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Amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) are

neurodegenerations with evolutionary underpinnings, expansive clinical presentations,

and multiple genetic risk factors involving a complex network of pathways. This

perspective considers the complex cellular pathology of aging motoneuronal and

frontal/prefrontal cortical networks in the context of evolutionary, clinical, and biochemical

features of the disease. We emphasize the importance of evolution in the development

of the higher cortical function, within the influence of increasing lifespan. Particularly, the

role of aging on the metabolic competence of delicately optimized neurons, age-related

increased proteostatic costs, and specific genetic risk factors that gradually reduce the

energy available for neuronal function leading to neuronal failure and disease.
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INTRODUCTION

Finely controlled fractionated muscle movement enables humans to perform complex activities
that require precise voluntary execution of force and speed of movement (1). The anatomical basis
for this is the corticomotoneuronal system, which in humans connects monosynaptically with all
motor neuron pools except those innervating the ocular and sphincter muscles (2, 3).

Both advanced cognition and a versatile motor repertoire were critical to the success of human
evolution, which involved a rapid expansion of cerebral network connectivity occurring within
the constraints of a bony cranium (4). The relatively rapidly evolving brain incurred increased
metabolic demands (5), and selection pressures relating to human migration within and out
of Africa.

Since the mid-nineteenth century, recognition of devastating diseases, including amyotrophic
lateral sclerosis (ALS) and frontotemporal dementia (FTD), have emerged. These predominantly
involve frontal and prefrontal neurons, but their pathology extends beyond these regions. Clinical,
genetical, and biochemical features of these diseases converge on protein misfolding and metabolic
dysfunction as common end points associated with impaired neuronal dysfunction (6).

This article briefly (1) outlines the evolution of the frontal and prefrontal cortex with respect
to communication and language, and motor function specific to humans; (2) considers the roles
played by evolutionary changes, cerebral metabolism, and senescence in an era of increasing
lifespan; (3) raises the concept of possible neuron exhaustion, with proteomic cost minimization
as a selective force challenged with increasing age; and (4) links this idea to ALS and FTD.

We hypothesize that these disorders and other neurodegenerations reflect in part a mismatch
between evolved neocortical cellular and metabolic processes at a protein level, in the context of
rapid and ever-increasing complexity of human interaction, and the relatively recent increased
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human lifespan. For conciseness, we do not attempt to detail
genetic components of these diseases (7), nor do we consider
their overlap with other neurodegenerative diseases (8).

A unified etiology of ALS/FTD is proposed that implicates
evolutionary optimized neurons, metabolically challenged by
RNA/protein turnover in certain risk phenotypes leading to
neuronal exhaustion and disease. We suggest that the hypothesis
can be expanded with more data and point toward metabolism
and protein turnover as potentially key targets for efficient
treatment paradigms.

EVOLUTION OF COGNITIVE AND MOTOR
FUNCTION

The evolution of cognitive function and brain development has
resulted from the complex interplay of nature and nurture, where
development seems to be driven by genes and shaped by the
environment (9, 10). Modern humans have enhanced cognitive
functioning, especially in the domains of cooperation, theory of
mind, language, and culture (11), and are capable of processing
vast information and solving abstract problems (12–14). Higher
order cognitive skills of humans evolved through the separation
of humans from earlier hominid lineages (15). Whether this was
through adaptations of existing systems or the creation of new
ones is undetermined (12, 16).

Language probably evolved out of gesture as a protolanguage
(17–20). Gesture is universal to the animal kingdom. Some
gestures are individual, but many are common to a specific
language and others are common to all humans. Newborns and
infants largely communicate with gestures accompanied by non-
verbal vocalization, and children learn language through social
interaction and gain practice using sentence constructions that
have been created by linguistic communities over time.

Complex forms of communication, especially human
language, defines one of the most difficult problems for
evolutionary biology (21–23). Language is a particularly
remarkable outcome of the evolution of cognitive complexity
and requires perceiving the external world in terms of objects
and actions and naming them using a set of signals. Even though
human communication (gestures and language) is far more
structured and complex than seen in other animals, there are no
specific physiological, neurological, or genetic traits that explain
the human communication, executive functioning, and abstract
thinking skills that have evolved during the latest 100,000 years
(12). But it has been suggested that speech could be more
cost-effective compared to gesture and developed progressively
as group size increased (24).

The basic layout of the larynx and vocal tract is highly
conserved and virtually homologous in both form and
function among all terrestrial mammals, including humans
(25). Indeed, the macaque vocal apparatus is “speech ready,”
capable of producing an adequate range of speech sounds
to support spoken language (26). However, only humans
have developed voluntary control of the larynx (27, 28). This
required the unique expansion of fast-conducting monosynaptic
corticomotoneuronal connections which in humans occurs for

all motor neuron pools, except those of the external ocular
muscles and bladder wall (29).

The greatly expanded corticomotoneuronal system with
associated neo-cortical networks underlies finely tuned motor
control of hand function (and thus use tool, play musical
instruments, and paint), the ability to traverse uneven terrain,
and for example, to skate, ski, and play professional football,
and employ diversified vocalization enabling variable pitch, tone,
velocity of speech and loudness, in a complex association with
respiratory function (29, 30).

Vocal cues are a rich source of information about a speaker’s
emotional state. The term “prosody” refers to the changes in
pitch, loudness, rhythm, and voice quality corresponding to a
person’s emotional state (31–33). The relationship between vocal
complexity and brain architecture across non-human primates
also has relevance to the evolution of human speech. A positive
correlation has been recently observed between vocal repertoire
scope and the relative size of cortical association areas which
governs voluntary control (28).

The motor and premotor areas of the human and non-
human primate cortex are engaged not only in preparation and
execution of voluntary movement but also perform fundamental
computations associated with executive function and other
cognitive aspects of behavior (34). Furthermore, the incremental
diversification of motor areas in humans is accompanied
by the emergence of new cognitive abilities. In particular,
primate motor regions not only control the low-level aspects of
planning and control of movements but also participate in the
perceptual andmotor aspects of sophisticated cognitive functions
such as decision-making, action understanding/imitation, and
language (10, 35–37).

Humans have evolved a finely tuned pincer grip, utilizing the
thumb and index finger. Impairment of this can be an early,
unique feature of ALS, referred to as the split hand (29). Similarly,
early loss of foot dorsiflexion and elbow flexion, referred to as
split foot and elbow, may also be early impairments in ALS (38).
The motor units subserving these movements have the strongest
corticomotoneuronal drive, and it has been proposed that in ALS,
there is loss of muscle synergies subserved by motor units with
the strongest corticomotoneuronal drive (3).

It has been hypothesized that the evolution of cognition
increased the returns from cooperating to the point where the
benefits to self were sufficient for cooperation to remain stable as
the group size increased and the relatedness decreased (39), with
the higher cognitive needs of expanded, non-kin cooperation
developing slowly. This change to co-operative behavior could be
accomplished with more versatile communication (40).

Through evolution, hominin brain sizes smaller than homo
sapiens remained stable at 400–500 cc until about 2 million years
ago (41). The human brain size reaches its adult dimensions
by 3–4 years, similar to chimpanzees yet human frontal lobe
development continues until at least the early 20s (42–45). At
a macro level, as human species developed improved frontal
lobe function, including theory of mind, any change in cranial
size was comparatively minor (46) and roughly scaled to the
body size of primates (47). Within this fixed cranial capacity,
cortical size could be increased by folding (48) while also allowing
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shorter axonal distances for the rapid connectivity needed in the
frontal lobes.

At a micro level, the functional capacity of a neuronal
structure is inherently limited by its neural architecture and
signal processing time (48). An important component of the
frontal lobe development was the discrete modifications in local
circuitry and interconnectivity of selected parts of the brain
which became highly organized in humans (44). The scaling
of the number and distribution of neurons is an important
component through evolution (41), with a greater scaling
of the number of cortical motor neurons through primate
evolution (49).

ENVIRONMENTAL FACTORS AT A MACRO
LEVEL—EVOLUTION, AGING, AND
ENERGY METABOLISM OF MOTOR
NEURONS

As modern humans migrated out of the African sub-continent
into the colder habitats, there was pressure to modify
cerebral energy metabolism in a brain that was progressively
increasing its metabolic demands in comparison to other body
organs (50). Within the constraints on cranium size, most
changes in cognitive function were probably associated with
altered neuronal networks (5). However, neurons with many
synaptic connections and high-synaptic activity are very energy-
demanding, and thus, vulnerable to energy-deficiency induced by
genetic and environmental risk factors (51, 52).

Complex variations in the dietary intake associated with
the habitat’s wildlife and foraging options and diverse cultural
and technological impacts (e.g., cooking) contribute to this
evolutionary history (5, 53, 54). Also, metabolic adaptations in
response to human migration to colder environments may have
occurred more recently. For example, in the Scandinavia human
settlement occurred perhaps 5,000–10,000 years ago as the polar
ice cap receded (55).

In contrast to human evolution occurring over tens of
thousands of years, the recent reduced mortality and associated
increased longevity has been rapid, experienced predominantly
by the last four generations of humans that have ever lived
(56, 57). Progress in lowering human mortality is on par
with or exceeds that made in the laboratory via various
selection and dietary restriction experiments and endocrine
pathway mutations (56). The change has been largely achieved
by removing environmental challenges, making injuries, and
illnesses less fatal, by improving nutrition and reducing disease
at younger ages and also enhancing health in the elderly (58).
As a result, there has been a considerable increase in humans
reaching senescent ages with vulnerability to neurodegenerative
diseases (57).

Intrinsic to aging is a slowing of cerebral metabolism
(8, 59–62). Recent findings suggest that disruption of neuronal
homeostasis, mainly due to deficient energy metabolism,
underlies neurodegeneration (63–65). Although senescent
neurons may remain metabolically active and continue to
function within the neuronal network, their reduced metabolic

efficiency will plausibly impact overall network integrity and
ultimately cognitive performance. In addition, the senescent
neurons excrete a plethora of molecules that affect the function
of nearby cells and provoke local inflammation potentiating the
destruction of the human brain networks (65).

THE MOLECULAR
LEVEL—PROTEOSTASIS OF NEURONAL
NETWORKS

Following DNA transcription, RNA molecules within a cell are
bound by distinct sets of RNA-binding proteins that have the
task of regulating the correct processing, transport, stability,
and function/translation of proteins up to its final degradation.
Proteins reach a native state but can change their folded structure
if the environment changes (protein misfolding) leading to
aggregates (66, 67). Mutations can also induce conformational
changes and aggregation (68).

These cellular processes that maintain normal neuronal
physiology throughout life are diverse, and exponentially
fail with increasing age (69). Increasing age is associated
with accumulation of protein aggregates characteristic of
neurodegenerations but with different protein signaling
pathways affected, depending upon the unfolded protein
response (69, 70). Therefore, it is not surprising that the recent
increase in human lifespan has been associated with increasingly
prevalent cerebral protein aggregation (71).

It has been widely assumed that protein misfolding is
pathogenic via some specific molecular toxicity as larger
aggregates (i.e., protein deposits) or as more recently accepted,
in the intracellular oligomeric state, with suggestions including
interaction with other proteins and cell membranes (68).
However, so far, the direct pathogenic species and mode of
action remains obscure and therapeutic approaches that have
been developed toward targeting the misfolded proteins directly,
have so far met with the little clinical success (72).

Indeed, it has been proposed that the protein deposits may in
some cases be beneficial as they contribute to reducing the pool of
intracellular pathogenic oligomers, regardless of the mechanism
of their pathogenicity (molecular toxicity or turnover costs), and
outside the cells, these deposits will be less likely to interfere
with cellular functions, and also less costly as they would be less
targeted (and less accessible) to the intracellular proteases (73).
In studies of TAR DNA binding protein 43 (TDP-43), beneficial
effects of protein aggregation has also been observed (66, 68),
suggesting that the toxicity occurs via a non-aggregated state,
which we propose below is a state that is more easily subject to
costly turnover.

Another recently suggested mechanism of protein-misfolding
pathology employs the general metabolic cost (in ATP) of
misfolded protein turnover within the cells (51). This effectively
reduces energy available for basic housekeeping and cell-
signaling purposes. Since the human body uses ∼20% of
its total energy budget on protein turnover (74), the energy
costs of handling the misfolded proteins, rather than the
protein’s molecular toxicity per se—could be pathogenic. This
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is particularly relevant in the context of the most energy-
demanding cells such as neurons, where the ATP costs of
proteostasis would be first felt due to the large energy demands
for inter-neuronal signaling via ion pumps (perhaps 50% of
energy budget) (75).

The energy costs of maintaining the proteome (translation,
transcription, and RNA and protein turnover) defines 20–70%
of the cellular energy budget of various organisms and thus has
probably been under heavy selection pressure for minimization
(76). First in simple organisms to maximize energy available
for cell maintenance and reproduction, and later to maximize
survival of higher organisms, e.g., via reduced foraging needs and
cognitive capacity.

Whereas, energy costs are not normally problematic, neuronal
networks harbor some of the most energy-requiring cells in the
human body (51, 77). It is plausible that selectively vulnerable
networks of motor, or other, neurons, evolutionarily optimized
for delicatemetabolic competency, become challenged by lifestyle
or genetic risk factors. They then may be subject to additional
exhaustion caused by elevated RNA or protein turnover resulting
in neuronal necrosis and network malfunction. The high-
proteome turnover required to keep homeostasis in the presence
of a highly abundant, repeatedly synthesized molecule via
a repeat expansion or an unstable protein product, could
be envisioned to contribute ATP costs to neurons operating
near maximal capacity, and possibly accelerating aging-induced
deterioration of involved networks (51).

A lack of energy could conceivably cause both depolarization
of neurons, promoting excitotoxicity, a recognized event in

ALS (77), but also contribute to longer-term oxidative stress
and chemical imbalances that could further aggravate disease.
Subsequent neuronal rewiring, which itself costs ATP as it
is tightly coupled to aerobic glycolysis in energy cost-benefit
tradeoffs (78), would accelerate disease progression given the
metabolic deficiency cascade. Furthermore, the buildup of
aggregated RNA molecules or protein copies could reflect the
lack of sufficient energy available to maintain proteostasis as
other energy costs increase, but also reflect the possible direct
contribution of these turnover costs to the disease state. The
recent studies linking proteopathy to elevated aerobic glycolysis
in the human brain supports such a proteopathy-energy–cost
relationship (79).

RELEVANCE TO ALS AND FTD
PATHOLOGY

ALS/FTD is recognized as complex polygenic disorders (80), the
genetic component perhaps contributing ∼50−60% of the risk
(81). The known susceptibility genes appear to have different
frequencies according to race (82). The most common ALS/FTD
gene, is the c9orf72 mutation which links sporadic and genetic
forms of ALS and FTD (83, 84). It has a higher prevalence in
the far northern European population; an evolutionary recent
migration. It has been proposed that the c9orf72 expansion
occurred only once in the past, with estimates varying from 1,500
to 6,000 years ago (85–87). In the USA, the median age of onset

FIGURE 1 | Cost-saving balance of human neural circuits resulting from evolution of human cognition and challenged by increasing age of modern humans.
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of ALS/FTD patients with the C9orf72 expansion is 58 years, an
age rarely reached until after 1900 (85).

The common risk genes identified in frontal lobe
pathophysiology function inmolecular pathways related to RNA-
metabolism and proteostasis including autophagy/proteasome,
vesicle trafficking and RNA-metabolism/homeostasis (88–90). In
particular, the cellular accumulation of the DNA/RNA binding
protein TDP-43 found in 98% of ALS cases highlights the
importance of DNA/RNA-homeostasis in the neurons (91–93).

Aging is a major risk factor for ALS/FTD and other
neurodegenerations (69, 94), and there is a substantial overlap
of the genetic changes in the frontal lobe diseases and
the genes regulating different pathways relevant in aging.
These include autophagy, inflammation, nuclear-cytoplasmic
transport, and RNA processing (69, 95, 96). The recent
work has identified changes in the cerebral metabolism
intrinsic to both ALS and FTD (8, 59–62) with an apparent
selective vulnerability of the motor neurons to energetic
stress (90, 97, 98).

The central role of proteopathy and RNA homeostasis in
ALS/FTD is well-indicated by the genetic risk factors (6).
SOD1 mutations are a risk factor for fALS that have been
shown to induce loss of protein stability and protein misfolding
consistent with increased costs of managing this protein which
is one of the most highly expressed in the human body with
important functions in anti-oxidant stress (51). Overexpression
of wild-type SOD1 contributes to the mitochondrial dysfunction
and motor defects in mice due to fALS SOD1 mutations,
providing support for protein abundance/turnover rather than
a specific molecular toxicity of mutants being pathogenic, and
bridging phenotypes of sporadic (patients harboring wild-type
proteins) and fALS (patients harboring inherited additionally
severe mutations).

The GGGGCC hexanucleotide repeat expansion on
chromosome 9, C9orf72, is the most common genetic risk
factor for fALS and is associated with abnormal protein/RNA
processing (81). Since these RNA management costs would
consume energy, it is plausible that they could contribute
to exhaustion of the motor neurons if the hexanucleotide
expansion is continuously produced and degraded (99). TDP-
43, another risk factor for ALS is an important protein in
transcription control known to aggregate in ALS, and thus,
consistent with such a mechanism. Other genetic risk factors
such as FUS/TLS and ubiquilin-2 have also been associated with
proteostasis (6).

In support of the protein/RNA turnover contributing to the
disease state, proteasome inhibition has been found to prevent
the pathogenicity of a fALS-causing SOD1 variant, whereas
removal of the inhibitor (which would reinstate protein turnover)
was associated with aggravation of disease (100).

At the clinical level, ALS has been associated with a
hypermetabolic presentation that could suggest elevated
metabolic costs during pathogenesis (62, 94, 101). It is also
notable that low body mass index has been consistently identified

as a risk factor for ALS, and high BMI has been associated
with lower risk of ALS (102). Although it is not clear if this
association is causative, these clinical features of ALS would
be consistent with a hypothesis that evolutionary-optimized
metabolic demands being exhausted by age-induced proteostasis
costs in energy-demanding motor neurons. In our opinion, this
etiology, which we have summarized in Figure 1, integrates and
rationalizes both the evolutionary history of human cognition
and aging, the senescence-induced proteostatic and metabolic
challenges associated with this evolutionary process, and its
relationship with the clinical state of ALS/FTD.

CONCLUSION

Frontal and prefrontal lobe diseases are predominantly disorders
of the aging nervous system. With the recent increase in
longevity, largely determined by adequate shelter, good nutrition,
medical advances, and reduced mortality in early life, the
incidence of these neurodegenerations has increased. Extended
longevity in the recent generations is unlikely to simply
reflect the Darwinian natural selection, nor the Hamiltonian
inclusive fitness (103). As humans age, neocortical neurons
are particularly vulnerable to the effects of senescence, which
include impaired energy metabolism homeostasis. This results
in functional cellular failure and ultimately clinical disease. The
cascade of events that determine cellular senescence are poorly
defined, but among other factors, a genetic predisposition is
likely relevant.

We propose that protein aggregation, the hallmark of
neurodegenerations such as ALS and FTD, occurs because
of the increasing metabolic burden accompanying neuronal
proteostasis. This in turn is a consequence of the intersection
of the evolving human brain in response to evolutionary and
environmental pressures, and increasing age, which over time
leads to metabolic exhaustion of energy-demanding neocortical
neurons (Figure 1).

A possible mechanism for the protein aggregation lies in
the energy costs of misfolded protein turnover, but other
possibilities exist. While general proteasome inhibition is
not a valid therapeutic strategy for these diseases, it does
suggest that the burden of RNA/protein turnover could be
a contributing factor in the etiology, consistent with the
perspective provided earlier.
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