
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 02, 2024

Convex and effective yield surfaces for numerical rigid plastic limit analysis of
reinforced concrete structures with in-plane forces

Andersen, M.E.M.; Poulsen, P.N.; Olesen, J.F.; Hoang, L.C.

Published in:
Computational Modelling of Concrete and Concrete Structures

Link to article, DOI:
10.1201/9781003316404-63

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, M. E. M., Poulsen, P. N., Olesen, J. F., & Hoang, L. C. (2022). Convex and effective yield surfaces for
numerical rigid plastic limit analysis of reinforced concrete structures with in-plane forces. In Computational
Modelling of Concrete and Concrete Structures (1 ed., pp. 533-542). Taylor & Francis.
https://doi.org/10.1201/9781003316404-63

https://doi.org/10.1201/9781003316404-63
https://orbit.dtu.dk/en/publications/6559d25b-e03b-4a59-ab5e-6de1a3e06fa5
https://doi.org/10.1201/9781003316404-63


Computational Modelling of Concrete and
Concrete Structures – Meschke, Pichler & Rots (Eds)

© 2022 Copyright the Author(s), ISBN: 978-1-032-32724-2

Convex and effective yield surfaces for numerical rigid plastic limit analysis
of reinforced concrete structures with in-plane forces

M.E.M. Andersen
Department of Bridges International, COWI A/S, Kongens Lyngby, Denmark

P.N. Poulsen, J.F. Olesen & L.C. Hoang
Department of Civil Engineering, The Technical University of Denmark, Kongens Lyngby, Denmark

ABSTRACT: Many reinforced concrete structures are validated in the ultimate limit state (ULS) using analysis
methods based on the theorems of plasticity and the rigid-plastic material model.The rigid-plastic material model
significantly simplifies the actual stress-strain relationship of reinforced concrete. However, good agreement with
capacities found from experiments has been shown when a reduced or so-called effective concrete compressive
strength is used. The effective strength is mainly dependent on the transverse tensile strain when a single material
point is considered, and well-accepted expressions are given in the codes. The Modified Mohr-Coulomb yield
criterion with an effective strength is combined with the elasto-plastic behavior of the reinforcement to create
an effective yield surface for reinforced concrete for plane stress states. Based on this, the paper presents
an approximate convex effective yield surface, which can be used for Finite Element Limit Analysis (FELA)
calculations. The convex effective yield surface is based on auxiliary strains linked to the reinforcement stresses
on a material point level. The effective yield surface is tested on a material point level using an experimental
database for reinforced concrete panels and on a structural level with an example of a reinforced concrete deep
beam with holes. Both tests yield satisfactory results.

1 INTRODUCTION

Concrete is a material with a highly non-linear material
behavior in both compression and tension. Advanced
Non-Linear Finite Element Analysis (NLFEA) pro-
grams such as Diana (Ferreira 2020), and Atena
(Červenka & Červenka 2017) can account for the non-
linearity using expressions from, for instance, the fib
Model Code (fib 2013). By using these non-linear
expressions, detailed modeling of structures is possi-
ble. However, the analysis can also be cumbersome and
requires expert knowledge to alleviate convergence
problems in the loading of the structures. Furthermore,
many material parameters are needed to describe the
non-linear relationship, which can be challenging to
determine.

For these reasons, many designs are validated in the
ultimate limit state (ULS) using limit analysis methods
based on the theorems of plasticity and the rigid-
plastic material model (Drucker, Prager, & Greenberg
1952; Gvozdev 1960). Finite Element Limit Anal-
ysis (FELA) applies the theorems of plasticity and
is a numerical method based on optimization, and
since the problem can be posed as a convex problem,
it can be solved efficiently (Anderheggen & Knöpfel
1972).

In a FELA framework based on the lower bound the-
orem, the structure is divided into stress-based finite
elements. Scalable load is applied to the structure,
and equilibrium is ensured in elements and on bound-
aries, while a yield surface constrains the stress state
of the elements. The largest possible load which the
structure can sustain is then sought. For reinforced
concrete, the yield surface is often based on the Mod-
ified Mohr-Coulomb yield criterion with the possible
inclusion of smeared reinforcement using additional
linear constraints.

Using a rigid-plastic material model is an extreme
simplification compared to the actual stress-strain
relationship. However, in combination with a reduced
concrete compressive strength, the load-bearing
capacities obtained using these methods have shown
good agreement with those obtained from experiments
on beams, plates, and other structural elements. The
reduced concrete compressive strength is obtained by
multiplying the cylinder compression strength with
a so-called effectiveness factor, ν. Historically, the
effectiveness factor has been obtained empirically for
individual problem types, such as beams in bending
and beams in shear, through the fitting of experimental
results with results from exact rigid plastic solutions.
Large test databases exist to make these fits for many
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different structure types. However, all situations can-
not be tested, and a general method is needed. For
FELA this would mean the development of an effective
yield surface, which is the topic of this paper. Previ-
ously the topic has been treated in a purely stress-based
approach (Herfelt, Poulsen, & Hoang 2018).

To determine how an effective yield surface would
look a deformation-based model is considered since
several authors have suggested that the effective com-
pressive strength of concrete is linked to the transverse
tensile strain ε1 (Collins & Vecchio 1982; Hoang,
Jacobsen, & Larsen 2012). Expressions to determine
the effectiveness factor based on ε1 exist in, for exam-
ple, the fib model code. Using these expressions
combined with a linear elastic perfectly plastic con-
stitutive law for concrete and reinforcement, the stress
state for a given strain state can be found. By repeat-
ing this calculation for many different strain states,
effective yield surfaces are found in the stress space,
depending on the degree of allowed strain. The effec-
tive elasto-plastic yield surfaces found in this manner
are clearly reduced compared to yield surfaces where
the effective strength of concrete is not considered.

The next step is to develop a yield surface that
can be used in FELA, approximating the yield sur-
faces from the deformation-based model.The effective
elasto-plastic yield surfaces are not convex due to
the expression for the effectiveness factor. Therefore,
linearization is performed. Furthermore, the elasto-
plastic yield surfaces require knowledge of the strains.
However, strains are not available on a structural level
in FELA due to the rigid-plastic material model. This
challenge is overcome by introducing strains as an aux-
iliary variable on a material point level. The auxiliary
strains are constrained and linked to the stresses of the
reinforcement by assuming an elasto-plastic behavior.
In this way, an effective and convex yield surface is
established.

The effective rigid-plastic and convex yield surface
for plane reinforced concrete is tested in two exam-
ples.The first example is of a reinforced concrete panel
loaded in shear, with and without biaxial compression
or tension, to test the performance of the yield surface
on a material point level. The second example is of a
reinforced concrete deep beam with holes, this exam-
ple is made to see the performance of the yield surface
on a structural level.

2 FINITE ELEMENT LIMIT ANALYSIS

Finite Element Limit Analysis (FELA) is a combina-
tion of the domain discretization of the Finite Element
Method and limit analysis based on the extremum
principles of plasticity as postulated by Gvozdev
(1960), and Drucker, Prager, & Greenberg (1952). The
method was first proposed byAnderheggen & Knöpfel
(1972). This paper will only give a brief explanation
of the method. For further information, refer to, e.g.,
Andersen, Poulsen, & Olesen (2022).

The FELA method of this paper is based on the
lower bound theorem and is posed as a constrained
optimization problem in the following way:

max. λ Load parameter (1a)

s.t. Hβ =R0 + λR Stress equilibrium (1b)

fi(σ i)≤ 0 Yield conditions (1c)

The parameter λ scales the load, and is maximized
via the objective function (1a). Equation (1b) ensures
the stress equilibrium between internal and external
forces. The stress continuity is ensured by Hβ where
H is the so-called equilibrium matrix, which consists
of contributions from each of the elements, and β
which is a vector collection of the stress variables.
The element used for the calculations is a mixed lin-
ear lower bound triangle (Herfelt 2017; Krabbenhøft
2016), which is a relaxed version of the lower bound
element by Poulsen & Damkilde (2000). The external
forces are given by the constant loads R0 and scalable
loads λR.

The last part of the optimization problem is the yield
conditions (1c). The elements have a number of mate-
rial points which contain stress variables. For a plane
model the stress variables will be described by the
vector:

σ =
⎡

⎣
σxx
σyy
σxy

⎤

⎦ (2)

Equation (1c) states that the stresses of the material
points should be on or inside the yield surfaces defined
by fi. These yield surfaces are the subject of this paper.

3 MODELING OF PLANE REINFORCED
CONCRETE

The models of this paper all use the so-called smeared
reinforcement approach, whereby the reinforcement
bars are assumed to be placed sufficiently close for
this to be a reasonable simplification. Furthermore, the
reinforcement is assumed to be orthogonally placed
coinciding with the x- and y-axis of the Cartesian
coordinate system. The amount of reinforcement is
described as the reinforcement ratios ρs,x and ρs,y, see
Figure 1. The yield strength of the reinforcement is
fs and the reinforcement is assumed to carry normal
tensile stresses only.

The concrete is assumed to be a material with com-
pressive strength, fc, and negligible tensile strength.
Consequently, the reinforced concrete is considered a
composite material, where the compressive capacity
comes from the concrete and the tensile capacity from
the reinforcement.

The elasto-plastic models also use the modulus of
elasticity of concrete and steel, Ec and Es, as well as the
crushing strain of concrete εcu and the rupture strain
of the reinforcement εsu. This paper considers a fixed
set of parameters which can be seen in Table 1.

534



Figure 1. Representative reinforced concrete membrane.

Table 1. Material parameters used to
generate the yield surfaces.

fc [MPa] 30
Ec [GPa] 33
εcu [‰] 3.5
fs [MPa] 500
Es [GPa] 210
εsu [‰] 50
ρs,x = ρs,y [%] 0.6

3.1 Separation of stresses

Separation of the total stress into concrete and rein-
forcement stresses is performed to enable the modeling
of the yield surfaces:

σ�= σ�,c + ρσ�,s (3)

where σ� is the total stress tensor given by:

σ�=
[
σxx σxy
σxy σyy

]
(4)

and σ�,c is the concrete stress tensor given by:

σ�,c=
[
σc,xx σc,xy
σc,xy σc,yy

]
(5)

and ρσ�,s is the reinforcement stress tensor given by:

ρσ�,s=
[
ρx 0
0 ρy

] [
σs,xx 0

0 σs,yy

]
(6)

This separation of stresses is analogue to the way the
Nielsen yield criteria is developed (Nielsen & Hoang
2011).

3.2 The effectiveness factor

The effectiveness factor, ν, is a parameter introduced
to enable the usage of limit analysis methods based
on the theory of rigid-plastic materials for reinforced
concrete structures, even though the actual material
behavior is not rigid-plastic. However, the limit analy-
sis methods can still be used to provide failure loads in

good agreement with tests when a reduction of the con-
crete compressive strength via the effectiveness factor
is applied:

fc,eff= νfc (7)

where fc,eff is the effective concrete compressive
strength. The effectiveness factor accounts for several
different strength reduction effects related to soften-
ing, micro-, and macro-cracking (Nielsen & Hoang
2011). Several authors have suggested formulas for
determining the effectiveness factor based on different
geometrical and material properties. See Ref. (Hoang,
Jacobsen, & Larsen 2012) for an overview of differ-
ent works. Several of these authors suggest that the
effectiveness factor should be a function of the trans-
verse tensile strain, ε1, and this has also been adopted
in the fib model code 2010 (fib 2013) and in the new
enquiry version of Eurocode 2 (pr EN1992-1-1 2021).
The effectiveness factor for structures that meet the
demand for minimum reinforcement may be written
in the following way:

ν(ε1)= ηfcηε(ε1) (8)

The first factor, ηfc , accounts for the brittleness of
the concrete and can according to (pr EN1992-1-1
2021) be taken as:

ηfc = 3
√

fc0/fc ≤ 1.0, fc in MPa (9)

where fc0 is a reference strength in the order of 30–
40 MPa. In this paper, the value is taken as 30 MPa.
The second factor, ηε , is dependent on the transverse
tensile strain and can be formulated as:

ηε(ε1)= 1

c1 + c2ε1
≤ c3 (10)

where c1, c2, and c3 are some calibration constants.
Herfelt, Poulsen, & Hoang (2018) chose values of
c1= 1, c2= 80, and c3= 1, which have also been
adopted here.

The left hand side of equation (10) is non-convex
and thus also equation (8), making the formula unus-
able in a convex optimization framework. For his
reason, a simple linear relation is adopted in the convex
approximations:

ηε(ε1)= 1− aε1≤ 1 (11)

where a is the proportionality factor. Figure 2 shows
the graph of the left hand side of Expression (10) and
the simple linear expression with different values of
the a-parameter. The a-parameters in the figure corre-
spond to the slope required to get a reduction similar to
Expression (10) for different maximal strains ε1,max, at
a transverse strain corresponding to the yielding strain
of the reinforcement.
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Figure 2. Effectiveness factor as a function of the transverse strain with linear approximations yielding the same reduction
at εy , as Expression (10) yields for ε1,max.

4 YIELD SURFACES

Four implementations of yield surfaces for plane rein-
forced concrete are shown in the following. The yield
surfaces are plotted in the (σxx, σyy, σxy)-coordinate
system. Only the positive values of the shear stress
are plotted since the yield surfaces are symmetrical
with respect to the (σxx, σyy)-plane.

The rigid-plastic yield surface for plane stress
states, is presented as a reference. The rigid-plastic
yield surface can only consider a constant reduction
of the compressive strength. Therefore, it is a helpful
comparison, to see the effect of the reductions due to
the transverse strain. Thereafter, two effective elasto-
plastic yield surfaces are developed, one as a lower
envelope and one as an upper envelope of the effective
yield surface. Lastly, a convex effective rigid-plastic
yield surface is developed.

4.1 Rigid-plastic reinforced concrete yield surface

If only a fixed value of the effectiveness factor is con-
sidered, a rigid-plastic yield surface can be developed
based only on the concrete compressive strength fc, the
reinforcement yield strength fs, and the reinforcement
ratios ρs,x and ρs,y.

The Rigid-plastic reinforced concrete yield sur-
face separates stresses into concrete and reinforcement
stresses as described above. The concrete should then
abide by the Modified Mohr-Coulomb yield criterion
with a tensile cutoff of zero and the reinforcement by a
simple uni-axial relation.The mathematics of the yield
surface is described in Nielsen & Hoang (2011), and
a convex implementation can be found, e.g., in Her-
felt (2017). A plot of the yield surface can be seen in
Figure 3 using the material parameters of Table 1.

It should be noted that Nielsen proposed introduc-
ing the effectiveness factor by an additional constraint
|σxy| ≤ 0.5 νfc on the shear stress. This additional
constraint is omitted for the comparisons in this paper.

Figure 3. The rigid-plastic reinforced concrete yield for
parameters in Table 1.

4.2 Effective elasto-plastic reinforced concrete
yield surface

The following shows the methodology used to gener-
ate two different effective elasto-plastic yield surfaces.
These two yield surfaces will represent an upper and a
lower bound envelope, of which the significance will
be explained later.

The model takes a strain tensor in the form:

ε�=
[
εxx εxy
εxy εyy

]
(12)

and based on the constitutive equations of the rein-
forcement and concrete determines a stress state. This
process is repeated many times for different strain ten-
sors. The strain tensors are generated in a step-wise
process. A unit strain tensor is generated, which is
equivalent to a direction in the strain space. The unit
strain tensor is then multiplied by a linearly increas-
ing factor to control the magnitude. By repeating this
for many different unit strain tensors the strain space
is covered. Applying the non-linear constitutive rela-
tion will result in many different stress tensors, and
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thus a so-called point cloud will be generated in the
plane stress space. The two yield surfaces can then be
determined from the point cloud by certain criteria.

4.2.1 Constitutive relation of the reinforcement
The constitutive relation for the reinforcement is a
simple uniaxial relation in each of the two direc-
tions, since the reinforcement is assumed only to carry
normal stresses and to be placed according to the (x, y)-
coordinate system. The linear elastic perfectly plastic
material model is applied:

σs,n(εn)=

⎧
⎪⎨

⎪⎩

0, εn≤ 0
εnEs, 0≤ εn≤ εs
fy, εs ≤ εn

(13)

where the subscript n denotes either the x- or y-normal.
A graph of the relation can be seen in Figure 4.

Figure 4. Constitutive relation of the reinforcement.

4.2.2 Constitutive relation of the concrete
The constitutive relation of the concrete is based on a
linear elastic perfectly plastic relation, same as for the
reinforcement. However, the effective uniaxial com-
pressive strength depends on the transverse strain via
the effectiveness factor. For these reasons, the consti-
tutive relation of the concrete is based on principal
stresses and principal strains. Due to the effect of
the transverse strain and the potentially complicated
expression for the effectiveness factor, the equations
are not easily posed with limits. However, they can be
posed in the following way:

σc,1(ε1, ε2)=min {max {Ecε1, ν(ε2)fc} , 0} (14)

σc,2(ε1, ε2)=min {max {Ecε2, ν(ε1)fc} , 0} (15)

With the usual ordering of the principal strains and
stresses, that is, ε1≥ ε2 and σc,1≥ σc,2, only the sec-
ond principal concrete stress can be influenced by the
transverse strain, since if ε2 is positive ε1 must also be
positive, which implies that σc,1 is zero.

A plot of the constitutive relation of the second
principal concrete stress as a function of the princi-
pal strains can be seen in Figure 5, where material
parameters fromTable 1 are used. With tensile strain in
both principal directions, no concrete stress is present,
whereas a linear relation is seen with increasing

negative principal strains. The effective compressive
strength limits the maximum principal stress, and
the increasing transverse strain makes the strength
decrease.

Figure 5. Constitutive relation of the second concrete prin-
cipal stress in principal strain space.

4.2.3 Generation of yield surfaces
With the constitutive relation of the concrete and the
reinforcement established, it is possible to determine
the corresponding stress state of the composite mate-
rial for a given strain. The calculation procedure is as
follows:

1. Given a strain tensor in the form of equation (12).
2. Compute reinforcement stresses by equation (13)

using εxx and εyy.
3. Compute principal strains and then compute prin-

cipal concrete stresses from equations (14) and
(15).

4. Transform concrete principal stresses back into
directions of original coordinate system.

5. Compute the composite stress state from equa-
tion (3).

The above algorithm is used to generate the point
cloud of possible stress states from which the yield
surfaces are generated. The first yield surface will be
called the upper envelope (UE) yield surface, which
will be generated from the concave envelope of the
entire point cloud. The second yield surface will be
called the lower envelope (LE) yield surface, which
will be generated from the concave envelope of the
points where there is either no tension and the con-
crete has reached the crushing strain εcu, or for points
with tension, where the maximum normal tensile strain
reaches ε1,max= 10‰. With these criteria, very similar
stress states can exist with varying shear capacity. In
these situations, the point with the least shear capacity
is shown. The choice of the value 10‰ is arbitrary, and
it could be argued that a larger value should be cho-
sen. For instance, the ductility requirement according
to the Eurocode for type B reinforcement is required
to be 50‰ (Eurocode 2 2008). However, a transverse
strain of 50‰ would correspond to a prohibitively
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large reduction of the concrete strength, and therefore
a lower value is used for these examples.

A plot of the UE yield surface with material param-
eters fromTable 1 can be seen in Figure 6.The coloring
on the surface is the perpendicular distance from the
current yield surface to the rigid-plastic reinforced
concrete yield surface, which can be used to dis-
tinguish what has been cut away by introducing the
effectiveness factor.

Figure 6. Upper envelope (UE) yield surface.

Firstly, it can be seen that a cone in the compression
side of the plot remains unaltered, which is the part cor-
responding to concrete in biaxial compression. These
stresses can be carried without activating the reinforce-
ment in tension, and therefore are not influenced by the
effectiveness factor.

Notably, “the right-hand side” of the plot is no
longer shaped like a cone. From the coloring of the
figure, it can be seen that the reduction is most pro-
nounced in a band around the middle of the yield
surface. These are stress states with either predomi-
nately shear stress, or shear stress with normal stresses
of opposite signs.

From the unaltered part, a decrease in the shear
capacity and the maximum compression with trans-
verse tension is seen. Looking at the σxxσyy-plane, for
maximum transverse tension, it can be seen that the
effective compressive strength is reduced from 30 MPa
to about 25 MPa. This reduction is equivalent to the
effectiveness factor for a transverse strain of εy, which
is also the required transverse tension to activate the
reinforcement fully and thus as expected for the upper
envelope.

A plot of the lower envelope yield surface with
material parameters from Table 1 can be seen in Fig-
ure 7. The cone in the compression part of the yield
surface corresponding to biaxial compression is still
unaltered. However, the rest of the yield surface is
much more reduced due to the larger strains mean-
ing an additionally reduced compressive strength.
Looking at the σxxσyy-plane, the effective concrete
compressive strength is reduced from 30 MPa to about
17 MPa, which is consistent with a transverse strain of
ε1,max= 10‰.

Figure 7. Lower envelope (LE) yield surface.

4.3 Effective rigid-plastic reinforced concrete yield
surface

To develop a yield surface that can be used in a
FELA context, it must be convex and based on the
available variables, which are stresses. However, aux-
iliary strains can be introduced on a material point
level by assuming a restriction between the stresses
of the model and the auxiliary strains. The strains are
introduced as variables: [εxx, εyy, εxy]. The strains are
linked to the material point and not to a structural
deformation-based model, and therefore the strains of
the material point are only indirectly influenced by the
rest of the structure via the stress equilibrium.

The strains are introduced in relation to the rein-
forcement stresses in the following way:

σs,xx − εxxEs ≤ 0 (16a)

σs,yy − εyyEs ≤ 0 (16b)

The relations above create a link between the strains
and the reinforcement stresses. So in order for the
reinforcement to be activated, positive strains are
required.

From the plane strains, principal strains can be
found in the following way:

Cε = 1/2(εxx + εyy) (17a)

Rε =
√

1/2(εxx − εyy)2 + ε2
xy (17b)

ε1 = Cε + Rε (17c)

where ε1 is the transverse strain. Equation (17b) is
equivalent to a second-order cone and can therefore
be cast in a convex form. Hereby the transverse strain
is available for the implementation.

The concrete stresses should abide by the Modified
Mohr-Coulomb yield criterion:

σ1 ≤ 0 (18a)

kσ1 − σ3 ≤ ν(ε1)fc (18b)

where σ1, and σ3 are the largest and smallest princi-
pal stress, respectively, and k is the frictional parameter
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usually taken as 4. Equation (18a) describes the separa-
tion criterion meaning that no concrete tensile strength
is considered, and equation (18b) describes the friction
criterion. The compressive strength is now a function
of the transverse strain via the effectiveness factor.
For the proposed yield surface to be convex, the lin-
ear approximation of the strain-dependent part of the
effectiveness factor, equation (11), is used. The Modi-
fied Mohr-Coulomb yield criterion is implemented in
the usual manner.

The reinforcement stresses are restricted by simple
uni-axial bounds:

0 ≤ σs,xx ≤ fs (19a)

0 ≤ σs,yy ≤ fs (19b)

where fs is the strength of the reinforcement. With
this the effective rigid-plastic reinforced concrete yield
surface is presented.

Figure 8 shows the yield surface generated for the
material parameters of Table 1 and with the slope
parameter a in equation (11) of 67, which is equivalent
to a straight line rendering the same value as expres-
sion (10) at a transverse strain equal to the yield strain
of the reinforcement. The surface is colored after the
distance to the UE yield surface shown in Figure 7.
The rigid-plastic yield surface generally has the same
shape as the UE yield surface, however, as can be seen
from the red coloring, the rigid-plastic yield surface is
generally less conservative. Figure 9 shows the yield
surface with a slope parameter of 187, which is equiv-
alent to a reduction from Expression (10) of 10‰, but
at the yielding strain of the reinforcement. This figure
is equivalent to the lower envelope and is colored by
the distance to the LE yield surface.Again the approxi-
mation is quite good. However, there are still areas that
are non-conservative with respect to the elasto-plastic
yield surface. Nevertheless, this is expected since the
non-convex parts can not be accurately captured in a
convex approximation.

Figure 8. Effective rigid-plastic yield surface with a= 67.

Figure 9. Effective rigid-plastic yield surface with a= 187.

5 EXAMPLE: REINFORCED CONCRETE
PANEL IN SHEAR WITH AND WITHOUT
NORMAL FORCE

The effective yield surface is tested on some experi-
ments of reinforced concrete panels. The reinforced
concrete panel experiments have been collected by
Hoang, Jacobsen, & Larsen (2012). However, a mod-
ified version of the database by Brask & Xuan (2019)
is used. The modified database omitted panels that
experienced local failure or failure in the experimental
setup.

The setup of the panel experiments varies. However,
they all seek to emulate a reinforced concrete panel
with a concrete stress state in pure shear or shear with
biaxial compression or tension.The idealized model in
FELA can be seen in Figure 10. The database consists
of 72 specimens, with 60 panels in pure shear, 5 in
shear with biaxial tension, and 7 with shear and biaxial
compression. The biaxial compression and tension are
included as a fraction κ of the shear. Of the 72-panels,
roughly half (N = 34) is isotropically reinforced. The

Figure 10. Reinforced concrete panel with shear and normal
load.
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Figure 11. Capacity comparison with reinforced concrete panel experiments.

material parameters for the tests vary, and all the details
will not be given here, but they can be found in Brask
& Xuan (2019).

The FELA calculations are performed using two
yield surfaces. First the rigid-plastic reinforced con-
crete yield yield surface, where the effectiveness factor
is simply 1.0 everywhere (Figure 3), and secondly the
effective yield surface with a maximum transverse ten-
sile strain of ε1,max= 10‰, where the effectiveness
factor can vary from 1.0 (Figure 9). The yield surfaces
use the material parameters of the specimen and will
therefore not be exactly equal to the ones presented
so far.

Figure 11 shows a comparison between the exper-
imental capacity τexp on the ordinate and the capac-
ity found from the FELA calculations τFELA on
the abscissa. The specimens have different markers
depending on the loading scenario. The plots also
shows a thick line corresponding to τexp= τFELA, and
two additional lines on either side corresponding to
a 5% and 10% deviation. Observations to the right
of the thick line will have an overestimated capacity
and opposite for points to the left. Furthermore, the
plot also shows the basic statistics of the capacity ratio
τexp/τFELA, where a mean value close to 1 and a low
standard deviation would indicate a good fit between
the experimental and calculated capacity.

The rigid-plastic reinforced concrete yield gener-
ally overestimates the capacity with several data points
way outside the 10% deviation line. The result using
the effective yield surface is much improved. Almost
all the worst outliers are now within the 10% deviation
line, and the mean value of the capacity ratio went from
0.925 to 0.982, while the standard deviation has gone
down, which indicates that the effective yield surface
works well on a material point level. However, one
thing to consider is which values of ε1,max and the cal-
ibration parameters c1, c2, and c3 from equation (10),

are used to find the slope parameter a. Since the slope
parameter is what defines how much the yield surface
is reduced.

6 EXAMPLE: DEEP BEAM WITH HOLES

The previous example showed the behavior of the
effective yield surface when compared to experiments
performed on reinforced concrete panels. Here the
effective yield surface improved the scatter of the
results. However, the FELA calculations of those
experiments yield a constant stress state over the entire
model, and therefore it is also desirable to see the effect
on an example with a complicated stress distribution.
Therefore, an example for a reinforced concrete deep
beam with holes is considered.

A sketch of the beam can be seen in Figure 12. The
beam is thicker at the top and the bottom, with the

Figure 12. Reinforced concrete deep beam with holes.
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Figure 13. Smallest principal concrete stress for the rigid-plastic reinforced concrete yield surface (left), and the effective
yield surface with a= 187 (right).

Figure 14. failure mode of the model for the rigid-plastic reinforced concrete yield surface (left), and the effective yield
surface with a= 187 (right).

top and bottom flanges being three times the thick-
ness of the rest of the beam. The material parameters
are the same as listed in Table 1, except for the thick-
ness and the reinforcement ratio. These vary between
the web and the flanges. The vertical reinforcement
in the flanges is chosen to correspond to the ratio
between the thickness of the flanges and the web. Fur-
thermore, horizontal bending reinforcement is added
to the bottom flange.

The model is supported vertically at the left end
with a support width of 300 mm, and with a symmetry
boundary condition on the section at the right-hand
side. The loading consists of a distributed load of λp
on the top face and λp/4 on the bottom face.

For the calculations, an unstructured mesh with
an element side length of 25 mm is used, which
corresponds to 17160 elements.

The resulting load factor λ is 0.455 using the Rigid-
plastic reinforced concrete yield surface and 0.415
using the effective yield surface, which corresponds
to p= 273 kN/m and p= 249 kN/m, respectively.The
capacity is thus reduced by 9% when the effective yield
surface is used.

Figure 13 shows the value of the smallest prin-
cipal concrete stress for the model using the rigid-
plastic reinforced concrete and effective yield sur-
faces, respectively. A clear difference between the
layout of the compressive stresses is visible. For the

rigid-plastic reinforced concrete yield surface, the
compression is carried through struts with more or
less constant spread and stresses close to fc, whereas
the struts are more diffused in the example with the
effective yield surface. This effect is especially visible
between the first and the second window when count-
ing from the right, where the strut for the effective yield
surface looks like a typical bulging strut, and as such,
also has a decreased effective compressive strength.

A comparison of the failure mode using the two
different yield surfaces can be seen in Figure 14. The
failure mode for the model using the rigid-plastic rein-
forced concrete yield surface is a combination of a
bending and shear failure, whereas the failure mode
is much more localized when using the effective yield
surface.

7 CONCLUSION

The yield surface of a plane reinforced concrete mate-
rial point considering the effect of transverse tension
on the effective compressive strength has been exam-
ined with the goal of developing a convex yield surface
for use in Finite Element LimitAnalysis (FELA). First,
a strain-based elasto-plastic model was developed uti-
lizing an expression for the effectiveness factor similar
to the one given in the fib model code. Secondly, a
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stress-based convex effective yield surface was devel-
oped. The yield surface limits the effective concrete
compressive strength by introducing strains linked to
the reinforcement stresses on a material point level.
The convex yield surface applied a linearized approx-
imation of the effectiveness factor expression. The
convex effective yield surface was compared to the
elasto-plastic yield surface and was found to be a
good approximation. After that, two examples were
shown utilizing the effective yield surface compared
to the rigid-plastic reinforced concrete yield surface
where the effective compressive strength is not con-
sidered. The first example used a test database of
reinforced concrete panels. The panels were subjected
to shear stresses with and without biaxial compres-
sion or tension. The effective yield surface improved
the predicted failure load compared to the experimen-
tal failure load, which indicates that the effective yield
surface works well on a material point level. The sec-
ond example was of a reinforced concrete deep beam
with holes. Here the use of the effective yield surface
reduced the capacity of the beam by 9%, and a dif-
ference in the stress flow and failure mode was seen,
which indicates that the effective yield surface also
works well on a structural level.
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