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We investigate the limits of thermometry using quantum probes at thermal equilibrium within the
Bayesian approach. We consider the possibility of engineering interactions between the probes in order to
enhance their sensitivity, as well as feedback during the measurement process, i.e., adaptive protocols. On
the one hand, we obtain an ultimate bound on thermometry precision in the Bayesian setting, valid for
arbitrary interactions and measurement schemes, which lower bounds the error with a quadratic
(Heisenberg-like) scaling with the number of probes. We develop a simple adaptive strategy that can
saturate this limit. On the other hand, we derive a no-go theorem for nonadaptive protocols that does not
allow for better than linear (shot-noise-like) scaling even if one has unlimited control over the probes,
namely, access to arbitrary many-body interactions.
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Introduction.—Preparing quantum systems at low tem-
peratures is an essential task for development of quantum
technologies [1–3]. Measuring temperature precisely is
necessary to validate cooling and ensure the performance
of quantum protocols, and has been demonstrated in
cutting-edge experiments [4–12]; it is however challenging.
Due to the scarcity of thermal fluctuations at such low
temperatures, the relative error on thermometry can be
enormous. Moreover, the fragility of quantum systems
requires additional forward planning to minimise disturb-
ance while maximising the information obtained. The
theory of quantum thermometry is built to address these
pivotal challenges [13,14].
Quantum thermometry finds fundamental limits on

precision [15–18] and designs protocols to achieve them
in different platforms [19–22], and improve them thanks to
quantum correlations [23,24], coherence [25,26], many-
body interactions and criticality [27–32] or other resources
[33,34]. To date, such enhancements have been developed
in the context of local thermometry, aiming at designing a
thermometer that detects the smallest temperature varia-
tions around a known temperature [13,14]. In many
practical situations, however, one might not know the
temperature accurately beforehand. Rather, one has limited
prior knowledge about the temperature of the sample.
Under such circumstances, Bayesian estimation is a more
suitable approach, and has been the subject of a few recent
studies [35,36].
The goal of this Letter is to set the ultimate bounds of

Bayesian equilibrium thermometry, and to develop adap-
tive strategies to saturate them. It is insightful to first recall
analogous results in the local approach to equilibrium

thermometry [13,14]. Within such a framework—contrary
to dynamical approaches where the probe evolves accord-
ing to some predefined model parametrized by the temper-
ature [37,38], e.g., a superconducting qubit in radiometry
[39]—the probe always thermalizes to the temperature of
the sample whose value is known a priori. In that case, for
any unbiased estimator θ̃ of the temperature θ0, the mean
square error is inversely proportional to the heat capacity of
the probe: Δθ̃ ∝ 1=C [15,16,29,40]. For n-body probes, C
can scale superextensively with n in the vicinity of a critical
point, with the ultimate bound C ≈ n2=4 [15,41]—a quad-
ratic scaling with the number of resources reminiscent of
the Heisenberg scaling in quantum metrology [42]. Here,
we show that similar bounds hold in the Bayesian
approach, but adaptive strategies are needed to saturate
them, contrary to the local case. In fact, we prove that any
nonadaptive strategy necessarily leads to Δθ̃ ∝ 1=n for
sufficiently large n—i.e., a shot-noise-like scaling [42]—a
no-go result that holds even when arbitrary control over the
n-body probe Hamiltonian is allowed. Thus, adaptive
measurement strategies are a crucial ingredient for optimal
thermometry whenever the temperature value is a priori not
perfectly known.
Preliminaries and setup.—We consider estimation of the

temperature θ0 of a (possibly macroscopic) sample given
some prior distribution pðθÞ reflecting our initial knowl-
edge on θ0. We assume we have at our disposal N copies of
a d-dimensional system that we use as probes, which are
much smaller than the sample. When put in contact with the
sample, we assume that the probes eventually reach thermal
equilibrium at temperature θ0. By measuring them we infer

PHYSICAL REVIEW LETTERS 128, 130502 (2022)

0031-9007=22=128(13)=130502(7) 130502-1 © 2022 American Physical Society

https://orcid.org/0000-0002-0398-9200
https://orcid.org/0000-0003-3076-5162
https://orcid.org/0000-0003-3859-0272
https://orcid.org/0000-0001-8211-0016
https://orcid.org/0000-0002-4658-0632
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.130502&domain=pdf&date_stamp=2022-04-01
https://doi.org/10.1103/PhysRevLett.128.130502
https://doi.org/10.1103/PhysRevLett.128.130502
https://doi.org/10.1103/PhysRevLett.128.130502
https://doi.org/10.1103/PhysRevLett.128.130502


θ0. This corresponds to the framework of equilibrium
thermometry, which is by nature robust [13,14]. In order
to establish fundamental bounds, we assume full control on
the Hamiltonian of the probes, and in particular the ability
to make them interact. Therefore, alternatively one can
think of a dN-dimensional probe, which constitutes our
resource.
The thermometry process is divided into m rounds, each

involving n ¼ N=m probes. Every round consists of (I)
preparation of the n-body probe, (II) interaction with the
sample and thermalization, (III) measurement or data
acquisition, and (IV) data analysis (see Fig. 1). In the first

round, we start by engineering the Hamiltonian Hð1Þ
n of the

n-body probe into any desired configuration based on the
prior distribution pðθÞ. That is, we arrange the energy
distribution of the n-body probe to become most sensitive
to the relevant temperature range. Next, in step (II), this n-
body system is put in contact with the sample, and reaches
thermal equilibrium with it. Therefore, it can be described

by the Gibbs state ωθ0ðHð1Þ
n Þ ≔ exp½−Hð1Þ

n =θ0�=Z, with

Z ¼ Trðexp½−Hð1Þ
n =θ0�Þ the partition function. Then, in

step III, a measurement is performed that yields an outcome
x1. We focus on energy measurements since they are
optimal as the Gibbs state is diagonal in the energy basis.
In the data analysis (step IV), the posterior distribution is
obtained through Bayes’ rule:

pðθjx1Þ ¼
pðx1jθÞpðθÞ

pðx1Þ
; ð1Þ

where pðxjθÞ is the likelihood function (which depends on
the temperature and the Hamiltonian), pðθÞ is the prior
distribution on θ, and pðxÞ ¼ R

dθpðθÞpðxjθÞ is the out-
come probability. The next round proceeds in an analogous

way, but replacing the prior pðθÞ by pðθjx1Þ and Hð1Þ
n by

Hð2Þ
n . Likewise, in round k > 1, pðθÞ is replaced by

pðθjxk−1Þ with xk−1 ≡ fxk−1;…; x2; x1g and Hð1Þ
n is

replaced by HðkÞ
n . Such a strategy is adaptive since HðkÞ

n

depends on xk−1. In contrast, a nonadaptive strategy

satisfies HðkÞ
n ¼ Hn ∀ k, where Hn is chosen according

to the initial prior pðθÞ only. At the end of the thermometry
process (round m), the final estimate θ̃ðxmÞ of θ0 is
computed.
In order to gauge the quality of the estimator, we need to

introduce an error quantifier that describes how far θ̃ is
from θ0, on average. A natural measure which is suitable
for equilibrium probes is the expected mean square
logarithmic error (EMSLE) (see Ref. [35] for justification
and the accompanying paper [43] for a deeper analysis and
generalization)

EMSLE ≔
Z

dθpðθÞ
Z

dxm pðxmjθÞln2
�
θ̃ðxmÞ
θ

�
; ð2Þ

with dxm ≔ dxm…dx1. Moreover,

θ̃ðxmÞ ¼ exp

�Z
dθ

pðθÞpðxmjθÞ
pðxmÞ

ln θ

�
; ð3Þ

is the optimal temperature estimator, i.e., it minimizes
EMSLE [35].
We wish to find lower bounds for EMSLE, as well as

optimal strategies to saturate them, for both adaptive and
nonadaptive measurements. More precisely, our aim is to
minimize EMSLE as a function of the number N of probes,
with N ¼ mn. We will pay particular attention to the
relevant case where m ≫ 1 is large (asymptotic regime)
but n is limited due to, e.g., experimental limitations on the
amount of probes that can be collectively processed. In this
case, we will focus on the scaling of EMSLE with n for a
fixed but large m.
Main results.—Our main results are (i) an ultimate

precision limit for Bayesian thermometry that holds for
both adaptive and nonadaptive strategies, which in princi-
ple allows for a quadratic (Heisenberg-like) scaling with n,
(ii) a no-go theorem that forbids superextensive scaling in
any nonadaptive scenario, and (iii) an adaptive strategy that
reaches the ultimate limit. These results are derived in what
follows (technical details are given in the Supplemental
Material [44]).

FIG. 1. Schematic representation of the adaptive scenario. A
total of N probes are used in groups of n to estimate the
temperature of the sample, θ0. Initially, our prior temperature
distribution is given by pðθÞ, according to which we choose the

Hamiltonian of the first n probes to be Hð1Þ
n that minimizes the

expected mean square logarithmic error. The probes interact and
thermalize with the sample followed by an energy measurement,
yielding an outcome, say x1. Our knowledge about the temper-
ature will be reflected in the posterior distribution pðθjx1Þ. This
will be used as the prior for the second round—in order to find the

optimal Hamiltonian Hð2Þ
n . This process is repeated m ¼ N=n

times. In contrast, in the nonadaptive scenario the Hamiltonian is

fixed HðkÞ
n ¼ Hn ∀ k.
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Given the prior pðθÞ, and by utilizing the Van Trees
inequality [46,47] we construct a lower bound on the
estimation error after m rounds

EMSLE−1 ⩽ Q½pðθÞ� þ
Xm

k¼1

Z
dxk−1pðxk−1Þ

×
Z

dθpðθjxk−1ÞCðθ;HðkÞ
n Þ; ð4Þ

where pðθjx0Þ¼pðθÞ, pðx0Þ ¼ pðx0jθÞ ¼ 1, and
R
dx0 ¼

1 are introduced to compress our notation. Here, Q½pðθÞ�
quantifies the prior information and reads

Q½pðθÞ� ≔
Z

dθpðθÞ½1þ θ∂θ logpðθÞ�2: ð5Þ

The second term quantifies the information acquired
through all measurements. It also establishes a connection
to the quantum Fisher information through its proportion-
ality to the heat capacity [15]. The heat capacity of the

probe at round k of the measurement is denoted Cðθ;HðkÞ
n Þ,

with the Hamiltonian HðkÞ
n designed according to the

prior and the information acquired so far. Recall that, by
definition, Cðθ;HnÞ ≔ ∂θEðθ;HnÞ, where Eðθ;HÞ ¼
Tr½HωθðHÞ� is the energy of the probe at thermal equilib-
rium. To bound Eq. (4), we first define the maximum of the

integrand over fHðkÞ
n gmk¼1 for a specific trajectory xm:

ΓðxmÞ ≔ max
fHðkÞ

n gk

Xm

k¼1

Z
dθpðθjxk−1ÞCðθ;HðkÞ

n Þ

⩽
Xm

k¼1

Z
dθ pðθjxk−1ÞCD ¼ mCD; ð6Þ

where CD ≔ maxHn
Cðθ;HnÞ, i.e., the maximum heat

capacity of an n-body probe. In the last line we used that
CD is independent of θ (see Refs. [15] or [44] for the
explicit expression of CD). Furthermore, we have
CD ≈ n2

4
log2 d, for large enough n. Putting everything

together, we obtain from Eq. (4)

EMSLE−1 ⩽ Q½pðθÞ� þmCD

≈
η≫1

Q½pðθÞ� þm
n2

4
log2d: ð7Þ

This gives an ultimate bound on Bayesian thermometry
[result (i)], which both adaptive and nonadaptive strategies
should respect. This bound implies that any Bayesian
thermometry protocol is ultimately limited by a quadratic
Heisenberg-like scaling.
The ultimate bound (7) becomes tight and can be

saturated by adaptive strategies in the regime m ≫ 1
(see results below). However, nonadaptive strategies fail

to saturate it, and in fact EMSLE−1 can increase at most
linearly with n [result (ii)]

EMSLE−1 ⩽
nonadaptive

Q½pðθÞ� þ f½pðθÞ�mn log d; ð8Þ

where f½pðθÞ� ¼ R
R dθ½−∂θpðθÞ�θ is a functional of only

the prior distribution, and R is the temperature domain
where ∂θpðθÞ ⩽ 0. This result is rigorously proven in the
Supplemental Material [44], but let us provide some
intuition. It is already noted in the literature that engineered
probes for thermometry show enhanced sensitivity only in a
small temperature range Δ [13,15,48–50]. Finite-size
scaling theory hints that if C ∝ n1þα, then Δ ∝ n−γ with
γ⩾α in order to ensure that the energy density of an
equilibrium state remains finite [51]. This implies that, for
any pðθÞ with a finite width (independent of n), the termR
dθpðθÞCðθÞ in Eq. (4) grows at most linearly with n for

sufficiently large n. In other words, optimal n-body probes
require priors with a width smaller than Oð1=nÞ to obtain
superlinear scaling, and conversely a finite width in pðθÞ
will eventually kill any superlinear scaling. The no-go
result (8) makes this intuition rigorous.
The above reasoning also explains why adaptive proto-

cols can potentially saturate (7). By updating the prior pðθÞ
to the posterior pðθjxk−1Þ in each step of the process
(k ¼ 1;…; m), it can stay inside the optimal region for
sufficiently large m, thus enabling superlinear precision.
This also suggests using optimal probes for local ther-
mometry as an ansatz for the Bayesian thermometry with
adaptive strategies. The optimal thermometer in the local
scenario is an effective two-level system with dn − 1-fold
degeneracy in the excited state [15]. Although this
Hamiltonian is useful to obtain fundamental bounds [15]
it involves n-body interactions and is hence highly complex
for n ≫ 1. Nonetheless, it can be well approximated
through two-body interactions by the method developed
in Ref. [52] and, furthermore, it can be effectively realized
with a few-fermionic mixture confined in a one-dimen-
sional harmonic trap [41]. Motivated by this progress, at the

kth round we restrict to the class of Hamiltonians HðkÞ
n with

the aforementioned two-level structure, and tune the energy
gap to minimize the EMSLE (2). As we show in the example
below, we can achieve a quadratic scaling with n and
saturate (7) using this strategy [result (iii)].
Case study.—The results presented here are valid for a

broad class of priors, but in what follows we stick to a
specific choice in order to illustrate their usage. In any
relevant application of thermometry, the temperature is
known a priori to lie within a certain range, i.e.,
θmin ⩽ θ0 ⩽ θmax. We use a family of probability distribu-
tions that are suitable in this case and were proposed in
Ref. [53]:
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pðθÞ ¼ 1

kαðθmax − θminÞ
½eαsin2ðπ

θ−θmin
θmax−θmin

Þ − 1� ð9Þ

with

kα ≔ eα=2I0ðα=2Þ − 1; ð10Þ

where I0 is the modified Bessel function of the first kind. In
the limit α → −∞ the above prior becomes a constant,
while in the limit α → 0 we have pðθÞ ∝ sin2ð2θÞ.
The adaptive strategy works as follows. We consider as a

resource N qubits, which are divided in m groups of n
qubits. In each group, the n-qubit Hamiltonian is engi-
neered to become a two-level system with degeneracy
(2n − 1) and with a tunable gap ϵ. In the first round, we tune
the gap to ϵð1Þ to minimize the single shot EMSLE, that is we
set m ¼ 1 in Eq. (2). Then, we measure the energy of the
system. Given the outcome x1 is observed, we update the
prior to pðθÞ → pðθjx1Þ, and implement the same pro-
cedure to choose ϵð2Þ in the second round [i.e., we minimize
Eq. (2) replacing pðθÞ → pðθjx1Þ]. This process is repeated
until all probes are used.
In our simulations, we apply the adaptive process for a

given θ0 sampled from pðθÞ, which yields a trajectory as
illustrated in the left panel of Fig. 2. We see that the prior
peaks around the true temperature as k increases, and the
estimated temperature gets closer to the true temperature,
i.e., θ̃=θ0 → 1. The average over a large amount of
trajectories enables us to compute EMSLE in Eq. (2) with

high accuracy (in the numerical simulations, we consider
Oð1000=mÞ trajectories, which ensures convergence). In
the right panel of Fig. 3 we plot EMSLE in the adaptive
scenario for various values of n, benchmarked against the
no-go bound for nonadaptive scenarios—only the shaded
area can be accessed by nonadaptive strategies given any
n ⩽ N. We see that as n increases the error gets smaller for
large enough N. In particular, there exist some thresholds n
for which one can beat the no-go bound via adaptive
strategies. As an example, given N ¼ 103 and θmax=θmin ¼
10 in Eq. (9) (with α ¼ 1), adaptive strategies using
n ≈ 10 interacting qubits outperform arbitrary nonadaptive
strategies.
Next, we ask whether the adaptive strategy can reach the

Heisenberg-like scaling, EMSLE−1 ∝ mn2. To this aim, we
study the behavior of the error with the resources n for a
sufficiently large number of repetitions m. The results are
depicted in Fig. 3, where we see Eq. (7) is saturated and
therefore the proposed adaptive scheme reaches the ulti-
mate bound on thermometry.
Finally, we note that although the optimal protocol

requires a very idealized Hamiltonian for the probe [a
(2n − 1)-degenerate two-level system], adaptive protocols
already become useful for small n. Namely, for n ¼ 1, 2,
they decrease the error more than 60% and 80%, respec-
tively, compared to the nonadaptive protocols [44]. For
larger n, a realistic method to obtain a scaling of the EMSLE

beyond the SNL would be to combine the adaptive method
derived here with thermal phase transitions [51].

FIG. 2. Left—Contour plot of the prior versus the measurement round k ∈ f1;…; mg (logarithmic scale), and temperature normalized
to its true value θ=θ0. The red trajectory shows the ratio between the estimated temperature and the true temperature θ̃=θ0. As k
increases, the prior sharpens around the true temperature, and θ̃=θ0 approaches one. Here, we have set n ¼ 1, α ¼ 1, θmin ¼ 1, and
θmax ¼ 10 in arbitrary units. Right—Loglog plot of the expected mean square logarithmic error attained by the adaptive strategy vs the
total number of qubits N. Dark solid lines represent different values of n. They show that, for sufficiently large N, the bigger n is the
smaller the error can get. The red-dashed line is the (not necessarily tight) bound on nonadaptive strategies: only the shaded area can be
achieved using nonadaptive protocols. One can cross the border with adaptive strategies for n > 10.
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Conclusions and future directions.—We derived funda-
mental limitations of the Bayesian approach to equilibrium
thermometry, which shows a Heisenberg-like quadratic
scaling with the number of probes. We showed nonadaptive
strategies cannot saturate this bound and are limited to shot-
noise-like scaling whenever the initial prior is not sharp. We
also constructed an adaptive protocol that saturates the
ultimate bound, thus highlighting the crucial role of
adaptivity in quantum thermometry. This is importantly
different to Bayesian phase-estimation protocols [54],
where the Heisenberg limit that applies to most general
adaptive protocols [55] can be attained by resorting only to
measurements being adaptively varied in between the
phase-encoding channel uses [56]. In contrast, in equilib-
rium thermometry the form of probe states (Gibbs) and
measurement (energy-basis) is fixed, and it is the probe
Hamiltonian that must be adaptively adjusted for the
quadratic scaling to become reachable.
While here we considered the total number of probes N

as our resource, future works could include time as an extra
resource. This naturally leads to non-equilibrium thermom-
etry, where the probe is measured before reaching thermal-
ization. While considerable progress in this framework
has been obtained within the frequentist approach
[13,25,37,38,57,58], adaptive protocols could be developed
following the Bayesian approach pursued here. Lastly,
exploiting adaptive schemes for other metrological tasks
involving criticality and quantum phase transitions [59], or
restrictions such as limited measurement resolution
[17,18,60], can be a subject of future work.
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