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The increased penetration of renewable energy
sources into existing power systems induces challenges
in supply-demand balancing. Demand-side flexibility
is seen as an option to accommodate variability
and limited predictability from renewable energy
generation. Heat pumps at residential level, if well
coordinated, can be one of those flexibility sources.
The complexity involved is high though, since their
coordinated operation combines control, population
effects, and the fact agents may actually not behave
as rational decision-makers. We describe here a
coordinated control framework that accounts for those
aspects altogether. Decentralised model predictive
control for large populations of heterogeneous agents
is employed. As the cost to be minimised is affected
by the population behaviour as a whole through
the electricity price, the decentralised control is
re-thought as a mean-field game. Existence and
uniqueness of a Nash equilibrium are discussed while
the Picard-Banach algorithm is used as a solution
approach. It is extended to the case of bounded-
rational agents. The impact on system dynamics of
modelling agents as bounded rational is illustrated
through numerical simulations.
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1. Introduction
Energy systems, as well as our approach to their design and operations, are evolving rapidly
and substantially. This comes with the deployment of renewable energy generation capacities,
distributed energy resources more generally, e.g., with electric vehicles, heat pumps and battery
storage units, as well as the liberalization of electricity markets. The role of consumers is also
changing, at least by becoming more active agents on the demand side of electricity markets,
if not by upgrading their assets in order to also produce and store electric energy (so-called
"prosumers").

Demand side management is a concept that has been considered for various applications in
power system operation and electricity markets – see [1] for instance. Roughly speaking, its
objective is to incentivise, steer and reward demand-side flexibility mostly through different
forms of financial incentives [2]. It therefore relies on the elasticity of electricity consumers,
though other approaches based on e.g. behavioural science and behavioural economics have
also been considered more recently [3]. Today, demand side management is seen as a way to
support balancing of power systems with high shares of renewable energy sources. It is referred
to as demand response when the aim is to affect electricity consumption in the short-term (time
scales in the order of minutes to hours), in order to adapt to the availability of renewable energy
generation, and to potentially compensate for forecast errors. For a recent review of the benefits
and challenges of demand response, the reader is referred to [4].

Demand response relies on the interaction between a central coordination mechanism and
the consumers with controllable loads. This leads to decentralised control, where agents make
decisions based on both their local information, as well as partial information about the state
of the system [5,6]. Decentralised control allows for decision authority and scalability, while
in certain cases, it may also allow for privacy preservation. A key issue in systems with large
numbers of responsive assets is to assess and accommodate their aggregate effect on system
demand and resulting electricity prices. Game theory naturally comes as a relevant approach to
study the interaction among agents within a demand response environment. However, it becomes
intractable as the number of agents increases [7]. Aggregative games, and more specifically
mean-field (often abbreviated MF) games are appealing, by assuming that the number of agents
tends towards infinity. In mean-field games, the decisions of each agent depend on the average
state of the population instead of on one-to-one interactions. Extensive overviews of mean-field
games and their applications can be found in [8,9]. Mean-field theory has been applied to many
distributed optimization problems in energy systems, e.g., electric vehicle charging [10], demand
response for populations of thermostatically controlled loads [11,12], control of storage devices
[13], and congestion control for networks of shared resources [14].

A common and important assumption is that agents are rational decision-makers. This
is most likely no longer valid when agents are human though. Human decision-makers are
bounded rational and deviate from the optimal response described in normative economic
theories [15]. The field of behavioural economics aims at unveiling and better appraising human
biases in decision-making. Considering energy applications, in addition to cognitive limitations,
decision-making normally occurs under time constraints and incomplete information, leading
to systematic biases and sub-optimal decision-making [16]. As of today, even if home energy
management systems automatize the interaction with home appliances, the consumer is able to
change various settings, e.g., temperature setpoints and discomfort bounds, repeatedly – hence
deviating from previously computed optimal scheduling. The way energy consumers interact
with and utilize “smart appliances" is still fairly unclear [17]. For instance, a study in the USA
monitored the routines of 35.471 programmable thermostats in four main utilities, showing
that only 47% actually utilize the programmable options. The other half of the programmable
thermostats were used as manual thermostats, since the users did not use the “scheduling" option
[18]. Similarly, another more recent study on individual occupant comfort using heating setpoints
[19] showed that some occupants were not fully familiarized with the control of the floor heating
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system. Thus, they repeatedly changed floor heating set points in order to achieve the desired
comfort, eventually deviating optimal usage trajectories. In view of the evolution of energy
systems with a more proactive role of consumers, it is of utmost importance to better account
for behaviour in the design of mechanisms and operations [20]. An unaddressed problem in the
demand response literature is whether bounded rationality impacts equilibria and corresponding
agent decisions.

Our main contribution here is hence to show how bounded rationality may be accounted for
within a decentralised model predictive control setup for demand response seen as a mean-field
game, as well as its impact on equilibria. The existence and uniqueness of a Nash equilibrium are
preserved when generalizing to this bounded rationality case, while it allows to simulate different
forms of bounded rationality. Note, however, that we are not aiming to hedge against bounded
rationality as could be done in a robust optimization framework [21]. Similarly, we are not looking
at how bounded rationality specifically affects decisions (here for demand response), e.g., in the
way the sparse-max model of [22] is employed.

The coordination of a large population of heat pumps through dynamic pricing is used as a
representative problem, with interesting complexities coming from constraints on system state
(i.e., indoor temperature within dwellings) and the heat pumps themselves (power setpoints
and ramping constraints). Network-related aspects are not considered in our problem setup,
which is in line with a broad range of use cases related to demand response, e.g., peak shaving
and balancing support, for which grid constraints are not accommodated. Electricity consumers
are increasingly facing dynamic pricing of electric energy, whether grid-related constraints are
considered or not. We adopt a mean-field decentralised control approach in which agents respond
optimally to common price sequences issued by a non-profit central coordinator. These depend
both on the predicted inelastic demand and total generation capacity, as-well as on the overall
population flexible consumption. The objective is to find the price sequence that drives the
population to the Nash equilibrium. The mean-field control of thermostatically controlled loads
is performed through model predictive control (often abbreviated MPC) at an agent-based level
and on a rolling-window setup, hence allowing to adapt to information updates. Agents update
their optimal control trajectories every time forecasts are revised. We eventually relax the rational
agent assumption and assume that agents can deviate from their optimal (if rational) trajectory.
We then characterise the resulting equilibria and compare them with the ideal rational case based
on simulations. The existence and uniqueness of these equilibria are proven using tools from
variational inequalities. The Nash equilibria are obtained using algorithms proposed in [23] for
deterministic mean-field games with heterogeneous convex constraints. Finally, our approach is
applied to different case studies where we explore the impact of bounded rationality and forecast
accuracy on decisions and system outcomes.

The remaining of the paper is organised as follows: Section 2 describes the decentralised model
predictive control setup and related mean-field game. Section 3 covers the relevant tools from
variational inequalities to study the Nash Equilibrium, as well as the solution approach. Section
4 presents the concept of bounded rationality in demand response and the way it is considered in
the present work. Section 5 gathers results from numerical simulations to illustrate and analyse
the impact of bounded rationality on demand response within our decentralised model predictive
control framework. Finally, Section 6 gathers a set of conclusions and perspectives for future work.

2. From decentralised model predictive control to the related
mean-field game

We first present the coordination problem as a whole. The local optimization problems at agent
level are then described, to eventually close with a discussion of the price determination, which
makes the problem a mean-field game. All agents are so far considered rational decision-makers.
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(a) Coordination problem
Let us consider the problem of coordinating a large population of N heat pumps through
dynamic pricing (with N large). Each heat pump is sized according to the heat demand of the
corresponding household – the heat pump design problem is not considered here, as emphasis is
placed on operational problems only. A heat pump converts electricity into heat according to its
coefficient of performance. The heat dynamics of the building allow to partly decouple electricity
and heat in time, i.e. the building and air masses have enough thermal inertia to shift the heat peak
in time to an hour when the electricity price is cheaper. Heat pumps then provide flexibility to the
electricity system side, which may help to accommodate variability and limited predictability of
renewable power generation, or different types of power system contingencies.

Being at a given time w within a simulation period of interest W , a forward-looking time
window with τ lead times (referred to as the planning horizon) is considered in order to account
for the time-binding constraints of the heat pumps, as well as the temporal dynamics of the
indoor temperature in dwellings. In practice for instance, if aiming to steer the population of
heat pumps over the next 6 hours with a 15-minute temporal resolution, this yields 24 lead times.
This also yields τ prices pt, one for each lead time t, t∈ T = {0, . . . , τ − 1}. When relevant, this
price sequence will be summarized by p, with p= [p0, . . . , pτ−1]>. In a model predictive control
framework with rolling window, however, only the decisions at lead time t= 0 are implemented
and binding – decisions being (i) the electricity price for the central coordinator, and (ii) the
electricity consumption of the heat pump at the agent level. Then, the window is shifted by one
step, and the process continues.

Each household equipped with a heat pump is considered as an agent in the game, with index
i. The setup is illustrated in Figure 1. Agents compete to procure electricity to cover their heat
demand in the most cost-effective way – we are dealing with a non-cooperative game. This is
while the population of electricity consumers is being coordinated by a non-profit central entity
through prices. That central coordinator could be an aggregator, the supervisory node of an
energy community [24] or a local electricity market. For a given agent i, i∈N = {1, . . . , N},
electricity demand is the sum of an inflexible (and must-serve) component di and of a flexible
(and elastic) component ui. The average inflexible demand (over the population of N agents)
is an input to the problem of the central coordinator, in the form of a series of load forecasts
d̂= [d̂0, . . . , d̂τ−1]> for the coming τ lead times. The reason why one works with averages instead
of sums is due to the mean-field formulation that will be explained towards the end of this section.
The other input to the central coordinator is κ, the total generation capacity scaled by the number
of agents N .

For simplicity, the flexible component only relates to heat pumps. This may be readily extended
to more advanced setups with additional flexible appliances, though at the cost of modelling
complexity. In addition, having appliances that require integer variables in the modelling of
their operations would affect convexity of the problems involved, and hence the results that
we describe. This could potentially be accommodated through some form of convex relaxation,
though not considered here and left for future work.

At the agent level, decisions are affected by the local system dynamics, but also by the prices
pt, t∈ T , communicated by the central coordinator. By facing dynamic prices, each agent has
the incentive to adjust her consumption profile according to her inherent flexibility. Following a
decentralised model predictive control approach, each agent i computes her optimal heat pump
consumption ui = [u0i , . . . , u

τ−1
i ]> throughout a common planning horizon and communicates

it to the central coordinator. Based on the aggregated response of the population, the central
coordinator updates the price sequence p and communicates them to all agents. This process
is repeated until a Nash equilibrium is reached, i.e., where no agent has an incentive to deviate
unilaterally from her strategy.
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Figure 1. Setup and interfaces between the central coordinator and the population of agents.

(b) Local optimization problem
Assume that the heat pump dynamics can be described by a deterministic discrete-time linear
model, so that

st+1
i =Atis

t
i +Btiu

t
i + Cti , ∀t∈ T , i∈N , (2.1)

where sti ∈ S
t
i and uti ∈ U

t
i are the state and input (or, decision) variables, respectively, of agent i at

time t. From now on, we refer to si = [s1i , . . . , s
τ
i ]> and ui = [u0i , . . . , u

τ−1
i ]> as the sequences of

states and input variables along the planning horizon. Note that in the dynamical system model
(2.1), the constant Cti summarizes the impact of exogenous ambient conditions at time t, which
also drive that dynamical system. In the simplest case, Cti is time-invariant and representing
the long-term indoor temperature when heat pumps are off. In the more general case, Cti is a
linear function of meteorological drivers, e.g., outdoor temperature, solar irradiance and wind,
parameterized by the building characteristics. The detailed formulation of heat dynamics model
for heat pump control that we eventually used can be found in [25] and references therein. Finally,
for an extensive coverage of more general dynamical models for the heat dynamics of buildings,
the reader is referred to [26] among others.

In the above, the state variable represents the indoor temperature, which is bounded by
predefined agent comfort setpoints [si, si], also referred to as comfort bounds. For instance, the
indoor temperature must be within si =19°C and si =22°C. Ati , B

t
i and Cti are the coefficients

that describe the heat dynamics of the dwelling, considering thermal resistances, heat capacities,
coefficient of performance, temperature of the building envelope, ambient temperature, window
area and solar irradiance. The initial indoor temperature s0i is known and the objective of each
agent is to keep it close to a tracking temperature s̃i set by the agent throughout the planning
horizon. The tracking temperature is considered time-invariant, but the time-varying case could
be similarly handled. At each lead time, the control has to decide the power uti it should consume
in order to keep the indoor temperature within the comfort bounds [si, si] and as close as possible
to the tracking temperature. The sequence of input variables ui is also constrained by the heat
pump capacity ci, and ramping limits δui, δui, defining the feasibility set Ui, i.e.,

Ui =

{
ui ∈Rτ |uti ∈ [0, ci], δui ≤ u

t+1
i − uti ≤ δui

}
. (2.2)

Consequently, the strategy of agent i∈N gathers both state and input variables within a single
vector xi = [si;ui]. Those are necessarily linked to the dynamics of the system. The strategy of
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each agent i∈N belongs to the convex and compact strategy set

Ki =

{
[si;ui]∈R2τ | st+1

i =Atis
t
i +Btiu

t
i+C

t
i , s

t
i ∈ [si, si], ui ∈ Ui

}
, (2.3)

described by the model for the dynamical system, and the natural boundaries for the state and
input variables.

Each agent i is commonly assumed rational, hence willing to find the strategy xi that
minimises the cost function Ji given that all other agents are consuming according to x−i =

{xj}j∈N\{i}. This is the aspect we will aim at relaxing in a later part of this work. In practice
x−i is obviously not known to agent i, but its effect is summarized through the price sequence
broadcast by the central coordinator. The cost function of agent i∈N is defined as

Ji(xi,x−i) =

τ−1∑
t=0

(
ptu

t
i + αi(s

t+1
i − s̃i)2

)
. (2.4)

We use a game-theoretical notation here since, as will be further described in the next
paragraph, the decisions of agent i are necessarily influenced by those of all other agents j,
j 6= i, through the sequence of electricity prices. That cost function is the sum of two terms:
the electricity procurement cost and the discomfort term. This discomfort term penalizes the
(squared) deviations of the indoor temperature from the tracking temperature by a factor αi > 0.
This part of the loss function is based on local information only, and does not relate to the other
agents. In contrast, for the calculation of the electricity procurement cost, one needs the sequence
of electricity prices pt, t∈ T . This sequence is communicated by the central coordinator, and is a
function of the decisions of the population as a whole.

Eventually, the local optimization problem to be solved by agent i, every time a price sequence
is communicated, is

min
xi∈Ki

Ji(xi,x−i) . (2.5)

The solution of this problem is denoted x?i (p), as it readily depends on the price sequence
communicated by the central coordinator.

(c) Price determination and mean-field game
The electricity prices pt, t∈ T , are calculated based on the predicted inelastic demand

∑
i d̂
t
i , on

the total generation capacity of the system κN , and on the aggregated consumption of the heat
pumps (

∑
i u
t
i). We follow here an approach similar to that used in [10]. The electricity price

pt is assumed to be a linear function of the ratio between total demand and total generation
capacity κN at time t. The total demand is the sum of the inflexible demand of the system and
the aggregated demand from the population of heat pumps. The total generation capacity is a
function of the population size N (hence the use of the index N for the related variable). This
assumption of a linear relationship may be deemed acceptable if considering that the energy
prices received by the consumers are directly proportional to wholesale energy prices, and
overlooking temporal constraints. And, even if it was not linear, that assumption could be justified
by the idea of a local linearization around an operating point in the market.

Consequently, the electricity price at time t∈ T can be expressed as

pt =
β

κN

N∑
i=1

(
d̂ti + uti

)
, (2.6)

where β > 0 is the coefficient for the linear function, d̂ti is the predicted inflexible demand for
agent i at time t, uti is the flexible demand from the heat pump of agent i at time t and κN is the
total generation capacity.
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The basic idea when rethinking this problem setup as a mean-field game is to consider the case
where N tends towards infinity. There, one has

lim
N→∞

κN
N

= κ , (2.7)

i.e., asymptotically the total generation capacity is the scaled value κ, while

lim
N→∞

∑N
i=1 d̂

t
i

N
= d̂t , ∀t. (2.8)

This goes along common practice, which is that, instead of predicting consumption for each
household individually, one aims at predicting the total consumption of these households readily
(here, in a scaled version). Finally one can also define ūt as

ūt = lim
N→∞

∑N
i=1 u

t
i

N
, ∀t, (2.9)

so that the sequence ū= [ū0, . . . , ūτ−1] is the average electricity consumption profile for heat
pumps across the whole population. Then, the individual profiles are to be seen as local deviations
due to variations in initial states, constraints, etc.

Subsequently, considering that N is large enough, the electricity price at time t∈ T from (2.6)
is approximated as

pt =
β

κ

(
d̂t + ūt

)
. (2.10)

The optimal decisions of all agents involved are coupled by the common electricity price resulting
in a deterministic mean-field game: the decision of each agent depends on the mean input variable
across the whole population [23]. We refer to this mean-field game as GA. At equilibrium, we
write p? = [p?0, . . . , p

?
τ−1]> the optimal price sequence, and x?i (p?) the optimal strategy of agent

i, i∈N . x?(p?) then concatenates the optimal strategies of all agents.

3. Theoretical results and solution approach
Since the setup considered here is different from what can be found in the literature for MF games
for, e.g., fleets of electric vehicles [27] and populations of thermostatically-controlled loads [12],
we first aim here at showing existence and uniqueness of Nash equilibrium for the problem at
hand, based on known techniques to connect mean field games and variational inequalities. We
then describe an adequate solution approach to obtain it.

(a) Existence and uniqueness of a Nash equilibrium
We show existence and uniqueness of a Nash equilibrium by connecting the solution of the
mean field game GA to the solution of variational inequalities. This means that, independently
of the agent heterogeneity, there exists a price sequence p that drives the population to a unique
mean consumption profile, based on the individual optimal strategies x?i of all agents. This
consumption profile is a Nash equilibrium, implying that each agent does not have an incentive to
deviate from her electricity consumption decisions, given the electricity consumption decisions
of the other agents. If this price sequence can be computed, it can be used to perform forward
and real-time control of heat pump populations. Necessarily, this solution is also a social welfare
maximiser, in the sense that it minimises the overall procurement costs for the population of
electricity consumers.

Let us first define the variational inequality problem. In the following we write K =
∏
iKi the

cartesian product of the strategy sets of all agents. And, to lighten notations, we use m= 2τN as
the dimension of K.
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Definition 1. Consider a mapping F :K→Rm, given a set K ⊆Rm. A solution set SOL(K,F ) to the
variational inequality problem VI(K,F ) is a vector x? ∈K such that 〈F (x?),x− x?〉 ≥ 0, ∀x∈K.

A key result that we are to exploit, for instance found in [7], is that non-cooperative games
may be readily connected to the solution of a variational inequality problem. Let us writeK−i the
cartesian product of the strategy sets of all agents except for agent i, i.e., K−i =

∏
j∈N\{i}Kj .

Theorem 1. (Nash equilibria and variational inequalities, Theorem 2 in [7]). Suppose that, for the
game GA, the non-empty strategy sets Ki are closed and convex, and that for every fixed x−i ∈K−i the
payoff functions Ji(xi,x−i) are convex and continuously differentiable in xi ∈Ki . Then a point x? ∈K
is a Nash equilibrium for GA if and only if it is a solution of the variational inequality VI(K,F ), with
K =

∏
iKi and F (x) =

(
∇xiJi(xi,x−i)

N
i=1

)
.

In view of the problem setup described previously, our mean field game GA can be written as a
variational inequality problem. We consequently use two results from [28] to show existence and
uniqueness of the solution of the VI(K,F ) problem and, by Theorem 1, to the mean field game
GA.

Theorem 2. (Corollary 2.2.5 in [28]). Suppose that K is a compact and convex set and that the mapping
F is continuous. Then, the set SOL(K,F ) is non-empty and compact.

Theorem 3. (Theorem 1.3.1 in [28]). Let F :U→R be continuously differentiable on the open convex
set U ⊆R. The following three statements are equivalent: (a) there exists a real-valued function θ such that
F (x) =∇θ(x), ∀x∈U ; (b) the Jacobian matrix of F (x) is symmetric ∀x∈U ; (c) F is integrable on U .

For our mean-field game GA, readily using Theorem 2, we first deduce that the solution to our
VI(K,F ) problem exists. That solution is a Nash equilibrium for the mean-field game GA.

Proposition 1. For the non-cooperative mean field game GA related to the coordination of a population of
heat pumps within a demand-response framework, a Nash equilibrium exists.

Proof. The strategy set of each agent Ki is formed by the upper and lower temperature of
the dwelling, as well as the power bounds and ramping constraints of the heat pump. This
satisfies the compactness and convexity of Ki, and so it does for the strategy set of the game
K =

∏
iKi. The vector x stands for the decision variables of all agents stacked together x=

[x1, . . . ,xN ]>,x∈Rm. Furthermore the map F (x)∈Rm is continuous, since the cost functions
Ji are quadratic and thus, continuous over x and convex over xi for fixed values of x−i ∈K−i.
Therefore, the solution of the game GA exists by Theorem 2.

Following Theorem 3, we rewrite the variational inequality problem as an optimization
problem and study its properties to eventually deduce the uniqueness of the Nash equilibrium.

Proposition 2. For the non-cooperative mean field game GA related to the coordination of a population of
heat pumps within a demand-response framework, the Nash equilibrium is unique.

Proof. If the conditions of Theorem 2 are satisfied, the game GA can be expressed as a VI(K,F )

problem. Following Theorem 3 we can write an equivalent optimization problem that solves
VI(K,F ). To show that the solution to the VI(K,F ) is unique (and by equivalence, uniqueness of
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Nash equilibria for GA), we compute the Jacobian∇F (x)∈Rm×m as

diag(2α1) 0 0 0 0 0 . . .

0 diag
(

2β
κN

)
0 diag

(
β
κN

)
0 diag

(
β
κN

)
. . .

0 0 diag(2α2) 0 0 0 . . .

0 diag
(
β
κN

)
0 diag

(
2β
κN

)
0 diag

(
β
κN

)
. . .

0 0 0 0 diag(2α3) 0 . . .

0 diag
(
β
κN

)
0 diag

(
β
κN

)
0 diag

(
2β
κN

)
. . .

...
...

...
...

...
...

. . .


.

Since the Jacobian of F is symmetric and condition (b,c) of Theorem 3 holds, the complete
version of Theorem 1.3.1 in [28, p. 14] states that there exists a scalar function θ(x) for an arbitrary
vector x0 in the open convex set U ∈Rm given by

θ(x) =

∫1
0
F (x0 + v(x− x0))>(x− x0)dv

=

∫1
0

(
2αi(vsi − s̃i)

β
κN vui + β

κN

∑N
j=1 vuj + β

κ d̂

)>
i=1,N

(
si
ui

)
i=1,N

dv

=

∫1
0

N∑
i=1

(
− 2αi

τ∑
t=1

s̃is
t
i +

β

κ

τ−1∑
t=0

d̂tu
t
i

+

[
2αi

τ∑
t=1

(sti)
2 +

τ−1∑
t=0

β

κN

(
(uti)

2 + uti

N∑
j=1

utj

)]
v

)
dv

=−2

τ∑
t=1

N∑
i=1

αis̃is
t
i +

β

κ

τ−1∑
t=0

N∑
i=1

d̂tu
t
i +

τ∑
t=1

N∑
i=1

αi(s
t
i)

2 +

τ−1∑
t=0

β

2κN

( N∑
i=1

uti

)2

,

which then results in the following optimization problem:

min
x∈K

(
τ∑
t=1

N∑
i=1

αi

(
− 2s̃is

t
i + (sti)

2
)

+
β

κ

τ−1∑
t=0

( N∑
i=1

d̂tu
t
i +

1

2N

( N∑
i=1

uti

)2))
. (3.1)

Problem (3.1) has a unique solution due to its convex and compact constraint set, and strict
convexity of the objective function, being the sum of strictly convex functions [29]. Since the
solution of (3.1) defines the solution set SOL(K,F ), the solution of the original mean field game
GA is also unique.

(b) Solution approach
At the agent level, a requirement for computing the optimal strategy is that each agent i has access
to the electricity price, which is broadcast by the central coordinator. We use this information
structure because it allows agents to compute their optimal strategy without having access to
other agent states or aggregation parameters. They all respond to a macroscopic incentive p, the
price sequence, that accounts for their contribution ui. Therefore, the objective of the mean-field
control is to find the price sequence p?, such that the set of resulting strategies {x?i }i∈N of the
individual agents yield an almost mean-field Nash equilibrium of the game GA. The definition
of an almost mean-field Nash equilibrium (also referred to as ε-Nash equilibrium) can be found
in [23]. Basically, it slightly relaxes the definition of a Nash equilibrium for the case of mean-field
games. For a mean-field ε-Nash equilibrium, agent i has a benefit of maximum ε (with ε small) if
altering her own strategy, given the strategies of all other agents. For ε= 0 one obtains a classical
Nash equilibrium.
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The solution approach that is used here is inspired from the developments in [23], and
references therein. As the population size N tends towards infinity (or at least, with N large
enough), the mean-field Nash equilibrium becomes a mean-field ε-Nash Equilibrium with ε=

O(1/N). In order to compute the price sequence that yields the ε-Nash equilibrium both Picard-
Banach and Mann algorithms could be seen as relevant. The Picard-Banach algorithm was already
used in [10] to compute optimal price signals for the decentralised charging of fleets of electric
vehicles. Even-though our problem does not strictly fulfil the conditions of the Picard-Banach
algorithm for finding a fixed point, we have observed from numerical simulations that it actually
converged, and even faster than the Mann algorithm. Therefore, we only describe and focus on the
Picard-Banach algorithm here. Further theoretical analysis should be performed to understand
why it converges and performs so well with our problem structure.

Remember that when describing the problem setup and related game, emphasis was placed
on a planning horizon with τ time steps. However, the start of this planning horizon is at a given
time w ∈W , with W the simulation period. The problem is not solved a single time only. It is
solved successively on sliding windows. For a given time w ∈W even if the problem is solved for
the whole period [w, . . . , w + τ − 1], only the decisions for time w is implemented (or "binding")
– i.e., both price at the central coordinator level, and electricity consumption for heat pumps at
the agent level. Then, the window is moved by one step with new information available, and
the problem is solved for that new window. The process iterates this way until the end of the
simulation periodW .

Because we place ourselves at a given timew that conditions the information available, state of
the system, etc., this is here reflected in our notations with ".|w" indicating that the related variable
is conditioned by the information available at timew. The solution approach for the decentralised
mean-field model predictive control (hence, the MPC described) consists of the following steps:

(MPC1) The central coordinator issues (or receives from a vendor) a revised forecast of the
inflexible demand d̂|w over the planning horizon T . Based on the forecast and initial
estimates of the heat pump consumption ui|w , the central coordinator calculates the price
sequence p|w following (2.10) and broadcast it to the agents. These initial estimates ui|w
are available from the solution at previous time step w − 1;

(MPC2) Each agent computes her own optimal strategy x?i|w(p) over the planning horizon by
minimizing her cost function (2.4), and then communicates the optimal heat pump
consumption u?i|w(p) to the central coordinator.

(MPC3) The central coordinator collects the individual strategies and updates the price signals
p|w . The updated prices are broadcast to all agents.

(MPC4) Repeat (MPC2) and (MPC3) until the optimal consumption of the heat pumps no longer
changes (based on a chosen convergence criterion).

(MPC5) Each agent implements only her control decision u?,0
i|w(p?) at timestamp w of the MPC.

The state variable evolves following (2.1).
(MPC6) Set w=w + 1 and repeat steps (MPC1)-(MPC5) until reaching the end of the simulation

window.

This solution approach is presented in algorithmic form in Algorithm 1.

4. Accounting for bounded rationality
After reviewing various aspects of bounded rationality that are of relevance to demand response,
we look at a simple, though generic, approach based on the perturbation of the agent optimal
strategies. It allows looking at the effect of bounded rationality on outcomes, without having to
invest into complex and possibly intractable models.
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Algorithm 1: Picard-Banach decentralised model predictive control

1 Choose εstop

2 Initialise s0i|0, ∀i∈N
3 for w= 1, . . . , n(W) do
4 Initialise ε > εstop

5 Set k= 1

6 Calculate pk|w with d̂|w and uk|w = 1
N

∑N
i=1 u

k
i|w

7 while ε > εstop do
8 Broadcast pk|w
9 Compute x?i|w(pk|w) = [s?i|w(pk|w);u?i|w(pk|w)] by solving (2.5), ∀i∈N

10 Compute uk+1
|w = 1

N

∑N
i=1 u

?
i|w(pk|w)

11 Update pk+1
|w using (2.10)

12 Update ε←−
∥∥∥uk+1
|w − uk|w

∥∥∥
2

13 k←− k + 1

14 Implement u?,0
i|w for time step w, ∀i∈N

15 Compute s1i|w as in (2.1) and set s0i|w+1 = s1i|w , ∀i∈N

(a) Bounded rationality in demand response
Different strands in behavioural economics have established a new framework to understand
human decision-making, as well as its biases, by fundamentally questioning the rational
behaviour of human decision-makers. Based on a large collection of experimental studies,
behavioural economists and psychologists have shown that decision-makers are not rational, as
normative models of utility maximization would predict [15]. These models assume that decision-
makers have full information and can compute optimal decisions. Conversely, experimental
evidence shows that decision-makers do not always have known, ordered, and consistent
preferences, leading to sub-optimal decisions and systematic biases [16]. Typically decision-
making occurs under time constraints and incomplete knowledge. Processing capabilities of
decision-makers are restricted by cognitive limitations. Decision-makers are therefore bounded
rational, using heuristics and mental shortcuts, specially in situations characterised by high level
of complexity and uncertainty [30]. The literature on behavioural economics is now very rich,
while easily communicating human biases in decision-making to a broad audience – see [31] for
instance.

Thus far, demand response programs that assume consumer rationality do not rely on realistic
views of energy consumers. Economists argue that existing theories do not represent energy-
related behaviour in the residential sector [32]. In general, consumer information regarding
energy use is incomplete and systematically incorrect, e.g., people tend to overestimate the
amount of energy they use and the amount that can be saved by adopting energy-efficient
technologies [33]. There are also often inconsistencies between observable behaviour and
individuals self-reported knowledge, values, attitudes, and intentions [16].

A few examples of such bounded rationality include:

Time inconsistency: decision-makers show a preference towards immediate outcomes. When
valuing costs and benefits over time, they apply hyperbolic discounting rather than
a constant discount rate as described by normative economic theory. In this way,
decisions in the future are farsighted while decisions in the present are shortsighted. This
immediacy effect gives rise to time-inconsistencies, e.g. not prioritising time and money
to purchase new energy-efficient appliances [16];
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Anchoring on defaults: there is a tendency to maintain the status-quo with resistance to change
even if alternatives may yield better outcomes. Decision-makers generally choose the
default option, specially when the amount of information or complexity increases [16].
An example in the residential energy sector is the selection of an electricity retailer:
consumers tend to stick to the default option even if there are better deals in the market;

Social comparisons: decisions are affected to a large extent by social norms and behaviours of
others. There is also a tendency to form social comparisons and to evaluate performance
or well-being in relative terms [16]. A good example is the result of the campaign
carried out by an electricity retailer who managed to influence consumers behaviour by
comparing their energy use to their neighbours.

In all cases, the basic idea of bounded rationality when used in decision-making in relation
to demand response is that there is going to be a deviation from the optimal decision one would
make if being rational (having complete information, enough time and computing power, etc.).
The characteristics of that deviation may depend on the type of bounded rationality e.g. in
terms of bias and variance of such deviations, temporal and population-based structure, etc. It is
intuitively expected that it leads to some form of sub-optimality in terms of overall social welfare
– hence, higher electricity procurement costs overall for our demand response problem.

(b) Bounded rationality in the decentralised mean-field model predictive
control

There are several models proposed by behavioural economists that describe bounded rationality
in decision-making. However, it becomes challenging to adapt them to engineering applications
such as demand response, for them to be included into decentralised control problems like the
one considered here. Our approach to account for bounded rationality hence does not consist in
explicitly modeling it in its different forms, but instead in perturbing optimal agent strategies.
More advanced approaches should be considered in the future, e.g., by re-thinking the local
optimization problem (2.5) using prospect theory (see [34] and references therein) or similar.

We can assume that if agents are bounded rational they will deviate from their optimal
response by a small amount ξ. We use this ξ to simulate the gap between the optimal strategy
obtained by solving the local optimization problem (2.5) and the actual response of the agents.
Focusing on a given time step w of the simulation periodW , based on the outcome of (2.5), the
actual implemented control ũ0i|w for the heat pump is

ũ0i|w = u?,0
i|w + ξi|w , ∀i∈N , (4.1)

where u?,0
i|w is the optimal power consumption of the heat pump and ξi|w is the small deviation

applied by the bounded-rational agent. This small deviation ξi|w may be fixed – to be more
general, it is considered here as the realization from a random variable Ξi|w with distribution
Fi|w , Ξi|w ∼ Fi|w . For instance, in the result section, Gaussian distributions will be employed for
simplicity. Other distributions may be used, possibly asymmetric, to reflect different views on
bounded rationality. In addition, such distributions may be defined for the population as a whole
while being time-invariant. However, in a more general case, such distributions may be defined
on an individual agent basis, or more likely for groups of agents, while also varying in time e.g.
with the time of day, to reflect that bounded rationality may be linked to the type of activity of
the agents. An alternative approach to perturbing the decisions of the agents could consist in
defining a function that transforms the prices originally broadcast by the central coordinator into
"perceived" prices used as input to the local optimization problems.

This small deviation is only added for t= 0 of the planning horizon since it is the only
decision that the model predictive control actually implements anyway. Therefore, when each
agent computes her optimal strategy, at Step 9 in Algorithm 1, we add a value ξi|w drawn
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from Fi|w to u?,0
i|w and re-optimise fixing u0i|w to ũ0i|w in order to verify that the bounded-

rational strategy is within the feasible space Ki. Consequently, the bounded-rational decision
implemented at t= 0 actually propagates throughout the planning period T . One eventually
obtains x̃i|w(pk|w) = [s̃i|w(pk|w); ũi|w(pk|w)] the bounded-rational strategy of the agent.

The updated version of the Picard-Banach decentralised model predictive control, for the case
of bounded-rational agents, is described in Algorithm 2.

Algorithm 2: Picard-Banach decentralised model predictive control with bounded-
rational agents

1 Choose εstop

2 Initialise s0i|0, ∀i∈N
3 for w= 1, . . . , n(W) do
4 Initialise ε > εstop

5 Set k= 1

6 Draw ξi|w from Fi|w
7 Calculate pk|w with d̂|w and uk|w = 1

N

∑N
i=1 u

k
i|w

8 while ε > εstop do
9 Broadcast pk|w

10 Compute x?i|w(pk|w) = [s?i|w(pk|w);u?i|w(pk|w)] by solving (2.5), ∀i∈N
11 Obtain ũ0i|w based on ξi|w using (4.1), ∀i∈N
12 Obtain x̃i|w(pk|w) = [s̃i|w(pk|w); ũi|w(pk|w)] by re-optimizing through the planning

horizon, ∀i∈N
13 Compute uk+1

|w = 1
N

∑N
i=1 ũ

?
i|w(pk|w)

14 Update pk+1
|w using (2.10)

15 Update ε←−
∥∥∥uk+1
|w − uk|w

∥∥∥
2

16 k←− k + 1

17 Implement ũ0i|w for time step w, ∀i∈N
18 Compute s1i|w as in (2.1) and set s0i|w+1 = s1i|w , ∀i∈N

This approach to account for bounded rationality in the decentralised model predictive control
alters the original mean-field game that was obtained in Section 2. It is not straightforward to see,
based on theoretical arguments, whether the existence and uniqueness of the Nash equilibrium
is preserved or not. Extensive sets of simulations showed that it seems to be the case though. The
necessary theoretical treatment of this modified mean-field game is left for future work.

5. Application and case-study
The aim of this section is firstly to illustrate the workings of the decentralised model predictive
control for a large population of heat pumps. In parallel, it allows illustrating the impact of
forecast uncertainty and information updates. Finally, the impact of bounded rationality is
assessed, both at the agent and system levels.

(a) General setup
Different case studies allow showing how forecast accuracy and bounded rationality affect the
Nash equilibrium. In all the simulations we consider that the number of agents is N = 106.
We base our studies on the Danish power system, with an installed capacity of 1.2 107kW and
a typical inflexible load curve for March 2018 depicted in Figure 2. This results in the total
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generation capacity scaled by the population size κ= 12kW, as well as the dt the inflexible
demand scaled by the population size as shown in the figure. In the perfect information case,
the forecast for the inflexible load is the same of the observation.

The planning horizon considered in the optimization problem of each agent is τ = 13h, also
using a rolling window approach. It means that, at each time step and based on the information
updates, agents consistently solve their local optimization problems for these τ hours. Note
we will also focus on a given period of 13 hours in following when analysing the results, for
which updates where computed at each time step based on local optimization problems solved
for the following τ hours. The linear coefficient used in the price function is set to β = 0.12

following [7]. In the simulations we consider that the population of agents is heterogeneous
and is characterised by different input parameters, e.g. heat-pump capacity, ramping limits,
building thermal characteristics, solar irradiance and ambient temperature profiles, as well as
tracking temperature and comfort bounds. Parameter values for individual agents are drawn
independently from a Gaussian distribution. An overview of the mean and standard deviation
for each parameter distribution can be seen in Table 1.

Table 1. Characterization of the heterogeneous population of agents considered, based on the mean and standard

deviation of their parameters.

ci(kW) δui (kW) δui (kW) s̃i(°C) si(°C) si(°C)

µ 3 -2 2 21 17 25
σ 0.3 0.2 0.2 0.5 0.5 0.5

The data used to simulate the building heat dynamics is taken from [25] and the solar
irradiance and ambient temperature profiles are obtained from [35]. These sources are used as
the mean of a normal distribution from which we sample the building parameters and weather
time series for each agent. The temperature penalization factor was set to α= 100. This value was
chosen after doing some exploratory tests: lower values were not enough to track the reference
temperature while higher values resulted in indifference to electricity prices. The predicted
inelastic demand of the system is generated with adding a multivariate Gaussian deviation
with an exponentially decreasing covariance structure to the inflexible load measurements. The
covariance matrix Σ ∈Rτ×τ is based on a correlation matrix C∈Rτ×τ and a model for the
standard deviation σ ∈Rτ as a function of the lead time. This writes

ρi,i = 1 , ρi,j = exp

(
−|i− j|

ν

)
, ∀i, j ∈ {0, . . . , τ − 1} , (5.1a)

σ= Ψ log(k + 1) , k ∈ {0, . . . , τ − 1} , (5.1b)

Σ =σσ> ◦C , (5.1c)

where C = (ρij)ij is a correlation matrix, σ a standard deviation vector and ◦ the Schur product.
The parameter Ψ controls the growth of uncertainty with increasing lead times, and hence the
forecast accuracy. In parallel, ν is a range parameter that controls the exponential decay of the
covariance. With such an approach, forecasts are inherently unbiased. Relevant biases in the
forecasts could be readily accounted for, and their effects additionally studied.

(b) Model predictive control vs. open-loop strategy
We start by showing the difference between the open-loop and the model predictive control
strategy. In the first case, the forecasts are not updated, and the profile of heat pump consumption
is obtained at once with the available information at 20:00 for the following thirteen hours of
the planning horizon. On the contrary, with the model predictive control strategy, forecasts are
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updated every hour, allowing the population of agents to adjust their profile to changes in the
inelastic demand reflected through the electricity prices. To compare both strategies we simulate
a disturbance in the system: at 00:00 the inelastic demand undergoes a step reduction and recovers
at 3:00. We differentiate between two cases, perfect and imperfect forecasts. In the former case, the
forecast captures perfectly the step reduction and its length, while in the latter case, the forecast
step reduction lasts until 8:00.

The mean heat pump consumption across the population obtained with the open-loop strategy
is plotted in Figure 2 with dark blue and cyan dots for both perfect and imperfect forecast
respectively. Both coincide since the information available at 20:00 is the same in both cases.
However, there is a difference with the model predictive control strategy, plotted with dark blue
and cyan lines, for perfect and imperfect forecast cases, respectively. In the open-loop strategy, the
agents do not know that there is going to be a reduction in the inelastic demand and consequently
in the electricity prices, and only adjusts their consumption to general shape for the inelastic
demand trajectory over the coming period, with a succession of smooth ramps down (20:00 to
3:00) and up (3:00 to 9:00). Meanwhile, with the model predictive control strategy the agents
increase their consumption in the hours when the step reduction is happening. In the perfect
forecast case the increase is steeper, since the low electricity prices only last three hours. On
the contrary, in the imperfect forecast case the increase happens a bit later, assuming that the
electricity prices remain lower for longer time. Obviously, after the disturbance has passed (at
3:00), both MPC with perfect and imperfect forecasts realize that the system is back on the
original trajectory. However, the impact of the decisions made during the 3-hour window of the
disturbance necessarily propagates due to system dynamics and constraints.
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Figure 2. Example of disturbance in the system. Comparison between open-loop and model predictive control (MPC)

strategies. (PF) stands for perfect forecast case and (IF) stands for imperfect forecast case.

(c) Effect of forecast accuracy
Once we know that the MPC strategy works better than the open-loop one (in the sense that
it better adapts to the changes in the environment), we now focus on the impact of forecast
accuracy. For that purpose, different forecasts are generated by adding multivariate Gaussian
deviations as described in the above. We vary the forecast accuracy by choosing different values
of Ψ = {0.1, 0.2, 0.3} and perform a Monte Carlo simulation with 10 runs for each value of Ψ . The
parameter ν that controls the exponential decay of correlation among lead times is set to ν = 13.
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In Figure 3, the mean consumption across the population of heat pumps is depicted for each
forecast accuracy and compared to the perfect forecast case. The larger forecast inaccuracies lead
to larger deviations from the perfect forecast case. This deviation increases with the lead time,
which is in line with the covariance structure, and are more pronounced when the inelastic
demand rate of change is higher, e.g. at 22:00. Even if the Nash equilibrium obtained in each case
is different it does not have a significant impact on the objective function. The mean objective
function across the population is e1649.58 in the perfect forecast case, and e1649.86, e1649.21,
e1648.99 for Ψ = {0.1, 0.2, 0.3}, respectively. Those values are very close, and this result should
be interpreted as the fact that changes in forecast uncertainty are mitigated by population effects
when it comes to population-average costs. In addition, the distributions have similar shapes and
quantiles, therefore we can conclude that the effect of the forecast accuracy is mitigated by the
population effects in terms of cost, beyond the mean only, but not in terms of consumption. Recall
that the plot shows the mean consumption across the population, but the aggregated effect of this
small deviations has a significant impact on the system demand.
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Figure 3. Time-series of mean heat pump consumption across the population. Difference between perfect forecast case

and imperfect forecast with Ψ = {0.1, 0.2, 0.3}.

(d) Effect of bounded rationality
Finally, we relax the rationality assumption and study the impact of bounded rational agents on
the system equilibrium. We model bounded rationality following (4.1). In the cases where adding
the ξi|w lead to infeasibility we stick to the rational decision instead. This assumption could fit
to reality, i.e., the local controller for the heat pump may check whether the human intervention
may lead to infeasibility and if so overrides it. Further work could focus on other alternatives, e.g.
projection on the feasible set. Five different setups of bounded rational agents are defined and
denoted by “BR 1”, “BR 2”, “BR 3”, “BR 4”, and “BR 5”:
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• In the first three cases (“BR 1”, “BR 2”, “BR 3”), ξ is drawn from a Normal distribution
with µ= 0 and σ= {83, 167, 250}, respectively. Those distributions are the same for all
agents and all times. In practice for instance with “BR 1”, 99.7% of the population will
deviate from the rational choice by ±249W;

• In the last two cases (“BR 4” and “BR 5”), we cluster the agents into three groups with
ξi|w drawn from three different Normal distributions characterised by µ= {−500, 0, 500}
and σ= 83. In “BR 4” agents are equally distributed between the groups, while in “BR 5”
the distribution among groups was randomly chosen. There, the distributions are time-
invariant, but vary among groups of agents.

In all the cases, for simplicity, we consider that there is perfect forecast accuracy. We did not
include results where both bounded rationality and forecast accuracy are studied together, since
by construction they are not interdependent, and it may then be difficult to isolate the effect of
bounded rationality. Obviously in practice both effects will be there at the same time and possibly
magnify each other.

Figure 4 shows the difference of the mean consumption across the population between
the bounded-rational and the rational case. During the hours with low inelastic demand, the
equilibria computed for the bounded-rational cases are systematically lower than for the rational
case. In those hours, the heat pumps are running at high load, taking advantage of low
electricity prices. Therefore, the bounded-rational agents trying to increase their consumption
would hit the heat pump capacity. Meanwhile, the bounded-rational agents who try to reduce
power consumption of the heat pumps are still capable to do so, resulting in a lower mean
consumption. This effect is inverted when the inelastic demand increases, resulting in a higher
mean consumption. The spikes that appear in “BR 4” and “BR 5” are a result of how bounded
rationality diffuses in time. In those cases there are groups of bounded-rational agents who
systematically decrease their consumption by a larger amount. This makes that for given time
steps, either the lower bound of the heat pump or the low temperature bound of the comfort
settings is reached, and the system needs to recover in the following time step. Further work could
focus on adding complexity to the modelling of the heat pump; e.g. by introducing minimum on-
off times, the bounded rational decisions are expected to have a higher diffusion in time. Lower
mean consumption translates to lower electricity prices, specially in the hours of low inelastic
demand as we discussed before. The time-series of electricity prices can be observed in Figure 5.

The bounded rational decisions also have an impact on indoor temperature and consequently
on agent comfort. Figure 6 illustrates the deviations of the indoor temperature from the reference
temperature s̄i. The more the agents deviate from the optimal response, the more the temperature
deviates from its reference. This translates to higher discomfort and then higher costs.

The total costs including both the cost of electricity and the discomfort term are depicted in
Figure 7. The cost function is on average higher for bounded rational agents. This is mainly due
to the discomfort term which is 586− 15761% larger than in the rational case on average. On the
other hand, the cost of electricity is 0− 6% smaller than in the rational case on average, while
the 90% quantile shows a cost of electricity that is 0− 22% larger than in the rational case. Note
that the lower electricity costs are linked to the period simulated, as previously discussed with
Figure 4.

6. Conclusions
With the increasing deployment of distributed energy resources, it is of utmost relevance to
investigate alternative approaches to their control in a market-based environment for various
applications, e.g., demand response. We placed emphasis here on the case of population of
heat pumps to be coordinated. Model predictive control was chosen as the control framework,
to accommodate the temporal inter-dependencies in the heat dynamics of dwellings, and
information renewal with regularly updated forecasts. The decentralised control was re-thought
as a mean-field game, where the price sequence communicated by the central coordinator
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Figure 4. Time-series of mean heat pump consumption across the population. Difference between rational case and

bounded rational cases.
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Figure 5. Time-series of electricity prices for different cases of bounded rationality.

summarizes the impact of the decisions (as well as constraints and states) of all agents involved.
It allowed to give a number of theoretical results related to the existence and uniqueness of
a Nash equilibrium for such a game. The Picard-Banach algorithm was used as a solution
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Figure 6. Boxplot of indoor temperature across the population. Distance to tracking temperature for different cases of

bounded rationality.
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Figure 7. Boxplot of total objective function across the population for different cases of bounded rationality.

approach to obtain the optimal price sequence and strategies of the agents. Importantly, we
relaxed the rational assumptions for the agents in order to obtain a complete framework that
allows analysis of the impact of bounded rationality on outcomes at system and agent levels.
A Picard-Banach algorithm was proposed for the case of bounded-rational agents. Additional
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theoretical considerations are necessary to better characterise the properties of the game with
bounded-rational agents and the approach to account for bounded rationality that we proposed.

The numerical simulations showed that the effect of forecast accuracy is mitigated by
population effects. In contrast, bounded rationality has a big influence on system equilibria, and
consequently on electricity prices, comfort and total costs. Further emphasis should be placed on
understanding human decision-making and behaviour when it comes to electricity consumers
and their use of distributed energy resources (also including stationary battery storages, electric
cars, etc.) in order to optimally utilise and steer available flexibility on the demand side. It is
clear that more advanced models for various types of bounded rationality, e.g., anchoring and
hyperbolic discounting, ought to be placed in relevant control and game-theoretic frameworks.
Eventually, in view of the potential impact of bounded rationality on agent-level and system-level
outcomes, hedging strategies should be proposed in order to obtain efficient and fair outcomes.
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