

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Computational Aspects of Algebraic Geometry Codes

Solomatov, Grigory Aleksandrovich

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Solomatov, G. A. (2021). Computational Aspects of Algebraic Geometry Codes. Technical University of
Denmark.

https://orbit.dtu.dk/en/publications/9d3af84b-f5bc-4ed1-ac38-faba9a511997

Computational Aspects of
Algebraic Geometry Codes

Grigory Aleksandrovich Solomatov

Kongens Lyngby 2021

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

This thesis is dedicated to an investigation of various computational problems as-
sociated with algebraic geometry (AG) codes – a diverse class of error-correcting
codes among which one finds those that are the most robust to errors. Our main
contribution consists of a Guruswami-Sudan style list-decoding algorithm that
works for any AG code while being more efficient in this fully general setting
than any previously known method. This is achieved by extending an existing
technique that relies on row-reduction of polynomial matrices to solve the same
problem in a more restricted context of one-point Hermitian codes.

We also consider “improved power decoding” – a completely different decoding
paradigm that revolves around certain key equations. Our contribution here
consists of formulating these equations for all AG codes, whereas previous work
has focused on specific cases. This formulation allows us to show that power
decoding likely can correct as many errors as Guruswami-Sudan decoding, which
is consistent with our numerical simulations. Although our decoder uses linear
algebra and is therefore computationally expensive, its conceptual framework
suggests a way of making it as efficient as our main contribution.

Besides decoding, we also investigate encoding of AG codes, albeit in a less
general setting, which reduces the problem to that of multi-point evaluation of
bivariate polynomials. This allows us to develop algorithms that are extremely
efficient for important special cases such as one-point Hermitian codes. We then
consider bivariate multi-point evaluation in a setting completely divorced from
AG codes, where we contribute with novel and efficient algorithms that utilize
precomputation.

ii

Summary (Danish)

Denne afhandling udforsker diverse beregningsproblemer forbundet med alge-
braiske geometri (AG) koder. AG koder udgør en mangfoldig klasse af fejlkor-
rigerende koder, hvoriblandt de mest fejlrobuste findes. Vores største bidrag
består af en Guruswami-Sudan type liste-afkodningsalgoritme, der virker for
enhver AG kode. Denne generelle algoritme er samtidig hurtigere en nogen tid-
ligere kendt metode. Dette opnås ved at bygge på en eksisterende teknik, der
benytter sig af række-reduktion af polynomiumsmatricer for at løse det samme
problem i en begrænset kontekst af etpunkts Hermitiske koder.

Denne afhandling omhandler også ”forbedret power-afkodning”, hvilket er et
anderledes afkodningsparadigme baseret på visse nøgleligninger. Vores bidrag
her består af formuleringen af disse nøgleligninger for alle AG koder, hvorimod
tidligere indsats har fokuseret på specifikke tilfælde. Denne formulering hjælper
os med at demonstrere, at power-afkodning sandsynligvis kan korrigere lige så
mange fejl som Guruswami-Sudan afkodning, hvilket stemmer overens med vores
numeriske simuleringer. Selvom vores afkoder bruger lineær algebra og derfor er
beregningsmæssigt langsomt, så indikerer dens konceptuelle ramme, at den kan
konstrueres lige så hurtigt som vores hovedbidrag.

Udover afkodning undersøger vi også indkodning af AG koder. Dette gør vi i en
mindre generel setting, hvilket reducerer problemet til multi-punkts evaluering af
bivariate polynomier. Dette gør det muligt at udvikle algoritmer, der er ekstremt
hurtige i vigtige specielle tilfælde, såsom etpunkts Hermitiske koder. Derefter
undersøger vi bivariat multi-punkts evaluering i en setting, der er helt adskilt
fra AG koder, hvor vi bidrager med nye og effektive algoritmer, der benytter
forberegning.

iv

Preface

The work which this thesis is based upon was done under the supervision of
(formerly) Associate Professor Johan Rosenkilde and Professor Peter Beelen at
the Technical University of Denmark in the period October 2018–October 2021.
During this time, I have coauthored the following four papers:

[BRS20] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast encod-
ing of ag codes over Cab curves. IEEE Transactions on Information
Theory, 67(3):1641–1655, 2020

[NRS20] Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov. Generic
bivariate multi-point evaluation, interpolation and modular compo-
sition with precomputation. In Proceedings of the 45th International
Symposium on Symbolic and Algebraic Computation, pages 388–395,
2020

[PRS21] Sven Puchinger, Johan Rosenkilde, and Grigory Solomatov. Im-
proved power decoding of algebraic geometry codes. arXiv preprint
arXiv:2105.00178, 2021

[BRS21] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast list
decoding of algebraic geometry codes. To be submitted, 2021

Lyngby, 14-October-2021

Grigory Aleksandrovich Solomatov

vi

Acknowledgments

I wish to express my sincere gratitude to my PhD advisors Johan Rosenkilde and
Peter Beelen. Apart from possessing intimidating levels of expertise in a wide
variety of highly technical topics, they are also both very kind and supportive,
always encouraging and inspiring those around them. I would like to thank
Johan for his contagious enthusiasm and relentless attitude of always being
ready to tackle new challenges while insisting on the highest quality; and I wish
to thank Peter for sharing some of his inexhaustible mathematical insights and
curiosity as well as really useful practical wisdom. Finally, I wish to thank both
of them for their patience with me as their student and for being so generous
with their time.

I am grateful for having had the opportunity to collaborate with Vincent Neiger
and Sven Puchinger, who are both as friendly as they are competent. Also, I
would like to thank Éric Schost for letting me visit him at the University of
Waterloo; it is unfortunate that I had to leave so early because of the pandemic.

I also wish to thank my colleagues at the Section for Mathematics at DTU Com-
pute for creating such a comfortable atmosphere. Especially, I am grateful to
my fellow PhD students for the many fun discussions over lunch and cappuccino
breaks. In particular, I would like to thank my office mate Leonardo Landi for
understanding that I was actually letting him win in fussball all these years.

I am thankful to my friends for exposing me to many new perspectives, and to
my family for all of the support and care that they have given me. Last but not
least, I thank Herdís –my better half – for making this adventure truly special.

viii

I gratefully acknowledge the support from The Danish Council for Independent
Research (DFF-FNU) for the project Correcting on a Curve (Grant No. 8021-
00030B) on which I was hired, as well as Otto Mønsteds Fond for supporting
my travel to Canada.

ix

x Contents

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgments vii

1 Introduction 1
1.1 Reader’s guide . 2
1.2 Complexity model . 2
1.3 Complexities of fundamental algorithms 4
1.4 Algorithms for polynomial matrices 6
1.5 Communication model . 8
1.6 Algebraic geometry codes . 11
1.7 Some properties of function fields 13

2 Encoding and unencoding of one-point AG codes over Ca,b curves 15
2.1 Ca,b curves and their codes . 16

2.1.1 Geometry and defining polynomial 16
2.1.2 One-point codes . 17

2.2 Related work . 20
2.2.1 Encoding . 20
2.2.2 Bivariate multi-point evaluation 21
2.2.3 Bivariate interpolation . 24

2.3 Point sets . 25
2.4 Fast encoding using multi-point evaluation 26
2.5 Fast unencoding using interpolation 28

2.5.1 Interpolation with relaxed monomial support 29

xii CONTENTS

2.5.2 Reducing the monomial support 34
2.5.3 A fast unencoding algorithm 38

2.6 Special curves . 39
2.6.1 Semi-grids . 40
2.6.2 Maximal curves . 43

3 Generic bivariate algorithms 45
3.1 Strategy outline . 45
3.2 Reshaping . 49
3.3 Multi-point evaluation . 53
3.4 Interpolation . 57
3.5 Precomputing Reshapers . 59
3.6 Precomputing reduced ălex-Gröbner basis 62
3.7 Balancedness . 63

4 Partial unique decoding 67
4.1 Related work . 67
4.2 Contributions . 69
4.3 Constructing the key equations 70
4.4 Solving the key equations . 72
4.5 Decoding radius . 77
4.6 Simulation results . 80

5 List decoding 83
5.1 Related work . 83
5.2 Setting . 85
5.3 Representations of function field elements 90
5.4 Guruswami-Sudan decoding . 92

5.4.1 Module structure of interpolation 94
5.4.2 Strategy outline . 98

5.5 Algorithms . 99
5.5.1 Multi-Point Evaluation 99
5.5.2 Interpolation . 100
5.5.3 Computing a Я-generating set ofMprq

s,` pD,Gq 106

5.5.4 Computing an Frxs-generating set ofMprq
s,` pD,Gq 108

5.5.5 Solving the interpolation step of Guruswami-Sudan 114
5.5.6 Root-finding . 116

5.6 A complete decoding algorithm 122
5.6.1 Examples . 124

6 Conclusion 127

A Notations 129

CONTENTS xiii

Bibliography 131

xiv CONTENTS

Chapter 1

Introduction

The ability to reliably transmit information over unreliable channels continues
to grow in importance as digital communication becomes increasingly embed-
ded into the fabric of the modern world. The ever-expanding list of applications
of error-correcting codes includes – but is certainly not limited to – satellite and
fiber-optic communication, local and distributed storage systems, network cod-
ing as well as post-quantum cryptography. In 1981, V. D. Goppa introduced the
astronomically diverse class of algebraic geometry (AG) codes, which have since
generated a considerable amount of theoretical interest as they lend themselves
to deep mathematical analysis and include some of the most error-resilient codes
currently known. The benefits of these codes, however, do not come without a
price: the computational problems associated with using them in practice are
notoriously difficult to solve efficiently, and as a consequence of this, it would be
an understatement to say that their current real-world utility is rather limited.

The primary goal of this thesis is to address some of the main computational
problems associated with AG codes, aiming to bring their theoretical potential
closer to being realized as practical value.

2 Introduction

1.1 Reader’s guide

This thesis adheres to straightforward structure: the current chapter provides
context for Chapters 2–5, all of which can be read independently from each
other. There are a few cross references, but they are never essential and are
always explicit.

The chapter that you are currently reading has two purposes: The first one is
to unify the rest of this thesis under a single overarching “story” as well as to
establish the relevant “rules of the game” when it comes to computer algebra
and algebraic coding theory – an understanding of this will be expected from
the reader later on. The secondary purpose is to contain those technical results
and definitions that are needed in more than one of the subsequent chapters –
these may be confidently skipped during a linear reading, as they are explicitly
referred to when used.

In Chapter 6 we briefly summarize our results and mention potential future
research. Appendix A contains an overview over often used notation.

1.2 Complexity model

Since this thesis is primarily concerned with efficient algorithms, we ought to
carefully specify what we mean by “efficient”. Although it would be perfectly
reasonable to measure an algorithm’s performance by the amount of time or
energy spent while producing the output, we shall instead abide by the more
common practice in computational complexity theory and count the total num-
ber of fundamental operations carried out during the computation. This notion
of performance greatly simplifies complexity analysis as it does not depend on
the physical machine on which the algorithm is being executed. Simplifying
matters even further, we will only consider the worst-case complexity for any
given input size as the workload for an algorithm can vary even across equally
sized inputs.

Instead of considering exact complexity bounds, which are often laborious to
obtain and impractical to compare, we will focus our attention on asymptotic
complexity, utilizing the big-O and the soft-O notation, denoted by Op¨q and

1.2 Complexity model 3

rOp¨q respectively. Formally, for any function f : Zě0 Ñ Zě0

Opfq “
"

g : Zě0 Ñ Zě0

ˇ

ˇ

ˇ

Dc,m0 P Rą0 such that
gpmq ď cfpmq @m ě m0

*

and

rOpfq “
8
ď

i“0

Opf logpfqiq .

For example: pm2 ` 2m ` 3q logpmq3 P Opm2 logpmq3q Ă rOpm2q. Intuitively
speaking, asymptotic complexity measures how the cost of algorithms scales
with input size. From this perspective, an algorithm that costs 10100m P Opmq
operations for input size m is more efficient than one which costs m2, even
though the former is much slower than the latter for all reasonable input sizes.
Consequently, it can be argued that the hunt for asymptotically fast algorithms
might sometimes yield results of little practical utility, which is definitely true1,
but in reality, such cases are exceptions rather than the rule. Before proceeding
to a discussion about “fundamental operations”, let us mention that we will
also sometimes use Donald Knuth’s big-Ω notation, which is defined by the
equivalence: f P Ωpgq if and only if g P Opfq.

Let us now specify what we earlier meant by “fundamental operations”. Since the
algorithms that we will consider mostly deal with algebraic objects constructed
over some (finite) field F, it is natural to express their complexity bounds in
terms of the required number of basic arithmetic operations in F, i.e. additions,
subtractions, multiplications and divisions; as well as zero tests. Although most
of these algorithms are field agnostic – and are therefore correct for all fields – this
notion of algebraic complexity is a poor proxy for execution time on a physical
machine when dealing with fields of infinite cardinality. The reason for this is
simple: The unbounded bit-representation size of elements from infinite fields
can make the physical cost of a single arithmetic operation arbitrarily high, e.g.
due to large denominators in the case of Q.

We conclude this section by mentioning that for certain algorithms it makes
sense to conceptualize the computation as being divided into an “online phase”
as well as a “precomputation phase”. For an illustration of this, consider the
hypothetical example where we have a database consisting of a list containing
m numbers, and our task is to reply to users who wish to know whether a
number of their choosing is to be found in this list. Allowing precomputation,
i.e. sorting the list, reduces the cost of each online query from Opmq checks to
Oplogmq checks – simply using binary search instead of linear search. As far as
the user is concerned, the additional cost of precomputation then hardly matters
(as long as it terminates before deployment, of course).

1 Kedlaya and Umans’ asymptotically efficient algorithm for multivariate multi-point eval-
uation [KU08] has resisted practical implementations according to e.g. [vdHL19], the same
goes the “fastest” matrix multiplication algorithms [LG12].

4 Introduction

1.3 Complexities of fundamental algorithms

In this section we list the computational results that form the bedrock of our
algorithms. We will use them extensively throughout the thesis, often without
referencing their respective sources. As detailed in Section 1.2, the cost of basic
arithmetic operations in our base field F will be considered to be Op1q.

Polynomials

The cost of adding two univariate plynomials in

FrXsăm :“ tf P FrXs | deg f ă mu

is clearly Opmq (actually, it is exactly m). We denote by Mpmq the cost of
multiplying two polynomials in FrXsăm, making the customary assumption that
Mpmq{m is a non-decreasing function. If F supports FFT by containing certain
primitive roots of unity, then Mpmq can be taken to be Opm logmq Ă rOpmq
[vzGG12, Corollary 8.19]. In the general case, the multiplication algorithm by
Shönhage and Strassen gives Mpmq P Opm logm log logmq Ă rOpmq [vzGG12,
Theorem 8.23]. Finally, to the best of our knowledge, if F “ Fq is a finite field,
then the currently fastest known approach is due to [HvdH19]. The product of
any two bivariate polynomials f, g P FrX,Y s with degX f ă m and degY g ă `

can be computed using OpMpm`qq Ă rOpm`q operations in F [vzGG12, Corollary
8.28].

For any two polynomials f, h P FrXs with deg f, deg h ă m, we can compute the
unique remainder r P FrXs with deg r ă deg h such that f “ uh ` r for some
u P F using at most OpMpmqq operations in F [vzGG12, Theorem 9.6].

Two important non-arithmetic operations for polynomials are multi-point eval-
uation (MPE) as well as its its inverse problem– interpolation. Given a poly-
nomial f P FrXsăm and evaluation points α1, . . . , αm P F, MPE computes the
evaluations pfpα1q, . . . , fpαmqq P Fm. Interpolation, on the other hand, takes as
input the points together with some prescribed evaluations v1, . . . , vm P F and
computes the unique polynomial f P FrXsăm with fpαjq “ vj for j “ 1, . . . ,m.
The cost of MPE as well as of interpolation can be taken to beeOpMpmq logmq Ă
rOpmq operations in F, see [vzGG12, Corollary 10.8] and [vzGG12, Corollary
10.12] respectively.

1.3 Complexities of fundamental algorithms 5

Extension fields

Some of our algorithms might require more field elements than what can be pro-
vided by F “ Fq, i.e. the finite field of cardinality q. To accommodate for this,
we might need to go to an extension field Fqe for some e P Zą0. Constructing
such an extension field costs OpeMpeq log e logpeqqq Ă rOpe2 log qq operations in
Fq [vzGG12, Corollary 14.43]; however, in all of our use cases, this can be done
during precomputation without affecting the online complexity. It is easy to see
that one multiplication in Fqe costs OpMpeqq Ă rOpeq operations in Fq – simply
combine polynomial multiplication with remaindering.

Matrices

Following convention, we denote by ω the matrix multiplication exponent, i.e.
some positive real number ω such that the product of any two square matrices
in Fmˆm can be computed using rOpmωq operations in F. Often, ω is defined
to be the smallest2 such number, but we will consider it as a parameter that
the user can choose by using an appropriate matrix multiplication algorithm. A
case can be made that this view is more suitable for real-world applications as
algorithms with lower values of ω tend to become less practical in spite of being
asymptotically fast. It is clear that ω ě 2 since the input size is Opm2q, and
that it probably never makes sense to choose ω ą 3 since the cost of the naive
algorithm has complexity Opm3q.

In 1969, likely being inspired by Karatsuba’s first subquadratic integer multipli-
cation algorithm [KO64], Strassen demonstrated that a divide-and-conquer ap-
proach to matrix multiplication could achieve the exponent ω “ log2 7 ă 2.8074
[Str69], shattering the commonly held belief at the time that ω “ 3 is optimal.
This breakthrough had set in motion a collective search for even faster algo-
rithms –Alman and Williams being the current record holders, showing that it
is possible to choose ω ă 2.37286 [AW21]. It is conjectured that ω “ 2 is the
optimal value, however, Ambainis, Filmus and Le Gall have firmly established
that the current paradigm of matrix multiplication algorithms can never achieve
ω ă 2.3725 [AFLG15].

2to make sure that such ω exists, it is then defined as the smallest value for which the cost
bound Opmω`εq holds for every ε ą 0.

6 Introduction

1.4 Algorithms for polynomial matrices

Multiple times throughout this thesis, we will make use of efficient algorithms
for FrXs-submodules of Frxsm. This section is dedicated to presenting some of
the associated complexity estimates as well as parts of the conceptual framework
needed to reason about them– a great resource on this topic is [Nei16]. Since
the inner workings of these algorithms are not within the scope of this thesis,
we will simply use them as “black boxes”.

Now, computational consideration of any object –mathematical or not – requires
a way of representing it, and a common way of representing submodules of
FrXsm is using a basis. Indeed, any such submodule is free and has rank
r ď m [DF04, Section 12.1, Theorem 4], which means that any of its in-
finitely many possible bases can be associated with the rows of a full rank
matrix M P FrXsrˆm. This level of generality, however, will not be needed
anywhere in the context of this thesis, and so we will assume that r “ m, and
consequently that M P FrXsmˆm is nonsingular.

It should be clear that the row space of a matrixN “ UM P FrXsmˆm, i.e. the
set of all of the FrXs-linear combinations of its rows, is identical to that ofM if
and only if U P FrXsmˆm is invertible, or equivalently if detU P Fzt0u. In such
a case, it is said that N andM are unimodularly equivalent – they describe the
same module, albeit possibly using different bases; the matrix U is then said
called unimodular. Not all basis matrices are equally suited for computation,
however, as demonstrated by the following example:

Example 1.1. Consider the matrices M ,N P FrXs2ˆ2 defined by

M “

„

1 1
0 X

and N “

«

1
ř10100

i“0 Xi

0 X

ff

,

and note that they have identical row spaces. Indeed, N “ UM , where

U “

«

1
ř10100´1
i“0 Xi

0 1

ff

satisfies detU “ 1, but M can be represented using only a few elements from
F, while N needs roughly 10100.

In light of Example 1.1, a natural question to ask is how we can find the “best”
basis matrix M P FrXsmˆm for any given module M Ď FrXsm, or what that
would even mean. One thing is clear though, whatever the notion of “best” we

1.4 Algorithms for polynomial matrices 7

settle upon should result in the entries of M having small degrees – this moti-
vates the following definition, which provides a generalized way of measuring
degrees of row vectors:

Definition 1.2. For any polynomial vector v “ pv1, . . . , vmq P FrXsm and any
shift s “ ps1, . . . , smq P Zm, we define the s-degree of v as

degs v “ max
i
tdeg vi ` siu .

Furthermore, if j P t1, . . . ,mu is maximal such that deg vj`sj “ degs v, then we
say that vj is the s-pivot of v, and j is its s-pivot index. If we omit writing s in
any of the above notation, then it is to be understood that s “ 0, i.e. we might
write: pivot, pivot index and degree, denoting the latter by deg v :“ deg0 v.

Intuitively speaking, the pivot of a polynomial vector is its rightmost entry of
maximal degree, and the pivot index is the index of this entry. An analogous
statement holds for the s-pivot as well as the s-pivot index, provided that one
accounts for the shift s. Sometimes, the entries of s are referred to as weights,
and one might speak of e.g. degree or pivot index with respect to certain weights.

Having familiarized ourselves with the notion of shifted degrees of (row) vectors,
we are ready to define the “best” basis matrix for any submodule of FrXsm, that
is, with respect to given weights. As the following definition of (shifted) Popov
form might come across as somewhat arbitrary to an unfamiliar reader, let us
first quickly motivate it by revealing two of its most convenient properties: that
any submodule of FrXsm admits a unique basis matrix in Popov form, and that
the degrees of the rows in this matrix are minimal –we will come back to these
properties shortly.

Definition 1.3. For any shift s P Zm, a nonsingular matrix P P FrXsmˆm is
said to be in s-Popov form if all of the s-pivots of its rows lie on the diagonal, are
monic and have degrees strictly greater then all other entries in their respective
columns. Furthermore, if such a P is unimodularly equivalent to some matrix
M P FrXsmˆm, then then P is said to be the s-Popov form of M .

We end this section by listing some of the results that make Popov forms ex-
tremely useful – for this, we will need a few more definitions:

Definition 1.4. For any matrixM P FrXsmˆm and any shift s P Zm, we define
the s-row degree of M as the tuple rdegspMq “ pd1, . . . , dmq P Zm, where di
denotes the s-degree of the i-th row of M . Similarly, we define the column
degree as cdegpMq “ rdegpMJ

q; in this case we will not need shifts. Finally,
for any t P Zě0, we denote by |t| the sum of the entries in t.

8 Introduction

Proposition 1.5 ([Nei16, Theorem 1.11]). If P P FrXsmˆm is in s-Popov form
for some shift s P Zm, then P is s-row reduced, which is to say that is satisfies
all of the following equivalent assertions:

1) rdegspP q ď rdegspUP q for all unimodular matrices U P FrXsmˆm, where
the inequality is taken entrywise after sorting in non-decreasing order;

2) if λ “ rλ1, . . . , λms P FrXs1ˆm with λi “ 1 for some i, and ppiq P FrXs1ˆm
is the i-th row of P , then degspp

piqq ď degspλP q;

3) predictable degree property: for any λ “ rλ1, . . . , λms P FrXs1ˆm

degspλP q “ max
i
tdeg λi ` degspp

piqqu “ degdpλq ,

where d “ rdegspP q;

4) | rdegspP q| “ degpdetpP qq ` |s|.

Proposition 1.6 ([Nei16, Lemma 1.17]). If P P FrXsmˆm is in s-Popov form3

for some s P Zm and p P FrXs1ˆm is a nonzero vector in the row space of P
having s-pivot index i, then degs p ě degs p

piq, where ppiq P FrXs1ˆm denotes
the i-th row of P .

Proposition 1.7 ([Kai80, Theorem 6.3-15]4). If P P FrXsmˆm is in s-Popov
form for some s P Zm, then for any vector v P FrXs1ˆm, there exist unique
q,u P FrXs1ˆm satisfying v “ qP ` u and deg´δpuq ă 0, where δ “ cdegpP q.

In the context of Proposition 1.7, we will adopt the notation u “ v rem P .

Proposition 1.8 ([NV17, Theorem 1.3]). There is a deterministic algorithm
which for any shift s P Zm and any nonsingular matrixM P FrXsmˆm computes
the s-Popov form of M using rOpmω´1| cdegpMq|q Ď rOpmω degM) operations
in F, where degM denotes the maximal degree across the entries of M .

1.5 Communication model

Before we formally introduce AG codes, let us take a moment to put them into
context. In the most general form of digital communication over an unreliable
channel, a sender and a receiver agree upon a finite alphabet Σ (prior to commu-
nication). The elements of Σ, called symbols, can be transmitted over a channel

3actually, P only needs to be in weak s-Popov form, which is a weaker condition
4see also [Nei16, Lemma 1.24]

1.5 Communication model 9

capable of replacing any symbol with another element of Σ due to random or
adversarial noise. Of course, if every single sent symbol is randomly replaced
during transmission, then communication is impossible; however, if the channel
provides some guarantees on its reliability, then error-correcting codes can to
some extent mitigate the noise.

A common reliability assumption on the channel is that it can corrupt at most
τ symbols in every sent block consisting of n ą τ symbols. This assumption is
often used in block codes, where any message m P Σk, with k ă n, is encoded by
the sender using some injective map Enc : Σk Ñ Σn which is also known to the
receiver. The resulting codeword c “ Encpmq P Σn is then transmitted over the
channel with the hope that the introduced redundancy will protect the encoded
message against potential errors. This brings us to the first computational
problem that we wish to solve efficiently:

Problem 1.9 (Encoding). Given a message m P Σk and an injective encoding
map Enc : Σk Ñ Σn, compute the corresponding codeword c “ Encpmq.

The set of all codewords, which we denote by C “ EncpΣkq Ă Σn, is known
as the code; and Σn, whose elements are called words is commonly referred
to as the ambient space. The number of symbols in which two words differ is
called Hamming distance, i.e. for any two words u “ pw1, . . . , wnq and u1 “
pw11, . . . , w

1
nq in Σn the Hamming distance between u and u1 is defined as

dpw,w1q “ |ti | wi ‰ w1iu| .

Equipped with this notion of distance we can formally define the unique decoding
problem for block codes:

Problem 1.10 (Unique decoding). Given a received word r P Fn find the
unique closest codeword c P C to r with respect to the Hamming distance if
such a unique codeword exists.

It is hardly surprising that Problem 1.10 can’t always be solved uniquely5, since
the received word might be equally close to more than one codeword. This
situation being the only possible cause for failure, however, makes it easy to
precisely quantify the necessary and sufficient for conditions success. The min-
imum distance of a code, commonly denoted by d, is defined as the smallest
Hamming distance between any two distinct codewords, i.e.

d “ mintdpc, c1q | c, c1 P C such that c ‰ c1u .

5maximum likelihood decoding of Reed-Solomon codes is known to be NP-hard [GV05]

10 Introduction

As long as, and only if, the number of errors introduced during transmission
is bounded by τ ď td{2u, then we are guaranteed that there is exactly one
codeword within distance τ from the received word.

An easier problem than decoding is unencoding, which asks to find the message
that was used to generate a given codeword. This is the inverse problem of
encoding and can also be seen as decoding a received word containing no errors.
There are at least two reasons to consider this problem: The first reason is that a
decoder that solves Problem 1.10 by definition returns a codeword, and since in
practical applications one is typically interested in the corresponding message,
an unencoder is needed. Some decoders, however, obtain the message without
first computing the codeword, making unencoding unnecessary. Moreover, sys-
tematic encoding, i.e. encoding that simply concatenates redundancy to the
message without changing it, renders unencoding trivial; but this brings us to
the second reason for why unencoding is a worthwhile problem to consider: that
for some codes like Reed-Solomon codes, unencoding can be used to transform
a non-systematic encoder into a systematic one. In order to refer to unencoding
later, we state the problem below:

Problem 1.11 (Unencoding). Given a codeword c P C find a message m P Σk

such that c “ Encpmq.

AG codes belong to a special class of block codes called linear codes, where the
alphabet Σ is replaced with a finite field F, and were any F-linear combination
of codewords (as vectors in Fn) is required to be a codeword. Imposing this
structure on the code allows us to take advantage of tools from linear algebra,
since the (now linear) encoding map can be represented by a full rank matrix
G P Fkˆn, i.e. any codeword c P Fn can be written as c “mG, wherem P Fk is
some message. This representation immediately gives rise to the naive encoding
algorithm for linear codes: simply carry out the vector-matrix multiplication.
In general this requires Opnkq operations in F, which becomes Opn2q under the
customary assumption that n{k P Op1q, however, for special classes of matrices
we can do much better. For example, if G is a Vandermonde matrix, i.e. for
some α1, . . . , αn P F

G “

¨

˚

˚

˚

˝

1 ¨ ¨ ¨ 1
α1 ¨ ¨ ¨ αn
...

. . .
...

αk´1
1 ¨ ¨ ¨ αk´1

n

˛

‹

‹

‹

‚

,

as is the case with Reed-Solomon (RS) codes, then computation of mG can
be reinterpreted as evaluation of a univariate polynomial with coefficients in
F and degree less than k at the points α1, . . . , αn. This evaluation problem
is known as univariate multi-point evaluation (MPE) and can be solved using
OpMpnq logpnqq Ă rOpnq operations in F, as mentioned in Section 1.3. AG codes

1.6 Algebraic geometry codes 11

Figure 1.1: Schematic illustration of a linear code. The blue dots are the code-
words, while the orange ones are possible received words contain-
ing at least one error. Euclidean distance in the image represents
Hamming distance. The green circle around each codeword repre-
sents a Hamming ball with radius td{2u, meaning that there is no
ambiguity about how to decode the words inside. In a non-linear
code there would be less regularity in the codewords.

generalize RS codes by replacingG with a potentially more complicated, though
still highly structured generator matrix. This generalization has the advantage
of being able to describe codes with higher minimum distance than that of RS
codes, however, the increased complexity in the matrix structure gives rise to
more difficult computational problems.

1.6 Algebraic geometry codes

This section is dedicated to a brief introduction of AG codes; for a detailed
presentation, the reader is referred to [Sti09, Chapter 2]. In the remainder of this
thesis, we will denote by F some fixed function field having constant field F, and
for any divisor A of F , we denote its support by supppAq. The Riemann-Roch
space associated with A will be denoted by LpAq “ tf P F | pfq`A ě 0uY t0u,
where pfq is the principal divisor of f , and the F-dimension of LpAq will be
written as lpAq. Finally, for any place P of F , we let vP denote the valuation at
P . All of these concepts can be found in [Sti09, Chapter 1], although the font
in the notation might differ slightly. Without further ado, we formally present
AG codes in the following definition:

Definition 1.12. For any divisors G and D “ P1 ` ¨ ¨ ¨ ` Pn of F , where

12 Introduction

P1, . . . , Pn are pairwise distinct rational places and supppDq X supppGq “ H,
the algebraic geometry (AG) code associated with D and G is defined as

CLpD,Gq “ tevDpfq P Fn | f P LpGqu ,

where evDpfq “ pfpP1q, . . . , fpPnqq. We will sometimes refer to LpGq as the
message space.

The ordering of the places P1, . . . , Pn in Definition 1.12 has no impact on the
interesting properties of the code such as length, dimension and minimum dis-
tance. When convenient, therefore, we will allow ourselves to index the entries
of codewords using the places in D :“ suppD instead of the integers 1, . . . , n,
writing

CLpD,Gq “ tpfpP qqPPD P FD | f P LpGqu ,

where FD « Fn is the F-vector space of all maps D Ñ F. This notation will
only be used in Chapter 2, however.

It is well known that the AG code CLpD,Gq has minimum distance at least
d‹ :“ n´degpGq and dimension k “ lpGq´ lpG´Dq; the latter follows from the
fact that the evaluation map evD has kernel LpG´Dq. Using [Sti09, Theorem
1.5.17], we see that k “ n, i.e. CLpD,Gq “ Fn, whenever degG ě n ` 2g ´ 1,
and because of this, we may assume that 0 ď degpGq ď n` 2g ´ 1.

We conclude this section by showing how CLpD,Gq can be represented using a
generator matrix.

Proposition 1.13. If f1, . . . , fk is an F-basis of LpGq with degG ă n, then

G “

¨

˚

˝

f1pP1q ¨ ¨ ¨ f1pPnq
...

. . .
...

fkpP1q ¨ ¨ ¨ fkpPnq

˛

‹

‚

P Fkˆn

is a generator matrix of CLpD,Gq.

Proof. It is clear that the row space of G, i.e. the set of all of the F-linear
combinations of its rows, is contained in CLpD,Gq since f1, . . . , fk P LpGq. For
the opposite inclusion, let c “ pfpP1q, . . . , fpPnqq P CLpD,Gq, where f P LpGq,
and observe that writing f “

řk
j“1mjfj , where m “ pmjq

k
j“1 P Fk, implies

that

mG “

k
ÿ

j“1

mjpfjpP1q, . . . , fjpPnqq “ pfpP1q, . . . , fpPnqq “ c .

The constraint degG ă n ensures that G has full rank.

1.7 Some properties of function fields 13

1.7 Some properties of function fields

In this section, we present some definitions and facts about function fields, which
will be used later in this thesis.

Definition 1.14. For any rational place P and any divisor A, let

ЯP pAq “
8
ď

m“´8

LpmP `Aq .

Furthermore, for any function f P ЯP pAq, let δ
pP q
A pfq be the smallest integer

m P Z such that f P LpmP ` Aq, i.e. δpP qA pfq “ ´vP pfq ´ vP pAq. We will use
as convention that δpP qA p0q “ ´8. As a shorthand, we will write ЯP “ ЯP p0q

and δpP qpfq “ δ
pP q
0 pfq.

In the context of Definition 1.14, it is not hard to see that ЯP is a ring. Moreover,
this ring is intimately related with the Weierstrass semigroup at P :

Definition 1.15. The Weierstrass semigroup at a rational place P of F is

WpP q “ tδpP qpfq | f P ЯP u .

The following proposition allows us to conveniently describe ЯP using WpP q:

Proposition 1.16 ([SH95]). If P is a rational place and x1, . . . , xt P ЯP are
functions whose pole orders at P generate WpP q, i.e.

xδpP qpx1q, . . . , δ
pP qpxtqyZě0 “WpP q ,

then ЯP “ Frx1, . . . , xts.

Proof. It is clear that Frx1, . . . , xts Ă ЯP . For the opposite inclusion, with the
aim of reaching a contradiction, let f P ЯP zFrx1, . . . , xts be such that δpP qpfq
is minimal, and write

δpP qpfq “
t
ÿ

i“1

niδ
pP qpxiq “ δpP q

˜

t
ź

i“1

xnii

¸

,

where ni P Zě0. Since δpP qpfq ą 0 (otherwise f P F), at least one of the ni ą 0,
which guarantees existence a constant c P F such that δpP qphq ă δppfq, where

h “ f ´ c
t
ź

i“1

xnii P ЯP ,

14 Introduction

and due to the minimality of f , then necessarily h P Frx1, . . . , xts. However,
this is a contradiction as it implies that

f “ h` c
t
ź

i“1

xnii P Frx1, . . . , xts .

We end this introductory chapter with two convenient lemmas on multi-point
evaluation and interpolation in the context of function fields.

Lemma 1.17. Let P,E1, . . . , EN be pairwise distinct rational places, and let
E “ E1 ` ¨ ¨ ¨ ` EN and A be divisors with supppEq X supppAq “ H. Denoting
by evE,A : LpAq Ñ FN the restriction of the evaluation map evE to LpAq, we
have the following:

1. evE,A is injective when degA ă degE,

2. evE,A is surjective when degA ě degE ` 2g ´ 1 .

Proof. For the first item, simply note that the dimension of the kernel of evE,A
is lpA ´ Eq “ 0, since degpA ´ Eq ă 0. For the second item, observe that the
dimension of the image of evE,A is

lpAq ´ lpA´ Eq “ degA´ g ` 1´ pdegA´ degE ´ g ` 1q “ degE “ N ,

since degA ě 2g´ 1 and degpA´Eq ě 2g´ 1, see [Sti09, Theorem 1.5.17].

Lemma 1.18. If P,E1, . . . , EN are pairwise distinct rational places, and if A
and E “ E1` ¨ ¨ ¨`EN are divisors with supppEqX supppAq “ H, then for any
pw1, . . . , wN q P FN there exists a function a P ЯP pAq satisfying

δ
pP q
A paq ď degE ` 2g ´ 1´ degA and
apEjq “ wj for j “ 1, . . . , N .

Proof. Letting A1 “ pdegE ` 2g ´ 1´ degAqP `A we get that

degA1 ě degE ` 2g ´ 1 ,

which according to Lemma 1.17 implies that evE,A1 is surjective.

Chapter 2

Encoding and unencoding
of one-point AG codes over

Ca,b curves

This chapter is based on [BRS20] and investigates encoding and unencoding of
one-point AG codes defined over special plane curves called Ca,b curves. First
introduced in [Miu93, MK93], and also occurring as a special case of curves
studied in [FR94, HvLP98], they have been shown to give rise to codes that
can be described using bivariate polynomials over F, making them considerably
simpler to work with than general AG codes – especially from the computational
point of view. Taking advantage of this, we design algorithms that efficiently
solve Problem 1.9 on page 9 and Problem 1.11 on page 10, achieving quasi-
linear complexity for important cases of Ca,b curves such as the Hermitian curve
and norm-trace curves. We also beat the naive algorithms for encoding and
unencoding when working over curves that have many rational points, although
in this case we do not always achieve quasi-linear cost.

16 Encoding and unencoding of one-point AG codes over Ca,b curves

2.1 Ca,b curves and their codes

2.1.1 Geometry and defining polynomial

The family of Ca,b curves consists of well behaved plane algebraic curves. In
the projective setting, they have exactly one point at infinity, which, if singular
is a cusp; all other points are nonsingular. In the affine setting a Ca,b curve is
defined by the set of zeroes of a bivariate polynomialQ P FrX,Y s with a carefully
constrained monomial support, where for any Q “

ř

i,j ci,jX
iY j P FrX,Y s with

ci,j P F its monomial support is suppQ “ tXiY j | ci,j ‰ 0u. Curve points whose
coordinates belong to F are called rational (in contrast to points over extension
fields). Below we define Ca,b curves in full detail.

Definition 2.1. Let a, b P Zą0 be such that gcdpa, bq “ 1. An algebraic curve
is called a Ca,b curve if it is defined by an equation of the form QpX,Y q “ 0,
where Q P FrX,Y s satisfies the following properties:

1) Xb, Y a P suppQ,

2) XiY j P suppQ ùñ ai` bj ď ab,

3) xQ, BQ
BX ,

BQ
BY yFrX,Y s “ FrX,Y s.

We will refer to Q as the defining polynomial of the curve.

Remark 2.2. As we will see later in the chapter, our algorithms are not in-
variant under swapping of X and Y , as their complexities typically depend only
a and not b. It is therefore sensible to assume without loss of generality that
a ă b by simply swapping the variables accordingly. Note that the case a “ b is
only possible when a “ b “ 1, since a and b are coprime. We will disregard this
degenerate case.

For any polynomial f P FrX,Y s we denote by δpfq the pa, bq-weighted degree
of f , i.e. δpXiY jq “ ai ` bj for any i, j P Zě0 (which extends to the whole of
FrX,Y s in the obvious way). The first two conditions in Definition 2.1 imply
that Q “ αXb ` βY a ` pQ with pQ P FrX,Y s having δp pQq ă ab, which due
to [HvLP98, Corollary 3.18] guarantees that Q is absolutely irreducible. The
theory of Newton polygons, i.e. the convex hull of tpi, jq | XiY j P suppQu, can
also be used to conclude this [Gao01].

2.1 Ca,b curves and their codes 17

Example 2.3. The polynomial

Q“ Y 4

`4XY 3

`2Y 2` XY 2`3X2Y 2

`2XY `3X2Y `5X3Y
` 4 ` X `6X2 `5X3 `4X4`X5 P F7rX,Y s

defines a Ca,b curve with a “ 4 and b “ 5. It has 21 rational points, which are
depicted in Figure 2.1. It was obtained by randomly sampling the space of valid
Ca,b curves more than 106 times, searching for curves with many points.

0 1 2 3 4 5

degX

0

1

2

3

4

d
eg

Y

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

Y

Figure 2.1: To the left: Allowed monomial support for a defining polynomial
of a Ca,b curve with a “ 4 and b “ 5. The monomials X5 and Y 4

(orange) are compulsory.
To the right: The 20 finite rational points on the Ca,b curve from
Example 2.3. The underlying field is F7.

2.1.2 One-point codes

For any Ca,b curve with defining polynomial Q we construct the corresponding
function field F “ Fpx, yq by extending the rational function field Fpxq with a
new element y satisfying Qpx, yq “ 0, which means that

Fpx, yq « FracpFrX,Y s{xQyq “ t
f

h
| f, g P FrX,Y s{xQy with g ‰ 0u .

Since Q is absolutely irreducible, F is the full constant field of F . For the
remainder of this chapter we consider F to be fixed, and we list some of its
well-known properties in the following proposition without giving proof, though
details can be found in [Miu93, MK93, HvLP98]

18 Encoding and unencoding of one-point AG codes over Ca,b curves

Proposition 2.4. F has genus g “ 1
2 pa ´ 1qpb ´ 1q. There is exactly one

rational place P8 such that δP8pxq, δP8pyq ą 0, and if P8 is such a place, then
δP8pxq “ a, δP8pyq “ b and WpP8q “ xa, byZě0

.

We will treat the rational place P8 from Proposition 2.4 as fixed, referring to
it as the place at infinity ; all the remaining rational places will be referred to as
finite. The codes that we consider are of the form CLpD,mP8q, where m P Zě0,
D “ P1`¨ ¨ ¨`Pn and P1, . . . , Pn are finite rational places. Efficient algorithms
for encoding and unencoding will consequently require a practical way of rep-
resenting elements from the message space LpmP8q, which, as we have alluded
to in the beginning of the chapter, can be done using bivariate polynomials
in FrX,Y s. We describe this representation in full detail below, starting from
the allowed exponents in the monomial support of these polynomials: For the
remainder of this chapter let

Bm “ tpi, jq P Z2
ě0 | j ă a and ai` bj ď mu .

Lemma 2.5. If pi, jq, pi1, j1q P Bm are such that ai ` bj “ i1a ` j1b, then
pi, jq “ pi1, j1q.

Proof. Since a and b are coprime, then lcmpa, bq “ ab. If pi´ i1qa`pj´ j1qb “ 0,
then necessarily pi´ i1q | b and pj´ j1q | a. However, by definition of Bm it holds
that 0 ď j, j1 ă a, which implies that j “ j1, and consequently also i “ i1.

Proposition 2.6. Mm :“ txiyj | pi, jq P Bmu is an F-basis of LpmP8q. Fur-
thermore, assuming that m ă n, if ϕ : Bm Ñ t1, . . . , ku is some bijection and
G P Fkˆn, where k “ |Bm| “ lpmP8q, is the matrix with the ϕpi, jq-th row being

pxpP1q
iypP1q

j , . . . , xpPnq
iypPnq

jq P Fn for pi, jq P Bm ,

then G is a generator matrix for CpD,mP8q.

Proof. According to Proposition 2.4, WpP8q “ xδP8pxq, δP8pyqyZě0 , which by
Proposition 1.16 implies that ЯP8 “ Frx, ys, and consequently that

LpmP8q “ tf P Frx, ys | δP8pfq ď mu .

Since Frx, ys « FrX,Y s{xQy, where Q “ αXb ` βY a ` pQ P FrX,Y s is the
curve polynomial with α, β P Fzt0u and pQ P FrX,Y s satisfying δp pQq ă ab, and
therefore degY pQ ă a, it is not hard to see that

Frx, ys “ tf P Frx, ys | degy f ă au .

2.1 Ca,b curves and their codes 19

It follows that LpmP8q is generated by Mm over F, and since Lemma 2.5
guarantees that for any distinct xiyj , xi

1

yj
1

P Mm it holds that δP8pxiyjq ‰
δP8px

i1yj
1

q, thenMm is indeed an F-basis.

The claim that G is a generator matrix is then a direct consequence of Propo-
sition 1.13.

The following lemma, due to [MK93, SH95], allows us to represent every message
in LpmP8q using a polynomial in FrX,Y s, and every rational place P using
a point in F2, thereby avoiding the computationally challenging language of
function fields in our algorithms.

Lemma 2.7. If P is a finite rational place and

f “
ÿ

pi,jqPBm

mi,jx
iyj P LpmP8q with mi,j P F ,

then fpP q “ pfp pP q, where pP “ pxpP q, ypP qq P F2 is a zero of Q and

pf “
ÿ

pi,jqPBm

mi,jX
iY j P FrX,Y s .

Armed with Lemma 2.7 we can reinterpret our setting in the following way: The
message space, which used to be LpmP8q, will be replaced by

Lpmq :“ t
ÿ

pi,jqPBm

mi,jX
iY j | mi,j P Fu

“ tf P FrX,Y s | degY f ă a and δpfq ă mu ,

while the code CLpD,mP8q, being technically unchanged, will henceforth be
described as

CQpP,mq :“ tpfpP1q, . . . , fpPnqq P Fn | f P Lpmqu ,

where P “ tP1, . . . , Pnu Ă F2 is now a subset of the rational points on the under-
lying Ca,b curve. Notice in particular that for any fpX,Y q P Lpmq it holds that
fpx, yq P LpmP8q with δpfpX,Y qq “ δP8pfpx, yqq. Under this interpretation,
encoding and unencoding become respectively as follows:

Problem 2.8 (Encoding). Given a message f P Lpmq compute the codeword
c “ pfpP1q, . . . , fpPnqq P Cpm,Pq.

Problem 2.9 (Unencoding). Given a codeword c “ pc1, . . . , cnq P Cpm,Pq
compute the unique message f P Lpmq satisfying fpPiq “ ci for i “ 1, . . . , n.

20 Encoding and unencoding of one-point AG codes over Ca,b curves

From the perspective of computer algebra, Problems 2.8 and 2.9 can be rec-
ognized as special cases of bivariate polynomial multi-point evaluation (MPE)
and interpolation respectively. We will favor this point of view throughout the
chapter, only recalling the AG context when advantageous for analysis.

2.2 Related work

2.2.1 Encoding

For the particularly simple case of RS codes, it is well known that encoding
can be done with quasi-linear cost [Jus76] using fast univariate MPE. Certain
AG codes have been shown to admit a space-efficient encoding algorithm using
Gröbner bases and high-order automorphisms of the code instead of storing
a k ˆ n generator matrix [HLS95]; the computational cost of this approach,
however, is quadratic.

It has been demonstrated that one-point Hermitian codes can be encoded with
sub-quadratic complexity by interpreting them as concatenated RS codes [YB92].
The Hermitian curve, which gives rise to these codes, is a Ca,b curve over F “ Fq2
with a “ q, b “ q ` 1 and defining polynomial Q “ Y q ` Y ´ Xq`1. Conse-
quently, any message f P Lpmq Ď FrX,Y s can be written as f “

řκ
i“1 fipXqY

i,
where κ “ mintq ´ 1, tm{pq ` 1quu and where each fi P FrXs can be regarded
as a message in an RS code, giving rise to the codeword

cpiq “ pfipα1q, . . . , fipαq2qq P Fq
2

,

where tα1, . . . , αq2u “ F is the set of all X-coordinates occurring on the Her-
mitian curve. There are exactly q points on the curve for every one of these
X-coordinates, meaning that the evaluations of fiY i on all of the points can be
obtained by a q-fold concatenation of cpiq with itself, scaling each entry by the
i-th power of the Y -coordinate of the point corresponding to that entry. Sum-
ming these concatenated (and entry-wise scaled) codewords for i “ 1, . . . , κ, the
sought codeword c “ Encpfq P C Ă Fq3 of the one-point Hermitian code is ob-
tained. Using fast RS encoding, the cost of this approach is rOpκqq2q Ď rOpq4q “
rOpn4{3q. Though the underlying principle of our algorithm has similarities with
this approach, our algorithm is a factor Opn1{3q faster for the Hermitian curve.

In [RM01] the results of [YB92] were generalized to arbitrary one-point AG
codes, though the complexity is never quasi-linear.

2.2 Related work 21

2.2.2 Bivariate multi-point evaluation

In Section 2.1.2 we observed that encoding of one-point codes over Ca,b curves
can be formulated as Problem 2.8, which is but a variant of bivariate MPE.
Since any algorithm for bivariate MPE can be applied to our encoding problem,
let us mention some of the existing work on this well studied topic.

Given a point set P Ď F2 and a polynomial f P FrX,Y s with degX f “ dX
and degY f “ dY , bivariate MPE seeks to compute pfpP qqPPP P Fn, where
n “ |P|. In the context of one-point codes over Ca,b curves we are interested in
the case where dXdY ă n and dY ! dX . The former assumption is common in
the literature, however, the latter is frequently replaced with dX « dY , which
would often result in poor performance in our use case.

Existence of a quasi-linear solution to univariate MPE continues to persuade
the computer algebra community to entertain the hope for a bivariate (and
multivariate) algorithm with complexity rOpdXdY ` nq, though finding such an
algorithm–devoid of restrictive assumptions on the input – remains an open
problem. As in the univariate case, the naive approach computes all of the
evaluations individually using a bivariate form of Horner’s rule. Each evaluation
costs OpdXdY q operations in F, amounting to a total complexity OpndXdY q Ď
Opn2q, assuming that dXdY ă n.

Pan

One of the first major improvements on the naive algorithm was due to Pan
[Pan94], who demonstrated that quasi-linear complexity could be achieved for
the special case of P “ PX ˆ PY with PX ,PY Ď F, i.e. when P is a grid,
see Figure 2.2. His algorithm is frequently refereed to as a “tensored” form of
univariate MPE and in its general form works in any number of variables. The
assumption that P is a grid can be removed by executing the algorithm on the
smallest grid pP containing all of P, discarding the extraneous evaluations from
the output; however, in the worst case it can happen that | pP| “ n2, resulting in
the complexity rOpdXdY ` n2q, i.e. quadratic in the input size when dXdY ă n.
It is by no means the case that all interesting Ca,b curves fall into this worst
case category: for the Hermitian curve n “ q3 and pP “ F2

q2 , resulting in the cost
rOpn4{3q, as in [YB92]. Our MPE algorithm, presented in Section 2.4, essentially
generalizes the bivariate form of Pan’s algorithm in a way which achieves quasi-
linear cost on point sets with a semi-grid structure; see Figure 2.2. A semi-grid
is a weaker notion than a grid, so our algorithm never has worse complexity than
Pan’s. On the other hand, there are important families of Ca,b curves – including

22 Encoding and unencoding of one-point AG codes over Ca,b curves

the Hermitian curve –whose points do in fact form a semi-grid, allowing us to
achieve encoding with quasi-linear cost.

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

Y

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

Y

Figure 2.2: To the left: a grid P “ PX ˆ PY Ă F2
7, where PX “ t0, 1, 3, 5, 6u

and PY “ t1, 2, 4, 6u.
To the right: a semi-grid over F7. For each X-coordinate there
are exactly 4 points having that X-coordinate. The points with a
gray cross do not lie on the curve from Example 2.3. Since there
are only few of these points, encoding over this curve can be done
quite fast. The smallest grid that covers the curve is F2

7.

Nüsken & Ziegler

A completely different approach to bivariate MPE was due to Nüsken & Ziegler
[NZ04]. By demonstrating that the problem can be reduced to a variant of
bivariate modular composition, they managed to avoid restrictive assumptions
on the underlying point set, albeit at the cost of increased complexity. It turns
out that MPE can be solved in full generality by first considering the simpler case
where P “ tpα1, β1q, . . . , pαn, βnqu with the αi being pairwise distinct. Letting
h “

śn
i“1pX´αiq P FrXs and p P FrXs with ppαiq “ βi for i “ 1, . . . , n, it is easy

to see that if r “ fpX, pq rem h P FrXs, then rpαiq “ fpαi, ppαiqq “ fpαi, βiq for
each i. Computing h and p costs rOpnq operations in F – the same goes for the
evaluations rpα1q, . . . , rpαnq P F. Whether the modular composition problem of
computing r admits a solution with quasi-linear cost remains an open problem,
however, for any ε ą 0, Nüsken & Ziegler achieve

O
`

pdXd
ω2{2
Y ` nd

ω2{2´1
Y q1`ε

˘

Ă OpdXd1.6284Y ` nd0.6284Y q ,

2.2 Related work 23

where ω2 ă 3.2567 [Le 12] is such that the cost of multiplying a t ˆ t matrix
with a tˆ t2 matrix is rOptω2q.

We can reduce the general problem of bivariate MPE to the aforementioned case
with the αi pairwise distinct by shearing the points in a degree 2 extension field
K{F using the map pαi, βiq ÞÑ pαi ` θβi, βiq P K2, where θ P KzF. By replacing
f with rf :“ fpX ´ θY, Y q P KrX,Y s we can then obtain the sought evaluations
of f by evaluating rf on the sheared points, since

rfpαi ` θβi, βiq “ fpαi ` θβi ´ θβi, βiq “ fpαi, βiq .

The total cost of shearing all of the points is Opnq, and since each operation in
K costs Op1q operations in F, this strategy makes no impact on the asymptotic
complexity of the algorithm except for the following issue: Generically, it will be
the case that degY

rf “ maxtdX , dY u, which means that the cost of computing
(and storing) rf will be high when dY ! dX . If, for example, dX « n1´δ and
dY « nδ for some 0 ă δ ! 1, then the number of coefficients in K needed to
represent rf is roughly n2´2δ, i.e. nearly quadratic in the input size. In our
running example of one-point Hermitian codes, where dX ă q2 and dY ă q, for
any ε ą 0 the shearing strategy results in the complexity

O
`

pq2qω2 ` q3qω2´2q1`ε
˘

“ O
`

pq2`ω2q1`ε
˘

Ă Opq5.2567q “ Opn1.7523q ,

which is better than the naive approach, but not as good as Pan’s algorithm with
cost rOpn4{3q Ă Opn1.3334q. Of course, we can always avoid the case dY ă dX by
simply swapping the variables in the input polynomial as well the coordinates
of the points, preserving the sought evaluations while guaranteeing that dY ě
dX . However, instead of nullifying it, this approach merely substitutes the
computational penalty of shearing with another one – caused by the asymmetry
of the cost bound with respect to the two variables. Doing this for one-point
Hermitian codes gives complexity

O
`

pqqω2 ` q3qω2´2q1`ε
˘

“ O
`

pqω2`1q1`ε
˘

“ Opq4.2567q “ Opn1.4189q

for any ε ą 0, which is a notable improvement, though still inferior to Pan’s
algorithm.

Kedlaya and Umans

Last but not least, we mention the celebrated result [KU08] by Kedlaya and
Umans, which in the bivariate1 setting gives an MPE algorithm with complex-

1Actually, the algorithm by Kedlaya and Umans works with any number of variables.

24 Encoding and unencoding of one-point AG codes over Ca,b curves

ity2

O
`

pmaxtdX , dY u
2 ` nq1`ε

˘

for any ε ą 0. In outline, the algorithm works over prime fields by lifting the
data to integers, performing MPE several times modulo many small primes,
and then reassembling the result using the Chinese Remainder theorem. This
technique is then generalized to also work for extension fields. Although the cost
of this approach is for all intents and purposes quasi-linear when dX « dY , in the
case of one-point Hermitian codes it is Opn4{3`εq, which is ever so slightly worse
than for Pan’s algorithm. Another unfortunate, but not insignificant drawback
is that the asymptotic complexity seems to be hiding an impractically large
constant factor [vdHL19, Conclusion], making Kedlaya and Umans’ algorithm
less interesting for real world applications.

Remark 2.10. There is a recent bivariate MPE algorithm by van der Hoeven
and Lecerf [vdHL21] which can evaluate any polynomial f P FrX,Y s satisfying
degX f, degY f ă

?
n using OpMpn log nq logpnq3q Ă rOpnq operations in F –

that is if the underlying point set is available for precomputation. No detailed
comparison will be made with this results, however, we will mention that the cost
of encoding one-point Hermitian codes using this algorithm becomes rOpn4{3q,
as is with Pan’s.

2.2.3 Bivariate interpolation

Having seen in Section 2.2.2 that encoding of one-point codes over Ca,b curves –
formulated as Problem 2.8 – can be directly solved by any algorithm for bivariate
MPE, let us now turn our attention to existing work on bivariate interpolation,
which can analogously be used to address Problem 2.9, i.e. unencoding. Our
setting here is as follows: we are given a finite set of points P “ tP1, . . . , Pnu Ď
F2 alongside with some prescribed evaluations v1, . . . , vn P F, and we wish to
compute a polynomial f P FrX,Y s with fpPiq “ vi for i “ 1, . . . , n. Typically,
as in our use case with unencoding, it is of interest to place restrictions on
the monomial support of the sought interpolating polynomial f . At the time
of writing, there is no better way of solving this interpolation problem in its
full generality besides interpreting it as a t ˆ n linear system over F, where
t is the cardinality of the allowed monomial support. Assuming that t ď n,
Gaussian elimination then yields the cost Opnωq Ă Opn2.3729q. In the context of
codes, we can instead multiply the codeword with the nˆ k inverted generator
matrix at the improved cost Opnkq Ď Opn2q. We can do notably better by
observing that Problem 2.9 gives rise to a linear system with low displacement

2Their complexity model differs from ours by counting bit operations instead of field op-
erations, but this has no impact on our use case.

2.3 Point sets 25

rank, namely a, allowing us to use the algorithm for structured system solving
by Bostan et al. [BJMS17] with cost rOpaω´1nq. For one-point Hermitian codes
this translates to rOpqω´1nq “ rOpq2`ωq Ă Opn1.4577q which is inferior to the
quasi-linear complexity of our algorithm; however, for general one-point codes
over Ca,b curves this is our main contender. We compare the two approaches in
Section 2.5.3, and – as we will see – for most parameters of interest, our algorithm
seems to be faster.

Other noteworthy interpolation techniques include Pan’s [Pan94], which assumes
that the underlying point set forms a grid, and its generalization by van der
Hoeven and Schost [vdHS13], which works on certain structured subsets of grids.
Both of these algorithms have quasi-linear cost in the input size, however, they
are unable to guarantee that the returned interpolating polynomial will satisfy
the monomial support requirements mandated by Problem 2.9. Fortunately, our
setting allows us to address this issue in the following way: Given a polynomial
pf P FrX,Y s which correctly evaluates to the prescribed interpolation values
but has incorrect monomial support, we can always find the sought f in the
coset pf ` ΓpPq of the vanishing ideal ΓpPq of P by reducing pf with respect
to a Gröbner basis of ΓpPq under a suitable monomial ordering. As we will
see in Section 2.5.2, by carefully ordering these Gröbner basis elements in a
sequence we can guarantee that van der Hoeven’s division algorithm [vdH15]
yields good complexity when applied to the output of our generalization of
Pan’s interpolation algorithm. This generalization, similarly to the MPE setting,
weakens the requirement of P being a grid to being a semi-grid. The constructed
polynomial can be described by a closed form expression (see Lemma 2.15).
A similar expression was used for decoding for one-point Hermitian codes in
[LO09], and it was shown how in [NB15] how it can be computed fast; that
approach can be seen as a special case of our algorithm.

2.3 Point sets

The complexity estimates of our algorithms do not explicitly depend on the
cardinality of the underlying point set. Instead, they are expressed in terms of
two geometric quantities: For any point set P Ď F2 we define

nX “ |X pPq| and νY pPq “ max
αPF

|YαpPq| ,

where X pPq “ tXpP q | P P Pu Ď F is the set of all X-coordinates in P and
YαpPq “ tY pP q | P P P with XpP q “ αu Ď F is the set of all Y -coordinates
of those points in P that have α as their X-coordinate. Whenever it is clear
from the context which point set P we are referring to, we may simply write

26 Encoding and unencoding of one-point AG codes over Ca,b curves

X ,Y, nX , νY . Note that if all of the points in P lie on a Ca,b curve with defining
polynomial Q P FrX,Y s, then νY pPq ď a, since for any α P F the equation
Qpα, Y q “ 0 has at most degQpα, Y q ď degY Q “ a solutions in F. We will also
use the notation n “ npPq “ |P|.

As we will see in the following sections, the complexity estimates in our algo-
rithms favor point sets with νY pPq « a and nXpPqνY pPq « |P|. The following
definition captures the latter property:

Definition 2.11. A point set P Ď F2 is a semi-grid if |YαpPq| “ νY pPq for
each α P X pPq, or equivalently if nXpPqνY pPq “ |P|.

It is worth noting that any non-singular Ca,b curve whose rational points for a
semi-grid is a weak Castle curve, see [MUT09].

2.4 Fast encoding using multi-point evaluation

Although we primarily seek an efficient solution to Problem 2.8, our algorithm
is more naturally expressed in a slightly more general setting: For now, let
P Ď F2 be an arbitrary point set (not necessarily related to a Ca,b curve) and
f P FrX,Y s with degX f “ dX and degY f “ dY . Strongly inspired by Pan’s
MPE algorithm (see Section 2.2.2), our strategy is to write f “

řdY
i“0 fiY

i, where
fi P FrXs, and evaluate each fi at X pPq using fast univariate MPE, thereby
allowing us to construct the polynomials fpα, Y q “

řdY
i“0 fipαqY

i P FrY s for
α P X pPq. Evaluating each fpα, Y q at YαpPq, again using fast univariate MPE,
we obtain the sought evaluations. For a detailed description see the listing of
Algorithm 1.

2.4 Fast encoding using multi-point evaluation 27

Algorithm 1 BivariateMPEpf,Pq
Input:

• A polynomial f “
řdY
i“0 fiY

i P FrX,Y s, where fi P FrXs
with deg f “ dX ,

• a point set P Ă F2 with X pPq “ X and YαpPq “ Yα for each α P F
Output:

• evaluations pfpα, βqqpα,βqPP P FP

1: for i “ 0, . . . , dY do
2: pf

pαq
i qαPX P FX Ð pfipαqqαPX Ź using fast univariate MPE

3: for each α P X do
4: f pα,Y q P FrY s Ð

řdY
i“0 f

pαq
i Y i

5: pf pα,βqqβPYα P FYα Ð pf pα,Y qpβqqβPYα Ź using fast univariate MPE
return pf pα,βqqpα,βqPP P FP

Lemma 2.12. Algorithm 1 is correct and costs

OpdYMpdX ` nXq logpdX ` nXq ` nXMpdY ` νY q logpdY ` νY qq

Ă rOpdXdY ` nXpdY ` νY qq .

operations in F.

Proof. For correctness, simply observe that for any pα, βq P P

f pα,βq “ f pα,Y qpβq “
dY
ÿ

i“0

f
pαq
i βi “

dY
ÿ

i“0

fipαqβ
i “ fpα, βq .

For the complexity, notice that computational work is performed only in Steps
2 and 5, while all other steps are memory management and therefore cost no
operations in F. The total cost of Step 2 over all values of i “ 0, . . . , dY is

Op
dY
ÿ

i“0

Mpdeg fi ` nXq logpdeg fi ` nXqq

Ď OpdYMpdX ` nXq logpdX ` nXqq ,

while the total cost of Step 5 over all α P X is

Op
ÿ

αPX
Mpdeg f pα,Y q ` |Yα|q logpdeg f pα,Y q ` |Yα|qq

Ď OpnXMpdY ` νY q logpdY ` νY qq .

The total cost of the algorithm follows.

28 Encoding and unencoding of one-point AG codes over Ca,b curves

We now specialize Lemma 2.12 to Problem 2.8.

Theorem 2.13. Problem 2.8 can be solved using Algorithm 1 with cost

OpMpm` anXq logpm` anXqq Ă rOpm` anXq .

Proof. For any f P Lpmq it holds by definition that adX`bdY ď m and dY ă a,
where dX “ degX f and dY “ degY f . Consequently dX ď m{a, and since
νY ď a, then according to Lemma 2.12 the cost of encoding becomes

OpaMpm
a
` nXq logp

m

a
` nXq ` nXMpa` νY q logpa` νY qq

Ă OpMpm` anXq logpm` anXqq .

Note that the encoding cost, as given by Theorem 2.13, depends on the layout
of the evaluation points as well as the curve parameter a. In the following
corollary we bound the worst case complexity for curves satisfying some very
mild assumptions. A more refined analysis for special families of Ca,b curves
will be given in Section 2.6.

Corollary 2.14 (of Theorem 2.13). If F “ Fq, then any one-point code of length
n ě q over a Ca,b curve with genus g ď n can be encoded using at most

OpMpq
?
nq logpq

?
nqq Ă rOpq

?
nq Ă rOpn3{2q

operations in F.

Proof. Assuming w.l.o.g. that a ă b we get that

n ě g “
1

2
pa´ 1qpb´ 1q ě

1

2
pa´ 1q2 ,

hence a ď
?

2n` 1 P Op
?
nq. Since m ď n` 2g´ 1 P Opnq (otherwise encoding

is not injective) and nX ď q, then the claim follows from Theorem 2.13.

2.5 Fast unencoding using interpolation

In this section we address Problem 2.9, i.e. unencoding, by first considering a
slightly more general interpolation problem where we ignore the fact that the
underlying points lie on a Ca,b curve. Generally, our approach will require two
separate stages:

2.5 Fast unencoding using interpolation 29

1) interpolation with relaxed monomial support and

2) monomial support reduction.

Stage 2 dominates the cost, however, as we will see in Section 2.6.1, this step is
unnecessary for some codes whose evaluation points form a semi-grid. We now
proceed by examining the two stages in detail, starting with the former.

2.5.1 Interpolation with relaxed monomial support

Instead of immediately seeking a polynomial that satisfies the monomial support
constraints of problem Problem 2.9, we first look for one with X-degree less than
nX and Y -degree less than νY , since this allows us to obtain it from a closed
form expression:

Lemma 2.15. Given a point set P Ă F2 and a tuple of interpolation values
c “ pcα,βqpα,βqPP P FP , the polynomial

R
pcq
P “

ÿ

αPX

ź

α1PX ztαu

X ´ α1

α´ α1

ÿ

βPYα

cα,β
ź

β1PYαztβu

Y ´ β1

β ´ β1
P FrX,Y s ,

satisfies RpcqP pα, βq “ cα,β for every pα, βq P P.

Proof. Writing
R
pcq
P “

ÿ

αPX
Aα

ÿ

βPYα

cα,βBα,β ,

where

Aα “
ź

α1PX ztαu

X ´ α1

α´ α1
P FrXs and Bα,β “

ź

β1PYαztβu

Y ´ β1

β ´ β1
P FrY s ,

it is easy to see that for any ppα, pβq P P

Aαppαq “

#

1 if pα “ α

0 if pα ‰ α
and Bα,βppβq “

#

1 if pβ “ β

0 if pβ ‰ β
.

It follows that

R
pcq
P ppα, pβq “

ÿ

αPX
Aαppαq

ÿ

βPYα

cα,βBα,βppβq “ A
pαppαqc

pα,pβBpα,pβp
pβq “ c

pα,pβ .

30 Encoding and unencoding of one-point AG codes over Ca,b curves

Our strategy for efficiently computing RpcqP from Lemma 2.15 is as follows: We
first compute the polynomials hpα,Y q :“ R

pcq
P pα, Y q P FrY s for α P X using

univariate interpolation. We then reinterpret the interpolation problem as being
in FrY srXs, i.e. we seek a univariate polynomial hpXq “ R

pcq
P with coefficients

belonging to the ring FrY s such that hpαq “ hpα,Y q for each α P X . For clarity
and for a slight improvement in complexity (on the level of logarithms) we make
the latter interpolation explicit.

Our approach will make use of binary trees, so us establish some notation and
terminology: We model a tree T as a finite, non-empty set of vertices together
with a map T r¨s which sends any vertex v P T to a subset T rvs Ă T containing
its children. Clearly T rvs X T rv1s “ H for any two distinct v, v1 P T . The root
of T is the unique vertex r P T such that r R T rvs for any v P T . If a vertex
v P T has no children, i.e. T rvs “ H, then v is a leaf, otherwise v is a non-leaf.
Finally, a tree T is binary if |T rvs| ď 2 for all v P T .

Following in the footsteps of [vzGG12, Section 10.1], we define subproduct trees:

Definition 2.16. A partition tree of any finite subset S Ď F is a binary tree T
whose vertices are subsets of S such that:

• S P T is the root,

• any leaf L P T has |L| “ 1, and

• any non-leaf V P T is the disjoint union of its children, and

• if V1, V2 P T rV s for some V P T , then ||V1| ´ |V2|| ď 1.

The corresponding subproduct tree U Ă FrXs is a binary tree obtained by re-
placing each vertex V P T with ϕpV q :“

ś

αPV pX ´ αq P FrXs, i.e. ϕ is a
bijection T Ñ U such that U rϕpV qs “ tϕpCq | C P T rV su for any V P T .

Although computing a partition tree for a subset S Ď F technically does not
cost any operations in F, simply storing it requires us to hold Op|S| log |S|q field
elements in memory, which also bounds the computation time in practice. The
following lemma enables us to compute the corresponding subproduct tree of S
in roughly the same time (up to logarithmic factors).

Proposition 2.17 (Lemma 10.4 from [vzGG12]). There exists an an algorithm
which for any subset S Ď F and any partition tree T of S computes the corre-
sponding product tree of S using at most OpMp|S|q logp|S|qq Ă rOp|S|q operations
in F.

2.5 Fast unencoding using interpolation 31

tα1, . . . , αnu

tα1, . . . , αn{2u

...

tα1, α2u

tα1u tα2u

...

tαn{2`1, . . . , αnu

...
...

tαn´1, αnu

tαn´1u tαnu

Figure 2.3: A partition tree for S “ tα1, . . . , αnu Ď F, where n “ 2k.
śn
i“1pX ´ αiq

śn{2
i“1pX ´ αiq

...

pX ´ α1qpX ´ α2q

pX ´ α1q pX ´ α2q

...

śn
i“n{2`1pX ´ αiq

...
...

pX ´ αn´1qpX ´ αnq

pX ´ αn´1q pX ´ αnq

Figure 2.4: A subproduct tree for the set S “ tα1, . . . , αnu Ď F, where n “ 2k.

Algorithm 2 Combineph,Uq
Input:

• A subproduct tree U Ă FrXs of some S Ď F with |S| “ 2k,

• polynomials h “ phpα,Y qqαPS P FrY sS .
Output:

• the polynomial h “
ř

αPS h
pα,Y q

ś

α1PSztαupX ´ α
1q P FrX,Y s.

1: if S “ tαu for some α P F then
2: return hα
3: else
4: tu1, u2u Ð U rus, where u P U is the root
5: for t “ 1, 2 do
6: ht P FrX,Y s Ð Combinepphpα,Y qqαPSt ,Utq, where

Ut Ă U are the subtrees with roots St and ut respectively
7: return h P FrX,Y s Ð u2h1 ` u1h2

32 Encoding and unencoding of one-point AG codes over Ca,b curves

Lemma 2.18. Algorithm 2 is correct, and if deg hα ă r for all α P S, then it
costs OprMpsq logpsqq Ă rOprsq operations in F, where s “ |S| “ 2k.

Proof. We prove correctness by induction on k. The base case k “ 0 is clear,
since then S “ tαu for some α P F and the algorithm returns h “ hα. For k ą 0
we know that S is the disjoint union of S1 and S2, where |S1| “ |S2| “ 2k´1.
By induction hypothesis then

ht “
ÿ

αPSt

hpα,Y q
ź

α1PStztαu

pX ´ α1q for t “ 1, 2 .

It follows that the output of the algorithm is

h “
ÿ

αPS1

hpα,Y q
ź

α1PSztαu

pX ´ α1q `
ÿ

αPS2

hpα,Y q
ź

α1PSztαu

pX ´ α1q

“
ÿ

αPS

hpα,Y q
ź

α1PSztαu

pX ´ α1q .

For the complexity, let Cpsq denote the cost of the algorithm when |S| “ s.
In each recursive step (Step 6), the algorithm solves two subproblems of half
the size of the original problem, each having the cost Cps{2q. The computa-
tional bottleneck in combining these two solutions in Step 7 comes from car-
rying out the multiplications u2 ¨ h1 and u1 ¨ h2, where degX h1,degX h2 ă
s{2 and degY h1,degY h2 ă r, and where both of u1, u2 P FrXs have degree
s{2. Each of these multiplications costs OprMpsqq operations in F, yielding
the recurrence relation Cpsq “ 2Cps{2q ` OprMpsqq, which has the solution
rOprMpsq logpsqq ` OpsqCp1q. At the base case, the algorithm simply returns a
univariate polynomial in Y with degree less than r, thus Cp1q P Oprq.

Algorithm 3 BivariateInterpolatepP, cq
Input:

• A point set P Ď F2

• a tuple of interpolation values c “ pcα,βqpα,βqPP P FP .

Output:

• the interpolating polynomial h “ R
pcq
P P FrX,Y s from Lemma 2.15.

1: U Ă FrXs Ð a product tree of X
2: u P FrXs Ð the formal derivative of the root of U
3: pupαqqαPX P FX Ð pupαqqαPX Ź using fast univariate MPE
4: for each α P X do
5: hpα,Y q P FrY s Ð polynomial such that hpα,Y qpβq “ cα,β for each β P Yα

Ź using fast univariate interpolation
6: return h P FrX,Y s Ð Combinepphpα,Y q{upαqqαPX ,Uq Ź Algorithm 2

2.5 Fast unencoding using interpolation 33

Lemma 2.19. Algorithm 3 is correct and costs

OpνYMpnXq logpnXq ` nXMpνY q logpνY qq Ă rOpnXνY q ,

operations in F.

Proof. Correctness follows from Lemma 2.18, which guarantees that

h “
ÿ

αPX

hpα,Y q

upαq

ź

α1PX ztαu

pX ´ α1q ,

where

hpα,Y q “
ÿ

βPYα

cα,β
ź

β1PYαztαu

Y ´ β1

β ´ β1

(by univariate interpolation) and upαq “ upαq “
ś

α1PX ztαupα´ α
1q, since

u “
ÿ

αPX

ź

α1PX ztαu

pX ´ αq ,

hence h “ R
pcq
P . It is not hard to see that upαq ‰ 0 for α P X .

Step 1 costs OpMpnXq logpnXqq according to Proposition 2.17, Step 2 costs
OpnXq and Step 4 costs OpMpnXq logpnXqq. The total cost of Step 5 over
all values of α P X is OpnXMpνY q logpνY qq. The cost of the algorithm as
a whole follows from the fact that Step 6 costs OpνYMpnXq logpnXqq due to
Lemma 2.18.

Notice that if P is close to being a semi-grid, i.e. nXνY « |P|, then Algorithm 3
has quasi-linear complexity. Unfortunately, this is not enough to guarantee
quasi-linear unencoding as the returned polynomial RpcqP might fail to satisfy the
monomial support constraints imposed by Problem 2.9, requiring us to perform
additional computations. In Section 2.5.2 we explain how to efficiently reduce
the support of RpcqP , though the cost of doing this will generally be worse than
quasi-linear. Fortunately, as we will see in Section 2.6.1, if P is a semi-grid
satisfying certain size constraints, then this additional computational step can
be omitted. This is partly due to the fact that if P is a semi-grid, then the
F-vector spaces R “ th P FrX,Y s | degX h ă nX and degY h ă νY u and FP

are isomorphic under the evaluation map on P, implying that RpcqP is the unique
polynomial in R that interpolates c P FP . This is in contrast to the case when
P in not a semi-grid, as we will discuss in the following section.

34 Encoding and unencoding of one-point AG codes over Ca,b curves

2.5.2 Reducing the monomial support

In Section 2.5.1 we have seen that for any finite point set P Ď F2 and any
interpolation values c “ pcP qPPP P FP we can compute a polynomial RpcqP P

FrX,Y s with degX R
pcq
P ă nX and degY R

pcq
P ă νY satisfying RpcqP pP q “ cP for

P P P, see Lemma 2.15. Now we turn our attention to transforming RpcqP into a
polynomial f P FrX,Y s which satisfies the constraints imposed by Problem 2.9
while preserving the evaluations on P. More precisely, we now wish to solve the
following problem:

Problem 2.20. Given the polynomial RpcqP P FrX,Y s from Lemma 2.15 find
the unique polynomial f P Lpmq, i.e. degY f ă a and δpfq ď m, such that
fpP q “ R

pcq
P pP q for P P P.

We will solve Problem 2.20 using Gröbner bases (see e.g. [CLO07]), so let us
establish some notation: For the remainder of this section we impose the (total)
monomial order ĺa,b on FrX,Y s, where

XiY j ĺa,b X
j1Y j

1

ðñ
ai` bj ă ai1 ` bj1 or
ai` bj “ ai1 ` bj1 and j ă j1

.

For any polynomial h “
ř

pi,jqPZ2
ě0
hi,jX

iY j P FrX,Y s with hi,j P F let lmh

denote the leading monomial of h (with respect to ĺa,b), and for any monomial
XiY j let hrX

iY js “ hi,jX
iY j . With this notation hrlmhs denotes the leading

term of h, i.e. if lmh “ XiY j , then hrlmhs “ hi,jX
iY j .

If g “ pg1, . . . , gγq P FrX,Y sγ is a Gröbner basis of some ideal such that for
t “ 1, . . . , γ it holds that lm gt - w for all monomials w P supph, then we say
that h is reduced with respect to g.

Lemma 2.21. Let f P Lpmq with m ă n, and let g “ pg1, . . . , gγq P FrX,Y sγ
be a Gröbner basis of the vanishing ideal ΓpPq of P. If h P FrX,Y s is reduced
with respect to g and satisfies hpP q “ fpP q for P P P, then h “ f .

Proof. If h ‰ f , then h R Lpmq, since Lemma 1.17 on page 14 guarantees that
the evaluation map r P Lpmq ÞÑ prpP qqP P FP is injective. Consequently, there
exists at least one monomial w P supphXsuppph´fq, but since 0 ‰ h´f P ΓpPq,
then h ´ f “

řγ
t“1 ptgt with pt P FrX,Y s not all zero, which implies that

lm gu | w for some u P t1, . . . , γu, contradicting that h is reduced with respect
to g.

2.5 Fast unencoding using interpolation 35

An extended reduction of h with respect to g is a tuple pp1, . . . , pγ , fq P FrX,Y sγ`1

satisfying h “ f `
řγ
t“1 ptgt such that f is reduced with respect to g. The naive

approach for computing extended reductions is presented in the listing of Al-
gorithm 4; although it is inefficient, its inner workings are helpful for reasoning
about its output, which can also be obtained using faster algorithms.

Algorithm 4 ExtendedReducepf, gq

Input:

• A polynomial h P FrX,Y s,
• a reduced Gröbner basis g “ pg1, . . . , gγq P FrX,Y sγ .

Output:

• an extended reduction pp1, . . . , pγ , fq P FrX,Y sγ`1 of h
with respect to g.

1: f P FrX,Y s Ð h
2: p “ pp1, . . . , pγq P FrX,Y sγ Ð p0, . . . , 0q
3: while f is not reduced with respect to g do
4: t P t1, . . . , γu Ð minimal index such that lm gt | w for some w P supp f
5: r P FrX,Y s Ð maximal monomial in supp f such that lm gt | r

6: w P FrX,Y s Ð f rrs{g
rlm gts
t

7: pt Ð pt ` w
8: f Ð f ´ wgt
9: return pp1, . . . , pγ , fq P FrX,Y sγ`1

Remark 2.22. Although an extended reduction is typically not unique, the
output of Algorithm 4 is uniquely determined due to the minimal choice of t in
Step 4.

Remark 2.23. Actually, there is no reason for Algorithm 4 to require g to be
a reduced Gröbner basis; we do so merely for exposition purposes. As detailed
in [vdH15], it suffices for g to be autoreduced, which is a weaker constraint.

Proposition 2.24 (Theorem 4 in [vdH15]). There exists an algorithm, which
we name FastExtendedReduce, that computes the output of Algorithm 4 using at
most

Op
γ
ÿ

t“0

Mpη
ptq
X η

ptq
Y q logpη

ptq
X η

ptq
Y q

2q Ă rOp
γ
ÿ

t“0

η
ptq
X η

ptq
Y q

operations in F, where for W P tX,Y u

η
ptq
W “

#

degW h for t “ 0

degW pt ` degW gt for t “ 1, . . . , γ
.

36 Encoding and unencoding of one-point AG codes over Ca,b curves

Lemma 2.25. Let g “ pg1, . . . , gγq P FrX,Y s be a reduced Gröbner basis with

lm g1 “ Xu and lm g2 “ Y v, where g1 P FrXs .

If pp1, . . . , pγ , fq P FrX,Y sγ`1 is the output of Algorithm 4 when computing an
extended reduction of some h P FrX,Y s with respect to g, then

degX pt ` degX gt ď maxtdegX h, 2pu´ 1qu and
degY pt ` degY gt ď maxtdegY h, 2pv ´ 1qu .

Proof. Let fj , wj P FrX,Y s and tj P t1, . . . , γu denote the values of f, w and t,
respectively, after the j-th iteration of the loop, setting f0 “ h. It is clear that

degX fj ď maxtdegX fj´1,degXpwjgtj qu and
degY fj ď maxtdegY fj´1,degY pwjgtj qu .

With the aim of bounding the degrees of wjgtj we consider three cases for the
value of tj :

• If tj “ 1, i.e. degX fj´1 ě u, then

degXpwjgtj q “ degX fj´1 and degY pwjgtj q ď degY fj´1 ,

since degY gtj “ 0;

• if tj “ 2, i.e. degX fj´1 ă u and degY fj´1 ě v, then

degY pwjgtj q “ degY fj´1 and degXpwkgtj q ď 2pu´ 1q ,

since degX wk ď degX fk ă u and degX gtj ă u because g is reduced;

• if tj ą 2, i.e. degX fk ă u and degY fk ă v, then

degXpwjgtj q ď 2pu´ 1q and degY pwjgtj q ď 2pv ´ 1q ,

since degX wj ,degY gtj ă u and degY wj ,degY gtj ă v.

By induction it follows that for every j

degXpwjgtj q ď maxtdegX h, 2pu´ 1qu and
degY pwjgtj q ď maxtdegY h, 2pv ´ 1qu .

The conclusion follows, since for W P tX,Y u and t “ 1, . . . , γ it holds that

degW pt ` degW gt “ degW pptgtq “ max
jPJt

degW pwjgtj q ,

where Jt “ tj | tj “ tu.

2.5 Fast unencoding using interpolation 37

Lemma 2.26. If g “ pg1, . . . , gγq P FrX,Y sγ is a reduced Gröbner basis, where
for some j P t1, . . . , γu it holds that lm gj “ Y v with v P Zě0, then γ ď v ` 1.

Proof. Since g is reduced, then we can relabel its entries such that

v “ degY lm g1 ą ¨ ¨ ¨ ą degY lm gγ ě 0 ,

from which follows the sought conclusion.

Lemma 2.27. If P Ă F2 is a subset of the rational points on a Ca,b curve and
g “ pg1, . . . , gγq P FrX,Y sγ is the reduced Gröbner basis of the vanishing ideal
ΓpPq of P, then FastExtendedReducepR

pcq
P , gq from Lemma 2.15 can be computed

using at most

OpaMpanXq logpanXq
2q Ă rOpa2nXq

operations in F.

Proof. It is clear that if G “
ś

αPX pX ´ αq P FrXs, then G P ΓpPq with
lmG “ XnX , hence we can choose g1 such that g1 P FrXs and lm g1 | X

nX

(by simply permuting the entries of g). Similarly, if Q P FrX,Y s is the defining
polynomial of the Ca,b curve, then Q P ΓpPq with lmQ “ Y a, so we may pick g2
such that lm g2 | Y

a. By Lemma 2.26, this immediately implies that γ ď a` 1.
If pp1, . . . , pγ , fq P FrX,Y sγ is the output of Algorithm 4 when computing an
extended reduction of RpcqP with respect to g, then Lemma 2.25 guarantees that
for t “ 1, . . . , γ

degX pt ` degX gt ď 2pnX ´ 1q P OpnXq and
degY pt ` degY gt ď 2pa´ 1q P Opaq .

Finally, the stated complexity bound then follows from Proposition 2.24, since
degX R

pcq
P ď nX and degY R

pcq
P ă a.

38 Encoding and unencoding of one-point AG codes over Ca,b curves

2.5.3 A fast unencoding algorithm

Algorithm 5 UnencodepP, c, gq
Input:

• A subset P “ tP1, . . . , Pnu Ď F2 of the rational points on the underly-
ing Ca,b curve,

• a codeword c “ pc1, . . . , cnq P Cpm,Pq,
• precomputed reduced Gröbner basis g P FrX,Y sγ of the vanishing ideal

ΓpPq of P.
Output:

• The unique message f P Lpmq such that fpPiq “ ci for i “ 1, . . . , n.

1: h P FrX,Y s Ð BivariateInterpolatepP, cq Ź h “ R
pcq
P , Algorithm 3

2: pp1, . . . , pγ , fq P FrX,Y sγ`1 Ð FastExtendedReduceph, gq Ź

Proposition 2.24
3: return f

Theorem 2.28. Algorithm 5 is correct. Its cost is bounded by

OpaMpanXq logpanXq
2q Ă rOpa2nXq

operations in F, assuming that we have precomputed the reduced Gröbner basis
g of the vanishing ideal ΓpPq of the points P.

Proof. Correctness is clear, since fpPiq “ hpPiq “ ci for i “ 1, . . . , n, where the
latter equality is due to Lemma 2.19 and the former follows from the fact that
gj P ΓpPq for j “ 1, . . . , γ. The claim that f P Lpmq follows from g being a
Gröbner basis with respect to ĺa,b.

For the complexity, note that Lemma 2.19 implies that the cost of Step 1 is

OpaMpnXq logpnXq ` nXMpaq logpaqq .

The cost of Step 2 is given by Lemma 2.27 as OpaMpanXq logpanXq
2q, which

dominates the total cost of the algorithm.

Similarly to what we have seen in Section 2.4 with encoding, the complexity of
unencoding using Algorithm 5 depends on the layout of the evaluation points
P as well as the curve parameter a. It should be noted, however, that the cost
of unencoding incurs an additional factor of a due to the potentially expensive

2.6 Special curves 39

monomial-support-reduction step. We will see in Section 2.6.1 that this step
becomes trivial for certain well behaved codes, but before we do so let us briefly
examine the worst-case complexity for our encoding algorithm under very mild
assumptions:

Corollary 2.29. (of Theorem 2.28) Let P Ă F2 be a subset of the rational
points on a Ca,b curve defined over Fq. If q, g ď n, where n “ |P|, then
Algorithm 5 costs at most rOpnqq Ď rOpn2q operations in F.

Proof. Assuming w.l.o.g. that a ă b, we use the same upper bound

a ď
?

2n` 1 P Op
?
nq

as in Corollary 2.14 to obtain the cost rOpa2nXq Ď rOpnqq.

Observe that for codes with n « q, the complexity of our encoding algorithm
is no better than multiplying the codeword by the (precomputed) inverted gen-
erator matrix. In such cases it is preferable to use structured linear system
solving with cost rOpaω´1nq Ď rOpnpω´1q{2`1q Ă rOpn1.6865q, where we have used
the best know bound ω ă 2.3729 by Alman and Williams [AW21]. In practice,
however, due to a more manageable constant factor, it is more common to use
Strassen’s matrix multiplication algorithm [Str69] with ω ă 2.8074, resulting in
the complexity rOpn1.9037q. More generally, ignoring constant and logarithmic
factors, linear system solving will beat our approach when aω´1n ă a2nX , or
equivalently

a3´ω ą n{nX . (2.1)

Continuing use inequalities in the asymptotic sense we observe that in the con-
text of Corollary 2.29, i.e. with a ď

?
n, (2.1) implies that np3´ωq{2 ą n{q,

where we have used that nX ď q. Consequently, (2.1) can only be satisfied
when n ă q2{pω´1q, or n P rOpq2{pω´1qq using asymptotic notation. With the ω-
bound by Alman and Williams this translates to n P Opq1.4568q, while Strassen’s
algorithm gives n P Opq1.1065q. It is safe to say that such codes can be consid-
ered (asymptotically) short, at least compared to the one-point Hermitian codes
where n “ q3.

2.6 Special curves

In this section we investigate the behavior of our encoding and unencoding
algorithms for special families of Ca,b curves. As we will see, in many interesting
cases we beat the cost Opn2q, sometimes even achieving rOpnq.

40 Encoding and unencoding of one-point AG codes over Ca,b curves

2.6.1 Semi-grids

We have mentioned that our algorithms are particularly well suited for certain
point sets with a semi-grid structure. Let us now explore this in detail:

Definition 2.30. A code CQpP,mq over a Ca,b curve will be called a maximal
semi-grid code P is a semi-grid with νY pPq “ a, i.e. nXpPqa “ n.

Proposition 2.31. Any maximal semi-grid code can be encoded using Algo-
rithm 1 with cost OpMpnq logpnqq P rOpnq.

Proof. The claim is a direct consequence of Theorem 2.13, since anX “ n.

The complexity of Algorithm 5 for unencoding is dominated by the monomial-
support-reduction step. Fortunately, this step can be safely omitted for maximal
semi-grid codes:

Lemma 2.32. If CQpP,mq is a maximal semi-grid code, then

g “ pG,Qq P FrX,Y s2 ,

where G “
ś

αPX pX´αq P FrXs, is a Gröbner basis of the vanishing ideal ΓpPq
of P with respect to ĺa,b.

Proof. It is clear that g is a Gröbner basis of xG,QyFrX,Y s Ď ΓpPq with respect
to ĺa,b, so it suffices to show that xG,QyFrX,Y s “ ΓpPq, which is necessarily
true, since degpxG,QyFrX,Y sq “ nXa “ n “ degpΓpPqq, where degpIq denotes
the degree of any ideal I Ď FrX,Y s.

Proposition 2.33. If c “ pfpP qqPPP P FP is a codeword of some maximal
semi-grid code CQpP,mq, where f P Lpmq with m ă n, then RpcqP “ f .

Proof. By Lemma 2.15 it holds that degX R
pcq
P ă nX and degY R

pcq
P ă νY “ a.

By Lemma 2.32, if G “
ś

αPX pX ´ αq P FrXs, then g “ pG,Qq P FrX,Y s2
is a Gröbner basis of the vanishing ideal ΓpPq of P, and since lmQ “ Y a and
lmG “ XnX , then R

pcq
P is reduced with respect to g. The sought conclusion

follows from Lemma 2.21, since RpcqP pP q “ fpP q for P P P.

Proposition 2.34. For any maximal semi-grid code CQpP,mq, unencoding can
be solved without any precomputation using no more than

OpaMpnXq logpnXq ` nXMpaq logpaqq Ă rOpnq

operations in F.

2.6 Special curves 41

Proof. Simply consider Algorithm 5 without Step 2, i.e. skip the extended
reduction. Doing so makes precomputation of the Gröbner basis g superfluous
and reduces the total complexity of the algorithm to that of Algorithm 3, given
by Lemma 2.19. The conclusion follows, since nXa “ n.

As we now have seen in Proposition 2.31 and Proposition 2.34, we can encode
and unencode maximal semi-grid codes in quasi-linear time without any pre-
computation. Now is therefore a good time to take a look at some concrete
families of Ca,b curves that enable construction of such codes.

Hermitian curve

The Hermitian curve is defined over Fq2 by the polynomial

H “ Y q ` Y ´Xq`1 P Fq2rX,Y s .

It can easily be checked that H defines a Ca,b curve with a “ q and b “ q ` 1.
A (one-point) The Hermitian code is simply a code whose evaluation points are
solutions to the equation HpX,Y q “ 0.

The Hermitian curve and its function field are well-known and have been studied
extensively, e.g. see [Sti09, Lemma 6.4.4]. For instance, using the norm and
trace maps of the extension Fq2{Fq it can be shown that for every α P Fq2 there
are exactly q distinct elements β P Fq2 such that Hpα, βq “ 0, which is to say
that the set PH of rational points on the Hermitian curve forms a semi-grid
with X pPHq “ Fq2 and νY pPHq “ q “ a, amounting to n “ q3 points in total.
Moreover, any Hermitian code CHpPH ,mq is a maximal-semi grid code, allowing
us to encode and unencode with quasi-linear cost:

Corollary 2.35 (of Proposition 2.31 and Proposition 2.34). Any Hermitian
code CHpPH ,mq with m ă n can be encoded and unencoded with cost

OpMpnq logpnqq and OpqMpq2q logpqqq

respectively, i.e. rOpnq in both cases.

Note that the quasi-linear cost of encoding and unencoding is also preserved for
subcodes with nXpPq ă q2 as long as we keep νY pPq “ q.

42 Encoding and unencoding of one-point AG codes over Ca,b curves

Norm-Trace and other Hermitian-like curves

The Hermitian curve belongs to a larger family of Ca,b curves: Let r and e be
positive integers satisfying r ě 2 and e | pqr ´ 1q{pq ´ 1q, and consider the Ca,b
curve over Fqr with defining polynomial

Nr,e “ Y q
r´1

` ¨ ¨ ¨ ` Y q ` Y ´Xe P Fqr rX,Y s

and with a “ qr´1 and b “ e.

We first investigate the case e “ pqr ´ 1q{pq ´ 1q, which gives rise to the norm-
trace curves studied in [Gei03]. It is not hard to see that for r “ 2 this simplifies
to the Hermitian curve, i.e. N2,e “ H. It can be shown that that the set
PN Ă F2

qr of rational points on the curve defined by Nr,e forms a semi-grid
with nXpPN q “ qr, νY pPN q “ a and consequently n “ q2r´1. Corollary 2.35
generalizes directly and shows that (one-point) norm-trace codes can be encoded
and unencoded with quasi-linear cost:

Corollary 2.36 (of Proposition 2.31 and Proposition 2.34). Any norm-trace
code CNr,epPN ,mq with m ă n “ q2r´1 can be encoded and unencoded with cost

OpMpnq logpnqq and Opqr´1Mpqrq logpqrqq

respectively, i.e. rOpnq in both cases.

If e ă pqr ´ 1q{pq´ 1q, then the equation Nr,epα, βq “ 0 has qr´1` epqr ´ qr´1q

solutions in F2
qr , where the small term qr´1 corresponds to solutions with β “ 0

and αq
r´1

` ¨ ¨ ¨ ` α “ 0. The point set PpeqN Ă F2
qr which containing the

remaining n “ epqr ´ qr´1q points forms a semi-grid with νY pPpeqN q “ a “ e and
nXpPpeqN q “ qr ´ qr´1 , and gives rise to a maximal semi-grid code. A special
case of such curves with r even and e | pqr{2 ` 1q was considered in [MUT09].

Corollary 2.37 (of Proposition 2.31 and Proposition 2.34). Let r, e be positive
integers with r ě 2 and e a proper divisor of pqr ´ 1q{pq ´ 1q. If PpeqN Ă F2

qr is
the set of solutions to Nr,epα, βq “ 0, excluding those with αq

r

` ¨ ¨ ¨ ` α “ 0

and β “ 0, then the code CNr,epP
peq
N ,mq, where m ă n “ epqr ´ qr´1q, can be

encoded and unencoded with cost

OpMpnq logpnqq and OpeMpqrq logpqrqq

respectively, i.e. rOpnq in both cases.

2.6 Special curves 43

2.6.2 Maximal curves

We have seen in Section 2.6.1 that maximal semi-grid codes can be encoded and
unencoded with quasi-linear cost. In this section we turn our attention to codes
over maximal Ca,b curves, i.e. those that attain the Hasse-Weil bound :

Theorem 2.38 (Theorem 5.2.3 in [Sti09]). If N is the number of rational places
of an algebraic function field F over Fq, then N ď 2gq1{2` q` 1, where g is the
genus of F .

For Ca,b curves we know that g “ 1
2 pa´ 1qpb´ 1q, and that there is exactly one

rational place at infinity (that we don’t use for evaluation). Consequently, the
length n of a code CQpP,mq over a Ca,b curve is bounded by

n ď HWpa, bq :“ pa´ 1qpb´ 1qq1{2 ` q .

We proceed under the assumption that n “ HWpa, bq. A well-known example of
a Ca,b curve for which this holds is the Hermitian curve, which we have already
discussed in Section 2.6.1.

Lemma 2.39. If P Ă F2
q is the set of all (finite) rational points on a maximal

Ca,b curve with a ă b, then

a ă
n1{2

q1{4
` 1 P O

´n1{2

q1{4

¯

,

qa ă n5{4 ` n P Opn5{4q ,

qa2 ă n3{2 ` 2n5{4 ` 2n P Opn3{2q .

Proof. Since n “ HWpa, bq ą pa´ 1qpb´ 1qq1{2 ą pa´ 1q2q1{2, then

pa´ 1q2 ă
n

q1{2
ðñ a ă

n1{2

q1{4
` 1 .

The second bound then follows from q ď n, since

qa ă q
´n1{2

q1{4
` 1

¯

“ q3{4n1{2 ` q ď n5{4 ` n .

The last bound is obtained by observing that

qa2 ă q
`

pa´ 1q2 ` 2a
˘

ă q
´ n

q1{2
` 2p

n1{2

q1{4
` 1q

¯

“ q1{2n` 2q3{4n1{2` 2q “ n3{2 ` 2n5{4 ` 2n .

44 Encoding and unencoding of one-point AG codes over Ca,b curves

Corollary 2.40. Any code CQpP,mq with m ă n “ HWpa, bq can be, respec-
tively, encoded and unencoded with cost

OpMpn5{4q logpn5{4qq Ă rOpn5{4q and

OpMpn3{2q logpn3{2q2q Ă rOpn3{2q .

Proof. Combining Lemma 2.39 with Theorem 2.13 and Theorem 2.28, respec-
tively, yields the cost for encoding and unencoding, since nX ď q.

Remark 2.41. It is, strictly speaking, not necessary to require n “ HWpa, bq in
order to achieve the cost bounds given by Corollary 2.40. Indeed, the asymptotic
complexity remains unchanged for any family of codes where n ě c ¨ HWpa, bq
for some (global) real number c P p0, 1s. More formally, if Q is a subset of

tpP, a1, b1q | P is any subset of any Ca,b curve with a “ a1 and b “ b1u ,

then the cost bounds given by Corollary 2.40 are still valid over Q as long as
there exists a c P p0, 1s such that |P| ě c ¨ HWpa1, b1q for every pP, a1, b1q P Q.

Remark 2.42. In the context of Remark 2.41, we can even allow c to depend
on the given point set instead of being global over Q as long as we replace the
cost bounds from Corollary 2.40 for encoding and unencoding with rOpn5{4{

?
cq

and rOpn3{2{cq respectively. For example, if we are working with a family of
point sets where n2 ě HWpa, bq, i.e. c “ 1{n, then encoding costs

rOpn5{4
?
nq “ rOpn7{4q ,

which is still better than the naive approach.

We conclude this chapter by comparing the cost of unencoding, as given by
Corollary 2.40, with the alternative approach of structured system solving de-
scribed in Section 2.2.3, which has the cost rOpaω´1nq. Acknowledging that a
completely fair comparison is difficult, we rely on the crude bound n ď q2 in
combination with Lemma 2.39 to deduce that

a P Opn1{2{q1{4q Ă Opn1{2{n1{8q “ Opn3{8q .

The cost of structured system solving can thus be bounded by Opn1`3{8pω´1qq.
Using the best known bound ω ă 2.3729 by Alman and Williams [AW21], this
becomes Opn1.5149q, which is only marginally slower than our approach with
cost rOpn1.5q. The more practical matrix multiplication algorithm by Strassen
[Str69], with ω ă 2.8074, yields the cost Opn1.6778q. Simply replacing ω by 3
results in Opn1.75q.

Chapter 3

Generic bivariate algorithms

In Chapter 2 we have seen that encoding and unencoding of certain AG codes
is closely related to bivariate multi-point evaluation (MPE) and interpolation
respectively. We have also seen how both problems can be solved with quasi-
linear cost for point sets that conform to a special geometric structure called
a semi-grid. Most point sets, however, are not semi-grids, and it is easy to
construct examples for which our Pan-inspired [Pan94] algorithms will have
quadratic complexity. In this chapter we investigate an alternative technique for
bivariate MPE and interpolation called reshaping, which bears more resemblance
to the ideas of Nüsken and Ziegler [NZ04] discussed in Section 2.2.2.

3.1 Strategy outline

In this section we informally describe the main idea of this chapter.

Recall Nüsken and Ziegler’s strategy for evaluating a polynomial f P FrX,Y s
on a point set P “ tpαj , βjqunj“1 Ă F2 where the αj are pairwise distinct1:

1if they are not, simply shear the points in an extension field (see Section 2.2.2)

46 Generic bivariate algorithms

1) compute h “ fpX, bq rem a, where b P FrXs with bpαjq “ βj for
j “ 1, . . . , n and a “

śn
j“1pX ´ αjq P FrXs,

2) evaluate h P FrXs on α1, . . . , αn P F.

Note that the modular composition in Step 1 constitutes the computational
bottleneck of this approach; the univariate MPE in Step 1 has quasi-linear cost.
It is also worth noting that, for the sake of efficient MPE, we could have used any
low degree polynomial h P FrXs X pf ` ΓpPqq, where ΓpPq Ă FrX,Y s denotes
the vanishing ideal of P. Modular composition is merely one way of obtaining
such a polynomial, and we can view it as the computation of h “ f rem pa, y´bq
with respect to the monomial order ălex, where

XiY j ălex X
i1Y j

1

ðñ j ă j1 _ pj “ j1 ^ i ă i1q .

A natural question then arises: Can we replace a and y´ b in this computation
with some other polynomials g1, . . . , gγ P ΓpPq so that the remainder

h “ f rem pg1, . . . , gγq P FrXs X pf ` ΓpPqq

has low degree and can be obtained efficiently? Fortunately, the answer to this
question turns out to be: yes, at least most of the time. To see this, suppose that
degX f ¨ degY f « n and that there exists a polynomial g1 “ Y 2d{3 ´ qg1 P ΓpPq
with degY qg1 ă d{3, where d “ degY f`1 is assumed to be divisible by 3 for the
sake of simplicity. Because of its special monomial support, we say that g1 is a
reshaper – to see why, write f “ Y 2d{3

pf ` qf with degY
qf ă 2d{3, and observe

that
f rem g1 “ f ´ pfg1 “ qf ` pf qg1 P f ` ΓpPq .

In other words, we can use g1 to reshape f into a polynomial whose Y -degree is
smaller by a factor of roughly 2{3 and whose evaluations on P coincide with those
of f . Repeating such reduction for appropriately chosen reshapers g2, . . . , gγ ,
each time reducing the Y -degree of the current remainder by a factor of about
2{3, we can obtain h P FrXs X pf ` ΓpPqq using only

γ « log3{2pdegY fq P Oplog nq

iterations. Therefore, as long as we can ensure that each iteration has quasi-
linear cost, then the total cost of this reshaping-based MPE also becomes quasi-
linear.

To achieve this, however, we need the X-degrees of all of the reshapers to be
sufficiently small, and unfortunately, not every point set contains such reshapers
in its vanishing ideal. For example, the requirement that g1 P ΓpPq imposes n
linear constraints on the coefficients of qg1, and since not all monomials u in the

3.1 Strategy outline 47

degX

d
eg
Y

Figure 3.1: A schematic representation of one iteration of reshaping. Each
colored area bounds the monomial support of a polynomial: Blue
is the current remainder, orange is a reshaper and green is the
subsequent remainder.

allowed monomial support are linearly independent under the evaluation map
u ÞÑ pupP qqPPP P FP , we might therefore sometimes need to use monomials
with relatively high X-degree – and this could break our quasi-linear target cost.
For a random or generic point set, however, these monomials will be linearly
independent with high probability, and since degY qg1 « d{3, then we may expect
to find g1 with degY qg1 « 3n{d, so that degX qg1 ¨ degY qg1 « n. Informally, we
say that a point set is balanced if all of the sought reshapers satisfy such degree
constraints.

Example 3.1 (Unbalanced point set). Suppose that we are seeking a reshaper
g “ Y n{2 ´ qg P ΓpPq with degY qg ď n{4, where P “ tpαj , αjqu

n
j“1 for some

pairwise distinct α1, . . . , αn P F with n divisible by 4. For efficiency reasons, we
wish to have degX qg ¨degY qg « n, i.e. degX qg « 4 (or some other small constant).
However, noting that ΓpPq is generated by Y ´X and

ś

PPPpX ´XpP qq, and
letting evPpuq “ pupP qqPPP P FP

q for any u P FrX,Y s, it is clear that all vectors
in tevPpX

kq | 0 ď k ă nu are linearly independent over F. Consequently, the
only univariate polynomial rg P FrXs with deg rg ă n and evPprgq “ evPpY

n{2q

is rg “ Xn{2. Furthermore, since for any i, j, k P t0, . . . , n ´ 1u with i ` j ă n
it holds that evPpX

iY jq “ evPpX
kq if and only if i ` j “ k, then necessarily

supp qg Ă tXiY j | j ď n{4 ^ pi ` j “ n{2 _ i ě nqu, which implies that
degX qg ě n{4. But this is nowhere close to the sought degX qg « 4.

Besides the requirement that the underlying point set needs to be balanced,
our algorithm pays an additional price for its quasi-linear complexity: Since
it is unclear how to obtain the needed reshapers within our target cost, we

48 Generic bivariate algorithms

have no other choice than to precompute them. Furthermore, the amount of
precomputation needed depends on an upper bound of the Y -degree of the
input polynomial. We discuss the practical implications of these two limitations
below.

Precomputation and balancedness

In potential practical applications of AG codes, it is perfectly reasonable to allow
the underlying point set to be available for precomputation prior to the deploy-
ment of the communication protocol – it is the computational load during the
online phase that is most critical. Furthermore, the choice of the code naturally
imposes and upper bound on the Y -degree of the message polynomial, which
means that we know in advance how many reshapers we need to precompute.
As outlined above, if the underlying point set is balanced, then our reshaping-
based MPE is particularly well suited for this setting. Unfortunately, however,
it is with respect to balancedness that we run into a potential issue: although
we know that a random point set is balanced with high probability, we also
know that point sets on algebraic curves are not random. As demonstrated by
Example 3.1, some curves do indeed give rise to unbalanced points, and it is un-
known how frequently this occurs. To complicate things even further, virtually
all interesting AG codes contain repeating X-coordinates in their underlying
point sets, which means that if reshaping-based MPE is to be used, then the
points must be sheared in an extension field, and how this shearing affects bal-
ancedness is also not understood. So far, we are simply left with having to check
each case individually, but since this can be done during precomputation, then
we can always resort to other algorithms if the given point set turns out to be
unbalanced.

Remark 3.2. As mentioned in Remark 2.10 on page 24, there is a recent
bivariate MPE algorithm by van der Hoeven and Lecerf [vdHL21] which can
evaluate any polynomial f P FrX,Y s satisfying degX f, degY f ă

?
n using

OpMpn log nq logpnq3q Ă rOpnq operations in F – not counting precomputation on
the points. Their approach has similarities with ours in that it also relies on a
notion genericity, however, they can ensure that it is satisfied by using a certain
change of variables. It is likely that something similar can be done with our
results, but this remains to be investigated. In this sense, their MPE algorithm
is strictly better than ours when degX f « degY f .

3.2 Reshaping 49

3.2 Reshaping

In this section we formally present the technique of reshaping in full generality.
We begin by defining a single reshaper:

Definition 3.3. If I Ď FrX,Y s is an ideal and g “ Y η´qg P I with degY qg ă η,
then we say that g is an η-reshaper in I.

Remark 3.4. The only reason for why we have considered a general ideal I
in Definition 3.3 instead of the vanishing ideal ΓpPq is that this would allow
us address the most general form of Nüsken and Ziegler’s modular composition
problem, i.e. where the modulus is not assumed to split over F. Since this is
not directly relevant for the scope of this thesis, this problem has been left out
(although the generality is kept). A curious reader is referred to [NRS20].

We proceed by showing that the cost of reducing a polynomial with respect to
an appropriately chosen reshaper is quasi-linear in the input size.

Lemma 3.5. If g “ Y η ´ qg P I with qη :“ deg qg ă η is an η-reshaper in some
ideal I Ď FrX,Y s, and if f “ Y η pf ` qf P FrX,Y s with degY f ă 2η ´ qη and
degY

qf ă η, then the polynomial h “ qf` pf qg P FrX,Y s belongs to the coset f`I
and satisfies degX h ď d :“ degX f ` degX g and degY h ă η. Furthermore, we
can compute h using no more than OpMpdηqq Ă rOpdηq operations in F.

Proof. Writing h “ qf ` pf qg “ Y η pf ` qf ´ pf ¨ pY η ´ qgq “ f ´ pfg it is clear that
h P f ` I. Since degY f ă 2η ´ qη, then degY p

pf qgq ď deg f ´ η ` qη ă η, while
the bound on degX h is trivial. The claimed cost bound is given by the cost of
carrying our the product pf ¨ qg [vzGG12, Corollary 8.28].

As in Section 2.3, we will use the notation

νY pPq “ max
αPF

|YαpPq| , where for any α P F

YαpPq “ tY pP q | P P P with XpP q “ αu Ď F .

In order to prove existence of reshapers, we will use a folklore result which
follows e.g. from [Laz85] and [Dah09, Theorem 3]:

Lemma 3.6. If P Ď F2 is a point set with |P| “ n and b “ pb1, . . . , bsq P
FrX,Y ss is the reduced ălex-Gröbner basis of ΓpPq ordered by ălex, then b1 P
FrXs, and bs is Y -monic with degY bs “ νY pPq.

50 Generic bivariate algorithms

Using the above, we give degree constraint under which reshapers are guaranteed
to exist:

Lemma 3.7. If P Ď F2 is a point set and qη ě νY pPq ´ 1, then for any η ą qη
there exists an η-reshaper g “ Y η ´ qg P ΓpPq with degY qg ď qη.

Proof. By Lemma 3.6, the reduced ălex-Gröbner basis b P FrX,Y ss of ΓpPq
contains a polynomial with ălex-leading term Y νY pPq. It then follows that
degY pY

η rem bq ă νY pPq, which implies that g “ Y η ´ pY η rem bq P ΓpPq
is an η-reshaper.

As outlined in Section 3.1, we will use a sequence of reshapers in order to
iteratively reduce the Y -degree of the input polynomial. Lemma 3.5 guarantees
that each iteration will be efficient as long as the Y -degree of the current reshaper
is sufficiently large compared to that of the current remainder. As we will see
later, choosing the reshapers in accordance with the following definition ensures
that this is true.

Definition 3.8. We say that η P pηiq
γ
i“0 P Zγ`1

ą0 is an pη0, ηγq-degree sequence
if ηi´1 ą ηi ě t 23ηi´1u for i “ 1, . . . , γ. Furthermore, if I Ď FrX,Y s is an ideal,
and if gi “ Y ηi ´ qgi P I is an ηi-reshaper with

ηi´1 ď 2ηi ´ qηi , (3.1)

where qηi “ degY qgi for i “ 1, . . . , γ, then we say that g “ pgiq
γ
i“1 P I

γ is an
η-reshaping sequence in I.

The following is an intermediate result used in the subsequent Lemma 3.10 in
order to show that we can always find a reshaping sequence with number of
elements being logarithmic in the degree of the first reshaper.

Lemma 3.9. If η “ pηiq
γ
i“0 is a degree sequence, then

2ηi ´ ηi´1 ě
ηi
3
´ 1 ě 0

for i “ 1, . . . , γ.

Proof. Since ηi´1 ą ηi ě t 23ηi´1u ě 2
3 pηi´1 ´ 1q, then

2ηi ´ ηi´1 ě
4

3
pηi´1 ´ 1q ´ ηi´1 “

ηi´1 ´ 4

3
ě
ηi
3
´ 1 ą ´1 .

3.2 Reshaping 51

Lemma 3.10. If P Ď F2 is a point set with |P| “ n, and if a, b P Zą0 are such
that n ą a ą b ě νY pPq, then there exists an η-reshaping sequence g P ΓpPqγ ,
where η P Zγ`1

ą0 is an pa, bq-degree sequence with γ ď log3{2paq ` 1 P Oplogpaqq.

Proof. Let v “ νY pPq ´ 1 and let η1 “ pη1iq P Zγ`1
ą0 be any pa ´ v, b ´ vq-

degree sequence with γ ď log3{2pa´ vq` 1. To see that η1 exists, simply choose
η1i “ t 23η

1
i´1u for i “ 1, . . . , γ, setting η10 “ a ´ v. Now, let η “ pηiq

γ
i“0 P Zγą0

be such that ηi “ η1i ` v for i “ 0, . . . , γ, and observe that η is an pa, bq-degree
sequence since

ηi´1 ą ηi “ η1i`v ě
X2

3
η1i´1

\

`v “
X2

3
pη1i´1`vq`

1

3
v
\

“
X2

3
ηi´1`

1

3
v
\

ě
X2

3
ηi´1

\

.

To show that there exists an η-reshaping sequence in ΓpPq it suffices to show
that for i “ 1, . . . , γ there exists an ηi-reshaper gi “ Y ηi ´ qg P ΓpPq with
degY qgi ď qηi satisfying (3.1). But indeed, choosing qηi “ 2ηi ´ ηi´1 we get from
Lemma 3.9 that

qηi “ 2η1i ´ η
1
i´1 ` v ě v “ νY pPq ´ 1 ,

which due to Lemma 3.7 implies that gi exists.

Now we are finally ready to present the reshaping algorithm.

Algorithm 6 Reshapepf, gq

Input:

• A polynomial f P FrX,Y s,
• an η-reshaping sequence g “ pgiq

γ
i“1 P I

γ , where I Ď FrX,Y s is some
ideal and η “ pηiq

γ
i“0 P Z

γ`1
ą0 is a degree sequence with degY f ă η0.

Output:

• a polynomial h P f ` I with degY h ă ηγ and
degX h ď degX f `

řγ
i“1 gi.

1: hÐ f
2: for i “ 1, . . . , γ do
3: ph,qh P FrX,Y s Ð polynomials such that h “ Y ηiph` qh with degY

qh ă ηi
4: hÐ qh` ph qgi, where gi “ Y ηi ´ qgi with degY qgi ă η

5: return h

52 Generic bivariate algorithms

Theorem 3.11. Algorithm 6 is correct and has complexity

O
`

M
`

γ degX f degY f ` γ
γ
ÿ

i“i0

ηi degX gi
˘˘

Ď rOpγ degX f degY f ` γ
γ
ÿ

i“i0

ηi degX giq

for the smallest i0 such that ηi0 ď degY f .

Proof. Let hi,phi and qhi respectively denote the values of h,ph and qh at the end
of iteration i, and let qηi “ degY qgi. Since f P f ` I and degY f ă η0 ď 2η1´ qη1,
then applying Lemma 3.5 inductively guarantees that hi P f ` I with

degX hi ď di :“ degX f `
i
ÿ

j“1

degX gj and degY hi ă ηi

for i “ 1, . . . , γ. No computation is performed for i ă i0, since then phi “ 0 and
consequently hi “ qhi. The cost of the i-th iteration for i ě i0 is OpMpdiηiqq,
making the total cost of the algorithm

O
`

γ
ÿ

i“i0

Mpdiηiq
˘

“ O
`

γ
ÿ

i“i0

M
`

pdegX f `
i
ÿ

j“i0

degX gjqηi
˘˘

Ď O
`

M
`

γ
ÿ

i“i0

ηi degX f `
γ
ÿ

i“i0

i
ÿ

j“i0

ηi degX gj
˘˘

Ď O
`

M
`

γ degX f degY f `
γ
ÿ

i“i0

i
ÿ

j“i0

ηj degX gj
˘˘

Ď O
`

M
`

γ degX f degY f ` γ
γ
ÿ

i“i0

ηi degX gi
˘˘

,

where we have used that ηγ ă ¨ ¨ ¨ ă ηi0 ď degY f .

Recall from the informal description in Section 3.1 that a point set is balanced
if there exists a reshaping sequence whose elements have small X-degrees. In
the following definition we make this notion of balancedness precise:

Definition 3.12. Let P Ď F2 be a point set with |P| “ n and let η “ pηiq
γ
i“0 P

Zγ`1
ą0 be a degree sequence. We say that P is η-balanced if there exists an
η-reshaping sequence g “ pgiq

γ
i“1 P ΓpPqγ with

degX gi ď
Y n

2ηi ´ ηi´1 ` 1

]

`1 for i “ 1, . . . , γ .

3.3 Multi-point evaluation 53

For the remainder of this chapter, whenever we speak of a reshaping sequence
of a balanced point set, we will by default assume that it satisfies the degree
bounds in Definition 3.12.

The following Lemma 3.13, in combination with Lemma 3.10 and Theorem 3.11,
guarantees that reshaping with respect to a balanced point set can always be
done with quasi-linear cost.

Lemma 3.13. If η “ pηiq
γ
i“0 P Zγ`1

ą0 is a degree sequence and g “ pgiq
γ
i“1 P

ΓpPqγ is a η-reshaping sequence for some η-balanced point set P Ď F2 with
|P| “ n, then

γ
ÿ

i“0

ηi degX gi ď γp3n` ηi0q

for any i0 P t1, . . . , γu.

Proof. From Lemma 3.9 it follows that if P is balanced, then we can choose

degX gi ď
Y n

2ηi ´ ηi´1 ` 1

]

`1 ď
n

ni{3
` 1 “

3n

ηi
` 1 .

Consequently,

γ
ÿ

i“i0

ηi degX gi ď
γ
ÿ

i“i0

ηi

´3n

ηi
` 1

¯

ď γp3n` ηi0q .

3.3 Multi-point evaluation

In Section 3.2 we saw that reshaping with respect to a balanced point set can
be done efficiently. Taking advantage of this, we obtain a simple algorithm for
bivariate MPE on point sets with pairwise distinct X-coordinates:

54 Generic bivariate algorithms

Algorithm 7 MPEdistinctXpf,P, gq
Input:

• A polynomial f P FrX,Y s,
• a point set P “ tpαj , βjqunj“1 Ă F2 where the αj are pairwise distinct,

• an η-reshaping sequence g P ΓpPqγ where η “ pηiq
γ
i“0 P Zγ`1

ą0 is an
pη0, 1q-degree sequence with degY f ă η0.

Output:

• Evaluations
`

fpα1, β1q, . . . , fpαn, βnq
˘

P Fn.
1: h P FrXs Ð Reshapepf, gq Ź Algorithm 6
2: return

`

hpα1q, . . . hpαnq
˘

P Fn Ź univariate MPE

Theorem 3.14. Algorithm 7 is correct. If P is η-balanced and γ P Oplog nq,
then it costs rOpdegX f degY f ` nq operations in F, where n “ |P|.

Proof. Correctness is an immediate consequence of Theorem 3.11, which guar-
antees that h P f`ΓpPq, i.e. hpαjq “ fpαj , βjq for j “ 1, . . . , n. The complexity
of Step 1 is given as

rOpγ degX f degY f ` γ
γ
ÿ

i“i0

ηi degX giq

for the smallest i0 with ηi0 ď degY f . Step 2 costs rOpdegX f `
řγ
i“i0

degX giq,
which is subsumed by Step 1. The total cost of the algorithm then follows from
Lemma 3.13 and the assumption that γ P Oplog nq.

Algorithm 7 can easily be extended to the case of nondistinct X-coordinates
(νY pPq ą 1) by simply partitioning P into νY pPq subsets whose X-coordinates
are pairwise distinct. Although this approach incurs an additional factor νY pPq
in its complexity, this is not an issue if νY pPq is small. For example, all point
sets on elliptic curves satisfy νY pPq ď 2.

If the size of νY pPq is significant, then we can shear the points in an extension
field as proposed by Nüsken and Ziegler (see Section 2.2.2). To summarize:
picking any θ P KzF, where K is a degree 2 extension of F, we can substitute
the problem of evaluating f P FrX,Y s on P “ tpαj , βjqunj“1 Ď F2 with that of
evaluating rf :“ fpX´θY, Y q P KrX,Y s on rP :“ tpαj`θβj , βjqu

n
j“1 Ă K2. This

technique effectively reduces the general problem of bivariate MPE to the case
of νY pPq “ 1, provided that we can compute rf efficiently. Nüsken and Ziegler

3.3 Multi-point evaluation 55

achieve this with cost

OpMpdXpdX ` dY qq log dXq Ă rOpdXpdX ` dY qq

using a univariate Taylor shift of f seen as an element in KrY srXs. Although
this is sufficient for our target cost (assuming w.l.o.g. that dX ď dY), we present
an alternative approach which is more efficient on the logarithmic level by using
univariate Taylor shifts on the homogeneous components of f .

Remark 3.15. Although we don’t know whether shearing preserves balanced-
ness, as we will see in Section 3.7, a sheared version of a random point set is
balanced with high probability.

Algorithm 8 ShearPolypf, α, βq

Input:

• A polynomial f “
řdX
i“0

řdY
j“0 fi,jX

iY j P KrX,Y s with fi,j P K,

• scalars α, β P K.

Output:

• rf “ fpαX ` βY, Y q P KrX,Y s.
1: for t “ 0, . . . , dX ` dY do
2: ht P KrZs Ð

řmintt,dXu
i“maxt0,t´dY u

fi,t´iZ
i

3: rht P KrZs Ð htpαZ ` βq

4: return rf “
řdX`dY
t“0

rhtpX{Y qY
t

Theorem 3.16. Algorithm 8 correctly computes fpαX ` βY, Y q using

OppdX ` dY qMpdXq logpdXqq Ă rOpdXpdX ` dY qq

operations in K. Furthermore, the X-degree of the output polynomial is at most
dX , while its Y -degree is at most maxtdX , dY u.

Proof. The degree bounds on fpαX ` βY, Y q are obvious. Observing that

dX`dY
ÿ

t“0

htpX{Y qY
t “

dX`dY
ÿ

t“0

mintt,dXu
ÿ

i“maxt0,t´dY u

fi,t´iX
iY t´i “

dX
ÿ

i“0

dY
ÿ

j“0

fi,jX
iY j “ f ,

i.e. that htpX{Y qY t P FrX,Y s is the homogeneous component of f having
degree t, we get that

rf “
dX`dY
ÿ

t“0

rhtpX{Y qY
t “

dX`dY
ÿ

t“0

htp
αX ` βY

Y
qY t “ fpαX ` βY, Y q .

56 Generic bivariate algorithms

For the complexity, we note that arithmetic operations are performed only in
Step 3. Using [VZG90, Fact 2.1 (iv)], we can compute the Taylor shifts

htpZq ÞÑ htpαZ ` βq

for each t using OpMpdXq logpdXqq operations in K, since deg ht ď dX . Summa-
tion over all t yields the total complexity.

Remark 3.17. As presented, Algorithm 8 can only shear the variable X. We
can, however, easily shear Y by simply swapping the variables. For the sake of
being precise (but at the risk of stating the obvious) let σ : fpX,Y q ÞÑ fpY,Xq
for any f P KrX,Y s, and observe that

fpX,αX ` βY q “ σpfpY, αY ` βXqq

“ σ
`

ShearPolypfpY,Xq, β, αq
˘

“
`

σ ˝ ShearPolyp ¨ , β, αq ˝ σ
˘

pfq .

We conclude this section with an algorithm for MPE where the X-coordinates
of the underlying point set are allowed to repeat.

Algorithm 9 MPEshearpf, rP, rgq
Input:

• A polynomial f P FrX,Y s,
• an element θ P KzF, where K is a degree 2 extension of F

• a sheared version rP “ tpαj ` θβj , βjqunj“1 Ă K2 of a point set
P “ tpαj , βjqunj“1 Ď F2,

• an rη-reshaping sequence rg P Γp rPqrγ Ă KrX,Y srγ , where rη “ prηiq
rγ
i“0 is

an prη0, 1q-degree sequence with maxtdegX f, degY fu ă rη0.

Output:

• Evaluations
`

fpα1, β1q, . . . , fpαn, βnq
˘

P Fn.

1: rf P KrX,Y s Ð fpX ´ θY, Y q “ ShearPolypf, 1,´θq Ź Algorithm 8
2: return MPEdistinctXp rf, rP, rgq Ź Algorithm 7

Theorem 3.18. Algorithm 9 is correct. If rP is rη-balanced and rγ P Oplogpnqq,
then it costs rOpdegX fpdegX f ` degY fq ` nq operations in F.

Proof. For any pαj ` θβj , βjq P rP it holds that

rfpαj ` θβj , βjq “ fpαj ` θβj ´ θβj , βjq “ fpαj , βjq .

3.4 Interpolation 57

The rest follows from Theorem 3.16 and Theorem 3.14, i.e. correctness and
complexity of ShearPoly and MPEdistinctX respectively.

3.4 Interpolation

In this section we use reshaping in order to address the problem of bivariate
interpolation in a similar setting as for MPE, i.e. we assume that the point set
P Ď F2 is available for precomputation and that we receive the interpolation
values as input during the online phase. If P is appropriately balanced, we
can compute an interpolating polynomial with reasonably controlled monomial
support in quasi-linear time.

In contrast to MPE, our strategy now is to first shear P so that all of its Y -
coordinates are pairwise distinct. After computing a univariate interpolating
polynomial rf P KrY s, we reshape it into rh P KrX,Y s with the degrees in both
variables being roughly

?
n (assuming it is possible). These degree constraints

ensure that we can efficiently “unshear” rh to interpolate on the original point set,
and a final application of reshaping allows us to meet some targeted Y -degree.

58 Generic bivariate algorithms

Algorithm 10 Interpolatepv, q

Input:

• Interpolation values v “ pvjqnj“1 P Fn,
• an integer d P Zą0,

• an pt
?
nu, dq-degree sequence η “ pηiq

γ
i“0,

• an prη0, t
?
nuq-degree sequence rη “ prηiq

rγ
i“0,

• an η-reshaping sequence g “ pgiq
γ
i“1 P FrX,Y sγ for a point set

P “ tpαj , βjqunj“1 Ď F2 with nXpPq ď d ă
?
n

• an rη-reshaping sequence rg “ prgiq
rγ
i“1 P KrX,Y srγ for

rP “ tpαj , θαj ` βjqunj“1 Ă K2,

Output:

• A polynomial f P FrX,Y s satisfying fpαj , βjq “ vj for j “ 1, . . . , n,
degY f ă d and degX f ď maxt

ř

rγ
i“1 degX rgi, t

?
nu´1u`

řγ
i“1 degX gi.

1: rf P KrY s Ð polynomial with deg rf ă n and rfpθαj`βjq “ vj for j “ 1, . . . , n

2: rh P KrX,Y s Ð Reshapeprh, rgq Ź Algorithm 6
3: h P KrX,Y s Ð rhpX, θX ` Y q using ShearPoly Ź Algorithm 8 with

Remark 3.17
4: h1, hθ P FrX,Y s Ð polynomials such that h “ h1 ` θhθ
5: return f P FrX,Y s Ð Reshapeph1, gq

Theorem 3.19. Algorithm 14 is correct and costs

rO
´

rγn` γ
`?
n`

rγ
ÿ

i“1

degX rgiq
2 ` rγ

rγ
ÿ

i“1

rηi degX rgi ` γ
γ
ÿ

i“1

ηi degX gi

¯

operations in F. If rP is rη-balanced, P is η-balanced and rγ, γ P Oplog nq, then
the complexity becomes rOpnq.

Proof. First note that due to Lemma 3.10, we can always choose γ, rγ P Opnq
since d ě nXpPq. For correctness, observe that all points in rP have pairwise
distinct Y -coordinates, so we can indeed compute rf using univariate Lagrange

3.5 Precomputing Reshapers 59

interpolation. Viewing rf as an element of KrX,Y s with degX
rf “ 0, we get

vj “ rfpαj , θαj ` βjq

“ rhpαj , θαj ` βjq (Theorem 3.11)
“ hpαj , βjq (Theorem 3.16)
“ h1pαj , βjq ` θhθpαj , βjq

“ h1pαj , βjq (since αj , βj , vj P F and h1, hθ P FrX,Y s)
“ fpαj , βjq . (Theorem 3.11)

For the degree bounds, note that degY
rh ă t

?
nu and degX

rh ď
ř

rγ
i“1 degX rgi by

Theorem 3.11. Consequently, degY h1 ď degY h ď degY
rh ă t

?
nu and

degX h1 ď degX h ď maxtdegX
rh,degY

rhu ď maxt
rγ
ÿ

i“1

degX rgi, t
?
nu´ 1u .

Finally, again by Theorem 3.11, degY f ă d and degX f ď degX h1`
řγ
i“1 degX gi.

The total cost follows from summing the costs of the individual steps:

• Step 1: rOpnq by fast univariate interpolation,

• Step 2: rOprγn` rγ
ř

rγ
i“1 rηi degX rgiq by Theorem 3.11,

• Step 3: rO
`

p
?
n`

ř

rγ
i“1 degX rgiq

2
˘

by Theorem 3.16,

• Step 4: memory management (no operations in F),

• Step 5: rO
`

γp
?
n`

ř

rγ
i“1 degX rgiq

2 ` γ
řγ
i“1 ηi degX gi

˘

by Theorem 3.11.

3.5 Precomputing Reshapers

The simplest way to precompute a reshaper for a point set is perhaps to solve
an r ˆ n inhomogeneous linear system, where n “ |P| and r is the cardinality
of the allowed monomial support of the reshaper. If P is balanced, then we can
choose r « n, and so the complexity of this approach is Opnωq. In this section,
we present an alternative technique which works for any zero-dimensional ideal

60 Generic bivariate algorithms

I Ď FrX,Y s, given a ălex-Gröbner basis of I. We will make extensive use of the
FrXs-module Id :“ I X FrX,Y sdegY ăd, where

FrX,Y sdegY ăd “ tf P FrX,Y s | degY f ă du ,

so we begin by establishing its relation with I as a consequence of Lazard’s
structure theorem on bivariate ălex-Gröbner bases [Laz85].

In the following, for any f P FrX,Y s we denote by ltpfq P FrX,Y s the leading
term of f , and by lcY pfq P FrXs the leading Y -coefficient of f when viewed as
an element of FrXsrY s.

Corollary 3.20 (of [Laz85]). If b “ pb0, . . . , b`q P FrX,Y s``1 is a minimal
ălex-Gröbner basis, sorted by increasing Y -degree, then

1) degY b0 ă ¨ ¨ ¨ ă degY b`, and

2) lcY pb`q | lcY pb`´1q | ¨ ¨ ¨ | lcY pb0q.

Lemma 3.21. Let b “ pb0, . . . , b`q P FrX,Y s``1 be a minimal ălex-Gröbner
basis for an ideal I, ordered by increasing Y -degree. If for any d P Zą0

Id “ tf P I | degY f ă du ,

s “ maxtt | degY bk ă d, 0 ď t ď `u ,

dt “ degY bt for 0 ď t ď s and ds`1 “ d ,

then Id is an FrXs-submodule of FrX,Y sdegY ăd. Moreover, Id is free with rank
d´ d0 and admits the basis

Bd :“ tY ubt | 0 ď t ď s, 0 ď u ă dt`1 ´ dtu .

Proof. It is clear that Id is an FrXs-submodule of FrX,Y sdegY ăd since I is an
ideal of FrX,Y s. Furthermore, Bd Ă Id since

degY pY
ubtq ď degY pY

ds`1´dsbsq ă d´ ds ` ds “ d ,

and the elements of Bd have pairwise distinct Y -degrees and are therefore lin-
early independent over FrXs. Also |Bd| “ d ´ d0, which implies that Id has
rank d ´ d0 as long as Bd generates Id. To see that it does, pick some f P Id
and note that since f P I, then we can write f “

ř`
t“0 qtbt, where qt P FrX,Y s

with degY qt ď degY f ´ degY bt. Since degY f ă d, then qs`1 “ ¨ ¨ ¨ “ q` “ 0.
It is not hard to see that we can choose the qt such that no term of qtbt is
divisible by ltpbt`1q for any t ă s: in each iteration of the multivariate di-
vision algorithm, simply use the greatest index t P t0, . . . , `u for which ltpbtq

3.5 Precomputing Reshapers 61

divides the leading term in the current remainder. By Corollary 3.20 then
lcY pbt`1q | lcY pbtq, and so if degY pqtbtq ě degY bt`1 then ltpbt`1q | ltpqtbtq. Con-
sequently, degY qt ă degY bt`1 ´ degY bt, and therefore f P xb0, . . . , btyFrXs.

For any d P Zą0 we define the FrXs-module isomorphism

φd :

#

FrX,Y sdegY ăd Ñ FrXs1ˆd
řd´1
j“0 fjpXqY

j ÞÑ rf0, . . . , fd´1s
.

If I is a zero-dimensional ideal, then in Lemma 3.21 we have that d0 “ 0, and
so Id has rank d. Any basis B of Id can then be represented as the nonsingular
matrix B P FrXsmˆm whose rows are of the form φdpbq for b P B. Furthermore,
∆pIdq :“ deg detpBq does not depend on the choice of B, since all bases of Id
have the same determinant up to scalar multiplication.

In Algorithm 11 we show how to efficiently precompute reshapers –we will rely
on the language of Popov forms, which can be recalled from Section 1.4 on
page 6. The following result constitutes an essential ingredient:

Proposition 3.22. ([NV17]) There is an algorithm which for any P P FrXsdˆd
in Popov form and any v P FrXs1ˆd with (entrywise)

cdegpvq ă cdegpP q ` p∆pP q, . . . ,∆pP qq

computes v rem P using rOpdω´1∆pP qq, provided that d P Op∆pP qq.

Algorithm 11 ComputeReshaperpb, η, dq

Input:

• A reduced ălex-Gröbner basis b “ pb0, . . . , b`q P FrX,Y s``1, ordered
by increasing Y -degree with b0 P FrXs, for a zero-dimensional ideal I,

• positive integers η, d with d ă η.

Output:

• A polynomial g “ Y η ´ qg P I with degY qg ă d and degX qg minimal if
it exists, otherwise “Fail”.

1: R P FrX,Y s Ð Y η rem b
2: if degY R ě d then return “Fail”
3: Bd Ă FrX,Y s Ð FrXs-basis of Id “ I X FrX,Y sdegY ăd as in Lemma 3.21
4: B P FrXsmˆm Ð matrix whose rows are of the form φdpbq for b P Bd
5: P P FrXsmˆm Ð Popov form of B
6: qg P FrX,Y s Ð ´φ´1

d pφdpRq rem P q
7: return g “ Y η ´ qg P FrX,Y s

62 Generic bivariate algorithms

Theorem 3.23. Algorithm 11 is correct, and assuming that η P Op∆pIdqq, it
costs rOpdω´1∆pIdq ` η`degX b0q operations in F.

Proof. Since b is a ălex-Gröbner basis, then degY R ď degY qg ă δ, provided
that the sought g exists. Consequently, the algorithm does not fail at Step 2 in
this case.

For correctness, since Y η ´ R P I, then any satisfactory reshaper Y η ´ rg P I
fulfills rg P R` Id. Since P represents a basis of Id, then qg from Step 6 belongs
to R`Id, and since P is in Popov form, then qg has minimal X-degree in R`Id.

For complexity, note that computational work is done only in Steps 1, 5 and
6. Since b is reduced, then degX b0 ą ¨ ¨ ¨ ą degX b`, which implies that the
diagonal entries in B have dominant degrees in their respective columns. Fur-
thermore, | cdegpBq| “ ∆pBq “ ∆pP q “ ∆pIdq. The stated cost follows, since
Step 1 costs rOpη`degX b0q due to [vdH15] (see Proposition 2.24), step 5 costs
rOpdω´1| cdegB|q by Proposition 1.8 on page 8, and Step 6 costs rOpdω´1∆pP qq
by Proposition 3.22 because degX R ă degX b0 ă ∆pP q.

3.6 Precomputing reduced ălex-Gröbner basis

Since Algorithm 11 requires as input the reduced ălex-Gröbner basis of ΓpPq, let
us now consider the problem of computing it. Our strategy will be to first com-
pute the Hermite basis of the FrXs-submodule ΓdpPq :“ ΓpPqXFrX,Y sdegY ăd,
which by Lemma 3.6 and Lemma 3.21 is free and of rank d. This basis is unique,
and its corresponding matrix H P FrXsdˆd is lower triangular with each diago-
nal entry being monic and strictly dominating the degrees in its column.

Lemma 3.24. If P Ď F2 and d ą νY pPq, then ΓpPq “ xΓdpPqyFrX,Y s and
∆pΓdpPqq “ |P|.

Proof. Lemma 3.6 guarantees that all of the elements in the reduced ălex-
Gröbner basis of ΓpPq have Y -degree at most νY pPq, which proves the first
claim. It follows that FrX,Y s{ΓpPq and FrX,Y sdegY ăd{ΓdpPq are isomorphic
as FrXs-modules. It is a well known property of zero-dimensional varieties that
the F-dimension of the former – and thus also the latter – equals |P|, and by
[NV17, Lemma 2.3] this dimension is ∆pΓdpPqq.

Proposition 3.25. There is an algorithm which for any P Ď F2 with |P| “ n

computes the reduced ălex-Gröbner basis of ΓpPq using rOpdω´1nq operations in
F, where d “ νY pPq ` 1.

3.7 Balancedness 63

Proof. The Hermite basis H P FrXsdˆd of ΓdpPq can be computed with cost
rOpdω´1nq using a special case of [JNSV16, Theorem 1.5], where the shift

s “ p0, n, . . . , pd´ 1qnq P Zd

ensures that the s-Popov basis P equals H.

Letting b “ pb1, . . . , bdq P FrX,Y sd with bj “ φ´1
d pHjq, where Hj P FrXs1ˆd

denotes the j-th row of H, note that ΓpPq “ xb1, . . . , bdyFrX,Y s by Lemma 3.24,
and since H is lower triangular, then b is a ălex-Gröbner basis, albeit not
necessarily a minimal one. To achieve minimality, simply exclude all elements
b from b for which there exists another basis element b1 whose leading term
divides that of b [CLO15, Lemma 3, Chapter 2 §7]. Obtaining this new basis
from H cost no operations in F, and since H is in Hermite form, then it is not
hard to see that this basis is necessarily reduced.

Corollary 3.26. Given a point set P Ď F2 with |P| “ n and a degree sequence
η “ pηiq

γ
i“0 P Zγ`1

ą0 with log3{2pη0q ` 1 ď γ P logpnq and νY pPq ă ηγ ď n,
we can compute an η-reshaping sequence g “ pgiq

γ
i“1 P ΓpPqγ with the smallest

possible X-degrees using rOpηω´1
0 n`η0dnq operations in F, where d “ νY pPq`1.

Consequently, we can also determine whether P is η-balanced within the same
cost.

Proof. Note first that the sought reshaping sequence exists due to Lemma 3.10.
Using Proposition 3.25, we can compute a reduced ălex-Gröbner basis b of ΓpPq
within the cost rOpdω´1nq Ď rOpηω´1

0 nq. By Theorem 3.23, computing

gi “ ComputeReshaperpb, ηi, 2ηi ´ ηi´1 ` 1q

costs rOpηω´1
0 n` η0dnq for each i because ∆pΓd1pPqq “ n for any d1 ą νY pPq by

Lemma 3.24. The total cost follows from the assumption that γ P Oplog nq.

3.7 Balancedness

In Section 3.5 we have seen how to compute reshapers of minimalX-degree. The
aim for this section is to show that for a random point set these X-degrees are
with high probability small enough so that our algorithms are able to achieve
quasi-linear complexity in the online phase. The following lemma forms the
foundation of our probabilistic results:

Lemma 3.27 (DeMillo-Lipton-Schwartz-Zippel [DL78, Sch80, Zip79]). Suppose
that f P FrX1, . . . , Xds is non-zero of total degree d and S Ď F. If α1, . . . , αd P S

64 Generic bivariate algorithms

are chosen independently and uniformly at random, then the probability that
fpα1, . . . , αdq “ 0 is at most d{|S|.

For any matrix A P FrY1, . . . , Ynsmˆm
1

and any vector v “ pv1, . . . , vnq P Fn let
Apvq P Fmˆm1 denote the matrix obtained by substituting each Yi in A with
vi. Furthermore, we denote by rankpAq the rank of A when considered over the
field of fractions FpY1, . . . , Ynq.

Lemma 3.28. If α1, . . . , αn P F are pairwise distinct, s P Zą0 and

As “ rV s|DV s| . . . |D
d´1V ss P FrY1, . . . , Ynsnˆds ,

where V s “ rαj´1
i s

1ďiďn
1ďjďs P Fnˆs and D P FrY1, . . . , Ynsnˆn is the diagonal

matrix with entries pY1, . . . , Ynq, then rankpAsq “ mintn, dsu.

Proof. Letting α “ pα1, . . . , αnq P Fn, note that Apαqs “ rαj´1
i s

1ďiďn
1ďjďms P Fnˆds

is a Vandermonde matrix. Since the αi are pairwise distinct, then Apαqs . Con-
sequently, the same holds for As.

In the context of Lemma 3.28, note that the columns of As naturally corre-
spond to monomials XiY j with i ă s and j ă d. To be more precise, if
P “ tpαi, βiquni“1 Ă F2 with αi pairwise distinct, then the F-coefficients of any
polynomial in ΓpPq form a vector in the right kernel of Apβqs P Fnˆds, where
β “ pβ1, . . . , βnq P Fn.

In the following lemma we determine the exact row degrees of the Popov basis
P P FrXsdˆd of φdpΓdpPqq Ă FrXs1ˆd for a random point set P, where φd :
FrX,Y sdegY ăd Ñ FrXs1ˆd is the FrXs-module isomorphism from Section 3.5
and ΓdpPq “ ΓpPq X FrX,Y sdegY ăd is the FrXs-module from Section 3.6.

Lemma 3.29. Let α1, . . . , αn P F be pairwise distinct, let T Ď F be a finite
subset, and let λ : Fn Ñ Fn be an affine map. Additionally, let τ1, . . . , τn P T
chosen independently and uniformly at random and let P “ tpαi, βiquni“1 Ă F2

be such that pβ1, . . . , βnq “ λpτ1, . . . , τnq. If d P Zą0 with νY pPq ă d ď n and
u, r P Zě0 with r ă m are such that n “ um ` r, then with probability at least
1 ´ 2nd{|T | the Popov basis P P FrXsdˆd of φdpΓdpPqq contains exactly d ´ r
rows of degree u and r rows of degree u` 1. In particular, degP ď u` 1.

Proof. Let p1, . . . , pd P FrX,Y s be the polynomials given by the rows of P
through φ´1

d . Due to Lemma 3.6, we know that ∆pP q “ n “
řd
i“1 degX pi.

3.7 Balancedness 65

For any s P Zą0 let As P FrY1, . . . , Ynsnˆds with rankpAsq “ mintn, dsu be as in
Lemma 3.28, and consider Apβqs P Fnˆds with β “ pβ1, . . . , βnq P Fn. Choosing
s “ u, if degX pi ă u for some i, then the F-coefficients of pi form a vector in
the right kernel of Apβqu (as mentioned above this lemma). Consequently,

rankpApβqu q ă rankpAuq “ du ď n ,

so letting M P FrY1, . . . , Yns be a non-zero duˆ du minor of Au we get that

Mpβ1, . . . , βnq “Mpλpτ1, . . . , τnqq “ 0.

Since M has degree at most d ´ 1 in each variable, then the total degree
of M is strictly less than nd, and since λ is affine, then the total degree of
MpλpZ1, . . . , Znqq P FrZ1, . . . , Zns satisfies the same upper bound. Therefore,
by Lemma 3.27, the probability that Mpλpτ1, . . . , τnqq “ 0 is at most nd{|T |.

Now, assume that all rows of P have degree at least u. Then for each i such that
degX pi “ u, the F-coefficients of pi form a vector in the right kernel of Apβqu`1 P

Fnˆdpu`1q. By Lemma 3.28, then Au`1 has a right kernel over FpY1, . . . , Ynq of
dimension dpu`1q´n “ d´r. Since the rows of P are linearly independent over
FrXs, and thus also over F, then at most d´r rows of P have degree u whenever
rankpA

pβq
u`1q “ rankpAu`1q. Therefore, considering as before a non-zero n ˆ n

minor N P FrY1, . . . , Yns of Au`1, we conclude that N has total degree less than
nd, and that the probability that Npβ1, . . . , βN q “ Npλpτ1, . . . , τnqq “ 0 is at
most nd{|T |.

Hence, with probability at least 1 ´ 2nu{|T |, P has all rows of degree at least
u and j rows of degree exactly u with j ď d ´ t. It follows that each of the
remaining d´ j rows has degree at least u` 1, and the sum of these degrees is

n´ ju “ du` r ´ jd “ pd´ jqu` t ď pd´ jqpu` 1q .

But then each of them has degree exactly u` 1.

When using Algorithm 11 to compute a reshaper g “ Y η ´ qg P ΓpPq with
degY qg ă d, we are guaranteed that degX qg ď degX P , where P is the Popov
basis of ΓdpPq. Lemma 3.29 states that in the generic case we can expect that
degP ď tn{du`1, which matches the Definition 3.12 if we set d “ 2ηi´ηi´1`1
in a degree sequence η “ pηiq

γ
i“0 P Z

γ`1
ą0 .

Corollary 3.30. Let α1, . . . , αn P F be distinct, T Ď F a finite subset, and let
λ : Fn Ñ Fn be an affine map. For τ1, . . . , τn P T chosen independently and
uniformly at random, let P “ tpαj , βjqu

n
j“1 Ă F2 be such that pβ1, . . . , βnq “

λpτ1, . . . , τnq. If η “ pηiq
γ
i“0 P Z

γ`1
ą0 is a degree sequence with η0 ď n, then P is

η-balanced with probability at least 1´ n2γ{|T |.

66 Generic bivariate algorithms

Corollary 3.30 directly applies to both MPE and interpolation algorithms on
random point sets with unique X-coordinates. In the case of interpolation, we
shear the points so that their Y -coordinates become pairwise distinct. Although
balancedness is not inherited a priori by the sheared point set, the probability of
being balanced is preserved, since shearing acts as an affine transformation on
the Y -coordinates. We conclude this chapter by summarizing our probabilistic
results:

Corollary 3.31. Let d, n P Zą0 with d ď n and assume that F “ Fq. If
P “ tpαi, βiqu

n
i“1 Ď F2

q is chosen uniformly at random among the point sets
with cardinality n, then with probability of at least

´

1´
n2

q

¯´

1´
3n2plog3{2pnq ` 1q

q

¯

the following two problems can be solved with cost online rOpnq:

1) Given a polynomial f P FrX,Y s with degX f ă n{d and degY f ă d,
compute fpα1, β1q, . . . , fpαn, βnq P F.

2) Given interpolation values v1, . . . , vn P F, compute an f P FrX,Y s satisfy-
ing fpαj , βjq “ vj for j “ 1, . . . , n as well as degY f ă d and degX f ď cn
for some constant c dependent only on n and d.

Proof. It is clear that there are
`

q2

n

˘

possible point sets in F2
q of cardinality n. It

is also not hard to see that
`

q
n

˘

qn of them have pairwise distinct X-coordinates:
first choose n-distinct X-coordinates and then count the possible Y -coordinates
for each choice. It follows that the probability that a random point set P has
pairwise distinct X-coordinates is

`

qn q!
n!pq´nq!

˘

`

q2!
n!pq2´nq!

˘
ą

qn

q2n
¨ qpq ´ 1q ¨ ¨ ¨ pq ´ pn´ 1qq

“

n´1
ź

j“0

´

1´
j

q

¯

ą

´

1´
n

q

¯n

ě 1´
n2

q
,

where the latter follows from Bernoulli’s inequality. This explains the first factor
in the claimed probability bound. For the last factor, recall from Lemma 3.10
that we can always choose γ ď log3{2pnq ` 1. Therefore, for each of the three
balancedness requirements that are jointly posed by 1q and 2q, the probabil-

ity that P is unbalanced is at most n2
plog3{2pnq`1q

q , as a direct consequence of
Corollary 3.30.

Chapter 4

Partial unique decoding

This chapter is dedicated to decoding of AG codes beyond half the minimum
distance. In particular, we will investigate the error-correcting capabilities of
power decoding – a technique for partial unique decoding, meaning that we seek
the unique closest codeword to the received word, but that we also allow the
decoder to declare failure, since unique decoding is not always possible. This
contrasts with the setting of list decoding (see Chapter 5), where we are tasked
with returning a list containing all of the viable candidate-codewords.

4.1 Related work

Power decoding was originally proposed in [SSB06] and [SSB10] as a method
for decoding RS codes beyond half the minimum distance. Being comparable
with Sudan’s list decoder [Sud97] in its decoding radius and asymptotic com-
plexity, many of its advantages are to be found in more practical considerations:
Power decoding is simpler in that it only requires a solution for a single shift-
register type problem; this is in contrast to Sudan’s approach, which has an
interpolation step as well as a root-finding step. Moreover, this root-finding
step – although asymptotically cheaper than interpolation [NRS17] – still carries
with it the cost of taking up significant circuit area in hardware-implementations

68 Partial unique decoding

[AKS11], and in the more general context of interleaved codes it actually be-
comes the computational bottleneck [CH13], making power decoding asymptot-
ically faster [PR17].

At the heart of power decoding lies a set of highly non-linear “key equations”,
whose solution yields a so called error locator. In the case of RS codes, the error
locator is a univariate polynomial over the base field, and as the name suggests,
it contains information about where the errors are located in the received word.
Depending on the particular choice of key equations, the error positions can be
encoded either in the coefficients of the error locator, as was originally proposed
in [SSB06], or in its roots, as was implied in [Gao03] and detailed in [Nie14].
In this chapter we consider the latter. In our setting of general AG codes,
however, the error locator is not necessarily a univariate polynomial. Instead,
it is an element in the function field, and it is required to vanish (possibly with
multiplicity) at the places that correspond to the error positions. Following in
the footsteps of [PR17] and [PRB19], we also replace the notion of “degree”,
which plays an important role in key equations for RS codes, with pole order
at a place that we denote by P8. This way of measuring “size” of function field
elements was originally proposed in [PSP92].

Although power decoding differs conceptually from Sudan’s decoder, the two
approaches share a surprising amount of common features. Besides the mutual
resemblance in decoding radius and asymptotic complexity, they have also seen
a similar historical development. Only about a year after its conception, Sudan’s
approach gave rise to the celebrated Guruswami-Sudan (GS) decoder [GS98],
which by introducing a multiplicity parameter greatly enhanced its predecessor’s
decoding radius, achieving the so called Johnson radius. Furthermore, this
new result was applicable not only to RS codes, but also arbitrary AG codes
due to [SW99]. Although the maturation process of power decoding has been
more incremental than that of Sudan’s decoder, its overall trajectory has been
nearly identical: First, the so called improved power decoding was introduced
for RS codes in [Ros18], achieving the Johnson radius – curiously also by the
means of introducing a multiplicity parameter. This result was soon shown to
also be applicable to one-point Hermitian codes [PRB19], and then the original
(non-improved) power decoding was generalized to work for arbitrary AG codes
[CP20]. The final step of adapting improved power decoding to this general
setting was made in [PRS21], which this chapter is based on.

4.2 Contributions 69

4.2 Contributions

Having provided some historical context for our contributions to the develop-
ment of power decoding, let us now discuss their precise scope. In this chapter
we:

• formulate improved power decoding in the language of function fields,
making it applicable to arbitrary AG codes,

• give an explicit construction of a linear system that can be used to solve
the key equations, and

• derive the standard educated guess for the decoding radius and verify it
using Monte-Carlo simulations.

It is also worth mentioning that the decoding radius of our method perfectly
coincides with that of [Ros18] and [PRB19] for RS codes and one-point Hermi-
tian codes respectively, and that by achieving the Johnson radius in the context
of arbitrary AG codes, we finally close the generality gap with the GS decoder.
It should be emphasized, however, that power decoding and GS operate under
different notions of decoding radius, making a direct comparison tricky: In con-
trast to GS, where decoding radius is defined as the greatest number of errors for
which decoding is guaranteed to succeed, the decoding radius of power decoding
is defined – somewhat counterintuitively – as the greatest number of errors that
does not trigger a certain condition that is sufficient for decoding failure. This
means that it is possible for power decoding to fail even below its decoding ra-
dius, however, as evidenced by our simulations, this happens rarely for random
errors. We give no theoretic bounds on this failure probability, as they have
proven to be difficult to obtain even in the case of RS codes [Ros18], except for
a few small choices of decoding parameters [SSB10, Nie14].

Another limitation of our contribution that we ought to be transparent about
is that computational complexity is not taken into consideration. Our decoder
is formulated (and implemented) in terms of linear algebra, which is undeniably
inefficient. That being said, this formulation is particularly well suited for our
primary aim: to show that improved power decoding achieves the Johnson ra-
dius for AG codes. Although obtaining an efficient algorithm remains an open
problem, it is likely within reach: There are good reasons to believe that the
linear algebra part that constitutes the computational bottleneck of our decoder
can be replaced with more sophisticated techniques such as efficient simultane-
ous Hermite Padé approximations [RS19], following in the footsteps of [Ros18]
and [PBR17] for RS codes and one-point Hermitian codes respectively. Indeed,
we will use this extensively in Chapter 5, where efficiency is within the scope.

70 Partial unique decoding

4.3 Constructing the key equations

In this section we formally introduce the key equations for the code

CLpD,Gq “ t
`

fpP1q, . . . , fpPnqq P Fn | f P LpGqu ,

where P1, . . . , Pn are rational places, and G as well as D “ P1 ` ¨ ¨ ¨ ` Pn are
divisors with suppD X suppG “ H. We begin by defining the terms involved.
For every divisor A we will use the shorthand notation ЯpAq “ ЯP8pAq, where
ЯP pAq is as in Definition 1.14 on page 13. Similarly, for any function a P ЯpAq,
we will write δApaq “ δ

pP8q
A paq.

Definition 4.1. If r “ pr1, . . . , rnq P Fn is the received word, and R P ЯpGq
with RpPiq “ ri for i “ 1, . . . , n, then we say that R is an r-interpolator.

Lemma 4.2. For any received word r P Fn, there always exists an r-interpolator
R P ЯpGq with δGpRq ď n´ degG` 2g ´ 1.

Definition 4.3. Let c P Fn and r “ c ` e be the sent codeword and the
received word respectively, where e “ pe1, . . . , enq P Fn is some error vector.
If E “

ř

iPE Pi, where E “ ti | ei ‰ 0u and 0 ‰ Λs P Яp´sEq Ď Я for some
s P Zą0, then we say that Λs is an error locator with multiplicity s.

In the context of Definition 4.3, note that δpΛsq “ δ´sEpΛsq since vP8pEq “ 0.

Lemma 4.4. In the context of Definition 4.3, there exists an error locator
Λs P Я with multiplicity s satisfying δpΛsq ď s|E | ` g.

Proof. By the Riemann-Roch theorem

l
`

ps|E | ` gqP8 ´ sE
˘

ě ps|E | ` g ´ s|E |q ´ g ` 1 “ 1 ,

which guarantees that

tΛs P Яp´sEq | δ´sEpΛsq ď s|E | ` gu “ L
`

ps|E | ` gqP8 ´ sE
˘

‰ t0u .

For the remainder of this chapter, fix two parameters ρ, λs, P Zě0. Letting
τ ě |E | be the greatest number of errors that we hope to correct, we will
typically set ρ “ n ´ degG ` 2g ´ 1 and λs “ sτ ` g in accordance with
Definition 4.1 and Definition 4.3 respectively, so that we can rely on existence

4.3 Constructing the key equations 71

of an r-interpolator R and an error locator Λs with δGpRq ď ρ and δpΛsq ď λs.
For the – now fixed – values of ρ and λs, we also fix the divisors

Vt “ λsP8 ` tG ,

Qt “ λsP8 ` tpG` ρP8q and
Wj “ λsP8 ` jpG` ρP8 ´Dq

for t “ 1, . . . , ` and j “ 0, . . . , s´1. The following purely technical lemma relates
these divisors with R, Λs and the sent message, and it will be instrumental in
proving the validity of the key equations.

Lemma 4.5. If f P LpGq is the sent message, R P ЯpGq is an r-interpolator
with δGpRq ď ρ, and Λs P Я is an error locator having multiplicity s and
δpΛsq ď λs, then for t “ 1, . . . , ` and j “ 0, . . . , s´ 1 it holds that

Λsf
t P LpVtq and Λspf´Rq

jRt´j P

#

L
`

Wj ` pt´ jqpG` ρP8q
˘

if j ă s

LpQt ´ sDq if j ě s
.

Proof. Since δtGpf tq “ tδGpfq “ 0, then

δtGpΛsf
tq “ δpΛsq ` δtGpf

tq ď λs ,

which proves the first claim. For the second claim, note that

f ´R P L
`

G` ρP8 ´ pD ´ Eq
˘

,

which implies that for j ă s

Λspf ´Rq
j P L

`

pλsP8 ´ sEq ` jpG` ρP8 ´D ` Eq
˘

“ L
`

λsP8 ` jpG` ρP8 ´Dq ´ ps´ jqE
˘

Ď LpWjq ,

and that for j ě s

Λspf ´Rq
jRt´j P L

`

pλsP8 ´ sEq ` jpG` ρP8 ´D ` Eq ` pt´ jqpρP8 `Gq
˘

“ L
`

λsP8 ´ sE ` tpG` ρP8q ´ jpD ´ Eq
˘

Ď L
`

λsP8 ´ sE ` tpG` ρP8q ´ spD ´ Eq
˘

(˚)

“ L
`

λsP8 ` tpG` ρP8q ´ sD
˘

“ LpQt ´ sDq ,

where p˚q is a consequence of D ´ E being effective.

Finally, we are ready to introduce the key equations:

72 Partial unique decoding

Theorem 4.6 (The key equations). If f P LpGq is the sent message, R P

LpρP8 ` Gq is an r-interpolator and Λs P LpλP8q is an error locator with
multiplicity s, then for t “ 1, . . . , `

Λsf
t´

mintt,s´1u
ÿ

j“0

ˆ

t

j

˙

Λspf´Rq
jRt´j P

#

t0u if 1 ď t ď s´ 1

LpQt ´ sDq if s ď t ď `
. (4.1)

Proof. Observing that

Λsf
t “ Λs

`

pf ´Rq `R
˘t
“

t
ÿ

j“0

ˆ

t

j

˙

Λspf ´Rq
jRt´j

immediately proves the claim for 1 ď t ď s ´ 1. If s ď t ď `, then it follows
from Lemma 4.5 that

Λsf
t ´

mintt,s´1u
ÿ

j“0

ˆ

t

j

˙

Λspf ´Rq
jRt´j “

t
ÿ

j“s

ˆ

t

j

˙

Λspf ´Rq
jRt´j

P LpQt ´ sDq .

In the context of Theorem 4.6, if we are given the received word r, then we can
easily compute an r-interpolator R P LpρP8 ` Gq e.g. by using linear algebra
(see Section 4.4). The unknowns in the key equations (4.1) are therefore f and
Λs. If these equations admit a unique solution (up to F-scaling of Λs), then
decoding simply reduces to finding it – however, it is not immediately clear how
to accomplish this directly. In Section 4.4, we use the language of function
fields to formulate the usual trick of linearization, which will often allow us to
successfully deal with this otherwise highly nonlinear problem.

4.4 Solving the key equations

In this section we explain how the key equations (4.1) can be solved by strate-
gically “forgetting” some of their original algebraic structure in such a way as to
make them linear over F. This trick incurs the price of potentially “polluting”
the solution space with new elements that could get in the way of us finding
the hopefully unique solution of the original problem, however, previous work
on power decoding as well as our simulations (see Section 4.6) indicate that this
happens with small probability. Without further ado, we present the linearized
problem below.

4.4 Solving the key equations 73

Problem 4.7. Given an r-interpolator R P LpρP8 ` Gq, find φt P LpVtq for
t “ 1, . . . , ` and ψj P LpWjq for j “ 0, . . . , s´ 1 (not all zero) such that

φt ´

mintt,s´1u
ÿ

j“0

ˆ

t

j

˙

ψjR
t´j P

#

t0u if 1 ď t ď s´ 1

LpQt ´ sDq if s ď t ď `
. (4.2)

It is not hard to see the resemblance between (4.1) and (4.2) if we “squint our
eyes” a little. Indeed, it is a direct consequence of Theorem 4.6 that any solution
f,Λs of (4.1) gives rise to a solution of (4.2) of the form

φt “ Λsf
t and ψj “ Λspf ´Rq

j (4.3)

for t “ 1, . . . , ` and j “ 0, . . . , s ´ 1. Of course, the converse does not always
hold, which means that a solution of the latter might fail to be a solution
of the former. Foreshadowing our discussion in Section 4.5, it is exactly this
phenomenon that defines the decoding radius of power decoding.

Our decoding strategy thus becomes as follows: Use linear algebra to find an
F-basis of the solution space of Problem 4.7. If this basis only has one element,
then this element is necessarily of the form (4.2) (up to F-scaling). The message
f that corresponds to the closest codeword c of the received word r can thus
be obtained by e.g the division

φ1
ψ0
“

Λsf
t

Λs
“ f . (4.4)

Having outlined our plan of action, we now proceed to explaining how to trans-
late our AG setting into raw linear algebra over F. To be more precise, we give
an explicit construction of a matrix U whose right kernel describes the solution
space of Problem 4.7. Besides aiding implementation, having a description of
this matrix – in particular its dimensions –will allow us to derive the decoding
radius of our decoder.

Constructing the linear system

We begin by establishing some notation: For any divisor A, let βA P LpAqlpAq
denote a vector whose entries form any F-basis of LpAq in such a way as to
ensure that for any divisor B it holds that

LpAq “ LpBq ðñ βA “ βB .

74 Partial unique decoding

In other words, the map A ÞÑ βA should associate to every Riemann-Roch space
some “canonical” F-basis. Continuing, for any h P LpAq let hA P FlpAq denote
the unique vector for which βA ¨ hA “ h, i.e. writing βA “ pa1, . . . , alpAqq and
h “

řlpAq
i“1 ciai, where ci P F, we get that hA “ pc1, . . . , clpAqq. Finally, for any

p P LpB´Aq, let pB,A P FlpBqˆlpAq denote the matrix whose i-th column is given
by the vector ppaiqB . The following simple lemma will be useful for proving the
correctness of our linear system, as it allows us to express products of function
field elements using linear algebra:

Lemma 4.8. If A and B are divisors, then for any h P LpAq and p P LpB´Aq

βBpB,AhA “ ph P LpBq .

Proof. Writing βA “ pa1, . . . , alpAqq and noting that pai P LpBq for i “ 1, . . . , lpAq,
it becomes clear that

βBpB,A “ βBrppaiqBs
lpAq
i“1 “ prβB ¨ paiqBs

lpAq
i“1 “ prais

lpAq
i“1 “ pβA ,

where the ppaiqB are treated as column vectors. The conclusion follows, since

βBpB,AhA “ pβA ¨ hA “ ph .

As Problem 4.7 requires us to have an r-interpolator R P LpHq, where r P Fn
is the received word and H “ ρP8 ` G, let us briefly mention that it can
be obtained as R “ βH ¨ v, where v P FlpHq is any solution to the linear
system Mv “ r with M P FnˆlpHq being the matrix whose i-th column is
rbipP1q ¨ ¨ ¨ bipPnqs

J and βH “ pb1, . . . , blpHqq.

The following lemma and its subsequent Corollary 4.10 give an explicit con-
struction of the aforementioned matrix U whose right kernel fully describes the
solution space of Problem 4.7.

Lemma 4.9. Let φr P LpVrq and ψj P LpWjq for r “ 1, . . . , ` and j “ 0, . . . , s´1
be functions, and define the vector

u “
`

pφ1qV1
| . . . |pφ`qV` |pψ0qW0

| . . . |pψs´1qWs´1

˘

P Fν ,

where ν “
ř`
r“1 lpVrq `

řs´1
j“0 lpWjq. Furthermore, for t “ 1, . . . , ` let

U t “ rV t,1| ¨ ¨ ¨ |V t,`|W t,0| ¨ ¨ ¨ |W t,s´1s P FlpQtqˆν

be the matrix where

V t,r “

#

1Qt,Vr if t “ r

0Qt,Vr if t ‰ r
and W t,j “

#

´
`

t
j

˘

pRt´jqQt,Wj
if 1 ď t ď s´ 1

0Qt,Wj
if j ą t

.

4.4 Solving the key equations 75

Then the φr and ψj constitute a solution to Problem 4.7 if and only if

βQtU tu P

#

t0u if 1 ď t ď s´ 1

LpQt ´ sDq if s ď t ď `
.

Proof. The claim follows immediately from the identity

βQtU tu “ βQt

ÿ̀

r“1

V t,rpφtqVt ` βQt

s´1
ÿ

j“0

W t,jpψjqWj

“ βQt1Qt,VtpφtqVt ´ βQt

mintt,s´1u
ÿ

j“0

ˆ

t

j

˙

pRt´jqQt,Wj pψjqWj

“ φt ´

mintt,s´1u
ÿ

j“0

ˆ

t

j

˙

ψtR
t´j ,

where the last equality is due to Lemma 4.8.

Corollary 4.10. In the context of Lemma 4.9, if

U “

»

—

–

K1U1

...
K`U `

fi

ffi

fl

is the matrix where

Kt “

#

1Qt,Qt if 1 ď t ď s´ 1

left kernel matrix of 1Qt,Qt´sD if s ď t ď `
,

then the φr and ψj constitute a solution to Problem 4.7 if and only if Uu “ 0.

Proof. Due to Lemma 4.9, it suffices to show that for s ď t ď `

βQtU tu P LpQt ´ sDq ðñ KtU tu “ 0 .

But this follows immediately from the observation that

βQtU tu P LpQt ´ sDq ðñ U tu “ 1Qt,Qt´sDpβQtU tuqQt´sD .

76 Partial unique decoding

For clarity, we the present the outlined decoder in Algorithm 12.

Algorithm 12 LinearAlgebraDecoderpr, `, s,D,Gq

Input:

• The received word r P Fn,
• decoding parameters `, s P Zą0 with s ď `,

• divisors D and G for the code CLpD,Gq.
Output:

• “Fail” or f P LpGq such that c “ pfpP1q, . . . , fpPnqq P CLpD,Gq is the
closest codeword to r (in Hamming distance).

1: ρÐ n´ degG` 2g ´ 1
2: for λs “ 0, . . . , sn` g do
3: U P Fεˆν Ð the matrix from Corollary 4.10
4: V P Fνˆκ Ð the right kernel matrix of U
5: if κ “ 1 then
6: u “

`

pφ1qV1 | . . . |pφ`qV` |pψ0qW0 | . . . |pψs´1qWs´1

˘

P Fν Ð the unique
column of V

7: f Ð φ1

ψ0

8: if f P LpGq then return f
9: else return “Fail”

10: else if κ ě 2 then
11: return “Fail”

Remark 4.11. A computationally minded reader will notice that the for-loop
in line 2 of Algorithm 12 introduces a seemingly unnecessary factor of s|E | ` g
into the complexity. We comment on this despite our repeated disclaimer that
efficiency falls outside this chapter’s scope. The ultimate purpose of the loop
is to solve the key equations (4.1) for an error locator Λs with minimal δpΛsq.
Not considering more sophisticated techniques than linear algebra, we can easily
replace the aforementioned factor s|E | ` g with logpsn` gq simply by swapping
the for-loop with a binary search. Moreover, we can even get rid of this factor
altogether by fixing λs “ sτ`g, where τ ě |E | bounds the number of errors (see
Lemma 4.4). At first sight, doing this potentially breaks solution-uniqueness
of (4.1), since it allows for multiple linearly independent error locators to exist
when |E | ă τ . In practice, however, this is not a problem as long as τ does not
exceed the decoding radius, since the corresponding messages for all of these
error locators will be identical – at least with high probability; our simulations
rely on this in order to improve performance. The reason for why we stick with
the for-loop in Algorithm 12, however, is that this formulation makes it easier
to reason about the decoding radius.

Remark 4.12. When it comes to solving the linearized key equations (4.2)

4.5 Decoding radius 77

efficiently, then it is likely possible to take advantage of simultaneous Hermite-
Padé approximations; see Theorem 5.25 on page 102.

Now that we have translated Problem 4.7 into raw linear algebra, we are ready
to turn our attention to the subtle topic of decoding radius.

4.5 Decoding radius

This section is dedicated to a theoretical investigation of the error-correction
capabilities of our decoder. As we will see, however, theory will only get us so
far, as it is not even clear how to define decoding radius when we are attempting
unique decoding beyond half the minimum distance. Indeed, this is an oxymoron,
which is why we are forced to settle with partial unique decoding, allowing
declaration of failure in cases where unique decoding is impossible. But doing
this implies that the intuitive notion of decoding radius, i.e. the greatest number
of errors for which the decoder is guaranteed to succeed, is necessarily bounded
by half the minimum distance, and this fails to capture some of the practically
interesting features of actual decoding performance. Indeed, all experiments
indicate that for random errors, decoding beyond half the minimum distance
succeeds with very high probability – up to a certain limit, of course. Above this
limit, the apparent probability of success does not slowly taper off, but instead,
it abruptly drops to zero (or almost zero, depending on the formulation of the
decoder). From a practical perspective, therefore, it would have made a lot of
sense to define the decoding radius by this very drop, but unfortunately, the
underlying probability distribution remains too poorly understood for that.1

At this point, it might seem that the only way to estimate the decoding per-
formance of power decoding is by means of numerical simulation, however, this
is not true in practice. An educated guess – one that is yet to be experimen-
tally refuted – can be obtained from a fairly straightforward investigation of the
following sufficient condition for decoding failure:

ν ą ε` 1 , (4.5)

where ν is the number of variables in the underlying linear system and ε is the
number of equations. Indeed, when (4.5) is satisfied, then the system is guaran-
teed to have at least two linearly independent solutions, and this prompts the
decoder to declare failure. It ought to be emphasized, however, that the decod-
ing radius – being nothing but an educated guess derived from (4.5) – provides
no theoretical guarantees for decoding success whatsoever; and yet, due to its

1except for partial results in the case of RS codes [SSB10, Nie14]

78 Partial unique decoding

repeated experimental success [SSB06, SSB10, Ros18, PBR17, PRB19, PRS21],
it has undeniable practical significance. Having hopefully shed some light on
the subtle nature of decoding radius, let us without further ado proceed to an
investigation of (4.5) from a technical point of view.

Throughout this section, we will treat the matrixU from Corollary 4.10 – the one
that defines our linear system– as fixed, and we will denote its row and column
dimensions by ε and ν respectively, so that U P Fεˆν . In the following lemma,
we obtain estimates on ε and ν by considering the dimensions of the Riemann-
Roch spaces involved in Problem 4.7. For ease of notation, we introduce the
shorthand γ “ degG.

Lemma 4.13. It holds that

ν ě p`` sqpλs ´ g ` 1q ` `p``1q
2 γ ` sps´1q

2 pγ ` ρ´ nq .

Furthermore, if γ ě 2g ´ 2, then

ε ď ps´ 1qpλs ´ g ` 1q ` sps´1q
2 pγ ` ρq ` p`´ s` 1qsn .

Proof. Recall from Section 4.3 the divisors

Vt “ λsP8 ` tG ,

Qt “ λsP8 ` tpG` ρP8q and
Wj “ λsP8 ` jpG` ρP8 ´Dq

for t “ 1, . . . , ` and j “ 0, . . . , s´1, and note that by the Riemann-Roch theorem

lpVtq ě λs ` t´ g ` 1 ,

lpWjq ě λ` jpγ ` ρ´ nq ´ g ` 1 and
lpQt ´ sDq ě λ` tpγ ` ρq ´ sn´ g ` 1 .

Note also that if γ ě 2g ´ 2, then by [Sti09, Theorem 1.5.17] we have that

lpQtq “ λs ` tpγ ` ρq ´ g ` 1 .

It follows that

ν “
ÿ̀

t“1

lpVtq `
s´1
ÿ

j“0

lpWjq

ě
ÿ̀

t“1

pλ` tγ ´ g ` 1q `
s´1
ÿ

j“0

pλs ` jpγ ` ρ´ nq ´ g ` 1q

“ `pλs ´ g ` 1q ` `p``1q
2 γ ` spλs ´ g ` 1q ` ps´1qs

2 pγ ` ρ´ nq .

4.5 Decoding radius 79

Furthermore, the rank-nullity theorem implies that the matrix Kt from Corol-
lary 4.10 has exactly lpQtq ´ lpQt ´ sDq rows, from which it follows that

ε “
s´1
ÿ

t“1

lpQtq `
ÿ̀

t“s

`

lpQtq ´ lpQt ´ sDq
˘

ď

s´1
ÿ

t“1

pλs ` tpγ ` ρq ´ g ` 1q `
ÿ̀

t“s

sn

“ ps´ 1qpλs ´ g ` 1q ` ps´1qs
2 pγ ` ρq ` p`´ s` 1qsn .

It is now straightforward to obtain a sufficient condition for decoding failure:

Lemma 4.14. If λs ą 2``1´s
2p``1q sn´

`
2γ ´

`
``1 ` g, then ν ą ε` 1.

Proof. Lemma 4.13 implies that ν ą ε` 1 is necessitated by

p`` sqpλs ´ g ` 1q ` `p``1q
2 γ ` sps´1q

2 pγ ` ρ´ nq

ąps´ 1qpλs ´ g ` 1q ` sps´1q
2 pγ ` ρq ` p`´ s` 1qsn` 1 ,

which is equivalent to

p`` 1qpλs ´ g ` 1q ą p`´ s` 1qsn` sps´1q
2 n´ `p``1q

2 γ ` 1 ,

p`` 1qpλs ´ g ` 1q ą 2``1´s
2 sn´ `p``1q

2 γ ` 1 ,

λs ą
2``1´s
2p``1q sn´

`
2γ ´

`
``1 ` g .

Prompted by Lemma 4.14, we now take a “leap of faith” in defining the decoding
radius as

τmaxp`, sq “
X

2``1´s
2p``1q n´

`
2sγ ´

`
sp``1q

\

, (4.6)

with the underlying reasoning being as follows: According to Lemma 4.4, in
order for us to be able to correct up to τ errors, we should set λs ě sτ ` g;
otherwise, it could happen that no error locator Λs P LpλsP8q exists, which
would result in the key equations (4.1) having no appropriate solutions. Our
particular choice of τmax is, therefore, the greatest number of errors for which:

1) the key equations necessarily have at least one solution, while

80 Partial unique decoding

2) the sufficient condition for decoding failure from Lemma 4.14 is not met.

Although the conditions above are necessary for successful decoding, they are
not a priori sufficient. Notwithstanding, as we will see in Section 4.6, the de-
coding radius from (4.6) is in perfect agreement with our simulation results.
Moreover, it coincides with that of [Ros18] and [PRB19] for RS codes and one-
point Hermitian codes respectively. We conclude this section with a result that
shows how to choose the decoding parameters ` and s in order to reach the
Johnson radius (asymptotically).

Theorem 4.15 (Theorem 5, [PRB19]). If p`i, siqiPZą0
is the sequence where

`i “ i and si “ t
a

γ
n iu` 1, then τmaxp`i, siq “ n

`

1´
a

γ
n ´Op

1
i q
˘

as iÑ8.

Proof. Simply observe that

τmaxp`i,siq`1
n ą 2`i`1´si

2p`i`1q ´
`i
2si

γ
n ´

`i
sinp`i`1q

“
2p`i`1q´psi`1q

2p`i`1q ´ `i
2si

γ
n ´

`i
sinp`i`1q

ą 1´ psi`1q
2p`i`1q
loomoon

Op 1i q

´ `i
2si

γ
n

loomoon

ă

b

γ
n

´ `i
sinp`i`1q
looomooon

Op 1i q

.

where we have assumed that γ ă n.

4.6 Simulation results

In this section we present results of Monte-Carlo simulations that were con-
ducted in order to verify the decoding radius as hypothesized in (4.6). The
exact nature of each iteration in these simulations was as follows:

1 fix parameters `, s, τ P Zą0, and set ρ “ n´degG`2g´1 and λs “ sτ`g;

2 pick a random message f P LpGq and compute its corresponding codeword
c “ pfpP1q, . . . , fpPnqq P Fn;

3 generate a random error e P Fn of Hamming weight exactly τ and compute
the received word r “ c` e;

4 construct the matrix U P Fεˆν from Corollary 4.10 and compute its right
kernel matrix V P Fνˆκ;

4.6 Simulation results 81

5 recover the candidate message pf from the first column of V using (4.4);

6 if pf “ f declare success; otherwise, declare failure.

Remark 4.16. The observant reader might complain that the failure criterion
in the simulations described above differs from what was used in the derivation
of decoding radius – indeed, we have previously stated that decoding failure is
to be declared when the right kernel of U fails to have dimension one. This
discrepancy is justified in Remark 4.11.

In our simulations we considered a few one-point and two-point codes over three
well-known function fields:

• the Hermitian function field, which is defined over Fq2 by the equation
Hq : yq ` y “ xq`1, has genus g “ 1

2qpq ´ 1q and q3 ` 1 rational places;

• the Suzuki function field, which is defined over Fq4 by the equation
Sq : yq ` y “ xq0px2 ` xq, where q “ 2q20 ą 2, has genus g “ q0pq´ 1q and
q2 ` 1 rational places; and

• the function field from [GS96, Lemma 3.2], which is defined over Fq2 by
the equation Tq : yq ` y “ xq

xq´1`1 , has genus g “ pq´ 1q2 and q3´ q2` 2q
rational places.

The simulation results are presented in Table 4.1.

82 Partial unique decoding

Table 4.1: Simulation results

Curve |F| γ n k d˚ ` s τ OFR N ě

H4 42 15 64 10 49 4 2 29` 0.00 102

30 1.00 102

H4 42 10` 5 63 10 48 4 2 28` 0.00 102

29 1.00 102

H5 52 55 125 46 70 5 2 36` 0.00 102

37 1.00 102

H5 52 30` 25 124 46 69 3 2 35` 0.00 102

36 0.94 102

S1 24 12 24 12 12 2 2 5` 0.00 104

6 ą 0.99 104

S1 24 6` 6 23 12 11 2 2 5` 0.00 104

6 1.00 104

S1 24 4 24 4 20 6 2 12` ă 6.98 ¨ 10´4 103

13 1.00 103

S1 24 2` 2 23 4 19 6 2 11` 0.00 103

12 ą 0.99 103

T4 42 15 55 7 40 4 2 23` ă 1.74 ¨ 10´3 103

24 1.00 103

Code parameters γ, n, k, d˚. γ “ a ` b means that G “ aP ` bP 1 for some rational
places P and P 1. Decoder parameters `, s. Number of errors τ , ` means that τ “ τmax.
Observed failure rate OFR. Each simulation was repeated at least N times.

Chapter 5

List decoding

In this chapter we present an efficient algorithm for list decoding of AG codes.
Similarly to partial unique decoding (see Chapter 4), list decoding aims to cor-
rect errors beyond half the minimum distance; however, as the name suggests,
instead of declaring failure when unique decoding is impossible, we are tasked
with returning a list containing all viable candidate-codewords. Following the
style of the Guruswami-Sudan decoder [GS98], we solve this problem for all
AG codes, and by utilizing contemporary algorithms for univariate polynomial
matrices, as well as for univariate polynomials with power series coefficients, we
achieve the best known complexity in this fully general setting.

5.1 Related work

The first non-trivial list decoder for RS codes was introduced by Sudan in
[Sud97] and has since been interpreted as an extension of Welch and Berlekamp’s
key equations [WB86] – viewing them as an interpolation problem with certain
degree constraints. Shokrollahi and Wasserman [SW99] generalized Sudan’s
technique to work for all AG codes, setting up the stage for the celebrated
Guruswami-Sudan decoder [GS98], which achieved a greater decoding radius in
the same general setting by introducing a multiplicity parameter. A dominant

84 List decoding

paradigm in list decoding of AG codes was thus firmly established, revolving
around an interpolation step as well as a root-finding step; and much future
research would focus on making these two steps computationally efficient. In
the next two paragraphs, about interpolation and root-finding respectively, we
outline the “shortest path” from the emergence of this research to the present
moment, omitting but some of the most essential works upon which the contri-
butions in this chapter are based. For a more comprehensive historical overview
of Guruswami-Sudan list-decoding, the reader is referred to [LO08, BB10] – and
especially [Nie13].

Several authors, including [NH00, OF02, McE03, Ale05, FG05], formulated the
interpolation step as a problem of finding a minimal polynomial, with respect to
a weighted monomial order, in a certain vanishing ideal. Prompted by this, Lee
and O’Sullivan developed a technique for obtaining such a polynomial from a
Gröbner basis (of Frxs-modules), that was itself computed starting from a partic-
ular generating set – first for RS codes [LO08], and then for one-point Hermitian
codes [LO09]. The complexity of this strategy was further improved by Beelen
and Brander in [BB10] by utilizing Alekhnovich’s algorithm for row reduction of
polynomial matrices [Ale05]. Furthermore, their decoder was applicable to the
wider family of one-point codes over Ca,b curves (see Chapter 2), making it more
general. Specializing back to one-point Hermitian codes, Rosenkilde and Beelen
[NB15] sped up this approach even more by delegating the row-reduction phase
to the algorithm by Giorgi, Jeannerod and Villard [GJV03], which is more effi-
cient than the one by Alekhnovich. Doing this required additional improvements
to keep up with the new target complexity, including efficient computation of
the initial Frxs-basis, as well as a way of handling fractional weights. The re-
sult was the first list-decoder of one-point Hermitian codes having sub-quadratic
complexity in the code length. The goal of this chapter is to generalize the tools
from [NB15] to be applicable to all AG codes, which we accomplish by relying
on the conceptual framework from [LBAO14]. Before shifting our attention to
the root-finding step, we ought to mention the multivariate interpolation algo-
rithm by Chowdhury, Jeannerod, Neiger, Schost and Villard [CJN`15] – it was
the first to enable the currently best complexity in the special case of RS codes.

Some of the earliest root-finding algorithms for Guruswami-Sudan list-decoding
include Roth and Ruckenstein’s [RR00] as well as Gao and Shokrollahi’s [GS00].
Alekhnovich described in [Ale05] an efficient approach for computing the Frrxss-
roots modulo xβ of a polynomial Q P Frrxssrzs; its complexity was shown in
[NB15] to be rOpβ2`q operations in F, where ` is the z-degree of Q. Another
technique by Berthomieu, Lecerf and Quintin [BLQ13] achieved the cost rOpβ`2q.
In this chapter, we rely on the algorithm by Neiger, Rosenkilde and Schost
[NRS17], whose complexity of rOpβ`q operations is provably quasi-optimal.

5.2 Setting 85

We now proceed to a detailed discussion about the setting which is considered
in this chapter. In particular, we show how the decoding problem in its most
general form can be simplified by extending the base field F “ Fq.

5.2 Setting

In this chapter we consider list decoding in the most general setting, i.e. for the
code

CLpD,Gq “ tevDpfq | f P LpGqu Ď Fn ,

where D and G are divisors with suppD X suppG “ H, D “ P1 ` ¨ ¨ ¨ ` Pn for
some rational places P1, . . . , Pn, and evDpfq “ pfpP1q, . . . , fpPnqq. Throughout
the chapter we will keep using the notation evEphq to denote evaluation of any
function h P F with respect to any divisor E “ E1`¨ ¨ ¨`EN , where E1, . . . , EN
are places that are not poles of h.

Notwithstanding that we are committed to full generality, we will permit our-
selves to make a few simplifying yet non-restrictive assumptions on the function
field F as well as the code CLpD,Gq – incurring but a marginal penalty in com-
putational complexity. As in Chapter 4, for example, we will require a rational
place P8 of F , distinct from P1, . . . , Pn, and some of our later algorithms will
require additional rational places as well. I principle, there is no guarantee that
our original setting will be able to provide us with these, however, by simply
extending our constant field – say from Fq to Fqe for some e –we can artificially
increase our supply of rational places as needed. Abiding by the notational
conventions in [Sti09], we will denote by FFqe the function field obtained from
F by extending the constant field to Fqe .

As far as decoding is concerned, the code CLpD,Gq is in a trivial way an Fq-linear
subcode of the code obtained from FFqe using the divisors ConpDq and ConpGq,
where Con denotes the conorm with respect to FFqe{F [Sti09, Definition 3.1.8].
Consequently, any list-decoding algorithm for the code CLpConpDq,ConpGqq can
be repurposed for our original code CLpD,Gq by simply discarding the returned
codewords that contain entries from FqezFq. The only potential issue that we
ought to be careful about is that a single arithmetic operation in Fqe costs
rOpeq operations in Fq [CK91], which means that e should preferably be small
for complexity reasons. The following results will be helpful for bounding the
extension degree needed to obtain all of the rational places that we will need.

Lemma 5.1. Let F be a function field over Fq of genus g, and denote by Ne
the number of rational places of the function field FFqe over Fqe . If N, e P Zą0

are such that e ě 2 logq maxtN, 2g ` 1u, then Ne ą N .

86 List decoding

Proof. The Hasse-Weil bound |pqe ` 1q ´Ne| ď 2qe{2g implies that

logq Ne ą logqpq
e ´ 2qe{2gq “ e{2` logqpq

e{2 ´ 2gq ě e{2 ě logq N .

Lemma 5.1 assures us that if we require a certain number of rational places,
then an extension degree that is logarithmic in that number will always suffice
in obtaining them, which is good news for the complexity. In addition to simply
having many rational places, however, we will also need one of them to satisfy
a specific property:

Lemma 5.2. Let F be a function field over F having genus g. If P8 is a rational
place and µ is the smallest positive element in its Weierstrass semigroup, then
any set containing at least 3g ` 1 rational places distinct from P8 contains a
place P0 with a local parameter in LpµP8q.

Proof. Let x P LpµP8q be a function satisfying vP8pxq “ ´µ. First, we claim
that the extension F {Fpxq is separable. Assuming, for the sake of contradiction,
that it is not, then by the general theory of inseparable extensions we can
find an intermediate field E such that E{Fpxq is separable and F {E is purely
inseparable. By [Sti09, Proposition 3.10.2], therefore,

Fpxq Ď F p :“ tfp | f P F u ,

where p denotes the characteristic, implying that x “ yp for some y P F .
Consequently, since x has a pole at P8, then so does y, albeit of order µ{p. But
this contradicts the minimality of µ, proving that F {Fpxq is separable.

The Hurwitz genus formula (see e.g. [Sti09, Corollary 3.4.14]) thus applies to
this extension, so we proceed by using it to estimate the genus g. Letting
Q8 “ P8 X Fpxq, we observe that since vP8pxq “ ´µ and vQ8pxq “ ´1, then
epP8|Q8q “ µ. Now, assuming that we have N ą 3g rational places distinct
from P8, say P1, . . . , PN , let Qi “ Pi X Fpxq for i “ 1, . . . , N , and observe that

vPipx´ xpPiqq “ epPi|QiqvQipx´ xpPiqq “ epPi|Qiq .

Suppose, again for the sake of contradiction, that epPi|Qiq ě 2 for every i. Since
µ “ rF : Fpxqs by [Sti09, Theorem 1.4.11], then the Hurwitz genus formula com-
bined with the estimate dpPi|Qiq ě epPi|Qiq ´ 1, where d denotes the different

5.2 Setting 87

exponent, implies that

2g ´ 2 ě ´2rF : Fpxqs ` dpP8|Q8q `
N
ÿ

i“1

dpPi|Qiq

ě ´2µ` pµ´ 1q `Np2´ 1q

“ N ´ µ´ 1

ě N ´ g ´ 2 ,

the last inequality being a consequence of µ ď g ` 1. But then N ď 3g, which
contradicts our earlier assumption. We conclude that vPipx´ xpPiqq “ 1 for at
least one value of i, meaning that we can pick P0 “ Pi, since it has the local
parameter x´ xpPiq P LpµP8q.

To motivate Lemma 5.2, observe that by extending our constant field in accor-
dance with Lemma 5.1, we can “create” sufficiently many new rational places to
ensure existence of a function x P F satisfying the following two properties:

1) x P LpµP8q, and

2) x is a local parameter of some rational place P0 not in suppG.

As we will see in Section 5.3, Property 1 allows us to impose an Frxs-module
structure on the interpolation step of Guruswami-Sudan. In Section 5.5.6, we
will use Property 2 to solve the root-finding step by representing the coefficients
of the polynomial at hand using power series in Frrxss. Letting x be the gen-
erating element in both representations allows for efficient conversion between
them– and so existence of an x having these two properties is very helpful.

The final assumption that we will make about our setting is that the divisor
G is effective. In the following lemma we show that this assumption is also
nonrestrictive – at least as long as our code is not degenerate: we call a code
degenerate if there is an index i P t1, . . . , nu such that every single codeword is
zero in the i-th entry.

In the following lemma, recall that two codes C, C1 Ď Fn are said to be mono-
mially equivalent if there exist nonzero γ1, . . . , γn P F and a permutation π on
t1, . . . , nu such that pc1, . . . , cnq P C ðñ pγ1cπp1q, . . . , γncπpnqq P C1; we will
not need the permutation.

Lemma 5.3. If F is a function field, and D,G are divisors as before, then either
the code CLpD,Gq is degenerate, or CLpD,ConpGqq (of which it is a subcode
over Fq) is monomially equivalent over Fqe , where e ě 1 ` rlogqpnqs, to a code
CLpD,G1q, where G1 is an effective divisor of FFqe of degree degG.

88 List decoding

Proof. Consider the extension Fqe{Fq, and let Ci “ tpc1, . . . , cnq P C | ci “ 0u,
where C “ CLpD,ConpGqq. Clearly, if CLpD,Gq is nondegenerate, then so is
C. In this case, C ‰ Ci for all i. If every codeword in C has at least one
zero coordinate, then C “

Ťn
i“1 Ci, which implies that pqeqk ď npqeqk´1, where

k “ dim C. It follows that qe ď n, implying the contradiction that e ď logqpnq.

Consequently, C contains a codeword of full Hamming weight n, say c “ evDp rfq

for some rf P LpConpGqq. Since by construction rfpPiq ‰ 0 for all i, we see that
the codes C and CLpD,ConpGq` p rfqq are monomially equivalent under the map
pc1, . . . , cnq ÞÑ p rfpP1qc1, . . . , rfpPnqcnq. Moreover, the divisor G1 “ ConpGq`p rfq
is effective and has support disjoint from D.

From the perspective of error-correction, degenerate codes can be safely disre-
garded; if the i-th entry of every codeword is zero, then correcting errors in that
position is trivial. Moreover, since this entry carries no information, then one
might instead consider the punctured code where it has been removed. Doing
this will neither change the code’s dimension nor its minimum distance, which
means that decoding of any degenerate code can be reduced to decoding of a
nondegenerate one.

In the context of Lemma 5.3, note that since CLpD,ConpGqq and CLpD,G1q are
monomially equivalent, any list-decoding algorithm for CLpD,G1q immediately
gives a one for CLpD,ConpGqq as well as for its Fq-subcode CLpD,Gq. Of course,
this incurs the additional complexity of dividing and multiplying codeword en-
tries with the column multipliers rfpPiq, however, for each codeword this only
costs Opnq operations in Fq, i.e. rOpneq operations in Fq. Moreover, as we are
about to see, the extension degree e can be chosen small enough not to have any
impact on the total complexity – at least as far as the rO-notation is concerned.

Below we summarize our simplifying (non-restrictive) assumptions and fix some
associated notation that will be used henceforth in the chapter.

1) We assume that G is an effective divisor satisfying 0 ď degG ď n` 2g´ 1
(see Section 1.6 on page 11).

2) We assume that apart from the rational places in the support of the divisor
D “ P1 ` ¨ ¨ ¨ ` Pn, the function field F has at least one more rational
place P8, which may or may not be in suppG.

3) There exists a rational place P0 of F having a local parameter x P LpµP8q,
where µ is the smallest positive element of the Weierstrass semigroup at
P8. The place P0 may be in suppD but not in suppG.

5.2 Setting 89

4) We assume that we generally have access to as many rational places not
in suppG as we need, provided that we account for the cost penalty asso-
ciated with extending the constant field using Lemma 5.1 (see ??).

Let us now assess the size of the extension degree e needed to satisfy the first
three items in the above list – the fourth item will be considered separately.
Although one can likely do better, for the sake of simplicity we pick e “ e1e2e3,
where

e1 “ 1` rlogq ns ,

e2 “ r2 logqe1 maxtn` 1, 2g ` 1us , and

e3 “ r2 logqe1e2 p5g ` 1` nqs .

Too see why this choice works, observe that extending Fq to Fqe1 takes care of
the first item due to Lemma 5.3, further extending Fqe1 to Fqe1e2 covers the
second item by Lemma 5.1, and finally, the last item follows from Lemma 5.2
by extending Fqe1e2 to Fqe1e2e3 . Using the identity logqtpzq “ logqpzq{t, this can
be summarized as

e “ e1e2e3 ď 2 logqp5g ` 1` nq ` e1e2

ď 2 logqp5g ` 1` nq ` 2 logq maxtn` 1, 2g ` 1u ` e1

ď 2 logqp5g ` 1` nq ` 2 logq maxtn` 1, 2g ` 1u ` logqpnq ` 2 .

In other words, the the cost of satisfying the first three simplifying assumptions
is merely a factor of Oplogpn`gqq, which is does not break our target complexity.

When it comes to the last assumption, estimating the number rational places
that we need gets quite technical, albeit conceptually simple: it essentially boils
down to ensuring existence of invertible multi-point evaluation maps on certain
Riemann-Roch spaces, which is useful for efficient multiplication of function
field elements. It can be verified throughout the chapter that for decoding
parameters s, ` P Zą0, where s is the multiplicity and ` is the designed list size
(see Section 5.4), requiring an additional

m :“ degG`maxtp`` 1qdegG` 4g ` ps` 1qn,

degG` p`` 3qp2g ´ 1q ` ps` 1qn` 2` µu P Op`pn` gqq ,

rational places will always suffice; however, justifying this bound here is im-
practical. The important thing to note is that we can ensure the existence of
these places by extending our constant field once again, this time with exten-
sion degree r2 logqepmaxtm, 2g ` 1uqs “ r2 logqe ms – relying on Lemma 5.1 as
before. Consequently, the computational penalty of this last assumption is an

90 List decoding

additional factor of Oplogp`pn ` gqqq, which also does not interfere with our
target complexity.

In the remainder of this chapter, therefore, we will simply assume that the
constant field F “ Fq is large enough to satisfy all of the simplifying assumptions
mentioned in this section.

Remark 5.4. The extension degree estimates given in this section are but crude
upper bounds – they are chosen in a way that preserves the total complexity
in the rO-sense without being optimized any further than that. The hidden
factors, therefore – both constant and logarithmic – can be easily improved upon,
however, doing so falls outside of this chapter’s scope.

5.3 Representations of function field elements

Our decoder consists of three main parts, each requiring its own way of repre-
senting function field elements:

1) Following the ideas in [BB10], we approach the interpolation step by first
constructing a basis of the associated Frxs-module. Doing this requires
efficient multiplication of function field elements, which we accomplish by
representing them using evaluations at many rational places and multiply-
ing them “pointwise”.

2) In order to obtain a reduced basis of the aforementioned Frxs-module, we
will switch the representation to one that is isomorphic to Frxsµ. This will
be detailed shortly.

3) Lastly, we address the root-finding step using the results in [NRS17]. For
this, we will represent certain functions using their power series expansions
in the local parameter x of P0.

We now proceed with a detailed elaboration of the second out of the three
representations mentioned above. As we did in Chapter 4 on page 67, for every
divisor A we will use the shorthand notation ЯpAq “ ЯP8pAq, where ЯP pAq is as
in Definition 1.14, and for any function a P ЯpAq, we will write δApaq “ δ

pP8q
A paq.

It is clear that Я is a ring and ЯpAq is a Я-module. Moreover, Я is an Frxs-
module and so is ЯpAq, which means that we can represent any a P ЯpAq using
an Frxs-basis of ЯpAq (see Lemma 5.6). Modules of the form ЯpAq are essentially
already considered for decoding in [KP95] as well as in [BH08, LBAO14, NB15].

5.3 Representations of function field elements 91

Following [LBAO14], we will use a special Frxs-basis of ЯpAq, which they call
an Apéry system:

Definition 5.5. For any divisor A let ypAqi P Ai be such that δApy
pAq
i q ď δApaq

for all a P Ai, where i “ 0, . . . , µ´ 1 and

Ai “ ta P ЯpAq | δApaq ” i mod µu .

We also define yi “ y
p0q
i .

Lemma 5.6. For any divisor A it holds that

1) ypAq0 , . . . , y
pAq
µ´1 is an Frxs-basis of ЯpAq and

2) ´degA ď δApy
pAq
i q ď 2g ´ 1´ degpAq ` µ for i “ 0, . . . , µ´ 1.

Proof. The first statement is from [LBAO14]. For the convenience of the reader
we give a proof. From the strict triangle inequality for vP8 , it is clear that the
elements ypAq0 , . . . , y

pAq
µ´1 are linearly independent over Frxs. Also, it is clear that

Y Ď ЯpAq, where Y “ xypAq0 , . . . , y
pAq
µ´1yFrxs. If Y ‰ ЯpAq, then there would exist

a P ЯpAqzY, such that δApaq ą ´8 is minimal. Writing δApaq “ mµ ` r and
δApy

pAq
r q “ m1µ ` r, where m,m1, r P Z with 0 ď r ă µ, note that m1 ď m by

definition of ypAqr . Since

δApx
m´m1ypAqr q “ δpxm´m

1

q ` δApy
pAq
r q “ pm´m1qµ` pm1µ` rq “ δApaq ,

then there exists a constant β P F such that δApcq ă δApaq, where

c “ a´ βxm´m
1

ypAqr P ЯpAq .

The minimality of δApaq guarantees that c P Y, however, this would imply that
a “ c` βxm´m

1

y
pAq
r P Y. Hence Y “ ЯpAq after all.

In the second statement, the lower bound simply follows from the fact that
y
pAq
i P LpδApypAqi qP8 ` Aq ‰ t0u. For the upper bound it is sufficient to show
that for every integer m ą 2g ´ 1 ´ degpAq there exists an a P ЯpAq with
δApaq “ m. But indeed, if m ą 2g ´ 1´ degpAq, then degpmP8 `Aq ą 2g ´ 1,
and so [Sti09, Theorem 1.5.17] implies that LpmP8 `Aq ‰ L

`

pm´ 1qP8 `A
˘

,
which concludes the proof.

Remark 5.7. According to Lemma 5.6, any function a P ЯpAq can be uniquely
represented as a “

řµ´1
i“0 aiy

pAq
i , where ai P Frxs. For clarity, we highlight that it

is only the coefficients ai that need to be stored in memory when implementing

92 List decoding

our algorithms; i.e. in practice, a would be represented as pa0, . . . , aµ´1q P Frxsµ.
When it comes to the basis functions ypAqi , we only have to know their evaluations
at certain rational places, as well as their power series expansions at P0 – this
information is used to convert between the different representations of a.

We end this section with a result that bounds the “size” of function field elements
when represented in terms of the Frxs-basis from Definition 5.5. This will be
useful in complexity estimates.

Lemma 5.8. If a “
řµ´1
i“0 aiy

pAq
i P ЯpAq, where ai P Frxs and A is a divisor,

then
deg ai ď

1

µ
pδApaq ´ δApy

pAq
i qq ď

1

µ
pδApaq ` degAq .

Proof. Simply observe that for i “ 0, . . . , µ´ 1 it holds that

δApaq “ max
j
δApajy

pAq
j q ě δpaiq ` δApy

pAq
i q ě δpaiq ´ degA ,

where the equality follows from the strict triangle inequality for vP8 , and second
inequality is given by Lemma 5.6. But then

deg ai “ δpaiq{µ ď
1

µ
pδApaq ´ δApy

pAq
i qq ď

1

µ
pδApaq ` degAq .

5.4 Guruswami-Sudan decoding

In this section, we formulate the Guruswami-Sudan list-decoding algorithm
[GS99] in terms of Я-modules. For the remainder of this chapter, fix the decod-
ing parameters s, ` P Zą0 such that s ď `, where ` is the designed list size and
s is the multiplicity parameter. The corresponding list-decoding radius will be
denoted by τ .

Definition 5.9. Let P be a rational place of F , r P F and Q P F rzs. We will
say that “Q has a root of multiplicity s at pP, rq” if for any local parameter φ
of P , there exist cu,v P F such that

Q “
ÿ

u,vě0
u`věs

cu,vφ
upz ´ rqv

with cu,s´u ‰ 0 for at least one 0 ď u ď s.

5.4 Guruswami-Sudan decoding 93

The following lemma will be useful for proving the main theorem of Guruswami-
Sudan decoding in our context.

Lemma 5.10. If Q P F rzs has a root of multiplicity s at pP, rq and f P F is
such that fpP q “ r, then vP pQpfqq ě s.

Proof. Writing
Qpfq “

ÿ

u,vě0
u`věs

cu,vφ
upf ´ rqv ,

where φ is any local parameter of P and cu,v P F, the triangle inequality gives

vP pQpfqq ě min
u,vě0
u`věs

`

vP pφ
uq ` vP ppf ´ rq

vq
˘

ě min
u,vě0
u`věs

pu` vq ě s .

We are now ready for the main decoding theorem, which formally introduces the
aforementioned steps of interpolation and root-finding. It will be convenient to
fix some more notation: For any Q “

ř`
t“0 z

tQptq with Qptq P Яp´tGq, we define
δGpQq “ maxt δ´tGpQ

ptqq, and for a given received word r “ pr1, . . . , rnq P Fn,
we will consider the set

Mprq
s,` pD,Gq “

!

Q “
ÿ̀

t“0

ztQptq P F rzs
ˇ

ˇ Qptq P Яp´tGq and

Q has a root of multiplicity at least s at pPj , rjq

for j “ 1, . . . , n
)

.

(5.1)

Theorem 5.11 (Special case of Guruswami–Sudan [GS99]). Let r be a received
word and Q P Mprq

s,` pD,Gq with δGpQq ă spn ´ τq. If f P LpGq is such that
dpr, evDpfqq ď τ , where d denotes the Hamming distance, then Qpfq “ 0.

Proof. Since f t P LptGq and Qptq P Яp´tGq, then f tQptq P Я, and consequently
Qpfq P Я. Furthermore, since δtGpf tq ď 0, then by the triangle inequality

δpQpfqq ď max
t
δ´tGpQ

ptqq “ δGpQq .

Letting E “ tj | rj ‰ fpPjqu, note that the cardinality of E is at most τ , and
since fpPjq “ rj for j R E , then it follows from Lemma 5.10 that Qpfq P Яp´T q,
where T “ s

ř

jRE Pj . But δGpQq ă spn´ τq ď deg T , therefore

Qpfq P L
`

δGpQqP8 ´ T
˘

“ t0u .

94 List decoding

In the context of Theorem 5.11, the interpolation step consists of finding a
nonzero polynomial Q PMprq

s,` pD,Gq Ă F rzs with δGpQq ă spn ´ τq, while the
root-finding step consists of finding all f P LpGq satisfying Qpfq “ 0. Before
we sketch our approach for solving these two steps in Section 5.4.2, let us first
understand the Frxs-module structure ofMprq

s,` pD,Gq in the next section.

5.4.1 Module structure of interpolation

It is easily seen that the setMprq
s,` pD,Gq from (5.1) is a module over the ring Я.

This point of view will aid us in describing a generating set ofMprq
s,` pD,Gq over

Frxs, which is the ultimate goal of this section. We begin with an investigation of
the Я-module structure of ЯpAq for any divisor A, where we will take advantage
of the fact that Я is a Dedekind domain and ЯpAq is one if its fractional ideals
[NX01, Section 1.2]. It is well known that any such fractional ideal can be
generated by at most two elements [FTT91, Corollary 2 to Theorem 4], however,
in our setting we also care about the “size” of these elements for complexity
reasons.

Lemma 5.12. For any divisor A it holds that ЯpAq “ xa1, a2yЯ for some
functions a1, a2 P ЯpAq satisfying

δApa1q ď 2g ´ 1´ degpAq ` a and δApa2q ď 4g ´ 2´ degpAq ` a ,

where a “
řt
i“1 degQi and A “

řt
i“1 niQi for some places Q1, . . . , Qt.

Proof. Prime ideals of Я correspond exactly to places distinct from P8. There-
fore, from the proof of in [FTT91, Corollary 2 to Theorem 4], we see that two
elements a1, a2 P ЯpAq generate ЯpAq as Я-module if and only if for all places
Qi P supppAq distinct from P8, we have mintvQipa1q, vQipa2qu “ ´ni and for
any other place Q ‰ P8 of F we have mintvQpa1q, vQpa2qu “ 0. We proceed by
constructing such two elements:

Letting m1 “ 2g ´ 1´ degpAq ` a, for j “ 1, . . . , t pick any

a
pjq
1 P LpA´

ÿ

i‰j

Qi `m1P8qzLpA´
ÿ

i

Qi `m1P8q .

To see that such apjq1 exist, use the Riemann-Roch theorem to conclude that

lpA´
ÿ

i‰j

Qi `m1P8q ą lpA´
ÿ

i

Qi `m1P8q .

5.4 Guruswami-Sudan decoding 95

Choosing a1 “
řt
j“1 a

pjq
1 , we see that vQipa1q “ ´ni for j “ 1, . . . , t, while

vQpa1q ě 0 for any other place Q distinct from P8. Moreover, δApa1q ď m1

since a1 P LpA`m1P8q.

Now, denote by Qt`1, . . . , Qt`s the zeroes of a1 not in supppAq Y tP8u, and
observe that since a1 P LpA`m1P8q, then

řt`s
i“t`1 degQi ď degA`m1. Letting

m2 “ 2g´1`m1 “ 4g´2´degpAq`a, similarly to the above, we can construct
an a2 P LpA ` m2P8q with vQipa2q “ 0 for i “ t ` 1, . . . , t ` s, and by this
construction δApa2q ď m2.

To verify that a1 and a2 are satisfactory, observe that vQipa2q ě ´ni and
vQipa1q “ ´ni for i “ 1, . . . , t. Letting Q R suppA Y tP8u, observe that
if Q is a zero of a1, then mintvQpa1q, vQpa2qu “ 0 since vQpa2q ě 0. If, on
the other hand, Q is a zero of a1, then vQpa2q “ 0, so that also in this case
mintvQpa1q, vQpa2qu “ 0. The sought conclusion then follows.

We proceed by decomposing Mprq
s,` pD,Gq into simpler Я-modules, which will

allow us to describe a generating set ofMprq
s,` pD,Gq over Я using Lemma 5.12.

In the remainder of this chapter, we will make extensive use of the divisors

Gpsqu “ ´uG´maxt0, s´ uuD for u “ 0, . . . , ` , (5.2)

and when s is clear from context, then we may simply write Gu “ G
psq
u .

Theorem 5.13. If r “ pr1, . . . , rnq is a received word and R P ЯpGq is such
that RpPjq “ rj for j “ 1, . . . , n, then

Mprq
s,` pD,Gq “

à̀

u“0

pz ´RquЯpGuq .

Proof. SinceMprq
s,` pD,Gq is a Я-module, then in order to prove the inclusion

à̀

u“0

pz ´RquЯpGuq ĎMprq
s,` pD,Gq ,

it suffices to show that pz ´ RquЯpGuq Ď Mprq
s,` pD,Gq for u “ 0, . . . , `. But

indeed, every element in pz ´RquЯpGuq has a root of multiplicity at least s at
pPj , rjq because pz´Rqu has one of multiplicity u and every h P ЯpGuq satisfies
vPj phq ě maxt0, s´ uu. Furthermore, since R P ЯpGq, then

pz ´RquЯpGuq “
´

u
ÿ

t“0

zt
ˆ

u

t

˙

p´Rqu´t
¯

ЯpGuq Ď
à̀

t“0

ztЯp´tGq ,

96 List decoding

which proves the sought inclusion.

Now, with the aim of proving the reverse inclusion

Mprq
s,` pD,Gq Ď

à̀

u“0

pz ´RquЯpGuq ,

let Q “
ř`
t“0 z

tQptq PMprq
s,` pD,Gq and rewrite

Qpzq “ Qppz ´Rq `Rq

“
ÿ̀

t“0

ppz ´Rq `RqtQptq

“
ÿ̀

t“0

t
ÿ

u“0

ˆ

t

u

˙

pz ´RquRt´uQptq

“
ÿ̀

u“0

ÿ̀

t“u

ˆ

t

u

˙

pz ´RquRt´uQptq “
ÿ̀

u“0

pz ´Rqu rQpuq ,

where rQpuq “
ř`
t“u

`

t
u

˘

Rt´uQptq. It now suffices to show that rQpuq P ЯpGuq
for each u, which we prove by induction on s. From Lemma 5.10, it follows
that rQp0q “ QpRq P ЯpG0q, and since R P ЯpGq, then clearly rQpuq P Яp´uGq.
Consequently, in the case of s “ 1, where Яp´uGq “ ЯpGuq for u ą 0, we
obtain the sought conclusion that rQpuq P ЯpGuq.

Proceeding to the induction step, where we assume that s ą 1, observe that it
follows from rQp0q P ЯpG0q ĎMprq

s,` pD,Gq that

Mprq
s,` pD,Gq Q Q´

rQp0q “
ÿ̀

u“0

pz ´Rqu rQpuq ´ rQp0q

“
ÿ̀

u“1

pz ´Rqu rQpuq “ pz ´Rq
`´1
ÿ

u“0

pz ´Rqu rQpu`1q .

Since z ´ R has a root of multiplicity one at pPj , rjq for all j, we see that
ř`´1
u“0pz ´Rq

u
rQpu`1q has a root of multiplicity at least s´ 1, and therefore

`´1
ÿ

u“0

pz ´Rqu rQpu`1q PMprq
s´1,`pD,Gq .

The induction hypothesis for s ´ 1 thus implies that rQpu`1q P ЯpGps´1q
u q for

u “ 0, . . . , `´1, from which it follows that rQpu`1q P ЯpGpsqu`1q, since we also know
that rQpu`1q P Я

`

´ pu ` 1qG
˘

. In combination with the previously established
rQp0q P ЯpGpsq0 q, this concludes the proof.

5.4 Guruswami-Sudan decoding 97

Remark 5.14. In the context of Theorem 5.13, note that we have already seen
R in Definition 4.1.

Armed with Lemma 5.12 and Theorem 5.13, it is straightforward to show that
Mprq

s,` pD,Gq can be generated over Я by fairly “small” elements:

Corollary 5.15. There exist gpuq1 , g
puq
2 P ЯpGuq for u “ 0, . . . , ` with

δGupg
puq
1 q ď 2g ´ 1` pu` 1qdegG`maxt0, s´ u` 1un and

δGupg
puq
2 q ď 4g ´ 2` pu` 1qdegG`maxt0, s´ u` 1un

such that

Mprq
s,` pD,Gq “ xB

puq
v | u P t0, . . . , `u, v P t1, 2uyЯ , where

Bpuqv “ pz ´Rqugpuqv “

u
ÿ

t“0

ˆ

u

t

˙

ztp´Rqu´tgpuqv P
à̀

t“0

ztЯp´tGq .

Proof. To obtain the stated upper bounds on δGupg
puq
1 q and δGupg

puq
2 q from

Lemma 5.12, note that
ÿ

QPsuppG

degQ ď degG

since G is an effective divisor. The bounds then follow from

ÿ

QPsuppGu

degQ ď

#

degG` n if u ă s

degG if u ě s
.

The claim that the Bpuqv generateMprq
s,` pD,Gq over Я is a direct consequence of

Theorem 5.13 combined with Lemma 5.12.

Remark 5.16. The proof of Corollary 5.15 actually implies that for u “ s the
stated upper bounds for δGupg

puq
1 q and δGupg

puq
2 q can be improved by n.

In the context of Corollary 5.15, it is straightforward to obtain a generating set
ofMprq

s,` pD,Gq over Frxs.

Corollary 5.17. It holds that

Mprq
s,` pD,Gq “ xyiB

puq
v | i P t0, . . . , µ´ 1u, u P t0, . . . , `u, v P t1, 2uyFrxs .

98 List decoding

Remark 5.18. Since Gu “ ´uG for s ă u ď `, a minor modification of the
proof of Theorem 5.13 results in a different decomposition:

Mprq
s,` pD,Gq “

à̀

u“0

#

pz ´RquЯpGuq if 0 ď u ď s

pz ´Rqszu´sЯpGuq if s ă u ď `
.

Consequently, an alternative Я-generating set ofMprq
s,` pD,Gq is given by

rBpuqv “

#

pz ´Rqug
puq
v “ B

puq
v if 0 ď u ď s

pz ´Rqszt´sg
puq
v if s ă u ď `

for v “ 1, 2. The corresponding Frxs-generating set tyi rB
puq
v u is cheaper to

compute when s ă `, and is likely to improve the total complexity by a factor
of s{`. However, due to the approaching deadline for this thesis, this will not
be pursued any further.

Having understood the module structure ofMprq
s,` pD,Gq, we proceed by sketch-

ing our decoding algorithm.

5.4.2 Strategy outline

Before delving into the computational details, let us present an overview over
the main steps in our approach to Guruswami-Sudan list-decoding. Given an
AG code CLpD,Gq Ď Fn satisfying the non-restrictive assumption described in
Section 5.2, decoding parameters s, ` P Zą0 with s ď ` and a received word
r P Fn, our strategy will be as follows:

Interpolation step:

1) Compute a generating set ofMprq
s,` pD,Gq over Я (see Section 5.5.3).

2) Compute a generating set ofMprq
s,` pD,Gq over Frxs (see Section 5.5.4).

3) Use fast row reduction over Frxs to find a nonzero Q PMprq
s,` pD,Gq

satisfying δGpQq ă spn´ τq (Section 5.5.5).

Root-finding step:

1) Compute the power series representation pQ P Frrxssrzs of Q by
expanding its coefficients at P0.

5.5 Algorithms 99

2) Compute the roots of pQ over Frrxss.

3) Convert these roots to LpGq, discarding any “spurious” solutions.

As we will see in Section 5.5.6, all of these steps can be solved using rOpµω´1`ω`1pn`
gqq operations in F. Moreover, by choosing the slightly more complicated
generating set from Remark 5.18, this complexity can likely be improved to
rOpµω´1s`ωpn` gqq.

Now that we have charted out our course, we are ready to present the algorithmic
content of this chapter.

5.5 Algorithms

In this section, we describe in full detail all of the intermediate algorithms that
we will use in our realization of the Guruswami-Sudan list decoder – the actual
decoder is presented separately in Section 5.6.

Our first milestone will be to compute the generating set tBpuqv u
u“0,...,`
v“1,2 of

Mprq
s,` pD,Gq over Я as given by Corollary 5.15, which will require us to effi-

ciently multiply function field elements. As outlined in Section 5.3, we will do
this “pointwise”, which motivates the multi-point evaluation and interpolation
algorithms that are presented in Section 5.5.1 and Section 5.5.2 respectively.

5.5.1 Multi-Point Evaluation

We now consider the following problem: given a function a P ЯpAq for any
divisor A, compute evEpaq “ papE1q, . . . , apEN qq P FN where E “ E1`¨ ¨ ¨`EN
is a divisor made up of rational places E1, . . . , EN not in supppAq Y tP8u. We
will be encountering this relationship between two divisors so often, that it will
be convenient to use shorthand notation for it:

Definition 5.19. If A and E “ E1 ` ¨ ¨ ¨ ` EN are divisors, where E1, . . . , EN
are distinct rational places not in supppAq Y tP8u, then we will write

E “ E1 ` ¨ ¨ ¨ ` EN P DpAq .

Without futher ado, we present Algorithm 13 for multi-point evaluation.

100 List decoding

Algorithm 13 Evaluatepa,E,A,x,yq

Input:

• Divisors A and E “ E1 ` ¨ ¨ ¨ ` EN P DpAq,

• a function a “
řµ´1
i“0 aiy

pAq
i P ЯpAq, where ai P Frxs,

• evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P F,

• evaluations y “ pyi,jq
i“0,...,µ´1
j“1,...,N , where yi,j “ y

pAq
i pEjq P F.

Output:

• Evaluations evEpaq P FN .

1: for i “ 0, . . . , µ´ 1 do
2: pai,1, . . . , ai,N q P FN Ð paipx1q, . . . , aipxN qq Ź Univariate MPE
3: return

řµ´1
i“0 pai,1yi,1, . . . , ai,Nyi,N q P FN

Lemma 5.20. Algorithm 13 is correct and costs rOpµN ` δApaq ` degAq oper-
ations in F.

Proof. Correctness simply follows from the fact that for j “ 1, . . . , N

µ´1
ÿ

i“0

ai,jyi,j “
µ´1
ÿ

i“0

aipxpEjqqy
pAq
i pEjq “

µ´1
ÿ

i“0

paiy
pAq
i qpEjq “ apEjq .

For complexity, notice that the total cost of the for-loop on Line 1 amounts to
that of evaluating each of the univariate polynomials a0, . . . , aµ´1 P Frxs on N
points. According to Lemma 5.8,

deg ai ď
1

µ
pδApaq ` degAq for i “ 0, . . . , µ´ 1 ,

hence the total cost of the for-loop is bounded by

rOpµpN `max
i

deg aiqq Ď rOpµN ` δApaq ` degAq .

Line 3 costs OpµNq, which is subsumed by the cost of the for-loop.

5.5.2 Interpolation

Let us now turn our attention to interpolation – the inverse problem of multi-
point evaluation. To attain an efficient solution, we will partition the evaluation
points in a particular way:

5.5 Algorithms 101

Definition 5.21. Let E1, . . . , EN ‰ P8 be pairwise distinct rational places,
and let E “ E1 ` ¨ ¨ ¨ ` EN . If U1, . . . , Uµ are effective divisors satisfying

1) E “ U1 ` ¨ ¨ ¨ ` Uµ,

2) suppUi X suppUk “ H when i ‰ k,

3) |degUi ´ degUk| ď 1 for all i, k,

4) for any Ej , Ek P suppUi it holds that xpEjq “ xpEkq ðñ Ej “ Ek,

then we will say that U1, . . . , Uµ is an x-partition of E.

In order to prove that an x-partition always exists, we will use the following:

Lemma 5.22. If P is a set of places satisfying xpP q “ xpP 1q for all P, P 1 P P,
then |P| ď µ.

Proof. If α “ xpP q for every P P P, then 0 ‰ x´ α P LpµP8 ´
ř

PPP P q. But
if |P| ą µ, then the above Riemann-Roch space has dimension zero.

The proof of the following lemma gives an easy way of constructing an x-
partition for any appropriate divisor E:

Lemma 5.23. There exists an x-partition of any divisor E “ E1 ` ¨ ¨ ¨EN ,
where E1, . . . , EN ‰ P8 are pairwise distinct rational places.

Proof. We use induction on N . The base case N “ 0 is trivial, so consider the
induction step: Assuming that U1, . . . , Uµ is an x-partition of E ´ EN , let

U P tUiu
µ
i“1 and V P tUi | xpEjq ‰ xpEN q for all Ej P suppUi, i “ 1, . . . , µu

have minimal degrees in their respective sets, the latter of which is non-empty
due to Lemma 5.22. If degU “ deg V , then an x-partition of E can be obtained
by replacing V with V ` EN . On the other hand, if degU “ deg V ´ 1, then
U contains a place PU with xpPU q “ xpEN q, and V contains a place PV with
xpPV q ‰ xpEjq for all Ej P U . In this case, an x-partition of E can be obtained
by replacing U with U ` EN ´ PU ` PV , and V with V ´ PV ` PU .

Another ingredient that we will use in our interpolation algorithm is the homo-
geneous case of simultaneous Hermite-Padé approximations, which is captured
in the following definition:

102 List decoding

Definition 5.24. For any matrix A P Frxsφˆθ with columns A1, . . . ,Aθ and
any vector u “ pu1, . . . , uθq P Frxsθ, we define the Frxs-module

HupAq “ tv P Frxsφ | v ¨Ak ” 0 pmod ukq for k “ 1, . . . , θu .

In the context of Definition 5.24, we are interested in being able to compute
a shifted Popov basis of HupAq. Fortunately, this problem has been studied
extensively in the literature [JNSV16, JNSV17, RS21]. The following is a direct
adaptation of [RS21, Theorem 1.7].

Theorem 5.25 ([RS21, Theorem 1.7]). If φ, θ P Zą0 are integers such that
φ ě θ, then there exists an algorithm which for anyA P Frxsφˆθ, u P pFrxszt0uqθ

and d “ pd1, . . . , dφq P Zφě0 can compute a matrix V P Frxsφˆφ in p´dq-Popov
form, whose rows form an Frxs-basis of HupAq. Furthermore, if there exists a
vector v “ pv1, . . . , vφq P HupAq satisfying the degree constraints deg vt ă dt for
t “ 1, . . . , φ, then at least one row of V will also satisfy these constraints. The
complexity of such an algorithm can be taken to be rOpφω´1θdq operations in F,
where d “ maxt dt `maxk deg uk.

In some of our use cases of Theorem 5.25, we will need to allow the shifts
d1, . . . , dφ to be non-integer – in particular, they will belong to 1

µZ Ă Q. Fortu-
nately, this has already been solved in [NB15] by simply permuting the columns
in a very specific way:

Theorem 5.26 (Reformulation of Corollary 12 in [NB15]). Let V P Frxsγˆφ
and d “ pd1{µ, . . . , dφ{µq P p

1
µZq

φ Ă Qφ, where d1, . . . , dφ P Z. If π is the
permutation on t1, . . . , φu defined by

πpiq ą πpjq ðñ
pdi rem µq ą pdj rem µq

or
pdi rem µq “ pdj rem µq and i ą j

,

and Ψ : Frxsφ Ñ Frxsφ is the map

pv1, . . . , vφq ÞÑ pxtdπp1q{µuvπp1q, . . . , x
tdπpφq{µuvπpφqq ,

then V is in d-Popov form if and only if ΨpV q is in (unshifted) Popov form,
where ΨpV q P Frxsγˆφ is the matrix created by applying Ψ to each row of V .

Using the permutation defined in Theorem 5.26, we immediately obtain a stronger
version of Theorem 5.25:

Corollary 5.27. In the context of Theorem 5.25, we can allow d P p 1µZq
φ and

still find the sought matrix V P Frxsφˆφ in complexity rOpφω´1θdq operations in
F, where d “ maxt |dt| `maxk deg uk.

5.5 Algorithms 103

Proof. Write d “ prd1{µ, . . . , rdφ{µq with rdt P Z, and notice that Theorem 5.26
implies that V P Frxsφˆφ is in p´dq-Popov form if and only if rV P Frxsφˆφ is
in p´rdq-Popov form, where

rd “ ptrdπp1q{µu, . . . , trdπpφq{µuq P Zφ ,

and rV is matrix obtained from V by permuting its columns using π from The-
orem 5.26. By Theorem 5.25, for any matrix A P Frxsφˆθ, we can compute
the basis rV P Frxsφˆφ of HuprAq in p´rdq-Popov form, where rA P Frxsφˆθ is
obtained by permuting the rows of A by π, as long as the entries of rd are non-
negative. By simply adding the constant maxtr|rdt|{µs to all coordinates of rd,
we can ensure that this is true without breaking the target complexity. Finally,
it is trivial to obtain V from rV by applying π´1 to its columns.

We proceed by reducing our interpolation problem to that of simultaneous
Hermite-Padé approximations, which will allow us to solve it using Corollary 5.27.

Lemma 5.28. Given divisors A and E “ E1 ` ¨ ¨ ¨ `EN P DpAq, interpolation
values pw1, . . . , wN q P FN and an x-partition U1, . . . , Uµ of E, consider a row-
vector T “ rTks P Frxs1ˆµ and a matrix S “ rSi,ks P Frxsµˆµ, where

TkpxpEjqq “ ´wj and Si,kpxpEjqq “ y
pAq
i pEjq for all Ej P supppUkq .

If d “ pd0, . . . , dµ´1, 0q P p
1
µZq

µ`1 with di “ 1
µ pdegE ` 2g ´ degA´ δApy

pAq
i qq,

and u “ pu1, . . . , uµq P Frxsµ with uk “
ś

EjPsupppUkq
px ´ xpEjqq, then in the

p´dq-Popov basis of HupAq, where

A “

„

S
T

P Fpµ`1qˆµ ,

there exists a vector a “ pa0, . . . , aµ´1, 1q P Frxsµ`1 with deg ai ă di. Moreover,
if a “

řµ´1
i“0 aiy

pAq
i , then δApaq ď degE ` 2g ´ 1 ´ degA and apEjq “ wj for

j “ 1, . . . , N .

Proof. According to Lemma 1.18, there exists a function b P ЯpAq with

δApbq ď degE ` 2g ´ 1´ degA

such that bpEjq “ wj for j “ 1, . . . , N . If we write b “
řµ´1
i“0 biy

pAq
i , where

bi P Frxs, then it follows from Lemma 5.8 that

deg bi ď
1

µ
pδApaq ´ δApy

pAq
i qq “

1

µ
pdegE ` 2g ´ 1´ degA´ δApy

pAq
i qq ă di .

104 List decoding

We claim that b :“ pb0, . . . , bµ´1, 1q P HupAq. To see this let

ck “
µ´1
ÿ

i“0

biSi,k ` Tk P Frxs for k “ 1, . . . , µ ,

and observe that for any Ej P Uk it holds that

ckpxpEjqq “
µ´1
ÿ

i“0

bipxpEjqqy
pAq
i pEjq ´ wj “ bpEjq ´ wj “ 0 .

This implies that bAk “ ck ” 0 pmod ukq, where Ak P Frxspµ`1qˆ1 denotes the
k-th column of A. But then indeed, b P HupAq by definition.

Note that the p´dq-leading position of b is the last one, which implies that the
p´dq-Popov basis ofHupAq will contain a vector a “ pa0, . . . , aµ´1, aµq with the
same leading position – in particular aµ ‰ 0. Since a has minimal p´dq-degree
among all vectors in HupAq whose leading position is the last one, we conclude
that a satisfies the same degree constraints as b.

To conclude the proof, observe that

δApaq “ max
i
pδpaiq ` δApy

pAq
i qq “ max

i
pµdeg ai ` δApy

pAq
i qq

ă max
i
pµdi ` δApy

pAq
i qq “ degE ` 2g ´ degA ,

and that for any Ej P Uk, where k “ 1, . . . , µ, it holds that

apEjq ´ wj “
µ´1
ÿ

i“0

aipxpEjqqy
pAq
i pEjq ´ wj

“

µ´1
ÿ

i“0

aipxpEjqqSi,kpxpEjqq ` TkpxpEjqq

“ paAkqpxpEjqq “ 0 ,

since a P HupAq. Consequently, apEjq “ wj for j “ 1, . . . , N .

It is straightforward to extract an interpolation algorithm from Lemma 5.28 –we
present it in Algorithm 14.

5.5 Algorithms 105

Algorithm 14 Interpolatepw, E,A,x,yq

Input:

• Divisors A and E “ E1 ` ¨ ¨ ¨ ` EN P DpAq,
• interpolation values w “ pw1, . . . , wN q P FN ,

• evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P F,

• evaluations y “ pyi,jq
i“0,...,µ´1
j“1,...,N , where yi,j “ y

pAq
i pEjq P F.

Output:

• a P ЯpAq satisfying apEjq “ wj for j “ 1, . . . , N and
δApaq ď degE ` 2g ´ 1´ degA.

1: U1, . . . , Uµ Ð an x-partition of E
2: S “ rSi,ks P Frxsµˆµ Ð matrix with Si,kpxjq “ yi,j for all Ej P Uk
3: T “ rTks P Frxsµ Ð row vector with Tkpxjq “ ´wj for all Ej P Uk
4: u “ pu1, . . . , uµq P Frxsµ Ð vector with uk “

ś

EjPUk
px´ xjq

5: d “ pd0, . . . , dµ´1, 0q P p
1
µZq

µ`1 Ð vector with

di “
1
µ pdegE ` 2g ´ degA´ δApy

pAq
i qq

6: P P Frxspµ`1qˆpµ`1q Ð p´dq-Popov basis matrix of HupAq,

where A “
„

S
T

P Fpµ`1qˆµ

7: a “ pa0, . . . , aµ´1, 1q P Frxsµ`1 Ð a row of P with deg ai ă di for all i
Ź last row

8: return a “
řµ´1
i“0 aiy

pAq
i

Proposition 5.29. Algorithm 14 is correct and has complexity rOpµω´1pN`gqq.

Proof. Correctness follows directly from Lemma 5.28. For complexity, note that
for all i and k, we have deg uk “ |Uk| ď rN{µs, and we can choose

degSi,k,deg Tk ă rN{µs .

Step 2 costs rOpµ2N{µq “ rOpµNq, while Steps 3 and 4 cost rOpµN{µq “ rOpNq.
The bottleneck lies in Step 6, which according to Corollary 5.27 costs

rOpµω´1µpmax
i
di`max

k
deg ukqq Ď rOpµωpdegE ` 2g

µ
`
N

µ
qq “ rOpµω´1pN`gqq .

Here we used that di ď pdegE`2gq{µ, since degA`δApy
pAq
i q ě 0 by Lemma 5.6.

Before we proceed to the next section, where we will use both interpolation and
multi-point evaluation in order to compute a generating set ofMprq

s,` pD,Gq over

106 List decoding

Я, let us make a final comment on the output of Algorithm 14. We know from
Lemma 5.28 that the returned a “

řµ´1
i“0 aiy

pAq
i “ Interpolatepw, E,A,x,yq

satisfies δApaq ď degE ` 2g ´ 1´ degA, however, more can be said: Although
this bound is sharp in the sense that it is the best that one can expect in general,
in specific cases it can be beaten. A convenient property of Algorithm 14 is that
its output a is guaranteed to have the smallest possible value of δApaq among
all possible interpolating functions, which is shown in the following lemma.

Lemma 5.30. In the context of Algorithm 14, the output a P ЯpAq satisfies
δApaq ď δApbq for all functions b P ЯpAq with bpEjq “ wj for j “ 1, . . . , N .

Proof. Consider the map ϕ which sends any function b “
řµ´1
i“0 biy

pAq
i P ЯpAq

to the vector pb0, . . . , bµ´1q P Frxsµ, and observe that if bpEjq “ wj for all j,
then ϕpa´ bq is in the row space of the matrix rP P Frxsµˆµ obtained from the
first µ rows and columns of P . It is clear that rP is in p´rdq-Popov form, where
rd “ pd0, . . . , dµ´1q, and that each entry in ϕpaq has degree strictly smaller than
the maximal degree of the corresponding column in rP : otherwise P would not
be in p´dq-Popov form. But then, if ϕpbq satisfies the same degree constraints
as ϕpaq, so does ϕpa ´ bq, and it follows from Proposition 1.6 on page 8 that
ϕpa ´ bq “ 0, implying that a “ b (see also [Kai80, Theorem 6.3-15] or [Nei16,
Lemma 1.24]).

5.5.3 Computing a Я-generating set of Mprq
s,` pD,Gq

In this section we show how to efficiently compute the generating set tBpuqv u of
Mprq

s,` pD,Gq over Я, as given by Corollary 5.15. As we have mentioned previ-
ously, we will carry out the required multiplications of function field elements
pointwise – relying on Algorithm 13 and Algorithm 14 for multi-point evalua-
tion and interpolation respectively. The following lemma essentially tells us how
many evaluation points we should use in order to guarantee that no information
is lost in the process.

Lemma 5.31. Let a P ЯpAq and b P ЯpBq, where A and B are divisors, and let
E “ E1`¨ ¨ ¨`EN P DpAqXDpBq. If c P ЯpA`Bq satisfies cpEjq “ apEjqbpEjq
for j “ 1, . . . , N and δA`Bpcq ă N ´ degpA`Bq, then c “ ab.

Proof. Note that c P LpCq, where C “ δA`BpcqP8`A`B. Using the notation
as well as the claim of Lemma 1.17, we get that evE,C is injective. The sought
conclusion follows from evE,Cpcq “ evE,Cpabq.

5.5 Algorithms 107

As can be seen in Algorithm 15, it is now straightforward to compute the sought
generators ofMprq

s,` pD,Gq over Я.

Algorithm 15 GeneratorsЯpr, D,G,E,x,y, gq

Input:

• Received word r P Fn,
• divisors D and G for the code CLpD,Gq,
• a divisor E “ E1`¨ ¨ ¨`EN P DpGq withN ě p``1qdegG`4g`ps`1qn,

• evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P F,

• evaluations y “ pyi,jq
i“0,...,µ´1
j“1,...,N , where yi,j “ y

pAq
i pEjq P F,

• evaluations g “ pg
puq
v,j q

u“0,...,`
v“1,2, j“1,...,N , where g

puq
v,j “ g

puq
v pEjq P F,

xg
puq
1 , g

puq
2 yЯ “ ЯpGuq and δGupg

puq
v q ď 4g´1`pu`1qdegpGq`ps`1qn,

as in Corollary 5.15.

Output:

• pBpuqv q
u“0,...,`
v“1,2 such that xBpuqv yЯ “Mprq

s,` pD,Gq.

1: R P ЯpGq Ð Interpolatepr, D,G,x,yq Ź Algorithm 14
2: pρ

p0q
j q

N
j“1 P FN Ð p1, . . . , 1q

3: pρ
p1q
j q

N
j“1 P FN Ð Evaluatep´R,E,G,x,yq Ź Algorithm 13

4: for u “ 2, . . . , ` do
5: pρ

puq
j qNj“1 P FN Ð pρ

p1q
j ρ

pu´1q
j qNj“1

6: for u “ 0, . . . , `, v “ 1, 2 and t “ 0, . . . , u do
7: c

puq
v,t P FN Ð pρ

pu´tq
j g

puq
v,j qj“1,...,N

8: c
puq
v,t P Яp´tGq Ð Interpolatepc

puq
v,t , E,´tG,x,yq

9: for u “ 0, . . . , ` and v “ 1, 2 do
10: B

puq
v PMprq

s,` pD,Gq Ð
řu
t“0

`

u
t

˘

ztc
puq
v,t

11: return pBpuqv q
u“0,...,`
v“1,2

Proposition 5.32. Algorithm 15 is correct and costs rOpµω´1`3pn` gqq opera-
tions in F.

Proof. Note that δGpRq ď n ` 2g ´ 1 ´ degG due to Proposition 5.29, which

108 List decoding

together with the given upper bound for δGupg
puq
v q implies that

δ´tGpR
u´tgpuqv q “ δpu´tqG`GupR

u´tgpuqv q

ď pu´ tqpn` 2g ´ 1´ degGq ` 4g ´ 1` pu` 1qdegG` ps` 1qn

“ pt` 1qdegG` pu´ t` 2qp2g ´ 1q ` 1` ps` 1qn (5.3)
“ pt` 1qpdegG´ 2g ` 1q ` pu` 3qp2g ´ 1q ` 1` ps` 1qn

ď p`` 1qpdegG´ 2g ` 1q ` p`` 3qp2g ´ 1q ` 1` ps` 1qn

“ p`` 1qdegG` 2p2g ´ 1q ` 1` ps` 1qn

ă p`` 1qdegG` 4g ` ps` 1qn .

Lemma 5.30 then implies that Interpolatepc
puq
v,t , E,´tGq will output a function

c
puq
v,t P ЯpGq satisfying δ´tGpc

puq
v,t q ă p`` 1qdegG` 4g ` ps` 1qn.

To complete the correctness proof, we consider Lemma 5.31 for the divisors
A “ pu ´ tqG, B “ ´uG and the functions a “ p´Rqu´t, b “ g

puq
v , and

c “ c
puq
v,t . By construction, it is clear that for all Ej P suppE we have that

c
puq
v,t pEjq “ p´Rq

u´tpEjqg
puq
v pEjq.Moreover, degE ě p``1qdegG`4g`ps`1qn,

whence δ´tGpc
puq
v,t q ă degE ď degE ´ degp´tGq. Consequently, Lemma 5.31

implies that cpuqv,t “ p´Rqu´tg
puq
v .

The complexity of the algorithm is dominated by the for-loop in Lines 6–8. The
Op`2q calls of Interpolatepcpuqv,t , E,´tGq cost rOpµω´1`pn ` gqq operations each,
amounting to the total cost of rOpµω´1`3pn` gqq.

Remark 5.33. The generating set t rBpuqv u from Remark 5.18 can be computed
slightly faster. Indeed, in these generators, the needed powers p´Rqu have
the range u “ 0, . . . , s, so the for-loop in Lines 6–8 performs Ops`q calls to
Interpolatepc

puq
v,t , E,´tGq, resulting in the total cost of rOpµω´1s`2pn` gqq.

5.5.4 Computing an Frxs-generating set of Mprq
s,` pD,Gq

In the previous section, we saw how to efficiently compute the generating set
tB

puq
v u of Mprq

s,` pD,Gq over Я, as in Corollary 5.15. Following the strategy
outlined in Section 5.4.2, the next logical step is to compute the set of products
tyiB

puq
v u, which generates Mprq

s,` pD,Gq over Frxs according to Corollary 5.17.
Naturally, we now consider the following problem: given a function a P ЯpAq
for some divisor A, compute y0a, . . . , yµ´1a P ЯpAq. Indeed, any algorithm
for solving this can be used to obtain the sought Frxs-basis of Mprq

s,` pD,Gq

5.5 Algorithms 109

by simply calling it on the z-coefficients of the Bpuqv . We could in principle
compute the products yia individually, relying on pointwise multiplication as we
did in Algorithm 15; however, this would break our target complexity because
computing each yiB

puq
v this way would cost rOpµω´1`2pn ` gqq operations, and

we need to compute 2µp`` 1q such terms in total.

In this section we present a more efficient approach which computes all of the
y0a, . . . , yµ´1a simultaneously by taking advantage of the fact that they form
an Frxs-basis of xayЯ. Since there is an obvious Frxs-isomorphism between the
modules xayЯ and xz ´ ayЯ, where z is an indeterminate, obtaining a basis
of the former is easily reduced to obtaining one of the latter. As we will see,
xz´ ayЯ turns out to be closely related to a particular instance of simultaneous
Hermite-Padé approximations, which will allow us to compute the sought Frxs-
basis using Theorem 5.25 as well as Corollary 5.27. In order to explain this
precisely, we proceed with a few technical results.

If Hpzq P F rzs, α P F and P is a rational place that is not a pole of any of
the coefficients of Hpzq, then we will denote by HpP, αq P F the evaluation of
Hpαq P F at P . Furthermore, for any divisors A and E “ E1`¨ ¨ ¨`EN P DpAq,
and any function a P ЯpAq, we define the Frxs-module

NA,Epaq “ tH “ H0`H1z P ЯpAq‘zЯ | HpP, apP qq “ 0 for all P P supppEqu .

To avoid repetition, in the next few lemmas we will treat A,E and a as fixed.

It is clear that xz ´ ayЯ is a submodule of NA,Epaq. The following result shows
that it is a particularly well-behaved one:

Lemma 5.34. If H “ H0 ` zH1 P NA,Epaq satisfies

maxtδApH0q, δpH1q ` δApaqu ă degE ´ degA ,

then Hpaq “ 0, i.e. H P xz ´ ayЯ.

Proof. Since H P NA,Epaq, then Hpaq P ЯpAq. Moreover, by definition of δA,
Hpaq P LpδApHpaqqP8 ` Aq, and since HpaqpEjq “ 0 for j “ 1, . . . , N , then
Hpaq P LpδApHpaqqP8 `A´ Eq because E P DpAq. But we also know that

δApHpaqq ď maxtδApH0q, δpH1q ` δApaqu ă degE ´ degA ,

which implies that the aforementioned Riemann-Roch space is trivial.

Lemma 5.34 essentially tells us that “small” elements in NA,Epaq necessarily also
belong to xz´ayЯ. In particular, this means that we might be able to recognize

110 List decoding

the sought Frxs-basis of xz ´ ayЯ as a subset of some appropriately “reduced”
basis of NA,Epaq. In the following lemma we relate NA,Epaq to simultaneous
Hermite-Padé approximations, which will allow us to obtain such a reduced
basis using Theorem 5.25 and Corollary 5.27.

Lemma 5.35. Let U1, . . . , Uµ be an x-partition of E, and consider matrices
S “ rSi,ks,T “ rTi,ks in Frxsµˆµ satisfying

Si,kpxpEjqq “ y
pAq
i pEjq and Ti,kpxpEjqq “ apEjqyipEjq for Ej P Uk .

If u “ pu1, . . . , uµq P Frxsµ, where uk “
ś

EjPsuppUk
px´ xpEjqq, then the map

ψ :
µ´1
ÿ

i“0

psiy
pAq
i ` tizyiq ÞÑ ps0, . . . , sµ´1, t0, . . . , tµ´1q

is an Frxs-isomorphism between NA,Epaq and HupAq, where

A “

„

S
T

P F2µˆµ .

Proof. Clearly ψ is an Frxs-isomorphism between ЯpAq ‘ zЯ and Frxs2µ, so
it suffices to show that for any H P ЯpAq ‘ zЯ it holds that H P NA,Epaq if
and only if ψpHq P HqpAq, or in other words that HpEj , apEjqq “ 0 for all
Ej P suppUk, k “ 1, . . . , µ if and only if ψpHq ¨Ak ” 0 mod uk, k “ 1, . . . , µ,
where Ak denotes the k-th column of A. But this is necessarily true, since for
every Ej P Uk the following identity holds, where α “ xpEjq:

HpEj , apEjqq “
µ
ÿ

i“1

`

sipαqy
pAq
i pEjq ` tipαqapEjqyipEjq

˘

“

µ
ÿ

i“1

`

sipαqSi,kpαq ` tipαqTi,kpαq
˘

“ pψpHq ¨Akqpαq .

In the context of Lemma 5.35, since NA,Epaq is isomorphic to HupAq, then
xz ´ ayЯ is isomorphic to some submodule of HupAq. In the following lemma,
we show that the sought Frxs-basis of xz ´ ayЯ can be extracted from a certain
shifted Popov basis of HupAq.

Lemma 5.36. In the context of Lemma 5.35, if P P Frxs2µˆ2µ is the d-Popov
basis of HupAq “ ψpNA,Epaqq, where degE ě 2g ` µ` δApaq ` degA and

d “
1

µ

`

δApy
pAq
0 q, . . . , δApy

pAq
µ´1q, δpy0q ` δApaq, . . . , δpyµ´1q ` δApaq

˘

P p 1µZq
2µ ,

5.5 Algorithms 111

then exactly µ rows of P have d-degree less than 1
µ pdegE´degAq. Furthermore,

if rP P Frxsµˆ2µ is the submatrix of P consisting of these rows, then the k-th
row of rP is ψpYkq for k “ 1, . . . , µ, where

Yk “ ´ayk´1 ` zyk´1 P xz ´ ayЯ Ă NA,Epaq .

Consequently, if rP “ rrP 1|rP 2s, where rP 1, rP 2 P Frxsµˆµ, then

ayk´1 “ ´

µ´1
ÿ

i“0

pk,iy
pAq
i ,

where ppk,0, . . . , pk,µ´1q denotes the k-th row of rP 1.

Proof. For any H “ H0` zH1 P NA,Epaq, where H0 “
řµ´1
i“0 siy

pAq
i P ЯpAq and

H1 “
řµ´1
i“0 tiyi P Я with si, ti P Frxs, it holds that

degd ψpHq “ max
!

max
i

deg si `
δApy

pAq
i q

µ

(

,max
i

deg ti `
δpyiq ` δApaq

µ

(

)

“
1

µ
maxtδApH0q, δpH1q ` δApaqu .

It then follows from Lemma 5.34 that

degd ψpHq ă
1

µ
pdegE ´ degAq ùñ H P xz ´ ayЯ ,

which shows that at most µ rows of P can have d-degree strictly less than
1
µ pdegE´degAq because xz´ayЯ has rank µ as an Frxs-module. On the other
hand, since Y1, . . . , Yµ are linearly independent over Frxs, and since

degd ψpYkq “
1

µ
pδpyk´1q ` δApaqq ă

1

µ
pδApaq ` 2g ` µq ď

1

µ
pdegE ´ degAq

for k “ 1, . . . , µ, where the strict inequality is due to Lemma 5.6, then at least µ
rows of P have d-degree less than 1

µ pdegE´degAq because P is d-row reduced,
which proves the first claim of the lemma.

For the second claim, it is sufficient to show that the d-pivot index of ψpYkq
is µ ` k, since this would imply that the matrix whose rows are ψpYkq is in
d-Popov form. To see this, write Yk “ ´

řµ´1
i“0 wiy

pAq
i ` zyk´1, where wi P Frxs,

and note that Ykpaq “ 0 implies that

max
i
δApwiy

pAq
i q “ δAp

µ
ÿ

i“1

wiy
pAq
i q “ δApayk´1q “ δpyk´1q ` δApaq .

Consequently, degd ψpYkq “
1
µ pδpyk´1q`δApaqq, which shows that µ`k is indeed

the d-pivot index of ψpYkq.

112 List decoding

Lemma 5.36 immediately gives rise to Algorithm 16 as a way of computing the
products ay0, . . . , ayµ´1 P ЯpAq efficiently.

Algorithm 16 BasisProductspa,E,A,x,yq

Input:

• A divisor A,

• a function a P ЯpAq,

• a divisor E “ E1`¨ ¨ ¨`EN P DpAq with degE ě degA`δApaq`2g`µ,

• evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P F,

• evaluations y “ pyi,jq
i“0,...,µ´1
j“1,...,N , where yi,j “ y

pAq
i pEjq P F.

Output:

• Products pay0, ¨ ¨ ¨ , ayµ´1q, where each ayi P ЯpAq.

1: if a “ 0 then
2: return p0, . . . , 0q
3: U1, . . . , Uµ Ð an x-partition of E
4: S “ rSi,ks P Frxsµˆµ Ð matrix with Si,kpxjq “ yi,j for Ej P Uk
5: T “ rTi,ks P Frxsµˆµ Ð matrix with Ti,kpxjq “ apEjqyi,j for Ej P Uk
6: u “ pu1, . . . , uµq P Frxsµ Ð vector with uk “

ś

EjPUk
px´ xpEjqq

7: d P Q2µ Ð 1
µ

`

δApy
pAq
0 q, . . . , δApy

pAq
µ´1q, δpy0q ` δApaq, . . . , δpyµ´1q ` δApaq

˘

8: P P Frxs2µˆ2µ Ð d-Popov basis of HupAq, where A “
„

S
T

P Frxs2µˆµ

9: rrP 1|rP 2s P Frxsµˆ2µ Ð the submatrix of P consisting of all rows with
d-degree less than 1

µ pdegE ´ degAq, where rP 1, rP 2 P Frxsµˆµ
10: for k “ 1, . . . , µ do
11: ppk,0, . . . , pk,µ´1q P Frxsµ Ð k-th row of P 1

12: ak P ЯpAq Ð ´
řµ´1
i“0 pk,iy

pAq
i

13: return pa1, . . . , aµq

Lemma 5.37. Algorithm 16 is correct and costs rOpµω´1pN ` | degA|qq opera-
tions in F.

Proof. Correctness is given by Lemma 5.36. For complexity, simply note that
the computational bottleneck lies in Step 8, in which case δApaq ě ´ degA
because a is nonzero and a P LpδApaqP8 ` Aq. By assumption, we have that
N “ degE ě degA` δApaq ` 2g ` µ, hence by Lemma 5.6

´degA ď δApy
pAq
i q ď 2g ´ 1´ degA` µ

ă degE ´ 2 degA´ δApaq ď degE ´ degA .

5.5 Algorithms 113

Since deg uk ď N{µ for k “ 1, . . . , µ, then the total complexity of the algorithm
is given by Corollary 5.27 as

rO
`

µω´1 maxt| degE|, |degE ´ degA|, |degA|u
˘

Ď rOpµω´1pN ` | degA|qq

operations in F.

With Algorithm 16 at our disposal, we can compute an Frxs-basis ofMprq
s,` pD,Gq

within our target complexity. The details are presented in Algorithm 17.

Algorithm 17 GeneratorsFrxspr, D,G,E,x,y, gq

Input:

• Received word r P Fn,
• divisors D and G for the code CLpD,Gq,
• a divisor E “ E1 ` ¨ ¨ ¨ ` EN P DpGq with
N ě maxtdegG` p`` 3qp2g ´ 1q ` ps` 1qn` 2` µ,

p`` 1qdegG` 4g ` ps` 1qnu,

• evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P F,

• evaluations y “ pyi,jq
i“0,...,µ´1
j“1,...,N , where yi,j “ y

pAq
i pEjq P F,

• evaluations g “ pg
puq
v,j q

u“0,...,`
v“1,2, j“1,...,N , where g

puq
v,j “ g

puq
v pEjq P F,

xg
puq
1 , g

puq
2 yЯ “ ЯpGuq and δGupg

puq
v q ď 4g´1`pu`1qdegpGq`ps`1qn,

as in Corollary 5.15.

Output:

• pyiBpuqv q
u“0,...,`
i“0,...,µ´1, v“1,2, where the Bpuqv PMprq

s,` pD,Gq are as in

Corollary 5.15, i.e. xyiB
puq
v yFrxs “M

prq
s,` pD,Gq.

1: pB
puq
v q

u“0,...,`
v“1,2 Ð GeneratorsЯpr, D,G,E,x,y, gq Ź Algorithm 15

2: for u “ 0, . . . , `, v “ 1, 2 and t “ 0, . . . , u do
3: b

puq
v,t P Яp´tGq Ð the zt-coefficient of Bpuqv

4: pyib
puq
v,t qi“0,...,µ´1 Ð BasisProductspb

puq
v,t , E,´tG,x,yq Ź Algorithm 16

5: for u “ 0, . . . , `, v “ 1, 2 and i “ 0, . . . , µ´ 1 do
6: B

puq
v,i PM

prq
s,` pD,Gq Ð

řu
t“0 z

tyib
puq
v,t

7: return pBpuqv,i q
u“0,...,`
v“1,2, i“0,...,µ´1

Proposition 5.38. Algorithm 17 is correct and costs rOpµω´1`3pn` gqq opera-
tions in F.

114 List decoding

Proof. Correctness follows immediately from Corollary 5.17 and Lemma 5.37
once we show that the calls BasisProductspbpuqv,t , E,´tG,x,yq in Line 4 are valid.
In particular, we need to verify that

N ě degp´tGq ` δ´tGpb
puq
v,t q ` 2g ` µ (5.4)

for all appropriate values of u, v and t. Using the notation from Corollary 5.15
and Algorithm 15, we know that bpuqv,t “

`

u
t

˘

p´Rqu´tg
puq
v , hence by (5.3)

δ´tGpb
puq
r,v q ď pt` 1qdegG` pu´ t` 2qp2g ´ 1q ` ps` 1qn` 1 . (5.5)

The sought bound (5.4) on N then follows from

´tdegG` δ´tGpb
puq
v,t q ď degG` p`` 2qp2g ´ 1q ` ps` 1qn` 1 .

For the complexity, we note that Line 1 costs rOpµω´1`3pn ` gqq operations by
Proposition 5.32, while each call BasisProductspbpuqv,t , E,´tG,x,yq in Line 4 costs
rOpµω´1pN`| degp´tGq|qq Ď rOpµω´1`pn`gqq operations by Lemma 5.37. Since
the for-loop in Line 2 has Op`2q iterations, the stated complexity follows – the
rest of the algorithm is memory management and is therefore “free”.

Remark 5.39. In the context of Remark 5.18, computing the generating set
tyi rB

puq
v u over Frxs ofMprq

s,` pD,Gq can be done using rOpµω´1s`2pn` gqq opera-

tions in F, since in that case only Ops`q coefficients of the rB
puq
v are nonzero.

5.5.5 Solving the interpolation step of Guruswami-Sudan

In the previous section we saw how to efficiently compute a generating set of
Mprq

s,` pD,Gq over Frxs. As we are about to see in the current section, this allows

us to find a nonzero Q PMprq
s,` pD,Gq whose δGpQq is minimal. The interpolation

step of Guruswami-Sudan list-decoding is thereby be complete if we discover that
δGpQq ă spn´ τq. If on the other hand δGpQq ě spn´ τq, then we can be sure
that all codewords necessarily have Hamming distance strictly greater than τ
from the received word, in which case we simply declare decoding failure. In
the following lemma, we construct a matrix M s,` P Frxs whose shifted Popov
from contains a row from which the sought Q can be recovered.

Lemma 5.40. For any divisor A and any function a “
řµ´1
i“0 aiy

pAq
i P ЯpAq,

where ai P Frxs, let OpAqpaq “ pa0, . . . , aµ´1q P Frxsµ. Furthermore, for any
polynomial Q “

ř`
t“0 z

tQptq P
À`

t“0 z
tЯp´tGq let

OGpQq “
`

Op0q pQ0q | O
p´GqpQ1q | ¨ ¨ ¨ | O

p´`GqpQ`q
˘

P Frxsµp``1q ,

5.5 Algorithms 115

and consider the matrix

M s,` “

«

M
p1q
s,`

M
p2q
s,`

ff

P Frxs2µp``1qˆµp``1q ,

where for v “ 1, 2 we define

M
pvq
s,` “

¨

˚

˚

˝

»

—

—

–

OGpy0B
p0q
v q

...
OGpyµ´1B

p0q
v q

fi

ffi

ffi

fl

J

¨ ¨ ¨

»

—

—

–

OGpy0B
p`q
v q

...
OGpyµ´1B

p`q
v q

fi

ffi

ffi

fl

J
˛

‹

‹

‚

J

,

and where the Bpuqv PMprq
s,` pD,Gq are as in Corollary 5.15. It then holds that

OG is an Frxs-isomorphism between Mprq
s,` pD,Gq and the row space of M s,`,

and that for any Q as before, δGpQq “ µdegdOGpQq, where

d “ pdp0q| ¨ ¨ ¨ |dp`qq P p 1µZq
µp``1q with

dptq “
1

µ

`

δ´tGpy
p´tGq
0 q, . . . , δ´tGpy

p´tGq
µ´1 q

˘

P p 1µZq
µ for t “ 0, . . . , ` ,

recalling from Section 5.4 that δGpQq :“ maxt δ´tGpQ
ptqq.

Proof. Corollary 5.17 immediately implies thatOG is the claimed Frxs-isomorphism.
Writing Qptq “

řµ´1
i“0 Q

ptq
i y

p´tGq
i for t “ 0, . . . , `, where Qptqi P Frxs, gives

δGpQq “ max
t
tδ´tGpQ

ptqqu “ max
t,i
tδ´tGpQ

ptq
i y

p´tGq
i qu

“ max
t,i
tδpQ

ptq
i q ` δ´tGpy

p´tGq
i qu “ max

t,i
tµdegQ

ptq
i ` δ´tGpy

p´tGq
i qu

“ µdegdOGpQq .

Remark 5.41. In the context of Lemma 5.40, notice the neat similarity between
the fact that δGpQq “ µdegdOGpQq and that δphq “ µdeg h for any h P Frxs.

In the context of Lemma 5.40, it should be clear that if the d-Popov form ofM s,`

contains a row p satisfying µdegd p ă spn´ τq, then we can obtain the sought
Q as O´1

G ppq. Conversely, if no such p exists, then the same goes for Q. Recall
from Proposition 1.8 on page 8 that computing a shifted Popov form of any full
rank matrix M P Frxsmˆm can be done with cost rOpmω degpMqq. Of course,
we can not use these results directly, as our matrix M s,` P Frxs2µp``1qˆµp``1q

is not square. However, we can easily reduce our setting to the square case

116 List decoding

using the results from [ZL13]: for any matrix N P Frxsrˆm, where r ě m, we
can compute a row basis matrix B in (unshifted) Popov form in complexity
rOprmω´1 degpNqq.

For us this means that we can compute a matrix Bs,` P Frxsµp``1qˆµp``1q in
(unshifted) Popov form having the same row space asM s,` using no more than
rOpµω`ω degM s,`q operations in F. Furthermore, we can bound

degM s,` ď
1

µ
max
u,v,i,t

t´tdegG` δpyiq ` δ´tGpb
puq
v,t qu

ď max
u,t

6g ´ 2` µ` pu´ tqpn` 2g ´ 1q ` ps` 1qn` degG

µ

P Opµ´1`pn` gqq , (5.6)

where the first inequality is due to Lemma 5.8, while the second follows from
combining Lemma 5.6 with (5.5). Consequently, Bs,` can be computed within
our target complexity rOpµω´1`ω`1pn ` gqq, and since Bs,` satisfies the same
degree bound asM s,` in (5.6), its d-Popov form can be obtained with the same
cost.

Remark 5.42. Once again, we point out that the complexity can be improved
using the alternative generating set from Remark 5.18. In (5.6), the expression
u´ t corresponds to the exponent of R in the expression

`

u
t

˘

p´Rqu´tg
puq
v , which

is the zt-coefficient of Bpuqv . Since the exponent of R in any coefficient of rB
puq
v

never exceeds s, we obtain the improved complexity rOpµω´1s`ωpn` gqq.

At this point, we have addressed all of the parts in the interpolation step of
Guruswami-Sudan list-decoding, as outlined in Section 5.4.2. Before we combine
them into a single algorithm in Section 5.6, let us consider the root-finding step
in the following section.

5.5.6 Root-finding

In this section, we consider the final computational ingredient that we will need
for Guruswami-Sudan list-decoding: given a polynomial Qpzq P Mprq

s,` pD,Gq,
compute the set1 L “ tf P LpGq | Qpfq “ 0u of all roots of Q. As foreshadowed
in Section 5.4.2, we accomplish this by changing the representation of Q from

1Some readers might object to our choice of using a set instead of a list –we are doing list
decoding after all. Although it hardly matters in the context of this thesis, a case can be
made that set is the more appropriate data structure here, as we do not care about the order
of its members nor about repetitions.

5.5 Algorithms 117

À`
t“0 z

tЯp´tGq to
À`

t“0 z
tFrrxss, which will allow us to use the root-finding

algorithm from [NRS17]. It is not hard to see that the latter representation
can be obtained from the former by simply considering the P0-adic power series
expansions in x of the z-coefficients of Q – recall from Section 5.2 that a rational
place P0 having x as a local parameter can be assumed to exist as long as we are
willing to pay the price of additional logarithmic factors in the total complexity.
Let us now briefly summarize the results from [NRS17], adapting them to our
setting.

Considering the aforementioned rational place P0 as fixed, for any function
h P F , we denote by ph P xvP0

phqFrrxss the P0-adic power series expansion of h
in x, letting p0 “ 0. Furthermore, for any polynomial Q “

ř

t z
tQptq P F rzs, we

write pQ “
ř

t z
t
pQptq. The following definition is from [NRS17], and it describes

the output of their root-finding algorithm:

Definition 5.43. If pQ P Frrxssrzs and β P Zě0, then a basic root set of pQ to
precision β is a set tp pfr, αrqumr“1 Ă Frxs ˆ Zě0 with m ď deg pQ such that

1) pQp pfr ` x
αrzq ” 0 pmod xβq for r “ 1, . . . ,m, and

2) pQp pfq ” 0 pmod xβq ðñ pf P
Ťm
r“1p

pfr ` x
αrFrrxssq for every pf P Frrxss.

Example 5.44. An illuminating example taken straight from [NRS17] is when
pQ “ z2 ` z P F2rrxssrzs and β “ 1. Here, it is crucial to understand that
tp0, 0qu is not a basic root set of pQ to precision 1 even though every pf P F2rrxss

satisfies pQp pfq ” 0 pmod xq; the reason for this is that the first restriction in
Definition 5.43 is not satisfied. Instead, a basic root set is given by tp0, 1q, p1, 1qu.

Our algorithm for computing the sought LpGq-roots of Q P Mprq
s,` pD,Gq will

fundamentally rely on the following result:

Theorem 5.45 ([NRS17, Theorem 1.2]). There is an algorithm which for any
pQ P Frrxssrzs and any precision β P Zě0 computes a basic root set of pQ to
precision β using rOp`βq deterministic operations in F, together with an extra
rOpRFp`qβq operations, where RFp`q is the cost of finding all F-roots of a degree
` polynomial in Frzs. Here, we can choose to use a Las Vegas algorithm with
RFp`q P rOp`q, e.g. [vzGG12, Corollary 14.16], or a deterministic one from
[Sho91] with RFp`q P rOp`κ2?pq, where |F| “ pκ for some prime p.

In order to use Theorem 5.45 in our setting, we will need to figure out:

1) how to choose the precision β,

118 List decoding

2) how to convert Q P
À`

t“0 z
tЯp´tGq to pQ P

À`
t“0 z

tFrrxss and

3) how to obtain the sought roots f P LpGq of Q from a basic root set of pQ.

The second item in the above list is the simplest –writing Q “
ř`
t“0 z

tQptq with
Qptq “

řµ´1
i“0 Q

ptq
i y

p´tGq
i , where Qptqi P Frxs, we can compute pQ “

ř`
t“0 z

t
pQptq

by simply relying on the identity pQptq “
řµ´1
i“0 Q

ptq
i py

p´tGq
i . Assuming that we

have precomputed the py
p´tGq
i P Frrxss to sufficiently high precision, this is just

basic arithmetic in Frxs.

When it comes to the choice of the precision β, then there are two restrictions
that ought to be considered. The first one comes from making sure that we
don’t return “spurious” roots, i.e. those f P LpGq such that pQp pfq ” 0 pmod xβq
while Qpfq ‰ 0. As we are about to see in the following lemma, this issue is
easily avoided by choosing β ą δGpQq.

Lemma 5.46. Let Qpzq “
ř`
t“0 z

tQptq with Qptq P Яp´tGq, and let f P LpGq.
If β ą δGpQq and pQp pfq ” 0 pmod xβq, then Qpfq “ 0.

Proof. Notice that since f tQptq P Я for all t, then Qpfq P Я. Furthermore, since

δpf tQptqq “ δtGpf
tq ` δ´tGpQ

ptqq ď δ´tGpQ
ptqq ď δGpQq ,

where the first inequality is due to f P LpGq, then δpQpfqq ď δGpQq. Combining
this with the assumption that pQp pfq “ zQpfq ” 0 pmod xβq, we may conclude
that Qpfq P LpδGpQqP8 ´ βP0q, and if β ą δGpQq, then this Riemann-Roch
space is trivial.

Remark 5.47. Actually, in our context of list decoding, we could dispense
with Lemma 5.46 altogether: Theorem 5.11 merely states that every codeword
within radius τ from the received word r corresponds to an LpGq-root of Q.
The converse, however, is not guaranteed to be true – there could hypothetically
exist roots of Q whose associated codewords are far away from r. To detect and
discard such roots, we simply encode them and check their Hamming distance
to r; and in the process of doing so we would automatically get rid of any
aforementioned spurious roots of Q. Moreover, these additional checks would
have no impact on our asymptotic complexity bound. In spite of this, we keep
Lemma 5.46 for the sake of having a root-finding algorithm that is provably
correct even in isolation from list decoding.

The second restriction on the precision β is posed by the task of converting
the truncated power series roots of pQ back to LpGq. Indeed, a basic root set

5.5 Algorithms 119

tp pfr, αrqu
m
r“1 describes each root pfr P Frxs of pQ only to precision αr, and if this

αr is too small, then there could exist two2 distinct functions h1, h2 P LpGq
satisfying ph1 ” ph2 ” pfr pmod xαr q. In Lemma 5.49, we will see how we can
indirectly control αr by increasing β; but first, let us show that conversion from
truncated power series to LpGq is guaranteed to be unambiguous as long as
αr ą degG.

Lemma 5.48. If ph P Frxs and α ą degG, then |LpGq X pph` xαFrrxssq| ď 1.

Proof. If h1, h2 P LpGq X pph` xαFrrxssq, then ph1 ” ph2 ” ph pmod xαq. But then
it follows that h1 ´ h2 P LpG´ αP0q “ t0u.

As promised, we now proceed by showing that the αr from Definition 5.43 can
be made arbitrarily large by choosing the precision β appropriately.

Lemma 5.49. If Qpzq “
ř`
t“0 z

tQptq ‰ 0 with Qptq P Яp´tGq, and if f P ЯpGq
satisfies pQp pf ` xαzq ” 0 pmod xβq for some α P Z, then

α ě
1

`
pβ ´ δGpQqq ´ δGpfq .

Proof. We begin by defining

T “ Qpz ` fq “
ÿ̀

t“0

pz ` fqtQptq “
ÿ̀

t“0

t
ÿ

u“0

ˆ

t

u

˙

zuf t´uQptq “
ÿ̀

u“0

zuTu ,

where Tu “
ř`
t“u

`

t
u

˘

f t´uQptq. Since f t´u P Яppt ´ uqGq and Qptq P Яp´tGq,
then Tu P Яp´uGq. Furthermore, xαu pTu ” 0 pmod xβq for all u because

pQp pf ` xαzq “ pT pxαzq “
ÿ̀

u“0

zuxαu pTu ” 0 pmod xβq .

Letting r P t0, . . . , `u be such that vP0
pTrq ă 8 is maximal, observe that

α`` vP0pTrq ě αr ` vP0pTrq “ vP0px
αrTrq ě β ,

which implies that α ě 1
` pβ ´ vP0

pTrqq. Finally, noting that

0 ‰ Tr P Lpδ´rGpTrqP8 ´ rG´ vP0pTrqP0q ,

2 Actually, if there exist distinct functions h1, h2 P LpGq with ph1 ” ph2 pmod xαr q, then
h1 ´ h2 P LpG´ αrP0q ‰ t0u. Consequently, there are exactly q`pG´αrP0q possibilities.

120 List decoding

then the sought conclusion follows from

vP0
pTrq ď δ´rGpTrq ´ r degG ď δ´rGpTrq

“ δ´rG
`

ÿ̀

t“r

ˆ

t

r

˙

f t´rQptq
˘

ď max
t
tδ´rGpf

t´rQptqqu

ď max
t
tpt´ rqδGpfq ` δ´tGpQ

ptqqu

“ `δGpfq ` δGpQq .

Combining Lemma 5.49 and Lemma 5.48, we obtain the final restriction

β ě 2` degG` spn´ τq ,

which ensures that unambiguous conversion from the truncated power series
roots of pQ to LpGq is always possible. Indeed, this bound follows immediately
from the fact that δGpfq ď degG for all f P LpGq and the assumption that
δGpQq ă spn ´ τq. Knowing that such conversion is possible, however, is not
enough –we also need to know how to actually carry it out. In the following sim-
ple lemma, we show how this can be done using simultaneous Hermite-Padé ap-
proximations, which we have already familiarized ourselves with in Section 5.5.2.

Lemma 5.50. If f P LpGq and
řµ´1
i“0 fipy

pGq
i ” pf pmod xαq for some fi P Frxs

with deg fi ď ´
1
µδGpy

pGq
i q and α ą degG, then

řµ´1
i“0 fiy

pGq
i “ f .

Proof. Since δpfiq “ µdeg fi, then δGpfiy
pGq
i q ď µdeg fi ` δGpy

pGq
i q ď 0. But

then
řµ´1
i“0 fiy

pGq
i P LpGq, and the conclusion follows from Lemma 5.48.

Using the notation from Definition 5.24 in the context of Lemma 5.50, we see
that pf0, . . . , fµ´1, 1q P HxαpAq, where A “ rpypGq0 , ¨ ¨ ¨ , py

pGq
µ´1,´

pf s P Frxs1ˆpµ`1q.
Recovering f P LpGq from pf rem xα thus translates to finding a polynomial
vector f P HxαpAq whose rightmost entry is 1 and degd f “ 0, where

d “
1

µ
pδGpy

pGq
0 q, . . . , δGpy

pGq
µ´1q, 0q P p

1
µZq

µ`1 .

But this is easily accomplished by relying on Theorem 5.25 and Corollary 5.27.
We conclude this section by presenting our root-finding approach in its entirety
in Algorithm 18.

5.5 Algorithms 121

Algorithm 18 FindRootspD,G,Q, pyq

Input:

• Divisors D and G for the code CLpD,Gq,

• a nonzero Q “
ř`
t“0 z

tQptq PMprq
s,` pD,Gq with δGpQq ă spn´τq, where

Qptq “
řµ´1
i“0 Q

ptq
i y

p´tGq
i for some Qptqi P Frxs,

• py “ ppy
p´tGq
i q

t“0,...,`
i“0,...,µ´1 with py

p´tGq
i P Frxs such that

vP0
py
p´tGq
i ´ py

p´tGq
i q ě β :“ 2`degG` spn´ τq.

Output:

• L “ tf P LpGq | Qpfq “ 0u with |L| ď `.

1: pQptq P Frxs Ð
řµ´1
i“0 Q

ptq
i py

p´tGq
i for t “ 0, . . . , `

2: pQ P Frxs Ð
ř`
t“0 z

t
pQptq

3: pL Ă Frxs Ð all polynomials from a basic root set of pQ to precision β
4: LÐH

5: d P p 1µZq
µ`1 Ð 1

µ pδGpy
pGq
0 q, . . . , δGpy

pGq
µ´1q, 0q

6: α P Zą0 Ð degG` 1
7: for pf P pL do
8: F P Fpµ`1qˆpµ`1q Ð d-Popov basis of HxαprpypGq0 , . . . , py

pGq
µ´1,´

pf sq
9: if F contains a row f “ pf0, . . . , fµ´1, 1q with degd f “ 0 then

10: LÐ LY t
řµ´1
i“0 fiy

pGq
i u

11: return L

Proposition 5.51. Algorithm 18 is correct and costs rOp`2µω´1pn` gqq opera-
tions in F.

Proof. For correctness, our goal is to prove that L “ K, where L is the output
of the algorithm and K “ tf P LpGq | Qpfq “ 0u. If tp pfr, αrqumr“1 Ă Frxs ˆZě0

denotes the basic root set used in Line 3, i.e. pL “ t pfru
m
r“1, then it is clear

that K Ď
Ťm
r“1Kr, where Kr “ LpGq X p pfr ` xαrFrrxssq and m ď `. Since

δGpQq ă spn´τq, δGpphrq ď degG and β “ 2`degG`spn´τq, then Lemma 5.49
guarantees that αr ě 1

`

`

β ´ δGpQq
˘

´ δGpphq ě degG ` 1, hence |Kr| ď 1 by
Lemma 5.48. Combining this with the fact that each non-empty Kr necessarily
contains an LpGq-root of Q, as implied by Lemma 5.46 because β ą δGpQq, we
may conclude that K “

Ťm
r“1Kr. But due to Lemma 5.50

122 List decoding

m
ď

r“1

Kr “ L “
!

µ´1
ÿ

i“0

f
prq
i y

pGq
i |

µ´1
ÿ

i“0

f
prq
i py

pGq
i ” pfr pmod xαq,

deg f
prq
i ď ´

1

µ
δGpy

pGq
i q, r “ 1, . . . ,m

)

.

For the complexity, computing the p`` 1qµ products Qptqi py
p´tGq
i in Line 1 costs

rOp`µβq Ď rOpµ`2pn ` gqq. The basic root set of pQ in Line 3 can be computed
with cost rOpβ degzp pQqq Ď rOp`2pn ` gqq due to [NRS17] (see Theorem 5.45).
Finally, the total cost of computing the d-Popov bases in line 8 across all of the
Op`q iterations in the surrounding for-loop is rOp`µω´1pn`gqq by Corollary 5.27.
The claimed complexity of the algorithm follows.

5.6 A complete decoding algorithm

We conclude this chapter by combining all of the intermediate algorithms from
Section 5.5 into an efficient realization of Guruswami-Sudan list-decoding for
the code CLpD,Gq. We begin by listing all of the data that we have assumed to
be precomputed:

• a divisor E “ E1 ` ¨ ¨ ¨ ` EN P DpGq satisfying
N ě maxtdegG`p``3qp2g´1q`ps`1qn`2`µ, p``1qdegG`4g`ps`1qnu

• evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P F,

• evaluations y “ pyi,jq
i“0,...,µ´1
j“1,...,N , where yi,j “ y

pAq
i pEjq P F,

• evaluations g “ pg
puq
v,j q

u“0,...,`
v“1,2, j“1,...,N , where g

puq
v,j “ g

puq
v pEjq P F with

xg
puq
1 , g

puq
2 yЯ “ ЯpGuq and δGupg

puq
v q ď 4g´ 1` pu` 1qdegpGq ` ps` 1qn,

as in Corollary 5.15,

• py “ ppy
p´tGq
i q

t“0,...,`
i“0,...,µ´1 with py

p´tGq
i P Frxs such that

vP0
py
p´tGq
i ´ py

p´tGq
i q ě β :“ 2` degG` spn´ τq.

Without further ado, we present the main result of this chapter in Algorithm 19.

5.6 A complete decoding algorithm 123

Algorithm 19 Decodepr, s, `,D,Gq

Input:

• Received word r P Fn,
• divisors D and G for the code CLpD,Gq,
• decoding parameters s, ` P Zą0 with s ď `,

• corresponding list-decoding radius τ P Zą0,

Output:

• L “ tf P LpGq | dpr, cq ď τu or FAIL

1: pB
puq
v,i q

u“0,...,`
v“1,2, i“0,...,µ´1 Ð GeneratorsFrxspr, D,G,E,x,y, gq

2: M s,` P Frxs2µp``1qˆµp``1q Ð matrix based on the Bpuqv,i as in Lemma 5.40
3: Bs,` P Frxsµp``1qˆµp``1q Ð basis matrix in (unshifted) Popov form of M s,`

4: d P p 1µZq
µp``1q Ð pdp0q| ¨ ¨ ¨ |dp`qq with dptq “ 1

µ pδ´tGpy
p´tGq
i qq

µ´1
i“0 P p

1
µZq

µ

5: V s,` P Frxsµp``1qˆµp``1q Ð d-Popov form of Bs,`

6: Q “
`

pQ
p0q
i q

µ
i“0| . . . |pQ

p`q
i q

µ
i“0

˘

P Frxsµp``1q Ð degd-minimal row of V s,`

7: if degdQ ě spn´ τq then
8: return FAIL
9: Q P

À`
t“0 z

tЯp´tGq Ð
ř`
t“0 z

t
řµ´1
i“0 Q

ptq
i y

p´tGq
i

10: LÐ FindRootspD,G,Q, pyq
11: for f P L do
12: c P Fn Ð Evaluatepf,D,G,x,yq
13: if dpr, cq ą τ then LÐ Lztfu

14: return L

Remark 5.52. Note that it is trivial to modify Algorithm 19 to return the
codewords c P CLpD,Gq within radius τ from the received word – this is in
contrast to returning the underlying messages f P LpGq in the usual spirit of
Guruswami-Sudan list-decoding.

Combining all of the results from Section 5.5, we arrive at the following:

Theorem 5.53. Algorithm 19 is correct and costs rOps`ωµω´1pn`gqq operations
in F.

In the remainder of this chapter, we consider the performance of Algorithm 19 for
special cases of codes, comparing with previously known results when possible.

124 List decoding

5.6.1 Examples

Example 5.54. AG codes obtained from the rational function field Fpxq are
known as generalized Reed-Solomon (GRS) codes. In this case g “ 0 and µ “ 1,
which specializes the complexity of Algorithm 19 to rOps`ωnq operations in F.
The same complexity is achieved for families of function fields having fixed small
genus, e.g. those arising from elliptic curves. The best known complexity for
Guruswami-Sudan list-decoding of GRS codes is rOps2`ω´1nq [CJN`15].

Example 5.55. By definition, any maximal function field F over F “ Fq attains
the Hasse-Weil bound – it has exactly N1 “ q` 1` 2g

?
q rational places, where

q is necessarily a square. If F is such a function field, then any place P of F sF,
where sF denotes the algebraic closure of F, necessarily contains a positive ele-
ment no larger than?q in its Weierstrass semigroup [HKT08, Theorem 10.6], i.e.
we are guaranteed that µ ď ?q in the complexity of Algorithm 19. Furthermore,
it is well known that all maximal function fields satisfy g ď ?qp?q´1q{2 P Opqq,
which implies that any code of length n P Ωpqq over such a function field can be
decoded using no more that rOps`ωqpω´1q{2nq Ď rOps`ωnpω`1q{2q operations in F.

We obtain even better results for long codes over specific maximal function
fields:

Example 5.56. In the case of Hermitian3 function field F “ Fq2px1, x2q, where
xq2 ` x2 “ xq`1

1 , we have N1 “ q3 ` 1 rational places and genus g “ qpq ´ 1q{2.
The usual choice of P8 in one-point codes of F gives µ “ q. Consequently, we
can decode any such code of length n P Ωpq3q using

rOps`ωqω´1q3q “ rOps`ωqω`2q “ rOps`ωnpω`2q{3q

operations in F. For n “ q3, our approach specializes to the one from [NB15].

Example 5.57. The Giulietti-Korchmaros function field Fq6px1, x2, x3q from
[GK09], where xq2 ` x2 “ xq`1

1 and xq
2
´q`1

3 “ xq
2

1 ´ x1, is also maximal – it has
µ ď q3, g “ pq5 ´ 2q3 ` q2q{2 and N1 “ q8 ´ q6 ` q5 ` 1. In this case, we can
decode any code of lenth n P Ωpq8q with cost rOps`ωnp3ω`5q{8q.

Example 5.58. The Suzuki4 function field F “ Fqpx1, x2q, where q “ 22e`1

is an odd power of two and xq2 ` x2 “ x2
e

1 px
q
1 ` x1q, has genus g “ 2epq ´ 1q

and N1 “ q2 ` 1 rational places. Although it is not maximal in the sense of
the Hasse-Weil bound, no other function field with the same genus and constant
field can surpass its number of rational places [Ser, Section 5.4]. From [BMZ21],
it immediately follows that the Weierstrass semigroup of any place P contains

3already seen in Section 2.6.1 on page 40
4already seen in Section 4.6 on page 80

5.6 A complete decoding algorithm 125

a positive element no greater than q, i.e. µ ď q. This means that for any
code over F of length n P Ωpq2q, the complexity of Algorithm 19 specializes to
rOps`ωnpω`1q{2q.

Example 5.59. Let F be a function field over F corresponding to a Ca,b curve;
in this example, we will use the notation from Section 2.1. One-point codes of the
form CLpD,mP8q over F were decoded in [BB10] with complexity rOp`5a3pn`gqq
under the additional assumption that D´ nP8 is a principal divisor. It should
be noted that here P8 refers to a very specific rational place, which among other
things implies that a “ µ. Using Algorithm 19, we can decode these codes at
the cost of rOps`ωaω´1pn` gqq operations in F, which is notably better – and we
need not assume that G “ mP8 and that D ´ nP8 is principal.

In conclusion, our algorithm is faster than any other general list-decoding algo-
rithm for AG codes of the form CLpD,Gq. Moreover, except for GRS codes, it
is at least as fast as any specialized decoding algorithm.

126 List decoding

Chapter 6

Conclusion

In this thesis we have considered various computational problems associated
with algebraic geometry codes. In Chapter 2, we investigated encoding and
unencoding of codes over Ca,b curves and arrived at algorithms that have quasi-
linear complexity for codes whose underlying points admit a semi-grid structure.
In Chapter 3, we attempted to let go of the semi-grid assumption – this resulted
in algorithms that require precomputation but are quasi-linear for generic point
sets. In Chapter 4, we investigated the error-correcting capability of improved
power decoding for general AG codes –we did this both theoretically and exper-
imentally, and we concluded that it is comparable to that of the Guruswami-
Sudan list decoder. Finally, in Chapter 5 we developed an efficient variant of
the Guruswami-Sudan decoder in the fully general setting of all AG codes.

In the future, it would be interesting to develop the results from Chapter 3
further – removing the reliance on genericity. Furthermore, the algorithms could
be generalized to higher dimensions, and the precomputation could be sped up.
When it comes to Chapter 4, then it is likely that the proposed power decoder
can be made efficient using simultaneous Hermite-Padé approximations. Finally,
the complexity of our list decoder in Chapter 5 can likely be improved by a factor
s{` if we use a slightly different generating set in the interpolation step.

128 Conclusion

Appendix A

Notations

Complexity:
Op¨q, rOp¨q,Ωp¨q Asymptotic complexity, Section 1.2.
Mp¨q Multiplication of univariate polynomials, Section 1.3.
Common objects:
F A field.
Fq A finite field with q elements.
FrXsăm Polynomials over F of degree less than m.
Z,Q,R Integers, rationals and reals respectively.
Zą0,Zě0 Positive and non-negative integers respectively.
Frxs-modules (Section 1.4):
degs Shifted degree of a polynomial vector.
rdegs, cdegs Shifted row and column degree of a polynomial matrix.
Algebraic geometry (Section 1.4):
F Function field.
vP p¨q Valuation.
Lp¨q Riemann-Roch space.
lp¨q dimension of Riemann-Roch space.
ЯP pAq

Ť8

m“´8 LpmP `Aq.
δ
pP q
A pfq ´vP pfq ´ vP pAq.
CLpD,Gq Algebraic geometry code.

130 Notations

Bibliography

[AFLG15] Andris Ambainis, Yuval Filmus, and François Le Gall. Fast matrix
multiplication: Limitations of the coppersmith-winograd method. In
Proceedings of the Forty-Seventh Annual ACM Symposium on The-
ory of Computing, STOC ’15, page 585–593, New York, NY, USA,
2015. Association for Computing Machinery.

[AKS11] A. Ahmed, R. Koetter, and N. R. Shanbhag. VLSI Architectures for
Soft-Decision Decoding of Reed-Solomon Codes. IEEE Transactions
on Information Theory, 57(2):648–667, February 2011.

[Ale05] M. Alekhnovich. Linear Diophantine Equations Over Polynomials
and Soft Decoding of Reed–Solomon Codes. IEEE Transactions on
Information Theory, 51(7):2257–2265, July 2005.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser
method and faster matrix multiplication. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 522–
539. SIAM, 2021.

[BB10] Peter Beelen and Kristian Brander. Efficient list decoding of a class
of algebraic-geometry codes. Advances in Mathematics of Commu-
nications, 4(4):485–518, November 2010.

[BH08] P. Beelen and Tom Høholdt. The Decoding of Algebraic Geometry
Codes. In E. Martínez-Moro, editor, Advances in Algebraic Geometry
Codes, volume 5. World Scientific Publishing Company, 2008.

[BJMS17] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and E. Schost. On ma-
trices with displacement structure: Generalized operators and faster

132 BIBLIOGRAPHY

algorithms. SIAM Journal on Matrix Analysis and Applications,
38(3):733–775, 2017.

[BLQ13] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. Poly-
nomial root finding over local rings and application to error correct-
ing codes. Applicable Algebra in Engineering, Communication and
Computing, 24(6):413–443, July 2013.

[BMZ21] Daniele Bartoli, Maria Montanucci, and Giovanni Zini. Weierstrass
semigroups at every point of the Suzuki curve. Acta Arith., 197(1):1–
20, 2021.

[BRS20] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast encod-
ing of ag codes over Cab curves. IEEE Transactions on Information
Theory, 67(3):1641–1655, 2020.

[BRS21] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast list
decoding of algebraic geometry codes. To be submitted, 2021.

[CH13] Henry Cohn and Nadia Heninger. Approximate Common Divisors
via Lattices. The Open Book Series, 1(1):271–293, 2013.

[CJN`15] M.F.I. Chowdhury, C.-P. Jeannerod, V. Neiger, E. Schost, and
G. Villard. Faster Algorithms for Multivariate Interpolation With
Multiplicities and Simultaneous Polynomial Approximations. IEEE
Transactions on Information Theory, 61(5):2370–2387, May 2015.

[CK91] David G. Cantor and Erich Kaltofen. On fast multiplication of poly-
nomials over arbitrary algebras. Acta Informatica, 28(7):693–701,
July 1991.

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and
Algorithms: An Introduction to Computational Algebraic Geometry
and Commutative Algebra (Undergraduate Texts in Mathematics).
Springer, 3rd edition edition, 2007.

[CLO15] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algo-
rithms. Springer, 4th edition, 2015.

[CP20] Alain Couvreur and Isabella Panaccione. Power error locating pairs.
Designs, Codes and Cryptography, 88(8):1561–1593, 2020.

[Dah09] Xavier Dahan. Size of coefficients of lexicographical groöbner bases:
the zero-dimensional, radical and bivariate case. In Proceedings of
the 2009 international symposium on Symbolic and algebraic compu-
tation, pages 119–126, 2009.

BIBLIOGRAPHY 133

[DF04] David S. Dummit and Richard M. Foote. Abstract Algebra, John
Wiley & Sons. 2004.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic
program testing. Inf. Process. Lett., 7(4):193–195, 1978.

[FG05] J Farr and Shuhong Gao. Grobner bases, pade approximation, and
decoding of linear codes. Contemporary Mathematics, 381:3, 2005.

[FR94] Gui-Liang Feng and Thammavarapu Rao. Simple approach for con-
struction of algebraic-geometric codes from affine plane curves. In-
formation Theory, IEEE Transactions on, 40:1003 – 1012, 08 1994.

[FTT91] Albrecht Fröhlich, Martin J Taylor, and Martin J Taylor. Algebraic
number theory. Number 27. Cambridge University Press, 1991.

[Gao01] Shuhong Gao. Absolute irreducibility of polynomials via newton
polytopes. Journal of Algebra, 237(2):501 – 520, 2001.

[Gao03] Shuhong Gao. A New Algorithm for Decoding Reed-Solomon Codes.
In Communications, Information and Network Security, number 712
in The Springer International Series in Engineering and Computer
Science, pages 55–68. Springer, January 2003.

[Gei03] Olav Geil. On codes from norm–trace curves. Finite Fields and Their
Applications, 9(3):351 – 371, 2003.

[GJV03] P. Giorgi, C.P. Jeannerod, and G. Villard. On the Complexity of
Polynomial Matrix Computations. In International Symposium on
Symbolic and Algebraic Computation, pages 135–142, 2003.

[GK09] Massimo Giulietti and Gábor Korchmáros. A new family of maximal
curves over a finite field. Math. Ann., 343(1):229–245, 2009.

[GS96] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic be-
haviour of some towers of function fields over finite fields. Journal
of number theory, 61(2):248–273, 1996.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of
Reed–Solomon and Algebraic-Geometric Codes. In IEEE Annual
Symposium on Foundations of Computer Science, pages 28–37, 1998.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of
Reed–Solomon Codes and Algebraic-Geometric Codes. IEEE Trans-
actions on Information Theory, 45(6):1757–1767, 1999.

[GS00] Shuhong Gao and M Amin Shokrollahi. Computing roots of polyno-
mials over function fields of curves. In Coding Theory and Cryptog-
raphy, pages 214–228. Springer, 2000.

134 BIBLIOGRAPHY

[GV05] V. Guruswami and A. Vardy. Maximum-likelihood decoding of reed-
solomon codes is np-hard. IEEE Transactions on Information The-
ory, 51(7):2249–2256, 2005.

[HKT08] J. W. P. Hirschfeld, G. Korchmáros, and F. Torres. Algebraic curves
over a finite field. Princeton Series in Applied Mathematics. Prince-
ton University Press, Princeton, NJ, 2008.

[HLS95] C. Heegard, J. Little, and K. Saints. Systematic encoding via Grob-
ner bases for a class of algebraic-geometric Goppa codes. IEEE
Transactions on Information Theory, 41(6):1752–1761, 1995.

[HvdH19] David Harvey and Joris van der Hoeven. Faster polynomial multi-
plication over finite fields using cyclotomic coefficient rings. Journal
of Complexity, 54:101404, 2019.

[HvLP98] Tom Høholdt, Jacobus H van Lint, and Ruud Pellikaan. Algebraic
Geometry Codes. Handbook of Coding Theory, 1(Part 1):871–961,
1998.

[JNSV16] Claude-Pierre Jeannerod, Vincent Neiger, Éric Schost, and Gilles
Villard. Fast Computation of Minimal Interpolation Bases in Popov
Form for Arbitrary Shifts. In International Symposium on Symbolic
and Algebraic Computation, ISSAC ’16, pages 295–302, New York,
NY, USA, 2016. ACM.

[JNSV17] Claude-Pierre Jeannerod, Vincent Neiger, Éric Schost, and Gilles
Villard. Computing minimal interpolation bases. Journal of Symbolic
Computation, 83:272–314, November 2017.

[Jus76] J. Justesen. On the complexity of decoding Reed-Solomon codes
(Corresp.). IEEE Transactions on Information Theory, 22(2):237–
238, March 1976.

[Kai80] T Kailath. Linear Systems. Prentice-Hall, 1980.

[KO64] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Num-
bers by Automatic Computers. Proceedings of the USSR Academy
of Sciences, 145:293–294, 1964.

[KP95] Christoph Kirfel and Ruud Pellikaan. The minimum distance of
codes in an array coming from telescopic semigroups. volume 41,
pages 1720–1732. 1995. Special issue on algebraic geometry codes.

[KU08] K. S. Kedlaya and C. Umans. Fast modular composition in any char-
acteristic. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 146–155, Oct 2008.

BIBLIOGRAPHY 135

[Laz85] Daniel Lazard. Ideal bases and primary decomposition: case of two
variables. Journal of Symbolic Computation, 1(3):261–270, 1985.

[LBAO14] Kwankyu Lee, M. Bras-Amoros, and M.E. O’Sullivan. Unique De-
coding of General AG Codes. IEEE Transactions on Information
Theory, 60(4):2038–2053, April 2014.

[Le 12] F. Le Gall. Faster algorithms for rectangular matrix multiplication.
In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 514–523, Oct 2012.

[LG12] François Le Gall. Faster algorithms for rectangular matrix multi-
plication. In 2012 IEEE 53rd annual symposium on foundations of
computer science, pages 514–523. IEEE, 2012.

[LO08] Kwankyu Lee and Michael E. O’Sullivan. List Decoding of
Reed–Solomon Codes from a Gröbner Basis Perspective. Journal
of Symbolic Computation, 43(9):645 – 658, 2008.

[LO09] Kwankyu Lee and Michael E. O’Sullivan. List decoding of Hermi-
tian codes using Gröbner bases. Journal of Symbolic Computation,
44(12):1662–1675, 2009.

[McE03] R.J. McEliece. The Guruswami-Sudan Decoding Algorithm for Reed-
Solomon Codes. IPN progress report, pages 42–153, 2003.

[Miu93] Shinji Miura. Algebraic geometric codes on certain plane curves.
Electronics and Communications in Japan (Part III: Fundamental
Electronic Science), 76(12):1–13, January 1993.

[MK93] S. Miura and N. Kamiya. Geometric-goppa codes on some maxi-
mal curves and their minimum distance. Proceedings of 1993 IEEE
Information Theory Workshop, pages 85–86, 06 1993.

[MUT09] Carlos Munuera, A Ulveda, and Fernando Torres. Castle curves and
codes. Advances in Mathematics of Communications, 3, 11 2009.

[NB15] J.S.R. Nielsen and P. Beelen. Sub-Quadratic Decoding of One-
Point Hermitian Codes. IEEE Transactions on Information Theory,
61(6):3225–3240, June 2015.

[Nei16] Neiger Vincent. Bases of relations in one or several variables: fast
algorithms and applications. PhD Thesis, ENS Lyon, November 2016.

[NH00] R Refslund Nielsen and Tom Høholdt. Decoding reed-solomon codes
beyond half the minimum distance. In Coding Theory, Cryptography
and Related Areas, pages 221–236. Springer, 2000.

136 BIBLIOGRAPHY

[Nie13] Johan Sebastian Rosenkilde Nielsen. List decoding of algebraic codes.
2013.

[Nie14] Johan S. R. Nielsen. Power Decoding of Reed–Solomon Codes Re-
visited. In International Castle Meeting on Coding Theory and Ap-
plications, September 2014.

[NRS17] Vincent Neiger, Johan Rosenkilde, and Éric Schost. Fast Computa-
tion of the Roots of Polynomials Over the Ring of Power Series. In
International Symposium on Symbolic and Algebraic Computation,
July 2017.

[NRS20] Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov. Generic
bivariate multi-point evaluation, interpolation and modular compo-
sition with precomputation. In Proceedings of the 45th International
Symposium on Symbolic and Algebraic Computation, pages 388–395,
2020.

[NV17] Vincent Neiger and Thi Xuan Vu. Computing Canonical Bases of
Modules of Univariate Relations. In International Symposium on
Symbolic and Algebraic Computation, page 8, July 2017.

[NX01] Harald Niederreiter and Chaoping Xing. Rational points on curves
over finite fields: theory and applications, volume 285 of London
Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 2001.

[NZ04] Michael Nüsken and Martin Ziegler. Fast multipoint evaluation of
bivariate polynomials. In Susanne Albers and Tomasz Radzik, ed-
itors, Algorithms – ESA 2004, pages 544–555, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[OF02] Henry O’Keeffe and Patrick Fitzpatrick. Gröbner basis solutions of
constrained interpolation problems. Linear algebra and its applica-
tions, 351:533–551, 2002.

[Pan94] Victor Y. Pan. Simple Multivariate Polynomial Multiplication. Jour-
nal of Symbolic Computation, 18(3):183–186, September 1994.

[PBR17] Sven Puchinger, Irene Bouw, and Johan Rosenkilde né Nielsen.
Improved Power Decoding of One-Point Hermitian Codes. In
International Workshop on Coding and Cryptography, 2017.
arXiv:1703.07982.

[PR17] Sven Puchinger and Johan Rosenkilde né Nielsen. Decoding of Inter-
leaved Reed-Solomon Codes Using Improved Power Decoding. IEEE
International Symposium on Information Theory, 2017.

BIBLIOGRAPHY 137

[PRB19] Sven Puchinger, Johan Rosenkilde, and Irene Bouw. Improved Power
Decoding of Interleaved One-Point Hermitian Codes. Designs, Codes
and Cryptography, 87(2-3):589–607, 2019.

[PRS21] Sven Puchinger, Johan Rosenkilde, and Grigory Solomatov. Im-
proved power decoding of algebraic geometry codes. arXiv preprint
arXiv:2105.00178, 2021.

[PSP92] Sidney C Porter, B-Z Shen, and Ruud Pellikaan. Decoding geometric
goppa codes using an extra place. IEEE transactions on information
theory, 38(6):1663–1676, 1992.

[RM01] K. Sakaniwa R. Matsumoto, M. Oishi. Fast encoding of algebraic
geometry codes. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E84-A(10):2514–2517,
2001.

[Ros18] Johan Rosenkilde. Power decoding Reed-Solomon codes up to the
Johnson radius. Advances in Mathematics of Communications,
12(1):81, 2018.

[RR00] R.M. Roth and G. Ruckenstein. Efficient Decoding of Reed–Solomon
Codes Beyond Half the Minimum Distance. IEEE Transactions on
Information Theory, 46(1):246 –257, 2000.

[RS19] Johan Rosenkilde and Arne Storjohann. Algorithms for simultaneous
Hermite–Padé approximations. Journal of Symbolic Computation, In
press, October 2019.

[RS21] Johan Rosenkilde and Arne Storjohann. Algorithms for simultaneous
hermite–padé approximations. Journal of Symbolic Computation,
102:279 – 303, 2021.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of poly-
nomial identities. J. ACM, 27(4):701–717, 1980.

[Ser] Jean-Pierre Serre. Rational points on curves over finite fields, vol-
ume 18 of Documents Mathématiques (Paris).

[SH95] K. Saints and C. Heegard. Algebraic-geometric codes and multidi-
mensional cyclic codes: a unified theory and algorithms for decoding
using grobner bases. IEEE Transactions on Information Theory,
41(6):1733–1751, 1995.

[Sho91] Victor Shoup. A fast deterministic algorithm for factoring polyno-
mials over finite fields of small characteristic. In Proceedings of the
1991 international symposium on Symbolic and algebraic computa-
tion, pages 14–21, 1991.

138 BIBLIOGRAPHY

[SSB06] G. Schmidt, V. Sidorenko, and M. Bossert. Decoding Reed-Solomon
Codes Beyond Half the Minimum Distance Using Shift-Register Syn-
thesis. In IEEE International Symposium on Information Theory,
pages 459–463, 2006.

[SSB10] G. Schmidt, V.R. Sidorenko, and M. Bossert. Syndrome Decoding of
Reed-Solomon Codes Beyond Half the Minimum Distance Based on
Shift-Register Synthesis. IEEE Transactions on Information Theory,
56(10):5245–5252, 2010.

[Sti09] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer,
2nd edition, 2009.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13(4):354–356, 1969.

[Sud97] Madhu Sudan. Decoding of Reed–Solomon Codes beyond the Error-
Correction Bound. Journal of Complexity, 13(1):180–193, 1997.

[SW99] Mohammad Amin Shokrollahi and Hal Wasserman. List Decoding
of Algebraic-Geometric Codes. IEEE Transactions on Information
Theory, 45(2):432–437, 1999.

[vdH15] Joris van der Hoeven. On the complexity of multivariate polynomial
division. In Special Sessions in Applications of Computer Algebra,
pages 447–458. Springer, 2015.

[vdHL19] Joris van der Hoeven and Grégoire Lecerf. Fast multivariate multi-
point evaluation revisited. Journal of Complexity, April 2019.

[vdHL21] Joris van der Hoeven and Grégoire Lecerf. Fast amortized multi-
point evaluation. Journal of Complexity, page 101574, 2021.

[vdHS13] Joris van der Hoeven and Eric Schost. Multi-point evaluation in
higher dimensions. Applicable Algebra in Engineering, Communica-
tion and Computing, 24(1):37–52, 2013.

[VZG90] Joachim Von Zur Gathen. Functional decomposition ofpolynomials:
the tame case. Journal of Symbolic Computation, 9(3):281–299, 1990.

[vzGG12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 3rd edition, 2012.

[WB86] Lloyd R Welch and Elwyn R. Berlekamp. Error correction for alge-
braic block codes, December 1986. US Patent 4,633,470.

[YB92] T. Yaghoobian and I. F. Blake. Hermitian codes as generalized reed-
solomon codes. Designs, Codes and Cryptography, 2:5–17, 1992.

BIBLIOGRAPHY 139

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Pro-
ceedings EUROSAM’79, pages 216–226, 1979.

[ZL13] Wei Zhou and George Labahn. Computing Column Bases of Polyno-
mial Matrices. In International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’13, pages 379–386, New York, NY, USA,
2013. ACM.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Reader's guide
	1.2 Complexity model
	1.3 Complexities of fundamental algorithms
	1.4 Algorithms for polynomial matrices
	1.5 Communication model
	1.6 Algebraic geometry codes
	1.7 Some properties of function fields

	2 Encoding and unencoding of one-point AG codes over Ca,b curves
	2.1 Ca,b curves and their codes
	2.1.1 Geometry and defining polynomial
	2.1.2 One-point codes

	2.2 Related work
	2.2.1 Encoding
	2.2.2 Bivariate multi-point evaluation
	2.2.3 Bivariate interpolation

	2.3 Point sets
	2.4 Fast encoding using multi-point evaluation
	2.5 Fast unencoding using interpolation
	2.5.1 Interpolation with relaxed monomial support
	2.5.2 Reducing the monomial support
	2.5.3 A fast unencoding algorithm

	2.6 Special curves
	2.6.1 Semi-grids
	2.6.2 Maximal curves

	3 Generic bivariate algorithms
	3.1 Strategy outline
	3.2 Reshaping
	3.3 Multi-point evaluation
	3.4 Interpolation
	3.5 Precomputing Reshapers
	3.6 Precomputing reduced `39`42`"613A``45`47`"603Alex-Gröbner basis
	3.7 Balancedness

	4 Partial unique decoding
	4.1 Related work
	4.2 Contributions
	4.3 Constructing the key equations
	4.4 Solving the key equations
	4.5 Decoding radius
	4.6 Simulation results

	5 List decoding
	5.1 Related work
	5.2 Setting
	5.3 Representations of function field elements
	5.4 Guruswami-Sudan decoding
	5.4.1 Module structure of interpolation
	5.4.2 Strategy outline

	5.5 Algorithms
	5.5.1 Multi-Point Evaluation
	5.5.2 Interpolation
	5.5.3 Computing a -generating set of Ms,(bold0mu mumu rrsubsectionrrrr)(D,G)
	5.5.4 Computing an F[x]-generating set of Ms,(bold0mu mumu rrsubsectionrrrr)(D,G)
	5.5.5 Solving the interpolation step of Guruswami-Sudan
	5.5.6 Root-finding

	5.6 A complete decoding algorithm
	5.6.1 Examples

	6 Conclusion
	A Notations
	Bibliography

