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Data-driven Cyber-attack Detection of Intelligent
Attacks in Islanded DC Microgrids
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Abstract—In this paper, a data-driven cyber-attack detec-
tion method for islanded DC microgrids is proposed. Data
is collected by monitoring the behavior of an intelligent
attacker who is able to bypass conventional cyber-attack
detection algorithms and disrupt the operation of the sys-
tem. Reinforcement learning (RL) algorithm emulates the
actions of such intelligent attacker, who exploits the vulner-
ability of index-based cyber-attack detection methods, such
as discordant detection algorithm. The data is then used
to train a neural network based detector that complements
the conventional method with additional capability to detect
a larger set of possible attacks. Through experiments, the
effectiveness of the proposed method is validated.

Index Terms—DC microgrids, data-driven cyber-attack
detection, reinforcement learning, discordant detection al-
gorithm, neural network based detector.

I. INTRODUCTION

DC microgrids facilitate smart grid applications in an effi-
cient and cost-effective way due to the natural matching

with different distributed generation resources [1]. For the
control of microgrid, distributed control has become popular
as it offers better scalability, reliability, and efficiency com-
pared with centralized control, which also suffers from the
single point of failure [2]. As the distributed control rests
on the communication network, it makes the DC microgrids
cyber-physical systems, which are vulnerable to cyber-attacks.
Among different types of cyber-attacks [3], [4], the most
common are false data injection attacks (FDIAs). FDIAs
alter the system states by injecting data into the sensors or
communication links and disrupt the operation of the system
[5]. Such attacks can destabilize the DC microgrids if not
detected and mitigated properly.

To mitigate the vulnerability of DC microgrids, different
cyber-attack detection methods are proposed, which could be
broadly classified into model-based and model-free methods
[6]. The model-based detection methods rely on the accuracy
of the system model, which is challenging to implement in
practical applications due to its unavoidable mismatch with
the complex real-world power electronic systems. On the
other hand, the model-free methods utilize the measurements
without prior knowledge of the system. In [7], based on the
estimated outputs of the system using an artificial neural
network, the stealthy FDIA detection method is proposed.
However, since the data used to train the given neural network
based detector is generated from the healthy model of the
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microgrid, it does not explicitly incorporate knowledge about
different types of attacks. As a result, the method is not able
to detect some types of attacks, such as destabilization attacks.
Signal temporal logic (STL) is proposed to detect FDIAs
by monitoring the output voltage and current with defined
specifications [8] while the performance under stealthy attack
is not verified. A discordant detection algorithm is proposed to
detect both destabilization and stealthy attacks by calculating
the discordant element (DE) term [9]. In addition, similar
methods are proposed in [10]–[12] utilizing different indices
for attack detection. However, these index-based detection
methods will still fail when intelligent attackers introduce
novel attack patterns and a wider range of coordinated or un-
coordinated attacks by injecting false signals into the sensors,
communication links of multiple nodes, or concurrently both
of them [11]. Such intelligent and deceptive behaviors can be
emulated via reinforcement learning.

Of different forms of machine learning, reinforcement learn-
ing is the learning paradigm closest to the human learning
process as it can learn through experience by exploring and
exploiting the dynamic and unknown environment [13]. RL
can model an intelligent agent to take sequential optimal
actions without or with limited knowledge of the environment,
which makes it particularly adaptable and feasible in real-
time systems. Therefore, reinforcement learning demonstrates
excellent suitability for application in cyber-security areas,
where cyber-attacks become increasingly sophisticated [14]–
[16]. Based on this, the reinforcement learning agent is able to
serve as an intelligent attacker, who exploits the vulnerability
of DC microgrids system protected with conventional discor-
dant detection scheme by generating novel attack patterns.
To generate sophisticated cyber-attacks in DC microgrids, in
reinforcement learning algorithm, deep neural networks that
represent the attacker are trained over many system rollouts
and autonomously discover the deficiency of the index-based
cyber-attack detection method in DC microgrids. The deep
neural network afterward interacts with the real system, injects
false signals into multiple nodes coordinately, nullifies the
indices that are used for detection, such as discordant elements
in [9], and crafts stealthy attacks that can bypass conventional
cyber-attack detection methods.

To solve the aforementioned issue, in this letter, a data-
driven cyber-attack detection method for DC microgrids is
proposed. Particularly, the RL-based intelligent cyber-attacker
can uncover the deficiencies of the DE-based detection al-
gorithm but could also expose other index-based detection
methods if trained in such a way. In view of this, the proposed
data-driven cyber-attack detection method is to complement
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the conventional index-based detection methods by detecting
the attacks and the attacked nodes under the RL-based cyber-
attacks.

Unlike model-based cyber-attack detection methods, in the
proposed data-driven cyber-attack detection method, only the
current and voltage measurements are used. Moreover, the
historical operation data is directly collected from a DC
microgrid experimental testbed, which allows higher training
precision compared to the previous data-based method that
used simulation models for this purpose. Finally, to the best
of the authors’ knowledge, this paper is the first attempt to use
the data from the system exposed to intelligent cyber-attacks
to train the attack detector, while existing methods use data
from normally operated microgrids. In real-time applications,
the RL-based attacker will be implemented to generate sophis-
ticated attacks to bypass the DE-based detection method, such
a data-driven attack detector is then utilized to complement
the DE-based detection method for detecting the attacks and
identifying the attacked nodes in DC microgrids. The neural
network based cyber-attack detectors are implemented in an
experimental setup to verify the performance of the proposed
method.

II. RL-BASED FDIA ON COOPERATIVE CONTROL
BASED DC MICROGRIDS

A. Cooperative Control of DC Microgrids with Discordant
Detection Algorithm

The configuration of the DC microgrid is shown in Fig.
1, where n DC sources connected through dc-dc converters
are linked via communication networks and form the cyber-
physical network. The main objectives of the control are
voltage regulation and proportional current sharing. The output
voltage of each node is regulated by the primary control layer.
The current sharing causes voltage error, which is compensated
by the distributed secondary control [17].
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Fig. 1. Configuration of DC microgrid under multi-agent RL-
based cyber-attack.

The distributed control rests on the communications be-
tween neighboring nodes. To achieve the control objectives,

in the secondary control layer, two voltage correction terms
△V i

1 and △V i
2 are calculated for the reference voltage of the

primary control layer to regulate the output voltage of each
node [17]. The reference voltage can thus be expressed as

V i
dcref = Vdcref +△V i

1 +△V i
2 (1)

where Vdcref is the global reference voltage for all the nodes
and Idcref is set to 0 to achieve current sharing.

Based on the distributed control in a fully-connected cyber
network in DC microgrids, the control objectives will converge
as follows [17]

lim
t→+∞

V̄ i
dc(t) = Vdcref , lim

t→+∞
Īidc = 0 (2)

where V̄ i
dc and Īidc are the estimated average voltage and the

normalized current regulation input for node i respectively.
False signals could be injected into the sensor measure-

ments, the distributed signals from the neighboring nodes, or
both of them. The attacked signals can be expressed as

IA =

{
Iia = Iidc + kiIfi, sensor attack

Iija = Iidc + kijIfj , link attack
(3)

where IA denotes the attacked vector at multiple nodes, Iia is
the output current from the node i, and Iidc is the real measured
value from the sensors, Iija is the distributed current received
from neighboring node j for node i, Ifi and Ifj are the injected
false signals from the attacker, ki and kij are the corresponding
coefficients for the attack signals, of which ki = 1 or kij = 1
denotes the presence of an attack in the corresponding signals,
or 0 otherwise.

For different uncoordinated attacks, the control objectives
will not converge as in equation (2). These events could desta-
bilize the DC microgrids depending on the attack intensity.
On the other hand, the attack that results in the control inputs
converging as per equation (2) is considered as coordinated
attack, which is generally formed by attacking sensors and
communication links concurrently. Among different detection
schemes, discordant detection algorithm, based on the syn-
chrony between the neighboring reference current terms of
a node, has shown excellent performance in detecting both
types of cyber-attacks [9]. In the distributed control, the control
objectives will converge as per (2), and the input current Iiin
will always converge to zero under no attacks, thus the input
current reference Iiinref

quantities will also achieve consensus
among themselves. However, when the attack occurs, for the
attacked node, the secondary layer will maloperate due to
the compromised current information, which causes different
operation of the outer voltage loop, thus the current reference
for the compromised node goes discordant with the remaining
healthy nodes. The index for attack detection is calculated as

DEi = li[
∑
jϵMi

(Ijinref
− Iiinref

)][
∑
jϵMi

(Ijinref
+ Iiinref

)] (4)

DEi =

{
< DEmin, if ki & kij = 0

> DEmin, if ki∥kij ̸= 0
(5)

where DEi denotes the discordant term of node i, Iiinref
and

Ijinref
are the input reference current from the outer voltage

control loop for node i and the neighboring node j respectively,
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Mi denotes the set of neighbors of node i, li is a positive
coefficient to increase/decrease the value of DEi. According
to [9], based on (5), the attacks on the ith node can be
determined by comparing the positive value of DEi terms with
the minimum threshold, which is obtained in normal operation.

B. Multi-agent Reinforcement Learning Based FDIA

To compromise the conventional detection method, multi-
agent reinforcement learning is utilized. The autonomous at-
tack generation process can be modeled as a Markov decision
process (MDP), which consists of state space S, action space
A, state transition probability function P and reward function
R [13]. At each time step t, the agent i observes the state
sti from the environment, takes action ati based on the policy
π(ati|sti) and receives a reward rti . The policy π(ati|sti) maps
the state sti to a probability distribution of action ati. For the
next time step, a new state st+1

i is formed. The cumulative
discounted reward could be expressed as

Gt
i =

∞∑
k=0

γk
i r

t+k
i (6)

where γ ϵ [0, 1] is the discounting factor.
In order to generate FDIA in DC microgrids to bypass

the DE-based detection scheme, the target of the RL agents
is to suppress the DE terms by injecting false signals into
the sensors or communication links of multiple nodes. As is
expressed in equations (4) and (5), any evident increase of
the value will reflect an attack in the current counterparts of
ith node. In addition, in the distributed cooperative control
of the system, shown in Fig. 1, any deviation on current
distributed terms Ijdc or local terms Iidc would create an offset
on term △V i

2 which deviates the voltage set-point V i
dcref

from
secondary control layer to the local control layer. This will
lead to the deviation of the corresponding input reference
current Iiinref

and Ijinref
, which will change the value of DE

terms. Thus, the RL-based intelligent attackers can harmonize
and synchronize this offset between the neighboring nodes by
attacking multiple nodes. In this way, the sophisticated attack
that the conventional DE-based detection algorithm cannot
detect is generated.

Particularly, in a DC microgrid shown in Fig. 1, for a
node with m incoming links, the list of cyber-attack agents is
defined as {CA1, ..., CAm+1}. The observations of each agent
are St

i = {{DEt
1, ..., DEt

m+1}, {
∫
DEt

1, ...,
∫
DEt

m+1}} of
neighboring nodes. The corresponding actions of each agent
are At

i = {Itf1, ..., Itfm}, where Itf1 is the attack signals on
local sensor and the rest are on incoming communication links
from the neighboring nodes. The reward function is defined
as

rti =− (kDE

m+1∑
i=1

(DEt
i )

2 + kḊE

m+1∑
i=1

( ˙DEt
i )

2

+ kİf

m∑
i=1

(İt−1
fi )2) + rtdis

(7)

where kDE and kḊE are the coefficients for the summation
of DE terms and the corresponding derivatives, respectively,

which are adjusted to minimize the discordant terms and their
variations. kİf is the coefficient for the summation of deriva-
tive of attack actions taken in the last time step t− 1, which
is tuned to minimize the variations of the generated attack
signals especially when desirable stealthy attack performance
is obtained. To help with the convergence of training the
agents, a negative discrete reward term rtdis is introduced,
which is expressed as below

rtdis = −(k1 · rt1 + k2 · rt2) (8)

rt1 = |
m∑
j=1

(It−1
fj − It−1

fi)| < Ifmin (9)

rt2 =
(
(DEt

1|...|DEt
i ) > DEmax

)∣∣∣m+1

i=1
(10)

where the term rt1 indicates the intrusion terms on sensor
and cyber links are canceling each other according to the
calculation of the consensus current [17], k1 is the coefficient
to ensure the presence of the minimum non-canceling destabi-
lizing cyber-attack as denoted by Ifmin

with the overall output
actions, i.e. the generated attack signals, in time t−1, and k2 is
the coefficient for penalizing the detection of excessive value
of DE terms during the training stage. The value of Ifmin

is chosen with a trade-off between the slope of the ramp for
the destabilizing phenomenon under the generated attacks and
the minimum discordant terms threshold, DEmax is the upper
threshold of discordant terms. Therefore, during the training
process, the RL agents will learn autonomously to produce
destabilization FDIAs to minimize the DE value. Thus, the
attacks remain undetected by the discordant detection method.

The goal of the agents is to learn the policy π(ati|sti) to
maximize the reward rti and thus to maximize the discounted
reward Gt

i. For a specific policy π, the action-value function
Qπ(sti, a

t
i) is used in reinforcement learning algorithm to

describe the expected return with the action ati with respect to
the state sti, which is estimated based on the Bellman equation
as [18]

Qπ(sti,a
t
i)← Qπ(sti, a

t
i)+

αi[r
t+1
i + γimaxQπ(st+1

i , at+1
i )−Qπ(sti, a

t
i)]

(11)

where αi is the learning rate of agent i.
Deep Q-Network (DQN) is employed due to its computa-

tionally efficient characteristics [19]. To stabilize the training
process, each experience tuple e = (sti, a

t
i, r

t
i , s

t+1
i ) of agent

i at each time step is first stored in an R-sized experience
memory D = {e1i , ..., eRi }. In each time step of training
process, a minibatch of the tuples are randomly selected from
R. Afterwards, as the DQN agent has a Q-network, which
approximates the action-value function Qπ

i (s
t
i, a

t
i|θQ) with

weights θQ. In addition, to enhance the convergence of Q-
network, a target network Q̂π

i (s
t
i, a

t
i|θ

Q
′

i ) is used. The weights
of the Q-network are optimized in the training process based
on the loss function as below

L(θQi ) = E[(Qπ
i (s

t
i, a

t
i|θQi )− yt)2] (12)

where
yt = rti + γQ̂π

i (s
′
i, a

′
i|θQ

′

i ) (13)
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The parameters of the target network are updated as

θQ
′

i ← τθQi + (1− τ)θQ
′

i (14)

where the smoothing factor τ ≪ 1.
The whole training process is shown as follows.

Algorithm 1 Multi-agent RL-based FDIA
Input: DE and

∫
DE of neighboring nodes

Output: Attack signals {Itf1, ..., Itfm}
1: Initialize replay buffer D to capacity R
2: Initialize action-value function Q with random weights θQi
3: Initialize target action-value function Q̂ with weights

θQ
′

i = θQi
4: for episode = 1 to M do
5: Receive initial observation at state s1i
6: for iteration = 1 to T do
7: For each agent i, select and execute action ati with

respect to policy π(ati|sti), receive the reward rti
calculated with (7) and transition into state st+1

i

8: Store tuple (sti, a
t
i, r

t
i , s

t+1
i ) in the D

9: for each agent i = 1 to m do
10: Randomly select the mini-batch e from D

11: Set yt =

{
rti , if episode terminates at step t + 1

rti + γimaxQ̂π
i (s

′

i, a
′

i|θ
Q

′

i ), otherwise
12: Perform gradient descent on (12) with (13)

regarding the network parameter θQi
13: end for
14: Update the target network using (14)
15: end for
16: end for

III. PROPOSED DATA-DRIVEN CYBER-ATTACK
DETECTION METHOD

We propose a data-driven detection method to comple-
ment the conventional DE-based detection method for the
DC microgrids under multi-agent RL-based cyber-attacks.
The proposed data-driven cyber-attack detection framework
is illustrated in Fig. 2. The basis of the proposed method
is to detect the attacks and identify the attacked nodes by
extracting the mapping relationship between the inputs and
the target labels, which consists of offline model training and
online cyber-attack detection.

As the RL-based cyber-attacks can bypass the discordant
detection algorithm, we aim to achieve attack detection as well
as attacked nodes identification, which could be considered as
a classification model. Since we use the measurement data of
the system under both normal and attack conditions, consider-
ing the computational burden of the artificial neural network
in the real-time application, we use the pattern recognition
network (PRN), a type of feedforward neural network (FNN)
for classifying the inputs to target classes. It is noteworthy
that the paper is not focused on comparing the performance of
different machine learning models or artificial neural networks
for cyber-attack detection but to apply them to detect the
cyber-attacks as well as identify the attacked nodes when
the intelligent attacks occur in DC microgrids. The utilized
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Fig. 2. Proposed data-driven cyber-attack detection method.

PRN is constructed with input, output, and single hidden layer
as shown in Fig. 3, and the mathematical description is as
follows.

Y = F (Xin) = fout[fhid(bhid +WhidXin)Wout + bout] (15)

where f , W , and b denote the activation function, weight
matrix, and bias matrix respectively, Xin = {x1, ..., xn}
represents the input vector, the subscripts hid and out denote
the hidden layer and output layer.

Hidden layerInput Output layer Label

W

b⋮

x2

xn

x1

f
W

b

f Y

Fig. 3. Structure of PRN.

In the offline training process, to collect the data for training
the neural network based cyber-attack detector, the historical
operational data, consisting of measurements for Ia, Vdc in
the system under both normal and RL-based cyber-attack
conditions for each node, is collected. By labeling the attacked
nodes as 1 and the unaffected nodes as 0, the dataset for all
the nodes is generated. Then the data is randomly split into
training dataset, validation dataset, and test dataset. During
the offline training process, the weights and biases of each
layer are optimized. Subsequently, a well-trained cyber-attack
detector with prior knowledge of multi-agent RL-based cyber-
attack is attained.

In the online cyber-attack detection process, during the real-
time system operation, the measured voltage Vdc and current
Ia are input to the trained PRN based cyber-attack detector.
The PRN based cyber-attack detector is implemented as a
classifier for each node to extract the labels of corresponding

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 27,2022 at 08:00:05 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2022.3176301, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

input measurements, which will indicate whether the system
is under attack and which nodes are attacked.

IV. EXPERIMENTAL RESULTS

To validate the performance of the proposed data-driven
cyber-attack detection method, an experimental setup of the
DC microgrid with n = 4 nodes in Fig. 1 is implemented,
shown in Fig. 4. The parameters of the system and con-
troller are listed in Table I. The trained RL agents target the
current sensor signals on three neighboring nodes 1, 2 and
4, and produce stealthy destabilization FDIAs on DE terms.
The experimental testbed consists of dSPACE MicroLabBox
DS1202 and a computer as the real-time control interface.
For both the normal condition and RL-based attack condition,
operation data was collected from the computer interface
with a sampling time of 0.2 ms for 10 s respectively, which
means the dataset comprising a total of 100000 samples of
Ia, Vdc, and the corresponding labels for each node. The
PRN is trained based on the dataset, where 80% randomly
divided data was used to train the neural network, and 10%
was used for validation and testing, respectively. The training
was carried out on Intel (R) Core (TM) i5-10210U 1.60GHz
processor with 8.00 GB RAM. And the training time for a
PRN is around 8 s. The performance of the training can be
observed in the confusion matrix, which is shown in Fig. 5.
The classification accuracy of the trained PRNs for correctly
classifying the inputs to the target labels is about 98.3%. In
order to evaluate the performance of the used PRN, classical
10-fold cross-validation is carried out, where the collected
dataset for training and testing is randomly and repeatedly
assigned [20]. The average classification accuracy is about
98.5%, which verifies the effectiveness of the employed PRN
for attack detection. The RL agents are applied via dSPACE
with a sampling time of 50 µs. Then, the trained cyber-attack
detectors are implemented in the experimental testbed to verify
its performance in the DC microgrid under the multi-agent
RL-based cyber-attack.

Fig. 4. Experimental setup of a DC microgrid with 4 nodes.

The experimental results are shown in Fig. 6. The RL agents
target the sensor signals to produce destabilizing FDIAs on
three neighboring nodes 1, 2, and 4. It can be observed when

TABLE I. Experimental Setup Parameters

Parameter sets Values

Converter
Lin = 0.86 mH,Co = 1.1 mF, fs = 10 kHz, Irated = 32 A

Loads: R1 = R2 = R3 = R4 = 30.6 Ω
Tie lines: R12 = R23 = R34 = 0.5 Ω, R14 = 0 Ω

Controller
Vin = 48 V, Vdcref = 60 V, Idcref = 0

Primary layer: KpV = 1,KiV = 20,KpI = 2.4,KiI = 10
Secondary layer: KI

p = 0.12,KI
i = 0.15

Fig. 5. Training results of the PRN for cyber-attack detection.
(1:Attacked; 0:Healthy)

the RL-based attack is initiated, the agents generate the attacks
on multiple nodes, and the system deviates from the normal
operating condition. Moreover, from the DE terms shown in
Fig. 6(c), it is evident that the RL algorithm successfully
generates the sophisticated attacks that remain stealthy to
the DE-based detection method as their values resemble the
normal conditions counterparts and are maintained in their
lower permissible range.

At the initial stage within 11 s, the system operates normally
with well-tuned distributed control, where about 6 A current
are shared proportionately among the four converters and
output voltage for each converter converges to around 60 V.
At around t = 11 s, the RL-based FDIA is initiated, which
results in a 0.3 A current deviation on the compromised node
and the unaffected node also experience a current rise to about
1.75 A, as shown in Fig. 6(b). It could also be observed in
Fig. 6(a) that the output voltage of all the converters decreases
by 0.05 V/s.

The performances of the conventional discordant detec-
tion method and proposed data-driven cyber-attack detection
method are shown in Fig. 6(c) and (d). When the attack is
initiated, it is observed in Fig. 6(c) that the DE terms for the
compromised nodes are suppressed to the normal condition
counterparts and within their minimum threshold. Neither of
the attacked nodes is manifested with evident higher index
values than the normal condition, according to the detection
criteria in equation (5), clearly indicating that the conventional
discordant detection method fails to detect the attacks and
the attacked nodes under the RL-based cyber-attacks. For the
proposed method, when the attack occurs, as shown in Fig.
6(d), with the labels scaled with the corresponding node index
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and 0.2 scaling factor, the well-trained PRN detectors signal
out the compromised nodes 1, 2 and 4, while the output label
for the node 3 is kept at 0, revealing that the cyber-attack
occurs and the node 1, 2 and 4 are attacked. When the attack
is removed, at around t = 36 s, the system works normally
at a new operating point and the detection metrics for all the
four nodes are maintained at 0. From the above analysis, it
can be concluded that the conventional discordant detection
scheme is ineffective under the RL-based cyber-attack, and the
proposed data-driven neural network based detector can detect
the attacks and identify the attacked nodes for DC microgrids
under the RL-based cyber-attacks.

V. DISCUSSION

Due to the system being regulated under the distributed
cooperative control structure, the distributed multi-agent re-
inforcement learning algorithm can be applied to generate
sophisticated attacks in larger systems. And the proposed
data-driven detection method can still be employed to detect
the attacks as long as the real operational data is collected.
Moreover, in larger systems, as the distributed control is
implemented independently in each microprocessor, the com-
putational burden on the implementation of the proposed data-
driven method and RL-based cyber-attack will not increase.
Therefore, the RL-based cyber-attack and proposed data-
driven detection method are scalable in larger systems with
more nodes.

In addition, we can also design the RL-based attacker and
train the proposed data-driven detector in an iterative way. In
each iteration, by updating the model of the system protected
with the new detection mechanism, i.e. the DE-based detection
method and the up-to-date data-driven detector complementing
each other, the RL-based attacker will explore in all the other
attack types and exploit the vulnerability of the new detection
mechanism, thus generating sophisticated attacks to bypass the
new detection mechanism. In turn, by updating the database
of the operation data under the new attacks, the data-driven
cyber-attack detector is trained and implemented to detect the
new attacks. Eventually, more attacks can be detected with the
new detection mechanism.

To sum up, the proposed data-driven cyber-attack detection
method can complement the DE-based detection method to de-
tect the RL-based intelligent attacks and identify the attacked
nodes which the conventional DE-based detection method fails
to detect. Compared with the method in [7], which collects
simulation data based on the healthy model of microgrids
and can only detect a certain type of attack, the proposed
method collects real data from system operation under both
normal and attack conditions, which enable it to detect a
wider range of cyber-attacks with high precision. Moreover,
as the RL-based intelligent attacker can also learn to bypass
other index-based detection methods [10]–[12], in the same
way, the proposed data-driven attack detection method can
be employed to complement other conventional cyber-attack
detection methods.
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Fig. 6. Experimental validation of the proposed data-driven
detection method for the DC microgrid. (a) Output voltage,
(b) Output current, (c) Performance of conventional DE-based
detection method, and (d) Performance of proposed data-
driven detection method.
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VI. CONCLUSIONS

This paper proposes a data-driven cyber-attack detection
method to complement the DE-based detection method for
DC microgrids under multi-agent RL-based cyber-attack. In
particular, the multi-agent RL algorithm is employed to gen-
erate sophisticated attacks against the conventional DE-based
detection method. The dataset of the DC microgrids operating
under both normal and cyber-attack conditions is collected
for offline training of the PRN based cyber-attack detectors.
Then, the well-trained neural network based cyber-attack de-
tectors are implemented in an experimental testbed to verify
the performance of the proposed data-driven method. The
experimental results show that the RL-based attacks remain
undetected by the DE-based detection method as DE indices
are maintained within their minimal permissible range, and
the proposed data-driven detector works as a complementary
detection scheme, detects the attacks and attacked nodes suc-
cessfully. Moreover, the proposed detection mechanism could
also be employed to complement other conventional cyber-
attack detection approaches when they fail under the intelligent
attacks.
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“Decentralized coordinated cyber-attack detection and mitigation strat-
egy in dc microgrids based on artificial neural networks,” IEEE Journal
of Emerging and Selected Topics in Power Electronics, 2021.

[8] O. A. Beg, L. V. Nguyen, T. T. Johnson, and A. Davoudi, “Signal tem-
poral logic-based attack detection in dc microgrids,” IEEE Transactions
on Smart Grid, vol. 10, no. 4, pp. 3585–3595, 2018.

[9] S. Sahoo, J. C.-H. Peng, A. Devakumar, S. Mishra, and T. Dragičević,
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