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On the constant D(q) defined by Homma

Peter Beelen, Maria Montanucci, and Lara Vicino

Abstract. Let X be a projective, irreducible, nonsingular algebraic curve
over the finite field Fq with q elements and let |X (Fq)| and g(X ) be its number

of rational points and genus respectively. The Ihara constant A(q) has been

intensively studied during the last decades, and it is defined as the limit supe-
rior of |X (Fq)|/g(X ) as the genus of X goes to infinity. In 2012 Homma defined

an analogue D(q) of A(q), where the nonsingularity of X is dropped and g(X )

is replaced with the degree of X . We will call D(q) Homma’s constant. In this
paper, upper and lower bounds for the value of D(q) are found.

1. Introduction

Let p be a prime and let q = pe be a prime power. Let X be a projective,
nonsingular, geometrically irreducible curve of genus g. The interaction between
the genus g of X and the number |X (Fq)| of its rational points has been subject of
intense studies during the last years. It is well known that the Weil bound

|X (Fq)| ≤ q + 1 + 2g
√
q

is not sharp if g is large compared to q. Put

(1.1) Nq(g) := max |X (Fq)|,
where the maximum is taken over all curves X/Fq with genus g. The Ihara constant
is defined by

(1.2) A(q) := lim sup
g→∞

Nq(g)

g
.

This is a measure of the asymptotic behaviour of the number of rational points
on curves over Fq when the genus becomes large. Ihara’s constant A(q) has been
intensively studied during the last decades. For any q, we have A(q) ≤ √q− 1 (see
[4]), and if q is a square we have (see [13,21]) A(q) =

√
q − 1.

For any q, using class field theory, Serre [17] showed that A(q) > c log(q)
for some constant c > 0 independent of q. In particular A(q) > 0 for all q. For
q = p2m+1, with m > 0, the currently best-known lower bound is A(q) ≥ 2(1/(pm−
1) + 1/(pm+1 − 1))−1, see [2]. The exact value of A(q) is however unknown when
q is not a square.
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If the curve X is seen as a projective curve X ⊆ Pn(Fq) of degree d > 0 and it
is not necessarily required to be nonsingular, a different question can be addressed:
how large can |X (Fq)| be with respect to d?

In a series of papers [10–12] it has been shown that if X is a (possibly reducible)
plane curve without Fq-linear components, then

(1.3) |X (Fq)| ≤ (d− 1)q + 1,

except for curves isomorphic over F4 to the curve defined by

K : (X + Y + Z)4 + (XY + Y Z + ZX)2 +XY Z(X + Y + Z) = 0,

which satisfies |K(F4)| = 14. The bound (1.3) was originally conjectured by Sziklai
[19], and he found that some curves actually achieve this bound.

The natural question on whether the bound (1.3) is valid for curves in higher
dimensional projective space n ≥ 3 was analyzed by Homma in [9]. There, it is
obtained that (1.3) is also true when n ≥ 3 and X has no Fq-linear components,
unless d = q = 4 and X is Fq-isomorphic to the plane curve K.

In the same paper [9], an analogue of Ihara constant A(q) (1.2) is given when
replacing the genus g with the degree d. First, we replace Nq(g) as defined in
(1.1), with Mq(d) := max |X (Fq)| where this time the maximum is taken over all
irreducible curves of a fixed degree d in a projective space of some dimension over
Fq. Here the dimension is not fixed and therefore allowed to be arbitrarily large.
Then the analogue of A(q) is defined as

(1.4) D(q) := lim sup
d→∞

Mq(d)

d
,

which measures the asymptotic behavior of the number of rational points of pro-
jective curves over Fq when d becomes large. In [9] it was observed that since the
bound (1.3) is valid for curves in any projective space Pn(Fq), n ≥ 2, with the
exception already mentioned above, one may conclude that D(q) ≤ q. In the same
paper also the lower bound D(q) ≥ A(q)/2 was derived, but the exact value of D(q)
remains unknown for all q.

In this paper, new upper and lower bounds for the value of D(q), which we
from now on will call Homma’s constant, are found by a refinement of Homma’s
methods and by using towers of algebraic function fields. Our main results are
summarized in the following theorem.

Theorem 1.5. Let q = pe be a prime power and let D(q) be Homma’s constant
as defined in (1.4). Then

(1) D(q) ≤ q − 1,
(2) D(q) ≥ 1 provided that q > 2,

(3) D(q2) ≥ q
q+1A(q2) = q2−q

q+1 .

Note that the lower bound D(q) ≥ 1 is interesting for small values of q only,
since otherwise Homma’s lower bound D(q) ≥ A(q)/2 is better. The values q ≤ 31
for which the lower bound D(q) ≥ 1 is currently the best known are listed in Remark
4.6.

The paper is organized as follows. We start by slightly improving Homma’s
upper bound on D(q) in Section 2 by refining his argument, thus proving Item 1
of Theorem 1.5. Next we prove Item 2 of Theorem 1.5 in Section 3 by explicitly
constructing a sequence of curves whose degrees are close to their number of rational
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points. Finally, the main part of the paper is devoted to proving Item 3 of Theorem
1.5 in the final section.

2. An upper bound for D(q): the proof of Item 1 in Theorem 1.5

The upper bound D(q) ≤ q obtained by Homma in [9, Proposition 5.4] was
deduced from the bound (1.3), but in the same paper the following theorem was
given.

Theorem 2.1 ([9, Theorem 3.2]). Let X be a nondegenerate irreducible curve
of degree d in Pn(Fq). Then

(2.2) |X (Fq)| ≤ (q − 1)(qn+1 − 1)

q(qn − 1)− n(q − 1)
d.

Here the word nondegenerate means that X is not contained in any hyperplane
of Pn(Fq). At this point, using this result, we are ready to prove Item 1 in Theorem
1.5.

Indeed for a fixed value of q, considering equation (2.2) and dividing both sides
by d gives

(2.3)
|X (Fq)|

d
≤ (q − 1)(qn+1 − 1)

q(qn − 1)− n(q − 1)
=

(q − 1)
(qn+1 − 1)

qn+1

q(qn − 1)

qn+1
− n(q − 1)

qn+1

.

This observation can be used to improve the upper bound for D(q). Note that by
taking the lim supd→∞Mq(d)/d as in (1.4), we are by definition of D(q) consider-
ing curves of increasing degree. However, the dimension of the projective spaces
containing the curves will be increasing as d increases. Indeed, if for a family of
curves (Xi)i≥0, with degrees di tending to infinity as i tends to infinity, there exist
an n such that for all i, Xi ⊆ Pn, then |Xi(Fq)| ≤ |Pn(Fq)| = (qn+1 − 1)/(q − 1),
implying that |Xi(Fq)|/di tends to zero as i tends to infinity.

Now let (Xi)i≥0, be a family of curves with degrees di tending to infinity such
that lim supi→∞ |Xi(Fq)|/di > 0. Further assume for each i that Xi is a nondegen-
erate curve contained in Pni . We have seen that ni tends to infinity as i tends to
infinity. But then we obtain from equation (2.3):

D(q) ≤ lim
i→∞

(q − 1)
(qni+1 − 1)

qni+1

q(qni − 1)

qni+1
− ni(q − 1)

qni+1

= q − 1.

This proves Item 1 of Theorem 1.5.

3. A lower bound for D(q): the proof of Item 2 in Theorem 1.5

For a prime power q = pe strictly larger than two, consider the tower of function
fields T = (Tm)m≥1 over Fq defined recursively as

T1 = Fq(x1) and Ti+1 = Ti(xi+1) with xq−1i+1 = −1 + (xi + 1)q−1.

The tower T is similar to an asymptotically good tower considered in [18, Proposi-
tion 7.3.3], but the variation we consider is actually not asymptotically good. It is
not hard to see that the place of T1 corresponding to the zero of x1 is totally ramified
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in the tower. In particular, the equation xq−1i+1 = −1 + (xi + 1)q−1 is absolutely irre-
ducible when viewed as a polynomial in Ti[xi+1]. This implies in particular that the

ideal I` := 〈xq−12 +1−(x1+1)q−1, . . . , xq−1` +1−(x`−1+1)q−1〉 ⊆ Fq[x1, . . . , x`] is a
prime ideal. Since we want to deal with projective curves, the following proposition
is essential.

Proposition 3.1. Let ` > 1 be an integer and define I ′` := 〈xq−12 + zq−1 −
(x1 + z)q−1, . . . , xq−1` + zq−1 − (x`−1 + z)q−1〉 ⊆ Fq[x1, . . . , x`, z]. Then I ′` is a

homogeneous prime ideal and the homogenization of the prime ideal I` := 〈xq−12 +

1− (x1 + 1)q−1, . . . , xq−1` + 1− (x`−1 + 1)q−1〉 ⊆ Fq[x1, . . . , x`].

Proof. For convenience, let us write gi := xq−1i+1 + 1 − (xi + 1)q−1 and g′i :=

xq−1i+1 +zq−1−(xi+z)
q−1.We have already seen that the ideal I` is a prime ideal. Now

let >deglex denote the degree-lexicographic ordering with x` >deglex . . . >deglex x1 as
a monomial order in Fq[x1, . . . , x`]. Since under this monomial ordering the leading
terms of the gi are co-prime, the set {g1, . . . , g`−1} is a Gröbner basis of I`. Then
from [3, § 8.4, Theorem 4] {g′1, . . . , g′`−1} is a Gröbner basis for the homogenization
of I`. Hence I ′` is the homogenization of the prime ideal I` and in particular I ′` is
a homogeneous prime ideal. �

Now consider the projective curve X` ⊂ P` defined over Fq given by the homo-
geneous equations

(3.2) xq−1i+1 = −zq−1 + (xi + z)q−1 for i = 1, . . . , `− 1.

Proposition 3.1 implies that X` ⊂ P` is indeed an irreducible projective curve.
It actually implies that X` is a complete intersection, which in turn implies that
deg(X`) = deg(g′1) · · · deg(g′`−1) = (q − 1)`−1.

Now we consider the number of Fq-rational points on X`. To estimate this
number, we consider the number of projective points [x1 : x2 : · · · : x` : 0] satisfying
equation (3.2). Substituting z = 0 in equation (3.2), we obtain that

xq−1i+1 = xq−1i for i = 1, . . . , `− 1.

Choosing x1 = 1, we see that any solution is defined over Fq and that there are
exactly (q− 1)`−1 points at the infinity on X`. In particular, |X`(Fq)| ≥ (q− 1)`−1.
Hence

D(q) ≥ lim sup
`→∞

|X`(Fq)|
deg(X`)

≥ (q − 1)`−1

(q − 1)`−1
= 1.

This completes the proof of Item 2 of Theorem 1.5.

4. A lower bound for D(q2): the proof of Item 3 in Theorem 1.5

In order to prove Item 3 in Theorem 1.5 we use a tower of function fields over
Fq2 constructed recursively by Garcia and Stichtenoth in [6] as follows:

F1 = Fq2(x1) and Fi+1 = Fi(xi+1) with xqi+1 + xi+1 =
xqi

xq−1i + 1
.

This tower is optimal in the sense that if N1(Fi) denotes the number of rational
places and g(Fi) the genus of Fi, then limm→∞N1(Fm)/g(Fm) = q − 1 = A(q2).

Indeed, any zero of the function x1−α in F1 for α ∈ Fq2 \{α | αq +α = 0} splits
completely in the extension Fm/F1, implying that N1(Fm) ≥ (q− 1)qm. Moreover,
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in [6, Remark 3.8], the genus g(Fm) of Fm is computed for all m ≥ 1. It is given
by

g(Fm) =

{
(qm/2 − 1)2 if m ≡ 0 (mod 2),

(q
m+1

2 − 1)(q
m−1

2 − 1) if m ≡ 1 (mod 2).

Hence optimality of the tower follows. For computing the genus g(Fm), it is proven
that the pole P∞ of x1 ∈ F1 is totally ramified in all extensions Fm/F1, m ≥ 2, see

also [15, Proposition 1.1]. We denote by P
(m)
∞ the unique extension of P∞ in Fm.

Note that P
(m)
∞ is a rational place, since P∞ is totally ramified in Fm/F1.

Even though it is in general a difficult challenge to compute the Weierstrass
semigroups at places in a tower, Pellikaan, Stichtenoth, and Torres [15] computed

the Weierstrass semigroup at P
(m)
∞ for all m ≥ 1. The nice property proven by the

authors in [15] is that the semigroups at P
(m)
∞ can be computed from the one at

P
(m−1)
∞ , following a recursive procedure. Indeed from [15, Theorem 3.1]

(4.1) H(P (m)
∞ ) =

{
Z≥0 if m = 1

qH(P
(m−1)
∞ ) ∪ Z≥cm if m > 1

where cm := qm − qdm2 e is the conductor of H(P
(m)
∞ ).

Let {γ1, . . . , γ`} be a set of generators of H(P
(m)
∞ ), so that

H(P (m)
∞ ) = 〈γ1, . . . , γ`〉,

and 0 < γ1 < · · · < γ`. Note that equation (4.1) implies that γ1 = qm−1, being the

smallest positive element of H(P
(m)
∞ ). This implies that H(P

(m)
∞ ) ∩ Z<cm+qm−1 is

a generating set and that therefore we may assume that

(4.2) γ` ≤ cm + qm−1 − 1.

By definition of the Weierstrass semigroup H(P
(m)
∞ ), there exist functions

f1, . . . , f` ∈ Fm such that

(fi)∞ = γiP
(m)
∞ , i = 1, . . . , `.

In [16], the functions f1, . . . , f` are used to define a birational morphism between
a nonsingular projective curve X and a curve X ′, with only one point at infinity.
Since we use the language of function fields, we need to reformulate the results
from [16] slightly. Intuitively, we simply use the functions f1, . . . , fn to define a
map from the set of places of Fm to an algebraic curve Xm. However, this map,
which we denote by ϕm, is easiest to describe when first extending the constant
field of Fm to Fq, the algebraic closure of Fq, since then all places are rational:

ϕm : P(FqFm) −→ P`

defined by

ϕm(Q) = [1 : f1(Q) : · · · : f`(Q)], if Q 6= P
(m)
∞ ,

ϕm(Q) = [0 : · · · : 0 : 1], otherwise.

Note that [7, Theorem 4.2.2] implies that indeed the image of the map ϕm is a
projective curve Xm. Since f1, . . . , f` are defined over Fq2 , so is Xm. Therefore we
will from now on consider the curve Xm as a curve defined over Fq2 . Moreover,
[16, Theorem 15] states among other things that the function field of Xm, when

considered over the field Fq2 , is exactly Fm, that apart from possibly ϕm(P
(m)
∞ ),
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the curve has no singularities and that P
(m)
∞ is the only place of Fm centered at

ϕm(P
(m)
∞ ). In particular ϕm induces a bijection between P(FqFm) \ {P (m)

∞ } and

Xm \ {ϕm(P
(m)
∞ )}.

Remark 4.3. The curve Xm is a non-degenerate curve in P`. Indeed if this
was not the case, then there would exist a combination a1 + a2f1 + · · · + a`+1f`,
for some ai ∈ Fq not all equal to zero, such that a1 + a2f1 + · · · + a`+1f` ≡ 0,

which is impossible by the linear independence of {1, f1, . . . , f`} over Fq given by
[18, Proposition 3.6.1].

Now we investigate the degree and number of Fq2-rational points on Xm. The
number of rational points is easy to bound, since the rational places of Fm are in

bijection with the points on Xm defined over Fq2 . Indeed, the place P
(m)
∞ corre-

sponds to the projective point [0 : · · · : 0 : 1], while the remaining rational points of
Xm are non-singular and hence each corresponds to a unique rational place of Fm.
This shows that

(4.4) |Xm(Fq2)| = N1(Fm) ≥ (q − 1)qm.

The inequality N1(Fm) ≥ (q − 1)qm was already mentioned before.
At this point we need to derive some information on the degree deg(Xm) of the

curve Xm. The following inequality holds:

(4.5) deg(Xm) ≤ γ` ≤ cm + qm−1 − 1.

This can be proven as follows. First of all, the last inequality is simply equation
(4.2). Now recall that the degree can also be seen as the the maximum number of
intersection points with a hyperplane. The points of intersection of the curve Xm

and a hyperplane of equation a0x0+· · ·+a`x` = 0 in P` correspond, by the definition

of ϕm, to the places that are zeros of the function
∑`

i=0 aifi ∈ L (γ`P̄
(m)
∞ ). Here

L (γ`P̄
(m)
∞ ) denotes the Riemann–Roch space of the divisor γ`P̄

(m)
∞ . Since the pole

divisor of
∑`

i=0 aifi has degree at most γ` the same is true for its zero divisor.
Hence the number of intersection points is at most γ`.

Now combining equations (4.4) and (4.5), we obtain:

D(q2) ≥ lim sup
m→∞

|Xm(Fq2)|
deg(Xm)

≥ lim sup
m→∞

(q − 1)qm

cm + qm−1 − 1
=
q2 − q
q + 1

.

Since A(q2) = q − 1, Item 3 of Theorem 1.5 follows.

Remark 4.6. Thereom 1.5 (3) improves Homma’s lower boundD(q2) ≥ A(q2)/2
for any values of q. The bound D(q) ≥ 1 is instead interesting for small values of
q > 2, since then Homma’s lower bound D(q) ≥ A(q)/2 is weaker. The following
table provides for those small values of q the best known lower bound for A(q)/2.
For all other values of q, except possibly when q is a prime, A(q) ≥ 2.
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q A(q)/2 ≥ reference
3 0.2464 [5]
4 0.5 [13,21]
5 0.3636 [1,20]
7 0.4615 [8]
8 0.75 [22]
11 0.5714 [8]
13 0.6 [14]
17 0.8 [14]
19 0.8 [8]
23 0.9230 [8]
29 0.9523 [8]
31 0.9523 [8]
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