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In sound field reproduction and sound field control systems, the acoustic transfer functions between

a set of sources and an extended reproduction area need to be accurately estimated in order to

achieve good performance. This implies that large amounts of measurements should be performed

if the area is large compared to the wavelengths of interest. In this paper, a method for reconstruct-

ing these transfer functions in highly damped conditions is proposed by using only a small number

of measurements in the reproduction area. The source radiation is modeled with the spherical har-

monics basis and its amplitude coefficients are fitted with Bayesian inference. This approach is vali-

dated in a sound field control experiment where a set of 12 control loudspeakers attenuate the

sound pressure level generated by a set of six primary loudspeakers in a quiet zone while minimiz-

ing their radiation into a listening zone. The performance of the approach is studied by analyzing

the sound field reconstruction and the sound field control performance. It is shown that it is possible

to get—with few measurements and the source radiation model—results similar to those achieved

using a dense grid of transfer function measurements. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5133384

[JDR] Pages: 3425–3435

I. INTRODUCTION

Accurate knowledge of the acoustic transfer functions

between a set of loudspeakers and a reproduction area is

important for the implementation of multichannel reproduc-

tion systems that are used for applications in spatial sound,

sound field synthesis, and sound field control. In multipoint

or inverse filtering methods1,2 the transfer functions, from

which the loudspeaker signals are derived, must be sampled

accurately and with sufficient spatial resolution to avoid ali-

asing effects.

Such dense spatial sampling is no issue for investiga-

tions based on simulations.3–8 However, the measurement of

transfer functions between multiple loudspeakers and hun-

dreds of control points in large control areas requires large

microphone arrays or many sequential measurements.

Besides, placing the microphones inside the control area can

also be impractical.

In order to reduce the number of measurements,9 adapt

transfer functions to changes in atmospheric conditions10,11

or control sound at virtual sensor positions,12 the sound prop-

agation between sources and the reproduction area can be

estimated using a sound propagation model. Most previous

studies that used sound propagation models in a sound field

control context assumed omnidirectional radiation of the

sources modelled with monopoles3,13–18 or a combination of

monopoles and dipoles.5 Such a simplification often leads to

large performance degradations when comparing the predicted

and measured sound fields, e.g., a study of Chang and

Jacobsen showed differences of up to 25 dB between predicted

and measured acoustic contrast19 due to errors in loudspeaker

positioning and modelling, even though they measured the

acoustic center of the loudspeakers in a separate experiment20

and used a combination of monopole and dipole.

In the present study, we introduce a source radiation

model for sound field control problems where the parameters

of the model are fitted using in situ measurements. The

model makes use of a spherical harmonic expansion to

account for the directivity of the sources. We show that the

approach enables a more accurate representation of the

source radiation over large control areas compared to mono-

pole and monopole plus dipole models of the source radia-

tion (which are commonly found in the literature). A fair

assumption in sound field control setups, where multiple

loudspeakers of the same type are deployed, is to assume

that all the sources share the same radiation properties. This

enables us to reduce the number of model parameters, so

that using the same parameter values for each source, it

becomes possible to estimate these from only a handful of in
situ measurements. Once the loudspeaker radiation proper-

ties are determined, the model can estimate transfer func-

tions over large spatial areas. We show that these estimates

are accurate enough for applications in sound zoning under

anechoic conditions. The introduced method can thus con-

siderably reduce the number of measurements needed for the

setup of sound zone systems in highly damped rooms, as,a)Electronic mail: dicano@elektro.dtu.dk
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e.g., in the aforementioned studies,7,14,19,21 while maintaining

a good performance. For sound field reproduction in reverber-

ant rooms, the presented methodology might extend sound

field control methods for reverberant spaces that are based on

a monopole model, e.g., as proposed by Jin and Kleijn.9

There exist multiple other source radiation models and

near-field reconstruction methods22–27 which were developed

to reconstruct the sound field in the near-field of a source, and

examine their vibrational properties. The proposed spherical

harmonics model is a compact representation, optimal for

modeling the radiation characteristics of a compact source, as

a small subset of the spherical wave functions can provide an

accurate representation of the sound field radiated by the

source.23

We use the Bayesian inference framework to fit the

parameters of the sound propagation model to the sparsely

measured transfer functions. This has been shown to be an

appropriate approach for solving inverse acoustic problems

and is ideally suited for combining information of physical

and probabilistic natures. Antoni used Bayesian inference

for reconstructing the sound field at the surface of a source

finding the optimal interpolation basis.28 Koyama et al.
applied the same approach, finding the optimal driving sig-

nals of the control sources in a sound field reproduction

setup assuming that the sources are omnidirectional, in a free

field environment.15 Other acoustic problems where the

Bayesian framework has been successfully applied are

acoustic source localization29–31 or vibroacoustics in com-

plex structures,32 among others.

In this paper we use a hierarchical Bayesian model to find

the regularization parameters and noise variance. It has been

shown in previous experimental studies28,33 that Bayesian

inference outperforms GCV and the L-curve method for esti-

mation of the regularization parameters in inverse acoustic

problems.

The paper is structured as follows: Section II presents

the methods. The sound zoning objectives are formulated to

cancel the sound created by a set of primary sources in the

dark zone with a set of secondary control sources, while

reducing the impact of the secondary sources in the bright

zone. The spherical harmonics model is presented and sim-

plified to the geometry of the experimental setup. Bayesian

inference is briefly introduced and applied to our problem.

We define performance metrics to study the behavior of the

applied methods in both sound field reconstruction and

sound field control terms. Last, the experimental setup is

described. Section III presents the analysis of results regard-

ing model fitting, sound field reconstruction and sound field

control performance. In Sec. IV we discuss further the

results shown in Sec. III. Section V states the most relevant

conclusions that come out of the present work.

II. METHODS

A. Sound zones

The objectives of the sound field control system in this

paper are (1) the cancellation of sound from a primary source

in a dark zone using a set of secondary control sources and

(2) minimization of the sound radiated by the control sources

into a bright zone, as motivated in previous work11,34 (see

Figs. 1 and 2). Figure 1 shows the diagram of the signal flow

in this setup. The primary source is fed with an unfiltered

audio signal and generates the primary sound field. At a sin-

gle frequency, this field is represented by the transfer func-

tion vectors hB 2 C
NB and hD 2 C

ND to NB and ND positions

in the bright and dark zones, respectively. Each of the Nc

control loudspeakers is driven by a separate control signal.

Their transfer functions are represented by the transfer matri-

ces HB 2 C
NB�Nc and HD 2 C

ND�Nc in bright and dark

zones, respectively. The control signals are realized by filter-

ing of the audio signal with the control weights w 2 C
Nc .

The control weights are found by the PM-ACC method,5,7,19

i.e., by solving

minimize
w

jkHBwk2
2 þ ð1� jÞkHDwþ hDk2

2; (1)

where k � k2 is the Euclidean norm and j 2 ½0; 1� is weight-

ing between the two objective terms. This cost function min-

imizes the radiation of the control sources into the bright

zone (first term) and the total sound energy of primary and

control sources in the dark zone (second term). Equation (1)

is a linear least squares problem and can thus be solved effi-

ciently. Notice that we have reversed the notion of bright

and dark zone here in comparison to the standard sound zon-

ing nomenclature: the system is reproducing a target field

�hD in the dark zone and minimizing the energy of the con-

trol sources in the bright zone. However, sanity is recovered

when superimposing the sound fields of primary and control

sources.

The solutions of the optimization problem (1) for all rele-

vant frequencies are the complex control gains of the second-

ary sources w. The discrete Fourier transform of the

frequency domain gains is a set of real, optimal finite impulse

response (FIR) filters. The control source driving signals are

obtained through convolution of the audio signal with the cor-

responding optimal filters.

B. Source radiation model

In this work, we model the radiation properties of the

sources (directional response and sensitivity) used in the

sound zoning setup. Spherical harmonics have been shown

to be a useful basis for modeling35 and designing13 the

acoustic radiation of sources. The transfer function between

the midpoint of the loudspeaker box and a measurement

point r ¼ ðr; h;/Þ is36

FIG. 1. Signal path diagram. The total sound field in the bright zone is

HBwþ hB. The equivalent applies to the dark zone.
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ĥðk; rÞ ¼
X1
m¼0

Xm

n¼�m

amnhð2Þm ðkrÞYn
mðh;/Þ; (2)

where h is the polar angle, / the azimuth angle, k is the

wavenumber, r is the radial distance, hð2Þm are the spherical

Hankel functions of the second kind, am 2 C are the coeffi-

cients of the spherical harmonics basis and

Yn
mðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðm� nÞ!

4pðmþ nÞ!

s
Pn

mðcosðhÞÞejm/ (3)

are the spherical harmonics of mode order m and degree n.

The terms Pn
m are the Legendre polynomials. The geometry

of the setup (see Figs. 2 and 3) simplifies the formulation,

and symmetry around the polar axis (n¼ 0) is assumed.37

With this simplification,

ĥðk; rÞ ’
XM

m¼0

amhð2Þm ðkrÞPmðcosðhÞÞ; (4)

where the sum has been truncated to M elements.

C. Bayesian inference and inversion

Given no transducer mismatch between neither the loud-

speakers nor the microphones, it can be assumed that all the

transfer functions between NL loudspeakers and NM mea-

surement points are described by the same model. Thus, the

recorded transfer functions per frequency h 2 C
NLNM are

modeled as h ¼ ĥþn, where n is additive noise and ĥ is Eq.

(4) in vector form

ĥ ¼Sa; (5)

with ĥ 2C
NLNM ; a 2 C

Mþ1; and S 2 C
NLNM�ðMþ1Þ with ele-

ments smi ¼ hð2Þm ðkriÞPmðcos ðhiÞÞ.
To calculate the unknown parameters a we use Bayesian

inference, which is the process of fitting a probability model

to a set of data and summarizing the result by a probability

distribution on the parameters of the model, called the poste-

rior distribution.38 Given a set of measured transfer functions

h the posterior distribution pða j hÞ of the parameters a is the

result of the Bayes’ theorem

pða j hÞ ¼ pðh j aÞpðaÞ
pðhÞ ; (6)

where p stands for probability density function.

The prior pðaÞ expresses our beliefs about the unknown

parameters a prior to the measurement of h. The likelihood

function pðh j aÞ expresses the likelihood of measurement

outcomes given a specific realization of the unknown param-

eters a. The evidence pðhÞ is the marginal distribution of the

data. In short, the posterior expresses what we know about a

after the measurement of a specific realization h. When sam-

pling the posterior, the evidence can be omitted as it is inde-

pendent of the model parameters a.

D. Likelihood, prior, and MAP

The noise n is considered complex normal (which is

the maximum entropy assignment when the only informa-

tion about the noise is that its variance is finite39) and circu-

larly symmetric,40 with both real and imaginary parts

independent and identically normally distributed, simplify-

ing to n � CN ð0; s�1IÞ, I being the identity matrix. This

assumption is an approximation of the spatial covariance of

the noise, leading to the following normally distributed

likelihood:

pðh j a; sÞ � CN ðĥ;s�1IÞ / exp ð�s2jjSa� hjj2Þ: (7)

Common prior distributions for the coefficients in this type

of regressions are uniform distributions and normal distribu-

tions. The uniform distribution leads to a closed analytic

solution of the posterior distribution.41 When a normal distri-

bution is used, it is necessary to know both precision of noise

and precision of a to have an analytic solution.33,42 We

assume that the amplitude coefficients are normally distrib-

uted with zero mean, i.e., a � CN ð0; d�1IÞ. This regularizes

the problem as the normal distribution penalizes large coeffi-

cients. Neither of the precision hyperparameters s and d are

known, and their prior distributions pðsÞ and pðdÞ are con-

sidered gamma distributions

s � Gða; bÞ; d � Gða; bÞ; (8)

which fulfill the requirement that s�1; d�1 > 0.

The posterior distribution is proportional to the prior

times the likelihood

pða; s; d j hÞ / pðh j a; sÞpða j dÞpðsÞpðdÞ: (9)

Equation (9) does not have an analytic solution.

The transfer functions can be estimated using the maxi-

mum a posteriori probability estimate (MAP) of Eq. (9):

FIG. 2. (Color online) Measurement setup in anechoic chamber.
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ða; s; dÞMAP ¼ argmax
a;s;d

pða; s; d j hÞ: (10)

The predicted transfer function from a source to any point

r� ¼ ðr�; h�Þ is

ĥðk; r�Þ ¼ s�aMAP; (11)

where the elements of s� are sm� ¼ hð2Þm ðkr�ÞPmðcos ðh�ÞÞ. To

find the MAP estimates we use the limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization

algorithm included in the STAN statistical modeling pack-

age,43 which has superlinear convergence and is suitable for

high dimensional non-linear problems, yet making moderate

use of memory resources. Other methods could otherwise be

used, such as expectation maximization.44

E. Performance metrics

We define the error between the estimated [Eq. (11)]

and measured transfer functions at each frequency with the

normalized mean square error45

NMSE ¼ 1

N�NL

XN�
i¼1

XNL

j¼1

jHi;j � Ĥi;jj2

jHi;jj2
: (12)

The NMSE indicates how well the model is estimating the

transfer functions on average over all loudspeaker-

measurement point combinations for N� � NM. Normalizing

each term in the sum separately assures that points with low

and high transfer function magnitude contribute equally to

the error estimate.

The insertion loss11

IL ¼ 10 log
khDk2

kHDwþ hDk2

 !
(13)

is used to quantify the performance of the sound zone sys-

tem in the dark zone, where it represents the average

reduction of sound pressure level when the control sources

are active.

F. Experimental setup

The methods regarding transfer function reconstruction

and sound zoning were tested in an anechoic sound zone

setup as shown in Figs. 2 and 3. The equal sized bright

and dark zones were separated by the control source array

consisting of twelve sources (i.e., Nc¼ 12) arranged as two

layers of six loudspeakers facing opposite directions. The

primary source to the left hand side of the bright zone was a

Np ¼ 6 element loudspeaker array. All the NL ¼ Np þ Nc

¼ 18 loudspeakers were of the same type with Tymphany

PLS-P830986 3-in. driver units mounted on custom made

fiberboard boxes (see bottom of Fig. 3). The transfer func-

tions of each speaker to each zone were measured with

the exponential sine sweeps technique46 at a dense grid of

NB ¼ ND ¼ 700 measurement positions per zone (25� 28

grid of points on a plane) using a 6� 10 array of 1/4-inch

microphones spaced 7.5 cm apart (black dots in Fig. 3). The

sampling rate is 8192 Hz, the frequency range studied is

100–1000 Hz, the frequency resolution is 33.3 Hz and no

averaging is applied. The SNR is above 20 dB in the studied

frequency range. The measured temperature during the

experiment was T ¼ 19:4 	C. The origin of the coordinate

FIG. 3. (Color online) Setup geometry.

Brown loudspeakers are the primary

sources and blue loudspeakers the sec-

ondary control sources. White dots are

the loudspeakers box midpoints. Black

dots are the NB þ ND ¼ 1400 measure-

ment positions. Orange and blue

squares are one LHS realization of the

picked measurement positions used to

fit and validate the model, respectively

for NZ ¼ 4. Bottom left corner: one

loudspeaker unit. Bottom center: coor-

dinate system of the spherical harmon-

ics model. Bottom right corner: detail

of the distance between measurement

points.
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system for the spherical harmonics model is the loudspeaker

box midpoint as specified in Fig. 3.

III. RESULTS

In the first part of this section, the sound propagation

model parameters are inferred from small, randomly chosen

sets of transfer function measurements and the sound field

reconstruction quality is assessed in terms of the NMSE by

comparison with the densely sampled measured sound field.

The radiation properties of the sources and how the model is

able to incorporate them are also investigated and linked to

the resulting sound field reconstruction error. Next, sound

zones with the transfer functions estimated by the sound

propagation model are created and the sound field control

performance is studied in terms of the achieved insertion

loss.

The parameter j ¼ 0:1 is used to solve Eq. (1), giving

more importance to the reduction of sound level in the dark

zone. The prior distributions were chosen to be weakly infor-

mative, a ¼ 1; b ¼ 10�2. They assert no strong prior knowl-

edge about neither the measurement error nor the spherical

harmonics coefficients a.

A. Model fitting and sound field reconstruction

In each zone 50 random “fitting sets” of NZ ¼ 1, 4, 16, or

64 measurement positions per zone (i.e., NM ¼ 2NZ) are

picked from the entire data set via Latin hypercube sampling

(LHS) in order to cover homogeneously the controlled area.47

Figure 3 shows an example LHS realization for NZ¼ 4. We fit-

ted the sound propagation model and computed the perfor-

mance indices for each of these realizations individually.

Figure 4 shows the average and worst case NMSE [Eq.

(12)] of the 50 LHS realizations as a function of the number

of measurements per zone NZ and the truncation of the series

M. The NMSE is calculated between the reconstructed and

the measured transfer functions from all NL¼ 18 loud-

speaker to the dense grid of N� ¼ NB þ ND ¼ 1400 measure-

ment positions.

As a general trend, Fig. 4 shows that more modes and

more measurement positions lead to lower error, while

higher frequencies show higher error. However, this trend is

not followed in all cases. When M¼ 0, the error is equal for

all NZ, where only four parameters are inferred (s, d, and real

and imaginary parts of a0). Even using the least number of

measurement positions per zone NZ ¼ 1, the amount of trans-

fer functions is already 2NL due to individual contribution of

each loudspeaker, which leads to an overdetermined prob-

lem. Up to M¼ 3 and for any NZ, the model fitting procedure

is robust to the random measurement positions picked by the

Latin hypercube sampling, showing small differences

between the worst case error and the average error.

Using higher order modes do not always lead to a better

reconstruction. The error can increase at lower frequencies if

the number of measurements is small and the number of

modes is large [see Figs. 4(a) and 4(b)]. This is the result of

a combination of factors: First, the spherical Neumann func-

tions, that are part of the spherical Hankel functions of the

second kind, are singular at kr¼ 0, which translates to a high

condition number jðSTSÞ and therefore to an ill-conditioned

problem in Eq. (7) (see Fig. 5). Second, less data per inferred

parameter is available. Last, the use of more measurement

positions will give a better representation of the sound field

in the whole reproduction area, both close and further away

from the sources.

Figures 6 and 7 show the average spatial reconstruction

error of the 50 LHS realizations at 133 and 700 Hz, respec-

tively. The error is calculated for different truncation num-

bers (from top to down in the figure, M ¼ 0, 1, and 4) and

different number of measurement positions per zone (from

left to write, NZ ¼ 1 and 4), using Eq. (12) without summing

over the dimension i (i.e., measurement positions). As it was

shown in Fig. 4, a monopole (M¼ 0) is a poor representation

of the sources, presenting errors between (�10, �6) dB and

(�0.5, 1) dB at 133 Hz (Fig. 6, top row) and 700 Hz (Fig. 7,

top row), respectively, in both zones. A higher number

of measurements per zone (NZ¼ 4) when M¼ 0 does not

improve the reconstruction significantly, agreeing with the

results in Fig. 4.

FIG. 4. (Color online) Average and worst case NMSE from 50 iterations of

LHS for NZ ¼ 1, 4, 16, 64 measurements positions per zone and M¼ 0, 1, 2,

3, 4 truncation number in Eq. (4). (—): Average. (- - -): Worst case (highest

NMSE).

FIG. 5. (Color online) (a) Spherical Neumann function. (b) Average condi-

tion number jðSTSÞ for all LHS realizations of NZ ¼ 1.
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Increasing the truncation to M¼ 1 (i.e., monopole plus

dipole) leads to a dramatic increase of the reconstruction

accuracy at 133 Hz, with errors below -15 dB in the entire

reconstructed areas (Fig. 6, middle row). This is due to the

fact that the radiation properties of the sources can be

accounted for with the higher order terms. At 700 Hz the

reconstruction is also improved compared to M¼ 0, with

errors up to �4 dB next to the sources (Fig. 7, middle row).

The error shows a well defined spatial pattern consequence

of the poor agreement between the source directional model

and the actual loudspeaker behavior.

When the truncation number is increased to M¼ 4, the

directional response at 700 Hz is well modeled and the

reconstruction error drops below -5.5 dB in both zones (Fig.

7, bottom row). At 133 Hz (Fig. 6, bottom row) the recon-

struction error is similar to that achieved when M¼ 1, but

there is an increase in the error close to the sources when the

number of measurements per zone is NZ ¼ 1, with values up

to 8 dB. This is due to the ill-conditioning of the problem in

Eq. (7) when the number of modes is high and the number of

measurements low (see Fig. 5). Increasing the number of

measurements per zone to NZ ¼ 4 reduces this error in the

vicinity of the sources, which is aligned with the results

shown in Figs. 4(a) and 4(b).

Artifacts in the form of vertical lines approximately

70 cm apart can be appreciated at low errors for M¼ 1 and

M¼ 4, especially at higher frequencies (Fig. 7). The reason

is an imperfect calibration of the microphone array due to its

positioning.

Figure 8 presents the normalized marginal posterior dis-

tributions, pðajhÞ, of the first two modes [Fig. 8(a)], the nor-

malized MAP amplitude of the different modes [Fig. 8(b)]

and the estimated directional response of the sources at dif-

ferent frequencies at 1 m [Fig. 8(c)]. At higher frequencies

the loudspeaker becomes more directional [Fig. 8(c)] and

higher order modes play a significant role [Fig. 8(b)]. This is

the reason why, as shown in Figs. 4, 6, and 7, the error is

reduced at higher frequencies when adding higher order

modes to the sum, showing that a simple monopole represen-

tation (M¼ 0) is not sufficient for accurate reconstruction of

the radiation of these sources.

The marginal posterior distributions in Fig. 8(a) show a

larger variance for higher frequencies. This is due to an increas-

ing discrepancy between the model and the measurements, a

low amount of measurements relative to the wavelength and

the lower relevance of lower modes at higher frequencies [see

Fig. 8(b)].

B. Sound field control performance

The insertion loss obtained using the estimated transfer

functions at the entire dense grid of points in Fig. 2 is compared

with the reference insertion loss obtained using the actual mea-

sured transfer functions at the same grid of points. The esti-

mated transfer functions correspond to the same estimated

transfer functions used to calculate the error in Fig. 4. In both

measured and estimated cases, half of the transfer functions are

used to calculate the control weights w and the other half to cal-

culate the resulting insertion loss. Figure 9 shows the amplitude

of the resulting transfer functions ðhD þHDw and hB þHBwÞ
at 700 Hz for the measured reference case and an example

using the estimated transfer functions for M ¼ 4; NZ ¼ 16.

Figure 10 shows the average and worst case insertion

loss of the 50 LHS realizations as a function of the number

FIG. 6. (Color online) Spatial error at 133 Hz of the reconstructed transfer functions [ð1=NLÞ
PNL

j¼1ðjHj � Ĥ jj2Þ=ðjHjj2Þ]. for different truncation number in the

spherical harmonics model (M ¼ 0, 1, and 4) and number of measurement positions per zone (NZ ¼ 1 and 4).

3430 J. Acoust. Soc. Am. 146 (5), November 2019 Caviedes-Nozal et al.



FIG. 7. (Color online) Spatial error at 700 Hz of the reconstructed transfer functions [ð1=NLÞ
PNL

j¼1ðjHj � Ĥ jj2Þ=ðjHjj2Þ]. for different truncation number in the

spherical harmonics model (M ¼ 0, 1, and 4) and number of measurement positions per zone (NZ ¼ 1 and 4).

FIG. 8. Marginal posterior distribution, pðajhÞ, of the

amplitude coefficients am for the first two modes, calcu-

lated MAP amplitude coefficients a and estimated

directional response at 1 m for NZ ¼ 16. (a) Posterior

joint and marginal distributions of the normalized

amplitudes of the first two modes [ja0j=maxiðjaijÞ and

ja1j=maxiðjaijÞ]. (b) MAP normalized amplitude

jamj=maxiðjaijÞ up to m¼ 4 for 100, 500, and 1000 Hz.

(c) Estimated directional response of the loudspeakers

at 1 m for 100, 500, and 1000 Hz in dB summing all the

modes up to M¼ 4.
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of measurements per zone NZ and the modes included M.

The obtained insertion loss is directly related to the recon-

struction error of the transfer functions shown in Fig. 4. The

average insertion loss is equal to the reference measured

insertion loss (black line in the figure) at low frequencies for

all cases except M¼ 0. At higher frequencies the inclusion

of more modes in the model increases the insertion loss,

although it is not possible to get as high values as using the

measured transfer functions. Increasing the number of mea-

surement points slightly improves the insertion loss on aver-

age, but it noticeably reduces the difference between worst

case and average results especially at low frequencies.

Figure 10 clearly shows that a good sound zoning solution is

achievable with a small number of measurement points and

the use of a sound propagation model.

The insertion loss achieved using the reconstructed

transfer functions (see Fig. 10) is compared with the inser-

tion loss achieved if the control filters are calculated directly

from the sparse measured data points NM ¼ 2NZ. Figure 11

shows the frequency averaged insertion loss IL for the 50 LHS

for both approaches, where the columns labeled h refer to the

insertion loss achieved when the control filters are calculated

directly from the sparse measurements. To see the trend of the

estimated insertion loss with larger number of measurements

we include two extra cases NZ ¼ 128 and 256.

Using the reconstructed transfer functions, the insertion

loss increases by increasing the number of modes for a given

NZ, with IL > 7:5 dB for any case where M> 1. The vari-

ance between realizations is reduced when increasing the

number of measurements. Many more measurements are

needed to achieve similar insertion loss when the control

weights are calculated directly from the sparse measurement

positions. The performance is always below the IL obtained

with the reconstructed transfer functions for NZ ¼ 1; M ¼ 2

up to NZ ¼ 64 and it is not until NZ � 128 when using the

reconstructed transfer functions shows a worse performance.

This clearly shows the advantage of reconstructing the trans-

fer functions using the model if the number of measurements

is small.

The fact that the maximum IL for NZ � 128 without

using the model is higher than the reference (NZ ¼ 350) is

due to the effect of j in Eq. (1). For some of the cases, very

high IL can be achieved while the sound field in the bright

zone gets distorted.

FIG. 9. (Color online) Resulting transfer function field at 700 Hz. Top:

Reference result using half of the measured transfer functions. Bottom:

using the model with M ¼ 4; NZ ¼ 16.

FIG. 10. (Color online) Average and worst case insertion loss from 50 itera-

tions of LHS for NZ ¼ 1, 4, 16, and 64 measurements positions per zone and

M¼ 0, 1, 2, 3. and 4 truncation number in Eq. (4). (—): Average. (- - -):

Worst case (lowest IL). Ref: IL using half of the dense grid of measured

transfer functions in Fig. 3 (NZ ¼ 350).

FIG. 11. (Color online) Insertion loss averaged over the studied frequency

range from 100 to 1000 Hz (IL). The box plots show the median in orange

and the boxes extend from first to third quartile. The whiskers represent the

extreme cases (max and min). Bottom x axis: Number of measurement posi-

tions per zone NZ. Top x axis: Truncation number in the spherical harmonics

basis M. h: No model used. Ref: Insertion loss using half of the dense grid of

measured transfer functions in Fig. 3 (NZ ¼ 350).
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C. Insertion loss at sparse measurement points

The results shown in Secs. III A and III B are a conse-

quence of comparing the reconstructed transfer functions

with the measured transfer functions at a dense grid of

points. In practice, this would imply measuring hundreds of

transfer functions what is indeed what we are trying to

avoid.

The insertion loss at a few validation points is compared

to the insertion loss in the entire zone. Figure 12 shows the fre-

quency averaged insertion loss difference DIL ¼ IL� ILval

where ILval is the insertion loss at 50 LHS sets of NZ ¼ 1, 4,

16, 64, and 256 validation positions, independent from the

fitting positions (see Fig. 3), and IL is the insertion loss

using half of the measured transfer functions (NZ ¼ 350). It

can be observed that using a low number of validation

points the insertion loss is overestimated with deviations up

to 15 dB when NZ ¼ 1. Including more validation points,

ILval gets closer to the insertion loss at the entire controlled

zone. For all cases the lowest and more stable DIL corre-

sponds to M¼ 1.

IV. DISCUSSION

The insertion loss obtained using the reconstructed

transfer functions is lower than the insertion loss achieved

using a dense grid of measured transfer functions, which can

imply that there is room for improvement. The only parame-

ters fitted in the acoustic model in Eq. (4) are the complex

amplitudes of the modes. There are other factors that highly

influence the estimation of the transfer functions, such as

temperature11,12 and positions of individual microphones

and loudspeakers.15,34,48 These positions could be estimated

as well if necessary, even though more measurements would

be needed to fit these additional parameters.

The loudspeaker response is influenced by the arrange-

ment of the array,20 which suggests that independent models

for primary and secondary arrays could improve the recon-

struction. In addition there are some acoustic phenomena

happening in the experiment that are not captured by the

model. The secondary sources introduce scattering effects in

the sound field created by the primary sources. If the loud-

speaker box were a sphere of equal volume (i.e., radius

b ’ 7 cm), it would be noticeable above kb¼ 1 affecting fre-

quencies above approximately 750 Hz.37

The difference between model and reality, also called

model discrepancy, can severely affect the resulting mar-

ginal posterior of the variance of the noise, as s will capture

both measurement noise and model discrepancy.49 Fig. 13

shows how the noise precision increases when the model dis-

crepancy is reduced (i.e., when more modes are used). This

effect can be attenuated with a good prior estimation of the

measurement noise and either setting s as a fixed parameter

or considering a more informative prior.

We assume that the measurements are affected by inde-

pendent noise of equal variance. However, it is possible to

include more complex sources of noise, such as external

background noise with spatial correlation between measure-

ments in the covariance matrix.

In previous works the sources were modeled as point

sources with a complex directivity50 or as a combination of

monopole plus dipole,5 where the acoustic center needs to be

found in a different measurement setup. Using spherical har-

monics the model is fitted in situ and there is no need for deter-

mining the acoustic center of the sources precisely. The error

of choosing a wrong center for the spherical harmonics is on

average compensated by adding more modes. Figure 8 shows

how at 100 Hz and 1 m the loudspeaker behaves as an omnidi-

rectional source moved to the front, compensating for the

assumption of having the acoustic sources located at the mid

points of the loudspeakers boxes.

A more informative prior of the parameters a can be

used to counter the ill-posedness introduced by high order

modes at low frequencies, reducing the number of measure-

ments to converge. This requires more precise a priori infor-

mation about the amplitude coefficients.

Low number of validation points tends to overestimate

the achieved insertion loss in the entire controlled area

according to Fig. 12. Techniques like optimal experiment

design could be used together with the proposed model, to

decide in which positions the transfer functions should be

measured in order to get the best experimental conditions.51

This could potentially reduce the number of measurements

needed both to fit the model and validate the sound field con-

trol performance.

We applied the sound propagation model and the fitting

of its parameters with Bayesian inference to the problem of

FIG. 12. (Color online) Frequency averaged IL difference DIL ¼ IL� ILval

of the 50 LHS. The box plots show the median in orange and the boxes

extend from first to third quartile. The whiskers represent the extreme cases

(max and min). Bottom x axis: Number of measurement positions per zone

NZ. Top x axis: Truncation number in the spherical harmonics basis M.

FIG. 13. (Color online) Average and worst case MAP of s from 50 iterations

of LHS for NZ ¼ 16 measurement positions per zone and truncation number

M¼ 0, 1, 2, 3, and 4 in the sum. (—): Average. (- - -): Worst case.
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sound zones, but these methods can be employed for any

highly damped problem where transfer function have to be

reconstructed over a large area.

V. CONCLUSIONS

A spherical harmonics model has been proposed to

characterize the sound radiation of loudspeakers and

reconstruct the acoustic transfer functions in multichan-

nel reproduction systems based on multipoint or inverse

filtering methods. The approach was experimentally vali-

dated in a rectangular sound field control setup of 10 m2

at the frequency range [100–1000] Hz under anechoic

conditions.

The results show that reconstructing the transfer func-

tions with the proposed model can substantially improve the

performance of the system. The frequency averaged inser-

tion loss obtained using the reconstructed sound field with

the model from a few sparse measurements positions per

zone is always above the insertion loss obtained using the

same amount of measurements without the model, with

improvements up to 10 dB or more. The introduced method

considerably reduces the number of measurements needed to

have a good performance of the sound field control system.

Furthermore, the results indicate that a simple monopole or

monopole plus dipole model, as often assumed in the litera-

ture, is not sufficient to model the radiation of the loud-

speakers. Including higher order modes in the spherical

harmonics basis allows us to capture high frequency phe-

nomena and the directivity of the sources, improving the

reproduction performance.
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