully autonomous algorithms are still years out
in pathology and the diagnostic responsibility should continue to reside with the
pathologist.

While we did not investigate the impact of dataset shift on the TIL application,
we expect our findings to also apply to this and other applications. With the vast
number of different use-cases in pathology, there is still a need to understand
the benefits and pitfalls of every single one to ensure that the predictive ML
tools can be deployed safely and risk of catastrophic failures can be mitigated.
Therefore, we do not believe that new methods that monitor dataset drifts
should necessarily be integrated into the predictive model itself but could be a
completely independent use-case of ML to ensure validity of the incoming data
and quality of variables that cause dataset shifts. This would bring value no
matter if the diagnostic reading is manual or computational.

5.2 Development of an automated TIL scoring
system

One of the novel avenues of clinical pathology is the assessment of the tumor-
immune interaction in breast cancer by scoring stromal TILs in TNBC. Address-
ing the increased complexity and ambiguousness in the assessments of such a
biomarker is pivotal to ensure standardized care of breast cancer. Therefore, we
investigated how to create a computational approach to quantify the immune-
infiltration of TNBC that could overcome some of the challenges of introducing
such a biomarker into clinical practice.

Before our study, existing related methods have proposed alternative metrics
[99] or used other stains than H&E [81, 82] rather than adhering to the VTA
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clinical guideline. Concurrently with our work, two other international research
groups also proposed methods for CTA [100, 101] which are consistent with
VTA including validation on external cohorts. The common findings across
these studies are that: (i) CTA is observed to have a good to excellent agree-
ment with VTA, and (ii) independently associated with prognosis confirming
that patients with TNBC and high CTA score have a significantly favorable
survival. However, both methods are workflow 1 algorithms as they still involve
the manual drawing of the tumor region before the analysis is performed com-
pared to our workflow 3-based approach. It is yet to be seen what this means
in terms of variability and implementation challenges in the clinical workflow.
Moreover, there are also differences in the coarseness of the tissue-level com-
partmentalization, and the definition of the quantitative output variables. Our
method relies heavily on segmentation models to obtain pixel-precise compart-
ments. On the contrary, this sets higher requirements to the training labels
than more rule-based approaches [101]. In line with the findings of this thesis
for both dataset shifts and TIL development, both studies also agree that CTA
does not solve all challenges with VTA, and there is still much research to be
done in terms of handling pitfalls, further development, and clinical validation.

Even though ML-based algorithms overcome many challenges of manual assess-
ment such as reproducibility among pathologists, it is also clear that many of
the same pitfalls causing standardization issues do also affect the computational
methods - both during development and deployment. This knowledge should
be utilized, and therefore, we emphasize the importance of a cross-functional
development team to ensure reliable computational reporting of sTIL with the
end goal of progressing it into the clinic.

5.3 Addressing the bottleneck of creating train-
ing labels

During the course of this thesis, there has been immense progress to train deep
neural networks without or with less training data such as self-supervised learn-
ing [67]. While these methods might also apply to pathology [102], all applica-
tions still need to be trained to solve a specific task with supervised learning.
Obtaining the training labels to do so,t is probably still the single most impor-
tant obstacle to develop generalizable algorithms in pathology.

Originally, we hypothesized that uncertainty methods as the once investigated
for detecting dataset shifts could be used to explore uncertain data regimes,
and thereby decreasing the total number of examples that should be manually
annotated. The process is referred to as active learning [69]. For the TILs ap-
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plication, we identified key issues holding this approach back from practical use.
First, the uncertainty methods did not necessarily capture all the misclassifica-
tion and OOD inputs which are desirable as a proposal for training examples.
Secondly, and more importantly, we noticed a high intra- and inter-observer
variability when pathologists were tasked to label TILs. Therefore, no matter if
active learning could propose the "right" training examples, the manual training
labels would not be sufficient to create the algorithms needed to adhere to the
VTA guideline. To overcome this limitation and effectively scale up the training
labeling process, we showed that two IHC-based labeling schemes can obtain
tissue- and cell-level labels with higher quality and consistency than manual
labels.

The developed method dramatically improves the label generation process but
there are still challenges associated with this method such as the vanishing
differences in cellular structures between physical consecutive sections, or cell-
to-cell correspondence failures due to the precision of the image registration
algorithm. However, there are many potential future outlooks to streamline
and improve this training label workflow.

5.4 Future research

In this thesis, we only considered computational assessment independently, and
then assessed how it performs relative to pathologists. But rather than expect
perfection from ML-based systems, a potentially interesting avenue of research
is to assess how the combination of pathologists that use ML tools performs
compared to pathologists or the algorithm alone.

Another obvious next step is to investigate the external generalizability of the
TIL algorithm, and set up similar valid in- and out-of-distribution dataset shifts
as in Chapter 3 to understand the pitfalls of ML-assessment of sTIL in breast
cancer to an even higher degree than presented in Appendix C. We expect
that the development dataset needs to be expanded to be multi-institutional
to achieve generalization to clinical practice, but with the proposed labeling
scheme, especially for the cell-level IHC, this is simply a matter of scaling the
existing framework.

It is also important to recognize the other use-cases in computational pathology
besides automating the reading of biomarkers and optimize aspects of the rou-
tine workflow in pathology. In particular, we are only beginning to understand
the importance of TILs for cancer treatment and prognosis, and computational
methods open up for further studies of the significance of the intratumoral spa-
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tial distribution of TILs, which is of significance [99]. This might allow us to
understand the heterogeneity of TILs and the immune-tumor interaction in more
details.

It is clear from the results presented in this thesis that uncertainty estimation
in deep neural networks is not a solved issue, yet, and fundamental progress
on the methods needs to happen before it can be guaranteed that pathology
applications will alarm if significant dataset shifts occur not caught by other
control mechanisms in the laboratory. One interesting initiative that might be
the driver for novel methods is the NeurIPS Shifts Challenge on Robustness and
Uncertainty under Real-World Distributional Shift that raises awareness of this
important but unsolved topic.
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Chapter 6

Conclusion

This thesis presents different aspects on key obstacles of bringing deep learning-
based algorithms into real-world settings in pathology. Our contribution is the
following: (i) Thorough investigation of several state-of-the-art methods’ ability
to quantify uncertainty for real-world dataset shift in pathology. (ii) Develop-
ment of a fully automated algorithm for tumor infiltrating lymphocyte (TIL)
assessment that adheres to all steps of the manual clinical guideline. (iii) demon-
strated the effectiveness of using immunohistochemistry (IHC) to obtain both
tissue- and cell-level training labels for this algorithm. (iv) reviewed the pitfalls
of using ML for TIL assessment while documenting development considerations
to aid future studies in this topic.

By collecting one of the largest real-life datasets in pathology in terms of study-
ing realistic changes in data distributions, we found that current uncertainty
methods could only provide reliable uncertainty estimates if used within the
indication and organ included in the training set, but failed silently under any
novel abnormalities. Hence, one should not expect current methods to alarm
any rare incidental findings if these are not included in the training distributions,
or mitigated by other systems in the laboratory.

We demonstrated that it is possible to create a fully automated H&E-based
computational TIL assessment (CTA) algorithm that follows all complex as-
pects of a manual pathology guideline where appropriate. This was strongly
enabled by having a hierarchical-based approach of both tissue- and cell-level
models. To investigate the potential of the algorithm, we showed, in a large
retrospective cohort, that our stromal TIL density score had both high concor-
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dance with manual scoring, and association with the prognosis of patients with
triple-negative breast cancer (TNBC).

To overcome the training label bottleneck, we presented an effective way to
label invasive and non-invasive epithelium as two distinct classes, and the first
to show that a cell-level TIL model can be trained with labels transferred from
with IHC. We showed that the quality and consistency of the labels were higher
than manual labels, and one pathologist was only needed to review the labels,
decreasing the time and effort needed by pathologists.

Finally, our developed algorithms do not solve all problems as they have both
pitfalls of their own, and others shared with manual assessment. The pitfalls
include both general pathology, methodological, and data challenges, and we
provided extensive considerations for mitigating these in future development
efforts.

In conclusion, we have contributed to the field of computational pathology by
proposing a novel algorithm that takes into account the complexity of a real-
world setting. We have shown that it is possible to automatically and quanti-
tatively score TILs, a difficult biomarker to score manually, for an aggressive
and difficult-to-treat breast cancer type. We reached this objective by break-
ing down clinical guidelines into multiple hierarchical and interpretable deep
learning-based models. Even though the current algorithm has not been val-
idated yet, we have shown a path to the clinic by tackling the training label
constraints, shedding light on several deployment aspects, and proposed solu-
tions to remaining obstacles. Only the future will tell to what extent models
with interpretable steps like ours, end-to-end models, or a new kind of com-
putational pathology will empower the pathologists to deliver better and more
standardized patient care.

But no matter what, the future looks promising.
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Abstract. Deep learning-based algorithms have shown great promise
for assisting pathologists in detecting lymph node metastases when eval-
uated based on their predictive accuracy. However, for clinical adop-
tion, we need to know what happens when the test set dramatically
changes from the training distribution. In such settings, we should esti-
mate the uncertainty of the predictions, so we know when to trust the
model (and when not to). Here, we i) investigate current popular methods
for improving the calibration of predictive uncertainty, and ii) compare
the performance and calibration of the methods under clinically relevant
in-distribution dataset shifts. Furthermore, we iii) evaluate their perfor-
mance on the task of out-of-distribution detection of a different histolog-
ical cancer type not seen during training. Of the investigated methods,
we show that deep ensembles are more robust in respect of both per-
formance and calibration for in-distribution dataset shifts and allows us
to better detect incorrect predictions. Our results also demonstrate that
current methods for uncertainty quantification are not necessarily able to
detect all dataset shifts, and we emphasize the importance of monitoring
and controlling the input distribution when deploying deep learning for
digital pathology.

Keywords: Deep learning · Digital pathology · Predictive uncertainty

1 Introduction

Motivated by the predictive performance of deep learning (DL) in research [3,21]
and grand challenges [2], clinical-grade DL-tools for assisting pathologists in
detection of lymph node metastases are now being developed. In clinical set-
tings where algorithms can potentially affect medical decisions, it is crucial to
know how well-calibrated the underlying model is, such that the model gives a
reliable estimate of the quality of the predictions. However, there exists only lim-
ited research [4,20,22] on how different distributional shifts in pathology affect

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12261, pp. 824–833, 2020.
https://doi.org/10.1007/978-3-030-59710-8_80
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the accuracy of DL-based algorithms, and these do not consider predictive uncer-
tainty. Dataset shifts are especially relevant in pathology as pre-analytical steps
can introduce large variability, and the spectrum of the target indication of an
algorithm can also be broad. This makes it difficult to include the whole spectrum
within the training set. Rare incidental findings, which are clinically relevant,
may also be missed by an algorithm because they are outside the distribution of
the training set (Fig. 1).

Fig. 1. Overview of experimental setup. Slides from 6 different sites are used as develop-
ment data (Dtrain and Dval), where blue (5 sites) represents Cam16-train and Cam17-
train and red (one site) is Dataset2. Cam16-test defines the internal test set (Dtest,int.)
as the 2 sites are also used as development data. Dataset3 (green) is denoted as the
external test set (Dtest,ext.) as this site is not included in the development data. Slides
from Dataset4 and Dataset5 (orange) with colon adenocarcinoma (Dcolon) and head
and neck squamous cell carcinoma (DSCC) are used to test on different organ origin
and different cancer sub-type than the original target task of detecting adenocarcinoma
from breast cancer.

Our contribution is a thorough investigation of several state-of-the-art meth-
ods’ ability to quantify uncertainty while keeping high accuracy. We focus on
the problem of detecting cancerous tissue in digital pathology, specifically for the
task of detecting lymph node metastases. This has not been covered in previ-
ous investigations such as [9,17], because the appearance and variation resulting
from distributional shifts of histopathology images is very different from that of
natural images. Therefore, we i) extend our evaluation to a unique real-world
pathology setting with a multi-hospital single indication training set and perform
an extensive evaluation on both internal and external test sets and clinically plau-
sible distributional shifts. We ii) compare the methods in terms of performance
and calibration in addition to iii) how accurate their predictive uncertainty can
detect both incorrect predictions and out-of-distribution (OOD) inputs.



826 J. Thagaard et al.

1.1 Related Work

Multiple popular methods have been proposed for quantifying predictive uncer-
tainty for better calibration and robustness under distributional shifts and OOD
inputs in deep neural networks (DNNs). Deep ensemble [13] is arguably the
simplest method where multiple networks are trained individually and their pre-
dictions are averaged during inference. Monte Carlo Dropout (MC-Dropout) [6]
is an approximate Bayesian method that uses dropout [19] during multiple for-
ward passes during inference. Temperature scaling [7] is different as it serves as
a post-processing method that learns a scaling parameter on a validation set but
its performance has shown to be limited under distributional shifts [17]. Mixup
[25] combines random pairs of images and their labels during training, originally
aimed at increased performance but it has recently shown to improve the cali-
bration of DNNs [23]. All methods have their advantages and limitations with
regard to their complexity during training or inference.

Table 1. Details on data. * and ** denote adenocarcinoma and SCC, respectively
† [14], ‡ [3].

Dataset Purpose No. of slides Site

Cam16-train Development (Dtrain, Dval) 270 (160 normal, 110 tumor*) 2 hospitals†
Cam16-test Evaluation (Dtest,int.) 129 (80 normal, 49 tumor*) 2 hospitals†
Cam17-train Development (Dtrain, Dval) 46 (0 normal, 46 tumor*) 5 hospitals‡
Dataset2 Development (Dtrain, Dval) 56 (41 normal, 15 tumor*) Hospital-A

Dataset3 Evaluation (Dtest, ext.) 135 (67 normal, 68 tumor*) Hospital-B

Dataset4 Evaluation (Dcolon) 81 (43 normal, 38 tumor*) Hospital-C

Dataset5 Evaluation (DSCC) 60 (40 normal, 20 tumor**) Hospital-C

2 Methods

2.1 Experimental Setup

To study a relevant application in pathology, we define the primary target task
as detection of adenocarcinoma in hematoxylin and eosin (H&E) lymph node
sections from breast cancer. To enable the development, we obtain datasets from
public [2,3,14] and non-public sources (see details in Table 1) and evaluate both
predictive accuracy and uncertainty using relevant metrics (see below).

In-distribution Shift. To evaluate whether we can trust the predictions on
images not derived from the hospitals used in the development, we use Dataset3
as an external test set (Dtest,ext.) and Cam16test internal test set (Dtest,int.). The
methods are evaluated based on their ability to generalize in terms of predictive
accuracy and uncertainty.
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As the same cancer sub-type can originate from different organs and metas-
tasize to lymph nodes regardless of origin, we investigate the methods’ ability to
generalize to other organs than included in the training set. To enable this, we
collect lymph node sections with adenocarcinoma from colon cancer (Dcolon).

Misclassification Detection. The ability to indicate incorrect classifications
is attractive from a clinical automation perspective, so pathologists can better
interfere and assess results when needed, especially when the input distribution
change from the intended indication. It is easy to formulate as a binary classi-
fication problem using only the uncertainty as the prediction score, hence it is
a popular downstream task to evaluate predictive uncertainty [10]. We hypoth-
esize that current methods are better at detecting incorrect predictions when
the dataset is more similar to the training distribution. To test the hypothesis,
we use Dtest,int., Dtest,ext. and Dcolon to assess the performance of the binary
classification (correct vs. incorrect) on each dataset.

Out-Out-Distribution Shift. When pathologists assess lymph node sections
for metastases, they are also aware of other clinically relevant abnormalities than
the primary task. To mimic this setting, we collect slides that contain another
histology sub-type (squamous cell carcinoma (SCC)) from head and neck can-
cer (DSCC), which includes both well- and un-differentiated SCCs. Since SCCs,
especially well-differentiated cases, are morphological different than adenocarci-
noma, we consider DSCC a realistic out-of-distribution dataset because it con-
tains unseen abnormalities from the same domain as the training set.

Here, our evaluation is two-fold: generalization to another cancer sub-type
and the ability to detect novel classes using its predictive uncertainty. To achieve
the latter, we denote all tumor regions from DSCC as Dout and the in-distribu-
tion Dtest,ext. as Din. We then compare each method to discriminate between
Dout and Din.

Since poorly differentiated SCC can look morphologically similar to adeno-
carcinoma, we also take a subset of DSCC diagnosed as well-differentiated SCC
(N = 5) and treat only samples from these as OOD inputs in a final experiment.

Reference Standard. Similar to the Camelyon dataset, all ground truth anno-
tations on the non-public datasets were carefully prepared under the supervision
of expert pathologists with additional slides stained with cytokeratin immuno-
histochemistry (IHC). All work related to the non-public datasets was approved
by their institutional review board.

2.2 Evaluation Metrics

We employ Accuracy, Area Under the Receiver Operating Characteristics curve
(AUROC) and Precision-Recall curve (AUPR) to report classification perfor-
mance (normal vs. tumor). As suggested by Guo et al. [7], we use the Expected
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Calibration Error ECE [16] to measure the calibration for each model. First, we
compute the confidence of each of N observation denoted p(ŷn), and bin these
into H bins. We then calculate the ECE by comparing the content of each bin
to its average accuracy. Let Bh be the set of indices for bin h. We calculate the
bin accuracy

acc(Bh) = |Bh|−1
∑

n∈Bh

δ(ŷn − y∗
n) (1)

and the bin confidence

conf(Bh) = |Bh|−1
∑

n∈Bh

pn(ŷ). (2)

Then we get

ECE =
1

N

H∑

h=1

|Bh| · |acc(Bh) − conf(Bh)| (3)

=
1

N

H∑

h=1

∣∣∣∣∣
∑

n∈Bh

pn(y) −
∑

n∈Bh

δ(ŷn − y∗
n)

∣∣∣∣∣ (4)

where δ(x) = 1 if x = 0 or δ(x) = 0 if x �= 0, and y∗
n is the true label.

For misclassification and OOD detection, we use also AUROC and AUPR
but on the classification performance of correct vs. incorrect and in- vs. out-of-
distribution, respectively. We use False Positive Rate at 95% True Positive Rate
(FPR95) to compare method at a certain operating point. As noted by [1], these
metrics are more reliable to compare for OOD detection as the task remains the
same regardless of method.

2.3 Overview of Methods

We focus on methods that model p(y|x) as these are the most popular in medical
image analysis [3,15] and are known to scale well [12,13]. As a baseline, we use the
softmax of a standard DNN to obtain posterior probabilities. For all methods,
we obtain the prediction as ŷ = arg maxy p(y|x, θ) and the confidence as the
maximum softmax probability p(ŷ) = maxy p(y|x, θ).

MC-Dropout. We train using dropout [19] with rate p and apply L forward
passes during inference with dropout enabled as described in Gal et al. [6].

Deep Ensemble. We train M standard DNNs independently of each other
following [13] and combine the predictions as

p(y = k|x, θ) =
1

M

M∑

m=1

pm(y = k|x, θm) (5)
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Mixup. Recently proposed as a simple method by [25] for training better DNNs
where two random input samples (xi, xj) and their corresponding labels (yi, yj)
are combined using:

x̃ = λxi + (1 − λ)xj

ỹ = λyi + (1 − λ)yj
(6)

where λ ∈ [0, 1] determines the mixing ratio of the linear interpolation. λ is drawn
from a symmetric Beta distribution Beta(α, α), where α controls the strength of
the input interpolation and the label smoothing. We train a DNN with mixup
using standard cross-entropy calculated on the soft-labels instead of the hard
labels. We refer to [25] for the full details on mixup.

Table 2. Evaluation of predictive performance. *α = 0.3

Dtest,int. Dtest,ext. Dcolon

Acc AUROC AUPR Acc AUROC AUPR Acc AUROC AUPR

Baseline 90.5 96.5 95.1 94.3 97.9 94.3 79.0 90.7 92.8

Ensemble 90.1 97.3 95.9 94.3 98.1 96.8 78.1 92.3 94.2

MC-Dropout 91.0 97.0 95.7 93.8 97.7 96.2 78.0 90.9 93.4

Mixup* 86.5 95.6 94.2 93.4 97.1 94.6 75.8 91.0 92.6

2.4 Implementation and Training Details

We perform a train/validation split on the development dataset and use these
to train and select hyper-parameters for all methods. All datasets are sampled
in patches (512 × 512 pixels) at 20× magnification with 50% (strided) and
150% (overlapping) sampling fraction for normal and tumor, respectively. We
employ a ResNet-50 [8] architecture as the backbone for all methods because
there are negligible changes between different image classifiers [9]. We use M = 5
to create the ensemble as reported by [17] to be sufficient. For MC-dropout,
initial experiments of different implementation variations showed no performance
differences. Hence, we add a dropout before the logit layer similar to [12] with
p = 0.5 and use L = 50. All models are trained for 15 epochs with ADAM [11]
(β = (0.9, 0.999)) with weight decay (0.0005) using a mini-batch size of 16. We
use an initial learning rate of 0.01 and drop it with factor 10 every 5th epoch for
all methods except mixup which required a lower initial learning rate of 0.001
to converge. For mixup, we experimented with α ∈ [0.1, 0.3, 0.5, 1.0] and we
report results with α = 0.3 as this performed best on Dval. In all experiments,
we apply data augmentation similar to [15] and use Pytorch [18] and Pytorch-
Lightning [5].
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3 Results

3.1 Evaluating Predictive Performance Under Dataset Shifts

First, we evaluate the predictive performance on the primary task of detecting
adenocarcinoma in lymph node sections. We summarize the results in Table 2,
and the ROC-curves for all methods and dataset shifts are shown in Fig. 2. The
results show that all methods can archive high predictive performance on both
the internal and external test sets. All methods perform significantly worse when
evaluated on the colon dataset Dcolon with mixup performing worst. Interest-
ingly, all methods have higher AUROC on DSCC (see Table 4) compared to
Dcolon even though the cancer sub-type is histological different, especially in the
well-differentiated cases. In general, deep ensemble slightly outperforms all other
methods on threshold independent metrics like AUROC and AUPR.

Fig. 2. ROC-curves for predictive performance. Left shows each methods with ROC
curves averaged across all datasets. Right shows each dataset with ROC curves averaged
across all methods.

3.2 Evaluating Predictive Uncertainty Under Dataset Shifts

We present results of calibration and detection of incorrect classified examples
together in Table 3. In terms of ECE, deep ensemble and mixup improve calibra-
tion compared to the baseline method, whereas MC-dropout performs worse for
the external and colon dataset. When using each method’s predictive uncertainty
to detect misclassifications on the test set, deep ensemble and MC-dropout have
higher AUROC and AUPR on all three datasets than baseline and mixup. How-
ever, the quality of the predictive uncertainty for decreases slightly when dataset
shift increases.

Table 3. Evaluation of calibration and misclassification detection. *α = 0.3

Dtest,int. Dtest,ext. Dcolon

ECE AUROC AUPR ECE AUROC AUPR ECE AUROC AUPR

Baseline 4.9 82.6 35.7 2.1 77.7 28.6 11.8 76.7 42.0

Ensemble 2.1 83.9 35.6 0.6 82.3 30.2 7.5 78.6 44.5

MC-Dropout 4.6 84.0 35.3 2.6 79.8 29.7 13.3 77.2 43.5

Mixup* 4.2 79.1 36.5 0.9 80.9 29.3 9.7 71.5 41.4
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3.3 Evaluating on Different Cancer Sub-type

The left part of Table 4 shows the performance on DSCC , while the right side
summarizes the result of the OOD experiment. All methods show strong predic-
tive accuracy, but fail to recognize SCC as an unseen class. Here, both ensemble
and mixup outperform the baseline and MC-dropout methods.

Table 4. Evaluation of performance and OOD detection on DSCC . *α = 0.3

Performance OOD ODD (only well-diff.)

Acc AUROC AUPR AUROC AUPR FPR95 AUROC AUPR FPR95

Baseline 89.3 95.4 88.4 64.1 37.3 97.6 70.6 5.2 90.9

Ensemble 89.7 96.3 91.8 73.2 46.2 92.6 81.6 7.4 71.1

MC-Dropout 89.0 95.9 91.5 59.8 35.6 99.3 67.5 4.7 84.8

Mixup* 87.5 95.8 89.2 86.3 53.6 47.5 86.5 8.1 44.6

4 Discussion and Conclusion

We have evaluated current popular methods for predictive uncertainty on clini-
cally relevant dataset shifts for the detection of lymph node metastases in pathol-
ogy slides. All methods can generalize predictive accuracy from the internal
test set to the external dataset while maintaining the quality of the predic-
tive uncertainty. When applied to another organ, all investigated methods show
both decreased performance and increased overconfidence. We have shown sim-
ilar behavior when evaluated on the different cancer sub-type even-though the
performance decrease was smaller than under organ shift.

As site-specific variations such as sectioning, staining and scanning variability
are present in the experimental internal and external setup, we have shown that
current methods are able to generalize to these sources of variability. We leave
it to future work to quantify how site-specific pre-analytical variations affect the
current methods as it requires a more controlled data acquisition scheme.

Our experiments show minimal benefits of MC-Dropout compared to the
baseline method, and it can hurt the calibration performance on all dataset
shifts. We contribute this to MC-Dropout being a too weak ensemble to achieve
the same effect as a true ensemble. In general, deep ensemble increases predictive
performance but also shows robustness in calibration under distributional shifts.
It also displays decent capability in detecting incorrect predictions, but none of
the methods are sufficient on this task. Based on the results and its simplicity,
deep ensemble is an attractive method for predictive uncertainty but it comes
with a computational overhead during both training and inference. Here, mixup
might seem to be a cheaper alternative as our results show better calibration
than baseline and MC-Dropout with a slight decrease in performance. We leave it
to future work to investigate effects of different implementation of MC-Dropout
and mixup extensions such as [24].



832 J. Thagaard et al.

The ODD experiments indicate that adenocarcinoma and SCC, especially
moderate and undifferentiated, are too similar in their morphological patterns
to be treated as OOD. However, when we only assume well-differentiated SCC
as an unseen class, ensemble and mixup are better to indicate the dataset shift
without being sufficient for ODD detection.

Based on our results, we recommend that deep learning-based algorithms
are ready for clinical implementation with reliable uncertainty estimates if used
within the indication and organ included in the training set, but one should not
expect current methods to alarm novel abnormalities.
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Simple Summary: Around 15% of breast cancer patients are diagnosed as triple-negative (TNBC),
which have significantly lower 5-year survival rates (77%) than other types of breast cancer (93%).
Our study aimed at developing an image analysis-based biomarker to assess how the immune system
interacts with the tumor and investigate the potential added value of stromal tumor-infiltrating
lymphocytes (sTIL) for the prognosis of overall survival compared to the manual approach. In
a large retrospective cohort of 257 patients, we found that our fully automated hematoxylin and
eosin (H&E) image analysis pipeline can quantify sTIL density showing both high concordance
with manual scoring and association with the prognosis of patients with TNBC. It also overcomes
natural limitations of manual assessment that hinder clinical adoption of the immune biomarker.
We conclude that sTIL scoring by automated image analysis has prognostic potential comparable to
manual scoring and should be further investigated for future use in a clinical setting.

Abstract: Triple-negative breast cancer (TNBC) is an aggressive and difficult-to-treat cancer type
that represents approximately 15% of all breast cancers. Recently, stromal tumor-infiltrating lym-
phocytes (sTIL) resurfaced as a strong prognostic biomarker for overall survival (OS) for TNBC
patients. Manual assessment has innate limitations that hinder clinical adoption, and the International
Immuno-Oncology Biomarker Working Group (TIL-WG) has therefore envisioned that computa-
tional assessment of sTIL could overcome these limitations and recommended that any algorithm
should follow the manual guidelines where appropriate. However, no existing studies capture all the
concepts of the guideline or have shown the same prognostic evidence as manual assessment. In
this study, we present a fully automated digital image analysis pipeline and demonstrate that our
hematoxylin and eosin (H&E)-based pipeline can provide a quantitative and interpretable score that
correlates with the manual pathologist-derived sTIL status, and importantly, can stratify a retrospec-
tive cohort into two significant distinct prognostic groups. We found our score to be prognostic for
OS (HR: 0.81 CI: 0.72–0.92 p = 0.001) independent of age, tumor size, nodal status, and tumor type
in statistical modeling. While prior studies have followed fragments of the TIL-WG guideline, our
approach is the first to follow all complex aspects, where appropriate, supporting the TIL-WG vision
of computational assessment of sTIL in the future clinical setting.

Cancers 2021, 13, 3050. https://doi.org/10.3390/cancers13123050 https://www.mdpi.com/journal/cancers
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1. Introduction

The host immune system and interactions in the tumor microenvironment (TME)
play an important role in clinical outcomes for patients with triple-negative breast cancer
(TNBC) [1–3]. TNBC is an aggressive and difficult-to-treat cancer type that represents
approximately 15% of all breast cancers [4]. It is defined by a lack of estrogen and pro-
gesterone hormone receptors (ER/PR) and expression of human epidermal growth factor
receptor 2 (HER2), i.e., common treatment options are not very effective, resulting in a
lower 5-year survival rate (77%) than other types of breast cancer (93%) [5,6].

Recently, stromal tumor-infiltrating lymphocytes (sTIL) have resurfaced as a strong
prognostic biomarker for overall survival (OS) [7–10], and guidelines for manual assess-
ment have been proposed [11] to standardize reporting, increase reproducibility, and
improve clinical adoption [12,13]. Nevertheless, the manual assessment has innate limi-
tations [14] that hinder clinical adoption. These include human limitations such as inter-
reader variability, bias, and limits of the routine diagnostic laboratory such as time and
staff constraints, especially in remote and under-resourced settings. The International
Immuno-Oncology Biomarker Working Group (TIL-WG) has therefore envisioned that
computational assessment of sTIL could overcome the limitations of manual assessment
and recommended that any algorithm should follow the manual guidelines where appro-
priate [15]. However, to the best of our knowledge, no published computational approach
exists that follows all the key steps of the TIL-scoring guideline.

sTIL consists of a pool of immune cell types found in the TME such as cytotoxic CD8+
T-cells, natural killer (NK) cells, macrophages, T-helper cells, and immune-suppressing
B-cells and regulatory CD4+ T-cells [16,17]. T-cells make up the majority of TILs in breast
cancer [18]. It has a long history as a prognostic biomarker (more than 100 years) [19], but
its clinical validity for early-stage TNBC was only recently well-established through level
1b evidence [20–22]. Incorporating sTILs into standard clinical practice is now endorsed
by multiple international clinical standards since 2019 (St. Gallen Breast Cancer Expert
Committee [12], World Health Organization (WHO) [23], and ESMO [24]). The guidelines
to manually score sTIL status is proposed by the TIL-WG, and briefly, scored as the area
of tumor-associated stroma occupied by TILs estimated as a percentage of total tumor-
associated stromal area, where areas of necrosis, ductal and lobular carcinoma in situ
(DCIS/LCIS), and normal breast tissue are excluded [25].

Most studies of computational TILs have employed patch- or object detection-based
approaches [26–29] with manual region outlining as part of the pipeline [30]. Some of
these also used multiplexed immunofluorescence (mIF) [31] or immunohistochemistry
(IHC) [32,33] to classify cells as lymphocytes. All existing studies proposing H&E-based
algorithms rely on only manual H&E ground truth annotations to train their model even
though the manual human limitations have shown inconsistencies in this task [14]. None
of these studies capture all the concepts of stromal and intratumoral TILs and account
for confounding morphologies specific to different tumor sites, subtypes, and histologic
patterns as envisioned by the TIL-WG [15]. Another unanswered question is the objective
of an automated approach, i.e., whether the performance should be measured as the
concordance between manual and automated sTIL status, the clinical outcome of the
patient, or a mix of both [34].

In this study, we present a fully automated digital image analysis pipeline that inte-
grates key aspects of the manual guideline to compute a prognostic biomarker for TNBC
patients. Our approach combines both cell- and tissue-level information from whole slide
images (WSIs) in both creation of ground truth annotations and during inference, which
enables a robust approach that can be employed on routine H&E-stained slides. We show
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the existence of human inter-observer variability in the ground truth generation, and we
propose to use combinatory IHC to generate more objective ground truth for both cell- and
tissue-level models. We demonstrate that our H&E-based pipeline can provide a quantita-
tive and interpretable score that correlates with the manual pathologist-derived sTIL status,
and importantly, has the potential to show the prognostic implications of the sTIL status in
a retrospective cohort of TNBC patients in a manner comparable to manual scoring.

2. Materials and Methods
2.1. Data Sources and Study Population

We used a cohort of patients operated for primary TNBC at Herlev and Hillerød
Hospitals, Denmark, between 1 January 2004 and 31 December 2010, and who had freshly
cut and stained H&E full tumor slides available. The exclusion criteria were neoadjuvant
chemotherapy, previous malignancy within the past 5 years prior to diagnosis, recurrence
of previous breast cancer, bilateral/multifocal breast cancer, and tumors with only microin-
vasion. If previous HER2 analysis had not been performed, this was conducted at the time
of inclusion in the study, and patients with HER2 overexpression were excluded. A total of
262 eligible patients had freshly cut and stained H&E-stained slides from original tumor
blocks from primary surgery available for analysis (a flowchart of in- and exclusion in
the study can be seen in Supplementary Figure S1). Clinical information was gathered
from the patient journals and/or pathology reports. A follow-up was completed on 1 July
2019. All clinical data were stored and processed at the Pathology Department, Herlev,
and Gentofte Hospital, and no third party had access to data with patient information. See
Supplementary Table S1 for an overview of included patients.

Patients in the inclusion period received standard chemotherapy regimens and radia-
tion therapy if indicated. Chemotherapy regimes varied somewhat over time, as standard
chemotherapy treatment in Denmark consisted of cyclophosphamide, epirubicin, and
5-fluorouracil (5-FU) from 2004 to 2007, and epirubicin, cyclophosphamide, and docetaxel
from 2007 to 2010.

The H&E-staining was performed according to a well-established protocol also used
in daily diagnostics at the Department of Pathology, Herlev and Gentofte Hospital, Den-
mark. The 4 µm slides were sectioned from formalin-fixed, paraffin-embedded (FFPE)
tumor blocks and mounted on glass slides. The tissue was then deparaffinized in Tissue
Clear (SAKURA Tissue Tek) and alcohol, washed with water and stained with Mayers
hematoxylin (pH 2.7) and eosin (diluted with 70% alcohol), and finally treated with 99%
alcohol before cover-slipping. Staining procedures varied minimally over the inclusion
period, and for the digital pipeline, only freshly sectioned and stained slides were used
following the procedure outlined above.

For the model development, we used only fully anonymized H&E-stained slides of
TNBC tumors from Herlev Hospital, as well as publicly available slides from the TCGA-
BRCA database.

The evaluation of tumor-infiltrating lymphocytes in TNBC was approved by the
Danish Ethics Committee (project number H-15015306). The material used in the study was
previously obtained for clinical purposes. At the time of collection, patients were informed
that the material could be used for research purposes unless they registered actively in The
Danish Registry for Use of Tissue. No patients included in this study had registered there.

2.2. Fully Automated Image Analysis Pipeline Design

In order to support a fully automated image analysis, we developed multiple steps
into a combined algorithm: (1) we trained a convolutional neural network (CNN) to
detect the tissue from the background glass slide at 5X magnification to limit the analysis
to only the relevant regions; (2) a second tissue-level CNN at 10X to segment tumor,
necrosis and non-invasive epithelial (normal, pre-invasive lesions); (3) an object-based
density analysis of tumor regions to estimate the macro outlining of the entire tumor,
hence defining the tumor-associated stroma; (4) a third cell-level CNN at 20X to detect
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and classify cells as TILs (mononuclear immune cells); and finally, (5) output result and
local density calculation (heatmap) to quantify and visualize extracted information from
the tissue- and cell-level models. The full pipeline is shown in Figure 1. All digital image
analysis steps were developed and performed with the Visiopharm platform (Visiopharm
A/S, Hørsholm, Denmark).

1 

 

 

Figure 1. Overview of the fully automated image analysis pipeline. The input data are the scanned WSI of a TNBC patient,
which is then analyzed by multiple steps. First, the tissue (dark red) is recognized from the glass to limit the analysis
to only the relevant part of the scanned slide. Secondly, the tissue-level model classifies slide regions into tumor tissue
(blue), non-invasive epithelium (yellow), and necrotic regions (red). In the third step, the macro-outline of the tumor is
approximated, and then tumor-associated stroma and margin (turquoise) are defined. Cells across the entire sample in the
tumor-associated stroma are classified as TILs (green) or not, and finally, the sTIL density and heatmap can be outputted
for review.

We trained all CNNs with a VGG-based encoder pre-trained on ImageNet [35], where
the tissue- and cell-level models use DeepLabV3 [36] and U-Net [37] inspired decoders,
respectively. We applied random color augmentation (brightness, contrast, hue, and
saturation), H&E stain augmentation [38], and spatial transformation (rotation, flipping).
See Section 2.3 for more information on the dataset development used for these models.

To define the tumor-associated stroma, we evaluated the local accumulated tumor area
using a fixed circular kernel (radius = 750 µm) combined with morphological operations
(closing/opening). The approach was designed to mimic how the pathologist would draw
the macro outline of the entire tumor. We included a margin of 250 µm from the border of
the tumor into the surrounding stroma. This approximation of the margin aligns with the
TIL-WG guideline on including the invasive margin.
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To obtain the cellular density of sTIL, we applied the cell-level TIL model across
the entire macro-tumor and excluded detected TILs within regions of necrosis, a central
hyalinized scar in the tumor core, tumor, and within 150 µm proximity of non-invasive
epithelial to avoid dense lymphatic aggregates surrounding these regions.

Lastly, we calculated the sTIL density as the number of TILs within the tumor-
associated stroma per mm2. We also calculated the local density with a fixed circular
kernel (radius = 200 µm) and visualized this as a heatmap to provide both a quantitative
and visual estimate of the sTIL heterogeneity for a reviewing pathologist.

2.3. Cell and Tissue-Level Model Development

To obtain robust performance of both our tissue- and cell-level models, we developed
them using an IHC-guide annotation scheme on a holdout set (n = 21 patients) from
the Herlev cohort (see Figure 2) supplemented by expert pathologist annotations for the
tissue-level model on a subset (n = 55 images) of the TCGA-BRCA dataset.
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positive to make sure that all mononuclear immune cells were included as stated by the TIL-WG guideline. 
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using IHC when available. For the images from the TCGA-BRCA, the annotations were manually generated by a pathologist. (b) the
TILs training annotations were generated as center-dot labels on cells that were either CD3 or CD79a positive to make sure that all
mononuclear immune cells were included as stated by the TIL-WG guideline.

For the tissue-level model, we created new consecutive serial sections stained with
H&E and pan-cytokeratin (PCK; clone AE1/AE3, DAKO Omnis) + P63 (clone DAK-P63,
DAKO Omnis), respectively in the holdout set from Herlev. To generate the training
data, we digitally aligned two slides using an affine registration algorithm (Tissuealign,
Visiopharm A/S, Hørsholm, Denmark) and iteratively selected FOVs manually to maximize
the variation in morphology of stroma, tumor, necrotic, and non-invasive regions. To
increase the robustness of the model and the variation in the training data, we also included
manually annotated slides from TCGA-BRCA and used the same iterative process until
we saw no further performance increase on a small holdout set of the development data.
We conducted the final training and validation of the tissue-level model on a ground truth
dataset (n = 76 images) verified by a single pathologist (ES) before including it in the full
pipeline for testing.

For the cell-level model, we only used a holdout set from Herlev as we created new
sections that were first stained with H&E, then scanned, followed by removal of H&E
with re-staining of a chromogenic IHC protocol (CD3 (clone F7.2.38, DAKO) and CD79a
(clone JCB117, DAKO Omnis)) to highlight all mononuclear immune cells (lymphocytes
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and plasma cells). After digitalization, we aligned the images of the same sections as
above and used a similar iterative approach to select FOVs to maximize the variation of
low-, mid-, and high-density lymphocyte regions in both close and distance proximity to
tumor regions. To the best of our knowledge, we are the first to apply this approach to
obtain ground truth annotations for the detection and classification of TILs in H&E-stained
sections. We trained and validated the final cell-level model on a ground truth dataset
(n = 12 images) spanning 69 FOVs and 7277 individual lymphocytes and plasma cells. This
dataset was also verified by a single pathologist (ES) reviewing all annotations with both
H&E and IHC staining side-by-side.

As we deemed the cell-level model most critical to the full analysis pipeline, we
conducted further testing against three expert pathologists before including it in the full
pipeline, see Section 2.4 below.

2.4. Inter-Reader Variability and Validation of the Cell-Level Model

We obtained the validation set and investigated the following three key aspects; (1)
the effect of having IHC available on manual recognition of a cell as a lymphocyte or
not, (2) the inter-reader variability between manual readers using H&E only, and (3) the
analytical performance of the cell-level TIL model. This was performed by having three
pathologists mark and count sTILs. One pathologist (ES) with H&E aligned with IHC and
two (RV and RJ) with H&E only to mimic the clinical setting. We used full slide images
(n = 4) that were not part of the development data, where we preselected a total of 12
FOVs spanning a range of low, mid, and high-density TIL regions in intertumoral stroma
varying range of proximity to tumor regions. The pathologist with access to H&E and
IHC used the Visiopharm platform (Visiopharm A/S, Hørsholm, Denmark) to align the
two images, so information from both could be displayed at the same time at a cellular
level. The pathologists with access to only H&E used the Concentriq platform (Proscia
Inc., Philadelphia, MA, USA) to mark cells as sTILs, which then could be imported to the
Visiopharm platform for further analysis.

2.5. Manual Biomarker Assessment

To obtain the manual sTIL status, we used H&E slides from two FPPE tumor blocks, if
available, and averaged the score or a single slide if only one block was available. Either
the original H&E slides from diagnostics following primary surgery were used, or two
new 4 micrometer slices were cut and stained with H&E following routine procedures. The
sTIL evaluation followed guidelines published by the TIL-WG [25]. Three pathologists
(ES, AR, and EB) evaluated 204 cases, and the remaining cases were evaluated by a single
pathologist (ES) with a consensus reached with the other two pathologists in difficult cases.
We used the manual sTIL status as a continuous variable when possible and with a cutpoint
of >10% [21,39–41].

2.6. Statistical Analysis

We used overall survival (OS) as the primary endpoint for prognostic analysis, defined
as the time from primary surgery until death from any cause with censoring at the last
visit date. We also included relapse-free survival (RFS), defined as the time from primary
surgery to local or distant relapse with censoring at death or date of the last visit, as the
secondary endpoint.

We applied the Kaplan–Meier method [42] to estimate OS and RFS, and Cox propor-
tional hazard models [43] to quantify the hazard ratio (HR) for the effects of biomarker
groups (continuous or with distinct cut-offs). For continuous variables, we divided the
manual sTIL with 10, and the sTIL Density with 300, so the HRs given represent differences
of increments of 10 and 300, respectively.

The multivariate analysis included age (≥50 vs. <50 years), tumor size (≤2 vs. >2 cm),
number of lymph node metastases at primary surgery (0 vs. 1–3, 0 vs. ≥4), tumor type
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(ductal vs. lobular, ductal vs. other). Only cases with complete data were included in the
multivariate analysis.

We conducted all statistical analyses in the R (version 4.0.3).

3. Results
3.1. Automatic sTIL Density Is Associated with Improved Overall Survival

Manually assessed sTIL is known to be associated with prognosis in TNBC pa-
tients [21,44], often stratified into two prognostic groups: high and low sTIL status [21,39,40].
To be able to investigate if the sTIL density score is similarly associated with OS, we also
stratified the patient cohort into two groups: high and low sTIL density by using maxi-
mally selected rank statistics [45] for cutpoint selection of our automated approach. We
found an optimal cutpoint of 470 sTIL/mm2 and used this to estimate OS according to the
Kaplan–Meier method, and compared the results to the manual sTIL status with cutpoint
> 10% [21,39,40], see Figure 3. For the included cohort, both manual sTIL status and sTIL
density stratified the patients significantly into two distinct prognostic groups (p < 0.0001).
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3.1.1. Univariate Analysis

To further compare our method’s association with OS, we conducted a univariate
analysis on both manual sTIL status and sTIL density as a continuous variable (see Table 1).
Higher sTILs scores evaluated both automatically and manually were associated with
significantly prolonged OS. Every 10% or 300 sTILs/mm2 increase in the biomarker score
results in ~20% decrease in risk of death for manual (HR: 0.81 CI: 0.71–0.93) and automated
score (HR 0.82 CI: 0.72–0.93), respectively. Neither of the methods was significant for RFS,
with only the nodal status being significantly associated with RFS (see Table 1). Most no-
ticeably, the univariate analysis confirmed the same significant and independent prognostic
value of automated sTIL density and manual sTIL assessment as a continuous variable.
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Table 1. Univariate analysis of the included clinical parameters and biomarkers. 1 Manual score is in
increments of 10. 2 sTIL density is continuous but normalized to increments of 300 sTILs/mm2.

Variable
HR (95% CI)

OS p RFS p

Age 3.37 (1.75–6.49) <0.001 1.83 (0.96–3.52) 0.068
Nodal status

1–3 1.61 (1.01–2.55) 0.043 2.04 (1.16–3.57) 0.013
≥4 4.37 (2.57–7.43) <0.001 4.33 (2.20–8.51) <0.001

Tumor size 1.55 (1.00–2.41) 0.049 1.69 (0.98–2.93) 0.060
Tumor type

Ductal vs. lobular 4.21 (1.32–13.44) 0.015 4.07 (0.98–16.94) 0.053
Ductal vs. other 0.95 (0.58–1.55) 0.826 0.74 (0.38–1.42) 0.367

sTIL status (manual) 1 0.81 (0.71–0.93) 0.002 0.89 (0.77–1.02) 0.090
sTIL density (auto) 2 0.82 (0.72–0.93) 0.002 0.87 (0.75–1.02) 0.085

3.1.2. Multivariate Analysis

To investigate the added prognostic information of sTIL density versus sTIL status
to standard clinical prognostic factors, we used multivariate analysis on both OS and RFS
variables (see Table 2). sTIL density was still found to be prognostic for OS (HR: 0.81 CI:
0.72–0.92 p = 0.001) independent of age, tumor size, nodal status, and tumor type. The
same was observed for manual sTIL status (HR: 0.79 CI: 0.68–0.91 p = 0.001). For RFS, both
methods were found to be significant.

Table 2. Multivariate analysis: 1 Manual score is in increments of 10. 2 sTIL Density is continuous but normalized to
increments of 300 sTILs/mm2.

Method
Overall Survival Relapse Free Survival

HR 95% CI p-Value HR 95% CI p-Value

sTIL (manual) 1 0.79 0.68–0.91 0.001 0.84 0.71–0.99 0.037
Tumor Size 1.44 0.92–2.25 0.115 1.57 0.89–2.75 0.117

Age 2.96 1.52–5.77 0.001 1.72 0.88–3.35 0.112
Nodal status

1–3 1.92 1.20–3.07 0.007 2.23 1.26–3.95 0.006
≥4 4.52 2.61–7.84 <0.001 4.42 2.19–8.90 <0.001

Tumor type
Ductal vs. lobular 1.79 0.55–5.84 0.335 1.73 0.40–7.46 0.461
Ductal vs. other 0.91 0.55–1.51 0.718 0.74 0.38–1.45 0.384

sTIL density (auto) 2 0.81 0.72–0.92 0.001 0.86 0.75–1.00 0.047
Tumor Size 1.43 0.91–2.24 0.124 1.56 0.89–2.75 0.122

Age 3.02 1.55–5.90 0.001 1.76 0.90–3.43 0.099
Nodal status

1–3 1.91 1.19–3.07 0.007 2.22 1.25–3.92 0.006
≥4 4.12 2.40–7.08 <0.001 4.11 2.06–8.19 <0.001

Tumor type
Ductal vs. lobular 2.15 0.66–6.95 0.203 2.00 0.47–8.52 0.347
Ductal vs. other 0.89 0.54–1.48 0.664 0.74 0.38–1.44 0.375

3.2. Cell-Level TIL Model Correlates with Manual Expert Pathologists

Previous studies have shown inter-reader variability for identifying individual sTILs
in H&E [14,46]. Therefore, a key part of the fully automated pipeline is to be able to count
the correct number of sTILs. To determine the degree of inter-reader variability and the
analytical validation of the cell-level TIL model, we used the data described in Section 2.3,
where we also applied the TIL model to the same regions to measure the agreement. The
results are shown in Figure 4 of the correlation between the approaches. The TIL model
had a high correlation with all three pathologists, especially the pathologist with access to
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both H&E and IHC CD3 + CD79a (Spearman correlation coefficient rs = 0.916). Moreover,
the inter-reader agreement between the pathologist was also high, but with the lowest
correlation between the pathologist with access IHC and pathologist 3 (rs = 0.783). The
lowest correlation to the TIL model was seen between pathologist 3 (rs = 0.853), where
the pathologist counted fewer TILs in many cases. Overall, we observed an inter-reader
variability between the expert pathologists and that the TIL model had the highest correla-
tion with the pathologist who had access to the same information (H&E + IHC) as the TIL
model was trained against.
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3.3. Automatic sTIL Density Correlates with Manual sTIL Assessment on Full Section H&E Slides

When scaling sTIL scoring up to the full tissue section, the manual assessment score
is prone to many pitfalls [14] even though guidelines are followed. To validate the full
automated analysis pipeline, we used Spearman correlation to test if there is a significant
linear relationship between the manual sTIL assessment score (see Section 2.5) and the
automatic sTIL density output from our approach, see Figure 5. We observed a significantly
high correlation (rs = 0.79, p < 0.001) between the two methods. As expected, we did not
see a perfect correlation as our method uses the computed sTILs per mm2, whereas the
manual scoring guideline is an estimate of area coverage by sTIL. We also observed larger
disagreement for higher sTIL scores comparable to the inter-pathologist agreement for
manual scoring whole section cases [47]. The result is comparable to the variance observed
between pathologists scoring sTIL [14,47].
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We found a total of 50 discrepant cases between low and high sTIL groups using the
cutpoints for each method. At this specific cutpoint, this binary classification corresponds
to a sensitivity and specificity of 81.2% and 80.5%, respectively (22 false positives and
28 false negatives). To understand these discrepant cases more, we looked at the manual
score and image analysis quality. For 39 of the discrepant cases, the manual score was
obtained as a consensus between 3 pathologists. The remaining 11 cases were scored by
a single pathologist. Twenty-eight cases were scored >10% manually but are below the
cutpoint for the automated method. For these, the average manual sTIL status is slightly
above the cutpoint (µ = 21%) with an average standard deviation between pathologists of
5%, and the average sTIL density is 310 cells/mm2. For the other scenario, where 22 cases
were scored ≤10% but were above the cutpoint for the automated method, the manual
sTIL status was 10% for 82% of these cases (µ = 8.6%) with an average standard deviation
between pathologist of 2%. The automated sTIL density of these cases is 725 cells/mm2. For
47 of the discrepant cases (94%), both scores from the manual and automated method were
around their respective cutpoints, and we consider these within the expected discrepancy
around cutpoints. The last three cases all had manual sTIL > 30% but were below the
automated cutpoint. One case had a sectioning artifact resulting in a lower automated score.
The two others had high lymphocyte infiltration along the invasive margin but almost no
sTILs in the central tumor-associated stroma. The discrepancy might result from how the
contribution from the two compartments was averaged as the automated method does not
treat the two compartments (invasive margin and tumor-associated stroma) equally but
averages the density across all tumor-associated stroma.

4. Discussion

In this study, we designed a digital image analysis pipeline that joins several algo-
rithmic steps, including a tissue-level segmentation model and a cell-level TIL model that
combined adhere to the manual scoring guideline by the TIL-WG. We demonstrated how
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our sTIL density score is independently prognostically significant for OS, similar to manual
sTIL status on whole sections. Furthermore, the automatic score stratifies patients in low-
and high-sTIL density groups that are highly associated with OS and correlate highly with
the manual sTIL assessment. Our study shows for the first time that sTIL density in TNBC
can reliably be assessed by a fully automatic deep learning pipeline.

Compared to prior attempts to apply image analysis for computational assessment
of sTIL, such as patch- [26], object- [28,29], or segmentation-based methods [27,48], our
study incorporates all parts of the TIL-WG guideline; from discriminating tissue from glass,
and excluding necrotic regions and inflammation related to the non-invasive epithelium,
such normal glands and DCIS/LCIS. A recent study [33] investigated several aspects of
computational TIL assessment for prognosis in TNBC. To find the optimal compartment
(margin, tumor-associated stroma, etc.), they used manual annotations and found no differ-
ence in the various regions. To investigate the immune cell population that is optimally for
prognostic biomarker assessment, they used IHC for CD3, CD8, and FOXP3, and again
found that all subtypes of markers correlate with survival. These observations are in line
with ours as we do not discriminate between invasive margin and tumor-associated stroma
but simply perform a combined assessment of the two compartments. Similarly, we do not
discriminate between the immune cell subtypes but quantify all mononuclear immune cells
as one class as stated by the TIL-WG guideline. These observations indicate that manual
region annotations and immune cell subtypes are not necessary to obtain a prognostic
immune-related biomarker for TNBC.

Recent studies have also shown the benefit of combining tissue- and cell-level deep
learning models to interrogate the TME in breast cancer, such as the local TIL infiltration
around DCIS structures [49], or engineering hundreds of features from these models to
predict molecular signatures [50]. Our results align well with the benefits of having both
multi-level analyses. In contrast to these studies, we focus on a single proven biomarker,
and we sought to translate the manual guideline into a computational approach that could
be performed by a computer. This can be combined with other biomarkers such as the
tumor stroma ratio (TSR) [51] directly from the same H&E section, which also is associated
with survival when calculated computationally on tissue microarrays (TMAs) [52], or with
IHC markers such as the expression of programmed death-ligand 1 (PD-L1) [53].

To not be limited by expensive and subjective expert annotations in the development
data used in this and future studies, we also rigorously focused on an objective approach
to generate ground truth data that is scalable at both tissue- and cell-level. Other related
applications also used similar IHC techniques to transfer annotations to H&E. Tellez
et al. [38] used PHH3 to guide annotations of mitotic cells in breast cancer tissue, Bulten
et al. used P63 and CK8/18 as the reference standard for a CNN to segment epithelium in
prostate cancer [54], and Valkonen et al. [55] automatically transferred CD45 to an H&E
slide to segment leukocytes in papillary thyroid carcinoma. Similar to ours, these methods
also involve a manual step in the process. However, we use it to generate tissue- and
cell-level annotations and show that this technique works for guiding annotations of all
relevant mononuclear immune cells in breast cancer.

Our approach allows us to investigate and quantify the TME for a specific cellular
biomarker across the entire WSI image. Hence, it overcomes the limiting constraints
of manual reading as counting all cells and measuring precise stromal area in samples
with complex tumor patterns is intractable to perform for a human, e.g., related to the
heterogeneity in sTIL distribution [14]. Even though small differences exist in the averaging
compartments between our method and the TIL-WG guideline, the sTIL density shows
similar potential as a prognostic biomarker as the manual assessment for the investigated
cohort. These findings also confirm previous studies in breast cancer, in which sTIL
assessment is found to be associated with improved prognosis [21,44]. One of the sources
for variability in manual scoring is the adherence to the guideline definition [14]. Using a
computational approach that adheres to that definition increases the standardization for
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scoring TNBC patients, while it also shows similar concordance to the clinical outcome of
those patients.

Our study also has several limitations. First, even though our models show good
generalizability on the retrospective cohort (n = 480 WSIs), we developed them on a
limited number of cases. This means that the models might not perform optimally on
another study cohort from a different site with a distributional shift in, e.g., preanalytical
protocols, staining protocol, or scanner type [56,57]. Future development of our approach
should extend the development dataset of both tissue- and cell-level models to be multi-
institutional, covering the innate variability of the above-mentioned factors.

The cutpoint for the low- and high-sTIL density also has limitations as it was found
within the single study cohort. As we used the biomarker as a continuous variable in the
multivariate analysis for OS, this should not affect the evidence of our methods’ association
to improved prognosis. The discrepancy at the binary cutpoint between the manual
and automated approach should also be compared to the variability of manual scoring
(intraclass correlation coefficients of 0.77–0.94 for discrete cut-off values) [14]. However,
in future validation, the optimal cutpoint should be investigated further and tested on an
independent cohort. In general, new emerging biomarkers must be co-developed with
a digital image analysis tool to ease the clinical adoption by pathologists. By doing so,
clinicians simultaneously learn about the biomarker and familiarize themselves with the
pros (and cons) of quantifying it using machine learning (ML)-based scoring approaches.
Hence, the clinical validation will become a combination of the biomarker and automated
scoring method providing a combined computational biomarker, and not just a digital
tool add-on after years of manually scoring the biomarker. With the current pace of
advancement in ML for healthcare, it will also become instrumental that existing clinicians
and future generations of physicians obtain formal training in computational approaches
so they can better assess the clinical needs, advice on how it is best integrated into their
workflow, and perform the critical appraisal of the performance of ML-based systems [58].
All this to ensure the added value in day-to-day clinical decision making.

Even though our analytical validation of the TIL model shows a high correlation
between our approach and the expert pathologist, this step of the algorithm is critical
to the validity of the full pipeline. There are recent efforts by regulatory instances to
develop and provide the dataset for validating exactly this kind of computational step [46].
We recommend that such efforts might be supplemented by our annotation approach to
generate a more objective ground truth for estimating the density of sTIL in breast cancer,
so the reliance on large-scale pathologist annotation is limited while mitigating variability
in the process.

Should the automated approach then completely replace the manual sTIL assessment?
No. The automated approach might be faster and more reproducible in many aspects but
also has several limitations, as discussed above. We recommend using our approach as
another tool in the pathologist toolbox to help increase reproducibility and handle key
factors such as sTIL heterogeneity by automatically computing objective counts and area
metrics recognized by the models. This is also the recommendation from the TIL-WG [15].
As the diagnostic responsibility resides with the pathologist, these metrics need to be
presented quantitatively and visually for manual review and sign-off. Future development
of our approach could therefore extend to investigate the impact of a combined setup of a
pathologist using a computational method on the clinical outcome of the patient.

5. Conclusions

We demonstrated in a large retrospective cohort that a fully automated H&E image
analysis pipeline could quantify sTIL density showing both high concordance with manual
scoring and association with the prognosis of patients with TNBC. While prior studies have
followed fragments of the TIL-WG guideline, our approach follows all complex aspects
where appropriate supporting the TIL-WG vision of computational assessment of sTIL in
the future clinical setting.
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Supplementary Table S1. Clinicopathological characteristics of the patient population. 

N = 262 

Method 

 

Number of patients (%) 

Age  

 ≤50 66 (25.2) 

 >50 196 (74.8) 

Tumor size  

 ≤2 108 (41.2) 

 >2 153 (58.4) 

 Unknown 1 (0.4) 

Tumor type  

 Ductal 47 (76) 

 Lobular 3 (1.1) 

 Other 60 (22.9) 

Nodal status  

 0 47 (17.9) 

 1 18 (6.9) 

 2 16 (6.1) 

 Unknown 5 (1.9) 

Type of operation  

 Mastectomy 100 (38.2) 

 Lumpectomy 162 (61.8) 

 



Appendix C

Pitfalls in Machine
Learning-assessment of

stromal tumor infiltrating
lymphocytes in breast

cancer

In this appendix, we include:

Thagaard, J., Hauberg, S., Dahl, A., Ebstrup, T., Doré, J., Roslind, A., Nielsen,
D., Balslev, E., Salgado, R., ..., & Stovgaard, E.S. (2021) Pitfalls in Machine
Learning-assessment of stromal tumor infiltrating lymphocytes in breast cancer.
To be submitted.



 

 
 

 

 
Cancers 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/cancers 

Review (to be submitted)  1 

Pitfalls in Machine Learning-assessment of stromal tumor infil- 2 

trating lymphocytes in breast cancer  3 

Jeppe Thagaard 1, 2*, Søren Hauberg 1 , Anders B. Dahl 1 , Thomas Ebstrup 2 , Johan Doré 2, Anne Roslind 3, Dorte Nielsen4, 4 

Eva Balslev 3, Roberto Salgado 5, …, and Elisabeth Specht Stovgaard 3 5 
1 Technical University of Denmark, Kgs. Lyngby, Denmark 6 
2 Visiopharm A/S, Hoersholm, Denmark 7 
3 Department of Pathology, Herlev and Gentofte Hospital, Herlev, Denmark 8 
4 Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark 9 
5 GZA, Antwerp, Belgium 10 

 11 
* Correspondence: jth@visiopharm.com;  12 

Simple Summary: Recent breakthroughs in the field of machine learning (ML) has had a major 13 

impact on the field of pathology, and hold promise to overcome many pitfalls of new emerging 14 

biomarkers that otherwise are difficult to incorporate into clinical practice. Our study aimed at iden- 15 

tifying common challenges for newly-developed prognostic tools that use machine learning (ML) 16 

to score tumor infiltrating lymphocytes (TILs) in breast cancer. We found that several sources caus- 17 

ing inconsistent results are similar to manual assessment, and further categorize challenges unique 18 

to ML methods into methodological aspects, data challenges, and validation issues to aid future 19 

development efforts. We conclude that even though ML assessment of TILs has prognostic potential 20 

comparable to manual scoring, it still has common pitfalls general to the field of computational 21 

pathology. However, we are confident that these can be overcome with further development and 22 

clinical validation. 23 

Abstract: The clinical significance of the tumor-immune interaction in breast cancer (BC) has been 24 

under intense investigation, and tumor infiltrating lymphocytes (TILs) have re-emerged as a robust 25 

and reasonably reproducible biomarker for patients with triple-negative (estrogen and progester- 26 

one negative, HER2 normal expression) (TNBC). However, it is a challenging biomarker to incor- 27 

porate into clinical practice. Recent efforts to use machine learning for automated evaluation of TILs 28 

to address the complexity of manual scoring guidelines show promising results. We review state- 29 

of-the-art approaches and identify pitfalls and development challenges that cause discordant cases 30 

to manual TIL assessment. The main source of inconsistent cases is the inclusion of false-positive 31 

areas or cells driven by performance on certain tissue patterns, or design choices in the computa- 32 

tional implementation. Other pitfalls are similar to manual assessment: technical slide issues, and 33 

heterogeneity in the spatial distribution of TILs. However, ML assessment can also produce results 34 

beyond human capabilities, and how discrepancies like these are settled requires validation consid- 35 

erations. Therefore, to aid in solving these challenges, we also give an in-depth discussion on ML 36 

and image analysis aspects, data challenges, and validation issues that need to be considered before 37 

reliable computational reporting of sTILs can be incorporated into the routine clinical management 38 

of TNBC patients. 39 

Keywords: deep learning; digital pathology; guidelines; image analysis; pitfalls; prognostic bi- 40 

omarker; triple-negative breast cancer; tumor-infiltrating lymphocytes 41 

 42 

1. Introduction 43 

In recent years, the treatment potential, as well as the prognostic and predictive sig- 44 

nificance of the tumor-immune interaction in breast cancer (BC), has been under intense 45 
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investigation [1,2]. In this context, tumor infiltrating lymphocytes (TILs) have been shown 46 

to be a robust and reasonably reproducible biomarker [3,4,5]. In BC, especially the basal- 47 

like or triple-negative (estrogen and progesterone negative, HER2 normal expression) 48 

(TNBC) and HER2 positive subsets exhibit a more pronounced tumor-associated immune 49 

infiltrate. In the TNBC group, a 10% increment in TILs results in a 17% increase in overall 50 

survival (OS) [6]. TILs have also been shown to be predictive of chemotherapy treatment 51 

[7,8]. The evaluation of TILs was recommended in the 2019 St Gallen International Breast 52 

Cancer Conference for routine diagnostics of TNBC [9], and in Denmark, the evaluation 53 

of TILs is now incorporated in national guidelines as an optional item for TNBC diagnos- 54 

tics. 55 

With this increasing emphasis on TILs in both research and diagnostic settings, it is 56 

imperative that evaluation is correct and reproducible. The International Immuno-Oncol- 57 

ogy Biomarker Working Group on Breast Cancer (TIL-WG) has devised a set of guidelines 58 

for manual TILs evaluation on hematoxylin and eosin (H&E) stained slides [10].  59 

Whilst this method of evaluating TILs is reproducible among trained pathologists 60 

with intraclass correlation coefficients of 0.77-0.94 for discrete cut-off values [11,12], it is a 61 

challenging biomarker to evaluate and does require some degree of training, which can 62 

be difficult in a busy clinical setting. Additionally, time consumption when adding addi- 63 

tional biomarkers to an already challenging workload can be problematic.  64 

Recent breakthroughs in the field of machine learning (ML) have had a major impact 65 

on the field of computational pathology [13]. Automated evaluation of TILs using ML 66 

technology - also referred to as computational TIL assessment (CTA) – is no exception. 67 

ML is a promising solution to many of the issues of visual TIL assessment (VTA), and can 68 

potentially lead to a standardized and reliable evaluation of TILs regardless of the level 69 

of pathologist training, with being less time-consuming as an added benefit.  70 

Using ML and digital image analysis to analyze immune infiltration is not a new idea, 71 

and has been studied sporadically over the last decade [14,15,16,17]. However, several 72 

novel approaches have concurrently shown the prognostic potential of deep neural net- 73 

work-based algorithms for this task [18,19,20].  74 

When developing algorithms to evaluate TILs in breast cancer, there are important 75 

aspects, challenges, and pitfalls that need to be considered, and new development and 76 

research should be performed before ML tools can be implemented into the routine clini- 77 

cal management of breast cancer. 78 

In this review, we take a closer look at the current state of CTA and specifically focus 79 

on how some of the same pitfalls for manual assessment [11] impact these ML-based 80 

methods. We do this by categorizing inconsistent cases mentioned in recent CTA studies 81 

[18,19,20]. In addition, we extend this analysis to the challenges unique to solving some of 82 

the pitfalls with automated approaches to TILs evaluation. We categorize our findings 83 

into four main topics; (i) general pathology pitfalls, (ii) ML and image analysis aspects, 84 

(iii) data challenges, and (iv) validation issues.  85 

 86 

2. Background 87 

Briefly, the TIL-WG guidelines distinguish between intratumoral TILs (iTILs) in di- 88 

rect contact with tumor cells, and stromal TILs (sTILs), which are located in the stromal 89 

tissue between islands of tumor cells. It is also imperative that areas of necrosis, ductal 90 

and lobular carcinoma in situ (DCIS/LCIS), and normal breast tissue are excluded. TILs 91 

are defined as mononuclear immune cells, i.e. lymphocytes and plasma cells. The guide- 92 

lines recommend focusing on sTILs, as evaluation of these is more reproducible [6]. sTILs 93 

are then assessed as a percentage area coverage of total stromal tumor area, and the final 94 

score is reported as a continuous variable.    95 

The TIL-WG has also presented a report on how computational assessment of TILs 96 

could be designed with the recommendation that; "computational TIL assessment (CTA) al- 97 

gorithms need to account for the complexity involved in TIL-scoring procedures, and to closely 98 

follow guidelines for visual assessment where appropriate" [21]. Several different approaches 99 
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to CTA exist from more granular approaches, closely mimicking the guidelines recom- 100 

mended by the TIL-WG, to more coarse strategies with methods also varying in level of 101 

automation. Here, we mainly focus on the recent works that concurrently have created 102 

different CTA algorithms that adhere to the guideline.  103 

Bai et al. (2021)[19] published a QuPath [22] open-source method, where the 104 

pathologist manually draws the tumor region and excludes non-invasive epithelium 105 

(DCIS/LCIS and normal lobules). To handle H&E stain variability, stain normalization is 106 

applied before the cells are segmented using a traditional image analysis algorithm (wa- 107 

tershed cell detection). Finally, a model, trained on extracted cellular features, classifies 108 

all cells as either tumor, TILs, fibroblast, or other. From this, the algorithm then outputs 5 109 

different quantitative variables of both area percentages of TILs, TIL densities in the 110 

drawn region, and a proportional number of TILs relative to the tumor, stromal, and total 111 

cell numbers. 112 

Sun et al. (2021)[20] presented a more comprehensive approach. After the manually 113 

drawn tumor and exclusion of non-invasive regions, a tissue-level model detects and ex- 114 

cludes necrosis automatically to make sure that necrotic cells are not misinterpreted as 115 

lymphocytes. From here, cells are directly detected and classified as malignant epithelial 116 

cells, TILs, or other cells by a cell-level model. The classified cells are then used to identify 117 

the tumor, stroma, and lymphocyte-dense regions using a rule-based system, which then 118 

outputs a regional-based quantitative variable of the area coverage of sTIL.    119 

Thagaard et al (2021)[18] proposed a fully automatic algorithm using commercial 120 

software (Visiopharm A/S, Hoersholm, Denmark), where a tissue-level model finds the 121 

tissue section on the slide and then detects the tumor, non-invasive, stromal, and necrotic 122 

regions with no manual interaction. A cell-level model then detects cells as TILs and out- 123 

puts a quantitative variable of the density of TILs in the tumor-associated stroma. 124 

Other studies have previously proposed alternative metrics [17] or used other stains 125 

than H&E [23,24,25]. We found that these methods lack consistency with the VTA guide- 126 

line and refer the reader to Amgad et al. (2020) [21] for an overview. 127 

The common findings across these studies are that CTA is observed to have a good 128 

to excellent agreement with VTA, and more importantly, independently associated with 129 

patient outcome confirming that patients with TNBC and high CTA score have a signifi- 130 

cantly favorable survival. However, all studies also agree that CTA is not a panacea to the 131 

drawbacks of VTA, and there is still much research to be done in terms of handling pitfalls, 132 

further development, and clinical validation. 133 

 134 

3. Common pitfalls between visual and computational assessment 135 

On behalf of the TIL-WG, Koz et al. (2020) previously identified and reported the 136 

most common pitfalls when evaluating TILs manually. Some of these pitfalls are also rel- 137 

evant when developing ML approaches, and in the following, these will be discussed, as 138 

well as potential pitfalls unique to the automated approaches to TILs evaluation.  139 

3.1. Including wrong area or cells 140 

Failure in one or more models that detects areas or cells is the most common reason 141 

for inconsistent CTA results with manual scores. Including the wrong area in the quanti- 142 

fication are generally due to failure cases on the tissue-level models. The tissue-level pit- 143 

falls include: (i) including TILs around non-invasive structures (DCIS/LCIS and normal 144 

lobules [18,20]. (ii) extensive lymphovascular invasion [20]. (iii) including necrotic regions 145 

as stroma due to loose appearance and necrotic areas [20]. (iv) tertiary lymphoid struc- 146 

tures (TLS) [20]. (v) variability of tumor subtype morphology [18,20], where mucinous, 147 

metaplastic, apocrine, papillary, or lobular carcinomas can be a challenge to generalize to 148 

if the development data is skewed towards the more frequent ductal carcinoma pattern. 149 

Both Sun et al. (2021) and Bai et al. (2021) point to exclusion of these confounding regions 150 

being performed manually, and hence being subject to the same pitfalls as fully manual 151 
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VTA. In Thagaard et al. (2021), this step is performed automatically, but reports issues 152 

around very difficult DCIS regions, not around benign regions or easily distinguishable 153 

DCIS regions. Overall, both manual and automatic approaches have the same pitfalls 154 

around difficult DCIS regions, however, to what extent this is critical for a computational 155 

tool is still unknown. 156 

The cell-level pitfalls, where wrong cells are included, are less common for CTA. Bai 157 

et al. (2021) report catastrophic segmentation failure in 1-2% of cases. The main cause is 158 

not being able to discriminate between iTILs and sTILs, hence cases with a high propor- 159 

tion of iTILs were excluded from the study. Also, apoptotic figures, neutrophils, and low- 160 

grade tumors can cause false-positive TIL detections [19].     161 

For all of the pitfalls mentioned here, the general challenge is due to the lack of per- 162 

formance on the specific task to be solved. In general, the reason for this is mainly two- 163 

fold; the approach selected to solve the task (see Section 4), and/or data variability used to 164 

train the model during development (see Section 5). 165 

 166 

 167 

Figure 1. Lymphocyte-dense regions that should be excluded as the inflammation is not neces- 168 
sarily a immune-response to the tumor. Left) is a TLS and right) are lymphocytes surrounding 169 
vessels. These areas are reported by Sun et al. (2021) as false-positive areas and result in CTA 170 
much higher than VTA. Images from [20] (Supplementary Figure 11 e. and f.). 171 

3.2. Technical factors 172 

Furthermore, technical slide-related issues which are also a common challenge for 173 

VTA [11], also impact any CTA approach. Artifacts such as out-of-focus areas, pen mark- 174 

ings, tissue-folds, and crush artifacts can confuse any tissue- or cell-level model, and cause 175 

inaccurate quantification results, e.g. poor sectioning can cause false-negative TILs, hence 176 

producing an underestimated TIL density score [18].   177 

Scanner variability between different manufactures of slide scanners might be an is- 178 

sue when comparing multi-institutional results between cohorts due to the lack of stand- 179 

ardization of acquisition parameters. The extend of this issue on CTA is yet to be investi- 180 

gated in depth [19], but for other pathology applications such as prostate cancer detection, 181 

results can deteriorate on data from different institutions and scanning systems. We ex- 182 

pect the same applies to CTA algorithms. Similarly, both inter- and intra-site variation in 183 

H&E staining can contribute to differences between cohorts [19,20] similar to other appli- 184 

cations [26].  185 

There are two main approaches to combat these technical factors. First, they can be 186 

handled manually or by a separate model, e.g. excluding out-of-focus [27] or folds [28] in 187 

a pre-analysis step. Or secondly, incorporating more variability into the dataset used to 188 

develop CTA. The latter targets variability in scanning and staining. We cover key aspects 189 

of these issues in Section 5.   190 

3.3. Heterogeneity in sTIL distribution 191 

One of the pitfalls that cause the highest manual interobserver variation is increased 192 

sTILs at the leading edge compared to the central tumor [11], see Figure 2a. It is also 193 
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mentioned by recent CTA studies [18,20] when comparing CTA to VTA. The increased 194 

sTIL density at the leading edge versus central tumor can result in a lower the CTA score 195 

as the immune-deserted stromal region in the central tumor will contribute to a larger 196 

stroma area quantification than estimated by a manual assessor. On the contrary, if the 197 

stroma is scarce in the central tumor, it would be mostly the high density margin that 198 

contribute to the overall score. 199 

In general, the definition of the tumor-associated stroma, i.e. the area, which TILs 200 

should be scored, is not strictly defined in the manual guideline. Sometimes, there are 201 

larger stroma areas within the tumor core, but the exact spatial distance of stromal TIls 202 

adjacent to tumor cells nests versus those stromal TILs that are not adjacent to the tumor 203 

cell nests is not known, yet. See Figure 2b Similar, the lack of a quantitative definition of 204 

a hotspot can be a challenge to adhere to, i.e. which degree should a region be to be con- 205 

sidered too TILs-dense for inclusion. This can lead to discrepancies between VTA and 206 

CTA [18], but it all depends on the implementation of this into the CTA (Section 4), and 207 

the way it is validated (Section 6).  208 

 209 

  

(a) Increased sTILs at the leading edge (b) Too much stroma included  

Figure 2. Examples of discrepant cases from Thagaard et al. (2021). (a) The tumor growas irregularly with small tumor 210 
nets between larger invasive tumor areas. In these cases, the CTA included more stroma than VTA, which results in lower 211 
sTIL density score (larger denominator) compared to the manual score. (b) A case of high sTIL density at the tumor margin 212 
compared to central area. As the stroma is scarce inside the tumor, the sTIL density is reported to very high as mostly the 213 
margin contribute to the score.  214 

3.4. Moving beyond human capabilities  215 

Some of the above discrepancies might be eliminated with improved algorithms, 216 

such as a finer stroma outlining (see Section 4.2) [20]. However, when the CTA is very 217 

precise in its tissue-level outlining as in Thagaard et al. (2021), new pitfalls might arise. 218 

Specifically, CTA can include very small areas of stroma within the tumor nests which a 219 

pathologist might consider too small, but there are no specific rules on how small a stroma 220 

area can be. It can lead to both higher or lower TIL estimation than a manual score if these 221 

areas include many TILs (larger TIL count) or do not include TILs (larger stroma area), 222 

respectively. When CTA can be more precise than what a pathologist would ever do in 223 

practice, it will lead to discrepant cases. However, it again comes down to the validation 224 

approach to settle these, which we discuss more in section 6.  225 

 226 

  227 
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4. Image analysis challenges when adhering to a clinical guideline 228 

Many of the pitfalls, mentioned in the previous section, can be contributed to which 229 

image analysis approach is used to implement the rules of the VTA guideline. The design 230 

choices made here will affect the results. However, in most existing histology-based bi- 231 

omarkers, the current gold reference of scoring is manual expert assessment such as the 232 

interpretation guideline for scoring PD-L1 [29], HER2 [30], and the VTA guideline [10]. 233 

Hence, the computational pathology community always needs to answer the same ques- 234 

tion first; what strategy do we want to use to translate the rules of manual guidelines into 235 

something a computer can execute? There are many valid answers to this question, and 236 

in this section, we review their pros and cons in regards to CTA.  237 

4.1. There exist different solutions to a computer vision problem  238 

There are 3 main categories of computational approaches, one can consider: 1) clas- 239 

sification, 2) object detection, and 3) segmentation. There are also other methods in addi- 240 

tion to combinations of the three, but for clarity, we focus on the major ones here and refer 241 

to Srinidhi et al. (2021) [31] for a more extensive review of methods. First, classification is 242 

the simplest approach and is sometimes also referred to as patch-based approaches in 243 

pathology. The purpose of this approach is to take an image patch/field-of-view (FOV) 244 

and classify it into one discrete label/class from a predefined set of labels, i.e., an image is 245 

turned into a single value. Secondly, object detection is the natural expansion from classi- 246 

fication as the purpose is not only to map what object is in an image but also where it is 247 

located spatially. The location of the objects of interest is usually marked with a bounding 248 

box around the four corners of the object or with a single coordinate in the center of the 249 

object. Lastly, segmentation is the pixel-wise classification of objects in the image, i.e., 250 

every pixel is associated with a label/class which then creates a semantic understanding 251 

of what and where objects are in the image. In contrast to object detection, segmentation 252 

allows you to outline/delineate the border of the objects very precisely. See Fig. 1 for a 253 

graphical overview. The general consideration when selecting a category for a computer 254 

vision problem is to determine the level of precision/resolution needed at inference time, 255 

i.e., how coarse can the output be to still adhere to the guideline. There are also differences 256 

in terms of training data and validation requirements that we will cover in later sections.  257 

As the TIL-WG guideline states [21], a CTA algorithm should be able to do two 258 

things; 1) detect and compartmentalize the tissue section, so 2) the quantification of TILs 259 

is performed in the right compartment. For these two problems, different considerations 260 

apply.  261 

4.2. Considerations for tissue-level models  262 

To detect and compartmentalize the tissue, object detection is often excluded as this 263 

approach is not suited to subdivide complex tissue structures into distinct areas, e.g., 264 

highly infiltrating tumor nests. Most CTA algorithms use a classification approach [17,32] 265 

or full segmentation [16,33]. The main difference involves the coarseness, where classifi- 266 

cation is less precise than segmentation, but resolution can differ depending on the over- 267 

lap of the sliding window.  268 

When using a direct classification of image patches as tumor, stroma, or lymphocyte 269 

regions, one patch might contain different tissue components, which makes classification 270 

difficult. Moreover, this patch-based approach may not provide detailed, quantitative in- 271 

formation on the number or density of TILs. Bai et al (2021) used manual outlining by a 272 

pathologist and did not as such discriminate tumor and stroma areas, which caused prob- 273 

lems with high iTILs cases as mentioned in section 3.1. Sun et al. (2021) also used manual 274 

outlining in combination with a patch-based model to detect and exclude necrosis. They 275 

then used the cell-level output (see section 4.3), and empirically defined a tumor area as a 276 

patch with more than two tumor cells. As also mentioned by the authors, this sliding 277 
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window approach produced relatively coarse region boundaries compared to a full seg- 278 

mentation model [16; 18]. 279 

By providing models that segment the tissue compartments, allows for generating 280 

more detailed quantitative information downstream on the cellular level. Even though 281 

segmentation seems to be the obvious choice to handle the tissue-level task of finding the 282 

stromal area needed for CTA, the approach also has some drawbacks. First, there might 283 

be segmentation artifacts from the sliding window analysis, which is still needed due to 284 

the gigapixel size of whole slide images (WSIs). This can also lead to issues when the tiling 285 

of the WSIs causes that e.g., one glandular structure is divided into two and analyzed 286 

independently, and one part is segmented as invasive tumor and the other part as DCIS. 287 

In the naïve setup, the machine learning model only takes one part into account at a time 288 

in what is called the receptive view, i.e., what is the part of tissue structure physically that 289 

the model sees at each prediction. Such inconsistencies along the edges of each FOV need 290 

to be handled, and there exist post-processing strategies to do so. E.g., in Thagaard et al 291 

(2021), if two segments of DCIS and invasive tumor regions are touching as one object, the 292 

size and shape of the DCIS segment are considered in a logical post-processing step to 293 

determine if both segments should be segmented as DCIS or invasive tumor. The most 294 

important part is that these events are handled consistently, and in relevance to the clinical 295 

guideline. For example, one should rather exclude too much epithelium as DCIS, as there 296 

is often a high density of stromal TILs around these preinvasive lesions, whereby false- 297 

negative DCIS regions would heavily impact the overall TIL score if not excluded as the 298 

guideline states. 299 

4.3. Considerations for cell-level models 300 

In the quantification of TILs, the goal is to output a quantitative number of the num- 301 

ber of TILs. This step is usually performed at the same or higher magnification to include 302 

the cellular level image features in the model. The main goal is to distinguish mononuclear 303 

immune cells from all other cell types – both pathological and host cells. Previous studies 304 

have solved this task with all 3 main types of approaches. Janowczyk and Madabushi 305 

(2016) used a classification model and small sliding window to obtain the most probable 306 

localization of each lymphocyte [34]. A potential drawback of this method is that is com- 307 

putationally inefficient as high precision is dependent on having a high degree of over- 308 

lapping predictions. More recently, several studies [18, 35, 36] have utilized segmentation 309 

models to directly predict the center of all the TILs in a FOV, avoiding the inefficiency 310 

issue. Others [20,37] used a popular combinatory method of both object detection and 311 

segmentation [38] to obtain the localization and outline of TILs at the same time. There 312 

are minor differences between the methods, but the main challenges for the cell-level 313 

models relate to the requirement of the training data needed to develop them, which we 314 

discuss in the section below.  315 

Another consideration is the definition of the final sTIL score as a quantitative output 316 

variable. Recent methods have used different definitions as mentioned in section 2. VTA 317 

guideline uses an area coverage approach, which is the most accessible for humans to 318 

estimate. However, this introduces a slight size bias towards larger TIL nuclei. Does this 319 

mean that a CTA should do the same? We argue that as long as the CTA score quantifies 320 

the degree of immune infiltration and is human interpretable then it is a valid score, and 321 

validation methods will then settle the most appropriate scoring system. The fact that the 322 

recent papers found 7 different output variables that all are associated with survival 323 

[18,19,20] is evidence for this. Interestingly though, the VTA guideline explicitly states 324 

that sTIL should not be scored as a fraction of TILs compared to other cell populations, 325 

but Bai et al. (2021) finds two variables of this type consistently provide better results. This 326 

indicates that there might be other ways of creating a CTA, but it could also just be a 327 

derivative of the model design of the specific paper.  328 

 329 

 330 
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5. Training data challenges to create robust and generalizable algorithms 331 

The models described above are mostly exclusively built using deep learning, a pow- 332 

erful form of machine learning that, given enough training examples, can learn to recog- 333 

nize complex patterns in pathology samples. We will not review all aspects of this field 334 

but refer to [31,39]. However, as the most promising CTA algorithms use deep learning, 335 

we will in this section cover one of the largest challenges of creating such algorithms; 336 

namely the process of obtaining the training data needed to develop them.  337 

5.1. Data variation considerations 338 

The general rule to follow when creating a development dataset is to include the var- 339 

iation which the algorithm is expected to encounter when deployed. Therefore, the re- 340 

quirements strongly depend on the scope of the CTA algorithm, which means what level 341 

of generalization is needed. For example, is it a limited single research study, deployment 342 

to one single or multiple labs participating in the development (internal generalization), 343 

or deployment to a lab outside the development (external generalization)? The answer to 344 

this question indicates the possible variation that the CTA algorithm will encounter. The 345 

main sources of variation originate from the lack of standardization within pathology.  346 

Variability across pathology laboratories in preanalytical (e.g. fixation, sectioning, 347 

etc.) and analytical variables (e.g. H&E staining protocol, scanner type, etc.) causes distri- 348 

butional shifts in the image data. Studies [40] have investigated the impact of such varia- 349 

bles, and methods to normalize and/or increase variability from both scanners [40,41,42] 350 

and staining [26,43] are being developed. 351 

Another important factor to consider when curating the dataset is the impact of his- 352 

tology subtype (infiltrating ductal, infiltrating lobular, mucinous, etc.) and the histomor- 353 

phologic variability that this affects in an increasing data distribution. Even the most pow- 354 

erful computational models such as deep learning will not generalize outside the subtype 355 

seen during training [44,46], e.g., one should not expect to deploy a model on lobular car- 356 

cinomas if the development data only included ductal carcinomas. This aspect sets some 357 

requirements on how to source and sample the patient population as one should strive 358 

for a balanced and realistic dataset between the subtypes.         359 

Luckily, the potential solution to these issues is straightforward in that simply in- 360 

cluding the variation into the development dataset is by far the most powerful approach 361 

to handle it. However, this is a time-consuming process where the tools to do so efficiently 362 

are still not adequate. As we can never collect all the variation that exists, there will be 363 

some variation the algorithm will encounter. For this, methods to monitor and alarm for 364 

novel classes [44], dataset shifts [45,46], and normalization schemes [26,40,43] can poten- 365 

tially mitigate some of the effects of this pitfall.  366 

5.2. Data labeling considerations 367 

Acquiring an adequate number of manual labels is a critical barrier in computational 368 

pathology given the time and effort required from pathologists and others with domain 369 

expertise. Several approaches have been proposed to address the need for manual labels 370 

in large-scale datasets. The requirements for time, expertise, and methods depend on the 371 

model type being trained. For the approaches covered in section 2, the magnitude of in- 372 

vestment correlates with the precision of the output required. In general, classification 373 

labels are the least expensive to obtain, followed by object detection labels and then seg- 374 

mentation labels due to the number of clicks needed to obtain the labels. For the novel 375 

approaches being proposed to address this, the main objective is to limit the need to in- 376 

volve pathologists due to the high cost, the time constraints of clinical practice, and the 377 

repetitive nature of annotation work. 378 

The most straightforward label strategy is to rely on manual annotations, and scale 379 

the number of annotators by involving a large number of experts. This approach has the 380 

advantage of guaranteeing high-quality labels, but it is very expensive. One of the pitfalls 381 
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of manual labels is also the inter-labeler variability and subjectiveness inherent to pathol- 382 

ogy. A solution to handle this label variability is to get multiple annotators to label the 383 

same data, and then make a consensus label. Amgad et al. [37,47] proposed a crowdsourc- 384 

ing framework for both tissue-level segmentation and cell-level classification, object de- 385 

tection, and segmentation. The aim was both to reduce pathologist effort and model the 386 

inter-labeler variability of multiple labelers. They show that multiple non-pathologists (up 387 

to 6) are required to match the performance of a senior pathologist. However, the benefit 388 

is restricted to annotating predominant and visually distinctive patterns. This means 389 

pathologist involvement, and possibly full-scale label effort would be needed to supple- 390 

ment uncommon and difficult classes that require greater expertise.  391 

One of the most important parts of developing a labeled dataset for CTA is con- 392 

sistency and not only the scale of the dataset. This consistency is difficult to adhere to 393 

when relying on manual labels. Compared to other fields such as radiology, pathology is 394 

unique in terms of creating a ground truth definition. For many applications, we rely on 395 

manual experts for ground truth, but we also have the option to use the antibody-antigen 396 

specificity of immunohistochemical stains (IHC). Recently, Thagaard et al. (2021) pro- 397 

posed to use multiple labeling schemes to obtain the tissue- and cell-level labels, respec- 398 

tively. The general strategy is to use IHC stains during development to help guide semi- 399 

automatic labels transfer onto the primary H&E slide, which means that the models then 400 

can be trained and deployed on H&E only. The obvious pitfall of this approach is the need 401 

to either do new serial sections and thus use more valuable tissue. Also, relevant for TILs, 402 

the cellular information might be lost between two consecutive sections due to the cell 403 

size being smaller than the section thickness. Alternatively, the H&E section can be res- 404 

tained with IHC if the expertise is available in the laboratory. Thereby ensuring that the 405 

IHC stained lymphocytes can be found in the HE-stained slide. However, even though 406 

this approach might seem like extra work during development, Thagaard et al. (2021) 407 

showed that the quality and consistency of the labels were higher than manual labels, and 408 

one pathologist was only needed to review the labels, decreasing the time and effort 409 

needed by pathologists. 410 

As WSIs are gigapixel images, it is intractable to label entire WSIs, especially manu- 411 

ally. Therefore, one needs to sample training regions to label. Here, it is important to use 412 

the same principle to include data (label) variation, e.g. for any TIL model, regions of both 413 

low, medium, and high density of TILs should be included, preferably also with varying 414 

degrees of proximity to invasive cells. 415 

Even though many different schemes can be used to optimize both the time and need 416 

to involve pathologists, such schemes also have their pitfalls as discussed above. We ad- 417 

vise always to develop the labeling strategy together with a pathologist and consider it an 418 

iterative process to find errors and inconsistencies that help improve the quality and scale 419 

of the training labels. 420 

5.3. Data access and sharing considerations 421 

It is obvious that access to data in its raw form is needed to develop CTA algorithms, 422 

however, there are significant challenges to collect a dataset of the right cohort. As not 423 

many laboratories are fully digital, i.e. scanning all glass slides on modern WSIs scanner 424 

into an image management system (IMS) or picture archiving and communication system 425 

(PACS), and even less has digitalized historical glass slides, the physical slides of the in- 426 

cluded patients need to be identified from the archival systems and digitized. Scanning 427 

large retrospective datasets can be very time-consuming as most commercial scanners 428 

need to be manually operated, but it also opens up for future research if the dataset is 429 

stored after the initial study.  430 

A key aspect of developing successful CTA algorithms is collaborations between 431 

partners, that is either between academic centers, or between academia and industry part- 432 

ners. Getting the legal terms and conditions into place such that data can be shared be- 433 

tween the partners can be a lengthy process. An important aspect to consider is the need 434 
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to share clinical non-anonymizable metadata as sharing only fully anonymized data sig- 435 

nificantly eases this process in terms of data privacy protection regulations and the in- 436 

cluded requirement on the IT infrastructure and security.  437 

There are successful studies sharing high-quality histology datasets publically under 438 

Create Commons (CC) licenses [48,49] either fully public [50] or restricted for non-com- 439 

mercial use [51]. The latter can hider some academic-industry collaborations, hence we 440 

recommend that datasets should be released under CC4 if possible. The most used plat- 441 

forms for publically sharing datasets are the Grand Challenges website [52], and the Can- 442 

cer Genome Atlas Program (TCGA)[53]. Historically, there has been a shortage of publicly 443 

available datasets for the development of CTA systems with the TCGA cohort being at 444 

least part of the foundation for many CTA studies [17,18,20,37]. However, care should be 445 

taken to avoid bias and batch effect implications from public datasets not necessarily cre- 446 

ated for TILs evaluation [54]. There are recent joint efforts from the FDA and TIL-WG to 447 

create datasets for algorithm validation [55], however, there is currently a lack of available 448 

development datasets. Although collecting a large number of WSIs is time-consuming, it 449 

is a manageable task for many pathology laboratories and medical centers, however, col- 450 

lecting training labels remains a barrier to the scaling of CTA algorithms.  451 

 452 

6. Validation challenges when comparing CTA with VTA 453 

Both when developing and especially validating any image analysis model, quanti- 454 

tative metrics on the performance of the different parts of the CTA algorithm need to be 455 

evaluated. As previously reviewed by the TIL-WG [21], there are different levels of meas- 456 

uring performance. Briefly, analytical validation (AV) refers to low-level metrics such as 457 

accuracy and reproducibility, clinical validation (CV) describes the discrimination of pa- 458 

tients into clinical subgroups, and clinical utility measures the overall benefit in a clinical 459 

setting. In the following, we will discuss some potential pitfalls in model validation. 460 

6.1. Sub-components of modular systems need different evaluation metrics  461 

For the published methods of CTA, it is clear that to adhere to the guideline, the full 462 

algorithm is modular, i.e. multiple models are needed to solve different parts of the guide- 463 

line. Hence, the AV can be applied to the sub-components, and also to the entire system. 464 

As the sub-components can be different model approaches, the exact AV metric needs to 465 

capture the aspects of each approach, while also be informative about when a failure of a 466 

sub-component will cause a failure of the full CTA.  467 

If any sub-component is a segmentation model (e.g. the tumor, necrosis, and non- 468 

invasive tissue-level model), standardized metrics as the F1-score can be used to evaluate 469 

the AV of the model. The F1-score can be interpreted as the weighted average of the pre- 470 

cision and recall/sensitivity. However, one aspect to consider is if it is used locally on a 471 

FOV, and there are no true-positive segments of any class, the F1-score will be evaluated 472 

as zero, i.e. potential false positives will not be captured as false positives, negatively im- 473 

pacting the overall F1-score. Another challenge for sub-component AV is the impact of 474 

the exact score. A benchmark on the exact model selection does not always exist, hence it 475 

is difficult to know if an exact score is sufficient, or any better (or worse) model would 476 

impact the full CTA AV and/or CV.  477 

For the evaluation of the TIL model, Dudgeon et al. (2020) [55] propose both a metric 478 

and a dataset that might qualify as an FDA Medical Device Tool (MDDT) [56]. The pro- 479 

posed metric is a multi-reader multi-case version of the mean squared error (MSE). Other 480 

similar metrics like Spearman rank-based correlation are often also used for the algorithm- 481 

to-pathologist comparison [16,18]. One of the pitfalls of using such count-based metrics is 482 

that they do not capture if the pathologist and algorithm are counting the same TILs but 483 

just compare the sum of TILs. However, the metrics are easy to use and interpret, and they 484 

capture the most clinically relevant aspect of the algorithm – the extent of TILs in a certain 485 

region.  486 
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6.2. Considerations regarding clinical validation and utility    487 

For the AV of the full algorithm, the same metrics can be used for the algorithm-to- 488 

pathologist comparison. However, as recently commented by Acs et al. (2021) [57], it is 489 

still an open question what the best method to evaluate digitally assessed biomarkers such 490 

as CTA for both AV and CV. They point out the paradox of selecting the ground truth for 491 

digital pathology in TILs as either the concordance between the pathologist and the com- 492 

putational score, patient outcome, or a combination of both. This also raises the question 493 

of the clinical cut-off as there are currently no formal recommendations for a clinically 494 

relevant cutoff point for stromal TILs. Not having any stratification of patients into clini- 495 

cally meaningful subgroups using manual VTA, makes the CV more challenging for CTA 496 

because any cut-off comparison between VTA and CTA might be arbitrary. Current CTA 497 

studies [18,19,20] use various cut-off points used for VTA studies [3,58-60] to discriminate 498 

between two groups (TILs-high vs. TILs-low) and find different agreement levels between 499 

manual and automated methods at different cut-offs. Sun et al. (2021) find moderate-to- 500 

substantial agreement depending on the exact cut-offs, but only slight agreement at a 10% 501 

cutoff. On the contrary, Thagaard et al. (2021) find substantial agreement at the same 10% 502 

cutoff on a different cohort. Interestingly, Sun et al. (2021) findings suggest the possible 503 

need for different TILs cut-off values depending on the cohort and different ethnicities, 504 

although no significant difference in TIL distribution was found between Asians and Cau- 505 

casians. This highlights the difficulties of finding a cut-off for biomarkers, in general, 506 

which still involve a high degree of uncertainty [Acs et al., 2021]. On the contrary, both 507 

studies find that the automated CTA score as a continuous variable is associated with the 508 

primary end-points of disease-free survival (DFS) and overall survival (OS). Hence, this 509 

suggests that TILs could be better integrated into prognostic modeling containing existing 510 

clinical variables such as age, LNS, tumor size, and tumor type. This would remove the 511 

need to determine a cut-off, also in different ethnicities. It remains an active field in pro- 512 

gress, and there are still aspects that we don’t know, yet.  513 

 514 

 7. Discussion 515 

Current state-of-art CTA algorithms suggest that stromal TILs can be assessed com- 516 

putationally, and represent a crucial prognostic and predictive factor for TNBC in line 517 

with previous VTA findings [6]. It is also clear that there are different approaches to create 518 

a CTA algorithm without any conclusion on which constitutes the optimal approach. 519 

However, irrespectively of methodology, it is clear that many of the same pitfalls for VTA 520 

[11] also cause potential problematic variability for CTA. Whether this has any impact on 521 

the clinical validation of CTA is yet unknown as it very much depends on how these al- 522 

gorithms will end up being validated. As stated by Arcs et al (2021), the TIL-WG is cur- 523 

rently organizing a grand challenge using phase 3 clinical trial data which is a crucial step 524 

to validate any CTA algorithm. The hope is that this will answer many of the questions 525 

related to the importance of precision of the algorithmic steps that are currently difficult 526 

to evaluate. However, to create highly robust and generalizable CTA algorithms, similar 527 

collaborative community-driven initiatives are needed to build labeled development da- 528 

tasets. Currently, there is no public framework or infrastructure to work collaboratively 529 

on different labeling strategies ensuring that CTA algorithms can identify and handle all 530 

histological components including DCIS within the invasive tumor, fibrosis, hyaliniza- 531 

tion, and a larger number of granulocytes mentioned as confounding factors in the VTA 532 

guideline. We address the lack on this part to rigid institutional requirements governing 533 

privacy protection, and that there is currently no easy and practical way of build com- 534 

bined versioned datasets of standardized WSI and label formats. 535 

Another important but unsettled aspect is the human-algorithm interaction within a 536 

day-to-day clinical workflow. Should the pathologist be required to open a case and man- 537 

ually draw or edit regions, send the cases for analysis and wait for it to finalize the analy- 538 

sis? Or should the algorithm be automated so the case can be analyzed based on slide 539 
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metadata directly after scanning, meaning that the case is already analyzed when the 540 

pathologist opens the case for the first time? It is yet to been seen which and how different 541 

implementations can be optimized to augment and not disrupt the current workflow. Sim- 542 

ilarly, we still do not know how to best present the quantitative results of CTA, e.g. a 543 

precise count of TILs per mm2 or something closer to an area fraction. Findings also sug- 544 

gest that a dichotomous score of both computationally and manual measurement predicts 545 

outcome better than either variable alone [20]. This might affect whether or not the CTA 546 

should provide the primary score or work as a secondary reader on difficult cases. There 547 

are still many unknowns, but work is in progress on many of the challenges as we look 548 

into an exciting future. Until we have more answers to these questions, the diagnostic 549 

responsibility still resides with the pathologist and will probably continue to be in any 550 

foreseeable future regardless. The main question is then how can we provide tools to 551 

pathologists sooner that assist and provide the opportunity to deliver more standardized 552 

care for the patients?  553 

We hope that by highlighting the specific pitfalls in using machine learning for sTIL 554 

assessment, future developments and collaborations will be armed to find the answers 555 

needed to ensure reliable computational reporting of sTILs with the end goal of progress- 556 

ing it into the routine clinical management of breast cancer.  557 
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