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Abstract— The rainflow algorithm is one of the most commonly
used tools for studying stress conditions of a wide variety of
systems, including power electronics devices and electrochemical
batteries. One of the main drawbacks of the algorithm is the
trade-off between data compression and the loss of information
when classifying the stress cycles into a finite amount of his-
togram bins. This paper proposes a novel approach for classifying
the stress cycles by using fuzzy logic in order to reduce the
quantization error of the traditional histogram-based analysis.
The method is tested by comparing the accumulated damage
estimations of two support-vector regression algorithms when
trained with each type of cycle-counting procedure. NASA’s
randomized battery usage data set is used as source of stress
data. A 50% error reduction was observed when using the fuzzy
logic-based approach compared to the traditional one. Thus,
the proposed method can effectively improve the accuracy of
diagnosis algorithms without penalizing their performance and
memory-saving features.

Index Terms— degradation, diagnosis, energy storage, fuzzy
logic, Li-ion battery, load collective, rainflow, state of health,
stress cycles

I. INTRODUCTION

W ITH the increasing concerns about human-induced
climate change, the world is swiftly pushing for deep

changes in many different areas. Two of the most important
ones are power systems and transportation, where the goal
is to substitute highly-polluting fossil fuels with electricity
generated by renewable energy sources (RESs). In both cases,
energy storage systems (ESSs) play a key role: in the former,
they are used to guarantee a steady power supply since RESs
cannot work on-demand, while in the latter they must be
able to cover drivers’ daily needs comfortably, avoiding range
anxiety. Despite its recent accelerated development, battery
technology is still expensive and can represent a hefty part
of the application’s cost. Therefore, understanding battery
degradation and trying to extend their lifetime is a very
interesting tool for reducing ownership costs, thus making
these projects more attractive and stimulating their adoption.
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A. State of the Art

The rainflow counting algorithm has been employed as a
method for fatigue analysis of materials for several decades,
and various implementations have been proposed throughout
the years [1], [2]. Favoured by the great research interest on
RESs and electric vehicles (EVs), this technique has recently
been applied to power electronics devices [3], [4] and batteries
[5]–[7].

Reference [5] was the first attempt to apply this technique to
EVs, where both the state of health (SoH) and the remaining
useful life (RUL) were estimated by means of a support-vector
regression (SVR) algorithm. The input vector was composed
of the capacity at the beginning of the cycle, as well as the
corresponding load collective based on state of charge (SoC)
and temperature cycles. The same team used this approach
for batteries from a hybrid EV in [6]. In this case, the
load collectives contained information regarding SoC, mean
temperature, mean voltage and C-rate. In [7], a similar idea
was applied to a stationary ESS, but rainflow counting was
only applied to average SoC and depth of discharge (DoD).
Then, degradation was estimated via a damage model with
a polynominal function. Lastly, histogram-based classification
of stress variables was also studied in [8]. Rather than using
the rainflow algorithm to obtain cycle counts, the accumulated
energy throughput of each of the stress levels was measured.
The stress variables considered were SoC and temperature.
The statistical properties of these histograms were fed to
various machine-learning algorithms to predict the battery’s
RUL, having artificial neural networks the lowest error.

Although good overall accuracy was obtained in the afore-
mentioned works, all of them employed traditional (i.e., crisp)
histograms. This step introduces a quantization error since the
information stored in the histograms does not exactly represent
the original stress signal. The magnitude and impact of this
error is difficult to quantify and it is usually disregarded. In
this paper, the quantization error problem is addressed by
implementing a fuzzy logic-based classification algorithm.

II. FUZZY STRESS-CYCLE CLASSIFICATION

One of the main applications of the rainflow method is to
record and evaluate the accumulated damage experienced by
a system after being subjected to some stress factor, and to
predict its remaining useful life under a certain mission profile.
Given such a stress signal, the algorithm outputs a collection of



cycles with the corresponding amplitude of the stress variable,
which, generally, is unconstrained and can take any value. In
order to perform system diagnosis and prognosis (e.g., using
Miner’s rule), the amplitudes of the stress cycles are usually
discretized by means of histograms (also referred to as load
collectives), that is, counting the amount of cycles that have
an amplitude within a certain interval.

A. The quantization error problem

As aforementioned, a generic diagnosis and prognosis algo-
rithm based on rainflow counting can be summarized in four
steps:

1) Acquisition and pre-processing of the stress variable’s
time series.

2) Detection and identification of half- and full-cycles by
the rainflow algorithm.

3) Classification of cycles into histogram bins depending
on their amplitude, forming load collectives (LCs).

4) Application of a stress analysis algorithm, such as
Miner’s rule or other specific damage models.

One of the main advantages of this methodology is that
it allows for condensing a large amount of information into
a compact histogram. This simplification, however, comes at
the cost of losing resolution in the stress variable, since the
amount of bins used is finite. Therefore, there is a trade off
between data compression and resolution. In any case, this
leads to worse performance of the diagnosis and prognosis
algorithms.

A simple example of the quantization error problem is
illustrated in Fig. 1, where the horizontal axis corresponds
to the stress variable and the vertical one to the amount of
cycles at each stress level. The first, second and third bins are
defined by x ∈ (0, 1], x ∈ (1, 2] and x ∈ (2, 3], respectively.
These are delimited by the purple, blue and red dotted lines,
respectively. In the traditional approach (i.e., crisp histograms),
points α = 1.2 and β = 1.8 would be assigned to the
second bin, while point γ = 2.2 would belong to the third
one. However, given the distances from point β to α and γ,
it would be fair to assume that the information it carries is
closer to the latter. This is due to the fact that, in general,
stress variables are continuous, analog signals where similar
values will produce similar effects. An obvious solution to this

Fig. 1. Quantization error problem

problem would be to increase the resolution by adding more
bins to the histogram, but this would have a negative effect on
the computational requirements of the algorithm. This paper
proposes using fuzzy logic to mitigate this problem.

B. Fuzzy load collectives

Fuzzy logic (FL) is an artificial intelligence technique that
has been largely applied for modelling and control tasks of
a wide variety of systems [9]. One of the main advantages
of FL is that it allows to map an analog variable into a
discrete domain which, unlike regular histograms, does not
have rigid, exclusive boundaries. This implies, for example,
that values in the vicinity of the border between two bins
would be simultaneously assigned to both of them with some
membership grade (µ). This is referred to as fuzzyfication and
it is exemplified in Fig. 2 for the same points as in the previous
case, but with two linear-saturation membership functions (A
and B) instead of fixed-width histogram bins. In this case,
point γ is clearly under B and away from A, but points α
and β belong to both A and B. For the membership functions
shown, the membership grades can be computed following (1)
and (2), respectively.

µA (x)=


1 , if x ≤ xi,A
xf,A−x

xf,A−xi,A
, if xi,A < x < xf,A

0 , if x ≥ xf,A

(1)

µB (x)=


0 , if x ≤ xi,B

x−xi,B

xf,B−xi,B
, if xi,B < x < xf,B

1 , if x ≥ xf,B

(2)

where xi,A = xi,B = 1, xf,A = xf,B = 2. Thus,
the membership grades of the points are µA (α) = 0.8,
µB (α) = 0.2, µA (β) = 0.2, µB (β) = 0.8, µA (γ) = 0
and µB (γ) = 1. Compared to the original example, the novel
algorithm classifies points α and β in both sets A and B with
an associated degree of membership. This process is repeated
for each cycle while aggregating the obtained results. For
the present example, the resulting load collective would be
NA (x) =

∑
i µA (xi) = 1 and NB (x) =

∑
i µB (xi) = 2.

Fig. 2. Fuzzyfication of one variable with two linear-saturation membership
functions



In an analogy to the traditional method, the membership
grade would be a binary function which would yield µ = 1
if the cycle’s amplitude fell within a bin’s interval and µ = 0
otherwise.

III. ACCUMULATED DAMAGE ESTIMATION

Although the approach proposed in this paper could be ap-
plied for stress-cycle analysis in any application, it was chosen
to focus on electrochemical batteries given the great research
and industrial interest in developing accurate diagnosis and
prognosis algorithms.

In both EV and stationary ESS applications, the main metric
used to assess a battery’s degradation (or damage) level is the
state of health, which quantifies the energy storage capacity at
a given instant compared to a reference value. It is computed
as in (3).

SoH =
Qmax

Qref
· 100% (3)

where Qmax is the maximum available capacity of the battery
at a given instant and Qref is the reference capacity, usually
taken as the rated capacity as given by the manufacturer. It is
usually considered that a battery has reached its end of life
whenever SoH = 80%.

Since the purpose of this paper is not to derive new damage
models, but to compare the traditional and the novel cycle-
counting algorithms, a simple support-vector regression (SVR)
algorithm [10] is implemented to estimate the degradation
associated to a particular mission profile. More specifically,
it takes as inputs the aggregated load collectives and outputs
the accumulated damage associated to that operation history.
For simplicity purposes, only two stress factors are considered
as predictors, namely the depth of discharge and the average
current over one cycle. This is in agreement with the existing
literature, which establishes large DoD and C-rate values as
major degradation causes [11].

The inputs to the SVR are obtained by applying the rainflow
and cycle-classification algorithms from the beginning of the
time series up to a given instant, while the ground truth for
the outputs is obtained from the reference performance tests.
This process is illustrated by the flowchart in Fig. 3.

IV. EXPERIMENTAL VALIDATION

In order to draw a comparison between both approaches, an
SVR model is created for each case, that is, crisp and fuzzy.
The initialization parameters are the same for both of them,
and they are trained and tested with the samples corresponding
to the same cycles obtained from the rainflow algorithm.

A. Battery data set

NASA’s randomized battery usage data set [12], [13] con-
tains data from a total of 28 Li-ion cells cycled continuously
at constant ambient temperature following mission profiles
generated by random-walk processes. Periodic reference per-
formance tests were conducted to measure the cells’ maximum
available capacity. Although the employed mission profiles

Fig. 3. Rainflow-based damage estimation algorithm

are not based on real-world scenarios, the great diversity of
excitation C-rates makes this data set a good fit for evaluating
the methodology proposed in this paper.

After thoroughly processing and analyzing the entire data
set, cell RW5 was selected to validate the proposed approach.
The cell and cycling details are summarized in Table I.

TABLE I
RW5 CELL INFORMATION

Form factor 18650, Cylindrical
Rated capacity 2 Ah

Upper cut-off voltage 4.2 V
Lower cut-off voltage 3.2 V

Discharge current range 0.25 C – 2 C
Charge current 1 C

B. Cycle-classification set up

For both the crisp and fuzzy load collectives, it was chosen
to use 5 bins for each variable, which means that the load
collectives are 5x5 matrices. After analyzing NASA’s data set
and observing the SoC and C-rate levels experienced by the
cells, the DoD was considered to range from 0% to 100%,
while the average C-rate was considered to range between 0
A and 4.5 A. For the crisp load collectives, the bin delimiters
are straightforward to obtain and are presented in Table II.

TABLE II
CRISP LOAD COLLECTIVES

Variable Histogram bins
DoD [0, 20) ; [20, 40) ; [40, 60) ; [60, 80) ; [80, 100]
Imean [0, 0.9) ; [0.9, 1.8) ; [1.8, 2.7) ; [2.7, 3.6) ; [3.6, 4.5]



For the fuzzy load collectives, however, there are many
degrees of freedom (membership functions types and param-
eters) and the combinations are potentially infinite. For this
proof of concept, identical triangular membership functions
are employed due to their simplicity. They are characterized
by only 3 parameters: the starting point (xi), the peak (xp)
and the ending point (xf ). Thus, the degree of membership is
computed using (4).

µ∆ (x) =


0 , if x ≤ xi

x−xi

xp−xi
, if xi < x < xp

xf−x
xf−xp

, if xp < x < xf

0 , if x ≥ xf

(4)

For the upper and lower ends of the fuzzy histograms,
linear-saturation membership functions are employed (see
Fig. 2). The membership functions and their parameters for
both stress factors are presented in Table III, and shown in
Figs. 4 and 5. The values in curly brackets correspond to xi,
xp and xf .

TABLE III
FUZZY LOAD COLLECTIVES MEMBERSHIP FUNCTIONS

MF Type Parameters
DoD1 Left linear saturation {0, 25}
DoD2 Triangular {0, 25, 50}
DoD3 Triangular {25, 50, 75}
DoD4 Triangular {50, 75, 100}
DoD5 Right linear saturation {75, 100}
Imean,1 Left linear saturation {0, 1.125}
Imean,2 Triangular {0, 1.125, 2.25}
Imean,3 Triangular {1.125, 2.25, 3.375}
Imean,4 Triangular {2.25, 3.375, 4.5}
Imean,5 Right linear saturation {3.375, 4.5}

The results of applying the rainflow and cycle-classification
algorithms to the entire time series are shown in Figs. 6 and 7
for the crisp and fuzzy approaches, respectively. Note that,
in Fig. 6, the x- and y-axis ticks mark the borders between
bins, whereas in Fig. 7 the labels DoDi, Imean,i are aligned
with the peak point (xp) of the corresponding membership
function.

It is clear that, in the proposed approach, the cycles are
assigned in a more homogeneous way than in the traditional
one. This is due to the fact that most cycles are now classified
into four bins at the same time (two per stress variable),
but with a lower contribution (i.e., their membership grade).
This also results in the fuzzy load collectives having higher
values than in the discrete case, although the plots have been
normalized to make comparisons easier.

C. Results

In order to validate this novel approach, the SVR models are
trained to predict the accumulated capacity loss of the battery
at a certain instant based on the aggregated load collectives
up to that moment. The root-mean-squared error (RMSE) and
mean absolute error (MAE) when making predictions on the
test data set are used as metrics to compare the performance

Fig. 4. Membership functions for fuzzy classification of DoD cycles

of the traditional and novel approaches. These are computed
as in (5) and (6), respectively.

Fig. 5. Membership functions for fuzzy classification of mean current cycles

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)
2 (5)

MAE =
1

N

N∑
i=1

|ŷi − yi| (6)

where ŷi and yi are the estimated and measured accumulated
damage values of the ith sample, respectively, and N is the
number of samples.

TABLE IV
DEGRADATION ESTIMATION RESULTS

Data set Method RMSE MAE

Train Crisp 0.029 0.021
Fuzzy 0.019 0.01

Test Crisp 0.027 0.018
Fuzzy 0.016 0.011

It is observed that the proposed approach performs signif-
icantly better than the classic one, with an error reduction of
around 50% in both training and testing. This is thanks to the
cycles being classified in a more realistic way, which reduces
the aforementioned quantization error.

Lastly, it is worth discussing the data size reduction obtained
by applying the rainflow algorithm. The original data set



Fig. 6. Crisp load collectives

Fig. 7. Fuzzy load collectives

contains 2857788 samples, each of them including 3 variables
(time, SoC, current). On the other hand, the load collectives
have a total of 25 elements. Assuming the data type is 32-bit
float in all cases, this results in a total size of 34.3 MB for
the original time series, while the load collectives take only
100 B. This confirms the significant memory savings of the
rainflow algorithm, at the cost of losing some information.

V. CONCLUSION

Accurate battery damage models are essential to make
reliable remaining useful life predictions. To that end, a novel
enhancement of the rainflow cycle-counting algorithm has
been introduced, which uses fuzzy logic in order to reduce
the quantization error present in the standard algorithm.

Results have shown that the FL-based algorithm performs
much better than its traditional counterpart. On the other hand,
its requires a bigger effort to set up the membership functions’
types and parameters.

Future developments of the approach proposed in this paper
include a wider variety of membership functions, parameter
optimization, a more comprehensive degradation analysis, as
well as more advanced machine learning-based damage mod-
els.
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