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We present a protocol for transferring arbitrary continuous-variable quantum states into a few discrete-
variable qubits and back. The protocol is deterministic and utilizes only two-mode Rabi-type interactions
that are readily available in trapped-ion and superconducting circuit platforms. The inevitable errors caused
by transferring an infinite-dimensional state into a finite-dimensional register are suppressed exponentially
with the number of qubits. Furthermore, the encoded states exhibit robustness against noise, such as
dephasing and amplitude damping, acting on the qubits. Our protocol thus provides a powerful and flexible
tool for discrete-continuous hybrid quantum systems.
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Introduction.—Quantum information processing (QIP)
can be realized using both discrete variables (DV), such as
the energy levels of atoms or superconducting qubits, or
continuous variables (CV) [1], such as the quadratures of an
electromagnetic field, spin ensemble, or mechanical oscil-
lator. Both types of systems have various advantages and
disadvantages, depending on the particular task, application,
and implementation. For example, universal control of noisy
many-qubit systems has become available [2], but truly
scalable systems and breakeven error correction remains to
be demonstrated. On the other hand, CV QIP is highly
scalable, allowing long range interactions that have been
used to demonstrate entanglement of millions of modes [3]
and generation of 2D cluster states [4,5] with current
technology. Furthermore, the infinite dimensionality of a
single CV mode can be utilized for hardware-efficient
single-mode error correction [6–9], and high-dimensional
operations, such as the quantum Fourier transform, can be
implemented with simple single-mode operations [1].
However, non-Gaussian operations required for universal
quantumprocessing and fault tolerance haveproven difficult
to realize in pure CV systems.
Two of the leading platforms for quantum computing are

trapped ions and superconducting circuits. These systems
support bothDVQIP through spin or charge qubits, aswell as
CV QIP through motional modes or microwave cavity
modes. Furthermore, the CV and DV modes can couple,
enabling CV-DV hybrid interactions. In fact, it is common to
utilize this hybrid interaction to enablevariousoperations. For
example, for DV QIP, the CV modes can be used to facilitate
multimode operations and qubit readout [10,11].Meanwhile,
for CV QIP, the DV modes are used to enable non-Gaussian
operations [6–9] that are required for universality. Thus,
CV-DV hybrid interactions have proven valuable in over-
coming the challenges associated with either CVor DV QIP.

Here, we add a new element to the toolbox of CV-DV
hybrid operations by showing that arbitrary quantum states
can be coherently and deterministically mapped between a
CV mode and a collection of qubits using accessible two-
mode interactions. This mapping has several potential
applications for QIP. For example, our scheme enables
qubit-based memories for CV states. Many types of CV
QIP rely on heralded, nondeterministic operations and are
therefore dependent on quantum memories. A qubit-based
memory could enable DV error correction protocols to be
carried out on arbitrary CV states. Additionally, if the
qubits are coupled to two different CV modes, e.g.,
transmon qubits coupled to both a mechanical acoustic
mode and a microwave cavity mode, one CV mode can be
encoded to the qubits and then decoded onto the other CV
mode, enabling qubit-mediated transfer of CV information
from one CV mode to another. Furthermore, our scheme
can also be used for efficient deterministic generation of
arbitrary CV states, such as non-Gaussian states, by
preparing the qubits in an equivalent encoded state and
then applying the inverse mapping to transfer the state to
the CV mode. In general, applications of this protocol will
strongly depend on the physical system but promise to aid
in solving a wide range of issues in hybrid QIP platforms.
Protocols for transferring CV states into qubits have

previously been proposed [12,13]. However, unlike
Ref. [12] our protocol makes efficient use of the available
qubit dimensionality, such that only a few qubits are
required, and unlike Ref. [13] our protocol uses only
experimentally available interactions.
Protocol.—The system we are considering consists of a

single CVmode andN > 1 qubits, as illustrated in Fig. 1(a).
The protocol is designed to transfer an arbitrary CV state
jψiCV into an entangled state of the qubits, leaving the CV
mode in an input-independent state, which we denote j0̃iCV.
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Since the CV mode has an infinite dimensionality while the
qubits have a finite dimension, such a protocol is in principle
impossible for arbitrary states. However, in practice we can
expect relevant input CV states to have majority of their
support in a finite-dimensional subspace, thereby allowing a
CV-DV mapping to a good approximation. Furthermore,
since the dimension of the qubit subspace scales exponen-
tially, i.e., 2N , with the number of qubits, N, we can expect
the approximation to become very good with only a few
qubits. In general, the protocol can be described by the
following unitary operation:

Û½jψiCVj0iDV� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − εÞ

p
j0̃iCVjΨiDV

þ ffiffiffi
ε

p jΦεiCV=DV; ð1Þ

where j0iDV ¼ ⊗N
k¼1j0ik is the product of the ground states

of the qubits, jΨiDV is the encoded DV state, and jΦεiCV=DV
is a residual entangled CV-DV state defined to make Û
unitary and such that hΦεj0̃i ¼ 0. ε is a real parameter,
0 ≤ ε ≤ 1, quantifying the error of the protocol, e.g., due to
the CV-DV dimensionally mismatch. ε thus depends on the
input state, and a successful protocol should aim tominimize
ε for a large class of input states.

The input state can be recovered by applying Û†. If the
CV mode is completely reset to the state j0̃iCV after the
application of Û, the fidelity, F, between the input and
recovered state is related to ε by

ð1 − εÞ2 ≤ F ≤ 1 − ε; ð2Þ

with the exact value of F depending on the input state
(details are given in the Supplemental Material [14]).
We now show how to decompose Û into experimentally

accessible two-mode interactions. A circuit diagram of the
encoding unitary is shown in Fig. 1(b). It consists of N
interaction terms, each of which are composed of two
interactions, V̂k and Ŵk, between the CV mode and one of
the qubits. These interactions are conditional displacements
[8,15,16] that are generated by a Rabi-type Hamiltonian,
i.e., a coupling between a quadrature operator of the CV
mode and a Pauli operator of the qubit:

V̂k ¼ exp

�
i

π

2λ2k
q̂σ̂ðkÞy

�

Ŵk ¼
8<
:

exp
h
i λ2

k

2
p̂σ̂ðkÞx

i
; if k < N

exp
h
−i λ2k

2
p̂σ̂ðkÞx

i
; if k ¼ N

; ð3Þ

where q̂ and p̂ are the quadrature operators of the CV mode

satisfying the commutation relation ½q̂; p̂� ¼ i and σðkÞx and

σðkÞy are the Pauli-x and y operators of the kth qubit. The
interaction parameter λ is the only free parameter of the
protocol. As we show below, it should be optimized
according to the number of qubits and the size of the
input state, i.e., the wideness of the support of the input
state in phase space. Importantly, a single value of λ can be
used to encode a wide range of different CV states,
meaning that little knowledge of the input CV state is
required for the protocol to work. In the Supplemental
Material [14], we show that the interactions defined in
Eq. (3) achieves the desired unitary operation of Eq. (1) for
arbitrary states, with ε decreasing with N. The qubit state
after the interaction is

jΨiDV∝̃
X
s

ψðqsÞjϕis; ð4Þ

where the sum is over 2N terms, jϕsi form a specific
orthonormal basis of the qubit space, ψ is the q-quadrature
wave function of the input CV state, and qs form an
equidistant array of 2N numbers from −λð2N − 1Þ to
λð2N − 1Þ with spacing 2λ (see the Supplemental
Material [14] for details). Thus, the qubit state samples
the wave function at 2N discrete points. From this feature
we can intuitively understand how we should tune λ: First,
to accurately capture variations in the CV wave function,
the distance between the samples should be smaller than

FIG. 1. (a) Circuit of encoding and decoding to transfer a CV
state to a collection of qubits and back. (b) The encoding is
achieved by interacting the CV mode sequentially with each of
the qubits. (c) Each interaction unitary is composed of two Rabi
interactions as given by Eq. (3).
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any large variation of ψ , i.e., 2λ should be sufficiently
small. Second, to capture the entire wave function, the
sampling axis should be sufficiently wide, i.e., λð2N − 1Þ
should be large. Satisfying both of these constraints
becomes easier for larger N, and for fixed N we can expect
an optimum λ to exist.
The state j0̃iCV is given by

j0̃iCV ¼ 1ffiffiffiffiffi
2λ

p
Z

dq sin c

�
π
q
2λ

�
jqi; ð5Þ

where sin cðxÞ ¼ sinðxÞ=x and jqi denotes a q̂ eigenstate,
e.g., q̂jqi ¼ qjqi. To decode the CV state with the inverse

unitary, Û†, the CV mode should first be prepared in the
state j0̃iCV. Since the encoding protocol approximately
leaves the CV mode in state j0̃iCV, this can be done by
applying Û to an arbitrary CV state, e.g., a vacuum or
thermal state, along with ancillary qubits. In fact, to prepare
j0̃iCV it suffices to use the same qubit for all N interactions
by resetting the qubit to its ground state after each Ŵ V̂
interaction. Alternatively, j0̃iCV can be approximated with
fidelity 0.89 by a squeezed vacuum state with squeezing
parameter logð1.12=λÞ (details in the Supplemental
Material [14]). We note that the exact state j0̃iCV is in
fact unphysical, as it has infinite energy since h0̃jq̂2j0̃i ¼ ∞
for all λ. However, finite energy states, e.g., the state
prepared by applying Û to vacuum, can approximate j0̃iCV
with high fidelity.
An example of the encoding and recovery of a CV

Schrödinger’s cat state is shown in Fig. 2. Figure 2(e)
shows how the input CV wave function is directly mapped
onto the qubits (with a suitable qubit basis choice).
Meanwhile, Fig. 2(b) shows how the CV mode approx-
imately transforms to the state j0̃iCV. The state shown in
Fig. 2(c) is the recovered state after the CV mode is
completely set to j0̃iCV and the qubits are decoded onto
the CV mode, i.e., as shown in the circuit of Fig. 1(a). The
small differences between Figs. 2(a) and 2(c) are due to the
nonzero ε arising from the mapping. However, the key
features of the CV state, such as the position of the coherent
peaks and the central interference pattern with negative
values, are preserved.
We now numerically demonstrate this result for specific

input states. We first consider Fock states, as these
represent fundamental quantum basis states, spanning the
entire CV mode, with experimentally relevant quantum
states typically having main support on low photon–
number Fock states. Figure 3(a) shows how ε depends
on λ forN ¼ 4 and N ¼ 10 qubits, respectively, using Fock

FIG. 2. Example of encoding and recovery of a CV Schrö-
dinger’s cat state, ðe−i

ffiffi
2

p
αp̂ þ ei

ffiffi
2

p
αp̂Þjvaci with α ¼ 2, using N ¼

4 qubits and λ ¼ 0.29. Wigner functions (a)–(c) of the CV mode
and probability distributions (d)–(f) of the qubits before encoding
(a),(d), after encoding (b),(e), and after decoding (c),(f) with the
CV mode completely reset to the state j0̃iCV after the encoding.
The black curve in (e) shows the q-quadrature distribution of the
input CV state with the x axis shown at the top of the figure.

FIG. 3. (a) Error, ε, as a function of the interaction parameter λ for N ¼ 4 and 10 qubits with Fock state inputs. (b) Error as a function
of qubit number for Fock state inputs using the optimal λ for each state. Lines show a fit to εðN; nÞ ¼ e−aNðbnþ cÞ, using the values of
the filled circles. (c) Error as a function of qubit number randomly sampled input states with different fixed mean photon number n̄. The
shaded areas contain states with εwithin 1 standard deviation from the mean ε of the sample. The inserts show the Wigner function of an
example input state with n̄ ¼ 7 and the corresponding recovered state using N ¼ 6 qubits.
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states as inputs. For each input we find that there exists an
optimum λ as expected, and that as we add more qubits, this
optimum shifts to smaller values. We also find that, for any
fixed λ, smaller number Fock states are better encoded than
larger number Fock states. Thus, one setting optimized to
encode large states can simultaneously be used to encode
smaller states with as good or better performance.
Figure 3(b) shows how ε depends on the number of

qubits for Fock state inputs, choosing the optimum λ for
each point. We observe a clear exponential decrease in ε
with increasing number of qubits. Additionally, fixing ε we
find that adding a single qubit allows the storage of
approximately twice as large input states, e.g., 4 qubits
enable the encoding of j1i with ε ¼ 0.1, while 5 qubits
allow the encoding of j3i with the same error, 6 qubits can
encode j7i, and so on. This scaling is confirmed by the
good agreement to the empirical equation for the error for
Fock state n using N qubits, εðN; nÞ ¼ e−aNðbnþ cÞ,
which is shown by the lines of Fig. 3(b) using the fitted
values of ða; b; cÞ ¼ ð0.65; 0.62; 1.04Þ. The exponential
scaling with the number of qubits and linear scaling with
the Fock number shows that the protocol efficiently utilizes
the dimensionality of the qubits, such that large CV states
can be encoded using relatively few qubits.
To demonstrate the versatility of the protocol, Fig. 3(c)

shows the performance for randomly sampled input states
(see the Supplemental Material [14] for details on these
states).A typical example of theWigner functionof a random
statewith n̄ ¼ 7 photons is shown in the inset of Fig. 3(c). For
each N and n̄ in Fig. 3(c), we calculate ε for 100 of such
random states using a single λ chosen to approximately
optimize the average ε. The shaded area denotes the states
within 1 standard deviation from the mean ε of the samples.
As with the Fock states, we observe an exponential decrease
in ε with N. In addition, we again note that adding a single
qubit allows the encoding of states with approximately twice
the mean photon number, keeping ε fixed.
Next, we check the stability of our scheme against errors

occurring in the qubit system while the state is encoded. In
particular, we consider the qubit dephasing channel

ΛzðρÞ ¼ K̂ð1Þ
z ρ½K̂ð1Þ

z �† þ K̂ð2Þ
z ρ½K̂ð2Þ

z �†; ð6Þ

and qubit amplitude damping channel

ΛΓðρÞ ¼ K̂ð1Þ
Γ ρ½K̂ð1Þ

Γ �† þ K̂ð2Þ
Γ ρ½K̂ð2Þ

Γ �†; ð7Þ

with Kraus operators

K̂ð1Þ
z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − pz

p
Î; K̂ð2Þ

z ¼ ffiffiffiffiffi
pz

p
σ̂z ð8Þ

K̂ð1Þ
Γ ¼ j0ih0j þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − Γ

p
j1ih1j; K̂ð2Þ

Γ ¼
ffiffiffi
Γ

p
j0ih1j; ð9Þ

where ρ denotes the qubit density matrix, pz denotes the
probability of a single-qubit phase flip, and Γ denotes the

probability of a single qubit decay event. Figure 4(a) shows
the fidelity of the recovered state after the CV mode is reset
and each qubit has experienced either dephasing or
amplitude damping for an input 5-photon Fock state,
j5i, and a random state with n̄ ¼ 3 average photons,
jψ rani using N ¼ 6 qubits. As can be expected, the fidelity
drops as the qubits experience more noise. However, a
single figure of merit, such as the fidelity, is often
insufficient to capture the full nonclassical aspects of
non-Gaussian CV states. Therefore, we also qualitatively
analyze the Wigner functions, quadrature distributions, and
photon distributions of the two selected non-Gaussian trial
states. Other input states have shown similar behavior.
Figures 4(c) and 4(d) show the recovered states after each

FIG. 4. (a) Fidelity of recovered states when the qubits undergo
dephasing or amplitude damping for an input 5-photon Fock
state, and a random state with n̄ ¼ 3 using λ ¼ 0.07 and N ¼ 6
qubits. (b)–(d) Wigner functions, quadrature distributions, and
photon number distributions for the 5-photon Fock state (left) and
the n̄ ¼ 3 photon random state (right). (b) Input states. (c) Output
when each qubit undergoes dephasing with pz ¼ 0.05. (d) Output
when each qubit undergoes amplitude damping with Γ ¼ 0.05.
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qubit has undergone dephasing or amplitude damping with
an error probability of pz ¼ 0.05 or Γ ¼ 0.05. For both
channels we observe a smearing of the q-quadrature
distributions while the p-quadrature distributions remain
almost intact compared to the input for both trial states.
More importantly, we find that the negative regions of the
Wigner functions (highlighted in blue), which are strong
indicators of nonclassicality, remain non-negligible. Thus,
even moderate error rates do not have a severe effect on the
recovered states.
Another important noise source is noise occurring during

the encoding and decoding operations. In the Supplemental
Material [14], we analyze this type of noise using a master
equation approach. For such noise, adding more qubits can
eventually degrade the performance of the protocol, since
the encoding and recovery operations take longer to
perform, thus accumulating more noise. To mitigate this,
the conditional displacements should ideally be imple-
mented on a timescale much faster than the noise rates.
In conclusion, we have presented a feasible unitary

protocol to map arbitrary CV states into a few qubits.
This can be realized using only conditional displacements
generated by Rabi-type coupling Hamiltonians, which
currently are available in trapped-ion systems [16] and
superconducting circuits [8]. The protocol is fully deter-
ministic and requires no measurements or feed-forward.
The error rates caused by the finite dimensionality of the
qubit subsystem decrease exponentially with the number
of qubits. Furthermore, small dephasing or amplitude-
damping errors acting on the qubits do not translate into
large errors in the protocol. We have focused on encoding
arbitrary CV states into qubits, but similar techniques might
be used to map arbitrary multiqubit states into a single CV
mode. Such mapping could facilitate multiqubit operations
and hardware-efficient qubit transfers. We leave this as an
interesting open direction for future work.
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