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RAP-modulated Fluid Processes:

First Passages and the Stationary Distribution

Nigel G. Bean1, Giang T. Nguyen1, Bo F. Nielsen2 and Oscar Peralta1,3

1School of Mathematical Sciences, The University of Adelaide
2DTU Compute, Technical University of Denmark

3Faculty of Business and Economics, University of Lausanne

Abstract

We construct a stochastic fluid process with an underlying piecewise deterministic Markov
process (PDMP) akin to the one used in the construction of the rational arrival process
(RAP) in [3], which we call the RAP-modulated fluid process. As opposed to the classic
Markov-modulated fluid process driven by a Markov jump process, the underlying PDMP
of a RAP-modulated fluid process has a continuous state space and is driven by matrix
parameters which may not be related to an intensity matrix. Through novel techniques we
show how well-known formulae associated to the Markov-modulated fluid process, such as
first passage probabilities and the stationary distribution of its queue, translate to its RAP-
modulated counterpart.

Keywords:Stochastic fluid process, rational arrival process, matrix-exponential distribution,
first passage probability, stationary distribution

2010 Mathematics Subject Classification: Primary: 60J25, 60G17; Secondary: 60K25

Introduction

rkov-modulated fluid process (X , ϕ) = {(Xt, ϕt)}t≥0 is a Markov additive process in which
ackground component ϕ is a Markov jump process with finite state space and the additiv
onent X is piecewise linear, with a rate that depends on the background state:

Xt =

∫ t

0
rϕsds, t ≥ 0.

study of steady-state aspects of Markov-modulated fluid processes goes back to [15, 1, 13]
ts literature has been prolific from both applied and theoretical perspectives. Latouche and
en [14] provide a comprehensive survey on the topic; much of the existing analysis exploit
robabilistic interpretation of the background process ϕ with finite state space.
related concept is a Markovian arrival process (N ,J ) = {(Nt, Jt)}t≥0, where N is a count
rocess and J is the underlying Markov jump process with initial distribution α, hidden
s according to an intensity matrix C, and observable jumps according to a nonnegative in
ty matrix D. Jump times of the latter kind correspond to the arrival epochs of N . Asmussen

ladt [3] introduce rational arrival processes (RAP), a generalization of Markovian arriva
sses for which α, C and D are not necessarily related to the parameters of a Markov jump
ss. They show that the arrivals associated to this algebraic generalization are determined

1
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underlying continuous-state-space piecewise-deterministic Markov process which here w
to as an orbit process. This orbit process evolves deterministically between its jump times

occur according to a given space-dependent intensity function. The arrival epochs of th
can then be regarded as the jump times of the orbit process, allowing for a probabilisti
sis of the former using the physical interpretation of the latter.
the present paper, we consider an extension of Markov-modulated fluid processes, which

ll RAP-modulated fluid processes. A RAP-modulated fluid process (R,A) = {(Rt,At)}t≥
arkov additive process in which the additive component R is still piecewise linear but th

ground component A is now an orbit process. A similar generalization was introduced in
om Quasi-Birth-Death processes, where the additive component lives on the integers and i
lated by a Markovian jump process, to QBD-RAP, where the additive component still live
e integers but is now modulated by a RAP. The class of RAP-modulated fluid processe
troduce here goes beyond Markov-modulated fluid processes; for instance, one may use a
ov renewal process with matrix-exponential times in order to model the orbit process of a
-modulated fluid process.
dditional to defining the class of RAP-modulated fluid processes, the contributions of thi
r include providing first passage probabilities, an expression for the stationary distribution

queue, and an algorithm for computing the expected value of the orbit process A a
rst downcrossing times of the level process to level 0. While the expressions and pathwis
sis that we perform are well-known in the Markov-modulated fluid process framework (e.g
in [7] and [10]), our main contribution in this respect is the introduction of the properly

al mathematical description along with novel techniques to deal with this generalization.
he structure of the paper is as follows. We define in Section 2 the simplest RAP-modulated
process, which we call a simple RAP-modulated fluid process. Although simplistic in it

re, this process helps us introduce the physical analysis and discuss necessary conditions o
P-modulated fluid process. In Section 3, we give a precise definition of the RAP-modulated
process with unit rates, whose associated level process has either slope 1 or −1; we presen
d-form formulae for some important descriptors of this process in Section 4. Then, in Sec
5 we define and analyze an extension called the RAP-modulated fluid process with unit and
rates, where the level process is now allowed to have piecewise-constant intervals. Later on
fine the RAP-modulated fluid process with general rates in Section 6 and discuss technique
over formulae for its descriptors using the results from Section 5. We conclude by providing
mary in Section 7.

ur work demonstrates that several results of Markov-modulated fluid processes translat
he framework of RAP-modulated fluid processes, although different techniques are required
alyze the latter.

Simple RAP-modulated fluid process

e following we introduce the simplest non-trivial example of a RAP-modulated fluid process
) = {(Rt,At)}t≥0, which we refer to as a simple RAP-modulated fluid process. To tha

first we define A = {At}t≥0, the (simple) orbit process.
he process A is a càdlàg piecewise-deterministic Markov process (PDMP) with state spac

+,−}Zk, where for each k ∈ {+,−}, Zk is a subset of the affine hyperplane {x ∈ Rmk

1} for some fixed mk ≥ 1. Here, the elements of Zk are regarded as row vectors and 1 i
umn vector of ones of appropriate dimension. Thus, A is a row-vector process of varying
nsion, either m+ or m− depending on whether it is in Z+ or Z− at the given instant. In

2
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al m+ 6= m−, but even in the case m+ = m− the subsets Z+ and Z− will be considered
long to different spaces, and thus they will always be disjoint. We let the initial poin
Z+ ∪ Z− be arbitrary but fixed.

ach PDMP is characterized by its motion between jumps, jump intensity and transition
anism at its jump epochs [11], properties which we define for A next. During an interva
ut jumps, say [t, t+ h) with h > 0, the orbit process A evolves according to the system o
ary differential equations (ODE) given by

dAs

ds
=

{
AsC

+ − (AsC
+1)As for As ∈ Z+, s ∈ (t, t+ h),

AsC
− − (AsC

−1)As for As ∈ Z−, s ∈ (t, t+ h),
(2.1

me C+ ∈ Rm+×m+
and C− ∈ Rm−×m−

. The solution to the ODE (2.1) is

At+r =





Ate
C+r

AteC
+r1
∈ Z+ if At ∈ Z+, r ∈ [0, h),

Ate
C−r

AteC
−r1
∈ Z− if At ∈ Z−, r ∈ [0, h).

(2.2

that in (2.2) we implicitly assume that, for each initial point in Z+ ∪ Z−, the system o
s (2.1) evolves entirely within Z+ ∪ Z−. As A evolves within Z+ ∪ Z−, jump epochs occu
ding to a location-dependent intensity function λ : Z+ ∪ Z− 7→ R+ given by

λ(At) =

{
AtD

+−1 if At ∈ Z+,

AtD
−+1 if At ∈ Z−,

(2.3

ome D+− ∈ Rm+×m−
and D−+ ∈ Rm−×m+

. Since λ(·) is assumed to be a nonnegativ
ion, it indeed corresponds to a valid intensity function.

dition 2.1. C+1 +D+−1 = 0 and C−1 +D−+1 = 0.

his condition implies that λ can alternatively be written as

λ(At) =

{
−AtC

+1 if At ∈ Z+,

−AtC
−1 if At ∈ Z−.

(2.4

(2.2) and (2.4) it can be readily verified that

P (A has no jumps in [t, t+ h] |At) =




Ate

C+h1 if At ∈ Z+,

Ate
C−h1 if At ∈ Z−.

(2.5

d, by [11], the function F (h) := P (A has no jumps in [t, t+ h] |At = α) with α ∈ Zk

sponds to the unique differentiable solution of

logF (h) = −
∫ h

0
λ

(
αeC

kr

αeCkr1

)
dr =

∫ h

0

[
αeC

kr

αeCkr1

]
Ck1dr. (2.6

F (h) = αeC
kh1 is a solution follows by differentiating both sides of (2.6).

3



Journal Pre-proof

F

)

so th .
N

on th -
quire
set o
issue
exam

Exam
and D

corre

Note ,
and t
λ is
corre ,
any p
orbit

Exam t

αk1 s
comm ,
let

and d

If b ∈

)

Since -
tion .
More
 Jo

ur
na

l P
re

-p
ro

of

inally, given that a jump occurs at time t, the orbit process A will directly jump to

At−D+−

At−D+−1
∈ Z− if At− ∈ Z+, and

At−D−+

At−D−+1
∈ Z+ if At− ∈ Z−, (2.7

at a jump originating from x ∈ Z+ will land at a deterministic point in Z−, and vice versa
ote that the motion between jumps and jump behaviour of the PDMP A depends only
e matrices C+, C−, D+− and D−+. Moreover, these matrices implicitly dictate some re
ments on the state space Z+ ∪ Z− through Equations (2.2), (2.3) and (2.7). Verifying if a
f matrices is compatible with a given state space is by no means trivial, which is a known
in the context of matrix–exponential distributions and RAPs [3, 5]. Below we present two
ples of valid orbit processes.

ple 2.2 (Markov jump process). Let C+ and C− be subintensity matrices, and let D+−
−+ be nonnegative matrices, in such a way that

(
C+ D+−

D−+ C−

)

sponds to the intensity matrix of a Markov jump process. For k ∈ {+,−} choose

Zk = {x ∈ Rmk : x ≥ 0,x1 = 1}.

that for all b ∈ Zk and h ≥ 0, beC
kh/beC

kh1 corresponds to a normalized probability vector
hus belongs to Zk. The nonnegativity of D+− and D−+ implies that the intensity function
always nonnegative. Finally, if k 6= ` with k, ` ∈ {+,−} and b ∈ Zk, then bDk`/bDk`1
sponds to an m`–dimensional normalized probability vector, and thus belongs to Z`. Thus
rocess defined by these parameters and with arbitrary initial point in Z+ ∪ Z− is a valid
process.

ple 2.3 (Matrix-exponential renewal process). For k ∈ {+,−}, let (αk, Sk) be such tha

= 1 and F k(x) := 1 − αkeSkx1 is a distribution function. Such a class of distributions i
only known as matrix-exponential, a generalization of phase–type distributions. For ` 6= k

Ck = Sk and Dk` = (−Sk1)α`,

efine

Zk =

{
αkeC

kh

αkeCkh1
: h ≥ 0

}
.

Zk, then b = αkeC
kh/αkeC

kh1 for some h ≥ 0 and thus

λ(b) = bDk`1 =
αkeS

kh

αkeSkh1

(
(−Sk1)α`

)
1 =

αkeS
kh(−Sk1)

αkeSkh1
. (2.8

the numerator in the last expression of (2.8) corresponds to a probability density func
and its denominator to a survival function, λ is indeed a nonnegative intensity function
over, if a jump happens from some b ∈ Zk, it will land in

bDk`

bDk`1
=
b(−Sk1)α`

b(−Sk1)α`1
=
α`

α`1
= α` ∈ Z`, ` 6= k.

4
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, this set of parameters together with any arbitrary initial state in Z+ ∪ Z− correspond
valid orbit process whose inter-jump times follow a matrix-exponential distribution. Not
if the initial state a is in Zk for k ∈ {+,−}, then the time until the first jump follows th

ibution 1− aeSkx1.

ow that the distributional characteristics of the orbit process have been completely de
ed, we state two further conditions on A and its state space.

dition 2.4. The sets Z+ and Z− are bounded.

the RAP setting of [3], Condition 2.4 is needed for A to correspond to the coefficients o
ar combination of probability measures that is itself a probability measure. In our setting
ition 2.4 will enable us to rule out explosions of the orbit process. Indeed, if Z+ and Z−

ounded, so is the jump intensity function λ(·) and thus, with probability 1, A will have a
amount of jumps on each compact time-interval. Although Condition 2.4 trivially holds in

ic contexts such as the one of Example 2.2, in general such a condition has to be verified
case by case basis; see [3, Section 3] for a nontrivial example.

dition 2.5. For k ∈ {+,−}, the set Zk is contained in a minimal (mk − 1)-dimensiona
hyperplane, meaning that Zk cannot be contained in any (mk − 2)–dimensional affin

plane.

our context, Condition 2.5 tells us that Zk is rich enough to guarantee a one-to-on
spondence between a matrix G and the collection {bG : b ∈ Zk}, fact that is central to
tudy of orbit processes in [3, Proposition 2.1]. More precisely, Condition 2.5 implies th
ing.

ma 2.6. For k ∈ {+,−}, there exist mk linearly independent vectors contained in Zk.

hus, Lemma 2.6 will allow us to determine uniqueness properties of matrices that ar
ions to certain collections of equations (see the proof of Theorem 4.1 for an example). In
ollowing we present a simple situation where Condition 2.5 fails to hold.

ple 2.7. Consider the matrices

C+ = C− =

(
−q 0
0 −q

)
and D+− = D−+ =

(
0 q
q 0

)
for some q > 0, (2.9

the state space Z+ = {(1, 0)} and Z− = {(0, 1)}. The orbit process associated to thes
eters fulfils Conditions 2.1 and 2.4. However, it does not attain Condition 2.5, since both

nd Z− can be embedded in a 0-dimensional affine hyperplane (i.e. a single point), then i
not attain Condition 2.5. In the context of Example 2.2, the parameters (2.9) are associated
reducible Markov jump process which has states that are never visited, and thus can b
garded; Condition 2.5 simply assumes that the parameters and state space are already

al and no reduction can be made.

nition 2.8. A simple RAP-modulated fluid process is a Markov additive process {(Rt,At)}t
an orbit process A = {At}t≥0 with arbitrary but fixed initial point A0 ∈ Z+ ∪ Z−, and ad

component R = {Rt}t≥0 of the form

Rt =

∫ t

0
1
{
As ∈ Z+

}
− 1

{
As ∈ Z−

}
ds. (2.10

efer to the process R, which takes values in R, as the level process.

5
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other words, at time t the process R is either increasing at rate 1 or decreasing at rat
epending on the location of At. The term simple stems from the facts that R is nowher

wise constant, and that A is allowed to perform jumps from Z+ to Z− or vice versa only
elax these assumptions in Section 3. See Figure 1 for a visual description of the simpl
-modulated fluid process.

re 1: A sample path of the elements of the simple RAP-modulated fluid process {(Rt,At)}t≥0. Th
t1, t2, t3 correspond to jump epochs of the orbit process A. In between jumps, {At}t≥0 evolve

ministically, switching between states in Z+ and Z− at t1, t2 and t3.

dition 2.9. For k ∈ {+,−}, limt→∞P
(
As ∈ Zk ∀s ∈ [0, t]

∣∣A0 = α
)

= 0 for all α ∈ Zk.

his implies that neither the orbit A nor the level R are deterministic and thus trivial.

RAP-modulated fluid process with unit rates: Construction
and basic properties

e the class of simple RAP-modulated fluid process considered in Section 2 is flexible enough
neralize the important fluid processes in Examples 2.2 and 2.3, its deterministic switching
anism hinders its modelling capabilities; for instance, it would not be possible to describ
rkov renewal behaviour using this framework. The purpose of this section is to introduc
AP-modulated fluid process, which allows for greater generality than the simple RAP
lated fluid process, by additionally letting the orbit A perform jumps that do not trigge
nge of direction for the fluid component.
ore specifically, Z+ and Z− are now considered “macro sets”, which are themselves union
icro sets” {Z+

i } and {Z+
i }. During a stay in a given macro set, the orbit A is allowed

rform jumps between different micro sets; the value of the orbit A as a row vector then
cterises the “micro” evolution, which follows an ordinary differential equation. Meanwhile
ofR remain constant within each sojourn time in a macro set, meaning that jumps between
sets during a given macro set sojourn have no visible effect in the level process, though

do affect its underlying orbit process. In a similar fashion to those of the simple orbi
ss of Section 2, jumps between micro sets depend on the orbit state before the transition

ppropriate transition matrices, except that here the landing state is randomly chosen among
sets (as opposed to entirely deterministic).

esides allowing for a Markov renewal behaviour (see Example 3.3 below), the RAP-modulate
process introduced here enables us to study fluid processes with less constraints that thos

6
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ed for the simple RAP-modulated fluid process. For instance, here we present an analogou
ndition 2.5 where the minimality needs to be checked, not for its macro sets, but for it
sets. Additionally, the process introduced in this section paves the way towards an even
general process whose level rates are allowed to vary among micro sets; a discussion o

a model is included in Section 6.
he RAP-modulated fluid process defined here requires a slightly more sophisticated con
tion than the one considered in Section 2; however, as we see in Theorem 3.11 and Lemma 3.
probabilistic descriptors are very similar. Though this was an expected feature of the model
ain contribution in this section is providing a proper mathematical framework and rigorou
s of these properties, some of which require the use of novel mathematical techniques.

Definition

∈ S. We suppose that the set Zk is contained in a collection of nk > 0 orthogonal affin
rplanes. Specifically, we assume that the set Zk can be partitioned in sets, say {Zki }n

k

i=1, with

ollowing property: There exists a collection {mk
i }n

k

i=1 ⊂ {1, 2, . . . } such that each set Zki i
ined in the affine hyperplane

{
x ∈ Rηk : x = (0k1, . . . ,0

k
i−1,y,0

k
i+1, . . . ,0

k
nk) for some y ∈ Rmki with y1 = 1

}
, (3.1

e 0ki denotes the row-vector of zeros with mk
i elements and ηk :=

∑nk

i=1m
k
i corresponds to

imension of the space in which Zk lives.
he orbit process A is a càdlàg PDMP with state space Z = ∪k∈SZk and some arbitrary
xed initial state A0 ∈ Z. We describe its PDMP characteristics next. If A has no jumps in
h) for some h > 0, then A follows the ODE

dAs

ds
= AsΓ

k − (AsΓ
k1)As for As ∈ Zk, s ∈ [t, t+ h], (3.2

Γk ∈ Rηk×ηk of the form

Γk =




Ck11

Ck22
. . .

Ck
nknk




me Ckii ∈ Rm
k
i×mki , 1 ≤ i ≤ nk, where each empty block denotes a zero matrix of appropriat

The block-diagonal structure of Γk guarantees that, if At ∈ Zki0 for some 1 ≤ i0 ≤ nk and

s no jumps in [t, t+h], then {As}t+hs=t is contained in the affine hyperplane (3.1) with i = i0
can verify that the solution of (3.2) is given by

At+r =
Ate

Γkr

AteΓkr1
∈ Zk if At ∈ Zk, r ∈ [0, h]. (3.3

7
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At ∈ Zki , then a jump to Zkj with j 6= i occurs with intensity AtĈ
k
ij1 ≥ 0 with

Ĉkij :=




0k1,1 · · · 0k1,j−1
...

...
0ki−1,1 · · · 0ki−1,j−1

Ckij
0ki+1,j+1 · · · 0k

i+1,nk

...
...

0k
nk,j+1

· · · 0k
nk,nk




(3.4

me Ckij ∈ Rm
k
i×mkj , where 0ka,b denotes the zero matrix in Rm

k
a×mkb . If such a jump to Zkj

s at some time s > t, it will land at As = (As−Ĉkij)/(As−Ĉkij1) ∈ Zkj .

imilarly, if At ∈ Zki , then a jump to Z`j with ` 6= k, j ≤ n`, occurs with intensity AtD̂
k`
ij 1 ≥ 0

e

D̂k`
ij =




0k`1,1 · · · 0k`1,j−1
...

...
0k`i−1,1 · · · 0k`i−1,j−1

Dk`
ij

0k`i+1,j+1 · · · 0k`
i+1,n`

...
...

0k`
nk,j+1

· · · 0k`
nk,n`




(3.5

ome Dk`
ij ∈ Rm

k
i×m`j . If such a jump occurs at some time s > t, it will land at As =

D̂k`
ij )/(As−D̂k`

ij 1) ∈ Z`j .

dition 3.1.

Γk1 +
nk∑

i=1

nk∑

j=1
j 6=i

Ĉkij1 +
∑

`∈S
`6=k

nk∑

i=1

n`∑

j=1

D̂k`
ij 1 = 0. (3.6

ark 3.2. Note that the collection {` ∈ S : ` 6= k} considered in the sum in (3.6) contain
one element; this will no longer be the case in more general frameworks such as the one
zed later on in Sections 5 and 6.

ince the jump intensities of a PDMP are additive, (3.6) implies that the jump intensity
ion of A is given by λ : ∪k∈SZk 7→ R+ of the form

λ(At) = At




nk∑

i=1

nk∑

j=1
j 6=i

Ĉkij1 +
∑

`∈S
`6=k

nk∑

i=1

n`∑

j=1

D̂k`
ij 1


 = −AtΓ

k1 for At ∈ Zk. (3.7

ogous to (2.5), Equations (3.3) and (3.7) imply that

P
(
A has no jumps in [t, t+ h] |At,At ∈ Zki

)
= Ate

Γkh1.

8
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Section 2, note that the distributional properties of A are completely determined by
: k ∈ S, i ≤ nk, j ≤ nk} and {Dk`

ih : k ∈ S, ` 6= k, i ≤ nk, h ≤ n`}. Similarly, here it i

difficult to assess if a collection of matrices is compatible with a given state space ∪k∈SZk
theless, the following is an important example of a valid orbit process.

ple 3.3 (Markov renewal matrix-exponential process). For k, ` ∈ S, let P k` = {pk`ij }ij ∈
n` be such that (

P++ P+−

P−+ P−−

)

transition probability matrix. For k ∈ S let {(αki , Ski )}nki=1 be a collection of matrix
nential parameters. In a similar fashion to Example 2.3, one can verify that taking

:= Ski , Ckij := pkkij

(
−Ski 1

)
αkj , Dk`

ih := pk`ih

(
−Ski 1

)
α`h for ` 6= k, i 6= j ≤ nk, h ≤ n`,

efining

Zki :=

{
x ∈ Rηk : x =

(
0k1, . . . ,0

k
i−1,

αkeC
k
iih

αkeC
k
iih1

,0ki+1, . . . ,0
k
nk

)
for some h ≥ 0

}

s a valid orbit A driven by a Markov renewal process with matrix-exponential jump times
that if the initial state is a in Zki for k ∈ {+,−} and i ≤ nk, then the distribution of th

until the first jump is given by 1− aeSki x1.

dition 3.4. For each k ∈ S and i ≤ nk, the set Zki is bounded and is contained in a minima
1)-dimensional affine hyperplane.

he advantage of the above condition with respect to Condition 2.5 is that, in general, i
ier to verify minimality of each Zki as oppossed to verifying the minimality of the set Zk

nstance, in the context of Example 3.3 it is enough to have minimal matrix-exponentia
sentations (αki , S

k
i ), in the sense of [2], for each i ≤ nk, k ∈ {+,−} for Condition 3.4 to

In fact, the simple orbit in Example 2.7 can be easily repurposed into a Markov renewa
ix-exponential process which attains Condition 3.4, even if Condition 2.5 does not hold
, Condition 3.4 is not only easier to verify than Condition 2.5, but also less restrictive.
imilarly to Lemma 2.6, Condition 3.4 implies the following.

ma 3.5. For k ∈ S, the set Zk contains ηk linearly independent vectors.

nition 3.6. We define a RAP-modulated fluid process with unit rates to be a Marko
ive process (R,A) = {(Rt,At)}t≥0, where A is an orbit process with state space Z+ ∪ Z−

rbitrary but fixed initial point A0 ∈ Z+ ∪ Z−, and R is a level process (taking values in
f the form

Rt :=

∫ t

0
1
{
As ∈ Z+

}
− 1

{
As ∈ Z−

}
ds. (3.8

ee Figure 2 for a visual description.
s in Section 2, in order to avoid trivial paths we impose the following.

dition 3.7. For any k ∈ S,

lim
t→∞

P
(
As ∈ Zk ∀s ∈ [0, t]

∣∣∣A0 = α
)

= 0 for all α ∈ Zk. (3.9

9
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solid
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dashed
.

Preliminaries

∈ Z, denote by Pα the probability law of X = {(Rt,At)}t≥0 with the process A starting
and denote by Eα its associated expectation. Let (Ω∗,F , {Ft}t≥0, {Pα}α∈Z) be the canon
robability space associated to the Markov process {(Rt,At)}t≥0, and w.l.o.g. assume tha
At)}t≥0 is defined there. More specifically, for ω = {(rt,at)}t≥0 ∈ Ω∗,

Rt(ω) = rt and At(ω) = at for all t ≥ 0. (3.10

istically speaking, each {(rt,at)}t≥0 ∈ Ω∗ corresponds to a feasible path of {(Rt,At)}t≥0.
et Ω be the set of paths {(rt,at)}t≥0 ∈ Ω∗ such that:

{at}t≥0 has a finite number of jumps on each compact time interval,

for all s ≥ 0, neither at ∈ Z+ for all t ≥ s, nor at ∈ Z− for all t ≥ s,
there are no s, t ≥ 0, s 6= t such that rs = rt, as− 6= as and at− 6= at; in other words, no
two jumps of {at}t≥0 happen while at the same level of {rt}t≥0.

that these three properties hold with probability 1. Indeed, the first property follows by
oundedness of the jump intensity function λ(·), the second property follows from (3.9)

the final one from the fact that PDMPs with bounded jump intensities cannot jump a
termined epochs.

ark 3.8. The paths in Ω are those that are regarded as nice, and are the ones that wil
nsidered throughout all the arguments in this paper. Note that the event {X ∈ Ω∗ \ Ω} i
ull for all α ∈ Z; since the σ-algebra F is assumed to be complete, then the event {X ∈ Ω}
element of F . For this reason, from here on we restrict the sample space of X to Ω and

a slight abuse of notation, refer to its probability measure Pα|{X∈Ω} as Pα.

or any s ≥ 0, define the shift operator θs : Ω 7→ Ω by

θs{(rt,at)}t≥0 := {(rt+s − rs,at+s)}t≥0.

rticular, according to (3.10)

Rt ◦ θs = Rt+s −Rs and At ◦ θs = At+s for all t ≥ 0, s ≥ 0.

10



Journal Pre-proof

N s
that
funct

wher
N

Coro f
squar ,
then

Proo t
{gm} t∑

m c .
Then

is un

N r
analy

Theo
entry

)

Then

Proo
(3.11

so th

3.3

In th
certa ,

then t
proce l
notat
impli
 Jo

ur
na

l P
re

-p
ro

of

ow, let Z be an Ft-stopping time. By the strong Markov property of PDMPs [11], it follow
X also has the strong Markov property. This implies that for any F-measurable bounded
ion f : Ω 7→ Rk, for k ≥ 1, we have

Eα [f(X ◦ θZ)1{Z <∞} |FZ ] = EAZ [f(X )]1{Z <∞},

e X ◦ θZ(ω) = X (θZ(ω)(ω)).
ext we investigate a useful implication of the minimality property of A and Lemma 3.5.

llary 3.9. Fix x ≥ 0, k ∈ S, let I be an index set, and let {Π(s) : s ∈ I} be a collection o
e matrices with identical dimensions. If {αΠ(s) : s ∈ I} is uniformly entrywise-bounded
so is {Π(s) : s ∈ I}.

f. Suppose ∃{sn}∞n=1 ⊂ I and j, ` ∈ {1, . . . , ηk} such that {Π(sn)j`}∞n=1 is unbounded. Le

m ⊂ Zk be a collection of ηk linearly independent vectors and let {cm}m ⊂ R be such tha

mgm = e′j , where ej denotes the unit column vector that is nonzero only at its jth entry

{∑

m

cm(gmΠ(sn))`

}∞

n=1

= {Π(sn)j`}∞n=1

bounded, which is a contradiction.

ext, we study the solution of a particular integral matrix-equation which is key to ou
sis throughout this paper.

rem 3.10. Let Π : R+ 7→ Rm×m and A,B ∈ Rm×m be such that Π(·) is uniformly
wise-bounded in compact intervals, and for all x ≥ 0

Π(x) = eAx +

∫ x

0
eAsBΠ(x− s)ds. (3.11

, Π(x) = e(A+B)x for all x ≥ 0.

f. The assumptions of Π(·) imply that it is infinitely differentiable in (0,∞). Premultiplying
) by e−Ax and differentiating gives us

−e−AxAΠ(x) + e−AxΠ′(x) = e−AxBΠ(x),

at Π′(x) = (A+B)Π(x), with initial condition Π(0) = I. Thus the result follows.

Properties of the orbit process

e following, we study the average behaviour of the process {At}t≥0 over time restricted to
in events. By (2.2), we have that if A is simple and does not leave Zk by time t, for k ∈ S
the row vector At is proportional to A0e

Ckt. Next we show an analogous result for the orbi
ss defined in Subsection 3.1. In the following and further proofs we use the infinitesima
ion dt to represent a fixed ε > 0 whose limit to 0 is eventually taken: this allows us to
citly disregard any o(dt) functions in our calculations (see e.g. [9, Remark 1.1.5]).

11
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rem 3.11. For all k ∈ S and α ∈ Zk,

Eα

[
At1

{
As ∈ Zk ∀s ∈ [0, t]

}]
= αeC

kt for t ≥ 0, (3.12

e Ck ∈ Rηk×ηk is of the form

Ck =



Ck11 · · · Ck

1nk
...

. . .
...

Ck
nk1

· · · Ck
nknk


 .

f. For t ≥ 0, let
B := {∃s ∈ [t, t+ dt] such that As− 6= As}.

,

α

[
At+dt1

{
As ∈ Zk ∀s ∈ [0, t+ dt]

}
| {As}s≤t

]

= 1
{
As ∈ Zk ∀s ∈ [0, t]

}
×
(
Eα

[
At+dt1

{
B,As ∈ Zk ∀s ∈ [t, t+ dt]

}
| At

]

+ Eα

[
At+dt1

{
Bc,As ∈ Zk ∀s ∈ [t, t+ dt]

}
| At

])
,

e on {At ∈ Zk}

Eα

[
At+dt1

{
B,As ∈ Zk ∀s ∈ [t, t+ dt]

}
| At

]

=
∑

1≤i≤nk

∑

1≤j≤nk,
j 6=i

AtĈ
k
ij

α∗Ĉkij1

(
AtĈ

k
ij1dt

)
1
{
At ∈ Zki

}
= At

(
Ck − Γk

)
dt,

At+dt1
{
Bc,As ∈ Zk ∀s ∈ [t, t+ dt]

}
| At

]
=
Ate

Γkdt

AteΓkdt1

(
Ate

Γkdt1
)

= Ate
Γkdt = AtΓ

kdt.

equently,

Eα

[
At+dt1

{
As ∈ Zk ∀s ∈ [0, t+ dt]

}
| {As}s≤t

]
= (AtC

kdt)1
{
As ∈ Zk ∀s ∈ [0, t]

}
;

king expectations on both sides and defining

Σ(t) = Eα

[
At1

{
As ∈ Zk ∀s ∈ [0, t]

}]

t that d
dtΣ(t) = Σ(t)Ck with Σ(0) = α, so that Σ(t) = αeC

kt and (3.12) follows.

ote that since At1 = 1,

Pα

(
As ∈ Zk ∀s ∈ [0, t]

)
= αeC

kt1.

hile the matrices Ĉkij have a deterministic physical meaning for A given by (3.2), Ck doe

Nevertheless, Theorem 3.11 implies that Ck does have a role in the behaviour of A, not in
erministic sense, but in an average sense instead. Lemma 3.12 elaborates on this further.
or k ∈ S, define

ρk := inf{s ≥ 0 : As /∈ Zk}, (3.13

rst exit time of A from Zk.

12
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ma 3.12. For `, k ∈ S, ` 6= k, and t ≥ 0,

Eα

[
Aρk1

{
ρk ∈ [t, t+ dt], Aρk ∈ Z`

}]
= αeC

ktDk`dt, (3.14

Eα

[
Aρk1

{
Aρk ∈ Z`

}]
= α(−Ck)−1Dk`, (3.15

e α ∈ Zk and Dk` ∈ Rηk×η` is of the form

Dk` =



Dk`

11 · · · Dk`
1n`

...
. . .

...
Dk`
nk1

· · · Dk`
nkn`


 .

f. First, note that

Aρk1
{
ρk ∈ [0,dt], Aρk ∈ Z`

}]
=

∑

1≤i≤nk

∑

1≤j≤n`

αD̂k`
ij

αD̂k`
ij 1

(
αD̂k`

ij 1dt
)
1
{
α ∈ Zki

}
= αDk`dt.

hus,

Eα

[
Aρk1

{
ρk ∈ [t, t+ dt], Aρk ∈ Z`

}]

= Eα

[
Eα

[
Aρk1

{
ρk ∈ [t, t+ dt], Aρk ∈ Z`

} ∣∣∣Ft
]
1
{
As ∈ Zk ∀s ∈ [0, t]

}]

= Eα

[
EAt

[
Aρk1

{
ρk ∈ [0, dt], Aρk ∈ Z`

}]
1
{
As ∈ Zk ∀s ∈ [0, t]

}]

= Eα

[(
AtD

k`dt
)
1
{
As ∈ Zk ∀s ∈ [0, t]

}]

= αeC
ktDk`dt.

heorem 3.11 and Equation (3.9), we have limt→∞αeC
kt = 0. Since this holds for all α ∈ Zk

a 3.5 implies that limt→∞ eC
kt = 0 and so the eigenvalue of maximum real part of Ck

have a strictly negative real part. Then

Eα

[
Aρk1

{
Aρk ∈ Z`

}]
=

∫ ∞

0
αeC

ktDk`dt = α(−Ck)−1Dk`.

nce again, while the matrices {D̂k`
ij } dictate in a deterministic way where A lands after a

, Dk` describes such landings in an average sense.

RAP-modulated fluid process with unit rates: First passages
and stationary distribution

, we exploit the fact that the process R has slopes that are 1 and −1 in order to comput
iptors for its first passage probabilities. Our analysis heavily relies on analysing the up-down
own-up peaks of R, that is, the epochs at which A jumps from Z+ to Z− and from Z− to
espectively.

13
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First-return probabilities

is section we study the event in which the level process downcrosses its initial point. Mor
fically, define

τ− := inf {t > 0 : Rt ≤ 0} , τ+ := inf {t > 0 : Rt ≥ 0} ,
Ω− := {ω ∈ Ω : A0 ∈ Z+, τ− <∞}, Ω+ := {ω ∈ Ω : A0 ∈ Z−, τ+ <∞}.

random variable τ− (τ+) corresponds to the first time the process R visits [0,∞) ((−∞, 0])
− (Ω+) is the set of paths in Ω whose orbit starts in Z+ (Z−) and whose level eventually

crosses (upcrosses) level 0 in finite time.
e are interested in computing Eα

[
Aτ−1{τ− <∞}

]
for α ∈ Z+. To that end, we borrow

from the FP3 algorithm of [12], whose probabilistic interpretation was developed in [7] and
res a particular partition of all paths in Ω−. Recall that {Rt}t≥0 is piecewise linear with
s ±1, which implies that for all s, t ≥ 0 and k ∈ {+,−},

{
At ∈ Zk

}
∩
{
|Rt+s −Rt| = s

}
=
{
Au ∈ Zk ∀u ∈ [t, t+ s)

}
. (4.1

et

Ω1 :=
{
ω ∈ Ω− : {As}s≥0 has exactly one jump from Z+ to Z− during [0, τ−)

}
,

et of sample paths whose level component returns to 0 after a single interval of increase and
gle interval of decrease; in other words, there is no down-up peak before τ−. Then, Ω− \Ω

set of sample paths whose level has one or more down-up peaks before τ−. Define
{

inf {y ≥ 0 : ∃t ∈ [0, τ−) such that Rt = y, At− ∈ Z−,At ∈ Z+} if X ∈ Ω− \ Ω1,
∞ if X ∈ (Ω− \ Ω1)c.

or every sample path in Ω− \ Ω1, p corresponds to the lowest level at which there is a
-up peak before time τ−, and we decompose each path at the time such lowest level i
ned, denoted by T2. Let T1 := inf{t ≥ 0 : Rt = p} be the first time the level reaches p and

sup{t ≥ 0 : Rt = p, t < τ−} be the last time it does so before returning to level zero
, T1 = p by the assumption of ±1 rates, T2 = T1 + τ− ◦ θT1 , and T3 = T2 + τ− ◦ θT2 .
ow, we recursively define Ω′n ⊂ Ω− and Ωn ⊂ Ω−. Let Ω′1 = Ω1. For n ≥ 2, a path ω ∈ Ω− i
ement of Ω′n if and only if θT1ω ∈ Ω′n−1∪Ω1 and θT2ω ∈ Ω′n−1∪Ω1. The collection {Ω′n}n≥
be thought as a collection of paths of possibly increasing complexity, in the sense that th
sion above level p of a path in Ω′n can be decomposed, at time T2, into two consecutiv
sions above p (each increasing from p and returning to p) of paths in Ω′n−1 ∪ Ω1. Figure 3
plifies a path in Ω′n.
et Ωn = Ω′n ∪ Ω1, then Ωn−1 ⊂ Ωn for n ≥ 2 and Ω− = ∪∞n=1Ωn. In Theorem 4.1, we show
restricted to paths in Ωn, the mean value of Aτ− is characterized by a certain matrix Ψn

rem 4.1. For any given α ∈ Z+ and for all n ≥ 1,

Eα
[
Aτ−1{Ωn}

]
= αΨn, (4.2

nique matrices {Ψn}n≥1 with

Ψ0 = 0,

Ψn =

∫ ∞

0
eC

+y
(
D+− + Ψn−1D

−+Ψn−1

)
eC

−ydy. (4.3

14
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re 3: An example of a level process corresponding to ω ∈ Ω′3. The level process corresponding t
θT2ω ∈ Ω′2 ∪ Ω1 up to their downcrossing of level p are shown in blue and red, respectively. Th
nd red segments, together, are also the sojourn above level p of R prior to returning to level 0.

f. We prove by induction.
ase n = 1. Let ρ+ be defined by (3.13), so that ρ+ corresponds to the epoch at which th

transition from Z+ to Z− occurs. Fix y ≥ 0 and define the stopping times

Z1 := y, Z2 := Z1 + τ− ◦ θZ1 , Z3 := Z2 + y.

, P (Ω1 ∩ {ρ+ ∈ (y, y + dy)}) = P(E1 ∩ E2 ∩ E3) + o(dy), where

E1 = {As ∈ Z+ for all s ∈ [0, Z1)},
E2 = {∃s ∈ (Z1, Z1 + dy) such that As− ∈ Z+ and As ∈ Z−},
E3 = {As ∈ Z− for all s ∈ [Z2, Z3)}.

oreover, on Ω1 ∩ {ρ+ ∈ (y, y + dy)} we have that Z3 = τ−. Thus,

Eα
[
Aτ−1

{
Ω1 ∩ {ρ+ ∈ (y, y + dy)}

}]

= Eα [AZ31{E1 ∩ E2 ∩ E3}] = Eα [Eα [AZ31{E3} |FZ2 ]1{E1 ∩ E2}]
= Eα

[(
AZ2e

C−y
)
1{E1 ∩ E2}

]
= Eα [Eα [AZ21{E2} |FZ1 ]1{E1}] eC

−y

= Eα
[(
AZ1D

+−dy
)
1{E1}

]
eC

−y = αeC
+yD+−eC

−ydy,

e the strong Markov property was used in the third and fifth equalities, Theorem 3.11 wa
in the third and last equalities, and (3.14) in the fifth equality. Since this holds for al
+, then Lemma 3.5 implies that

Ψ1 =

∫ ∞

0
eC

+yD+−eC
−ydy

only solution to (4.2) for n = 1.
ductive part. Suppose (4.2) is true for some n ≥ 1. Fix y > 0. Define the stopping time

:= y, S2 := S1 + τ− ◦ θS1 , S3 := S2 + τ+ ◦ θS2 , S4 := S3 + τ− ◦ θS3 , S5 := S4 + y.

that

P ((Ωn+1 \ Ω1) ∩ {p ∈ (y − dy, y)}) = P (B1 ∩B2 ∩B3 ∩B4 ∩B5) + o(dy),

15
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e

B1 = {As ∈ Z+ for all s ∈ [0, S1)},
B2 = {X ◦ θS1 ∈ Ωn},
B3 = {∃s ∈ (S2, S2 + dy) such that As− ∈ Z− and As ∈ Z+},
B4 = {X ◦ θS3 ∈ Ωn},
B5 = {As ∈ Z− for all s ∈ [S4, S5)}.

over, on (Ωn+1 \ Ω1) ∩ {p ∈ (y − dy, y)} we have that {S5 6= τ−} only occurs with a
ability of order o(dy). Then,

τ−1{(Ωn+1 \ Ω1) ∩ {p ∈ (y − dy, y)}}
]

Eα
[
AS51

{
∩5
i=1Bi

}]
= Eα

[
Eα [AS51{B5} |FS4 ]1

{
∩4
i=1Bi

}]

Eα

[(
AS4e

C−y
)
1
{
∩4
i=1Bi

}]
= Eα

[
Eα [AS41{B4} |FS3 ]1

{
∩3
i=1Bi

}]
eC

−y

Eα
[
(AS3Ψn)1

{
∩3
i=1Bi

}]
eC

−y = Eα
[
Eα [AS31{B3} |FS2 ]1

{
∩2
i=1Bi

}]
Ψne

C−y

Eα
[(
AS2D

−+dy
)
1
{
∩2
i=1Bi

}]
Ψne

C−y = Eα [Eα [AS21{B2} |FS1 ]1{B1}]D−+Ψne
C−yd

Eα [(AS1Ψn)1{B1}]D−+Ψne
C−ydy = αeC

+yΨnD
−+Ψne

C−ydy, (4.4

e the strong Markov property was used in the third, fifth, seventh and ninth equalities
rem 3.11 in the third and last equalities, the induction hypothesis in the fifth and ninth
lities, and (3.14) in the seventh equality. Thus,

Eα
[
Aτ−1{Ωn+1}

]
= α

∫ ∞

0
eC

+y(D+− + ΨnD
−+Ψne

C−y)dy = αΨn+1. (4.5

.5) holds for all α ∈ Z+, Lemma 3.5 implies that Ψn+1 is uniquely determined by (4.3)
completes the proof.

Theorem 4.1 we provided a recursion and an integral equation for Ψn. Corollary 4.2 set
s the solution of a Sylvester equation, and links {Ψn}n≥1 to the probability of {Rt}t≥0 eve
ning to 0.

llary 4.2. The matrices {Ψn}n≥0 (with Ψ0 := 0) are the unique solutions of the recursiv
ster equation

C+Ψn+1 + Ψn+1C
− = −D+− −ΨnD

−+Ψn, n ≥ 0. (4.6

ermore,

Eα
[
Aτ−1

{
τ− <∞

}]
= αΨ, (4.7

Pα(τ− <∞) = αΨ1. (4.8

e Ψ := limn→∞Ψn.

f. In the proof of (3.15) we checked that the eigenvalues of maximal real part of C− and
oth have strictly negative real parts. Thus, premultiplying (4.3) by C+ and integrating by

16
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we obtain

+Ψn+1 =

∫ ∞

0
C+eC

+y(D+− + ΨnD
−+Ψn)eC

−ydy

=
[
eC

+y(D+− + ΨnD
−+Ψn)eC

−y
]∞

0
−
∫ ∞

0
eC

+y(D+− + ΨnD
−+Ψn)eC

−yC−dy

= [0− (D+− + ΨnD
−+Ψn)]−Ψn+1C

−,

at Ψn+1 solves (4.6); since C+ and −C− do not have overlapping eigenvalues, by genera
y of Sylvester equations (for example, see [4]) such a solution is unique. Using the Bounded
ergence Theorem and the fact that Ω− = ∪∞n=1Ωn,

Eα
[
Aτ−1

{
τ− <∞

}]
= lim

n→∞
αΨn. (4.9

(4.9) holds for all α ∈ Z+, Lemma 3.5 implies limn→∞Ψn =: Ψ exists and satisfies (4.7)
tion (4.8) follows by noticing that At1 = 1 for all t ≥ 0, a consequence of the affine natur
.

he following is a property of the matrix Ψ in the case P(Ω−) = 1.

osition 4.3. If Pα(τ− <∞) = 1 for all α ∈ Z+, then Ψ1 = 1.

f. Since αΨ1 = 1 = α1 for all α ∈ Z+, then Lemma 3.5 implies Ψ1 = 1.

Downward record process

≥ 0, define τ−x := inf{t > 0 : Rt = −x,At ∈ Z−}, the first time the level process R
crosses level −x ≤ 0.
efine the downward record process {(`x,Ox)}x≥0 by

(`x,Ox) =

{
(Rτ−x , Aτ−x

) if τ−x <∞
(∞,∆) if τ−x =∞,

e ∆ is some isolated cemetery state. If Ox 6= ∆ for x ≥ 0, the vector Ox corresponds to
rbit value when the level process downcrosses `x = −x for the first time. We can see tha

x≥0 is a (possibly absorbing) concatenation of orbits with state space Z− ∪ {∆}. In th
ing we compute the average value of Ox on the event that Ox 6= ∆.

rem 4.4. For all β ∈ Z− and x ≥ 0,

Eβ
[
Ox1

{
τ−x <∞

}]
= βe(C−+D−+Ψ)x.

f. Let κ0 := 0, and for n ≥ 1 define

κn := inf{t ≥ κn−1 : Rt = inf
0≤s≤t

Rs, and At ∈ Z+};

n≥0 form the successive time epochs at which the infimum process {infs≥0Rs}s≥0 stop
asing. For n ≥ 0, let −σn := Rκn , the values of R at these epochs. Note that the sequenc
τ− ◦θκn}n≥0 form the successive time epochs at which the infimum process {infs≥0Rs}s≥

17
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re 4: An example of the downward record process associated with X . Left: Downward record level
own in red. Right: The concatenation {Ox}x≥0 of the corresponding orbit segments.

s decreasing, and {κn+1 − κn − τ− ◦ θκn}n≥0 are the lengths of successive intervals in tim
ich R attains a new local minima. By (4.1), for n ≥ 0

σn − σn−1 = κn+1 − κn − τ− ◦ θκn .

igure 4 for an illustration.
or x ≥ 0, let

Vx := inf{n ≥ 1 : σn > x};

ll Vx the number of record downcrossings up to level −x. First, we prove by induction tha
ch n ≥ 1, there exists a unique continuous matrix function Φn(·) such that

Eβ

[
Aτ−x

1{Vx = n}
]

= βΦn(x). (4.10

ase n = 1. On {Vx = 1}, τ−x = x by (4.1). Thus,

Eβ

[
Aτ−x

1{Vx = 1}
]

= Eβ
[
Ax1

{
As ∈ Z−

}
∀s ∈ [0, x]

]
= βeC

−x,

at (4.10) holds with Φ1(x) = eC
−x. Uniqueness follows from Lemma 3.5.

ductive part. Suppose (4.10) holds for some n ≥ 1. Fix y ∈ [0, x] and define the stopping

S1 := y, S2 := S1 + τ+ ◦ θS1 , S3 := S2 + τ− ◦ θS2 ,

S4 := S3 + inf{t > 0 : Rt ◦ θS3 = −(x− y)}.

, P(Vx = n+ 1, σ1 ∈ (y, y + dy)) = P(B1 ∩B2 ∩B3 ∩B4) + o(dy), where

B1 = {As ∈ Z− for all s ∈ [0, S1)},
B2 = {∃s ∈ (S1, S1 + dy) such that As− ∈ Z− and As ∈ Z+},
B3 = {X ◦ θS2 ∈ Ω−},
B4 = {Vx−y ◦ θS3 = n}.

18
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over, on {Vx = n + 1, σ1 ∈ (y, y + dy)} we have that {S4 6= τ−x } occurs with a probability
der o(dy). Then,

Eβ

[
Aτ−x

1{Vx = n+ 1, σ1 ∈ (−y − dy,−y)}
]

= Eβ
[
AS41

{
∩4
i=1Bi

}]

= Eβ
[
Eβ [AS41{B4} |FS3 ]1

{
∩3
i=1Bi

}]

= Eβ
[
(AS3Φn(x− y))1

{
∩3
i=1Bi

}]
(by the induction hypothesis)

= Eβ
[
Eβ [AS31{B3} |FS2 ]1

{
∩2
i=1Bi

}]
Φn(x− y)

= Eβ
[
(AS2Ψ)1

{
∩2
i=1Bi

}]
Φn(x− y) (by Corollary 4.2)

= Eβ [Eβ [AS21{B2} |FS1 ]1{B1}] ΨΦn(x− y)

= Eβ
[(
AS1D

−+dy
)
1{B1}

]
ΨΦn(x− y) (by (3.14))

= βeC
−yD−+ΨΦn(x− y)dy

heorem 3.11.
hus, (4.10) recursively holds for n ≥ 2 with

Φn(x) =

∫ x

0
eC

−yD−+ΨΦn−1(x− y)dy,

is unique by Lemma 3.5. Since Z− is bounded, then

Eβ

[
Aτ−x

1{Vx ≤ n+ 1}
]

= β
n+1∑

m=1

Φm(x)

iformly bounded in β ∈ Z−, n ≥ 0 and x ≥ 0. Corollary 3.9 implies that the collection
atrices {∑n+1

m=1 Φm(x) : n ≥ 1, x ≥ 0} is uniformly bounded, so that by the Bounded
ergence Theorem,

Eβ
[
Ox1

{
τ−x <∞

}]
= βΦ(x)

e Φ(x) :=
∑∞

n=1 Φn(x) statisfies the equation

Φ(x) = eC
−y +

∫ x

0
eC

−yD−+ΨΦ(x− y)dy.

rem 3.10 implies that Φ(x) = e(C−+D−+Ψ)x, which completes the proof.

he following corollary shows how the mean value of Ox relates to the probability that th
ss {Rt}t≥0 ever downcrosses level −x ≤ 0 given A0 ∈ Z+.

llary 4.5. For α ∈ Z+,

Eα
[
Ox1

{
τ−x <∞

}]
= αΨe(C−+D−+Ψ)x,

Pα(τ−x <∞) = αΨe(C−+D−+Ψ)x1. (4.11

f. The strong Markov property, Corollary 4.2 and Theorem 4.4 imply that

Eα
[
Ox1

{
τ−x <∞

}]
= Eα

[
Eα
[
Ox1

{
τ−x <∞

} ∣∣Fτ−
]
1
{
τ− <∞

}]

= Eα

[(
Aτ−e

(C−+D−+Ψ)x
)
1
{
τ− <∞

}]

= αΨe(C−+D−+Ψ)x.

tion (4.11) follows because when τ−x <∞, Ox1 = 1 due to the affine nature of Z−.
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Stationary distribution of the queue

is section we determine the limiting behaviour of the process Q = {Qt}t≥0 defined by

Qt := Rt + max

{
0, sup

0≤s≤t
−Rs

}
.

process Q is the process R regulated at the boundary in level 0, and thus, can only tak
s in [0,∞). We refer to {(Qt,At)}t≥0 as the RAP-modulated fluid queue, and assume th
ing stability condition.

dition 4.6. The process {Qt}t≥0 is positive recurrent under the measure Pα for all α ∈
Z−.

ondition 4.6 implies that for all α ∈ Z+ ∪ Z−,

Eα
[
τ−
]
<∞,

Pα(τ−x <∞) = 1 for x ≥ 0,

Ψ1 = 1. (4.12

ormulae and pathwise analysis found in this subsection may be compared to those of [10]
were used to compute the stationary distribution of a Markov-modulated fluid queue. In
to study the limiting behaviour of Q, first let us compute

lim
t→∞

E
[
At1

{
Qt = 0, At ∈ Z−

}]
.

e the time-change

zt :=

∫ t

0
1
{
Qs = 0, As ∈ Z−

}
ds, t ≥ 0.

thwise inspection reveals that on the event {Qt = 0,At ∈ Z−}, we have At = Ozt . Thus,

lim
t→∞

E
[
At1

{
Qt = 0, At ∈ Z−

}]
= lim

t→∞
E
[
Ozt1

{
Qt = 0, At ∈ Z−

}]

= lim
y→∞

c0E [Oy] , (4.13

e c0 := limt→∞P(Qt = 0,At ∈ Z−), the proportion of time {Qt}t≥0 spends in level 0. W
ompute the precise value of c0 in (4.24), for now let it be unknown.
ince, by Condition 4.6 Rt → −∞ as t → ∞, this implies the first hitting time τ−y < ∞
ll level −y, and therefore Oy1 = 1 almost surely. Thus, Theorem 4.4 implies that unde
ition 4.6 and in the case A starts in β ∈ Z−,

βe(C−+D−+Ψ)y1 = Eβ [Oy1] = 1 for all y ≥ 0. (4.14

ince A0 can be chosen to take any value β in Z−, and Z− attains the minimality property
by Lemma 3.5 and (4.14) the unique solution to βx = 1 is x = e(C−+D−+Ψ)y1. Since x = 1
o a solution, it follows that e(C−+D−+Ψ)y1 = 1 for all y ≥ 0. Differentiating and evaluating
= 0 gives (C− + D−+Ψ)1 = 0, which implies that 0 is an eigenvalue of C− + D−+Ψ. Th
ing is a stronger condition needed for our analysis.
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dition 4.7. The eigenvalue 0 of the matrix C−+D−+Ψ has multiplicity 1 and a normalised
igenvector v0 (i.e., v01 = 1).

ssume Condition 4.7. Then, by [3, Lemma 4.1(b)], e(C−+D−+Ψ)y = 1v0 + o(e−εy) for som
. This implies that in the case A starts in β ∈ Z−,

lim
y→∞

Eβ [Oy] = β(1v0) = (β1)v0 = v0,

arly, using Corollary 4.5 and Eq. (4.12) we get that in the case A starts in Z+,

lim
y→∞

Eβ [Oy] = βΨ(1v0) = β(Ψ1)v0 = (β1)v0 = v0.

onsequently, independently of the starting point of A, by (4.13),

lim
t→∞

E
[
At1

{
Qt = 0, At ∈ Z−

}]
= c0v0. (4.15

hile (4.15) gives us a good indication of the expected behaviour of At for large values of
Qt = 0, we still need to analyse what happens to A between the epochs at which Q leave
oundary 0 and the epochs at which Q returns to 0. Thus, we now focus on the propertie
while on a excursion of Q away from 0. In the following, we study the process R up to
τ−, which is identical to the process Q up to time τ−. For x ≥ 0, let

Ux := {u ∈ [0, τ−) : Ru = x,Au ∈ Z+}, Dx := {u ∈ (0, τ−] : Ru = x,Au ∈ Z−}.

Ux corresponds to the set of time epochs, {uxi }i≥1, at which the process R upcrosses level x
e τ−, while Dx corresponds to the set of time epochs, {dxi }i≥1, at which R downcrosse
x before τ−. We compute the expected value of the sum of A evaluated at each point in
nd in Dx in Theorem 4.8 and Corollary 4.9, respectively.

rem 4.8. Let x ≥ 0 and α ∈ Z+. Then,

Eα


 ∑

uxi ∈Ux
Auxi


 = αe(C++ΨD−+)x.

f. First, we classify the set of points {uxi }i≥1 in Ux according to their complexity. Define

Ux1 :=

{
{ux1} if As ∈ Z+ ∀s ∈ [0, x],

∅ otherwise.

4.1), the set Ux1 contains the simplest epoch at which R upcrosses x, in the sense that i
sses x before any change of directions; in that case, ux1 = x.
ext, for X ∈ Ω \ Ω1 and for each uxi ∈ Ux \ Ux1 define

γxi := inf {y ∈ (0, x) : ∃t ∈ [0, uxi ) s.t. Rt = y, At− ∈ Z−, At ∈ Z+} ,
ξxi := arg inf {y ∈ (0, x) : ∃t ∈ [0, uxi ) s.t. Rt = y, At− ∈ Z−, At ∈ Z+} ;

rresponds to the lowest level at which R has a down-up peak before time uxi , and ξxi is th
in time of this down-up peak. For n ≥ 1 recursively define

Uxn+1 :=
{
uxi ∈ Ux \ Ux1 : uxi − ξxi ∈ U

x−γxi
n ◦ θξxi

}
,
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e U i
n ◦ θξxi is the set U i

n of upcrossing times to level x − γxi of the θξxi -shifted path

, each epoch uxi ∈ Uxn+1 is such that uxi − ξxi is an upcrossing epoch in the set Ux−γ
x
i

n o

ξxi
-shifted path; the set Ux−γ

x
i

n is of a lower complexity1. This implies that the collection

n≥1 is a partition of Ux. See Figure 5 for an illustration.

Rt

t
ux
1 ux

2 ux
3

x

x
2
x
3

⇠x2 ⇠x3 ⌧�

Figure 5: Upcrossing times ux1 , u
x
2 , u

x
3 ∈ Ux before τ−. Note that ux1 ∈ Ux

1 , ux2 ∈ Ux
3 , ux3 ∈ Ux

2 .

irst, we claim by induction that for all n ≥ 1 and x > 0,

Eα


 ∑

uxi ∈Uxn
Auxi


 = αΥn(x), (4.16

e {Υn(·)}n≥1 are some continuous and unique matrices.
ase n = 1. By (4.1), we have that

Eα


 ∑

ux1∈Ux1

Auxi


 = Eα

[
Ax1

{
As ∈ Z+ ∀s ∈ [0, x]

}]
= αeC

+x,

at (4.16) follows with Υ1(x) = eC
+x.

ductive part. Suppose (4.16) holds for some n ≥ 1. Let y ∈ (0, x). Note that if uxi , u
x
j ∈

and γxi , γ
x
j ∈ (y− dy, y), then γxi = γxj and ξxi = ξxj : this follows since each path in Ω ther

o jumps that occur at the exact same level. This implies that

α


 ∑

uxi ∈Uxn+1

Auxi
1{γxi ∈ (y − dy, y)}


 = Eα







∑

ux−yi ∈Ux−yn ◦θS3

Aux−yi


1{B1 ∩B2 ∩B3}


 ,

e
S1 := y, S2 := S1 + τ− ◦ θS1 , S3 := S2 + τ+ ◦ θS2 ,

B1 = {As ∈ Z+ for all s ∈ [0, S1)},
B2 = {X ◦ θS1 ∈ Ω−},
B3 = {There exists s ∈ (S2, S2 + dy) such that As− ∈ Z− and As ∈ Z+}.

nother way to view this partition of sets: u ∈ Uxn if and only if the time-reversed process {Ru−s − Ru}us=
s level −x (at time u) with Vx = n.
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,

Eα


 ∑

uxi ∈Uxn+1

Auxi
1{γxi ∈ (y − dy, y)}




= Eα


Eα




∑

ux−yi ∈Ux−yn ◦θS3

Auxi

∣∣∣∣∣∣∣
FS3


1{B1 ∩B2 ∩B3}




= Eα [(AS3Υn(x− y))1{B1 ∩B2 ∩B3}] (by the induction hypothesis)

= Eα [Eα [AS31{B3} |FS2 ]1{B1 ∩B2}] Υn(x− y)

= Eα
[(
AS2D

−+dy
)
1{B1 ∩B2}

]
Υn(x− y) (by (3.14))

= Eα [Eα [AS21{B2} |FS1 ]1{B1}]D−+Υn(x− y)dy

= Eα [(AS1Ψ)1{B1}]D−+Υn(x− y)dy (by Corollary 4.2)

= αeC
+yΨD−+Υn(x− y)dy (by Theorem 3.11).

hus, (4.16) recursively holds with

Υn(x) =

∫ x

0
eC

+yΨD−+Υn−1(x− y)dy,

this matrix being unique by Lemma 3.5. By means similar to those in the proof of Theorem
sing Corollary 3.9 and the ergodicity of {Qt}t≥0 we obtain

Eα


 ∑

uxi ∈Ux
Auxi


 = βΥ(x)

(x) :=
∑∞

n=1 Υn(x) which is uniformly entrywise-bounded on compact intervals and satisfie

Υ(x) = eC
+y +

∫ x

0
eC

+yΨD−+Υ(x− y)dy.

rem 3.10 implies that Υ(x) = e(C++ΨD−+)x, which completes the proof.

he expected value of the orbit at the points in Dx is computed as follows.

llary 4.9. Let x ≥ 0 and α ∈ Z+. Then,

Eα


 ∑

dxi ∈Dx
Adxi


 = αe(C++ΨD−+)xΨ.
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f. Let S = τ− ◦ θuxi , the time elapsed from uxi until the next downcrossing of level x. Then

Eα


 ∑

dxi ∈Dx
Adxi


 = Eα


 ∑

uxi ∈Ux
Auxi +S




= Eα


 ∑

uxi ∈Ux
Eα
[
Auxi +S

∣∣Fuxi
]



= Eα


 ∑

uxi ∈Ux
Auxi

Ψ


 (by Corollary 4.2)

= αe(C++ΨD−+)xΨ,

heorem 4.8.

ark 4.10. Since lim
t→∞

Rt = −∞ a.s., Theorem 4.8 implies that

lim
x→∞

αe(C++ΨD−+)x = 0 for all α ∈ Z+.

a 3.5 implies that

lim
x→∞

e(C++ΨD−+)x = 0,

at the dominant eigenvalue of C+ + ΨD−+ has strictly negative real part.

ow we are ready to state and prove the main result of this section regarding the limiting
viour of (Q,A).

rem 4.11. For x > 0 define

Π+(x) = lim
t→∞

d

dx
E
[
At1

{
Qt ∈ (0, x), At ∈ Z+

}]
, (4.17

Π−(x) = lim
t→∞

d

dx
E
[
At1

{
Qt ∈ (0, x), At ∈ Z−

}]
. (4.18

,

Π+(x) = c0v0D
−+e(C++ΨD−+)x and

Π−(x) = c0v0D
−+e(C++ΨD−+)xΨ, (4.19

e c0 := limt→∞P(Qt = 0,At ∈ Z−) and v0 is defined as in Condition 4.7.

f. For t > 0, let χt := sup{x > 0 : Qr > 0 for all r ∈ (t− x, t]}; see Figure 6 for a pathwis
iption of χt.
hen, for h > 0,

lim
t→∞

E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+

}]

= lim
t→∞

∫ t

s=0
E
[
At1

{
Qt ∈ (x, x+ h), At ∈ Z+, χt ∈ (s, s+ ds)

}]

= lim
t→∞

∫ t

s=0
E
[
E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+, χt ∈ (s, s+ ds)

} ∣∣Ft−s
]]
.
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focusing on the inner expectation, we have

E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+, χt ∈ (s, s+ ds)

} ∣∣Ft−s
]

= E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+, Qt−s = 0,At−s ∈ Z−,At−s+ds ∈ Z+

} ∣∣Ft−s
]

= EAt−s
[
As1

{
Qs ∈ [x, x+ h), As ∈ Z+,A0 ∈ Z−,Ads ∈ Z+

}]
1{Bt−s}. (4.20

e Bt := {Qt = 0,At ∈ Z−}, t ≥ 0. Thus, by Fubini’s Theorem, we have for h > 0,

E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+

}]

m
∞
E

[∫ ∞

s=0
1{s ≤ t} · EAt−s

[
As1

{
Qs ∈ [x, x+ h), As ∈ Z+,A0 ∈ Z−,Ads ∈ Z+

}]
1{Bt−s

(4.21

.21), the Bounded Convergence Theorem allows us to switch the limit with the expectation
ntegral operators, change the variable t− s to t in the integrand (which is valid since both
bles converge to ∞), and switch the limit with the expectation and integral operators onc
. Thus,

im
∞
E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+

}]

lim
t→∞

E

[∫ ∞

s=0
EAt

[
As1

{
Qs ∈ [x, x+ h), As ∈ Z+,A0 ∈ Z−,Ads ∈ Z+

}]
1{Bt}

]
. (4.22

ince the integrand in the expression above is computed on the event {At ∈ Z−}, w.l.o.g
ose that At ∈ Z−i for some i ∈ N . Then,

∫ ∞

s=0
EAt

[
As1

{
Qs ∈ [x, x+ h), As ∈ Z+,A0 ∈ Z−,Ads ∈ Z+

}]
1{Bt}

=

∫ ∞

s=0

∑

j∈N
Eαt

[
As1

{
Qs ∈ [x, x+ h), As ∈ Z+

}]
1{Bt}(AtD̂

−+
ij 1ds),
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e αt :=
AtDij

AtD̂
−+
ij 1

,

=
∑

j∈N
Eαt

[∫ ∞

s=0
As1

{
Qs ∈ [x, x+ h), As ∈ Z+

}
ds

]
1{Bt}(AtD̂

−+
ij 1)

=
∑

j∈N
Eαt

[∑

u∈Ux
Auh+ o(h)

]
1{Bt}(AtD̂

−+
ij 1). (4.23

tituting (4.23) into (4.22) gives

lim
t→∞

E
[
At1

{
Qt ∈ [x, x+ h), At ∈ Z+

}]

= lim
t→∞

E


∑

j∈N
Eαt

[∑

u∈Ux
Auh+ o(h)

]
1{Bt}(AtD̂

−+
ij 1)




= lim
t→∞

E


∑

j∈N
αt(e

C+ΨD−+xh)1{Bt}(AtD̂
−+
ij 1) + o(h)




= lim
t→∞

E
[
AtD

−+(eC
+ΨD−+xh)1{Bt}+ o(h)

]

= c0v0D
−+e(C++ΨD−+)xh+ o(h),

e (4.15) is used in the last equality. Equation (4.19) follows by analogous steps and argu
s in the proof of Corollary 4.9.

o compute c0, note that since At1 = 1 for all t ≥ 0,

1 = lim
t→∞

E [At] 1

=
(

lim
t→∞

E
[
At1

{
Qt = 0, At ∈ Z−

}]
1
)

+

∫ ∞

0
Π+(x)1dx+

∫ ∞

0
Π−(x)1dx

= c0 + c0v0

[
D−+

∫ ∞

0
e(C++ΨD−+)xdx1 +D−+

∫ ∞

0
e(C++ΨD−+)xdx(Ψ1)

]

= c0

(
1− 2v0D

−+(C+ + ΨD−+)−11
)
, since Ψ1 = 1. (4.24

lving (4.24) for c0 and using Theorem 4.11 we arrive at the following.

llary 4.12. Let

π(x) = lim
t→∞

d

dx
P(Qt ∈ (0, x)), x ≥ 0, (4.25

we call the stationary density of {Qt}t≥0. Then,

π(x) = 2c0v0D
−+e(C++ΨD−+)x1,

lim
t→∞

P(Qt = 0,At ∈ Z−) = c0

c0 =
(
1− 2v0D

−+(C+ + ΨD−+)−11
)−1

.
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RAP-modulated fluid process with unit and zero rates

we consider a modification of the RAP-modulated fluid process with unit rates by allowing
rbit to transition back and forth to an additional space, Z0, and by letting R be piecewise
ant during the sojourn times of A at Z0. More specifically, let us we augment the index
+,−} with 0, so that S := {+,−, 0} from now on. The orbit process A is then a PDMP
itioning between three disjoint sets, Z+, Z− and Z0. Each set Zk, k ∈ S, is partitioned in
int affine hyperplanes {Zki }n

k

i=1, with A evolving in Z := ∪k∈SZ according to (3.2), and with
p mechanism described by the matrices (3.4) and (3.5).

nition 5.1. The RAP-modulated fluid process with unit and zero rates is the Marko
ive process (R,A) = {(Rt,At)}t≥0, where A is an orbit process with state space Z+ ∪
Z0 and an arbitrary but fixed initial point A0 ∈ Z+ ∪ Z− ∪ Z0, and R is a level process o
rm

Rt :=

∫ t

0
1
{
As ∈ Z+

}
− 1

{
As ∈ Z−

}
ds. (5.1

ven though R defined by (5.1) has the same form as in (3.8), the sojourn times of A in Z
late to piecewise-constant intervals of R in Definition 5.1; such a behaviour is not presen
finition 3.6. See Figure 7 for a visual description of a RAP-modulated fluid process with

and zero rates.

re 7: A sample path of the process {Rt}t≥0 whose orbit process {At}t≥0 has state space Z =
Z− ∪ Z0 and intial state A0 ∈ Z+, with Z+ = Z+

solid
∪ Z+

dashed
, Z− = Z−

solid
∪ Z−

dashed
and and

Z0
solid ∪ Z0

dashed.

rom now on we assume that Conditions 3.1 and 3.4 hold for the case of RAP-modulated
processes with unit and zero rates. To guarantee non-triviality of the fluid process (i.e. th
R has both piecewise downwards and upwards intervals a.s.), Condition 3.7 needs to b
ted to the following.

dition 5.2. For any k ∈ {+,−},

lim
t→∞

P
(
As ∈ Zk ∪ Z0 ∀s ∈ [0, t]

∣∣∣A0 = α
)

= 0 for all α ∈ Zk.

ikewise, let (Ω∗,F , {Ft}t≥0, {Pα}α∈Z) be the canonical probability space associated to th
ov process {(Rt,At)}t≥0 and let Ω be the set of paths in ω = {(rt,at)}t≥0 ∈ Ω∗ such that

{at}t≥0 has a finite number of jumps on each compact time interval,

for all s ≥ 0, neither at ∈ Z+ ∪ Z0 for all t ≥ s, nor at ∈ Z− ∪ Z0 for all t ≥ s,
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there are no s, t ≥ 0, s 6= t such that rs = rt, as− ∈ Zk, as 6= as−, at− ∈ Z`, at 6= at−, fo
k, ` ∈ {+,−}.
Section 4, Ω is the set of nice paths which occur with probability 1: w.l.o.g. we restric

orthcoming analysis to this set. Furthermore, note that the results in Subsection 3.3 trans
erbatim to the case of RAP-modulated processes with unit and zero rates; in particular
rem 3.11 and Lemma 3.12 hold.
ext, we develop analogous results to those in Section 4 for RAP-modulated fluid processe
unit and zero rates. Since in this framework R may have some piecewise-constant intervals
oncepts of up-down and down-up peaks used throughout Section 4 are not sufficient. To
ess this issue, for k ∈ {+,−} define

ρk∗ := ρk + ρ0 ◦ θρk ,

e ρ` := inf{s ≥ 0 : As /∈ Z`} for ` ∈ {+,−, 0}. Then ρk∗ corresponds to the first exit tim
Z0 following an exit from Zk. Note that ρk∗ = ρk if and only if Aρk /∈ Z0.

ma 5.3. Let k, ` ∈ {+,−} and let α ∈ Zk. Then, for all x ≥ 0.

Eα

[
Aρk∗1

{
ρk ∈ (x, x+ dx), Aρk ∈ Z0, Aρk∗ ∈ Z`

}]
= αeC

kxDk0(−C0)−1D0`dx

f. Using the strong Markov property and Lemma 3.12, we obtain

Eα

[
Aρk∗1

{
ρk ∈ (x, x+ dx), Aρk ∈ Z0, Aρk∗ ∈ Z`

}]

= Eα

[
Eα

[
Aρk∗1

{
Aρk∗ ∈ Z`

} ∣∣∣Fρk
]
1
{
ρk ∈ (x, x+ dx), Aρk ∈ Z0

}]

= Eα

[
EA

ρk

[
Aρ01

{
Aρ0 ∈ Z`

}]
1
{
ρk ∈ (x, x+ dx), Aρk ∈ Z0

}]

= Eα

[(
Aρk(−C0)−1D0`

)
1
{
ρk ∈ (x, x+ dx), Aρk ∈ Z0

}]

= Eα

[
Aρk1

{
ρk ∈ (x, x+ dx), Aρk ∈ Z0

}]
(−C0)−1D0`

= αeC
kxDk0(−C0)−1D0`dx.

emma 5.3 is analogous to censoring in the context of Markov-modulated fluid processes. In
al terms, it concerns the inspection of certain aspects of a process before and after som

val; in the case of Lemma 5.3 such an interval is (ρk, ρk∗), during which At ∈ Z0, and th
ts inspected are ρk and Aρk∗ .

hen n0 > 0, we say that an up-down peak of R occurs at time t > 0 if there exists som
(0, t) such that ρ+

∗ ◦ θs = t − s and At ∈ Z−. That is, an up-down peak results from

t≥0 exiting Z+ and either going directly to Z−, or going through Z0 and jumping later to
nalogously, a down-up peak happens at time t > 0 if there exists some s ∈ (0, t) such tha
θs = t− s and At ∈ Z+.

the following we compute the expected value of the orbit at a peak for the general setting

llary 5.4. Let k, ` ∈ {+,−}, k 6= `, and α ∈ Zk. Then,

Eα

[
Aρk∗1

{
ρk ∈ (x, x+ dx), Aρk∗ ∈ Z`

}]
= αeC

kxDk`∗dx, (5.2

e Dk`∗ = Dk` +Dk0(−C0)−1D0`.
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f. Condition the indicator function on the LHS of (5.2) on the events {Aρk ∈ Z`} and

∈ Z0}. The result follows by Lemma 3.12 and Lemma 5.3.

ow that we have a notion for peaks, we develop next a way to handle the intervals between
s in the case n0 > 0. For instance, suppose that A0 ∈ Z+. A first step would be to comput
xpected value of A at the instant R reaches some level x ≥ 0 given that no peak ha
ed until that epoch, similar in spirit to Theorem 3.11. Note that up to the time before th
up-down peak, the orbit process can perform jumps from/to Z+ and Z0, so the analysi
s from that of Section 4. However, it turns out that the solution to this problem has a
ture similar to that of Theorem 3.11 once we censor the occupation times in Z0, as we wil
ext.
or t ≥ 0, define

Wt :=

∫ t

0
1
{
As ∈ Z+ ∪ Z−

}
ds, ζx := inf {t ≥ 0 : Wt > x} .

, Wt corresponds to the occupation time of {At}t≥0 in Z+ ∪ Z− up to time t, while ζx
sponds to the necessary time to reach x units of occupation time in Z+ ∪ Z−. The proces

t≥0 is continuous nondecreasing and {ζx}x≥0 is càdlàg. A process analogous to {Wt}t≥
een used in the Markov-modulated fluid processes literature, it being regarded as the tota
nt of fluid that has flowed into or out of the system [8].

ince the slopes of R are either 1,−1 or 0, for t, x ≥ 0 and k ∈ {+,−}

{At ∈ Zk ∪ Z0} ∩ {|Rt+ζx◦θt −Rt| = x} =
{
Au ∈ Zk ∪ Z0 ∀u ∈ [t, t+ ζx ◦ θt)

}
, (5.3

tion similar to (4.1). In the following we investigate more about the event (5.3).

rem 5.5. Let α ∈ Zk, k ∈ {+,−} and x ≥ 0. Then

Eα

[
Aζx1

{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx]

}]
= αeC

k∗x,

e Ck∗ = Ck +Dk0(−C0)−1D0k.

f. Let s∗0 := inf{y > 0 : Aζy ∈ Z0} = inf{t > 0 : At ∈ Z0}, and for x ≥ 0 let

L∗x := #{s ∈ (0, ζx] : As− ∈ Zk,As ∈ Z0}.

laim that there exist continuous matrices {Σ∗n(·)}n≥0 such that for all n ≥ 0,

Eα

[
Aζx1

{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx], L∗x = n

}]
= αΣ∗n(x). (5.4

ase n = 0. As ζx = x on {L∗x = 0}, we have

[
Aζx1

{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx], L∗x = 0

}]
= Eα

[
Aζx1

{
As ∈ Zk ∀s ∈ [0, x]

}]
= αeC

kx,

e Theorem 3.11 is used in the last equality. Thus, (5.4) follows by choosing Σ∗0(x) = eC
kx

his solution is unique by Lemma 3.5.
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ductive part. Suppose that (5.4) holds for some n ≥ 0. Then, for r ∈ (0, x)

Aζx1
{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx], L∗x = n+ 1, s∗0 ∈ (r − dr, r)

}]

Eα

[
Eα

[
Aζx1

{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx], L∗x = n+ 1

} ∣∣∣Fζr
]
1
{
s∗0 ∈ (r − dr, r), Aζr ∈ Z

Eα

[
EAζr

[
Aζx−r1

{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx−r], L∗x−r = n

}]
1
{
s∗0 ∈ (r − dr, r), Aζr ∈ Zk

Eα

[
(AζrΣ

∗
n(x− r))1

{
s∗0 ∈ (r − dr, r), Aζr ∈ Zk

}]

Eα

[
Aζs0

1
{
s∗0 ∈ (r − dr, r), Aζs0

∈ Zk
}]

Σ∗n(x− r)

αeC
krDk0(−C0)−1D0kΣ∗n(x− r)dr,

e Lemma 5.3 was used in the last equality.
hus, (5.4) recursively holds for n ≥ 0 as

Σ∗n+1(x) =

∫ x

0
eC

krDk0(−C0)−1D0kΣ∗n(x− r)dr,

is unique by Lemma 3.5. Employing similar uniform-boundedness arguments to those in
roof of Theorem 4.4, together with Corollary 3.9, the Bounded Convergence Theorem and
rem 3.10, we get

Eα

[
Aζx1

{
As ∈ Zk ∪ Z0 ∀s ∈ [0, ζx]

}]
= αΣ∗(x),

e Σ∗(x) = eC
k∗x.

sing Corollary 5.4 and Theorem 5.5 and the generalized concept of peaks we can develop th
y of first passages for RAP-modulated fluid processes with unit and zero rates in virtually
ame way as in Sections 4.1 and 4.2 and part of Section 4.3. We present the final formula
.

rem 5.6. Let X = (R,A) be a RAP-modulated fluid process with n0 > 0. Let α ∈ Z+

Eα
[
Aτ−1

{
τ− <∞

}]
= αΨ∗

e Ψ∗ = limn→∞Ψ∗n and {Ψ∗n}n≥0 are recursively computed by setting Ψ∗0 = 0 and solving

C+∗Ψ∗n+1 + Ψ∗n+1C
−∗ = −D+−∗ −Ψ∗nD

−+∗Ψ∗n.

ermore, for x ≥ 0

Eα
[
Ox1

{
τ−x <∞

}]
= αΨ∗e(C−∗+D−+∗Ψ∗)x,

Eα

[∑

u∈Ux
Au

]
= αe(C+∗+Ψ∗D−+∗)x,

Eα

[∑

u∈Dx
Au

]
= αe(C+∗+Ψ∗D−+∗)xΨ∗.
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e can compute Π+(·) and Π−(·) as defined in (4.17) and (4.18) by using analogous argu
s to the ones used in the proof of Theorem 4.11, however, there is a considerable difference
.20) we used that the event {Qt = 0,At ∈ Z+} implies {At− ∈ Z−}, however, this is no
r true in the case n0 > 0. In fact, {Qt = 0,At ∈ Z+} implies that At− ∈ Z− ∪ Z0, so tha
tinction needs to be made between occupations of {Qt}t≥0 in (0,∞) due to jumps coming
Z− or from Z0. The first case was already addressed in the proof of Theorem 4.11, whil

econd one follows by analogous arguments and by noticing that

∞
Eβ
[
At1

{
Qt = 0, At ∈ Z0

}]

= lim
t→∞

Eβ

[∫ ∞

s=0
EAt

[
As1

{
ρ− ∈ (0,ds), Ar ∈ Z0 ∀r ∈ [ρ−, s]

}]
1
{
Qt = 0, At ∈ Z−

}]

= lim
t→∞

Eβ

[(∫ ∞

s=0
AtD

−0eC
0sds

)
1
{
Qt = 0, At ∈ Z−

}]

= lim
t→∞

Eβ
[
At1

{
Qt = 0, At ∈ Z−

}]
D−0(−C0)−1.

, the average limit orbit values in Z0 on the event {Qt = 0} can be computed once w
ute the average limit orbit values in Z− on the event {Qt = 0} as t → ∞. The latter i
uted similarly to (4.13): for any β ∈ Z−,

lim
t→∞

Eβ
[
At1

{
Qt = 0, At ∈ Z−

}]
= lim

y→∞
c∗0Eβ [Oy] = c∗0v

∗
0,

e c∗0 := limt→∞P(Qt = 0,At ∈ Z−) and v∗0 is the left eigenvector with v∗01 = 1 associated
e eigenvalue 0 of C+∗ + Ψ∗D−+∗. Analogous to Condition 4.7, we assume that such an
vector v∗0 is unique.
e now consider one final component in order to compute the stationary distribution o

t≥0, which is

Π0(x) := lim
t→∞

d

dx
Eβ
[
At1

{
Qt ∈ (0, x), At ∈ Z0

}]
, x > 0. (5.5

can be computed using the following result whose proof is similar to that of Theorem 4.11

rem 5.7. Let α ∈ Z+ and h > 0. Then

Eα

[∫ ∞

s=0
As1

{
s < τ−, Qs ∈ [x, x+ h), As ∈ Z0

}
ds

]

= αe(C+∗+Ψ∗D−+∗)x[D+0 + Ψ∗D−0](−C0)−1h+ o(h).

he previous leads to the following characterization of the stationary behaviour of {Qt}t≥0

rem 5.8. Let Π+, Π− and Π0 be defined as in (4.17), (4.18) and (5.5), respectively. Then
> 0

Π+(x) = c∗0v
∗
0D
−+∗e(C+∗+Ψ∗D−+∗)x

Π−(x) = c∗0v
∗
0D
−+∗e(C+∗+Ψ∗D−+∗)xΨ∗

Π0(x) = c∗0v
∗
0D
−+∗e(C+∗+Ψ∗D−+∗)x[D+0 + Ψ∗D−0](−C0)−1,

e c∗0 := limt→∞P(Qt = 0,At ∈ Z−) is of the form

c∗0 =
(
1− v∗0D−+∗(C+∗ + Ψ∗D−+∗)−1(21 + [D+0 + Ψ∗D−0](−C0)−11)

)−1
.

ermore, the stationary density function of {Qt}t≥0 as defined in (4.25) is given by

π(x) = Π+(x)1 + Π−(x)1 + Π0(x)1 = 2Π+(x)1 + Π0(x)1, x > 0.
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RAP-modulated fluid process with general rates

rther generalization of the RAP-modulated fluid process with unit and zero rates can b
by considering instead a level process with arbitrary (but fixed) slopes which depend only

e subset Zki in which the orbit is evolving. More precisely, we define the following.

nition 6.1. For each i ≤ n+ and j ≤ n−, fix ν+
i ∈ (0,∞) and ν−j ∈ (−∞, 0). A RAP

lated fluid process with general rates is a Markov additive process (R,A) = {(Rt,At)}t≥0

e A is an orbit process with state space Z+ ∪ Z− ∪ Z0 and an arbitrary but fixed initia
A0 ∈ Z+ ∪ Z− ∪ Z0, and R is a level process of the form

Rt :=

∫ t

0




n+∑

j=1

ν+
j 1
{
As ∈ Z+

j

}
+

n−∑

j=1

ν−j 1
{
As ∈ Z−j

}

 ds.

principle, the results of Section 5 can be extended to the case of RAP-modulated fluid
ss with general rates. One way to do so relies on constructing a total fluid rates process a
Section 3], and then replicating the analysis in Section 5 with the time component replaced
ch a process. An alternative approach is to regard the RAP-modulated fluid process with
al rates as a time-changed version of the unit and zero rates case, technique exploited in [15
e case of Markov-modulated fluid processes. Even though both methods are straightforward
plement, they lead to cumbersome notation and provide little mathematical insight, and
we omit further details.

Concluding remarks

is paper we prove that a number of classic matrix-analytic results associated to Markov
lated fluid processes extend naturally to stochastic fluid processes driven by an orbit pro
called the RAP-modulated fluid process. These results include first return probabilities
ward record probabilities, and stationary distribution of the reflected level process at 0
work relies on novel techniques which exploit the physical interpretation of the orbit and
terplay with the level process. We explicitly compute the aforementioned descriptors fo
-modulated fluid processes with unit rates, extending it later to the case of unit and zero
. We also provide directions on how to compute the same descriptors for the case of a RAP
lated fluid process with general rates in a straightforward way. Overall, our work provide
rous framework for stochastic fluid processes which no longer have an underlying finite o

table state space process, as well as algorithms and formulae to compute a number of it
iptors.
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