

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 19, 2024

Secure and Efficient Protocols for the IIoT Adapting PTP and TLS to meet IIoT
constraints and requirements.

Tange, Koen Pieter

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tange, K. P. (2022). Secure and Efficient Protocols for the IIoT Adapting PTP and TLS to meet IIoT constraints
and requirements. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/6e5c8526-6e06-4c67-99a2-8d3f08652cef

Ph.D. Thesis
Doctor of Philosophy

Secure and Efficient Protocols for the IIoT
Adapting PTP and TLS to meet IIoT constraints and
requirements

Koen Tange

Kongens Lyngby 2021

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads, Building 324
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

This dissertation is a collection of publications that aims to address several security
challenges in the Internet of Things (IoT), Industrial Internet of Things (IIoT), and
Fog sphere.

More and more often, industrial environments look at Cloud-like solutions for in-
dustrial applications. Modern developments such as machine-learning, Cloud services
and so on, promise attractive improvements to industrial systems. Examples of this
include smart (predictive) maintenance, flexibility in production chain targets, and
data analytics features. However, latency, compatibility, data privacy, and reliability
issues prevent the direct application of Cloud computing to many industrial scenar-
ios. The Fog computing paradigm is a relatively new computing paradigm for the
IIoT that aims to fill this gap between the Cloud and Edge, by providing Cloud-like
capabilities closer to the Edge in a decentralized fashion. With this new paradigm,
new security challenges arise.

In this thesis, we first briefly describe the concept of Fog computing and its re-
lation to the Cloud, Edge, IoT, and IIoT. Then, a collection of IIoT/Fog security
requirements and challenges is presented, based on a large-scale systematic literature
analysis. These requirements form the motivation for the other two major contribu-
tions collected in this thesis, both of which focus on solving concrete problems that
could prevent the use of specific protocols in Fog environments. Firstly, we propose a
redundant Precision Time Protocol (PTP) node architecture that increases PTP secu-
rity, resilience, and availability by protecting against compromised subsystems. Since
Fog nodes will need to support PTP for a myriad of applications, this helps boost the
security of Fog nodes as well. Secondly, we explore the feasibility of using Transport
Layer Security (TLS) in IIoT environments, and introduce ratchet TLS (rTLS), a
session resumption extension for the TLS protocol that allows fast session resump-
tion to be safely used in IIoT scenarios. The rTLS extension additionally lowers TLS
resource requirements, turning the protocol into an option for lightweight devices
connected to e.g. Fog nodes.

ii

Summary (Danish)

Denne afhandling er en serie af publikationer der sigter mod at adressere flere sikker-
hedsmæssige udfordringer IoT og Fog området.

Oftere er industrielle miljøer begyndt at kigge på cloud lignende løsninger for in-
dustrielle applikationer. Moderne udvikling som machine learning, cloud services og
lignende, lover attraktive forbedringer for industrielle systemer. Eksempler på dette
inkluderer smart (forudsigend) maintenane, fleksibilitet i produktionsleds kriterier,
og data analytiske funktioner. Hvorimod forsinkelse, kompabilitet, databeskyttelse
og pålidelighedsproblemer forhindrer en direkte applikation af cloud computing til
mange industrielle scenarier. Fog computing paradigmet er et relativ ny computing
paradigme for IoT der sigter mod at fylde dette behov mellem cloud og edge, ved at
muliggøre cloud lignende muligheder tættere på grænsen i en dcentraliseret maner.
Nye sikkerhedsmæssige udfordringer opstår ved dette nye paradigm

I denne afhandling vil konceptet bag fog computing og dets relation til Cloud,
Edge og IoT blive forklaret indledende. Herefter vil en samling af IoT/ fog sikkerhed
forudsætninger og udfordringer blive præsenteret baseret på en large scale systematisk
litteratur analyse. Disse forudsætninger udgør motivationen for de andre to bidrag,
samlet i denne afhandling. Begge bidrag fokuserer på at løse et konkret problem, der
kan forhindre brugen af specifikke protokoller i fog miljøet.
Første foreslag er en redundant PTP node arkitektur der forøger PTP sikkerhed,
modstandsdygtighed og tilgængelighed ved at beskytte imod kompromimering af un-
der systemer. Da Fog noder er nødvendige for en samling af utallige applikationer,
bidrager dette med med at forbedre sikkerheden. Sekundært vil gennemførligheden
for brug af TLS IoT miljøer undersøges, og en session resumption fo�ngelse til TLS
protokollen, der tillader fast session resumption til sikker brug i IoT scenarier in-
troduceres. rTLS forlængelsen formindsker samtidig ressource kravet, og gør derved
protokollen som en light weigth løsning for enheder forbundet til f eks. Fog nodes.

iv

Preface
This PhD thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark. The PhD was supervised by
Professor Nicola Dragoni and Associate Professor Xenofon Fafoutis, and conducted
in the period October 2018 to December 2021.

Kongens Lyngby, December 31, 2021

Koen Tange

vi

Acknowledgements
This work would not have been possible without the guidance and support of my
supervisors, Nicola Dragoni and Xenofon Fafoutis, who were always ready to provide
valuable input and suggestions to nudge my PhD in the right direction. Further,
my thanks go out to my office mates Michele and Niklas, who provided guidance,
laughter, collaborations, and were excellent sparring partners for the many discussions
on research ideas and views. I’d also like to thank the FORA team and students for
enabling this journey, organizing workshops and courses, and being flexible when
COVID reared its head, messing up research plans for my PhD. And, of course, I’d
like to thank everyone at the ESE section, and the administrative staff in particular
for always being there to help me! Moving beyond DTU, I would like to thank
Stefano Pepe for helping me get around in San Francisco, keeping an eye out for
collaboration opportunities, connecting me with Itron and getting the ball rolling on
rTLS. Further, my thanks go out to Travis Shanahan and David Howard for their
support and participation in the rTLS project.

Finally, I’d like to thank my family and friends for their unyielding support. Spe-
cial thanks to Hoff for translating the summary to Danish, and to Roosa and Khaled
for providing valuable input on sentence structure and vocabulary usage, sharp feed-
back keeping my tendency to write overly long sentences in check, as well as helping
me maintain a consistent and balanced use of academic language throughout the the-
sis without resorting to enigmatic, esoteric, and possibly archaic terminology when
its use would be supererogatory, and keeping facile descriptions at a minimum.

Thanks!

viii

List of Publications
This thesis summarizes 6 published papers, as well as 3 MSc. thesis projects which
are relevant to the research contributions made in this thesis. In this section, we list
the included works first, after which we list other publications made during the PhD.

Included Publications
The following publications are included in this thesis. In the rest of this thesis, they
are referred to by the identifiers given in this list.

Paper A: K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. “Towards a Sys-
tematic Survey of Industrial IoT Security Requirements: Research Method and
Quantitative Analysis.” In: Proceedings of the Workshop on Fog Computing
and the IoT. IoT-Fog ’19. ACM, 2019. doi: 10.1145/3313150.3313228. [28]

Paper B: K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. “A Systematic
Survey of Industrial Internet of Things Security: Requirements and Fog Com-
puting Opportunities.” In: IEEE Communications Surveys Tutorials (2020).
doi: 10.1109/COMST.2020.3011208. [27]

Paper C: E. Kyriakakis, K. Tange, N. Reusch, E. O. Zaballa, X. Fafoutis, M.
Schoeberl, and N Dragoni. “Fault-tolerant Clock Synchronization using Precise
Time Protocol Multi-Domain Aggregation.” In: 2021 IEEE 24th International
Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2021. doi:
10.1109/ISORC52013.2021.00025. [14]

Paper D: M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, and J.
Kuusela. “Fogification of electric drives: An industrial use case.” In: 2020
25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2020. doi: 10.1109/ETFA46521.2020.9212010.
[1]

Paper E: K. Tange, D. Howard, T. Shanahan, S. Pepe, X. Fafoutis, and N. Dragoni.
“rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices.” En-
glish. In: Proceedings of the 22nd International Conference on Information and
Communications Security. Springer, 2020. doi: 10.1007/978-3-030-61078-
4_14. [29]

x List of Publications

Paper F K. Tange, S. A Mödersheim, A Lalos, X. Fafoutis, and N. Dragoni. “rTLS:
Secure and Efficient TLS Session Resumption for the Internet of Things.” In:
Sensors (2021). doi: 10.3390/s21196524. [30]

Each of these publications is appended at the end of the thesis, and when reading
it digitally can be navigated to whenever referenced in the textby clicking on their
labels. These works are included with permission from the publishers.

Supervised thesis projects
Below, we list MSc. thesis projects that describe research tasks supporting the re-
search conducted in this PhD. Note that these are original works by their respective
authors, and my role was supervisory. In the rest of this thesis, these works are
referred to by the identifiers given in this list.

MSc. Thesis 1: A. K. Mathiasen and E. Bejder. “TLS Extension Performance
Impact.” 2021. url: https://findit.dtu.dk/en/catalog/2692890744
(visited on December 24, 2021).[17]

MSc. Thesis 2: J. Pecl. “A Practical Study on Online Tracking Using TLS Session
Resumption.” 2021. url: https://findit.dtu.dk/en/catalog/2691679817
(visited on December 24, 2021).[19]

MSc. Thesis 3: C. Xenofontos. “rTLS: Proof-of-Concept and Empirical Evalua-
tion.” 2021. url: https://findit.dtu.dk/en/catalog/2692305257 (visited
on December 25, 2021).[34]

Other Publications
The following works were published during the PhD but are not summarized in this
thesis:

• M. De Donno, K. Tange, and N. Dragoni. “Foundations and Evolution of
Modern Computing Paradigms: Cloud, IoT, Edge, and Fog.” In: IEEE Access
(2019). doi: 10.1109/ACCESS.2019.2947652. [5]

Acronyms
0-RTT 0 Round-Trip Time

AADL Architecture Analysis & Design Language

AC Access Control

BMCA Best Master Clock Algorithm

CA Certificate Authority

CPS Cyber-Physical System

DH Difie-Hellman

DoS Denial of Service

DTLS Datagram TLS

FCP Fog Computing Platform

HMI Human-Machine Interface

IANA Internet Assigned Numbers Authority

IIoT Industrial Internet of Things

IoT Internet of Things

IT Information Technology

KDF Key Derivation Function

OFMC Open Source Fixed-Point Model Checker

OT Operational Technology

PKI Public Key Infrastructure

PLC Programmable Logic Controller

PSK Pre-Shared Key

xii Acronyms

PTP Precision Time Protocol

RTC Real-Time Clock

rTLS ratchet TLS

RTT Round-Trip Time

SDN Software-Defined Networking

SSL Secure Socket Layer

TLS Transport Layer Security

TSN Time-Sensitive Networking

Contents
Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

List of Publications ix

Acronyms xi

Contents xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Research goals . 3
1.3 Organization . 4

2 Literature Analysis 7
2.1 [Papers A, B] a Systematic Survey of Industrial IoT Security: Require-

ments and Fog Computing Opportunities 7

3 Improving Precision Time Protocol Reliability 15
3.1 [Paper C] Fault-tolerant Clock Synchronization using Precise Time Pro-

tocol Multi-Domain Aggregation . 16

4 TLS: a Solution for Fog and IoT Devices? 21
4.1 [Paper D] Fogification of electric drives: An Industrial Use Case 22
4.2 [MSc. Thesis 1] TLS Extension Performance Impact 25
4.3 [MSc. Thesis 2] A Practical Study on Online Tracking Using TLS Session

Resumption . 29

5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices 35
5.1 [Paper E] rTLS: Lightweight TLS Session Resumption for Constrained

IoT Devices . 36

xiv Contents

5.2 [Paper F] rTLS: Secure and Efficient TLS Session Resumption for the
Internet of Things . 41

5.3 [MSc. Thesis 3] rTLS: Proof-of-Concept and Empirical Evaluation . . 44

6 Conclusion 47
6.1 Contributions . 47
6.2 Future work . 48

Bibliography 51

A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research
Method and Quantitative Analysis 55

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and
Fog Computing Opportunities 65

C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain
Aggregation 101

D: Fogification of Electric Drives: An Industrial Use Case 113

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 123

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 141

CHAPTER1
Introduction

Cloud infrastructure and the Internet of Things (IoT) have seen great commercial suc-
cess with smart devices being adopted rapidly across the globe. The industrial sector
has observed this development with interest, as smart industrial appliances could
provide significant benefits to factory floors: concepts such as data analytics, over-
the-air updates, smart maintenance, and flexible production chains promise higher
productivity with lower costs. This movement is often referred to as the Industrial
Internet of Things (IIoT) or Industry 4.0.

Unfortunately, in many industrial scenarios, Cloud capabilities cannot be used di-
rectly. Often, there are availability, safety, and latency requirements for Operational
Technology (OT) used on factory floors that cannot be met with existing Cloud in-
frastructure. To remedy this, Fog computing has emerged as a novel paradigm that
operates anywhere in the Cloud-Edge spectrum and essentially decentralizes Cloud
resources into “Fog nodes”, capable systems with powerful virtualization capabilities.
Fog nodes are not considered a replacement for Cloud infrastructure, but rather an
extension that moves those tasks that cannot be executed in Cloud environments
close to the Edge. At the same time, Fog nodes can still offload highly resource inten-
sive tasks such as data analytics to the Cloud. Since this development will directly
and indirectly connect critical systems to the outside world, new security solutions
are needed that can protect Fog nodes and industrial systems without violating per-
formance, safety, and reliability requirements.

Due to its novelty, it has taken some time for the scientific community to agree
on a definition of Fog computing. Throughout this dissertation the definition of
Fog computing as given by the OpenFog Consortium is used [3]: “a system-level
horizontal architecture that distributes resources and services of computing, storage,
control, and networking anywhere along the continuum from Cloud to Things, therey
accelerating the velocity of decision making”. This manifests as a Fog layer between
the Cloud and the IoT or IIoT, as can be seen in the example given in Figure 1.1. For
a more in-depth treatment of this definition, as well as definitions of Cloud and Edge
computing, interested readers are invited to read our earlier work [5], which collects
common definitions and describes the evolution of these paradigms.

Because the scope of Fog systems extends from the Cloud all the way down to the
Edge and spans many different use cases and platforms (often relying on application-
or platform-specific protocols), it is challenging to identify security requirements ap-
plicable to the Fog at large. Additionally, Fog nodes will have to interact with a large

2 1 Introduction

Edge

Cloud

Fog

Figure 1.1: An example of a “Fogified” factory floor, where sensors and actuators
are managed by Fog nodes. The Fog nodes cooperate with the Cloud, with each other,
and with other Fog networks in a decentralized fashion.

variety of IIoT appliances with highly heterogeneous resource capabilities, turning
the development of widely applicable security solutions into a very complex challenge.
After a decade filled with IoT security incidents, one thing is abundantly clear: strong
security is an absolute necessity if we are to entrust the Fog with managing critical
industrial systems.

1.1 Motivation

Fog Computing and the IIoT are intimately connected paradigms, and this is reflected
in the security landscape: both face security challenges for a vast heterogeneity in
used platforms and protocols. Yet, a coherent view of the security requirements
in these fields is lacking. In order to protect the smart industrial devices of the
future, it is necessary to first identify and understand the involved security challenges.
Additionally, this allows us to explore the potential Fog computing has in addressing
these challenges and satisfying the corresponding security requirements.

1.2 Research goals 3

There already exist plenty of well established application-specific protocols that
enjoy wide use in the industry, but are not designed for operation in potentially hostile
networks. It is inevitable that in the transition process to Industry 4.0, Fog nodes
need to be compatible with these protocols. It thus makes sense to look at hardening
these protocols and bringing them up to security standards for a connected industrial
environment. This not only benefits Fog computing, but also the IIoT field in general.
A similar argument holds for existing security protocols: if they can be adapted to
work within constraints posed by IIoT environments, then they can be applied to
Fog computing and the IIoT to provide security features as well as interopability
with other areas where these protocols are commonly supported (e.g. the Cloud).
Moreover, it is logical to first try to adapt these protocols before reinventing the wheel
with completely new protocols, allowing us to rely on decades worth of expierence
and analysis for these protocols.

Based on these arguments, a number of research goals were specified for the work
presented in this thesis.

1.2 Research goals

This thesis explores security needs within the context of Fog computing and the
IIoT. As part of this exploration, we look at several protocols used in these fields.
Although the protocols can be considered as topics by themselves, they are in this
thesis combined under the common theme of security for Fog computing and the IIoT;
a popular saying in information security circles is “A chain is only as strong as its
weakest link”, an elegant reference to the necessity for a holistic view when security
is concerned. With this in mind, we have chosen to consider the needs of a Fog
system from multiple angles, and focused on improving safety, privacy, and security
aspects of popular protocols addressing those needs. While by no means a complete
security solution, the purpose of this research is mainly to find ways to adapt existing
technologies to work well with next-generation computing paradigms.

We can more formally describe our research goals as follows:

G-I Catalogue security and privacy requirements of the emerging Fog and IIoT
paradigms as they are identified in scientific literature;

G-II Identify several protocols with the potential to address common security re-
quirements, and in addition find points of improvement for these protocols;

G-III Study potential protocol improvements that can help our chosen protocols to
make it easier to create secure Fog and IIoT systems, be it by increasing safety,
security, privacy, or performance on low-end platforms.

4 1 Introduction

1.3 Organization
We begin this dissertation with a general motivation for the chosen research topics.
Additionally, the introduction includes a brief description of Fog computing and the
need for specialized security solutions for Fog systems. After that, the research contri-
butions themselves are presented throughout the remainder of this dissertation. Each
chapter presents contributions concerning a specific theme, which in turn is connected
to one of the research goals. We elaborate upon this connection in the introduction
to each chapter. Chapters are further subdivided into sections, with one section per
contribution (with the exception of Chapter 2, which merges a preliminary survey
with its full version into one section).

Contributions in this thesis are either published articles or MSc. thesis projects.
In both cases we maintain the same structure per section: the start of the section
describes my contribution to the work, after which a summary of the work itself
follows, concluded by a discussion that puts the work in perspective to the chapter,
and thereby the thesis as a whole. The summaries are written to be self-contained but
cannot cover every detail. Interested readers are invited to also read the corresponding
works for a complete view of their contribution. Published articles are included in full
at the end of this dissertation, and MSc. theses can be retrieved online through DTU
Findit1. Additionally, a direct link to the theses is included in in the bibliography.

Chapter Goals Contributions
2 G-I Systematic Literature analysis, IIoT security require-

ments, Fog computing opportunities
3 G-II, G-III Distributed PTP node Architecture
4 G-II Use case study, TLS Extension performance impact

study, TLS 1.3 fast session resumption privacy impact
study

5 G-III TLS 1.3 fast session resumption extension (rTLS), For-
mal Security analysis of rTLS, empirical evaluation of
rTLS

Table 1.1: An overview of the contributions in each chapter and the corresponding
research goals.

The contributions are separated into four chapters. Chapter 2 summarizes a sys-
tematic literature analysis and presents a collection of identified security requirements
for the IIoT in the scientific literature. A number of these security requirements are
used as motivators for the research presented in the remaining chapters. Next, a dis-
tributed PTP node architecture is presented in Chapter 3. This architecture enables
PTP systems to operate in the presence of compromised subsystems. This builds
on the requirements identified in the preceding chapter, and marks the first concrete

1https://findit.dtu.dk/

1.3 Organization 5

protocol improvement presented in this thesis. Afterwards, in Chapter 4, we sum-
marize an investigation into the applicability of the TLS protocol to the IIoT. This
starts with a use case study of a fogified electric drive, which highlights the opportu-
nities for a protocol such as TLS. Next, the performance impact of TLS extensions
is investigated, as well as the privacy implications of using its fast session resump-
tion protocol. This investigation verifies that TLS session resumption is compatible
with several privacy-oriented security requirements identified in Chapter 2. The final
major contribution is detailed in Chapter 5 and encompasses a protocol extension
that adapts TLS session resumption to be suitable for the IIoT. This includes the
definition of the extension itself, a formal security analysis of the extension, and an
empirical evaluation of its performance.

For convenience, Table 1.1 summarizes the contributions of each chapter, and
provides a mapping to the corresponding research goals.

6

CHAPTER2
Literature Analysis

To identify those areas in which research contributions can make the most impact, a
good overview of the Fog and IIoT security landscape was needed. Unfortunately, no
survey covering security requirements for these fields existed at the time. To fill this
gap, we conducted a thorough systematic survey, cataloguing requirements identified
in the scientific literature, and touching upon many security and privacy aspects. The
research conducted for this survey directly addresses research goal G-I, and provides
a basis that motivates subsequent works in this dissertation.

2.1 [Papers A, B] a Systematic Survey of Industrial IoT
Security: Requirements and Fog Computing
Opportunities

This survey has been published two parts. The first part, paper A, covers works in the
years 2012 to 2018. Its focus lies on numerical data extracted from the investigated
works, and on the methodology for the survey itself. The second part, paper B, can be
considered the “full” survey and is a significant extension to paper A. The year 2019
was included in the survey scope (translating to an exponential increase in considered
works), and each included work has been analyzed thoroughly. This resulted in not
just a numerical overview of research trends, but also a qualitative analysis and
categorization of Fog and IIoT security requirements as they were identified by the
academic community in this period.

Since paper B is a complete extension of paper A, including a more complete
analysis of the trends first observed in A, we consider it redundant to separately
summarize paper A, and will discuss only paper B in this chapter.

Personal Contribution

As the first author of this work, I was responsible for the majority of the content
and writing of the paper, as well as the research process. I defined the search queries,
collected all found publications, and (together with the second author, as this required
two independent reviews per article) filtered down the results until we arrived at our

8 2 Literature Analysis

final selection of included papers. I then read each selected work, identifying security
requirements. I collected these, grouped them into common themes, and categorized
them in the many tables that form the basis of the analysis in this work.

2.1.1 Extended Summary
This systematic survey aims to answer the following set of research questions:

RQ1: What are the security requirements of the IIoT?

RQ2: How are publications related to IIoT security spread throughout the years?

RQ3: How is IIoT Security research activity geographically distributed?

RQ4: What are the most popular publication venues for IIoT Security research?

In addition, after an analysis of the investigated works, we discuss various opportu-
nities for Fog computing in addressing the identified security requirements.

The survey follows the research methods for conducting a systematic survey in
software engineering proposed by Petersen et al. [20], and covers the period 2011-2019.
The year 2011 is a safe lower bound, as it predates the introduction of the term “Fog
Computing” by Bonomi et al. [2]. The research repositories queried were the ACM
Digital Library, IEEE XPlore, and Elsevier/ScienceDirect. An adjusted set of PICOC
criteria [13] were used as search strategy, and a multi-step filtering process eventually
resulted in 218 works that were selected for inclusion in the survey. The filtering
process was done by independently by two authors, to keep researcher bias to a
minimum. A vizualitation of the full filtering process can be seen in Figure 2.1, which
involved two search queries (one broad, one narrow), duplicate removal, filtering based
on title and abstract, filtering based on full-text reading, and addition of relevant
papers through snowball sampling.

In order to answer RQ1, the works are analyzed for identified security require-
ments, which are then grouped by theme and further by specific requirement. For
RQ2 to RQ4, relevant quantitative metadata is analyzed and visualized in figures, to
show research trends. In the following subsections, we will first summarize the secu-
rity requirements analysis, then the quantitative analysis, and finally the discussion
on fog computing opportunities.

2.1.1.1 Security Requirements

A total of 7 overarching themes are identified in the literature: authentication, access
control, maintainability, resilience, data security and data sharing, security monitor-
ing, network security, and models and methodologies. Most of these can be further
divided into more specific categories, as is shown in the mindmap in Figure 2.2. For
each of these categories, we discuss specific security requirements, and provide tables
mapping investigated works to these requirements, based on which work identifies

2.1 [Papers A, B] a Systematic Survey of Industrial IoT Security: Requirements and Fog Computing
Opportunities 9

Querying
databases	(Q2)

Querying
databases	(Q1)

(initial)	N°	of	papers

3158

N°	of	papers

356

	-5	Removing
duplicates

N°	of	papers

351

Filtering	based	on
title	and	abstract

N°	of	papers

248
	-103		

Full-text	reading
N°	of	papers

205
	-43	

Snowball	sampling
(final)	N°	of	papers

218
	+13	

Automated	search

Manual	selection

Figure 2.1: A schematic representation of the entire study selection process
(source: [28]).

which requirement. Additionally, we show the relative popularity of these require-
ments within that field, to give an indication of which topics receive more attention
within the scientific community.

The section closes with a comprehensive table listing each specific requirement,
ordered by relative popularity. This table is included here as Table 2.1. In the con-
text of this dissertation, notable requirements include: mutual authentication (A-06),
key distribution (A-02), availability (NS-06), continuation of operation with compro-
mised subsystems (R-01), secure data transport (DSS-04), and privacy-preserving
authentication (A-07).

2.1.1.2 Quantitative Results

The quantitative analysis shows an exponentially growing trend in security-related
Industry 4.0 and IIoT publications since 2011, as can be seen in Figure 2.3. The
growth really takes off after 2016, which we postulate might be related to several
high-profile security incidents around that period.

10 2 Literature Analysis

IIoT Security
Requirements

(RQ1)
Authentication

Key
distribution

Mutual Au-
thentication

Non-
repudation

Anonymity
and Privacy

AttestationAccess Control

Maintainability

Smart
maintenance

Resilience

Data security
and data
sharing

Data
transport

External
parties

Data
flow-control

Data
privacy

Security
Monitoring

Network
Security

Latency
and

timeliness

Availability

Wireless

Models and
methodologies

[15], [23]–[58]

[59]–[68]

[69]–[82]

[83]–[92]

[72], [87], [93], [94]

[17], [95]–[97]
[24], [53], [86], [87], [98]–
[109]

[27], [52], [67], [110]–[116]

[25], [36]–[38], [117]

[15], [25], [35], [84], [112],
[118]–[128]

[17], [29], [36], [49], [52],
[53], [71], [105], [129]–
[141]

[34], [38], [40],
[142]–[145]

[35], [55], [65], [66],
[98], [146]–[161]

[162]–[164]

[50], [98], [165]–[169]

[45], [55], [115], [170]–[208]
[35], [65], [66], [129],
[187], [209]–[217]

[184], [218]–[221]

[222]

[32], [33], [223]–[229]

[23], [26], [41]–[44], [51],
[83], [100], [126], [132],
[144], [158], [165], [230]–
[245]

Figure 2.2: A mindmap of the identified security requirements, grouped hierarchi-
cally by overarching categories and specific categories, and with identifying sources
(from [27]) included in textboxes (source: [27]).

2.1 [Papers A, B] a Systematic Survey of Industrial IoT Security: Requirements and Fog Computing
Opportunities 11

Table 2.1: An overview of each identified security requirement and its relative pop-
ularity (source [27]).

Overall interest ID Security Requirement Category Overall %

Very High

SM-01 infrastructure monitoring Security Monitoring 9.5%
DSS-05 secure external data storage Data Security and Data Sharing 7.1%

A-06 mutual authentication Authentication 4.6%
MM-03 security by design Models and Methodologies 4.6%

High

DSS-02 data confidentiality Data Security and Data Sharing 3.9%
A-02 key distribution Authentication 3.5%

SM-02 threat response Security Monitoring 3.5%
NS-07 wireless transmission security Network Security 3.5%

MM-01 adequate risk/threat assessment Models and Methodologies 3.5%
A-08 minimization of user interaction Authentication 2.8%

AC-04 decentralized Access Control (AC) Access Control 2.8%

Medium

A-01 multi-factor authentication Authentication 2.5%
NS-04 network isolation Network Security 2.5%
A-07 privacy-preserving authentication Authentication 2.1%

NS-05 timeliness Network Security 2.1%
NS-06 availability (Denial of Service (DoS), jamming, etc.) Network Security 2.1%
A-03 node addition, revocation, rekeying Authentication 1.8%
A-04 decentralized key management Authentication 1.8%

AC-02 fine-grained AC Access Control 1.8%
R-01 continuation of operation with compromised subsystems Resilience 1.8%
R-03 standards compliance Resilience 1.8%
A-10 attestation Authentication 1.4%

AC-01 handle dynamic changes Access Control 1.4%
M-01 software updateability Maintainability 1.4%
M-08 secure status transfer Maintainability 1.4%

DSS-04 secure data transport Data Security and Data Sharing 1.4%
A-09 non-repudation Authentication 1.1%

AC-06 transparency Access Control 1.1%
M-02 configuration updateability Maintainability 1.1%
M-03 disturbance-free updates Maintainability 1.1%

DSS-06 data flow control Data Security and Data Sharing 1.1%
DSS-07 data protection legislation compliance Data Security and Data Sharing 1.1%
SM-04 security policy enforcement Security Monitoring 1.1%
NS-01 dynamicity of configuration Network Security 1.1%

Low

AC-03 centralized AC Access Control 0.7%
AC-05 privacy-preserving AC Access Control 0.7%
M-05 traceability Maintainability 0.7%
M-06 compatibility Maintainability 0.7%
R-02 operation with intermittent connectivity Resilience 0.7%

NS-03 management overhead minimization Network Security 0.7%
A-05 transitive authentication Authentication 0.3%

AC-07 compatibility Access Control 0.3%
M-04 usability of update process Maintainability 0.3%
M-07 transparency Maintainability 0.3%

DSS-01 data loss mitigation Data Security and Data Sharing 0.3%
DSS-03 standardization Data Security and Data Sharing 0.3%
SM-03 handle heterogeneous sources Security Monitoring 0.3%
NS-02 security policy enforcement Network Security 0.3%

MM-02 minimization of overall attack surface Models and Methodologies 0.3%

12 2 Literature Analysis

1 0 3
8 7 7

27

62

103

Publication year

N
º o

f p
ub

lic
at

io
ns

0

25

50

75

100

125

2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 2.3: The number of Industry 4.0 and IIoT security publications over the
period 2011-2019 (source: [27]).

Further, we analyze the geographical distribution of publications, which shows a
disproportionate representation of German-speaking countries (22% of total publica-
tions). Finally, we look at the publication venues and observe that the vast majority
of publications come from conferences and journals, with the “IEEE Transactions on
Industrial Informatics” being the most popular venue, followed by “IEEE Access’.

2.1.1.3 Opportunities for Fog Computing

For each of the overarching categories, we look at the identified security requirements,
and provide a discussion on the potential solutions that Fog computing might bring.
For example, it is proposed that Fog nodes could act as local Certificate Authorities
for distributed systems, which would address concerns about relying on third-party
services for authentication. This is characteristic for most of the opportunities dis-
cussed in the section; it is clear that Fog nodes operating as buffers in this middle
ground between the network edge and cloud can greatly help with addressing modern
day IIoT security issues. The section closes with a short discussion on the challenges
and limitations of Fog computing. For example, it would shift significant responsibil-
ity from service providers to Fog node maintainers, posing a risk when e.g. critical
security updates must be performed.

2.1.2 Closing Remarks
In this survey we identified and categorized a multitude of security requirements that
have previously been discussed in the scientific literature. Additionally, we looked
at quantitative data surrounding these works to provide an image of the growth
and geographic popularity of the topic. Finally, we discussed the potential for Fog
computing in addressing these security requirements.

2.1 [Papers A, B] a Systematic Survey of Industrial IoT Security: Requirements and Fog Computing
Opportunities 13

The security requirements collected in this work provided us with a motivation
to look at securing the PTP protocol, which is discussed in Chapter 3, as well as
improving the usability for the TLS protocol for the IoT and IIoT, discussed in
Chapters 4 and 5.

14

CHAPTER3
Improving Precision

Time Protocol
Reliability

Distributed real-time systems that rely on precise synchronization between subsys-
tems, often require a mechanism to establish a common time-frame and correct for
clock drift between individual subsystems. The IEEE 1588 [9] standard defines the
Precision Time Protocol (PTP) to address this issue. This protocol has been in use
for decades in various industrial fields, and is considered the golden standard for
time synchronization. Unfortunately, due to its age, it has not been designed with
security in mind. This opens the protocol to a multitude of threats in modern indus-
trial deployments which are increasingly often connected to the internet. Recognizing
this, the most recent iteration of IEEE 1588 (IEEE 1588-2019 [10])standard includes
several security measures which when enabled successfully protect against a variety
of attacks. However, the standard only includes minimal discussion on how system
reliability is affected when one of the subsystems is compromised and tries to disrupt
clock synchronization in the overall system.

While researching protocols candidates for goals G-II and G-III, it became clear
that the IEEE 1588-2019 standard fails to satisfy security requirement R-011 and by
implication NS-062, both of which are identified in Paper B (see Chapter 2). At the
same time, the PTP protocol is used in modern IIoT and Fog era communication
protocols such as Time-Sensitive Networking (TSN) and 5G mobile infrastructure.
These observations eventually led to the work described in Paper C. Thus, the PTP
protocol was chosen as a first protocol for goal G-II, and the resulting proposed
improvements are in pursuit of G-III.

1Continuation of operation with compromised subsystems
2Availability

16 3 Improving Precision Time Protocol Reliability

3.1 [Paper C] Fault-tolerant Clock Synchronization
using Precise Time Protocol Multi-Domain
Aggregation

With the publication of the IEEE 1588-2019 [10] standard, the PTP protocol has
received a number of additions strengthening the security of this protocol. These
include authentication and encryption of its communication, and architectural con-
siderations. One proposed security measure included in the standard involves adding
redundancy to the network by modifying the network communication links, so that
there exist more than one path between any two nodes. Unfortunately, no imple-
mentation details are given, nor what kind of perfomance impact this might have on
the quality of clock synchronization in the system. Using network simulation tools,
This work explores how a redundant PTP system can be implemented, as well as the
impact on clock synchronization quality.

Personal Contribution

This work is the result of a collaboration between DTU Fotonik and DTU Compute.
It represents an integral part of both my research, as well as that of Eleftherios
Kyriakakis, a colleague PhD student at the ESE section of DTU Compute. We both
invested a significant amount of time into it, and ended up with a roughly equal split
of the work collected in this publication. We decided to share first authorship, as
neither of us could claim responsibility for a majority of the work. I contributed to
the ideation of the proposed work, and was reponsible for approximately half of the
implementation. Additionally, I defined the algorithm pseudocode and wrote large
parts of Section IV. I contributed to the evaluation topologies, and wrote part of the
discussion.

3.1.1 Extended Summary
The IEEE 1588 Precision Time Protocol [9] is a distributed hierarchical clock syn-
chronization protocol that works over Ethernet. It follows the classical Master-Slave
paradigm, and autonomously selects a Master that dictates the time, based on which
participating node advertises the most accurate Master Clock. This algorithm is
called the Best Master Clock Algorithm (BMCA). Once a Master is elected, it will
periodically transmit offsets to the rest of the network over a logical tree topology,
which are then used by Slave nodes to correct their clocks if necessary.

With the IEEE 1588-2019 iteration of the standard, security measures are intro-
duced to provide authenticity guarantees as well as confidentiality of PTP messages.
However, it presents little information on how to protect against delay attacks (where
PTP messages are deliberately delayed by an adversary, thereby possibly skewing

3.1 [Paper C] Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation17

...

IF#1 IF#2 ... IF#N

offset[1]

PTP
Stack

Instance
#1

offset[2]

PTP
Stack

Instance
#2

...

offset[N]

PTP
Stack

Instance
#N

time

RTC

align

Clock Servo

Domain
#1

Domain
#2

Domain
#N

Multi-domain PTP End-System

aggregated
offset

Figure 3.1: The proposed architecture of a redundant PTP node. For each individ-
ual PTP stack, a separate network interface is used, to stimulate physical redundancy.
The ⊕ symbol denotes the convergence algorithm (source: [14]).

clock times of Slaves). Another threat that is not taken into consideration, is that of
a faulty Master node, e.g. because it is compromised by a malicious actor. Without
going into detail, the standard hints at either introducing redundant Master nodes, or
deploying redundant network topologies running in parallel PTP domains. This work
explores the latter, proposing a node architecture that can work with parallel PTP
domains, as well as comparing two convergence algorithms responsible for aggregating
the offsets received from each domain.

The first contribution, a redundant PTP node design, is visualized in Figure 3.1.
To tolerate f Byzantine (i.e. arbitrary) faults, the node will need to run n = 3f + 1
PTP stacks in parallel. In our design, we completely separate the network interfaces
as well. Running all PTP stacks over a single interface is possible but introduces a
single point of failure. A key component of the node architecture is the convergence
algorithm. This algorithm is transparent to the rest of the system and aggregates the

18 3 Improving Precision Time Protocol Reliability

most recently received offsets for each domain into an aggregated offset which is fed
to the Real-Time Clock (RTC).

The work introduces a windowed decision algorithm, which separates the last re-
ceived time offsets on each domain into observation windows. Whenever the node
receives a new correction frame on any domain, it will construct an observation win-
dow defined by the frame ingress timestamp and a carefully tuned time difference
threshold. The observation window is used to find eligible frames on each domain
that will be considered for the aggregation algorithm, and to create an average ingress
timestamp that (together with the aggregated offset) is fed into the correction algo-
rithm for the RTC. Two aggregation algorithms are considered: a simple averaging
algorithm (AVG) that averages incoming offsets, and a fault-tolerant aggregation algo-
rithm (FTA) that is able to tolerate k faulty offsets in its input, without compromising
significantly on output accuracy.

The redundant node architecture, windowed decision algorithm, and both aggre-
gation algorithms are implemented as additions to libPTP [32], a PTP simulation
library for the OmNet++ [31] network simulator, and evaluated for two network
topologies, depicted in Figure 3.2. For a baseline comparison, the topologies include
a regular PTP Slave node as well.

For the first topology, only a a Master node link failure is simulated, where after a
specified time period the individual links between the Master node and its transparent
clocks fail at 30-second intervals. This represents a DoS scenario and both the AVG
and FTA algorithms turned out to properly mitigate this type of failure.

The second topology is more involved: it is comprised of two separate topologies,
as it was not deemed sensible to evaluate regular PTP Slave node over the same
topology; it would only be able to connect to a single Master, and once that link
fails there is no backup. Instead, the regular Slave node has its own topology which
(using the BMCA) will dynamically elect new Master nodes after the first node fails.
Two scenarios are evaluated over these topologies. The first scenario is identical
to the timed link-failure scenario described above, and provides similar results. The
second scenario considers a malicious master clock that adds itself to the network and
attempts to skew Slave clock times by advertising as the most accurate clock in the
system, while broadcasting skewed offsets. The results of this scenario are included
in Figure 3.3. Here, a clear distinction between the AVG and FTA algorithms can
be seen. The AVG algorithm is susceptible to this malicious node and its aggregated
offset gets skewed when the attack starts. The FTA however, stays completely stable
and provides an accurate offset to its clock. At the same time, the regular, BMCA-
elected node shows a large dip in its clock drift, which appears to be corrected quickly
when a new Master is elected. However, it bears worth noting that this is because the
malicious Master is elected, and since that is its only time source, it cannot detect
that its clock is skewed after the dip.

The work concludes with a discussion on the overhead of this solution and its
feasability. When the PTP stacks are completely software-based, the overhead is
minimal, with preliminary results showing only 1% CPU overhead. The main over-
head will be in setup- and materials costs, as the network topology requires physical

3.1 [Paper C] Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation19

Figure 3.2: The network topologies used in the evaluation of this study. Note that
Topology 2 consists of two separate topologies, since it is deemed more valuable to
evaluate the FTA nad AVG algorithms against a regular BMCA algorithm that will
elect backup Master nodes when a failure is detected (source: [14]).

20 3 Improving Precision Time Protocol Reliability

30 60 90 120
Time (s)

-10

-5

0

O
ff

se
t

(s
)

#10-5

Standard BCMA

30 60 90 120
Time (s)

-2

-1

0

O
ff

se
t

(s
)

#10-5

Averaging aggregation
FTA aggregation

Figure 3.3: Measured PTP clock offsets when a malicious Master node takes over
at t = 60. The first graph shows a normal PTP node, which, apart from the dip,
cannot observe that its clock has been skewed. The second graph shows the AVG and
FTA algorithms. The AVG can detect the skew, but only the FTA can also prevent
it. (source: [14]).

redundancy and if the PTP stacks are hardware-replicated, a significant amount of
links and switches as well. Finally, future research opportunities are discussed. For
example, there is potential to decrease the overhead by using a hybrid solution where
only a subset of nodes runs a fully redundant PTP system.

3.1.2 Closing Remarks
In this work we looked at increasing the resilience and security of the the PTP protocol.
A redundant node architecture was proposed, which together with the presented offset
aggregation algorithms can make a PTP system resilient against a defined number
of compromised subsystems, as well as delay attacks. The solution is complemen-
tary to security measures already introduced in the IEEE 1588-2019 standard [10],
and together they can create robust PTP systems for modern connected industrial
environments.

By filling in a gap in the PTP standard, we effectively provided an extension to
the protocol that is able to satisfy security requirements R-01 and NS-06.

CHAPTER4
TLS: a Solution for Fog

and IoT Devices?
The Transport Layer Security (TLS) protocol and its predecessor Secure Socket
Layer (SSL) have already seen service as the de facto standards for Web security
for decades. Over the years, multiple attempts have been made to adapt these pro-
tocols for embedded and IoT scenarios. Despite those attempts, the protocol is often
considered too resource-intensive for lightweight devices. At the same time, the TLS
protocol and its key infrastructure are widely deployed and understood. Thus, for in-
teroperability reasons, it could be beneficial for lightweight devices to have the ability
to communicate over TLS, despite its power costs. A solution for the IIoT and Fog
involving TLS could also satisfy multiple popular security requirements identified in
paper B. With the main design goal of TLS being the Web, resource usage optimiza-
tion does not score highly on its list of priorities. At the same time, the modular
design means that novel TLS extensions could help to reduce its resource footprint.
This makes the TLS protocol a good candidate for a protocol that might be adapted
to work for the IIoT.

In this chapter, we first look at an example where TLS can benefit the IIoT and
Fog fields by exploring a potential use case for in a Fog environment. Since the
TLS protocol offers many extensions that augment its functionality(e.g., by allowing
session resumption, different cryptographic suites, or compression), we also look at
the performance impact of these extensions. Finally, we analyze privacy implications
of modern TLS session resumption extensions.

All the works in this chapter build up to a solution presented in Chapter 5, which
aims to reduce the bandwidth (and by implication power and CPU) usage for TLS 1.3
session resumption. As such, the content of this chapter can be considered in pursuit
of goal G-II.

22 4 TLS: a Solution for Fog and IoT Devices?

4.1 [Paper D] Fogification of electric drives: An
Industrial Use Case

In order for factories to be properly equipped for the Industry 4.0 era, new technologies
are needed that can bridge the gap between traditional Information Technology (IT)
(e.g. Cloud services, AI) and OT (e.g. Cyber-Physical System (CPS)). The Fog
computing paradigm promises to do this by enabling Cloud-like technologies while
preserving quality-of-service and dependability guarantees necessary for industrial en-
vironments. In this paper, we explore a use case for Fog Computing Platform (FCP)
nodes, by looking at a traditional electric drive and proposing a fogified version that
turns this drive into a FCP node. From a security standpoint, this poses an interest-
ing challenge as a fogified drive will be connected to the internet, and we explore the
possibilities for securing communication with the FCP node using the TLS protocol.

Personal Contribution

This paper was a collaboration between Danmarks Tekniske Universitet, Mälardalen
University, and Danfoss Power Electronics, and individual authors worked on sep-
arate parts of this work. My contribution to this paper was solely focused on its
security aspects: I analyzed the scenario from a security standpoint and formulated
a security framework for the fog node, which I described in the corresponding section
of the paper. Additionally, I was involved in proofreading and final revisions before
submission. Since I had no involvement in any other evaluation subsection other
than the discussion on security mechanisms, this summary is primarily focused on
the security-related contributions.

4.1.1 Extended Summary
This use case study starts with an introduction to the current state of industrial
systems: OT and IT are still mostly separated, but these domains need to converge
for Industry 4.0 to become a reality. The Fog paradigm is introduced as a system-level
paradigm that can address this problem. As a use case, electric drives are studied.
These types of drives are found in many domains, such as e.g. automotive, food and
beverage, and airconditiong.

Electric drives operate on the “control level” of the automation pyramid (see
Figure 4.1), while producing large amounts of data that can be processed in higher
(IT) layers. This data is often considered very sensitive and factory operators are
reluctant to share it with third-parties. Therefore, on-site solutions are preferred. A
FCP node could thus fit perfectly into this problem domain.

The specific type of drive studied is the VLT electric drive by Danfoss electron-
ics [4]. This drive runs its own real-time operating system and connects over a Field-
bus using the Profinet/RT [22] standard. The assumption is that such a drive is

4.1 [Paper D] Fogification of electric drives: An Industrial Use Case 23

Figure 4.1: The automation pyramid, where the bottom two levels are considered
OT, and the top two are considered IT (source: [1]).

connected to a Programmable Logic Controller (PLC) and a Human-Machine Inter-
face (HMI) to configure the drive. This architecture is referred to as the baseline.
After a description of the drive, a fogified architecture is introduced, which consists
of a hardware platform that can run the tasks necessary to operate the drive, as well
as mixed-criticallity tasks. This is achieved by using a hypervisor (PikeOS [12]) that
can enforce temporal partitioning between applications. Additionally, the fogified ar-
chitecture features a TSN-enabled switch for communication over the network. Both
architectures are modeled in Architecture Analysis & Design Language (AADL) [7].
While the fogified architecture introduces some unpredictability compared to the base-
line (due to the transition from spatial to temporal isolation), it does gain the flexibil-
ity of a programmable platform for monitoring purposes, and e.g. machine learning
applications can be used already in the drive itself.

A number of system-level requirements are identified and presented in Table 4.1.
Out of these, requirement 7 is of special interest in the context of this thesis: the drive
requires secure access to the Cloud. A number of technology bricks are introduced to
satisfy these requirements for the fogified drive. Specifically, these consist of a FCP
configuration, machine learning framework, a fault detection isolation and recovery
method, and a set of security mechanisms.

In order to evaluate the fogified architecture, a conveyor belt use case is considered.
In this use case, the drive uses the same communication medium for hard and soft
real-time communication, as well as non-critical communcation. To guarantee satis-
fiability of timing requirements, TSN is used with a constraint-programming based
communication schedule.

Then security requirements and solutions for the FCP node are discussed. The
threats together with their mitigation strategies are summarized in Table 4.2. Because
the drive will need to communicate sensitive data over the Internet, a confidential
and authenticated communication channel is necessary. For this, TLS is suggested as

24 4 TLS: a Solution for Fog and IoT Devices?

Table 4.1: System-level requirements for Fog-based drives (source: [1]).

Requirement Realization in the baseline architec-
ture

Realization in the fogified ar-
chitecture

1 Drives shall be designed ac-
cording to industrial stan-
dards

IEC61800-based design IEC61800-based design

2 Drives shall have a time-
constrained interface

1 ms time-constrained Profinet interface Jitter-free TSN interface

3 Drives shall be able to moni-
tor and process data for pre-
dictive maintenance purposes

Machine learning framework with appro-
priate safety integrity levels

Machine learning framework with
appropriate safety integrity levels

4 Drives shall run mixed-
criticality applications accord-
ing to industrial standards

Spatial separation according to IEC61508 Temporal separation according to
IEC61508

5 Drives shall control the elec-
tric motor accurately

Motor control with a response time of
30ms and good quality-of-control

Motor control with a response
time of 20ms and good quality-of-
control

6 Drives shall be configurable
according to industrial stan-
dards

Configurable according to IEC61508 Configurable according to
IEC61131

7 Drives shall have secure access
to the Cloud

Cloud connection provided by external de-
vices

Cloud connection provided by the
TSN interface, with security mech-
anisms

Table 4.2: Threats and their mitigations (source: [1]).

Threat Mitigation
Man-in-the-middle,
impersonation

Confidential, authenticated comm.
channels

Attack impact Service isolation (e.g., partitions)
Remote attacks Firewalls, endpoint whitelisting
DoS Redundant network topologies
TSN security Isolation of the TSN protocol, per-

stream filtering
Physical attacks Hardware token for configuration

changes
Detection Security monitoring services

an excellent candidate. Additionally, a firewall together with endpoint whitelisting is
suggested to mitigate the attack surface of the fog node as much as possible. Then,
the suggestion is made to place applications that connect to remote services (such
as the Cloud) into separate partitions managed by the Hypervisor. This sandboxing
mitigates the impact of threats that consider those remote services as entry vectors.
Additionally, a security monitoring service should run in a separate high-priority
partition, so that it can collect data for forensic purposes and detect anomalous
behaviour on the system. The TSN protocol provides minimal security features due
to its time-sensitive nature, and its software stack should also be isolated from other

4.2 [MSc. Thesis 1] TLS Extension Performance Impact 25

partitions where possible. Further, the network traffic itself should be isolated as
much as possible, for example through use of Software-Defined Networking (SDN).
Finally, some form of authentication for configuration changes is necessary. This
could come in the form of e.g. an NFC authentication dongle that must physically be
close to a Fog node when committing configuration changes.

Next, predictive maintenance is addressed, where a distributed machine learning
framework is proposed to train a global model that can then mark mechanical parts
for predictive maintance, based on their expected failure times. Simulated results
show an accuracy of up to 97.5%.

After predictive maintenance, a method for fault detection, identification, and
recovery is presented. The proposed method aims to provide safety assurance for the
safety requirements defined in the IEC 61508 [8] standard. While the primary safety
requirement for any drive is to stop the motor in an emergency situation, extra safety
requirements are defined for fogified drives. These requirements include a safe timer,
deadlock prevention, the requirement of defined behavior upon detection of a failure,
adequate redundancy for safety measures, and a requirement for exra validation of
run-time changes (e.g. through firmware updates) to critical parts of the fogified drive.
Finally, a number of operational states and corresponding safety actions are proposed.

4.1.2 Closing Remarks
In this work, we proposed a fogified electric drive architecture, and evaluated its
impact with a conveyor belt use case. For the security framework, it turned out
that TLS is a promising candidate for securing external communication channels of
Fog nodes. Some observations can be made based upon the security-related work
conducted in this paper: Firstly, if the communication medium is shared with time-
critical services, bandwidth overhead of TLS traffic should be kept to a minimum.
Secondly, this indicates that Edge devices connected to a Fog node could benefit
from TLS support, as that would immediately enable them to have a more secure
communication channel with the Fog node. Together, these observations hint at
a research opportunity for minimizing TLS traffic overhead for embedded devices.
Indeed, this is something that we explore in Chapter 5.

4.2 [MSc. Thesis 1] TLS Extension Performance Impact
The TLS protocol is modular, and supports many extensions. Each extension has
an identifying number, the most common of which are standardized by the Internet
Assigned Numbers Authority (IANA) [18]. Some of these extensions are considered
mandatory for TLS to operate, while others are optional. While some extensions
cause only minor behavior changes in the protocol, others can completely change the
outcome of a TLS handshake. A natural question that then arises is: how do these
extensions impact protocol performance? And further: If the design is modular, can

26 4 TLS: a Solution for Fog and IoT Devices?

we strip a TLS handshake down to only the bare minimum of extensions, perhaps
reducing its footprint and bringing it within reach of lightweight devices?

To answer these questions, the MSc. thesis “TLS Extension Performance Im-
pact” [17] by A. K. Mathiasen and E. Bejder presents an evaluation of several high-
profile TLS extensions and their impact on protocol performance.

Personal Contribution

This thesis is an original work by A. K. Mathiasen and E. Bejder, supervised by
X. Fafoutis and myself. My role as a supervisor included defining the original re-
search problem, as well as continuous supervision during the thesis project. This
involved regular meetings, guidance on which extensions to evaluate, which perfor-
mance metrics to use, and feedback on the thesis structure.

4.2.1 Extended Summary
This thesis measures the performance impact of many standardized TLS 1.3 [23]
extensions. Its main goals are firstly to provide said performance analysis, secondly to
give a foundation for further research into TLS 1.3 extensions, and finally to provide
configuration recommendations based on the performance evaluation conducted in
this work.

Table 4.3: Table of the tested TLS extensions (source: [17])

IANA value Extension name Reference
0 server_name RFC6066 [6]
1 max_fragment_length RFC6066 [6]
3 trusted_ca_keys RFC6066 [6]
4 truncated_hmac RFC6066 [6]
5 status_request RFC6066 [6]
10 supported_groups1 RFC6066 [6]
17 status_request_v2 RFC6961 [21]
41 pre_shared_key RFC8446 [23]
42 early_data RFC8446 [23]
49 post_handshake_auth RFC8446 [23]
51 key_share RFC8446 [23]

The extensions chosen for measurement are included in Table 4.3. Out of these,
server_name and key_share are mandatory in any TLS-compliant implementation.
Additionally, pre_shared_key is mandatory for Pre-Shared Key (PSK) agreement,
while the supported_groups extension is mandatory for elliptic curve key exchanges.

The evaluation is conducted over an instrumented fork of the WolfSSL [33] li-
brary. This library was chosen due to its support for a wide variety of extensions,
embedded-friendliness, active community, and comprehensive documentation. The

4.2 [MSc. Thesis 1] TLS Extension Performance Impact 27

changes made to the source code introduce a performance metric data structure that
captures relevant metrics during run-time. The choice to do this from within a modi-
fied WolfSSL library is motivated by the fact that WolfSSL manages its own memory
and clears data structures when they are no longer used. In addition to the instru-
mented WolfSSL library, a data collection script and data processing script are used.

Figure 4.2: Timestamp distributions for the tested extensions. Here, timestamps
indicate the duration of a handshake (source: [17]).

The performance evaluation focuses on three performance metrics: Round-Trip
Time (RTT), memory usage, and transmission size (in bytes). The WolfSSL TLS
handshake is measured on a modern x86 desktop machine. In Figure 4.2, timestamp
distributions for the tested extensions, for both client and server are shown. The
measured timestamps describe the duration of a TLS handshake. What stands out is
that the choice of maximum TLS fragment length can result in longer execution times.
Other than that, the choice of extension has little impact – except for the PSK and
early data extensions. This makes sense; when a PSK is used to set up a TLS session,
the handshake can omit certain computationally intensive steps, leading to shorter
execution times. The early data extension is a completentary extension to the PSK
extension, indicating that application data is already included in the first flight of
messages. Similarly, the network transmission overhead depicted in Figure 4.4 shows
that even though extensions generally only have small impact, the use of PSK and
early data extensions relate to a significantly lower transmision overhead. This is

28 4 TLS: a Solution for Fog and IoT Devices?

Figure 4.3: Peak memory usage of TLS client and server, with different extensions
enabled (source: [17]).

because in TLS 1.3, these can be used with a fast session resumption protocol that
requires fewer round-trips than a normal handshake. Memory usage is more varied,
as can be seen in Figure 4.3. These vary between around 2.5 to 2.6 kB peak memory
usage. The elliptic curve key share, status request, and trusted Certificate Authority
(CA) key extensions require relatively more memory than the other extensions.

Finally, the thesis discusses possible directions for future work, including testing
on embedded devices, in more realistic network conditions, testing different TLS
libraries, and extending the collection of extensions on which tests are performed.

4.2.2 Closing Remarks
In this thesis project, the performance impact of TLS 1.3 extensions was evaluated.
The evaluated metrics included time overhead, network bandwidth overhead, and
memory usage overhead. It was found that TLS session resumption (the PSK and
early_data extensions) required significantly less bandwidth, indicating that using
session resumption can benefit embedded scenarios where network transmission costs
are not negligible. This observation supports the research presented in Chapter 5,
where we introduce an extension for the TLS session resumption protocol aimed at
lightweight IoT and IIoT devices.

4.3 [MSc. Thesis 2] A Practical Study on Online Tracking Using TLS Session Resumption 29

Figure 4.4: The total amount of bytes sent over the network during a TLS handshake
with different extensions enabled for client and server (source: [17]).

4.3 [MSc. Thesis 2] A Practical Study on Online
Tracking Using TLS Session Resumption

Today, many websites employ tracking methods to track their users in one way or
another. Some companies even specialize in this, and track users across websites to
get a comprehensive image of their online behavior, which is useful for advertising
purposes. Historically, these tracking methods utilize existing popular protocols to
fingerprint their users. With session resumption in TLS 1.3, such an opportunity
arises: trackers could craft special resumption tickets that the client will present to a
server upon session resumption. This could unambiguously link two TLS sessions to
each other. In this thesis project, the student was asked to explore the potential for
this tracking mechanism, as it might pose a threat for IoT applications.

If TLS session resumption were to be used in the IoT and IIoT fields, then the
possibility of tracking mechanisms poses a risk to security requirement A-072 identi-
fied in paper A. As such, it is important to analyze the impact this tracking can have,
in pursuit of research goal G-II.

2Privacy-preserving authentication mechanisms

30 4 TLS: a Solution for Fog and IoT Devices?

Personal Contribution

This thesis is an original work by J. Pecl, supervised by N. Dragoni and myself. My
contribution as supervisor consisted of proposing the original research problem as
well as regular supervision meetings and guidance. I helped formulate the research
goals, and provided a testing environment for testing TLS 1.3 session resumption
mechanisms. Additionally, I provided guidance on the workings of TLS.

4.3.1 Extended Summary
This thesis explores the potential for tracking using TLS 1.3 session resumption tickets.
First, the problem statement and research goals are explained. The TLS 1.3 protocol
features a novel session resumption mechanism that has been received with some
scepticiscm by the privacy-advocacy community, because it allows the server to give
an opaque block of data to the client, which it will later (when session resumption
happens) transmit back to to the client. This could be used to correlate two TLS
sessions. Now, with TLS also moving towards the IoT and IIoT fields, this can pose a
privacy risk for those devices as well. In this thesis, the following research questions
are discussed:

• Comparing TLS session resumption tracking to other tracking mechanisms

• Making session resumption visible to users

• An update of an earlier study on TLS session resumption tracking [25]

Then, a systematic survey of online tracking mechanisms is presented. The vast
majority of these tracking mechanisms are unique to the Web, but are very important
to include as they provide a context in which we can evaluate the potential for TLS
resumption tracking. Figure 4.5 summarizes the various tracking mechanisms. It
turns out that TLS resumption tracking performs poorly compared to other tracking
mechanisms, as the resumption ticket lifetime is limited to the (browser) cache life-
time. Additionally, the resumption ticket only provides a few hundred bytes of space,
compared to Kilo- or even Megabytes for some other methods. Further, browsers
often allow users to wipe their cache at will, thereby removing any stored session
tickets. On the other hand, TLS session resumption tracking is very hard to identify,
unlike most other methods. This stealthiness motivates the rest of the thesis, where
a tool for detecting TLS session resumption tracking is developed.

After the survey, the development of this TLS session resumption tracking tool
is described. The tool allows users to select a network interface which will then be
monitored for TLS handshakes (specifically, ClientHello, ServerHello and NewSes-
sionTicket messages on the TLS record layer). The tool is able to detect both
TLS 1.2 and TLS 1.3 session resumptions. These differ in that TLS 1.2 uses the
deprecated session_ticket and session_id extensions, while TLS 1.3 uses the

4.3 [MSc. Thesis 2] A Practical Study on Online Tracking Using TLS Session Resumption 31

Figure 4.5: An overview of Web tracking mechanisms. Grey indicates depreca-
tion, while the different shades of red denote ease or intensity depending the metric,
with light red being easy / hardly any, and dark red being difficult / very much so
(source [19]).

pre_shared_key extension. Note that TLS 1.2 has two resumption methods; ses-
sion ID resumption is a separate mechanism from session ticket resumption. The tool
was tested on a specially crafted website that opens two TLS sessions to different sub-
domains (this enables testing resumpion with third-party domains), and additionally
closing the TLS session every few seconds to force renegotiations (and thus resump-
tions). Additionally, the tool is tested against a number of public websites. With
some of these, it was found that different third-party domains received TLS 1.2 session
resumptions with the same session ID, indicating that the corresponding servers were
sharing session states. Additionally, some browser-specific behaviors were observed
that are in violation of the TLS 1.3 RFC [23] recommendations.

In the third part of the thesis, an update to the original TLS session resumption
tracking paper [25] is given, as the original study did not discuss the 1.3 iteration of the

32 4 TLS: a Solution for Fog and IoT Devices?

TLS standard. Specifically the behavior of 500 popular websites, as per the Moz Top
500 [11], is studied. This dataset is further trimmed to 427 sites by removing duplicate
entries (e.g. amazon.co.uk and amazon.de). First, the support for session resumption
in TLS 1.2 is studied. Out of the 427 probed sites, 363 domains supported session
resumption, and another 12 indicated they supported resumption but failed to deliver
a session token. Only 38 sites indicated they did not support resumption, and 14 sites
were not reachable during the study. Then, resumption for TLS 1.3 is studied. There,
it is found that 34% deliver session tickets, 39% deliver pre_shared_key extensions,
18% deliver session IDs (this is a legacy field in TLS 1.3), and 9% do not deliver any
resumption mechanisms at all. Note that in TLS 1.3, the pre_shared_key extension
is used to advertise support for PSK resumption while the tickets themselves are
delivered in a separate (NewSessionTicket) message. Thus, the fact that there is
a discrepancy between these numbers suggests there were servers in the study that
advertised support for session resumption but failed to deliver a ticket, possibly due
to incompatible resumption method choices between client and server.

Figure 4.6: Cumulative distribution of lifetime hints (source: [19]).

An additional aspect that is studied for each probed site, is the session lifetime.
Two separate lifetime values are recorded for each website. Firstly, there is the lifetime
hint, which is included with session tokens and indicates how long they can be used
for. Secondly, there is the observed lifetime which is the maximal time during which
a server actually accepts a resumption token before it refuses session resumption. For
TLS 1.2, the shortest observed lifetime hint was 5 minutes, and was given by 24%
of probed websites, and 86% of websites provide lifetime hints of 24 hours or less.
Figure 4.6 shows the cumulative distribution of life-time hints in TLS 1.3. There
is an observable difference in lifetime hints between the two versions: roughly 70%
of TLS 1.2 session tickets included a life-time hint of 2 hours or less, while 68% of

4.3 [MSc. Thesis 2] A Practical Study on Online Tracking Using TLS Session Resumption 33

TLS 1.3 PSKs supported lifetimes of at least 2 hours, and 24% supported 24 hours or
more (as opposed to 3% in TLS 1.2). Despite these higher lifetime hints in TLS 1.3,
the observed lifetime turned out virtually always lower, with only 5% of websites
accepting resumptions after 24 hours. After this, the observed lifetime for TLS 1.2
session ID resumption is measured, and is found to be markedly lower: 30% did not
resume after more than 30 seconds, 96% did not resume after 30 minutes and not
a single site resumed after more than 2 hours. This shorter session duration can
be attributed to the fact that for session ID-based resumption, the server needs to
keep state on each session in its cache, while session tickets contain all necessary
state within them. Further, it was found that regularly resuming ID-based sessions
increased their lifetime in a number of cases, likely due to least-recently-used cache
clearing policies.

Table 4.4: Popular browser behavior related to TLS session resumption. STK
refers to TLS 1.2 session ticket resumption, PSK to 1.3 PSK resumption, PSK reuse
indicates if PSKs can be reused, 3rd party indicates if session resumption on third-
party domains is supported, and cache clear indicates if a browser clears TLS sessions
with a user-invoked its cache clear (source: [19]).

Browser STK PSK PSK Reuse 3rd party Cache clear
Chrome 1 hr > 48 hrs N Y N
Firefox 15 mins 15 mins Y Y Y
Edge 1 hr > 48 hrs N Y N
Opera 1 hr > 48 hrs N Y N
Brave 1 hr > 48 hrs N Y N

Afterwards, an evaluation of the client (i.e. browser) settings is done. The specific
metrics that are evaluated include the lifetime of TLS 1.2 session tickets and 1.3 pre-
shared keys, if third-party resumption works when the same third-party resource is
loaded from different first-party domains, and if clearing the browser cache also clears
TLS sessions. The tested browsers include Firefox, Chrome, Edge, Brave, and Opera.
The results of this study are summarized in Table 4.4. Interesting observations include
that Firefox is the only browser to re-use pre-shared keys at all, and that Firefox is also
the only browser to clear TLS sessions when the cache is cleared. This is an interesting
finding, because it is technically possible for servers to respawn cookies after a cleared
cache based on session correlation, although this has never been observed in the wild.

4.3.2 Closing Remarks
The findings made in this study indicate that tracking through TLS session resump-
tion is possible, albeit not very powerful, at the very least within Web context. While
it remains a risk, the impact can thus be considered fairly low. This is important to
keep in mind while developing sensitive IoT applications using TLS, although most
devices will only communicate with first-party servers, where this type of tracking

34 4 TLS: a Solution for Fog and IoT Devices?

would be unnecessary to begin with. For those that do communicate with third-party
servers, we can conclude that it is safest to disable session resumption if privacy is of
the utmost concern. Further, its impact can be limited to the corralation of connec-
tion IDs by adjusting the session resumption protocol to not allow opaque data as a
ticket.

CHAPTER5
ratchet TLS: Adapting
TLS 1.3 for Lightweight

Devices
Based on the findings in the previous chapter, we know that TLS 1.3 session resump-
tion does not incur significant computational or memory overhead compared to other
TLS extensions, while it reduces bandwidth overhead significantly. The TLS 1.3 early-
data extension additionally gives the possibility to transmit application data already
in the first flight of messages coming from the client, a feature called 0 Round-Trip
Time (0-RTT) resumption. It would then make sense for lightweight devices to toler-
ate the occasional full TLS handshake for setting up a PSK, and maximizing usage of
0-RTT session resumption to minimize handshake overhead when a PSK is available.
This would bring the benefits of TLS to the (I)IoT, making it easier to satisfy to secu-
rity requirements DSS-041, A-062, and A-023 on lightweight devices. Unfortunately,
it turns out that 0-RTT session resumption in TLS 1.3 requires early application
data to be idempotent, i.e., early data is not allowed to change server state in any
way. This is acceptable in a Web environment where early data will usually contain
HTTP GET requests, which are supposed to be idempotent in any case. However,
for IIoT scenarios it is much more likely that state-changing data is transmitted, such
as e.g. periodic sensor readouts. There is thus a need for a more (I)IoT friendly TLS
0-RTT resumption handshake.

In this chapter, we introduce a TLS 1.3 extension that adapts the TLS 0-RTT
session resumption protocol to drop the early data idempotency requirement. Ad-
ditionally, it aims to further reduce bandwidth overhead and increases the number
of possible resumptions with a single PSK, to minimize the number of times a full
handshake has to be performed.

This chapter discusses paper E and paper F. The former introduces the rTLS
protocol, while the latter provides an update to this protocol and adds a formal

1Secure data transport
2Mutual authentication
3Key distribution

36 5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices

verification of its security properties. The chapter closes by summarizing a MSc. thesis
project that implements this protocol and empirically evaluates its performance.

The content in this chapter can be considered to be in pursuit of research goal
G-III, as it extends existing TLS features and introduces features that allow 0-RTT
handshakes to be used in IIoT scenarios.

5.1 [Paper E] rTLS: Lightweight TLS Session Resumption
for Constrained IoT Devices

This work introduces the ratchet TLS (rTLS) TLS 1.3 extension. This extension adds
a new form of 0-RTT session resumption, which decreases the bandwidth overhead
and is not susceptible to replay attacks, unlike the standard 0-RTT protocol. The
protocol extension builds on the Signal Protocol [26], from which we borrow the term
“ratchet”.

This work motivates the need for such a protocol extension, discusses TLS session
resumption, defines the protocol, and provides a numerical analysis providing an
estimate for the performance increase that rTLS can bring.

Personal Contribution

This work was a collaboration between DTU, Itron Idealabs, and UniquID. Itron Ide-
alabs and UniquID provided the use case and original TLS performance benchmarks.
The protocol was subsequently defined and developed by me, with feedback from
Itron and UniquID. The numerical estimates were also done by me. Additionally, I
am responsible for all text in this paper.

5.1.1 Extended Summary
First, a motivation for rTLS is given. A typical (full) TLS handshake takes anywhere
from 1 to 4 KB of data traffic. To partially remedy this, the TLS 1.3 standard [23]
includes a 0 Round-Trip Time (0-RTT) session resumption protocol. This allows
two parties to share a PSK during the initial handshake, which can then, after the
original TLS session has been closed, be used for 0-RTT session resumption. This
protocol features an expedited TLS handshake with fewer round-trips, and allows the
client to already transmit application data (referred to as early data) in its first flight
of messages (hence “0 round-trips”). Unfortunately, this resumption protocol is not
very useful for IoT applications because it does not allow for early data to change
server-sided state, because it is vulnerable to replay attacks.

Another motivation is that bandwidth is deemed expensive in 5G networks and
for modern IIoT devices it is thus of interest to reduce bandwidth usage as much as
possible. Further, TLS is designed for the Web and assumes servers serve a potentially

5.1 [Paper E] rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 37

infinite set of unknown clients. In (I)IoT scenarios however, the set of clients if often
known a priori, and fairly static. An (I)IoT-oriented extension such as rTLS can then
make the assumption that it is fine to store server-sided state in between sessions,
something that is avoided in the standard TLS design.

Then, preliminaries are discussed. First, TLS 1.3 is briefly discussed, with an
emphasis on the 0-RTT protocol and the NewSessionTicket data structure, which
contains the PSK. The session ticket is generated by the server and transmitted to
the client. It is assumed that this ticket contains all necessary state information for
the server to resume the TLS session, and is encrypted with a key known only to the
server. Figure 5.1 shows the communication pattern of both the initial handshake
and a 0-RTT resumption handshake, with elements modified for rTLS in blue. Then,
the Double Ratchet algorithm is discussed, this algorithm is part of the Signal Pro-
tocol [26] and enables highly secure asymmetric message exchange. An important
concept in this protocol is a Key Derivation Function (KDF) chain, a feedback loop
structure for KDFs. Such a structure provides key material for message encryption,
with part of its output acting as input for the next iteration. This creates a ratchet-
like structure (KDF chains are often referred to as “ratchets”) where one can use a
key to produce new keys for future messages, but cannot use it to produce previously
used keys. A double ratchet combines two ratchets, called an “inner” and “outer”
ratchet. The inner ratchet produces symmetric keys which are used for message en-
cryption, while the “outer” ratchet takes input from Difie-Hellman (DH) handshakes

Client Server
ClientHello

+key_share

+psk_key_exchange_modes

ServerHello

+key_share

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[Application Data*]

{Certificate*}

{CertificateVerify*}

{Finished}

[NewSessionTicket]

[Application Data][Application Data]

(a) The communication pattern of the initial
handshake.

Client Server
ClientHello

+early_data

+key_share*

+psk_key_exchange_modes

+pre_shared_key

(Application Data)

ServerHello

+pre_shared_key

+key_share*

{EncryptedExtensions}

+early_data*

{Finished}

[Application Data*]

(EndOfEarlyData)

{Finished}

[Application Data][Application Data]

(b) The communication pattern of the resump-
tion handshake.

Figure 5.1: Figure 5.1a and 5.1b depict the initial respectively resumption hand-
shake communication patterns. + denotes an extension, * denotes an optional or
situational component while {} and [] denote encryption with a derivation of the
handshake or application secret, respectively. Elements that are used for rTLS are
printed in blue. (source: [29]).

38 5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices

and provides key material which is used to reset the inner ratchet. Because DH
handshakes rely on external entropy, this feeds fresh entropy into the inner ratchets
thereby providing break-in protection.

Afterwards, the paper introduces the rTLS protocol. This protocol targets the
following four design goals: to maximally rely on existing TLS features; to minimize
the number of changes (to the original protocol); to minimize bandwidth overhead;
and to provide stronger 0-RTT security properties. The NewSessionTicket structure
is used to transmit the rTLS PSK, which includes a connection ID and a nonce. At
the same time, the server initializes a ratchet which will in the future be used to
decrypt early data for session resumptions with this connection ID. When the client
receives the PSK, it also initializes a ratchet. Because the keys used to initialize the
ratchet are derived from the shared TLS master secret, the client can then in the
future encrypt early data using the ratchet output as key, knowing the server will be
able to decrypt it with its own ratchet. The cryptographic primitives used for the
ratches are chosen from the chosen TLS cipher suite, to ensure compatibility on both
client and server.

For session resumption, the client can choose to include a (DH) key_share exten-
sion in the handshake, which will be used as external entropy to reset the ratchets
on both client and server side when the resumption handshake is finished. Addition-
ally, the client includes a pre_shared_key extension which includes the connection
ID previously obtained from the server, along with its ratchet index, indicating how
many times the client ratchet function has been called since it was last initialized.
Finally, it includes early data encrypted with the most recently produced key from
the client ratchet. When the server receives the client handshake message, it will
reply with a key_share extension of its own if it was included by the client, and it
can use the connection ID and ratchet index provided by the client to decrypt the
early data. A brief summary of the extra protocol steps (on top of standard TLS
operation is provided below:
Initial Handshake

1. ID Generation: The server generates a globally unique connection ID and
transmits this to the client;

2. Ratchet Initialization: Both client and server initialize their ratchet struc-
tures;

3. Persistent state storage Both client and server store their state variables;

Resumption Handshake (Client)

1. Ratchet step: Executes the symmetric ratchet and derives the early data
secret form this step;

2. PSK exchange: Transmits its connection ID and ratchet index to the server;

Resumption Handshake (Server)

5.1 [Paper E] rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 39

1. Access state: The server finds the relevant state variables (ratchet) based on
the received connection ID;

2. Anti-replay condition: The server ensures that its own ratchet index is less
than or equal to the client’s advertised ratchet index;

3. Ratchet step: The server executes its ratchet enough times so that its ratchet
index will match the client ratchet index, with which it then derives the early
data secret;

Further, a description of the necesary state variables is given: Both the client and
server will need to store the connection ID and the ratchet, as well as their ratchet
index. The server will need to keep a connection ID → ratchet mapping as well to
identify the correct ratchet upon a resumption.

0 5 10 15 20 25 30 35 40 45
Diffie-Hellman key exchange period

50

100

150

200

250

300

350

tra
ns

m
iss

io
n

ov
er

he
ad

 (b
yt

es
) P-512/SHA256

P-256/SHA256
X25519/SHA256
P-512/SHA384
P-256/SHA384
X25519/SHA384

Figure 5.2: Average rTLS transmission overhead v. DH key exchange frequency
(source: [29]).

Then, the proposed protocol extension is evaluated. This evaluation consists of
two parts: first, an informal evaluation of its security properties is given, and after-
wards a numerical estimate of the bandwidth and storage overhead is given based on
the size of transmitted and stored data structures.

The security evaluation includes an informal argument on the various security
properties that this protocol enjoys. These include replay protection and forward-
secrecy, both of which are inherent properties of ratchet constructions. Additionally,
it is argued that the protocol has break-in protection, a property provided by double
ratchet structures.

The traffic overhead estimation is based on the size of the various transmitted
data structures involved in session resumption. First, a “fixed cost” is defined for ev-
ery resumption handshake, which consists of all handshake components that must be

40 5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices

included and are unavoidable in any resumption handshake without rigorous changes.
Then, the session ticket or PSK is dissected into its individual parts, and size estima-
tions for these based on the TLS standard documentation are given. The resumption
handshake overhead can vary, depending on if a key_share extension is included by
the client (indicative of a DH handshake), which significantly increases the data trans-
mission cost. The exact overhead of a key_share extensions further depends on the
chosen elliptic curve, with the X25519 curve being the most optimal choice. Because
these key shares are so costly, one does not want to include them in every resumption
handshake. On the other hand, they need to be included every so often to introduce
new entropy into the ratchets and provide break-in protection. This is left as an
implementation choice, and the paper defines this as the “DH exchange frequency”.
A higher DH exchange frequency implies higher transmission overhead. Figure 5.2
shows the traffic overhead plotted against this exchange frequency, with the x-axis
indicating a frequency of every x resumptions. From this figure, it can be seen that
although the overhead is over 100 bytes when a key share is done for every resumption,
it approaches roughty 60 bytes on average if a key share is included only once per
50 resumptions. A comparison with the overhead incurred from a standard TLS 1.3
handshake is also made, based on measurements done on the OpenSSL library. The
estimate is that an rTLS PSK requires only roughly 11% of traffic overhead compared
to a standard PSK, and that the total bandwidth cost of a handshake will reduced
by half.

The storage overhead is computed with the assumption that a 4-byte connection
ID is used, and that the ratchet KDF relies on the SHA-256 algorithm. It is estimated
that with the assumptions made, roughly 270GB worth of state data is needed for 232

maintained sessions – many more than needed for the vast majority of applications.

5.1.2 Closing Remarks

In this work the rTLS extension for TLS 1.3 was introduced. This extension changes
the 0-RTT session resumption protocol to provide protection against replay attacks
and to minimize bandwidth. The goal of this extension is to turn TLS into a feasible
option for lightweight devices – such as sensors in sensor networks or other edge
devices in industrial scenarios. With this extension, TLS is thus a step closer to
being a suitable security layer candidate for devices in the IoT, IIoT and fog sphere.

The focus of this work is on the introduction and definition of rTLS, but due to
time constraints within the research project, no formal security guarantees are given.
Similarly, an empirical performance study of a proof-of-concept implementation did
not make it into this paper. In the next two sections, these gaps are addressed.
First, in paper F, an updated specification of rTLS is described and a formal security
analysis is conducted on the protocol. Afterwards, a summary is given of a MSc. thesis
project that implements an rTLS proof-of-concept for an empirical evaluation of its
performance.

5.2 [Paper F] rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 41

5.2 [Paper F] rTLS: Secure and Efficient TLS Session
Resumption for the Internet of Things

This work is an extended version of Paper E, and thus starts with a repetition of
most of the content first presented in that paper. As a major new contribution, a
formal verification of its security properties is included. Additionally, several minor
changes to the protocol are made based on lessons learned from a proof-of-concept
implementation of the protocol, as well as efforts to give a formal proof of its security.
The numerical estimates are also updated to a give a more accurate picture. Further,
an extended version the preliminaries is given, and the presentation of the protocol
is extended upon to minimize ambiguity in the specification. This paper can be
considered the most recent complete version of the rTLS specification.

Because the changes made to the protocol mainly relate to minor technicalities,
the main focus of this this summary is on the formal verification aspects presented
in this paper, in order to avoid repetition with the summary of Paper E.

Personal Contribution

I am the main author of the work presented in this paper, and am responsible for
most of the writing, with the exception of parts of the description on the formal ver-
ification itself, which were done by S. Mödersheim, as he authored the final formal
specification. The formal specification was produced in a long intensive process. The
first iteration of a formal specification was presented in a DTU MSc. thesis [15] by
A. Lalos (supervised by S. Mödersheim) and was the result of an intensive collabora-
tion between A. Lalos, S. Mödersheim and myself. Afterwards, the specification was
improved upon for publication in this paper together with Mödersheim. I gave reg-
ular feedback and double-checked the specification during this phase, while working
on the rest of the paper.

5.2.1 Extended Summary
This work starts with a motivation to the one in paper E, after which it discusses the
necessary preliminaries. These include an understanding of the the Double Ratchet
algorithm and an understanding of the TLS 1.3 protocol. Compared to the original
work, a more in-depth discussion on ratchets and double ratchets is given.

Then, the work presents the rTLS protocol itself. This presentation is largely the
same as in paper E. The paper deviates slightly in terminology: what was formerly
referred to as the “DH Exchange frequency” is now referred to as the “DH Exchange
period” as that better captures the relation. One notable change is that now a more
thorough discussion on rTLS key derivation together with how it fits into the TLS
key schedule is given. Figure 5.3 depicts the TLS key schedule, with additions by the
rTLS protocol marked in red. The resumption master secret together with a shared

42 5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices

0

Early Secret

Binder Key

Client Early Traffic Secret

Early Exporter Master Secret

Handshake Secret

Client Handshake Traffic Secret

Server Handshake Traffic Secret

Master Secret0

Client Application Traffic Secret

Server Application Traffic Secret

Exporter Master Secret

Resumption Master Secret

Chain KeyRoot Key

Res. Master Secret

(EC)DHE

Figure 5.3: The rTLS Key schedule. Red indicates added KDF instances. Blue
indicates a default TLS HKDF instance. Grey diamonds indicate applications of the
KDF function to produce a key (source: [30]).

secret key from an elliptic curve DH exchange is used to generate a root key which
acts as the initial key for the ratchet. Then, whenever the ratchet is spun a chain
key is generated that acts as an input key for the early secret, upon which all other

5.2 [Paper F] rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 43

secrets rely. This way, all derived keys for a session resumption rely on the ratchet
(chain) key. Further, extra emphasis is given to the requirement that ratchet indices
must be reset to 0 whenever a DH exchange occurs in a resumption.

Two new state variables have been added to the protocol. Both the client and
server need to maintain a copy of their currenty private DH key, as well as the last
received remote DH key. Together, these are necessary for deriving a root key when
the ratchet needs to be reset.

After the presentation of the protocol, a security evaluation is given. Unlike in the
earlier work, this consists of a formal specification for which several security properties
are then verified in a Dolev-Yao-like intruding model. This is done using the Open
Source Fixed-Point Model Checker (OFMC) tool for a bounded number of sessions,
giving high certainty that they hold for the rTLS protocol. Note that the specification
models resumption handshakes both with and without DH key exchanges, so that
both can be verified. Because specifying rTLS in existing supported languages for
OFMC turned out to be very dificult due to its stateful nature, a new notation was
devised, for which a compiler is now being developed.

The formal specification starts from initial states for both the client and the server.
They are initialized to share a resumption master secret, as well as a populated remote
DH key for the client and a populated private DH key for the server. These are realistic
assumptions to make as they can be shared during the initial handshake. Next, the
specification for the resumption handshake is documented in detail, starting with
the ClientHello message. Afterwards, the work similarly presents and discusses the
ServerHello and Finished messages, which all taken together form the messages in a
resumption handshake. For each message, only the cryptographically relevant parts
are modeled, in order to keep clutter to a minimum.

The final part of the formal verification section describes the verification process
itself. The first verification goal is secrecy, and the second goal is injective agreement,
which means that when a honest party B receives a message from A, then A is either
the intruder under their real alias or A did indeed send that message. Further, the
injectivity implies that replayed messages are not accepted by B. For the verification,
the number of explored sessions is bounded to 2, and the number of resumptions per
session is also bounded to 2. Higher numbers were not practically feasible due to
an exponential increase in the explored state space. Also, it is deemed unlikely that
further sessions and resumptions would uncover further attacks due to the symmetry
of all further repetitions. Additionally, it was tested that all expected steps could
be taken in the model, so that the client and server were able to communicate. The
OFMC tool reported no attacks, meaning that it can be stated with high certainty
that the security properties hold. Finally, a brief argument is given proving that rTLS
is not vulnerable to the recent selfie attack [16].

Finally, the performance evaluation has been adjusted to reflect the change in state
variables. Compared to the predecessing paper, the minimum bandwidth overhead
estimation remains the same, although an estimation for a more realistic handshake
(i.e. including other extensions,) has been added, and predicts roughly 400-600 bytes
of overhead. The storage overhead has been adjusted upwards to 101 bytes, meaning

44 5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices

that 433GB of data is needed to track 232 sessions on the server. This increase can
be attributed to the additition of new state variables.

5.2.2 Closing Remarks

The largest new contribution in this work is a formal security analysis of the rTLS
protocol, showing that multiple security properties hold. Additionally this work im-
proves upon the description of rTLS and provides updated performance estimates.

The security analysis adds a formal backing to the rTLS security claims, and shows
that it is a feasible solution for the security problems that prohibit (I)IoT adoption of
the TLS 0-RTT resumption protocol – or indeed any situation where the idempotency
requirement of the standard resumption protocol is too strict. What remains, is to
empirically evaluate this extension and observe the overhead introduced by it. A
summary of this process is described in the next section.

5.3 [MSc. Thesis 3] rTLS: Proof-of-Concept and
Empirical Evaluation

After the specification of the rTLS protocol extension and its security analysis, an em-
pirical study was still needed. As this formed a well-defined research problem by itself,
it was turned into a MSc. thesis project and was conducted by C. Xenofontos [34].

In this work, the proof-of-concept implementation of rTLS is presented, as well as
a performance evaluation of the extension.

Personal Contribution

The MSc. thesis is an original work conducted by C. Xenofontos [34], and supervised
by X. Fafoutis and myself. Since this project was also very related to my PhD, I
was closely involved in its execution. My role as a supervisor included defining the
original problem description, regular supervision meetings, guidance and advice on
the workings of TLS and the double ratchet algorithm, proofreading, assistance with
defining the performance metrics and guidance on the workings of rTLS.

5.3.1 Extended Summary

The work starts with an introduction of TLS and a motivation for rTLS, specifically
aimed at the need for a proof-of-concept implementation to verify the performance
claims. Then, the preliminaries are discussed. These include the TLS 1.3 protocol
along with several attacks on the protcol that have been published over the years, the

5.3 [MSc. Thesis 3] rTLS: Proof-of-Concept and Empirical Evaluation 45

0-RTT resumption protocol, the double ratchet algorithm, and the rTLS extension it-
self. After the preliminaries, the related work is discussed, including other lightweight
TLS variants such as Datagram TLS (DTLS) and QUIC.

Then, the implementation of rTLS is described. First, it is established that due to
the complexity of TLS, it makes more sense to extend an existing TLS library rather
than implement a new TLS library from scratch. A brief comparison of various
libraries is then conducted, with WolfSSL [33] being chosen as the target library due
to its clean code, ample documentation, and great community support compared to
the other contenders. Subsequently, a description of WolfSSL is given, introducing
the various components that make up the library, as well as the source files that
are relevant for the remainder of the thesis. Further, it is stressed that the version
of rTLS developed in this thesis is purely for scientific analysis and should not be
considered feature-complete or secure. A description of the working environment and
tools used during development is also given.

The main goal of this implementation is to measure bandwidth overhead, meaning
no specific measures are taken to optimize memory and computational overhead. The
thesis describes the changes made to the initial handshake, i.e., the addition of a new
PSK key exchange mode, the generation of a connection ID and its transmission
to the client, and the initialization of the rTLS state variables for both client and
server. To store these state variables, the rTLS code extends the ssl structure used
by WolfSSL to maintain session context. Further, the wolfCrypt library is relied upon
for cryptographic (KDF) calls. This alleviates some complexity as it provides us with
an optimized and secure alternative to implementing it from scratch. Because the
ssl structure is cleared when a session is closed, special functionality is added that
can persistently store the rTLS state variables when this happens.

The session resumption implementaton is also described in detail. One deviation
from the rTLS specification in papers E and F is that the optional DH key exchange is
appended to the pre_shared_key structure instead of the key_share structure. This
was decided upon because it turned out that adding the key_share structure to the
resumption message added unnecessary bandwidth overhead that could be prevented
by incorporating the DH exchange into the PSK field. This change can be included
in the specification in future publications.

Afterwards, a number of changes to the source code of the example WolfSSL client
and server implementations were made specifically to enable the testing of multiple
session resumptions (both with and without DH exchanges). To capture the initial
and resumption handshakes, a set of benchmarking scripts were written, and addition-
ally the results were manually verified with Wireshark. The cumulative bandwidth
cost of the “ClientHello”, “ServerHello”, “Encrypted Extensions”, “Finished” (both
for client and server), and the “End of Early Data” messages is measured. For each
possible DH key exchange period (up to 50), 255 session resumptions are recorded,
after which the average bandwidth cost is computed. The results of these tests are
shown in Figure 5.4. When a DH key exchange is included for every handshake, an
overhead of 556 bytes is measured. As the DH key exchange period increases, this
overhead reduces to 524.75 bytes on average for one DH key exchange per 50 resump-

46 5 ratchet TLS: Adapting TLS 1.3 for Lightweight Devices

Figure 5.4: The average total bandwidth overhead of rTLS resumption handshakes
(source: [34]).

tions. The pattern looks very similar to the estimations made in paper F, and indeed
the measured overhead falls in the predicted range of 400-600 bytes. The standard
TLS resumption bandwidth overhead (measured identically to the rTLS overhead de-
scribed above) is also measured, and sits at a constant 746 bytes. The use of rTLS can
thus save on average around 221 bytes of bandwidth overhead per session resumption,
if a DH key exchange period of 50 is chosen. After comparing rTLS to standard TLS,
the thesis further compares the obtained measurements to the estimations made in
paper E, and points out some inaccuracies in this estimation based on the practical
experience obtained from working with the WolfSSL implementation.

Finally, a discussion on rTLS, the implementation process, and future work is
presented. These include developing a fully functional prototype, as well as optimizing
for memory and computational overhead.

5.3.2 Closing Remarks
This work provided a promising first empirical validation of the estimates given in
papers E and F, through a proof-of-concept implementation of rTLS on top of the
WolfSSL TLS library. Together with the other work presented in this chapter, this
forms a multifaceted validation of rTLS, bolstering trust in its security and perfor-
mance benefits.

These results pave the way for future research on rTLS, including a prototype
implementation as alluded to in the future work section of this MSc. thesis, but also
other avenues can be explored. We will briefly discuss these in the following chapter.

CHAPTER6
Conclusion

With the industrial sector transitioning into the Industry 4.0 era, previously discon-
nected industrial systems will find themselves exposed to the Internet. This brings
many new opportunities, but with it also come new risks. Malicious actors might
try to compromise these systems, and dependencies on third parties characteristic
to Cloud computing can put latency, safety, and availabilty requirements into jeop-
ardy. The recent Fog computing paradigm decentralizes Cloud aspects and brings
them closer to the network edge, and the introduction of Fog nodes brings the power
and flexibility from IT to the IIoT and OT domains. To enable a safe and secure Fog
ecosystem, research into Fog computing security is needed. In this thesis, we collected
IIoT security requirements identified by the scientific literature, to get an overview
of the security properties that Fog nodes will need to fullfil. Further, we proposed
a distributed PTP node architecture that protects PTP networks from compromised
subsystems, and synergizes with Fog node capabilities. As the final contribution we
introduced, analyzed, and tested rTLS, a novel TLS extension that enables the IIoT
to safely use fast TLS session resumption, lowering the resource usage necessary to
use the protocol. These contributions together form a necessary step towards a more
secure Fog ecosystem.

In the remainder of this chapter, we will summarize the contributions of each
paper and thesis that has been discussed in this dissertation, after which we close the
chapter with a discussion on future work and research opportunities.

6.1 Contributions

The contributions collected in this thesis aim to improve the security of Fog and IIoT
systems. Because the Fog computing concept spans a vast spectrum – from lightweight
embedded devices to large Cloud-like datacenters, it is very challenging to present a
single security solution that encompasses all these aspects. Instead, the works in this
thesis focus on concrete improvements and adjustments to existing technologies, to
make them more suitable for Fog and IIoT systems. This was done using the security
requirements collected in paper A as an indication of where the security needs lie, and
subsequently investigating several technologies that hold potential to address these
issues. The outcome of this research can be grouped into three main contributions,
which are summarized below.

48 6 Conclusion

I Papers A and B present a large systematic survey of security requirements iden-
tified by the academic literature in the IIoT, Industry 4.0, and Fog fields. These
requirements are categorized by overarching themes such as authentication and
access control. Further, the work presents a quantitative overview of IIoT and
Fog security research in the past decade. Finally, the work includes a discus-
sion of Fog computing opportunities towards satisfying the identified security
requirements.

II Paper C describes a deep study into the security of the PTP protocol, and
introduces a redundant multi-domain PTP node architecture protecting PTP
networks against compromised subsystems. This contribution is complementary
to the security additions made in the 2019 iteration of the PTP standard. The
architecture includes convergence algorithms for aggregating offsets collected
from the various domains into one reliable offset that can be used to correct
its RTC. Further, its performance is evaluated in a set of simulated scenarios
with various network topologies. Paper D fits partly into this contribution
by describing a use case where PTP-enabled devices connect with a Fog node
(through TSN).

III Papers E and F introduce the rTLS protocol extension. The former defines
the rTLS protocol, while the latter includes minor improvements to the pro-
tocol itself and a formal security analysis. This extension modifies TLS 1.3
0-RTT session resumption, removing the idempotency requirement on early
data sent with resumption handshakes. This makes the 0-RTT handshake suit-
able for IIoT applications. Further, the extension requires fewer resources than
a standard resumption handshake. The extension is empirically evaluated in
MSc. thesis 3. The privacy impact of TLS resumption handshakes is analyzed
in Msc. thesis 2, and a performance measurement of a collection of common
TLS extensions is given in MSc. thesis 1. This provides a more comprehensive
view of the suitability of TLS for lightweight scenarios, while motivating the
need rTLS as a less resource-intensive alternative to standard session resump-
tion. Paper D also partially fits into this contribution, as in includes a security
analysis of the use case that describes a need for TLS.

6.2 Future work
There are many open research questions and opportunities for future work in the IIoT
and Fog security domain. Contribution I discusses many more opportunities than can
possibly be addressed in one thesis. These remain subjects for potential future work.
A few examples of this include the use of Fog nodes to extend traditional Public Key
Infrastructure (PKI), or as multi-factor authentication hubs for e.g. authenticating
configuration changes when equipped with smart card readers or biometric sensors.
Further, Fog nodes could serve as a decentralized AC infrastructure, removing the

6.2 Future work 49

single point of failure in traditional centralized AC policy systems. Due to their highly
virtualized nature, Fog nodes also hold potential to run software or configuration
upgrades for peripheral devices in sandboxed environments, while monitoring for
anomalous behavior and dynamically rolling back if operational requirements are
violated. The interested reader is referred to paper A for a comprehensive discussion
on research opportunties for Fog security in general. In the remainder of section, we
will focus on future work related to Contributions II and III.

Contribution II marks a first step in redundant PTP node design, and includes
testing of a fully redundant PTP setup. However, the resource investment needed for
this architecture is not trivial. It is possible that a hybrid setup where only parts of the
PTP network are redundant offers similar benefits for a smaller investment. Further,
there are some attack categories that might not be mitigated even with the combined
security features of the 2019 PTP standard and a redundant node architecture, and
future research is needed to identify and protect against these. Finally, our proposed
architecture is for PTP slave nodes, but there are other node types such as boundary
clocks that can also benefit from a distributed architecture. This poses an opportunity
for future work in this domain.

Although the rTLS protocol extension is already empirically validated in MSc. the-
sis 3, these tests were conducted with a limited proof-of-concept implementation on
an x86 platform. Further research is needed to accurately capture the performance of
this extension on lightweight devices and other architectures (e.g. ARM and RISC-V
devices). There is an ongoing effort to port the proof-of-concept implementation to
embedded platforms and conduct performance tests on these, which will enable a
more accurate evaluation of the resource requirements for this extension. Addition-
ally, the bandwidth overhead can be reduced even more by replacing the existing
resumption message structure altogether. After the original introduction of rTLS ,
the DTLS 1.3 standard has been published, featuring a similar resumption protocol to
that of TLS 1.3. Porting the rTLS extension to DTLS would remove the dependency
on TCP, lowering resource requirements and potentially increasing performance. Fi-
nally, there are other efforts optimizing TLS for IIoT applications, such as compact
TLS (cTLS) [24], presenting research opportunities to adapt rTLS for use in these
projects.

The contributions presented in this thesis provide concrete improvements to ex-
isting technologies, preparing them for the Industry 4.0 era. Although the state of
the art is getting closer, the road to widespread adoption of Industry 4.0 paradigms
is still full of open challenges, and many more steps like the ones in this thesis are
needed to make it there.

50

Bibliography
[1] M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, and J. Kuusela.

“Fogification of electric drives: An industrial use case.” In: 2020 25th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2020. doi: 10.1109/ETFA46521.2020.9212010.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and Its Role
in the Internet of Things.” In: Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing. MCC ’12. ACM, 2012. isbn: 978-1-
4503-1519-7. doi: 10.1145/2342509.2342513.

[3] OpenFog Consortium. OpenFog Reference Architecture for Fog Computing. 2017.
url: https://iiconsortium.org/pdf/OpenFog_Reference_Architecture_
2_09_17.pdf (visited on December 24, 2021).

[4] Danfoss. Danfoss Electric Drives. url: https : / / www . danfoss . com / en /
products/dds/ (visited on December 24, 2021).

[5] M. De Donno, K. Tange, and N. Dragoni. “Foundations and Evolution of Mod-
ern Computing Paradigms: Cloud, IoT, Edge, and Fog.” In: IEEE Access (2019).
doi: 10.1109/ACCESS.2019.2947652.

[6] D. Eastlake 3rd. The Transport Layer Security (TLS) Protocol Version 1.3. 2011.
doi: 10.17487/RFC6066. url: https://rfc-editor.org/rfc/rfc6066.txt
(visited on December 24, 2021).

[7] P. H Feiler, D. P Gluch, and J. J Hudak. The architecture analysis & design
language (AADL): An introduction. Technical report CMU/SEI-2006-TN-011.
Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst, 2006.

[8] IEC. Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 1: General requirements. 2010.

[9] IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems. eng. 2008. doi: 10.1109/IEEESTD.2008.
4579760.

[10] IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems. eng. 2020. doi: 10.1109/IEEESTD.2020.
9120376.

52 Bibliography

[11] Moz Inc. Top 500 Most Popular Websites. url: https://moz.com/top500
(visited on December 24, 2021).

[12] R. Kaiser and S. Wagner. The PikeOS concept: History and design. Technical
report. SYSGO AG, 2007. url: https://www.sysgo.com/.

[13] B. Kitchenham and S. Charters. Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. Technical report EBSE-2007-01. EBSE
Technical Report, 2007.

[14] E. Kyriakakis, K. Tange, N. Reusch, E. O. Zaballa, X. Fafoutis, M. Schoe-
berl, and N Dragoni. “Fault-tolerant Clock Synchronization using Precise Time
Protocol Multi-Domain Aggregation.” In: 2021 IEEE 24th International Sym-
posium on Real-Time Distributed Computing (ISORC). IEEE, 2021. doi: 10.
1109/ISORC52013.2021.00025.

[15] A. Lalos. “A Formal Library of IoT Protocols.” 2021. url: https://findit.
dtu.dk/en/catalog/2685752487 (visited on December 25, 2021).

[16] G. Lowe. “Selfie: reflections on TLS 1.3 with PSK.” In: Journal of Cryptology
34.27 (2021). doi: 10.1007/s00145-021-09387-y.

[17] A. K. Mathiasen and E. Bejder. “TLS Extension Performance Impact.” 2021.
url: https://findit.dtu.dk/en/catalog/2692890744 (visited on Decem-
ber 24, 2021).

[18] Y. Nir, R. Salz, and N. Sullivan. Transport Layer Security (TLS) Extensions.
2021. url: https : / / www . iana . org / assignments / tls - extensiontype -
values/tls-extensiontype-values.xhtml (visited on December 24, 2021).

[19] J. Pecl. “A Practical Study on Online Tracking Using TLS Session Resumption.”
2021. url: https://findit.dtu.dk/en/catalog/2691679817 (visited on
December 24, 2021).

[20] K. Petersen, S. Vakkalanka, and L. Kuzniarz. “Guidelines for conducting sys-
tematic mapping studies in software engineering: An update.” In: Inf. Softw.
Technol. (2015). doi: 10.1016/j.infsof.2015.03.007.

[21] Y. Pettersen. The Transport Layer Security (TLS) Protocol Version 1.3. 2013.
doi: 10.17487/RFC6961. url: https://rfc-editor.org/rfc/rfc6961.txt
(visited on December 24, 2021).

[22] Profinet system description–system manual. Technical report Issue A5E00298288-
04. Siemens Simatic, 2008.

[23] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. August
2018. doi: 10.17487/RFC8446. url: https://rfc-editor.org/rfc/rfc8446.
txt (visited on December 24, 2021).

[24] E. Rescorla, R. Barnes, and H. Tschofenig. Compact TLS 1.3 (IETF draft). url:
https://datatracker.ietf.org/doc/draft-rescorla-tls-ctls/.

Bibliography 53

[25] E. Sy, C. Burkert, H. Federrath, and M. Fischer. “Tracking Users across the
Web via TLS Session Resumption.” In: Proceedings of the 34th Annual Com-
puter Security Applications Conference. ACSAC ’18. Association for Computing
Machinery, 2018. doi: 10.1145/3274694.3274708.

[26] OpenWhisper Systems. Signal. url: https://www.signal.org (visited on
December 24, 2021).

[27] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. “A Systematic Survey
of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities.” In: IEEE Communications Surveys Tutorials (2020). doi: 10.
1109/COMST.2020.3011208.

[28] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. “Towards a Systematic
Survey of Industrial IoT Security Requirements: Research Method and Quan-
titative Analysis.” In: Proceedings of the Workshop on Fog Computing and the
IoT. IoT-Fog ’19. ACM, 2019. doi: 10.1145/3313150.3313228.

[29] K. Tange, D. Howard, T. Shanahan, S. Pepe, X. Fafoutis, and N. Dragoni.
“rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices.” En-
glish. In: Proceedings of the 22nd International Conference on Information and
Communications Security. Springer, 2020. doi: 10.1007/978-3-030-61078-
4_14.

[30] K. Tange, S. A Mödersheim, A Lalos, X. Fafoutis, and N. Dragoni. “rTLS:
Secure and Efficient TLS Session Resumption for the Internet of Things.” In:
Sensors (2021). doi: 10.3390/s21196524.

[31] A. Varga and R. Hornig. “An Overview of the OMNeT++ Simulation Envi-
ronment.” In: Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops.
Simutools ’08. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008. doi: 10.4108/ICST.SIMUTOOLS2008.
3027.

[32] W. Wallner. LibPTP: A Library for PTP Simulation. 2016. url: https://
github.com/ptp-sim/libPTP (visited on December 24, 2021).

[33] WolfSSL. WolfSSL Embedded SSL/TLS Library. url: https://www.wolfssl.
com/.

[34] C. Xenofontos. “rTLS: Proof-of-Concept and Empirical Evaluation.” 2021. url:
https://findit.dtu.dk/en/catalog/2692305257 (visited on December 25,
2021).

54

Paper A
Towards a Systematic Survey of
Industrial IoT Security Requirements:
Research Method and
Quantitative Analysis

K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. “Towards a Systematic Survey
of Industrial IoT Security Requirements: Research Method and Quantitative Analy-
sis.” In: Proceedings of the Workshop on Fog Computing and the IoT. IoT-Fog ’19.
ACM, 2019. doi: 10.1145/3313150.3313228

Towards a Systematic Survey of Industrial IoT Security
Requirements: Research Method andQuantitative Analysis
Koen Tange, Michele De Donno, Xenofon

Fafoutis
kpta@dtu.dk,mido@dtu.dk,xefa@dtu.dk

Technical University of Denmark

Nicola Dragoni
ndra@dtu.dk

Technical University of Denmark and
AASS, Örebro University

ABSTRACT
Industry 4.0 and, in particular, Industrial Internet of Things (IIoT)
represent two of the major automation and data exchange trends of
the 21st century, driving a steady increase in the number of smart
embedded devices used by industrial applications. However, IoT
devices suffer from numerous security flaws, resulting in a number
of large scale cyber-attacks. In this light, Fog computing, a relatively
new paradigm born from the necessity of bridging the gap between
Cloud computing and IoT, can be used as a security solution for the
IIoT. To achieve this, the first step is to clearly identify the security
requirements of the IIoT that can be subsequently used to design
security solutions based on Fog computing. With this in mind, our
paper represents a preliminary work towards a systematic literature
review of IIoT security requirements. We focus on two key steps of
the review: (1) the research method that will be used in the system-
atic work and (2) a quantitative analysis of the results produced by
the study selection process. This lays the necessary foundations to
enable the use of Fog computing as a security solution for the IIoT.

CCS CONCEPTS
• Security and privacy; • Computer systems organization→
Embedded and cyber-physical systems; Real-time systems; Real-
time system architecture; •General and reference→ Surveys and
overviews;

KEYWORDS
Industrial Internet of Things, IIoT, Industry 4.0, Security, Fog Com-
puting, Systematic Literature Review

ACM Reference Format:
Koen Tange, Michele De Donno, Xenofon Fafoutis and Nicola Dragoni.
2019. Towards a Systematic Survey of Industrial IoT Security Requirements:
Research Method and Quantitative Analysis. InWorkshop on Fog Computing
and the IoT (IoT-Fog ’19), April 15–18, 2019, Montreal, QC, Canada. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3313150.3313228

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6698-4/19/04. . . $15.00
https://doi.org/10.1145/3313150.3313228

1 INTRODUCTION
Today, we are living in the 4th industrial revolution, also referred
to as Industry 4.0. Due to the increasing availability, affordability,
and proficiency of sensors, processors, and Wireless Sensor Net-
work (WSN) technologies, the number of embedded devices used in
industrial applications is steadily increasing. This leads to a growth
in the interest for the Industrial Internet of Things (IIoT), a large
network of devices, systems, and applications communicating and
sharing intelligence with each other, the external environment, and
with humans [30]. According to Accenture [30], the IIoT could be
worth 7.1 trillion US dollars to the United States and more than 1.2
trillion to Europe by 2030.

In this wave of excitement, IoT security represents one of the
biggest weak points holding back the adoption of the IIoT. As a mat-
ter of fact, IoT devices are often poorly secured [34] and thus easy
targets for malware taking advantage of them to run devastating
cyber attacks, such as Distributed Denial of Service (DDoS) [31]
(e.g., Mirai [32]) or sabotage attacks (e.g., StuxNet [66], CrashOver-
ride/Industroyer [68]).

In this scenario, a relatively new computing paradigm has at-
tracted attention: Fog computing [18]. Fog computing is a system-
level architecture born from the necessity of bridging the gap be-
tween IoT and Cloud computing, by distributing resources and
services along the continuum from Cloud to IoT [96]. Among oth-
ers, one of the promises of Fog computing is to present a possible
solution to the IoT security problem.

The first step for improving security of the IIoT is to clearly define
its main security requirements. To the best of our knowledge, the
last surveys discussing security requirements of the IIoT date back
to 2015 and 2016 [102, 103]. However, as we show later in this paper,
the field has grown exponentially since then. Thus, we believe that
a systematic and up-to-date survey on the security requirements of
IIoT is becoming a necessity.

1.1 Contribution of the Paper
In this paper, we present a preliminary study towards a systematic
literature review work that aims at identifying security require-
ments of the IIoT.

Systematic studies are meant to give an overview of a research
area, following a structured methodology with respect to searching
and study selection [98]. An essential part of a systematic literature
review consists of defining the research method adopted to select
relevant studies that are later used to extract qualitative results on
the topic. In the paper, we focus on this methodological phase of
the systematical literature review and we provide a quantitative
analysis of the output produced by the research so far. Thus, the

A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative
Analysis 57

IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada K. Tange et al.

paper can be considered as the first step towards a complete sys-
tematic literature review work, in which the selected papers will be
used to extract qualitative results about security requirements in
the IIoT. Once the requirements are delineated, it will be possible
to focus on how Fog computing can meet them.

1.2 Outline of the Paper
The paper is organized as follows. Section 2 briefly mentions related
work and motivates the need for a systematic review. Section 3 de-
scribes the research method used. Section 4 presents a quantitative
analysis of the results obtained during the research phase. Section 5
concludes the paper.

2 RELATEDWORK
To the best of our knowledge, the most recent work focused on
reviewing IIoT security is [74], where the focus lies on threat char-
acterization by looking at existing attacks. However, this work does
not explicitly discuss security requirements, opting to leave them
as implied by the described threats.

Another recent study [46] focuses on Industry 4.0 system ar-
chitecture as a whole and observes that there is an increase in
security-focused architectural proposals, but does not discuss secu-
rity in depth.

Some older surveys dated back to 2015 and 2016 alsomention IIoT
security requirements [102, 103], but they refrain from discussing
such requirements in-depth.

3 RESEARCH METHOD
In this section, we present the research method that will be used in
the systematic literature review on security requirements for the
IIoT that will extend this work.

We adopt the research method detailed by Petersen et al. [98],
and utilize the suggested template for describing our approach. In
the next subsections, we elaborate on research questions, search
strategy, study selection, and validity concerns.

3.1 Research Questions
The main aim of this work is to identify security requirements for
the IIoT. Our end goal is to investigate which ones can be solved by
Fog computing. In addition, we want to provide an overview of the
research activity in the field: how research activity has developed
throughout the years, how this research was published, and what
its geographical distribution is.

Thus, our research questions can be formulated as follows:

• RQ1: how are publications related to IIoT security spread
throughout the years?

• RQ2: how is IIoT security research activity geographically
distributed?

• RQ3: what are the most popular publication venues for IIoT
security research?

• RQ4: what are the security requirements of the IIoT?
• RQ5: which of these security requirements can be solved by
Fog computing?

Note that RQ4 and RQ5 are questions we aim to answer in our
completed study, so they are not discussed in this preliminary
work.

Answering these questions will aid in getting a better under-
standing of the current security landscape for the IIoT, while at the
same time identifying various concrete research opportunities re-
lated to security for Fog computing. Each of these can then be traced
back to concrete security requirements relevant to the Industry 4.0
paradigm.

3.2 Search Strategy
We utilize the adjusted PICOC criteria for software engineering [60]
in order to identify relevant keywords. In particular:

• Population: we consider the IIoT as the application area
in which our research is conducted. However, this is a very
broad population, therefore, we take into account only stud-
ies addressing IIoT security.

• Intervention: this criterion does not apply to our research
questions, as we are interested in any work in the IIoT do-
main that describes security requirements.

• Comparison: we compare the security requirements iden-
tified by different studies by taking into account such factors
as the number of studies that mention them, related threats,
and proposed solutions.

• Outcomes: we present the identified security requirements
as well as the properties of their mitigation, allowing us to
discuss which requirements call for further research.

• Context: As we do not empirically compare the available
works, this criterion does not apply to our study.

With these criteria in mind, we have formulated the following
keywords: IIoT, Industrial Internet of Things, Industry 4.0, and secu-
rity.

We considered as sources the following databases: ACM Digital
Library, IEEE Xplore, Elsevier/ScienceDirect. In this domain, we
believe that the combination of these three sources provides an
accurate representation of the research that has been conducted
globally.

We divided the search into two stages. First, we queried the
databases for articles related to IIoT/Industry 4.0 in general, based
on their titles. This provided an overview of the amount of research
conducted in this field. After that, we narrowed down our search
to only include works related to security, by excluding articles not
containing the word “security” in their abstract. The queries are
summarized in Table 1. The search results for both queries are listed
in Table 2.

3.3 Study Selection
The study selection process was done in multiple phases. Firstly, the
JabRef 1 reference management software was used to identify and
delete duplicates. Two duplicates were found, leaving the number
of considered papers for the subsequent phases at 173.

In the second phase, we independently reviewed titles and ab-
stracts of each article in order to reduce selection bias. Each article

1https://www.jabref.org

58
A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative

Analysis

Towards a Systematic Survey of Industrial IoT Security Requirements IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada

Table 1: Queries used for our search, expressed in pseudo-code

Query Description
Q1 in title: IIoT OR “Industrial Internet of Things" OR "Industry 4.0"
Q2 (in title: IIoT OR “Industrial Internet of Things" OR "Industry 4.0") AND in abstract: security

Table 2: Number of papers returned from our queries

Source Q1 Q2
ACM 36 6
IEEE Xplore 1462 160
Scopus 219 9
Total 1717 175

was marked as being relevant, not relevant, or of doubtful rele-
vance. Articles were voted for inclusion when the work covers
cyber-security challenges and/or solutions for Industry 4.0, and
it was published before 2019, since that is the year in which this
study is conducted. Articles were voted for exclusion when the
work was not related to Industry 4.0 security, a duplicate, or was
not presented in legible English.

The following rules were used for filtering out articles based on
title and abstract review (this has been done jointly by two authors
of the paper):

• when both authors considered an article relevant, the article
was included for the next phase;

• when one author expressed doubt and the other author con-
sidered an article relevant, the article was included for the
next phase;

• when both authors expressed doubt, a joint review was done
considering also other sections of the article (e.g. introduc-
tion, outline, conclusion) in order to determine its relevance.
If this review did not clear up doubts for either of the authors,
the article was given the benefit of the doubt and included
for the next phase;

• when one author considered an article relevant, while the
other considered it to not be relevant, the article was marked
for joint review as described in the previous rule;

• when one author considered an article not relevant, while
the other considered it to be doubtful, the article was marked
for joint review as with the previous rules;

• when both authors considered an article not relevant, the
article was excluded.

After the individual title and abstract reviews, 35 articles were
excluded and 41 were marked as doubtful entries requiring a joint
review. These were then jointly reviewed, leading to an additional
18 exclusions. The remaining 120 papers ([1–9, 11–17, 19–29, 33, 35–
53, 55–59, 61–65, 67, 69–73, 75–95, 97, 99–102, 104–134]) were con-
sidered for full-text reading, overall reducing the number of papers
to analyse by 93% compared to results of Q1 and 30% compared to
Q2.

The next phase, consisting of reading the full text of each se-
lected paper, is currently in progress. It is already clear that some
articles are not relevant and will be excluded but, at present, we
are unable to provide relevant numbers on this. During the full-
text reading phase, we extract information relevant to the stated

research questions, and use this to create a comprehensive picture
of the security challenges and corresponding requirements for the
IIoT.

3.4 Validity Evaluation
Every study that is subject to manual selection is vulnerable to
researcher bias in the filtering process. In order to reduce this
issue, we performed the filtering process twice: two authors of
this paper selected studies independently, and the results of the
filtering process were based on a systematic approach combining
the selections of both authors, and in some cases a joint review.

Furthermore, we have described our research process in detail,
and have taken care to list the criteria by which we have filtered
studies. This is done to increase the repeatability of this work.

Finally, it is worth mentioning that our approach does not suffer
from the Matthew’s effect, as opposed to querying databases that
rank papers based on citation count [10].

4 RESULTS
In this section, we provide a quantitative analysis of the set of
studies resulting from the presented research method.

4.1 Spread of publications throughout the
years (RQ1)

Figure 1 shows the number of publications between 2013 and 2018.
Security research for the IIoT starts first appearing around 2013,
growing slowly over the next 3 years. In 2017, a drastic increase
in activity can be seen. One possible reason is that 2016 saw sev-
eral serious IoT related security incidents (such as Mirai [32] and
Crashoverride/Industroyer [68]), which served to illustrate the im-
portance of security on these devices. In 2018, the growth in activity

1 3 6 8

30

72

Publication Year

N
° o

f p
ub

lic
at

io
ns

0

20

40

60

80

2013 2014 2015 2016 2017 2018

Figure 1: Number of publications per year

A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative
Analysis 59

IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada K. Tange et al.

others
25.0%

Sweden
2.5%
South Korea
4.2%
United Kingdom
4.2%
Spain
5.8%
Italy
5.8%

Austria
14.2%

China
13.3%

Germany
12.5%

USA
10.0%

Figure 2: Demographic: geographical distribution of re-
search activity based on first author country of affiliation

continued, showing that the research community deems IIoT secu-
rity to be of high importance.

4.2 Geographical Distribution of IIoT Security
Research (RQ2)

The geographical distribution of research activity is shown in Fig-
ure 2. Data was obtained by extracting the country of affiliation of
the first author of the considered studies.

German-speaking countries are strongly represented, making
for a total of 26.7% of contributions. One possible explanation is
that one of our search terms, Industry 4.0, was originally coined
by the German government [54], thus, it might have seen higher
adoption in German-speaking countries.

This raises the question of whether our search terms were suc-
cessful in providing a good global sample of studies in this field. We
believe they were, since the field we are considering is very narrow;
we specifically searched for Industrial challenges in order to be able
to extract security requirements unique to this field. However, we
acknowledge that this might be a threat to the theoretical validity
of our contribution that should be further investigated. We plan to
address this issue in our future work, as stated in Section 5.

China and United States of America are the two other major
contributors. This can possibly be attributed to the size of their
industries and thus the relevance of research in this area. However,
interestingly, 62.5% of the studies originate from Europe, showing
that this topic is also regarded as highly relevant in countries with
smaller industries.

The ‘others’ group consists of the 30 countries that have 2 or
fewer publications in this field: France, Portugal, Czech Repub-
lic, Brazil, Australia, Greece, Belgium, Singapore, Ireland, Pakistan,
Japan, Qatar, Turkey,Malaysia, Ukraine, Taiwan, Netherlands, Canada,
Hungary, New Zealand, and Iran.

4.3 Venue Types for Publication (RQ3)
We have grouped the studies based on the venue type of their
publication, which is shown in Figure 3. As can be seen, conference
proceedings are the most popular dissemination method, followed
by journals. The ‘others’ category consists of venue types in which
2 or fewer publications were published: congresses, summits, and
forums.

58

43

10
4 5

Venue type

N
° o

f p
ub

lic
at

io
ns

0

20

40

60

conference journal symposium workshop others

Figure 3: Popularity of different venue types

15

6

6

4

4

N° of publications

IEEE Transactions on Industrial
Informatics

IEEE Internet of Things Journal

International Conference on
Industrial Informatics (INDIN)

IEEE Access

Industrial Cyber-Physical
Systems (ICPS)

0 5 10 15

Figure 4: Popularity of different specific publication venues

Looking at the specific venues of publication (Figure 4), it can be
seen that the IEEE Transactions on Industrial Informatics journal
is by far the most popular venue, with 15 publications. One note-
worthy observation here is that, out of all considered studies, only
5 were published in venues that were focused on security. The vast
majority of IIoT security-related work appears to be published in
venues targeting industrial systems or IoT instead.

5 CONCLUSION
In this preliminary study, we have described a systematic search
and filtering of IIoT security studies, and laid the groundwork for
extracting security requirements and putting them in a Fog com-
puting perspective (RQ4 and RQ5). We also answered a number of
questions about the IIoT security research domain itself, adding per-
spective to developments in this field. Of course, as in any mapping
study, it is challenging to take all studies of the field into account,
but it is more important to have a good representation of studies
rather than a high number of studies [98].

Future work will be based on two phases. First, we will further
improve the study selection by means of reverse snowball sampling.
This will ensure that we end up with a good sample of relevant
studies, mitigating bias that might have been introduced by the
search terms. Second, we plan to address the remaining research
questions, and provide a content review of the selected studies.
We will use the extracted research requirements to discuss what
research opportunities might exist within this field, as well as dis-
cussing the role that can be played by Fog computing as a security
solution for the IIoT.

60
A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative

Analysis

Towards a Systematic Survey of Industrial IoT Security Requirements IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Union's Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement No.
764785, FORA – Fog computing for Robotics and Industrial Automa-
tion.

REFERENCES
[1] M. Aazam, S. Zeadally, and K. A. Harras. 2018. Deploying Fog Computing in

Industrial Internet of Things and Industry 4.0. IEEE Transactions on Industrial
Informatics 14, 10 (2018), 4674–4682. https://doi.org/10.1109/TII.2018.2855198

[2] D. Airehrour, J. Gutierrez, and S. K. Ray. 2016. Securing RPL routing protocol
from blackhole attacks using a trust-based mechanism. In 2016 26th International
Telecommunication Networks and Applications Conference (ITNAC). IEEE, 115–
120. https://doi.org/10.1109/ATNAC.2016.7878793

[3] R. Al-Ali, R. Heinrich, P. Hnetynka, A. Juan-Verdejo, S. Seifermann, and M.
Walter. 2018. Modeling of Dynamic Trust Contracts for Industry 4.0 Systems. In
Proceedings of the 12th European Conference on Software Architecture: Companion
Proceedings (ECSA ’18). ACM, Article 45, 4 pages. https://doi.org/10.1145/
3241403.3241450

[4] F. Al-Turjman and S. Alturjman. 2018. Context-Sensitive Access in Industrial
Internet of Things (IIoT) Healthcare Applications. IEEE Transactions on Industrial
Informatics 14, 6 (2018), 2736–2744. https://doi.org/10.1109/TII.2018.2808190

[5] P. Autenrieth, C. Lörcher, C. Pfeiffer, T. Winkens, and L. Martin. 2018. Current
Significance of IT-Infrastructure Enabling Industry 4.0 in Large Companies. In
2018 IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC). IEEE, 1–8. https://doi.org/10.1109/ICE.2018.8436244

[6] Z. Bakhshi, A. Balador, and J. Mustafa. 2018. Industrial IoT security threats
and concerns by considering Cisco and Microsoft IoT reference models. In 2018
IEEEWireless Communications and Networking Conference Workshops (WCNCW).
IEEE, 173–178. https://doi.org/10.1109/WCNCW.2018.8368997

[7] N.C. Batista, R. Melício, and V.M.F. Mendes. 2017. Services enabler architecture
for smart grid and smart living services providers under industry 4.0. Energy
and Buildings 141 (2017), 16–27. https://doi.org/10.1016/j.enbuild.2017.02.039

[8] E. Bauer, O. Schluga, S. Maksuti, A. Bicaku, D. Hofbauer, I. Ivkic, M. G. Tauber,
and A. Wöhrer. 2017. Towards a security baseline for IaaS-cloud back-ends in
Industry 4.0. In 2017 12th International Conference for Internet Technology and
Secured Transactions (ICITST). IEEE, 427–432. https://doi.org/10.23919/ICITST.
2017.8356438

[9] A. Bécue, Y. Fourastier, I. Praça, A. Savarit, C. Baron, B. Gradussofs, E. Pouille,
and C. Thomas. 2018. CyberFactory#1 — Securing the industry 4.0 with cyber-
ranges and digital twins. In 2018 14th IEEE International Workshop on Factory
Communication Systems (WFCS). IEEE, 1–4. https://doi.org/10.1109/WFCS.2018.
8402377

[10] J. Beel and B. Gipp. 2009. Google Scholar’s Ranking Algorithm: An Introductory
Overview. In Proceedings of the 12th International Conference on Scientometrics
and Informetrics (ISSI’09. Springer, 439–446.

[11] M. Beltrán, M. Calvo, and S. González. 2017. Federated system-to-service au-
thentication and authorization combining PUFs and tokens. In 2017 12th Inter-
national Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC). IEEE, 1–8. https://doi.org/10.1109/ReCoSoC.2017.8016157

[12] N. Benias and A. P. Markopoulos. 2017. A review on the readiness level and
cyber-security challenges in Industry 4.0. In 2017 South Eastern European Design
Automation, Computer Engineering, Computer Networks and Social Media Confer-
ence (SEEDA-CECNSM). IEEE, 1–5. https://doi.org/10.23919/SEEDA-CECNSM.
2017.8088234

[13] A. Bicaku, S.Maksuti, S. Palkovits-Rauter,M. Tauber, R.Matischek, C. Schmittner,
G. Mantas, M. Thron, and J. Delsing. 2017. Towards trustworthy end-to-end
communication in industry 4.0. In 2017 IEEE 15th International Conference on
Industrial Informatics (INDIN). IEEE, 889–896. https://doi.org/10.1109/INDIN.
2017.8104889

[14] A. Bicaku, C. Schmittner, M. Tauber, and J. Delsing. 2018. Monitoring Industry 4.0
applications for security and safety standard compliance. In 2018 IEEE Industrial
Cyber-Physical Systems (ICPS). IEEE, 749–754. https://doi.org/10.1109/ICPHYS.
2018.8390801

[15] S. Blanch-Torné, F. Cores, and R.M. Chiral. 2015. Agent-based PKI for Distributed
Control System. In 2015 World Congress on Industrial Control Systems Security
(WCICSS). IEEE, 28–35. https://doi.org/10.1109/WCICSS.2015.7420319

[16] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti. 2018. Design patterns for
the industrial Internet of Things. In 2018 14th IEEE International Workshop on
Factory Communication Systems (WFCS). IEEE, 1–10. https://doi.org/10.1109/
WFCS.2018.8402353

[17] A. Bluschke, W. Bueschel, M. Hohmuth, F. Jehring, R. Kaminski, K. Klamka, S.
Koepsell, A. Lackorzynski, T. Lackorzynski, M. Matthews, P. Rietzsch, A. Senier,
P. Sieber, V. Ulrich, R. Wiggers, and J. Wolter. 2018. fastvpn - Secure and Flexible
Networking for Industry 4.0. In Broadband Coverage in Germany; 12th ITG-
Symposium. VDE, 1–8. https://imld.de/en/research/research-projects/fastvpn/

[18] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog Computing and Its Role
in the Internet of Things. In Proceedings of the First Edition of the MCCWorkshop
on Mobile Cloud Computing (MCC ’12). ACM, 13–16. https://doi.org/10.1145/
2342509.2342513

[19] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson. 2018. The industrial internet
of things (IIoT): An analysis framework. Computers in Industry 101 (2018), 1–12.
https://doi.org/10.1016/j.compind.2018.04.015

[20] R. Chaturvedi. 2017. UL testing standards to mitigate cybersecurity risk ∼ UL’s
approach with complement to the other standards for SICE 2017. In 2017 56th

Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE). IEEE, 728–730. https://doi.org/10.23919/SICE.2017.8105618

[21] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and C. Zunino.
2017. Leveraging SDN to improve security in industrial networks. In 2017 IEEE
13th International Workshop on Factory Communication Systems (WFCS). IEEE,
1–7. https://doi.org/10.1109/WFCS.2017.7991960

[22] G. Chen and W. S. Ng. 2017. An efficient authorization framework for securing
industrial Internet of Things. In TENCON 2017 - 2017 IEEE Region 10 Conference.
IEEE, 1219–1224. https://doi.org/10.1109/TENCON.2017.8228043

[23] M. Chen, Y. Miao, Y. Hao, and K. Hwang. 2017. Narrow Band Internet of
Things. IEEE Access 5 (2017), 20557–20577. https://doi.org/10.1109/ACCESS.
2017.2751586

[24] S. R. Chhetri, N. Rashid, S. Faezi, andM. A. A. Faruque. 2017. Security Trends and
Advances in Manufacturing Systems in the Era of Industry 4.0. In Proceedings of
the 36th International Conference on Computer-Aided Design (ICCAD ’17). IEEE
Press, 1039–1046. https://doi.org/10.1109/ICCAD.2017.8203896

[25] K. R. Choo, S. Gritzalis, and J. H. Park. 2018. Cryptographic Solutions for
Industrial Internet-of-Things: Research Challenges and Opportunities. IEEE
Transactions on Industrial Informatics 14, 8 (2018), 3567–3569. https://doi.org/
10.1109/TII.2018.2841049

[26] M. W. Condry and C. B. Nelson. 2016. Using Smart Edge IoT Devices for Safer,
Rapid Response With Industry IoT Control Operations. Proc. IEEE 104, 5 (2016),
938–946. https://doi.org/10.1109/JPROC.2015.2513672

[27] H. Cui, R. H. Deng, J. K. Liu, X. Yi, and Y. Li. 2018. Server-Aided Attribute-
Based Signature With Revocation for Resource-Constrained Industrial-Internet-
of-Things Devices. IEEE Transactions on Industrial Informatics 14, 8 (2018),
3724–3732. https://doi.org/10.1109/TII.2018.2813304

[28] B. Czybik, S. Hausmann, S. Heiss, and J. Jasperneite. 2013. Performance eval-
uation of MAC algorithms for real-time Ethernet communication systems. In
2013 11th IEEE International Conference on Industrial Informatics (INDIN). IEEE,
676–681. https://doi.org/10.1109/INDIN.2013.6622965

[29] A. K. Das, M. Wazid, N. Kumar, A. V. Vasilakos, and J. J. P. C. Rodrigues. 2018.
Biometrics-Based Privacy-Preserving User Authentication Scheme for Cloud-
Based Industrial Internet of Things Deployment. IEEE Internet of Things Journal
5, 6 (2018), 4900–4913. https://doi.org/10.1109/JIOT.2018.2877690

[30] P. Daugherty and B. Berthon. 2015. Winning with the Industrial Internet of
Things: How to Accelerate the Journey to Productivity and Growth. Technical
Report. Dublín: Accenture.

[31] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi.
2017. Analysis of DDoS-Sapable IoT Malwares. In Federated Conference on
Computer Science and Information Systems (FedCSIS). IEEE, 807–816.

[32] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo Spognardi.
2018. DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investiga-
tion. Security and Communication Networks 2018 (2018).

[33] J. Delsing. 2017. Local Cloud Internet of Things Automation: Technology and
Business Model Features of Distributed Internet of Things Automation Solutions.
IEEE Industrial Electronics Magazine 11, 4 (2017), 8–21. https://doi.org/10.1109/
MIE.2017.2759342

[34] Nicola Dragoni, Alberto Giaretta, and Manuel Mazzara. 2017. The Internet
of Hackable Things. In Proceedings of 5th International Conference in Software
Engineering for Defence Applications, Paolo Ciancarini, Stanislav Litvinov, Angelo
Messina, Alberto Sillitti, and Giancarlo Succi (Eds.). Springer, 129–140.

[35] M. H. Eldefrawy, N. Pereira, and M. Gidlund. 2018. Key Distribution Protocol
for Industrial Internet of Things without Implicit Certificates. IEEE Internet of
Things Journal (2018). https://doi.org/10.1109/JIOT.2018.2865212 (early access).

[36] C. Esposito, A. Castiglione, F. Palmieri, and A. D. Santis. 2018. Integrity for an
Event Notification Within the Industrial Internet of Things by Using Group
Signatures. IEEE Transactions on Industrial Informatics 14, 8 (2018), 3669–3678.
https://doi.org/10.1109/TII.2018.2791956

[37] G. Falco, C. Caldera, and H. Shrobe. 2018. IIoT Cybersecurity Risk Modeling
for SCADA Systems. IEEE Internet of Things Journal 5, 6 (2018), 4486–4495.
https://doi.org/10.1109/JIOT.2018.2822842

A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative
Analysis 61

IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada K. Tange et al.

[38] X. Feng, J. Wu, J. Li, and S. Wang. 2018. Efficient Secure Access to IEEE 21451
Based Wireless IIoT Using Optimized TEDS and MIB. In IECON 2018 - 44th

Annual Conference of the IEEE Industrial Electronics Society. IEEE, 5221–5227.
https://doi.org/10.1109/IECON.2018.8591182

[39] H. Flatt, S. Schriegel, J. Jasperneite, H. Trsek, and H. Adamczyk. 2016. Analysis
of the Cyber-Security of industry 4.0 technologies based on RAMI 4.0 and
identification of requirements. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, 1–4. https://doi.
org/10.1109/ETFA.2016.7733634

[40] J. L. Flores and I. Mugarza. 2018. Runtime Vulnerability Discovery as a Service
on Industrial Internet of Things (IIoT) Systems. In 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), Vol. 1.
IEEE, 948–955. https://doi.org/10.1109/ETFA.2018.8502660

[41] F. Fraile, T. Tagawa, R. Poler, and A. Ortiz. 2018. Trustworthy Industrial IoT
Gateways for Interoperability Platforms and Ecosystems. IEEE Internet of Things
Journal 5, 6 (2018), 4506–4514. https://doi.org/10.1109/JIOT.2018.2832041

[42] J. Fu, Y. Liu, H. Chao, B. K. Bhargava, and Z. Zhang. 2018. Secure Data Storage
and Searching for Industrial IoT by Integrating Fog Computing and Cloud
Computing. IEEE Transactions on Industrial Informatics 14, 10 (2018), 4519–4528.
https://doi.org/10.1109/TII.2018.2793350

[43] G. George and S. M. Thampi. 2018. A Graph-Based Security Framework for
Securing Industrial IoT Networks From Vulnerability Exploitations. IEEE Access
6 (2018), 43586–43601. https://doi.org/10.1109/ACCESS.2018.2863244

[44] A. Hassanzadeh, S. Modi, and S. Mulchandani. 2015. Towards effective security
control assignment in the Industrial Internet of Things. In 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT). IEEE, 795–800. https://doi.org/10.1109/
WF-IoT.2015.7389155

[45] A. Hoeller and R. Toegl. 2018. Trusted Platform Modules in Cyber-Physical
Systems: On the Interference Between Security and Dependability. In 2018
IEEE European Symposium on Security and Privacy Workshops (EuroS PW). IEEE,
136–144. https://doi.org/10.1109/EuroSPW.2018.00026

[46] F. Hofer. 2018. Architecture, Technologies and Challenges for Cyber-physical
Systems in Industry 4.0: A Systematic Mapping Study. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’18). ACM, Article 1, 10 pages. https://doi.org/10.1145/
3239235.3239242

[47] F. Hofer. 2018. Enhancing Security and Reliability for Smart- Systems’ Architec-
tures. In 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 150–153. https://doi.org/10.1109/ISSREW.2018.000-8

[48] P. Hu. 2015. A System Architecture for Software-Defined Industrial Internet of
Things. In 2015 IEEE International Conference on Ubiquitous Wireless Broadband
(ICUWB). IEEE, 1–5. https://doi.org/10.1109/ICUWB.2015.7324414

[49] Y. Huang and W. Sun. 2018. An AHP-Based Risk Assessment for an Industrial
IoT Cloud. In 2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C). IEEE, 637–638. https://doi.org/10.1109/QRS-C.
2018.00112

[50] F. Januário, C. Carvalho, A. Cardoso, and P. Gil. 2016. Security challenges
in SCADA systems over Wireless Sensor and Actuator Networks. In 2016 8th

International Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT). IEEE, 363–368. https://doi.org/10.1109/ICUMT.2016.
7765386

[51] N. Jazdi. 2014. Cyber physical systems in the context of Industry 4.0. In 2014
IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE,
1–4. https://doi.org/10.1109/AQTR.2014.6857843

[52] S. Jeong, W. Na, J. Kim, and S. Cho. 2018. Internet of Things for Smart Manu-
facturing System: Trust Issues in Resource Allocation. IEEE Internet of Things
Journal 5, 6 (2018), 4418–4427. https://doi.org/10.1109/JIOT.2018.2814063

[53] P. Kadera and P. Novák. 2017. Performance Modeling Extension of Direc-
tory Facilitator for Enhancing Communication in FIPA-Compliant Multiagent
Systems. IEEE Transactions on Industrial Informatics 13, 2 (2017), 688–695.
https://doi.org/10.1109/TII.2016.2601918

[54] H. Kagermann, W. Wahlster, and J. Helbig. 2013. Recommendations for Im-
plementing the Strategic Initiative INDUSTRIE 4.0 – Securing the Future of
German Manufacturing Industry. Final Report of the Industrie 4.0 Working
Group. acatech – National Academy of Science and Engineering, München.
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf

[55] E. Kail, A. Banati, E. Lászlo, and M. Kozlovszky. 2018. Security Survey of Dedi-
cated IoT Networks in the Unlicensed ISM Bands. In 2018 IEEE 12th International
Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE,
000449–000454. https://doi.org/10.1109/SACI.2018.8440945

[56] A. Karati, S. H. Islam, and M. Karuppiah. 2018. Provably Secure and Lightweight
Certificateless Signature Scheme for IIoT Environments. IEEE Transactions on
Industrial Informatics 14, 8 (2018), 3701–3711. https://doi.org/10.1109/TII.2018.
2794991

[57] S. Katsikeas, K. Fysarakis, A. Miaoudakis, A. Van Bemten, I. Askoxylakis, I.
Papaefstathiou, and A. Plemenos. 2017. Lightweight amp; secure industrial
IoT communications via the MQ telemetry transport protocol. In 2017 IEEE

Symposium on Computers and Communications (ISCC). IEEE, 1193–1200. https:
//doi.org/10.1109/ISCC.2017.8024687

[58] B. Kim and Y. Kang. 2018. Abnormal Traffic Detection Mechanism for Pro-
tecting IIoT Environments. In 2018 International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 943–945. https:
//doi.org/10.1109/ICTC.2018.8539533

[59] Y. Kim, Y. Lee, and J. Kim. 2018. RIPPLE: Adaptive fine-grained access control
in multi-hop LLNs. In 2018 International Conference on Information Networking
(ICOIN). IEEE, 863–868. https://doi.org/10.1109/ICOIN.2018.8343245

[60] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Technical Report EBSE-2007-01.
EBSE Technical Report.

[61] T. Kobzan, S. Schriegel, S. Althoff, A. Boschmann, J. Otto, and J. Jasperneite. 2018.
Secure and Time-sensitive Communication for Remote Process Control and
Monitoring. In 2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), Vol. 1. IEEE, 1105–1108. https://doi.org/10.
1109/ETFA.2018.8502539

[62] K. K. Kolluru, C. Paniagua, J. van Deventer, J. Eliasson, J. Delsing, and R. J.
DeLong. 2018. An AAA solution for securing industrial IoT devices using next
generation access control. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS).
IEEE, 737–742. https://doi.org/10.1109/ICPHYS.2018.8390799

[63] F. Kurtz, C. Bektas, N. Dorsch, and C.Wietfeld. 2018. Network Slicing for Critical
Communications in Shared 5G Infrastructures - An Empirical Evaluation. In
2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft).
IEEE, 393–399. https://doi.org/10.1109/NETSOFT.2018.8460110

[64] E. Laarouchi, D. Cancila, and H. Chaouchi. 2017. Safety and degraded mode
in civilian applications of unmanned aerial systems. In 2017 IEEE/AIAA 36th

Digital Avionics Systems Conference (DASC). IEEE, 1–7. https://doi.org/10.1109/
DASC.2017.8102040

[65] M. Langfinger, M. Schneider, D. Stricker, and H. D. Schotten. 2017. Addressing
security challenges in industrial augmented reality systems. In 2017 IEEE 15th

International Conference on Industrial Informatics (INDIN). IEEE, 299–304. https:
//doi.org/10.1109/INDIN.2017.8104789

[66] R. Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security &
Privacy 9, 3 (2011), 49–51.

[67] A. Laszka, W. Abbas, Y. Vorobeychik, and X. Koutsoukos. 2018. Synergistic
Security for the Industrial Internet of Things: Integrating Redundancy, Diversity,
and Hardening. In 2018 IEEE International Conference on Industrial Internet (ICII).
IEEE, 153–158. https://doi.org/10.1109/ICII.2018.00025

[68] R Lee. 2017. CRASHOVERRIDE: Analysis of the threat to electric grid operations.
Technical Report. Dragos Inc.

[69] C. Lesjak, H. Bock, D. Hein, and M. Maritsch. 2016. Hardware-secured and
transparent multi-stakeholder data exchange for industrial IoT. In 2016 IEEE
14th International Conference on Industrial Informatics (INDIN). IEEE, 706–713.
https://doi.org/10.1109/INDIN.2016.7819251

[70] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller, T. Ebner,
T. Ruprechter, and G. Pregartner. 2015. Securing smart maintenance services:
Hardware-security and TLS forMQTT. In 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN). IEEE, 1243–1250. https://doi.org/10.1109/
INDIN.2015.7281913

[71] C. Lesjak, D. Hein, and J. Winter. 2015. Hardware-security technologies for
industrial IoT: TrustZone and security controller. In IECON 2015 - 41st Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 002589–002595. https:
//doi.org/10.1109/IECON.2015.7392493

[72] C. Lesjak, T. Ruprechter, H. Bock, J. Haid, and E. Brenner. 2014. ESTADO —
Enabling smart services for industrial equipment through a secured, transparent
and ad-hoc data transmission online. In The 9th International Conference for
Internet Technology and Secured Transactions (ICITST-2014). IEEE, 171–177. https:
//doi.org/10.1109/ICITST.2014.7038800

[73] C. Lesjak, T. Ruprechter, J. Haid, H. Bock, and E. Brenner. 2014. A secure
hardware module and system concept for local and remote industrial embedded
system identification. In Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA). IEEE, 1–7. https://doi.org/10.1109/ETFA.2014.
7005086

[74] Marianna Lezzi, Mariangela Lazoi, and Angelo Corallo. 2018. Cybersecurity
for Industry 4.0 in the current literature: A reference framework. Computers in
Industry 103 (2018), 97 – 110. https://doi.org/10.1016/j.compind.2018.09.004

[75] F. Li, J. Hong, and A. A. Omala. 2017. Efficient certificateless access control for
industrial Internet of Things. Future Generation Computer Systems 76 (2017),
285–292. https://doi.org/10.1016/j.future.2016.12.036

[76] X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, and S. Kumari. 2018.
A Robust ECC-Based Provable Secure Authentication Protocol With Privacy
Preserving for Industrial Internet of Things. IEEE Transactions on Industrial
Informatics 14, 8 (2018), 3599–3609. https://doi.org/10.1109/TII.2017.2773666

[77] X. Li, J. Peng, J. Niu, F. Wu, J. Liao, and K. R. Choo. 2018. A Robust and Energy
Efficient Authentication Protocol for Industrial Internet of Things. IEEE Internet
of Things Journal 5, 3 (2018), 1606–1615. https://doi.org/10.1109/JIOT.2017.

62
A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative

Analysis

Towards a Systematic Survey of Industrial IoT Security Requirements IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada

2787800
[78] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang. 2018. Consortium Blockchain

for Secure Energy Trading in Industrial Internet of Things. IEEE Transactions
on Industrial Informatics 14, 8 (2018), 3690–3700. https://doi.org/10.1109/TII.
2017.2786307

[79] L. Liang, Y. Liu, Y. Yao, T. Yang, Y. Hu, and C. Ling. 2017. Security challenges
and risk evaluation framework for industrial wireless sensor networks. In 2017
4th International Conference on Control, Decision and Information Technologies
(CoDIT). IEEE, 0904–0907. https://doi.org/10.1109/CoDIT.2017.8102711

[80] C. Lin, D. He, X. Huang, K. R. Choo, and A. V. Vasilakos. 2018. BSeIn: A
blockchain-based secure mutual authentication with fine-grained access control
system for industry 4.0. Journal of Network and Computer Applications 116
(2018), 42–52. https://doi.org/10.1016/j.jnca.2018.05.005

[81] M. Ma, D. He, N. Kumar, K. R. Choo, and J. Chen. 2018. Certificateless Searchable
Public Key Encryption Scheme for Industrial Internet of Things. IEEE Transac-
tions on Industrial Informatics 14, 2 (2018), 759–767. https://doi.org/10.1109/TII.
2017.2703922

[82] Z. Ma, A. Hudic, A. Shaaban, and S. Plosz. 2017. Security Viewpoint in a
Reference Architecture Model for Cyber-Physical Production Systems. In 2017
IEEE European Symposium on Security and Privacy Workshops (EuroS PW). IEEE,
153–159. https://doi.org/10.1109/EuroSPW.2017.65

[83] S. Maksuti, A. Bicaku, M. Tauber, S. Palkovits-Rauter, S. Haas, and J. Delsing.
2017. Towards flexible and secure end-to-end communication in industry 4.0. In
2017 IEEE 15th International Conference on Industrial Informatics (INDIN). IEEE,
883–888. https://doi.org/10.1109/INDIN.2017.8104888

[84] G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentinit. 2018. Formally verified
latency-aware VNF placement in industrial Internet of things. In 2018 14th IEEE
International Workshop on Factory Communication Systems (WFCS). IEEE, 1–9.
https://doi.org/10.1109/WFCS.2018.8402355

[85] S. Marksteiner. 2018. Reasoning on Adopting OPC UA for an IoT-Enhanced
Smart Energy System from a Security Perspective. In 2018 IEEE 20th Conference
on Business Informatics (CBI), Vol. 02. IEEE, 140–143. https://doi.org/10.1109/
CBI.2018.10060

[86] D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu. 2017. Massive-Scale Automa-
tion in Cyber-Physical Systems: Vision amp;amp; Challenges. In 2017 IEEE 13th

International Symposium on Autonomous Decentralized System (ISADS). IEEE,
5–11. https://doi.org/10.1109/ISADS.2017.56

[87] D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu. 2018. Survey of advances
and challenges in intelligent autonomy for distributed cyber-physical systems.
CAAI Transactions on Intelligence Technology 3, 2 (2018), 75–82. https://doi.org/
10.1049/trit.2018.0010

[88] A. Melis, D. Berardi, C. Contoli, F. Callegati, F. Esposito, and M. Prandini. 2018. A
Policy Checker Approach for Secure Industrial SDN. In 2018 2nd Cyber Security
in Networking Conference (CSNet). IEEE, 1–7. https://doi.org/10.1109/CSNET.
2018.8602927

[89] H. Mouratidis and V. Diamantopoulou. 2018. A Security Analysis Method for
Industrial Internet of Things. IEEE Transactions on Industrial Informatics 14, 9
(2018), 4093–4100. https://doi.org/10.1109/TII.2018.2832853

[90] N. Moustafa, E. Adi, B. Turnbull, and J. Hu. 2018. A New Threat Intelligence
Scheme for Safeguarding Industry 4.0 Systems. IEEE Access 6 (2018), 32910–
32924. https://doi.org/10.1109/ACCESS.2018.2844794

[91] J. Moyne, S. Mashiro, and D. Gross. 2018. Determining a security roadmap for the
microelectronics industry. In 2018 29th Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC). IEEE, 291–294. https://doi.org/10.1109/
ASMC.2018.8373213

[92] I. Mugarza, J. Parra, and E. Jacob. 2018. Cetratus: Towards a live patching
supported runtime for mixed-criticality safe and secure systems. In 2018 IEEE
13th International Symposium on Industrial Embedded Systems (SIES). IEEE, 1–8.
https://doi.org/10.1109/SIES.2018.8442088

[93] E. T. Nakamura and S. L. Ribeiro. 2018. A Privacy, Security, Safety, Resilience
and Reliability Focused Risk Assessment Methodology for IIoT Systems Steps
to Build and Use Secure IIoT Systems. In 2018 Global Internet of Things Summit
(GIoTS). IEEE, 1–6. https://doi.org/10.1109/GIOTS.2018.8534521

[94] M. Niedermaier, F. Fischer, and A. von Bodisco. 2017. PropFuzz — An IT-
security fuzzing framework for proprietary ICS protocols. In 2017 International
Conference on Applied Electronics (AE). IEEE, 1–4. https://doi.org/10.23919/AE.
2017.8053600

[95] P. O’Donovan, C. Gallagher, K. Bruton, and D. T.J. O’Sullivan. 2018. A fog
computing industrial cyber-physical system for embedded low-latency machine
learning Industry 4.0 applications. Manufacturing Letters 15 (2018), 139–142.
https://doi.org/10.1016/j.mfglet.2018.01.005 Industry 4.0 and Smart Manufactur-
ing.

[96] OpenFog Consortium Architecture Working Group and others. 2017. OpenFog
Reference architecture for Fog Computing. Technical Report. OpenFog Consor-
tium. https://www.openfogconsortium.org/wp-content/uploads/OpenFog_
Reference_Architecture_2_09_17-FINAL.pdf

[97] T. Pereira, L. Barreto, and A. Amaral. 2017. Network and information security
challengeswithin Industry 4.0 paradigm. ProcediaManufacturing 13 (2017), 1253–
1260. https://doi.org/10.1016/j.promfg.2017.09.047 Manufacturing Engineering
Society International Conference 2017, MESIC 2017, 28-30 June 2017, Vigo
(Pontevedra), Spain.

[98] K. Petersen, S. Vakkalanka, and L. Kuzniarz. 2015. Guidelines for conducting
systematic mapping studies in software engineering: An update. Information
and Software Technology 64 (2015), 1–18.

[99] D. Preuveneers, W. Joosen, and E. Ilie-Zudor. 2016. Data Protection Compliance
Regulations and Implications for Smart Factories of the Future. In 2016 12th

International Conference on Intelligent Environments (IE). IEEE, 40–47. https:
//doi.org/10.1109/IE.2016.15

[100] D. Preuveneers, W. Joosen, and E. Ilie-Zudor. 2017. Identity Management for
Cyber-physical Production Workflows and Individualized Manufacturing in
Industry 4.0. In Proceedings of the Symposium on Applied Computing (SAC ’17).
ACM, 1452–1455. https://doi.org/10.1145/3019612.3019861

[101] P. Radanliev, D. De Roure, S. Cannady, R. M. Montalvo, R. Nicolescu, and M.
Huth. 2018. Economic impact of IoT cyber risk - Analysing past and present to
predict the future developments in IoT risk analysis and IoT cyber insurance.
In Living in the Internet of Things: Cybersecurity of the IoT - 2018. IET, 1–9.
https://doi.org/10.1049/cp.2018.0003

[102] A. Sadeghi, C. Wachsmann, and M. Waidner. 2015. Security and Privacy
Challenges in Industrial Internet of Things. In Proceedings of the 52Nd Annual
Design Automation Conference (DAC ’15). ACM, Article 54, 6 pages. https:
//doi.org/10.1145/2744769.2747942

[103] A. Sajid, H. Abbas, and K. Saleem. 2016. Cloud-Assisted IoT-Based SCADA
Systems Security: A Review of the State of the Art and Future Challenges. IEEE
Access 4 (2016), 1375–1384. https://doi.org/10.1109/ACCESS.2016.2549047

[104] C. Sandberg and B. Hunter. 2017. Cyber security primer for legacy process plant
operation. In 2017 Petroleum and Chemical Industry Technical Conference (PCIC).
IEEE, 97–102. https://doi.org/10.1109/PCICON.2017.8188728

[105] J. Schuette and G. S. Brost. 2018. LUCON: Data Flow Control for Message-Based
IoT Systems. In 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 289–299.
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00052

[106] A. Seitz, D. Henze, D. Miehle, B. Bruegge, J. Nickles, and M. Sauer. 2018. Fog
Computing as Enabler for Blockchain-Based IIoT App Marketplaces - A Case
Study. In 2018 Fifth International Conference on Internet of Things: Systems,
Management and Security. IEEE, 182–188. https://doi.org/10.1109/IoTSMS.2018.
8554484

[107] G. Settanni, F. Skopik, A. Karaj, M.Wurzenberger, and R. Fiedler. 2018. Protecting
cyber physical production systems using anomaly detection to enable self-
adaptation. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, 173–180.
https://doi.org/10.1109/ICPHYS.2018.8387655

[108] G. Shaabany and R. Anderl. 2018. Security by Design as an Approach to Design
a Secure Industry 4.0-Capable Machine Enabling Online-Trading of Technology
Data. In 2018 International Conference on System Science and Engineering (ICSSE).
IEEE, 1–5. https://doi.org/10.1109/ICSSE.2018.8520195

[109] V. Sharma, G. Choudhary, Y. Ko, and I. You. 2018. Behavior and Vulnerability
Assessment of Drones-Enabled Industrial Internet of Things (IIoT). IEEE Access
6 (2018), 43368–43383. https://doi.org/10.1109/ACCESS.2018.2856368

[110] L. Shu, M. Mukherjee, M. Pecht, N. Crespi, and S. N. Han. 2018. Challenges
and Research Issues of Data Management in IoT for Large-Scale Petrochemical
Plants. IEEE Systems Journal 12, 3 (2018), 2509–2523. https://doi.org/10.1109/
JSYST.2017.2700268

[111] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. 2018. Industrial
Internet of Things: Challenges, Opportunities, and Directions. IEEE Transactions
on Industrial Informatics 14, 11 (2018), 4724–4734. https://doi.org/10.1109/TII.
2018.2852491

[112] V. Sklyar and V. Kharchenko. 2017. Challenges in assurance case application
for industrial IoT. In 2017 9th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), Vol. 2. IEEE, 736–739. https://doi.org/10.1109/IDAACS.2017.8095187

[113] Z. A. Solangi, Y. A. Solangi, S. Chandio, M. bt. S. Abd. Aziz, M. S. bin Hamzah,
and A. Shah. 2018. The future of data privacy and security concerns in Internet
of Things. In 2018 IEEE International Conference on Innovative Research and
Development (ICIRD). IEEE, 1–4. https://doi.org/10.1109/ICIRD.2018.8376320

[114] T. K. Sung. 2018. Industry 4.0: A Korea perspective. Technological Forecasting and
Social Change 132 (2018), 40–45. https://doi.org/10.1016/j.techfore.2017.11.005

[115] M. Traub, H. Vögel, E. Sax, T. Streichert, and J. Härri. 2018. Digitalization in
automotive and industrial systems. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). IEEE, 1203–1204. https://doi.org/10.23919/DATE.
2018.8342198

[116] M. H. u. Rehman, E. Ahmed, I. Yaqoob, I. A. T. Hashem, M. Imran, and S. Ahmad.
2018. Big Data Analytics in Industrial IoT Using a Concentric Computing Model.
IEEE Communications Magazine 56, 2 (2018), 37–43. https://doi.org/10.1109/

A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative
Analysis 63

IoT-Fog ’19, April 15–18, 2019, Montreal, QC, Canada K. Tange et al.

MCOM.2018.1700632
[117] T. Ulz, T. Pieber, C. Steger, S. Haas, H. Bock, and R. Matischek. 2017. Bring

your own key for the industrial Internet of Things. In 2017 IEEE International
Conference on Industrial Technology (ICIT). IEEE, 1430–1435. https://doi.org/10.
1109/ICIT.2017.7915575

[118] T. Ulz, T. Pieber, C. Steger, S. Haas, and R. Matischek. 2018. Secured remote
configuration approach for industrial cyber-physical systems. In 2018 IEEE
Industrial Cyber-Physical Systems (ICPS). IEEE, 812–817. https://doi.org/10.
1109/ICPHYS.2018.8390811

[119] B. van Lier. 2017. The industrial internet of things and cyber security: An
ecological and systemic perspective on security in digital industrial ecosystems.
In 2017 21st International Conference on System Theory, Control and Computing
(ICSTCC). IEEE, 641–647. https://doi.org/10.1109/ICSTCC.2017.8107108

[120] R. Vanickis, P. Jacob, S. Dehghanzadeh, and B. Lee. 2018. Access Control Policy
Enforcement for Zero-Trust-Networking. In 2018 29th Irish Signals and Systems
Conference (ISSC). IEEE, 1–6. https://doi.org/10.1109/ISSC.2018.8585365

[121] K. Wallis, F. Kemmer, E. Jastremskoj, and C. Reich. 2017. Adaption of a Privilege
Management Infrastructure (PMI) Approach to Industry 4.0. In 2017 5th Interna-
tional Conference on Future Internet of Things and Cloud Workshops (FiCloudW).
IEEE, 101–107. https://doi.org/10.1109/FiCloudW.2017.71

[122] K. Matthias Weber, Niklas Gudowsky, and Georg Aichholzer. 2018. Foresight
and technology assessment for the Austrian parliament — Finding new ways of
debating the future of industry 4.0. Futures (2018). https://doi.org/10.1016/j.
futures.2018.06.018

[123] E. Weippl and P. Kieseberg. 2017. Security in cyber-physical production systems:
A roadmap to improving IT-security in the production system lifecycle. In 2017
AEIT International Annual Conference. IEEE, 1–6. https://doi.org/10.23919/AEIT.
2017.8240552

[124] F. Xiao, L. Sha, Z. Yuan, and R.Wang. 2018. VulHunter: ADiscovery for unknown
Bugs based on Analysis for known patches in Industry Internet of Things. IEEE
Transactions on Emerging Topics in Computing (2018). https://doi.org/10.1109/
TETC.2017.2754103 (early access).

[125] P. Xu, S. He, W. Wang, W. Susilo, and H. Jin. 2018. Lightweight Searchable
Public-Key Encryption for Cloud-Assisted Wireless Sensor Networks. IEEE
Transactions on Industrial Informatics 14, 8 (2018), 3712–3723. https://doi.org/
10.1109/TII.2017.2784395

[126] Q. Yan, W. Huang, X. Luo, Q. Gong, and F. R. Yu. 2018. A Multi-Level DDoS Mit-
igation Framework for the Industrial Internet of Things. IEEE Communications
Magazine 56, 2 (2018), 30–36. https://doi.org/10.1109/MCOM.2018.1700621

[127] C. Yin, J. Xi, R. Sun, and J. Wang. 2018. Location Privacy Protection Based
on Differential Privacy Strategy for Big Data in Industrial Internet of Things.
IEEE Transactions on Industrial Informatics 14, 8 (2018), 3628–3636. https:
//doi.org/10.1109/TII.2017.2773646

[128] M. Yousif. 2016. Manufacturing and the Cloud. IEEE Cloud Computing 3, 4
(2016), 4–5. https://doi.org/10.1109/MCC.2016.77

[129] M. Yu, M. Zhu, G. Chen, J. Li, and Z. Zhou. 2016. A cyber-physical architecture
for industry 4.0-based power equipments detection system. In 2016 International
Conference on Condition Monitoring and Diagnosis (CMD). IEEE, 782–785. https:
//doi.org/10.1109/CMD.2016.7757942

[130] S. Zanero. 2017. Cyber-Physical Systems. Computer 50, 4 (2017), 14–16. https:
//doi.org/10.1109/MC.2017.105

[131] L. Zhou and H. Guo. 2018. Anomaly Detection Methods for IIoT Networks.
In 2018 IEEE International Conference on Service Operations and Logistics, and
Informatics (SOLI). IEEE, 214–219. https://doi.org/10.1109/SOLI.2018.8476769

[132] L. Zhou, K. Yeh, G. Hancke, Z. Liu, and C. Su. 2018. Security and Privacy for
the Industrial Internet of Things: An Overview of Approaches to Safeguarding
Endpoints. IEEE Signal Processing Magazine 35, 5 (2018), 76–87. https://doi.org/
10.1109/MSP.2018.2846297

[133] M. Zolanvari, M. A. Teixeira, and R. Jain. 2018. Effect of Imbalanced Datasets on
Security of Industrial IoT Using Machine Learning. In 2018 IEEE International
Conference on Intelligence and Security Informatics (ISI). IEEE, 112–117. https:
//doi.org/10.1109/ISI.2018.8587389

[134] E. Zugasti, M. Iturbe, I. Garitano, and U. Zurutuza. 2018. Null is Not Always
Empty: Monitoring the Null Space for Field-Level Anomaly Detection in Indus-
trial IoT Environments. In 2018 Global Internet of Things Summit (GIoTS). IEEE,
1–6. https://doi.org/10.1109/GIOTS.2018.8534574

64
A: Towards a Systematic Survey of Industrial IoT Security Requirements: Research Method and Quantitative

Analysis

Paper B
A Systematic Survey of Industrial Internet
of Things Security: Requirements and Fog
Computing Opportunities

K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni. “A Systematic Survey of Indus-
trial Internet of Things Security: Requirements and Fog Computing Opportunities.”
In: IEEE Communications Surveys Tutorials (2020). doi: 10.1109/COMST.2020.
3011208

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 1

A Systematic Survey of Industrial Internet of
Things Security:

Requirements and Fog Computing Opportunities
Koen Tange, Student Member, IEEE, Michele De Donno, Student Member, IEEE,

Xenofon Fafoutis, Senior Member, IEEE, and Nicola Dragoni

Abstract—A key application of the Internet of Things (IoT)
paradigm lies within industrial contexts. Indeed, the emerging
Industrial Internet of Things (IIoT), commonly referred to as
Industry 4.0, promises to revolutionize production and manufac-
turing through the use of large numbers of networked embedded
sensing devices, and the combination of emerging computing
technologies, such as Fog/Cloud Computing and Artificial In-
telligence. The IIoT is characterized by an increased degree of
inter-connectivity, which not only creates opportunities for the
industries that adopt it, but also for cyber-criminals. Indeed, IoT
security currently represents one of the major obstacles that pre-
vent the widespread adoption of IIoT technology. Unsurprisingly,
such concerns led to an exponential growth of published research
over the last few years. To get an overview of the field, we deem it
important to systematically survey the academic literature so far,
and distill from it various security requirements as well as their
popularity. This paper consists of two contributions: our primary
contribution is a systematic review of the literature over the
period 2011-2019 on IIoT Security, focusing in particular on the
security requirements of the IIoT. Our secondary contribution is
a reflection on how the relatively new paradigm of Fog computing
can be leveraged to address these requirements, and thus improve
the security of the IIoT.

Index Terms—Industrial Internet of Things, Cyber-security,
Security Requirements, Fog Computing

ACRONYMS

3GPP The 3rd Generation Partnership Project
5G Fifth generation cellular network technology
ABS Attribute Based Signatures
AC Access Control
ACL Access Control List
BYOK Bring Your Own Key
CIA Confidentiality, Integrity, Availability
CI Critical Infrastructure
DDoS Distributed Denial of Service
DHT Distributed Hash Table
DID Decentralized Identifier
DoS Denial of Service
DTLS Datagram Transport Layer Security
ENISA European Union Agency for Network and

Information Security
GDPR General Data Protection Regulation
ICS Industrial Internet Consortium

K. Tange, M. De Donno, X. Fafoutis and N. Dragoni are with the
Embedded Systems Engineering section, DTU Compute, Technical University
of Denmark. Email: {kpta, mido, xefa, ndra}@dtu.dk

Additionally, N. Dragoni is with Örebro University, Sweden

IDS Intrusion Detection System
IETF Internet Engineering Task Force
IIoT Industrial Internet of Things
IoT Internet of Things
LLN Low-power Lossy network
LPWAN Low Power Wide Area Network
M2M Machine-to-Machine
MQTT Message Queue Telemetry Transport
NB-IoT Narrow Band IoT
NFC Near Field Communication
NFV Network Function Virtualization
OPC UA The OPC Unified Architecture
OT Operational Technology
OWASP Open Web Application Security Project
PKI Public Key Infrastructure
PLC Programmable Logic Controller
PUF Physically Uncloneable Function
SCADA Supervisory Control And Data Acquisition
SDN Software Defined Networking
SSI Self Sovereign Identity
TEE Trusted Execution Environment
TLS Transport Layer Security
TPM Trusted Platform Module
TSN Time Sensitive Networking
WPAN Wireless Personal Area Network
WSN Wireless Sensor Networks
ZTN Zero Trust Networking

I. INTRODUCTION

INDUSTRY 4.0, also referred to as 4th industrial revolu-
tion, represents a new industrial era, whereby due to the

increasing availability, affordability, and capability of sensors,
processors, and communication technologies, the number of
embedded devices used in industrial applications is rapidly in-
creasing. This leads to a growth in the interest for the Industrial
Internet of Things (IIoT): a large network of devices, systems,
and applications communicating and sharing intelligence with
each other, the external environment, and with humans [1].
According to Accenture [1], the IIoT could be worth 7.1
trillion US dollars to the United States and more than 1.2
trillion to Europe by 2030.

In this wave of excitement, Internet of Things (IoT) security
represents one of the biggest weak points holding back the
adoption of the IIoT. As a matter of fact, IoT devices are

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 67

2 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

often poorly secured [2] and thus easy targets for malware
taking advantage of them to run devastating cyber-attacks,
such as Distributed Denial of Service (DDoS) [3] (e.g., Mi-
rai [4] affected consumer IoT) or sabotage attacks. Threats
are not limited to the consumer IoT. In fact, traditional
industrial environments have been subject to attacks in the
past, sometimes with devastating results (e.g., StuxNet [5] or
CrashOverride/Industroyer [6]). It is thus apparent that without
security, IIoT will never be able to deliver its full potential.
As a result, recent years have seen an unprecedented growth
of research in IIoT security.

In this landscape, a relatively new computing paradigm has
attracted attention: Fog computing [7]. Fog computing is a
system-level architecture born from the necessity of bridging
the gap between IoT and Cloud computing, by distributing
resources and services along the continuum from Cloud to IoT
[8]. Among others, one of the promises of Fog computing is
to present a possible solution to the (I)IoT security problem.

A. Contribution

In this article, we present a systematic survey on the security
requirements of the IIoT. As we quantitatively demonstrate in
Section VI, the field of IIoT security has grown rapidly over
the last few years, and this momentum motivates this article
and the need for an up-to-date systematic survey.

In particular, as our primary contribution, we survey the
literature on IIoT security over the period 2011-2019, which
corresponds to more than 200 papers. In turn, we identify,
categorize, and discuss the IIoT security requirements that
have been identified by the research community, highlighting
the research interest attracted by each of them over the target
period. In addition, we provide statistics with regard to the
geographical distribution and the publication venue of the
surveyed papers.

As a secondary contribution, in the final part of the article,
we discuss how the Fog computing paradigm can be used to
address these requirements. Our reflection identifies numerous
research opportunities at the intersection of Fog computing and
IIoT security, along with open challenges and limitations still
(partially) unsolved.

B. Outline

The paper is organized as follows. We first establish com-
mon ground by discussing the difference between IoT and
IIoT, and providing a glimpse into recent IoT security surveys.
Section III briefly mentions related work and motivates the
need for a systematic literature review. Section IV describes
the research method used in the review and formalizes the re-
search questions. Section V surveys the security requirements
resulting from the systematic review. Section VI presents a
quantitative analysis of the results obtained during the research
phase. Section VII discusses the role that Fog computing
might play in meeting the IIoT security requirements. Finally,
Section VIII concludes the paper.

II. IOT AND IIOT

Before we discuss the results of our systematic survey in
depth, it is helpful to establish a common understanding of
how IoT and IIoT differ. In this section, we first explore this
difference, then, we provide an overview of recent IoT security
surveys.

We find Table I, taken from the ENISA “Good practices for
Security of Internet of Things in the context of Smart Manu-
facturing” [9] report, to be helpful in outlining the differences
between IoT and IIoT, and use this as a guideline throughout
our work. That said, the difference is not a precise, clear-cut
one, and we sometimes do deviate from these guidelines, when
it is abundantly clear that a scenario concerns the IIoT without
meeting relevant criteria from that table.

In general, it is accepted that IIoT is a subset of IoT: IoT
typically covers consumer devices in retail and lifestyle, IIoT
focuses mainly on Operational Technology (OT), the smart
manufacturing process, smart logistics, and smart cities.

It should not be surprising that the safety and security
requirements in IIoT are generally stricter than those found
in a typical IoT scenario. Even so, we find significant overlap
in used terminology in the literature, and IIoT having stricter
requirements does not necessarily mean that any proposed
security solution for the IoT is not applicable to the IIoT.
This is echoed by Yu et al. [10], who, in a short survey on
the differences between IIoT and IoT security, find that for
the most part, the challenges overlap. At the same time, as
will become evident throughout this study, the field is broad,
and scenarios covered in the literature differ wildly. Often,
one can imagine a more general IoT cousin to a specific
IIoT scenario quite easily. The security requirements distilled
from said IIoT scenario would thus often also apply to its
IoT cousin. Vice-versa, it is likely that works are covering
the IoT scenario, these would identify requirements that have
not been covered in the available literature for the IIoT. This
is especially true for requirements derived out of common
challenges such as resource constraints and key distribution.
Therefore, we recommend readers with an interest in any given
IIoT scenario to also search the available literature for the
more general IoT case, and consider if the requirements found
in those works uncover security liabilities that have not been
addressed in existing IIoT work.

A. IoT Security Surveys

There exist ample surveys investigating the state of IoT
security, and we will briefly look at several relatively recent
surveys, discussing how their identified security requirements
might relate to the IIoT.

In [11], the authors survey the literature for real IoT
attacks and present a taxonomy. They also identify integrity,
anonymity, confidentiality, privacy, access control and autho-
rization, authentication, resilience, and self-organization as
security requirements for IoT systems in general. These are
all represented in the requirements collected in this work as
well, and reiterate that generic IoT solutions can work for IIoT
systems, if they do not violate scenario-specific constraints.
Neshenko et al. [12] provide a much more thorough study

68
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 3

TABLE I
“INDICATIVE DIFFERENCES IN TERMS OF SELECTED ASPECTS BETWEEN IOT AND IIOT” (TAKEN FROM [9]).

Selected Characteristics Internet of Things Industrial Internet of Things
Focus Protection of personal data and assets Prevention of process interruption, safety

Priorities Confidentiality, Integrity, Availability Availability, Integrity, Confidentiality
Device Failure Implications No critical consequences Interruption of processes, impact on production, potential

physical threats
Reaction to threat Possible shut down and remediation Maintenance of operation

Upgrades and Patch Management Possible during operation time, no reasons
for significant delays

Need to be scheduled and performed during down time, which
may postpone the upgrade for a considerable amount of time.

Lifecycle of the device Relatively frequent upgrades of equipment Long lifespan of the devices (over 15 years)
Conditions of deployment Regular environment Harsh environment (temperature, vibration, etc)

of IoT vulnerabilities and attacks, but do not relate these
to security requirements. Nevertheless, we can see that the
familiar topics of authentication and access control, assurance,
and confidentiality return implicitly throughout the text. The
threats described by the authors include problems such as false
data injection, improper patch management, and improper
encryption. Many of these can be directly connected to the
security requirements listed in this work.

In [13], the authors provide a top-down survey of IoT
security. They discuss security requirements for healthcare,
smart grids, manufacturing, smart homes, transport, and smart
cities. Some of these are also considered to be in the IIoT
domain [9], and indeed the security requirements identified in
these sections overlap with the ones collected in this survey,
albeit on a higher level of abstraction. In each investigated
domain, they list a subset of these as requirements. For smart
grids, they identify availability, confidentiality, integrity, non-
repudiation, and privacy, and additionally list challenges we
also identify in our work: heterogeneity, scalability, privacy,
and so on. What is apparent through their work, is that
the main way in which the requirements for the various
domains differ is in their priority, for instance, privacy and
confidentiality weigh higher in healthcare than in transport.
Further, the authors make the insightful observation that one
specific challenge for the IIoT that is not as apparent in general
IoT networks, is that its crucial safety requirements often
compete with security in terms of resources. It is perhaps
the balance that must be found between these two aspects
that sets the IIoT apart from normal IoT systems. Indeed,
whenever resource constraints are not an issue, or when safety
constraints are less strict, standard IoT solutions often suffice.

III. RELATED WORK

To the best of our knowledge, the most recent works focused
on reviewing IIoT security are [14] and [15]. The former
focuses primarily on threats characterization by looking at
existing attacks, while the latter mainly reviews the differences
between information technology and operational technology in
an Industry 4.0 setting, and discusses the challenges. However,
neither of these works explicitly discuss security requirements,
opting to leave them as implied by the described threats and
challenges. Another recent study [16] focuses on Industry 4.0
system architecture as a whole and observes that there is an
increase in security-focused architectural proposals, but does
not discuss security in depth. Some older surveys dated back

to 2015 and 2016 mention IIoT security requirements [17],
[18], but they also refrain from an in-depth discussion.

Recently, Hansch et al. [19] published a study identifying
and mapping security requirements to an OPC UA model,
allowing easier machine-based verification. While they provide
many security requirements, they are based on a limited set
of use cases, and no thorough explanation for their derivation
is given. Moreover, they are of a less abstract level than the
ones we attempt to derive in this work.

As a result, we deem it necessary to provide an up-to-date,
systematic survey that specifically addresses IIoT security
requirements.

IV. RESEARCH METHOD

In this section, we present the research method that is used
in this systematic literature review on security requirements
for the IIoT.

We adopt the research method detailed by Petersen et
al. [20] and utilize the suggested template for describing our
approach. In the next subsections, we elaborate on research
questions, search strategy, study selection, and validity con-
cerns.

A. Research Questions

The main aim of this work is to identify security require-
ments for the IIoT. This can then guide us in identifying which
of these show potential to be solved by Fog computing. In
addition, we want to provide an overview of the research
activity in the field: how research activity has developed
throughout the years, how this research was published, and
what its geographical distribution is.

Thus, our research questions can be formulated as follows:
• RQ1: what are the security requirements of the IIoT?
• RQ2: how are publications related to IIoT security spread

throughout the years?
• RQ3: how is IIoT security research activity geographi-

cally distributed?
• RQ4: what are the most popular publication venues for

IIoT security research?
Answering these questions will aid in getting a better

understanding of the current security landscape for the IIoT,
while at the same time identifying various concrete research
opportunities related to Fog computing. Each of these can then
be traced back to concrete security requirements relevant to the
Industry 4.0 paradigm.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 69

4 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE II
QUERIES USED FOR OUR SEARCH, EXPRESSED IN PSEUDO-CODE

Query Description
Q1 in title: IIoT OR “Industrial Internet of Things" OR "Industry 4.0"
Q2 (in title: IIoT OR “Industrial Internet of Things" OR "Industry 4.0") AND in abstract: security

TABLE III
NUMBER OF PAPERS OBTAINED

Source Q1 Q2
ACM 60 12
IEEE Xplore 2702 323
ScienceDirect 369 21

Total 3158 356

B. Search Strategy

We utilize the adjusted PICOC criteria for software en-
gineering [21] in order to identify relevant keywords. In
particular:

• Population: we consider the IIoT as the application area
in which our research is conducted. However, this is a
very broad population, therefore, we take into account
only studies addressing IIoT security.

• Intervention: this criterion does not apply to our research
questions, as we are interested in any work in the IIoT
domain that describes security requirements.

• Comparison: we compare the security requirements
identified by different studies by taking into account
such factors as the number of studies that mention them,
related threats, and proposed solutions.

• Outcomes: we present the identified security require-
ments as well as the properties of their mitigation, al-
lowing us to discuss which requirements call for further
research.

• Context: as we do not empirically compare the available
works, this criterion does not apply to our study.

With these criteria in mind, we have formulated the follow-
ing keywords: IIoT, Industrial Internet of Things, Industry 4.0,
and Security.

We considered as sources the following databases: ACM
Digital Library, IEEE Xplore, Elsevier/ScienceDirect. In this
domain, we believe that the combination of these three sources
provides an accurate representation of the research that has
been conducted globally.

We divided the search into two stages. First, we queried the
databases for articles related to IIoT/Industry 4.0 in general,
based on their titles. This provided an overview of the amount
of research conducted in this field. After that, we narrowed
down our search to only include works related to security, by
excluding articles not containing the word “security” in their
abstract. The queries are summarized in Table II. The search
results for both queries are listed in Table III. The queries have
been executed in March 2020.

Querying
databases	(Q2)

Querying
databases	(Q1)

(initial)	N°	of	papers

3158

N°	of	papers

356

	-5	Removing
duplicates

N°	of	papers

351

Filtering	based	on
title	and	abstract

N°	of	papers

248
	-103		

Full-text	reading
N°	of	papers

205
	-43	

Snowball	sampling
(final)	N°	of	papers

218
	+13	

Automated	search

Manual	selection

Fig. 1. A schematic representation of the entire study selection process.

C. Study Selection

Starting from 356 papers resulting from our queries, we
further filtered the studies with multiple phases.

Firstly, the JabRef 1 reference management software was
used to identify and delete duplicates. Five duplicates were
found, leaving the number of considered papers for the sub-
sequent phases at 351.

Subsequently, we independently reviewed the titles and
abstracts of each article in order to reduce selection bias.
Each article was marked as being relevant, not relevant, or
of doubtful relevance. Articles were voted for inclusion when
the work covered cyber-security challenges and/or solutions
for Industry 4.0, and it was published before 2020, since that
is the year in which this study is conducted. We do not believe
that filtering on a minimum publication date is necessary at
this time, due to the relatively young age of this field. Articles

1https://www.jabref.org

70
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 5

were voted for exclusion when the work was not related to
Industry 4.0 security, contained duplicate content, or was not
presented in legible English.

The following rules were used for filtering out articles based
on title and abstract review (this has been done jointly by two
authors of the paper):

• when both authors considered an article relevant, the
article was included for the next phase;

• when one author expressed doubt and the other author
considered an article relevant, the article was included
for the next phase;

• when both authors expressed doubt, a joint review was
done considering also other sections of the article (e.g.
introduction, outline, conclusion) to determine its rele-
vance. If this review did not clear up doubts for either of
the authors, the article was given the benefit of the doubt
and included for the next phase;

• when one author considered an article relevant, while the
other considered it to not be relevant, the article was
marked for joint review as described in the previous rule;

• when one author considered an article not relevant, while
the other considered it to be doubtful, the article was
marked for joint review as with the previous rules;

• when both authors considered an article not relevant, the
article was excluded.

After the individual title and abstract reviews, 68 articles
were excluded and 69 were marked as doubtful entries requir-
ing a joint review. These were then jointly reviewed, leading
to an additional 35 exclusions. The remaining 248 papers were
considered for full-text reading, overall reducing the number
of papers to analyse by 92% compared to results of Q1 and
30% compared to Q2.

In the full-reading phase, we extracted information relevant
to the stated research questions, as well as identifying the
challenges discussed in the papers. We then used this data
to provide a comprehensive picture of the security challenges
and corresponding requirements for the IIoT. In this phase,
it became clear that a number of papers were not relevant to
our work, resulting in the discarding of other 43 papers. Ad-
ditionally, we identified 13 papers of interest through reverse
snowball sampling and added these to the selection.This brings
the final number of papers considered in this survey to 218.

The entire study selection process and related numbers are
summarized in Figure 1.

D. Validity Evaluation

Every study that is subject to manual selection is vulnerable
to researcher bias in the filtering process. In order to reduce
this issue, we performed the filtering process twice: two
authors of this paper selected studies independently, and the
results of the filtering process were based on a systematic
approach combining the selections of both authors, and in
some cases a joint review.

Also, to mitigate possible selection bias, we have performed
reverse snowball sampling, allowing for the introduction of
papers originally not considered due to not being captured by
our search queries.

Furthermore, we have described our research process in
detail, and have taken care to list the criteria by which we
filtered studies. This is done to increase the repeatability of
this work.

Finally, it is worth mentioning that our approach does not
suffer from the Matthew’s effect, as opposed to querying
databases that rank papers based on citation count [22].

V. IIOT SECURITY REQUIREMENTS (RQ1)

In this section, we present the security requirements that
we found to have been discussed in the selected literature.
We describe why these requirements are deemed relevant and
summarize some of the proposed solutions. We also discuss
why these requirements are difficult to satisfy for Industry
4.0 applications, which gives the insight needed to see why
the discussed security requirements are hard to meet with
conventional solutions. Furthermore, they provide a set of
motivational factors for why the research discussed in this
section is necessary.

We observed that the focus of the investigated literature is
mainly on Industry 4.0, even if in this field highly varying
scenarios are considered. For example, some articles discuss
petrochemical plant management [246], while others focus on
drones [177], [192], [199], and so on. Each of these scenarios
has its own threat model and will thus also differ in terms
of security requirements from the others, to a certain degree.
However, we note that the majority of them show considerable
overlap, and that even the ones that are unique to one particular
scenario, might still translate into a research opportunity, or
might be possibly addressed with Fog computing. Therefore,
we have attempted to include all such requirements in this
section, and mention their relevance to particular scenarios, to
provide context.

In the rest of this section, we discuss all IIoT security
requirements found in this study, grouped by the overarching
categories to which they belong. Figure 22 depicts a hierarchi-
cal structure of the various subsections, together with all the
works related to each subsection. References were picked and
positioned using the following heuristics: firstly, if a work is
mentioned in a subsection (be it in a table or the text itself),
it is included in the level 1 node representing that subsection
(e.g. Authentication); secondly, if a work is mentioned in a
topic within a subsection (e.g. Key Distribution), it is included
in the level 2 node representing that subsubsection in the
mind-map. Additionally, in order to minimize redundancy
in the mind-map, the following rule was followed: when a
reference is included for both a subsection (e.g. Network
Security) and one or more of its subsubsections (e.g. Wireless),
then preference is given to the latter, and the reference is
removed from the subsection itself. This does not eliminate
redundancy between nodes of the same level (e.g., a reference
can still be included for both Key Distribution and Mutual
Authentication), but it does allow for a representative overview
of works relevant to any topic.

2In electronic versions of this work, nodes and references in this map are
clickable, allowing for easier navigation through the document.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 71

6 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

IIoT Security
Requirements

(RQ1)
Authentication

Key
distribution

Mutual Au-
thentication

Non-
repudation

Anonymity
and Privacy

AttestationAccess Control

Maintainability

Smart
maintenance

Resilience

Data security
and data
sharing

Data
transport

External
parties

Data
flow-control

Data
privacy

Security
Monitoring

Network
Security

Latency
and

timeliness

Availability

Wireless

Models and
methodologies

[15], [23]–[58]

[59]–[68]

[69]–[82]

[83]–[92]

[72], [87], [93], [94]

[17], [95]–[97]
[24], [53], [86], [87], [98]–
[109]

[27], [52], [67], [110]–[116]

[25], [36]–[38], [117]

[15], [25], [35], [84], [112],
[118]–[128]

[17], [29], [36], [49], [52],
[53], [71], [105], [129]–
[141]

[34], [38], [40],
[142]–[145]

[35], [55], [65], [66],
[98], [146]–[161]

[162]–[164]

[50], [98], [165]–[169]

[45], [55], [115], [170]–[208]
[35], [65], [66], [129],
[187], [209]–[217]

[184], [218]–[221]

[222]

[32], [33], [223]–[229]

[23], [26], [41]–[44], [51],
[83], [100], [126], [132],
[144], [158], [165], [230]–
[245]

Fig. 2. A clickable mind-map giving an overview of the categories (subsections) and specific topics (subsubsections) discussed in Section V. References in
this mind-map were chosen for inclusion when explicitly mentioned in the portion of text represented by each node, or when deemed relevant to the category,
based on a full-text review.

Finally, in Section V-J, we close this section with a summary
and an analysis of the obtained results.

Except for Section V-A and Section V-J, every section con-
tains a table relating the most important security requirements
of that category to a collection of works that we deemed
the most relevant to these topics. Additionally, every table
shows the research interest (low, medium, high, very high)
of the scientific community for each security requirement
in that category. This interest is inferred from the percent-
age of works identifying or addressing the specific security
requirement compared to all the (unique) papers related to
that category. The number of papers addressing a specific

category is taken from Figure 2 as the number of papers
appearing in the corresponding level 1 (i.e., subsection) and all
level 2 (i.e., subsubsections) nodes, but removing duplicates.
For instance, the total number of papers discussing Network
Security is given by the count of the references appearing
in Figure 2 for the nodes Network Security, Latency and
timeliness, Availability, and Wireless, without duplicates. It
is important to note that a number of works identify multiple
security requirements, thus, appear in multiple subsections;
as such, the calculated percentages do not represent disjoint
partitions of the set of investigated works, thus their sum

72
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 7

TABLE IV
INTEREST LEVELS ASSIGNED TO EACH SECURITY REQUIREMENT IN

RELATION TO ITS CATEGORY.

Relative interest Range (x)
Low 0% ≤ x ≤ 7%
Medium 7% < x ≤25%
High 25% < x ≤45%
Very High 45% < x ≤100%

Confidentiality
• Encryption
• Access control
• Isolation

Integrity
• Hashing
• Error correcting codes
• Authentication

Availability
• Resource distribution
• Redundancy
• Timeliness

CIA

Fig. 3. The CIA triad, with some examples for each property.

will not result in 100%. The range of percentages assigned
to each interest level are shown in Table IV and have been
chosen based on the distribution of percentages assigned to
security requirements across all categories. As an example of
the interest level, consider a category AB discussed by 50
papers, and a security requirement AB-01 identified by 5 of
these 50 papers, the research interest for the requirement AB-
01 will be medium, with a percentage of 10%. The aim of
these tables is to give the interested reader a stepping stone to
more in-depth works for each requirement, but also the topics
itself.

A. The CIA Triad

The Confidentiality, Integrity, Availability (CIA) triad is a
well-known information security model, and can be considered
as a set of extremely abstract security goals or requirements.
A subset of these lie at the root of every other security
requirement. Figure 3 provides a graphical representation of
the triad and shows some examples of solutions related to each
property. We briefly describe the three properties as they are
described by [130] below:

• Confidentiality pertains to protecting information in all
its forms. This includes data encryption, access control,
network isolation, but also privacy aspects.

• Integrity concerns consistency, accuracy, authenticity,
and more generally the overall trustworthiness of entities.

• Availability concerns operational guarantees of the sys-
tem. This covers topics such as redundancy and de-

centralization, but also guarantees that tasks will be
performed within hard deadlines.

Typically, the CIA triad is used in information security,
meaning that the three properties relate to information only.
However, it is equally applicable in other domains, such as
cyber-physical systems [132]. Indeed, many of the works
we investigated explicitly mention the triad (e.g. [25], [63],
[89], [97]). Traditionally the focus in industrial environments
has been first on availability, second on integrity, and last
on confidentiality. However, with Internet-connected systems,
this requires reconsideration, and all three aspects should be
brought up to an acceptable level. Thus, with the development
of new IIoT and Industry 4.0 solutions, confidentiality and
integrity should be weighed equally to availability.

While these three aspects are a very good starting point and
are certainly important to keep in mind when specifying the
security goals for any system, it is not always useful to reduce
concrete requirements back to elements of the CIA triad, if one
already has more (e.g. contextual) information that might help
with deriving an unambiguous security goal. For example, it
is easy to state that data at rest should be kept confidential,
but such a requirement does not convey the conditions that a
confidentiality mechanism should satisfy. Moreover, it leaves
a lot of room for interpretation (e.g., confidential to which
parties?). On the other end of the spectrum, very fine-grained
requirements are only possible if one is developing for a
specific scenario.

In the next subsections, we strive to find a middle ground
where we describe security requirements at a high enough
level to see where the challenges in achieving them lie, but
at the same time refrain from going too deep into any sce-
nario, although we might refer to them as anecdotal evidence
supporting the legitimacy of a requirement.

B. Authentication
Authentication of remote entities (both humans and ma-

chines, or even applications) is a key concern for many
forms of IoT communication [31]. Within the context pro-
vided by IoT and IIoT applications, this brings some extra
challenges [15], [17], [49]. There is a need for extremely
lightweight authentication schemes, with little overhead in
terms of computation time and transfer size, among other
things.

A second but very important concern is verifying the
integrity and authenticity of data, e.g. to ensure that a configu-
ration file was created by an authorized party, and not modified
since. Also here, the IIoT domain has special requirements
that prevent the adoption of commonly used authentication
mechanisms. Many topics in this section therefore also concern
integrity, albeit not explicitly mentioned in every instance.

Wang and Wang [82] name some other typical challenges
(mainly aimed at wireless industrial communication) that need
to be taken into account when investigating authentication and
integrity methods. They consider extreme resource constraints,
the open broadcast nature of wireless communications (i.e.
anyone can read and send messages on certain frequencies),
extremely large network sizes, and lack of infrastructure
support.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 73

8 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE V
AUTHENTICATION-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY.
THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE

TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
A-01 multi-factor authentication [24], [26], [72], [73], [77], [78], [82] Medium 9%
A-02 key distribution [29], [53], [55], [59]–[63], [67], [85] Medium 13%
A-03 node addition, revocation, rekeying [29], [30], [63], [67], [82] Low 6%
A-04 decentralized key management [24], [53], [55], [62], [67] Low 6%
A-05 transitive authentication [62] Low 1%
A-06 mutual authentication [28], [48], [52], [70]–[74], [76]–[78], [81], [87] Medium 17%
A-07 privacy-preserving authentication [72], [77], [78], [87], [93], [94] Medium 8%
A-08 minimization of user interaction [70]–[72], [76]–[80] Medium 10%
A-09 non-repudiation [84], [86], [89] Low 4%
A-10 attestation [17], [39], [95], [97] Low 5%

As an example of authentication challenges in existing
systems, we consider the Message Queue Telemetry Transport
(MQTT) protocol. This is a widely deployed protocol for
data exchange in the industrial domain, and features some
very basic and insecure authentication methods [57]. Accord-
ing to Katsikeas et al. [34], the protocol allows authentica-
tion through a simple username and password combination,
which are communicated in plaintext. A second authentication
method sometimes used is through a unique client identifier,
which is easily spoofable. While it is possible to secure
these methods by complementing MQTT with Transport Layer
Security (TLS) or IPSec, those two protocols are too resource-
intensive for many IIoT applications, and lighter alternatives
are necessary, such as TinyTLS [56] or DTLS [58]. Now that
industrial networks are becoming increasingly connected to
the internet, this becomes more and more important.

The importance of sufficiently secure authentication mecha-
nisms is reflected by the fact that positions 2 and 3 in the Open
Web Application Security Project (OWASP) IoT Top 10 [47]
on IoT vulnerabilities concern attack vectors where (a lack
of) authentication is an important aspect. Its importance is
also underlined by the popularity of this topic with recent
research efforts, with many papers addressing or identifying
the above issues (see Table V-B). These works identify several
authenticity properties that can be considered requirements in
various use-cases in the IIoT domain. We describe these in
more detail in the following subsections.

For a comprehensive survey on IoT authentication algo-
rithms, we refer the interested reader to Ferrag et al. [31]. The
authors cover many authentication algorithms and compare
them based on computational efficiency, threat protection, and
more. Kail et al. [33] provide another survey covering multiple
industrial protocols aimed specifically at Low Power Wide
Area Network (LPWAN) technologies.

Next, we discuss a number of authentication-related topics
in the following subsections. First, we look at key distribution,
after which we discuss mutual authentication and multi-factor
authentication. Then, we address non-repudiation as a re-
quirement, followed by anonymous authentication and privacy
preservation in authentication algorithms. As a final topic, we
discuss attestation techniques through trusted hardware.

1) Key distribution: Key distribution is a challenging re-
quirement for many applications in the IoT [68], and naturally

extends to the IIoT. With devices being set up and used in
hostile environments, possibly being very mobile, dynamically
joining and leaving networks, and possibly being very con-
strained in resources, there is a pressing need for efficient,
flexible, and dynamic key management mechanisms. Airehrour
et al. [59] argue that traditional Public Key Infrastructure (PKI)
is outdated, stating that “it was at no time designed to handle
the complications of managing industrial-scale networks of
50 billion devices that IoT promises to usher in.”. This raises
the question of whether all IoT devices should exist in the
same authentication domain, and if centralized authentication
authorities such as PKIs are even a sensible choice for that
many devices. We will not attempt to answer these questions
here.

In order to deal with dynamic environments, some natu-
rally implied requirements for key management solutions are
that they can handle node addition, revocation, as well as
rekeying [63]. Resource-constrained devices will have issues
with key generation, computationally intensive algorithms,
and transmission of large/many messages. Moreover, in an
industrial setting, device owners might not trust the man-
ufacturer to generate keys for them, and will want to do
this themselves [67]. Availability can be an issue as well.
In Critical Infrastructure (CI) environments, an authentication
authority has to be reachable at all times. Because of this,
Blanch-Torne et al. [62] state that it is not sufficient to rely
on one central authority for authentication. Additionally, they
also identify transitive authentication (if A knows B and B
knows C, B can introduce A to C) as a requirement in some
scenarios.

In [63], the authors propose a key management solution that
aims for little transmission overhead by requiring only one
transmitted message for one-way-authentication. While this
makes for an energy-efficient protocol, it appears to not be
very scalable or dynamic, since all nodes need to be known
beforehand, and addition, revocation and rekeying are not
thoroughly discussed.

Ulz et al [67] propose a Bring Your Own Key (BYOK)
approach, to address the trust issue between device owners and
manufacturers. However, it does require devices to have Near
Field Communication (NFC) capabilities, and key distribution
requires a human to physically move between a central server
and the device.

74
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 9

Another approach is suggested by [62], where there is no
centralized authority, but a Distributed Hash Table (DHT) that
takes care of identity propagation and lookups. Their solution
is a distributed one, and also provides transitive authentication.
It is scalable and dynamic, but the protocol is not designed
with energy-efficiency in mind, and can require a considerable
number of messages at times.

While the above-mentioned sources address the identified
requirements to some extent, none of them addresses multiple
at once. Clearly, there is still plenty of opportunity for novel
research in this area. One potential solution to several key
distribution challenges that might become viable in the future,
is quantum key distribution [65], [66]. In such a system, it
is impossible to eavesdrop on a transmission without altering
its payload, meaning that any eavesdropping attempt can be
detected.

Blockchain technologies are another promising candidate,
showing potential to overcome several key challenges. Bar-
tolomeu et al. [61] discuss Self Sovereign Identity (SSI)
techniques for IIoT, which build on top of blockchains to
provide Decentralized Identifiers (DIDs). These systems have
as a property that all entities carry their own identification
data, eliminating the need for a centralized root of trust. They
discuss the challenges faced by several frameworks capable of
providing DIDs, some of the most prevalent being the need
for a common data model for interaction between parties, and
a lack of research in their application to Machine-to-Machine
(M2M) authentication. A different approach is taken in [60],
where the blockchain-based BCTrust protocol is extended with
key management functionality. One challenge with blockchain
is that due to the immutability of blockchains, revocation or
alteration of data is impossible. The standard solution is to
add append modifications at the end of the chain, but there
exist some early results showing that small scale changes are
possible using Chameleon hashing schemes. This comes at the
cost of some security [64], but further research is needed.

2) Mutual Authentication: In [82], mutual authentication
is identified as one of the requirements for any practical
authentication scheme, and Kolluru et al. [76] state that mutual
authentication between any two IoT devices is necessary, as
many of them are exposed to external environments. Moreover,
because of this many-to-many requirement, a user/password
system is neither user-friendly nor flexible enough. It is also
difficult to handle in dynamic environments. They thus identify
the need for authentication mechanisms that can be used
between any pair of devices, with minimal user interaction.
Autenrieth et al. [71] even state that fully automated mutual
authentication is a requirement. Some recent work that aims
to facilitate this is done in [74], and uses trusted components
such as Physically Uncloneable Functions (PUFs). PUFs are
functions implemented in hardware in a way that aims to make
them very hard to copy, thus being able to act as a device
“fingerprint”. Another way to facilitate M2M authentication
in settings where the participating devices are geographically
nearby, is by using physical context such as luminosity or
temperature. Loske et al. [79] survey the available literature
on this so-called context-aware authentication. If the transmis-
sions are wireless, devices can also be identified through their

radio frequency fingerprint [81].
One way of minimizing interaction is by relying on bio-

metrics for identification and authentication (although one
should be careful to not use biometrics for authorization).
One property of biometric-based authentication schemes is
that they cannot be used for M2M authentication, as bio-
metrics are always derived from living beings. Therefore,
these types of protocols might not be feasible in every in-
dustrial context, although they adapt well to some (e.g. smart
healthcare [73]). In [72], a two-factor mutual authentication
method is proposed, combining smart cards and biometrics,
although recent work shows that their protocol is not se-
cure against various attacks [75]. Li et al. [77], [78] use
a combination of user/password and biometrics instead as
a two-factor approach, while Deebak et al. [73] combine
smart cards, passwords, and biometrics. The proposed methods
claim to be very lightweight – but reliance on biometrics
by itself requires specialized hardware (or some non-trivial
computational capacity to process e.g. audio or video signals),
which might not always be an option. Further, it typically
requires physical proximity, although recent work [80] shows
that remote biometric authentication is a possibility.

Another way to minimize user interaction is by deriving
identities through analysis of behavioral patterns. This shares
the property that it cannot be used for M2M authentication
with biometric-based methods. The Fifth generation cellular
network technology (5G) authentication scheme for smart
devices proposed in [70] uses Cloud-based learning to dy-
namically identify and authenticate users based on behavioral
patterns, showing another approach for minimizing user in-
teraction. This concept has also been used in the field of
intelligent vehicles whereby drivers are identified by their
driving behavior [69].

3) Non-repudation: Non-repudation is a message property,
ensuring that the author of a message is not able to later
repudiate (i.e. deny) their authorship of that message. Non-
repudiation can also extend to concepts other than messages
(e.g. an entity cannot repudiate their accountability for an
action that was started/requested by them).

Fraile et al. [84] provide some concrete examples showing
why non-repudiation can be considered a security requirement.
Firstly, users might perform illegal actions, and the system
needs a way to track these actions. If these actions are
reputable, the system becomes susceptible to log injection
attacks, an observation echoed by Ankele et al. [83]. Another
example mentioned is the situation where a manufacturer
finds out that their configuration files on some hardware
have been deleted, after the hardware vendor has performed
updates to this system. Without a non-repudiation mechanism
in place, the deletion of these configuration files cannot be
unambiguously traced back to the software update. Another
example can be found in [89], where the challenges in applying
the Assurance Case methodology for the IIoT are laid out.
Assurance Cases are structured arguments, for use during
e.g. software development, that show that certain properties
of a system hold. The authors of this work identify non-
repudation as a requirement for the assurance of security
properties of a system. The blockchain-based authentication

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 75

10 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

and access control scheme described in [87] also states that
non-repudiation is an essential property.

Li et al. [86] propose a certificateless authentication scheme
for Wireless Sensor Networks (WSN) environments. The ad-
vantage of their approach is that, because some of the heavier
computations can be moved to third parties (e.g. a gateway),
the computational requirements on sensor nodes themselves
can remain low. Their protocol achieves non-repudiation by
ensuring that messages are publicly verifiable. Certificateless
schemes are a fairly popular topic in this domain. More recent
examples of work on similar schemes for IIoT are [85], [88],
[92] (broken in [91]), and [90].

4) Anonymity and Privacy: Anonymous authentication is
verifying the authenticity of an entity without disclosing that
entity’s identity. This is necessary in situations where one
wants to protect the privacy of users. Lin et al. [87] identify
the need to protect users from being identifiable when an
adversary has access to the authentication service. Cui et
al. [93] also mention privacy-preserving access control. One
example of a threat due to lack of anonymous authentica-
tion is provided by [72]: an adversary could conduct traffic
analysis to create profiles on sensitive assets in an industrial
environment, and possibly derive sensitive data from those
profiles. Paliwal [94] proposes a hash-based privacy preserving
authentication scheme specialized for WSNs scenarios. In this
work, a variety of requirements are identified for schemes for
WSNs, although these mostly relate to low-level properties
that generalize to any secure authentication scheme, such as
resistance against replay attacks. Because of this, we consider
these to be too low-level to be included in our analysis as is,
but rather as implied by other requirements.

In [87], a public blockchain-backed authentication mecha-
nism is proposed, thereby turning user anonymity into a hard
requirement. The work in [93] does not rely on a blockchain,
but relies on a server to provide computational aid (in a
secure manner). While both proposed schemes use Attribute
Based Signatures (ABS) as cryptographic constructs, the two
approaches cater to different goals: blockchains are widely
considered to be resilient and highly available systems, which
can be useful in scenarios that require these aspects, while
server-aided encryption schemes target low-power devices
with very limited computational ability or battery life.

5) Attestation: Attestation is a method for detection of
unintended and malicious changes to software [17]. Doing
this remotely can provide guarantees on the integrity and
authenticity of a piece of software that is being run on a
remote system, and therefore allows one to place more trust in
a remote system than is possible in a scenario without remote
attestation.

Because attestation aims to enable these higher levels of
trust, it poses very strong security requirements on hardware.
At the same time, remote attestation methods implemented
purely in software typically have to rely on very strong
assumptions that are hard to achieve in practice [17]. Attes-
tation can be done in a practical setting through the use of
Trusted Execution Environment (TEE)s provided by trusted
hardware, such as ARM TrustZone [247], Intel SGX [248], or
implementations of the Trusted Platform Module (TPM) stan-

dards [249]. Not all of these might run on low-end hardware,
but some recent embedded controllers contain trusted hardware
components [250] that also enable attestation to some extent.

References [17], [95], and [97] all identify the need for
remote attestation, in order to increase the system’s resilience
against intruders. Especially in contexts where parts of an
overall system are deployed in hostile environments, where
it is important that the correct functioning of the software
is continuously verified. Additionally, Laaki et al. [96] also
identify the possibility for hardware attestation to protect the
digital twin representation of proprietary hardware setups.

As mentioned in [17], there has not been a lot of activity
on trusted hardware in this domain as of yet, with most of
the available attestation protocols proposed so far aiming for a
more general-purpose scenario, not taking into account aspects
that make integrity and authentication protocols for the IIoT
a challenging domain.

C. Access Control

Access Control (AC) is necessary in a wide variety of
situations; already when a device allows for two modes of
interaction, one for normal user behavior and one for system
administrators to deploy updates, a rudimentary form of access
control is needed. Furthermore, a lack of adequate privilege
separation has been identified as one of the most severe
shortcomings in existing systems, such as the Supervisory
Control And Data Acquisition (SCADA) protocol [100].

AC invariably relies on authentication methods, as one
needs to authenticate users in order to enforce access policies.
It is therefore not surprising that AC mechanisms inherit many
of the authentication requirements described in Section V-B.
The challenges in access control relate to resource consump-
tion, but also availability. In highly distributed scenarios, it
should not happen that AC policies are unavailable due to a
connection failure.

Aiming to minimize energy consumption for lightweight
devices, Li et al. [86] propose a certificateless signature
scheme as well as an AC framework for WSNs. This is made
possible by relying on a (collection of) trusted systems in
the network that are powerful enough to perform a part of
needed cryptographic operations. The lightweight devices then
cooperate with the trusted systems to create cryptographic
signatures. Some natural security requirements are mentioned,
such as the CIA triad and non-repudiation. Beltran et al. [24]
also target low-power devices, but they explore a setting
in which these resource-constrained systems interact with
Cloud services. In this scenario, they identify the need for
identification, authentication, authorization, and accounting
mechanisms. Furthermore, they state that depending on the
particular application, fine-grained authorization control might
be needed, or the ability to handle dynamically changing privi-
leges. In some other situations, they state it is useful to manage
access policies centrally. However, in order to be compatible
with many systems from different developers, some form of
federation is needed too. In order to address these issues,
they propose a token-based federated authentication scheme
that makes use of PUFs to meet the energy constraints of

76
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 11

TABLE VI
ACCESS CONTROL-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY.
THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE

TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
AC-01 handle dynamic changes [24], [99], [104], [108] Medium 25%
AC-02 fine-grained AC [24], [53], [99], [104], [106] High 31%
AC-03 centralized AC [24], [86] Medium 12%
AC-04 decentralized AC [24], [87], [99], [102]–[104], [107], [109] Very High 50%
AC-05 privacy-preserving AC [87], [102] Medium 12%
AC-06 transparency [86], [87], [103] Medium 19%
AC-07 compatibility [107] Low 6%

low-power devices. The resulting authentication scheme is
flexible enough to act as a building block for many types of
authorization mechanisms.

The blockchain-based authentication protocol proposed
in [87] also contains an AC framework, and tackles the
availability and single point of failure challenges through use
of a blockchain, and a DHT containing AC policies. An
additional feature of this work is that it respects the privacy of
users through the use of ABS techniques. A different approach
is taken by He et al. [102]. In this work, ring signatures are
used to construct a distributed lightweight AC framework.
This framework specifically targets WSNs and achieves user
anonymity by grouping users with similar rights, ensuring that
AC authorities cannot differentiate between signatures from
users in the same group. Lahbib et al. [104] also propose a
blockchain system, identifying the need for dynamic access
control and distributed governance. They utilize smart con-
tracts and leverage the non-repudiation and integrity inherent
to blockchain systems to propose a resource management
framework, with fine-grained AC built in. Yao et al. [109]
share the sentiment that distributed AC is needed, but propose
a Fog solution based on attribute credentials.

Kim et al [103] consider a scenario where nodes in multihop
Low-power Lossy network (LLN)s want to communicate with
each other. They also identify the need for federation, but from
a reliability perspective. In order to guarantee the availability
of a system, it cannot rely on a single point of failure for
access control enforcement. At the same time, they identify
the need for a transparent scheme, that is also scalable.
Decentralized protocols such as the one proposed in their
work, can increase scalability, as changes are propagated much
more organically through the network, than with a centralized
structure, avoiding congestion issues.

In the work presented by Chen et al. [99], AC and authoriza-
tion are also identified as one of the major challenges for the
IIoT. They propose an access control framework for a scenario
where the owner of an IIoT device has the right to control the
AC policies of their device, and wants to set up fine-grained
policies. At the same time, a large number of IIoT devices are
shared by multiple entities that can interact with them based
on these policies.

Preuveneers et al. [107] argue that identity management is
crucial for AC purposes, and propose a framework handling
identities, authentication, and authorization in a networked
production scenario. They also raise the point of compatibility
with legacy devices, which is worth considering in any IoT

environment.
Vanickis et al. [108] make the observation that due to the

increase in frequency and sophistication of security attacks
in recent years, there is a need to include risk assessment in
the process of specifying AC policies, and that as a result
of these trends there is a growing interest in Zero Trust
Networking (ZTN) protocols as opposed to perimeter-based
security. The principle behind ZTN is to treat the intranet with
the same level of trust as the Internet. Their proposed policy
enforcement framework is built upon this principle, and is able
to provision firewalls across different segments of a network.

D. Maintainability

Maintainability concerns the ability to configure, reconfig-
ure, and update (parts of) a system. In Industry 4.0, these
concepts become crucial as the software and configuration of
IIoT systems must have the ability to be changed, in order
to provide protection against previously unknown security
threats [116]. Updateability can be considered a countermea-
sure against security attacks, since it allows for continuous
changes to firewall configurations as threats are identified,
as well as software patches for newly discovered software
vulnerabilities. As we will see in this section, the challenges
relating to maintenance are again related to resource con-
straints and the dynamism of IIoT environments, making
traditional maintenance solutions insufficient to adequately
address the needs in this domain.

In [110], George et al. state that the availability of security
updates is a critical concern for IIoT devices, but that due to
some IIoT systems being so lightweight and the infrastructure
not being fixed, it is extremely difficult to always patch all de-
vices in a network. To mitigate this, they describe an approach
that ensures update deployment on high-risk vulnerabilities,
to reduce the risk of serious attacks on the infrastructure.
For this, they propose a number of risk mitigation strategies
that can be used to help identify the devices most in need of
updates. Yadav et al. [114] also identify the timely application
of patches to all vulnerable systems in a network as a problem,
and propose a patch prioritization method to mitigate this.

In addition, some IIoT systems require the ability to be
updated without any disturbance to the service they provide.
Mugarza et al. [111] propose a secure updating mechanism
for mixed-criticality systems. However, their approach requires
the ability to run and monitor updated binaries in a sandboxed
mode. Not every device has the resources for this. They follow

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 77

12 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE VII
MAINTAINABILITY-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY.
THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE

TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
M-01 software updateability [52], [111]–[113] High 27%
M-02 configuration updateability [52], [67], [111] Medium 20%
M-03 disturbance-free updates [38], [111] Medium 20%
M-04 usability of update process [113] Low 7%
M-05 traceability [36], [113] Medium 13%
M-06 compatibility [36], [113] Medium 13%
M-07 transparency [113] Low 7%
M-08 secure status transfer [36]–[38], [117] High 27%

up on this research with an application of their system to a
smart city scenario [112]. The proposed update process is
in accordance with several safety standards, a requirement
identified in Section V-E.

According to Seitz et al. [113], updating IIoT systems
is often complex and cumbersome, and requires an expert
technician to perform the update, which can be a lengthy
process. This does not scale with the increase in connected
devices, and therefore the update process must be streamlined
and simplified, with minimal possibilities for errors due to
human behavior. Their suggestion is a marketplace, not unlike
those seen on smartphones. In addition to usability, they state
that update management of devices should be possible both
on-site and remotely, and updates and installations must be
logged so that they are traceable, for transparency and in case
of problems. While their proposed solution appears as a global
and decentralized marketplace, this might not be a good fit
for every type of device, especially when the functionality of
such a device is secret. Moreover, it raises questions about
how much power can be given to app developers and where
the trust in a system should lie, which are topics that can be
highly dependant on a specific scenario, and are worthy of
further investigation on their own.

Another problem is mentioned by Ulz et al. in [67],
wherein they state that cryptographic keys also require the
possibility to be updated securely. This can be interpreted as
a requirement relating to the maintainability of a system’s
configuration, and is an argument against the deployment
of hardcoded keys at manufacturing time, which sometimes
happens in production environments. In a later work, they take
this notion further, and propose a hardware device, that can be
temporarily attached to a system to allow for secure updating
and reconfiguration [52]. The updates are verified and installed
in an isolated environment provided by the special hardware,
for increased security and traceability, but still allows for
remote queuing and deployment of updates, to some extent.
However, this approach might not be practical in environments
where it is hard to physically reach all deployed systems.

1) Smart maintenance: Industry 4.0 enables smart mainte-
nance, which is essentially predictive maintenance of (parts
of) devices based on remote data collection about their usage.
This allows for a more streamlined production line where
system downtime and maintenance costs are reduced to a
minimum. Its relevancy is underlined by the inclusion of
continuous maintenance and maintenance frequency being

used as measurable safety indicators in a meta-model proposal
for automated security dependability detection within IIoT
systems [25]. Priller et al. [117] provide a case study on
this subject detailing a number of smart maintenance security
requirements, notably the ability to update as well as secure
communication channels themselves.

Lesjak et al. [36] reason that smart maintenance requires
secure communication channels, as status information of ma-
chines is sensitive data. Moreover, the maintainer needs the
ability to verify the validity of this data. They argue that there
are systems for which it is essential that they are exposed to
the Internet as little as possible, and propose solutions using
NFC to permit secure transmission of data to the maintainer,
as well as identity provisioning over NFC [37]. The specific
requirements identified in this work are the need to support
legacy devices, prevent data leakage, protect against Internet
access, protect the validity of the maintenance data (towards
the maintainer), and protect transparency of the communicated
data (towards the customer). In a later study, Lesjak et al. [38]
propose an MQTT-based approach where they add a further
requirement that data transmission must not cause safety-
critical interference, so that operational functionality remains
unaffected.

E. Resilience

The Industrial Internet Consortium (ICS) has published an
IIoT security framework [123] in which they define resilience
as “the emergent property of a system that behaves in a manner
to avoid, absorb and manage dynamic adversarial conditions
while completing the assigned missions, and reconstitute
the operational capabilities after causalities”. This definition
overlaps with several aspects of system trustworthiness such
as safety and reliability, but also security. Indeed, [15] and
[118] identify resilience as an important security challenge for
the IIoT. The implication that resilience requirements bring
to the security domain are that security technologies should
provide the capability to continue normal system operations if
parts of the system are considered compromised. This could
for example be done by rerouting tasks to other capable
components, or through other means, often belonging to one
of three canonical approaches identified by Laszka et al. [126]:
redundancy, diversity, and hardening.

The manner in which this requirement should be satisfied,
depends heavily on the scenario. In a WSN, it might be

78
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 13

TABLE VIII
RESILIENCE-RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY. THE

RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE TOTAL
NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
R-01 continuation of operation with compromised subsystems [15], [84], [118], [121], [126] High 31%
R-02 operation with intermittent connectivity [84], [125] Medium 12%
R-03 standards compliance [25], [112], [119], [120], [127] High 31%

acceptable to simply deploy enough sensors to guarantee some
redundancy, meaning that a small number of compromised
sensors can be kept contained and their output discarded until
the issue has been addressed. In a power plant however, it
might be catastrophic to disable one generator entirely if
one of its components has been compromised. Instead, it
might be possible to provide the compromised components’
functionality in some other way, or temporarily reroute energy
from other generators to guarantee some level of operations.

Fraile et al. discuss device driver security in a connected
virtualized factory environment [84]. They identify multiple
resilience-related issues, one being that intermittent connectiv-
ity might cause loss of history if status information should be
continuously sent to a centralized database or the Cloud. Their
proposed solution is to keep local databases that keep a short-
term history that can be synchronized with a back-end once
connectivity is restored. Another identified issue is to avoid
system failure, in case of a compromised device driver. The
authors propose redundancy and smart fallback mechanisms
to adapt to possible threats. The difficulty in a fallback
mechanism is that it requires the exact same configuration
and as much as possible of the current system state of the
normal system, in order to allow for rapid recovery. This
is not only difficult because state replication can introduce
considerable overhead, but it also means that the fallback
system is vulnerable to the same threats as the normal system.
To mitigate this issue, the authors propose introducing some
diversity in the fallback system. The proposed solutions in
this work are all rather specific to the considered scenario and
architecture, but use elements that are common in resiliency
mechanisms in general.

When looking at low-energy devices, WSNs have been
identified as a way to increase the robustness of SCADA
systems against network failures, due to their distributed and
self-organizing nature [125]. However, major concerns exist
regarding their ability to communicate securely, and the ability
to interface with some proprietary SCADA protocols. The
authors also identify a number of challenges relating to the
security of WSNs and propose a decentralized multi-agent
architecture to remedy a number of these.

In [25] and [120], a number of measurable indicator points
are identified, among which those relating to resiliency. In
the latter, they then use these indicator points to propose
a method for automated standard compliance testing in the
Industry 4.0 domain. Standard compliance is a powerful aid
in verifying the resilience, reliability, and safety of a system,
and can be applied to a wide spectrum of devices. Related to
standards compliance, Bauer et al. [119] investigate European
Union Agency for Network and Information Security (ENISA)

guidelines on secure Cloud services, and extract a number
of measurable security metrics that relate service level agree-
ment objectives between Cloud providers and their (industrial)
customers to concrete responsibilities. These metrics could
also be used in compliance testing. In this work, reliability
and redundancy are also identified as measurable indicators.
Similarly, Leander et al. [127] investigate the applicability
of the IEC 62443 cybersecurity standards [124] in Industry
4.0 applications. For a short survey on the security standards
relevant to Industry 4.0, we refer to [122].

F. Data security and data sharing

In today’s world, data security is critical in nearly any digital
environment, and the IIoT is no different. Many of the works
investigated in this survey identify confidentiality of data as a
security requirement in some form (e.g [17], [36], [49], [71],
[133], [136]). Traditionally however, availability and integrity
are considered more favorable than confidentiality for indus-
trial environments [129], [132], as they have a measurable
economic impact. This is not a sustainable viewpoint in an era
of connected devices, and is changing fast now that companies
seek to connect their systems to the Internet.

In a survey among companies, Autenrieth et al. [71] found
that they too consider data security to be one of the critical
factors for migration to Industry 4.0, a finding confirmed
by another study conducted by Moyne et al. [136]. In this
work, the authors additionally state that companies are hesi-
tant to adopt data-sharing based technologies (Cloud, smart
maintenance, fault detection and prevention, etc.) as there
is no evidence of these technologies being safe or secure
when it comes to protecting intellectual property, as a result
of which they identify the need for a standardized way to
achieve intellectual property protection in the presence of
data sharing mechanisms. The sentiment that companies are
reluctant to rely on Cloud providers for data storage and
sharing is shared by Esposito et al. [29]. However, they also
note that most data breaches come from within companies, and
not Cloud providers. They propose a cloud storage solution
that aims to minimize the attack surface both in the Cloud
and within the company. They identify data loss mitigation
as another requirement, identifying four key elements for
an effective solution: prevention, identification, notification,
documentation.

The challenges in this domain relate to three colliding
factors: Firstly, due to the heterogeneity of devices, data
security mechanisms need to be able to operate with extremely
few resources. Secondly, due to the criticality of some IIoT
applications, the data security requirements are very high.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 79

14 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE IX
DATA SECURITY AND DATA SHARING RELATED SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO

THE CATEGORY. THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT
COMPARED TO THE TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
DSS-01 data loss mitigation [29] Low 2%
DSS-02 data confidentiality [36], [50], [52], [53], [55], [98], [105],

[130], [135], [139], [149]
Medium 19%

DSS-03 standardization [136] Low 2%
DSS-04 secure data transport [34], [38], [40], [137], [142], [143], [145] Low 7%
DSS-05 secure external data storage [29], [65], [66], [98], [131], [139], [141],

[146]–[156], [159], [161]
High 34%

DSS-06 data flow control [162]–[164] Low 5%
DSS-07 data protection legislation compliance [50], [98], [165] Low 5%

Thirdly, many smart capabilities are enabled by the sharing
of data, but in industrial contexts, data is often sensitive and
confidentiality is of utmost concern, which poses a dilemma.

Data security covers a wider area than just encryption tech-
niques. One of the vital aspects of the Industry 4.0 paradigm
is making smart use of available data. This inevitably involves
sharing data with other entities, that can be anywhere from a
part of the system to being outside the organization boundaries.
As an example, consider the discussion on the sharing of
device usage metrics in Section V-D1. Even if no other data
is shared, usage metrics will have to be sent to the device
manufacturer to enable smart maintenance, but might also
be used to deduce sensitive information such as production
volume. A similar example would be data analysis for anomaly
detection (Section V-G). While encryption techniques do offer
ways to aid with partial sharing of data, we will also discuss
other ways of keeping data confidential.

1) Data transport: The MQTT protocol is widely used
for data sharing between industrial systems, but by itself
only supports user/password authentication, and provides no
security measures on the network or application layer. This
becomes problematic especially in the context of the IIoT. In
order to remedy this, Lesjak et al. [38] propose using TLS
as a secure layer upon which MQTT can function. While
this provides all the security benefits of TLS, it does add
considerable overhead to the edge devices that will now have
to manage TLS contexts. In their work, the authors propose
using a trusted hardware extension at the edge devices that can
store keys and also manage the TLS context. While modern
devices might have access to cheap trusted hardware, this
is not always possible with legacy devices, therefore, other
solutions will need to be investigated. Katsikeas et al. [34]
also observe that TLS can be used to secure MQTT commu-
nication, but note that this will not work well in WSNs due
to severe resource constraints. Therefore, they try to minimize
the overhead by encrypting messages at the link layer. In a
later work, Lesjak et al. [40] observe that an often-needed
requirement is communication with other stakeholders, e.g.
equipment manufacturers (for smart maintenance) or nearby
links in a supply-chain. To enable authenticated, secure data
communication between these, the authors propose a hybrid
multi-stakeholder protocol on top of MQTT that allows end-
to-end encryption of payloads that need to be transmitted to
external parties.

Alternatively, more modern protocols such as The OPC
Unified Architecture (OPC UA) [145] have authentication and
encryption support [34], [143], and hardware acceleration for
the cryptographic primitives used in these is starting to appear
in lightweight products [251]. Adoption of the OPC UA could
thus help in meeting some of these constraints. One recent
experimental deployment combines this with trusted hardware
to facilitate secure connections [142], but acknowledges that
further research is needed. Finally, it is worth noting that
regardless of the security protocol used, from an energy and
efficiency standpoint, there is a case to be made for selectively
encrypting only those messages that might harm the system
if tampered with. In [144], the authors propose a symbolic
analysis model that can identify such messages.

2) External parties: Data confidentiality when at rest or
in transit, is often realized through cryptographic means. The
challenges in finding suitable ciphers for the very diverse IIoT
environment are described by Zhou et al. in [55]. Again, the
main challenges appear to concern energy and other resource
constraints. Irrespective of the cipher used, the authors also
identify the key distribution and management problem, as
previously discussed in Section V-B1. More generic challenges
are described by Yu et al. [160]. They argue that Reliable
storage, convenient usage, efficient search, and trustworthy
data deletion are some of the major issues for Cloud and Fog
scenarios.

As the Cloud promises a large amount of storage and com-
putational resources, Cloud connectivity is often necessary for
Industry 4.0 applications. With a suitable encryption scheme,
data might be stored securely in the Cloud [98], but even then
it is not possible to interact with it in any way other than
retrieving it for decryption. Seeking to remedy this, there has
been a recent increase in research efforts in modern crypto-
graphic techniques such as homomorphic encryption, allowing
for computation on encrypted data ([65], [66]), and searchable
encryption, enabling search operations on encrypted data (
[146], [161]). Specific to the IIoT data sharing scenario,
Deng [147] proposes an anonymous aggregate encryption
system that allows IIoT devices to encrypt data into one
ciphertext that can be decrypted by multiple recipients with
their individual keys, while retaining their relative anonymity.

Fu et al. [149] propose one way of ensuring confidentiality
in the Cloud, while maintaining the ability to search through
data sets, through a privacy-preserving encryption scheme.

80
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 15

Deployed IIoT devices transmit their data to special (on-site)
servers which aggregate the data, remove redundant entries
and prepare it for storage in a Cloud-backed database by
indexing and encrypting it. Users can then search this database
through trapdoor queries, meaning that the search process can
be performed on the encrypted data. In order to obtain the
searched data, users can download the encrypted results, and
use their private keys to decrypt them. As a result, the Cloud
environment will never have any access to the unencrypted
data. Xu et al. [159] propose a similar solution, also relying
on trapdoors to perform search queries on encrypted data sets
in the Cloud. The difference is that in this solution, the used
encryption techniques aim to be lightweight enough to allow
for decryption by the IIoT devices (specifically sensor nodes)
themselves, without requiring an intermediate server. This
approach only targets data storage, search, and retrieval. Other
use cases for Cloud environments, such as big data analysis in
the Cloud itself, cannot be solved using this method. Miao et
al. [155] also propose a Cloud-assisted method in the context
of an e-health scenario, while attempting to minimize intensive
tasks such as decryption and decryption at the Edge side, to
computation requirements and power consumption

With the advent of blockchain technology, there has been
an increase in interest in data sharing solutions based on
decentralized ledgers. Sani et al. [157] propose a privacy
preserving blockchain using mutually authenticated encryption
for confidential data exchange, while others propose things
such as energy trading [150] and big data markets [152].
Huang et al. [151] list three main challenges in blockchain
technology: the trade-off between efficiency and security,
coexistence of transparency and privacy, and conflicts between
concurrency and throughput. These concerns are shared by
Nikander et al. [156], who discuss throughput, latency, and
resource requirements more in-depth. Further, they identify
four models of operation for lightweight devices to participate
in blockchains. Another proposed solution is to integrate
devices with multiple ledgers, although the authors state that
this is an active field of research. The aforementioned concerns
are also identified in [148], where the authors further state that
while blockchain promises enhanced data security and avail-
ability, for the IIoT domain there remain challenges regarding
data privacy, integrity, and identify certification. They also
list interoperability, standardization, and regulatory aspects as
more general blockchain challenges. Other blockchain-based
proposals in this domain are [153] and [154]. For a more
thorough discussion on security requirements and challenges
for blockchain in the IIoT, we refer the interested reader
to [35], and for a discussion on risky characteristics common
to blockchain technologies we point to [158].

3) Data flow-control: Through data flow control, data ac-
cess policies can be enforced on a higher-level than encryption
techniques, which provides a way to address security- and
privacy requirements relating to the processing of data as it
moves in a system.

Al-Ali et al. [162] describe a real-world use case for data
flow monitoring, where certain data on machine error rates
is shared within the company itself, and across organization
boundaries based on a set of privacy policies. Some of these

policies cannot be statically enforced because they depend
on dynamically changing processes or coordinated interaction
between different entities. They conclude that the ability to
capture dynamic situations is a challenge that has yet to be
overcome.

Identifying data security as a design requirement, Bloom
et al. [163] investigated input-output patterns in existing IIoT
applications in order to gain a better understanding of ways
to secure information related to IIoT operations. Based on
their observations, they propose some design patterns that can
help protect data flow already in the design stage. Schütte and
Brost [164] state that data flow enforcement is a requirement
in certain contexts, and propose a policy-controlled data flow
control framework capable of monitoring messages between
entities both statically and at run-time. This allows users to
not just specify access policies, but also to state how data
elements are allowed to be processed by the system. Whether
dynamic monitoring with this solution is possible in time-
critical systems, is still a subject for further study.

4) Data privacy: Data privacy and ownership is an im-
portant topic for many companies and governments, and with
the recent popularity of Cloud storage services, these issues
require careful consideration [98]. With the amount of data that
is generated by modern devices, it becomes possible to create
detailed profiles of users, putting their privacy at risk [168].
In an attempt to mitigate this, an anonymous data collection
framework is proposed in [169].

With recent legislation in the European Union (the General
Data Protection Regulation (GDPR) [166]) effectively requir-
ing privacy-by-design for all products, data privacy should
be taken seriously by manufacturers as well. Preuveneers et
al. [50] discuss the implications of the GDPR in Industry
4.0 and smart factory environments. For example, some re-
quirements derived from this legislation are that (in general)
customers of a service have the right to retrieve their personal
information, the right to be forgotten, and the right to erasure
of their personal information. This should be taken into
account when designing systems that interact with humans
and might collect such information. Acknowledging this need
for integration, Conzon et al. [165] describe a model-based
framework for IoT, the security and privacy principles of
which are derived from the GDPR.

Privacy does not only concern data collection and Cloud
storage, but also requires the obfuscation or omission of meta-
data and other properties that can be leveraged by adversaries.
For example, in WSN networks, sensor nodes are often spread
over a geographically wide area, and an adversary might
attempt to locate the source node of specific traffic based on
message flow. To remedy this, source location privacy schemes
should be deployed such as the one proposed in [167].

G. Security Monitoring

Dynamic monitoring of behavior in a system is an effective
way to detect and respond to malicious activity, and sys-
tems that provide these capabilities are commonly known as
Intrusion Detection Systems (IDSs). In the IIoT domain, two
commonly identified security requirements are the ability to

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 81

16 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE X
SECURITY MONITORING REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY. THE RELATIVE
INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE TOTAL NUMBER

OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
SM-01 infrastructure monitoring [55], [115], [170], [171], [173], [176],

[178], [181], [184], [185], [189]–[195],
[197]–[199], [201]–[204], [206]–[208]

Very High 64%

SM-02 threat response [55], [115], [175], [184], [187], [193],
[198], [204]–[206]

Medium 24%

SM-03 handle heterogeneous sources [193] Low 2%
SM-04 security policy enforcement [191], [199], [204] Low 7%

monitor infrastructure, and respond to known and unknown
threats when necessary [55], [193], [198], [206]. The reason
these are deemed particularly important for the IIoT comes
from the fact that older, less secure devices are likely to be
connected to the network as well [208]. These devices cannot
always be patched to protect against known vulnerabilities, and
therefore require continuous monitoring. An example of this is
the IDS proposed by Kim and Kang [189], which specifically
targets the Modbus protocol, a widely used industrial control
protocol, and a good example of an existing protocol severely
lacking in security mechanisms. Similarly, the MQTT protocol
has been covered like this [178]. A second reason can be found
in providing protection against Denial of Service (DoS) at-
tacks [115] and improving congestion control in general [187].

Hasan and Mouftah [184] state that latency is one of the
major challenges for security monitoring systems, due to the
geographical distance between devices in certain Industry 4.0
networks, network latency can become too high for acceptable
response times to intrusions, especially when using Cloud
security services.

Another identified challenge for security monitoring in
the IIoT is the imbalance of data sets. Due to the sheer
amount of data generated by IIoT devices and the low attack
frequency, obtained data sets that can be used for machine
learning approaches to intrusion detection tend to be very
imbalanced [206].

Many proposed IDS solutions exist that are designed to
work in the general IT domain. However, it becomes harder
to monitor threats when taking into account the extreme
environments in which some IIoT appliances are deployed,
resource constraints, and data privacy requirements. On the
other hand, as IIoT system activity is largely the result of
automated processes, the traffic patterns tend to be fairly static
and periodic, making it easier to perform accurate anomaly de-
tection [180], [208]. Additionally, this predictability introduces
the possibility for utilizing these patterns against the system
through stealthy injection attacks [196], or to establish covert
communication channels, as demonstrated in [172], and should
be monitored against. In [176], Bernieri et al. show that this
predictability can be used against attackers by developing a
honeypot for a water distribution system. It simulates physical
processes, and is able to detect attacks that aim to modify the
system’s behavior. A machine learning based IDS capable of
detecting these types of attacks proposed in [181]. However,
Genge et al [183] note that when monitoring the output of
physical processes, care has to be taken to take the gradual

decay of processes (e.g. the wear on equipment) into account.
They show that this can be done through statistical analysis.
As the authors observed, there is very little work done in this
area, and more research is needed to develop sophisticated
measures that incorporate for process aging.

Settanni et al. [198] propose a self-adapting IDS that detects
anomalies in the range of certain control values. Their solution
requires the continuous collection of logs of all connected
devices to a central control system, which is acceptable in
environments with reasonably powerful machines, but not in
WSNs or other sparse environments with lightweight nodes.
The anomaly detection algorithm for physical quantities pro-
posed by Zugasti et al. [208] similarly looks at observed
quantities. However, in this work, no attention is given to the
resource overhead of this approach, nor where it should be
deployed in an IIoT system.

Very recently, there has been a surge in interest in machine
learning techniques for anomaly detection in IIoT. For exam-
ple, [200] and [203] provide a performance comparison of
various machine learning algorithms for detecting anomalies
in IIoT, in [171], Al-Hawawreh et al. propose a deep neural
network approach for use in brownfield installations, in [170]
the authors propose a similar system for ransomware detection,
and in [197], the authors employ machine learning to detect
time synchronization attacks. In [173], Alem et al. acknowl-
edge the power of machine learning, but warn against high
potentially false-positive rates. To mitigate this, they propose
a hybrid system, that derives a semantic model from the ISA95
standard. Then, using a neural network for anomaly detection,
they can filter out false positives and categorize anomalies
based as being malicious or just dysfunction. Deep learning
IDSs do not come without risk. In [186], the authors show
that one can reliably create adversarial samples that defeat
deep learning based systems. The findings in [188] agree with
this, as also there the authors manage to bypass machine
learning systems. Additionally, they show two methods of
increasing resilience through retraining of the networks. Ro-
bustness against adversarial samples is something that needs
to be taken into account when using machine learning for
security monitoring. For a more thorough overview of the state
machine learning for industrial IDSs, we refer the interested
reader to [207].

Moustafa et al. [193] identify the requirement for IIoT
monitoring services to handle a large amount of heterogeneous
data sources. Their proposed solution uses Markov models and
a central processing system (with parts running both in the

82
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 17

Cloud and Fog). The data collection itself happens through
middleware, thereby minimizing the overhead on resource-
constrained devices.

Threat response is a requirement identified by many works
in this area, e.g. [55], [198], [205]. While this is usually in
the form of notifying security personnel and mitigating the
threat by stopping the service, Babiceanu et al. [175] use the
flexibility provided by Software Defined Networkings (SDNs)
to let the network operate in multiple modes, increasingly
trading quality of service for security.

Whereas some approaches focus on intrusion detection in
one layer in the Edge-Cloud spectrum, Yan et al. [115] propose
a monitoring framework that contains systems operating in the
Edge, Fog, and Cloud layers. This way, resource overhead for
extremely lightweight Edge devices is kept to a minimum,
while at the same time allowing localized management and
response through the Fog layer. The Cloud layer uses data
analysis approaches to intelligently detect attacks. This is
similar to the DDoS mitigation approach proposed by Zhou
et al. [205], where local virtual network functions, Fog, and
Cloud work together to respond to DDoS attacks.

Another aspect of security monitoring concerns the con-
tinuous monitoring of network traffic ensuring that network
security policies are not violated. This type of monitoring
is to help maintain the integrity required of Industry 4.0
network infrastructure, and as such does not target devices
themselves, but rather SDN controllers and routing devices.
Melis et al. [191] propose a live monitoring solution of flow
permission controls, as well as a proactive formal verification
mechanism of the security policies in SDN systems.

That security monitoring can also be proactive, can be seen
by looking at the fuzzing frameworks proposed by Flores
et al. [182] and Niedermaier et al. [45]. The authors of the
latter propose a fuzzing framework, that continuously tries to
“attack” networked services with randomized data streams. It
is lightweight, and is able to identify vulnerabilities due to
common software bugs such as buffer overflows. However,
with an approach such as this, care has to be taken that system
performance is not affected, and that critical services remain
available. As such, fuzzers might mainly be a tool for security
researchers, and developers aiming to create a highly secure
product. But when deployed carefully, production systems can
also utilize them to detect configuration errors and vulnerabil-
ities.

That IIoT environments can benefit from specialized moni-
toring approaches can also be seen when looking at drone sce-
narios. In their behavior and vulnerability assessment, Sharma
et al. [199] identify a number of security requirements that are
specific to this scenario, as well as several requirements that
are more generally applicable. Specifically, they identify the
need for: identification mechanisms; continuous monitoring;
predictive and highly accurate vulnerability assessments; and
the ability for anomalous drones to be marked by the moni-
toring service, so that this information can be shared with all
drones in a swarm. Their solution utilizes Petri Nets to monitor
behavior. Some other proposed monitoring solutions aimed at
drone scenarios are based on behavior rule specifications [192]
and recursive parameter estimation [177]. Another example of

specialized security monitoring is provided by Deshpande et
al. [179] propose a heartbeat protocol catering specifically to
WSNs, ensuring that overhead on the sensor level is minimal.

H. Network Security
Achieving adequate network security consists of many

things, including authentication, secure transport, reliable and
secure routing, and more. In previous sections we already
discussed some of these, and will therefore focus on network
infrastructure security.

With industrial networks becoming increasingly complex
due to a large number of connected devices, we are faced
with problems similar to those that occurred during the rapid
expansion of the World Wide Web [187]. Because of this,
many performance and scalability issues need to be addressed,
such as bandwidth and latency contention. According to [212],
many configuration, traffic control, and security systems rely
on proprietary software which make integration in generic
management frameworks impossible. At the same time, they
state that network infrastructure is required to be flexible,
to handle dynamic environments. To solve this challenge,
two paradigms aimed at separating configuration and control
from data transfer itself have been gaining traction: SDN
and Network Function Virtualization (NFV). SDN concerns
configuration and management, while NFV concerns virtual
environments to run network and security functions on a layer
that is abstracted the devices on which it runs. The authors
propose an architecture using these paradigms to enforce
security policies on switches with SDN and NFV capabilities,
and move away from e.g. firewalls. They essentially attempt
to address four security requirements through this approach:
the ability to specify and enforce network security policies, to
minimize management and configuration overhead, to allow
for dynamic reconfiguration of the network and its security
policies, and to minimize the overhead caused by enforcement
of security policies. Other points where SDNs can improve
system security are discussed in [217].

1) Latency and timeliness: Marchetto et al. [221] state that
additionally connectivity and isolation between endpoints are
network security requirements, although these can possibly be
interpreted as security policies by themselves. While they iden-
tify these security requirements, their work addresses a slightly
different matter: the Virtual Network Embedding problem,
which concerns the placement of virtual network functions
so that they are optimized and can be verified to correctly
enforce the desired security policies. This can potentially be
utilized by other works to keep overhead to a minimum and
minimize network latency. Hu [218] also identifies latency as a
challenge and states that the controllability and configurability
of network architectures and applications are key elements
in reducing latency. The implied requirement is thus that
IIoT environments must be controllable and configurable at
every level. This network latency issue is also relevant to
security monitoring (previously discussed in Section V-G), as
keeping latency to a minimum is a large issue in network
monitoring services, and possible solutions include alteration
of the network architecture [184].

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 83

18 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE XI
NETWORK SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE CATEGORY. THE RELATIVE

INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT COMPARED TO THE TOTAL NUMBER
OF PAPERS FOR THAT CATEGORY

ID Security requirement Related sources Relative interest % within category
NS-01 dynamicity of configuration [212], [218], [219] Medium 10%
NS-02 security policy enforcement [221] Low 3%
NS-03 management overhead minimization [212], [224] Low 7%
NS-04 network isolation [129], [210], [211], [217], [220], [221], [224] Medium 24%
NS-05 timeliness [187], [213], [218]–[221] Medium 21%
NS-06 availability (DoS, jamming, etc.) [187], [214], [219], [221], [222], [226] Medium 21%
NS-07 wireless transmission security [32], [33], [209], [215], [216], [223]–[227] High 34%

For time-critical applications, there exist specialized stan-
dards such as the Time Sensitive Networking (TSN) standards
to provide deterministic and timely networking capabilities
between systems. These applications often require remote ac-
cess to sensors, actuators, and Programmable Logic Controller
(PLC)s driving industrial devices. These connections must
fulfill the same requirements as when those devices would
be directly connected on the machine level [219]. For this,
safety and security measures must be present in the network
architecture to correctly prioritize such traffic.

With a gradual movement towards an IIoT enabled industrial
process, it is expected that many legacy devices will remain
operational for some time in parallel with new technologies,
in a sunset phase. These legacy devices must thus be isolated
from the internet, but care must be taken in the isolation
technologies, as to not provide too much overhead in time-
critical processes. To that end, Lackorzynski et al. [220]
compare multiple readily available VPN solutions on metrics
important to industrial appliances.

2) Availability: Latency is not the only issue. From a
dependability perspective, single points of failure should be
eliminated. However, with modern Cloud infrastructures, of-
ten the network virtualization solutions proposed by Cloud
providers constrain customers to that one Cloud service
provider [222]. To allow critical applications to utilize the
Cloud for enhanced functionality, without sacrificing avail-
ability, the authors propose a platform to allow virtualized
networks spanning multiple Cloud providers as well as private
networks, while also solving the Virtual Network Embedding
problem. This way, they are able to explore the flexibility of
combining on-premises systems with Cloud systems, and sat-
isfy privacy requirements by creating security policies limiting
the mapping of sensitive NFV applications to specific classes
of networks.

3) Wireless: Many smart devices make use of wireless
technologies for data transmission. These wireless communi-
cation standards work on a lower level than the data transport
technologies discussed in Section V-F1. However, the secu-
rity requirements for wireless transmission that we found in
the investigated literature largely overlap with those of data
transport security. A common type of wireless communication
technologies aimed at long-range low-power IoT devices are
LPWAN technologies [229].

Chen et al. [223] list a number of security requirements
in a review of the Narrow Band IoT (NB-IoT) standard. This
standard was developed by the The 3rd Generation Partnership

Project (3GPP) [252] and focuses on extremely low-power
devices and indoor connections. The authors identify DoS as
a much more apparent threat than in traditional networks, as
low-power mobile devices will be easily drained from battery
power. Another requirement is to prevent eavesdropping of
transmissions, as information leakage can lead to devastating
results. The authors also identify the need for devices to
sign and encrypt their transmissions, in order to mitigate the
potential impact of a compromised base station (they identify
this as more likely than with traditional wireless technologies).
Mutual authentication between devices and the base station is
also mentioned, in order to prevent spoofing attacks. Recently,
an exploratory investigation has shown that properties derived
from the relative distance and direction between transmitters
can help in identifying these types of attacks [32]. As the
NB-IoT standard supports a large number of devices (100,000)
being connected to one terminal, it is challenging to create
sufficiently lightweight and efficient authentication and access
control mechanisms for these.

Kail et al. [33] compare the security properties of several
LPWAN technologies in the unlicensed bands. This compari-
son is done through the inspection of a number of capabilities
that are to be expected of a secure standard, and therefore we
consider them as sensible security requirements for wireless
technologies: authentication, message integrity, confidentiality,
Over-the-Air firmware upgrade capabilities, reliable commu-
nication, and key exchange capabilities. Note that these re-
quirements are also already covered in other sections, so we
do not list them in Table V-H. Additionally, they identify the
need for protection against common attacks against wireless
technologies, such as wide-band jamming, selective jamming,
eavesdropping, traffic analysis, replay attacks, and wormhole
attacks. Their conclusion is that further research on security
and privacy-related features for low-power wireless commu-
nication standards is needed. Wang et al. [226] argue that
in order to satisfy the confidentiality requirement, encryption
techniques are not sufficient, and propose a friendly jamming
scheme, making it harder for eavesdroppers to distinguish
communication from noise.

6TiSCH [228] is a standardization effort by the Internet
Engineering Task Force (IETF), aimed at low-power determin-
istic IPv6 communication for WSN technologies and industrial
IIoT networks, by building on the IEEE 802.15.4 standard for
low-rate Wireless Personal Area Network (WPAN)s, thus sup-
porting a different category of devices than LPWAN technolo-

84
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 19

gies. Although timeliness is one of the major goals of 6TiSCH,
it also aims to incorporate a variety of security properties. For
example, the authors state that support for Datagram Transport
Layer Security (DTLS) and TLS is taken into consideration.
A further discussion of 6TiSCH security is given in [227].
Related to WPAN technology, Ulz et al. [225] propose a secure
communication framework utilizing NFC, aimed at providing
a reliable solution for mobile robots that need to communicate
with machines. Due to the short-range nature, this naturally
helps remedy eavesdropping and interference issues

The 5G standard also addresses IoT scenarios, and provides
support for virtualization of network resources. This enables
the creation of isolated network partitions with different de-
mand profiles. Two key scenarios that 5G targets are massively
deployed low-bandwidth IoT devices, and critical latency-
sensitive applications. Both of these map very well to common
IIoT and Industry 4.0 scenarios. Kurtz et al. [224] elaborate on
network slicing, and how it can be realized through use of SDN
and NFV technologies. The security requirements identified in
their work concern strict isolation of network traffic, and the
ability to provide hard service guarantees, such as on latency,
data rate, and reliability. Additionally, they mention the need
for manageability in this environment, as misconfiguration of
systems can have a negative impact on the capabilities of the
overall network. Their results show that 5G technologies can
be used for real-time, critical applications.

I. Models and methodologies

In this subsection, we discuss proposed security models and
methodologies in the investigated literature. As the security
issues that these address are relatively high-level, the security
requirements are relatively abstract and encompass multiple
aspects of IIoT systems. Therefore, the security requirements
listed in table V-I are to be interpreted as recommendations
and tools to improve the degree to which other security
requirements can be satisfied, as well as easing the process
of doing so.

Shaabany [51] states that software and hardware should be
designed carefully, with security in mind, in order to reduce
the attack surface as much as possible during design time.
Among some less-security related requirements, they argue
that specialized functions should be standardized for reuse as
much as possible (across manufacturers as well), that all com-
ponents should be uniquely identifiable and that this identifier
should be used in communication with other components, and
that security guarantees should be given on every hierarchical
level. To aid in addressing these needs, the authors propose a
security-by-design approach encompassing both hardware and
software. It is thus clear that security should be considered
at every step of the development lifecycle of a system, and
in [234], Eckhart et al. propose 14 security activities spread
across multiple phases in the development process that have
shown to be effective for cyber-physical systems. Maksuti et
al. [42] take a more flexible stance than Shaabany, observing
that security and business process performance will always
come at the cost of each other. They state that one possible
solution is to create a self-adapting system that can flexibly

provide end-to-end security. To this end, they propose the
investigation of self-adapting models and describe a relevant
meta-model. As an example, they suggest that TLS sessions
can be re-used for intermittent communication in situations
where the threat is deemed to be low, but the rate at which they
should be renewed can be dynamically scaled up and down to
accommodate for differences in threat levels. Another security-
by-design approach recommends the usage of security control
assignment matrices to determine the types of security controls
that should be present in various parts of a system [132].

It is often easier and more effective to create more specific
architectural frameworks rather than generic ones, and the
investigated literature contains specialized models and meth-
ods for various scenarios. The security-by-design approach
in [165] specializes in actuating and sensing scenarios, while
in [231], the authors introduce an integrated model aimed
specifically at mobile e-health applications. Their approach
also considers security issues at design time and can be
integrated into more generic architectures. Craggs et al. [233]
target research scenarios, and describe a reference architecture
for research testbeds, making the accurate observation that
real IIoT scenarios are likely to have a mixture of legacy
and new technologies and that security solutions should ac-
count for this. In [237], a method for arriving at a security
capability-model for IIoT supply-chains is described, as the
authors identified that businesses generally lack insight in
their own supply chains, which is a security liability. In a
comprehensive work, McGinthy and Michaels [242] describe
secure architectural frameworks for IIoT and WSN sensor
nodes, with security features grouped by energy class. They
address many security requirements that should be satisfied
for these classes, including data confidentiality, attestable boot
procedures, and key management. Becue et al. [23] state
that it is necessary to improve the prevention, detection,
investigation, and response to adversarial machine learning
attempts on AI-powered modules. At the same time, humans
and machines should aid in the surveillance of each other; if
a human behaves anomalously, machines should be able to
detect and report this, and vice versa. They propose using a
"cyber-range" approach where digital twins of physical devices
are modeled by a team of engineers using feedback from the
operators, as well as common design techniques such as risk
assessments. These digital twins are then used to simulate
more optimized usage scenarios, and red/blue teams perform
attack and response scenarios, that help the digital twin learn
about how to protect and respond to attacks by itself. Once
a digital twin is deemed sufficiently secure it can be used
in production settings. This approach requires decisions that
steer towards such a model early on in the architectural design
process. This is also necessary for the model described by
Condry and Nielson [26]. In this model, the authors leverage
capabilities of gateways between control systems and the
internet to allow for direct communication between control
systems and client devices. Kondeva et al [240] observe that
the fields of safety and security engineering are closely related
but have their own techniques and methods. They consider that
safety and security requirements should not clash with each
other and that these should be integrated more tightly. To this

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 85

20 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

TABLE XII
MODELS AND METHODOLOGIES SECURITY REQUIREMENTS, SOURCES THAT IDENTIFY THESE, AND THEIR INTEREST LEVEL RELATIVE TO THE
CATEGORY. THE RELATIVE INTEREST LEVEL IS BASED ON THE PERCENTAGE OF WORKS ADDRESSING THE SPECIFIC SECURITY REQUIREMENT

COMPARED TO THE TOTAL NUMBER OF PAPERS FOR THAT CATEGORY.

ID Security requirement Related sources Relative interest % within category
MM-01 adequate risk/threat assessment [43], [44], [83], [100], [126], [232], [235],

[236], [241], [244]
High 33%

MM-02 minimization of overall attack surface [51] Low 3%
MM-03 security by design [23], [26], [41], [42], [51], [132], [230],

[231], [234], [240], [242], [243], [245]
High 43%

end, they introduce a method to generate attack trees from
fault tree analysis.

Risk assessment for the IIoT is another field that has
seen activity in recent years. In [126] and [44] two risk
assessment models for the IIoT are presented. The first is
mainly focused on water sewage systems, but has aspects
that can be generalized, while the second aims to be general,
and utilizes use cases as its input. The authors of [44] state
that it is not possible to protect against threats without a
proper risk assessment. The reason that traditional risk as-
sessment methods are not adequate due to the complexity
of integrating all the aspects of an IIoT system, and due
to the increased impact factor in IoT environments because
of the increased amount of physical assets and ways it can
affect human lives. To this end, they propose a 10-phase
comprehensive risk assessment method, that is able to capture
many relevant aspects. Mouratidis and Diamantopoulu [43]
take things even further by proposing a more formal security
analysis method for the IIoT. In their method they build on
the Secure Tropos language to allow for precise modeling of
industrial environments, their security constraints, and relevant
threats. They then use graph analysis to trace possible attack
paths and identify which devices should satisfy certain security
requirements. A more manual approach is taken by Boyes
et al. [232]. They propose a multidimensional categorization
framework, that can help with a better analysis of threats, aside
from being useful as a more general categorization framework.
They envision that a proper categorization of devices will help
with identifying similar threats across different aspects of the
IIoT domain.

As resource constraints are often a bottleneck for IIoT
systems, it is perhaps surprising that there has not been a lot
of work on modeling the overhead these bring. The only such
work that was found in the literature is by Ivkic et al. [238],
and describes an onion layer model that enables one to sum
all overhead introduced by security functions.

J. Summary and Discussion

In our survey of the literature on security in the IIoT domain,
we have extracted 49 security requirements covered by the
investigated works, spread across 8 categories: Authentication,
Access Control, Maintainability, Resilience, Data security and
data sharing, Security Monitoring, Network Security, and
Models and Methodologies. Additionally, we have made an
effort to summarize the literature in our discussion.

In this subsection, we summarize the findings discussed in
this section in two ways. Firstly, in Table XIII, we lay out

TABLE XIII
DISTRIBUTION OF THE INVESTIGATED PAPERS ACROSS THE CATEGORIES

DISCUSSED IN THIS WORK.

ID Category Papers (N◦) %
A Authentication 77 27%

AC Access Control 16 6%
M Maintainability 15 5%
R Resilience 16 6%

DSS Data Security and Data Sharing 58 20%
SM Security Monitoring 42 15%
NS Network Security 29 10%

MM Models and Methodologies 30 11%

the number of works per category, providing a measure of
the distribution of the papers across categories. As detailed in
Section V, the number of papers addressing each category is
taken from Figure 2 as the number of papers appearing in the
corresponding level 1 (i.e., subsection) and all level 2 (i.e.,
subsubsections) nodes, but removing duplicates. Secondly,
we summarize all the identified research requirements in
Table XIV, listed in reverse order by their popularity based on
the total number of investigated works. Note that the overall
interest for this table is computed based on the total number
of works covered in this survey, and is thus different from
earlier tables in this section where it was computed based on
the numbers within each category. Table XV lists these new
thresholds.

A few observations can be made when looking at the
popularity of the categories, which are laid out in Table XIII.

Firstly, research interest in Authentication, together with
Data Security and Data Sharing appears significantly higher
than the other categories. This is interesting because these
intuitively also have the most in common with standard IoT
scenarios. At the same time, the very IIoT-centered categories
of Maintainability and Resilience are some of the least active.
We believe that this exposes a promising area for new research.

Access Control has seemingly been of the least interest,
perhaps because many of its security requirements and works
are already implicitly treated in the Authentication section, and
various works present frameworks that provide both, but are
discussed in the Authentication category.

Security Monitoring is also fairly popular, with 41 works
discussing it in various ways. What stands out about this
category is that considering its popularity, there are relatively
few (4) different requirements covered in the literature. This
stands out even more when looking at Table XIV, where
requirement SM-01 is the most popular of all. Further, both
SM-01 and DSS-05 have seen significantly more interest

86
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 21

TABLE XIV
POPULARITY OF THE INDIVIDUAL REQUIREMENTS, TAKEN AS A PERCENTAGE OF THE TOTAL NUMBER OF UNIQUE WORKS COVERED IN THIS SURVEY.

Overall interest ID Security Requirement Category Overall %

Very High

SM-01 infrastructure monitoring Security Monitoring 9.5%
DSS-05 secure external data storage Data Security and Data Sharing 7.1%

A-06 mutual authentication Authentication 4.6%
MM-03 security by design Models and Methodologies 4.6%

High

DSS-02 data confidentiality Data Security and Data Sharing 3.9%
A-02 key distribution Authentication 3.5%

SM-02 threat response Security Monitoring 3.5%
NS-07 wireless transmission security Network Security 3.5%

MM-01 adequate risk/threat assessment Models and Methodologies 3.5%
A-08 minimization of user interaction Authentication 2.8%

AC-04 decentralized AC Access Control 2.8%

Medium

A-01 multi-factor authentication Authentication 2.5%
NS-04 network isolation Network Security 2.5%

A-07 privacy-preserving authentication Authentication 2.1%
NS-05 timeliness Network Security 2.1%
NS-06 availability (DoS, jamming, etc.) Network Security 2.1%

A-03 node addition, revocation, rekeying Authentication 1.8%
A-04 decentralized key management Authentication 1.8%

AC-02 fine-grained AC Access Control 1.8%
R-01 continuation of operation with compromised subsystems Resilience 1.8%
R-03 standards compliance Resilience 1.8%
A-10 attestation Authentication 1.4%

AC-01 handle dynamic changes Access Control 1.4%
M-01 software updateability Maintainability 1.4%
M-08 secure status transfer Maintainability 1.4%

DSS-04 secure data transport Data Security and Data Sharing 1.4%
A-09 non-repudation Authentication 1.1%

AC-06 transparency Access Control 1.1%
M-02 configuration updateability Maintainability 1.1%
M-03 disturbance-free updates Maintainability 1.1%

DSS-06 data flow control Data Security and Data Sharing 1.1%
DSS-07 data protection legislation compliance Data Security and Data Sharing 1.1%
SM-04 security policy enforcement Security Monitoring 1.1%
NS-01 dynamicity of configuration Network Security 1.1%

Low

AC-03 centralized AC Access Control 0.7%
AC-05 privacy-preserving AC Access Control 0.7%
M-05 traceability Maintainability 0.7%
M-06 compatibility Maintainability 0.7%
R-02 operation with intermittent connectivity Resilience 0.7%

NS-03 management overhead minimization Network Security 0.7%
A-05 transitive authentication Authentication 0.3%

AC-07 compatibility Access Control 0.3%
M-04 usability of update process Maintainability 0.3%
M-07 transparency Maintainability 0.3%

DSS-01 data loss mitigation Data Security and Data Sharing 0.3%
DSS-03 standardization Data Security and Data Sharing 0.3%
SM-03 handle heterogeneous sources Security Monitoring 0.3%
NS-02 security policy enforcement Network Security 0.3%

MM-02 minimization of overall attack surface Models and Methodologies 0.3%

than any other requirement. This is perhaps because these
requirements are the most open-ended out of all identified
requirements, thereby collecting a large variety of works that
discuss them.

Finally, the observant eye might notice that in Table XIV the
percentages sum up to 92.6%. This is because, throughout the
study, roughly 7.4% of the investigated works identify some
categories as requirements, meaning they have been included
in this work, but do not identify any of the specific security
requirements. Therefore, they are included in the category
count, but not in the requirement count.

VI. QUANTITATIVE RESULTS

In this section, we provide a quantitative analysis of the set
of studies resulting from the presented research.

TABLE XV
INTEREST LEVELS ASSIGNED TO SECURITY REQUIREMENTS AND

WEIGHTED ON THE COVERAGE OF EACH CATEGORY, APPLICABLE TO
TABLE XIV

Weighted interest Range (x)
Low 0%≤ x ≤1.0%
Medium 1.0% < x ≤2.5%
High 2.5% < x ≤4.0%
Very High 4.0% < x ≤100%

In particular, we address research questions (RQ2)-(RQ4)
by analyzing the number of publications related to IIoT
security over the years, the geographical distribution of these
studies, and the favorite publication venues.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 87

22 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

A. Spread of publications throughout the years (RQ2)

Figure 4 shows the number of publications between 2011
and 2019. Security research for the IIoT starts first appearing
around 2011, being initially dormant but slowly growing
from 2013 onward. In 2017, a drastic increase in activity
can be seen. While it is tempting to attribute this growth
to the fact that 2016 saw several serious IoT and industry
related security incidents (such as Mirai [4] and Crashover-
ride/Industroyer [6]), which served to illustrate the importance
of security on these devices, it should be noted that this is
in line with the overall growth of IoT as a research area. In
2018 and 2019, the growth in activity continued, showing that
the research community deems IIoT security to be of high
importance.

B. Geographical Distribution of IIoT Security Research (RQ3)

The geographical distribution of research activity is shown
in Figure 5. The data for this was obtained by extracting
the country of affiliation of the first author of the considered
studies.

German-speaking countries are strongly represented, mak-
ing for a total of 22% of contributions. One possible explana-
tion is that one of our search terms, Industry 4.0, was originally
coined by the German government [253], thus, it might have
seen higher adoption in German-speaking countries. This
raises the question of whether our search terms were successful
in providing a good global sample of studies in this field. We
believe they were, since the field we are considering is very
narrow; we specifically searched for Industrial challenges in
order to be able to extract security requirements unique to
this field. Furthermore, we have conducted reverse snowball
sampling to ensure a fair research scope.

China and the United States of America are the two other
major contributors. This can be attributed to the size of their
industries and thus the relevance of research in this area.
However, interestingly, 54% of the studies originate from
Europe, showing that this topic is also regarded as highly
relevant in countries with smaller industries.

The ‘others’ group consists of the 23 countries that have 3
or fewer publications in this field: Algeria, Belgium, Brazil,

1 0 3
8 7 7

27

62

103

Publication year

N
º o

f p
ub

lic
at

io
ns

0

25

50

75

100

125

2011 2012 2013 2014 2015 2016 2017 2018 2019

Fig. 4. Number of publications per year.

Czech Republic, Finland, Greece, Hungary, Iran, Ireland,
Japan, Malaysia, Morocco, New Zealand, Norway, Pakistan,
Qatar, Romania, Russia, Saudi Arabia, Serbia, Taiwan, Turkey,
Ukraine.

C. Venue Types for Publication (RQ4)

We have grouped the studies based on the venue type of
their publication, which is shown in Figure 6. As can be seen,
conference proceedings are the most popular dissemination
method, followed by journals. The ‘others’ category consists of
venue types in which 4 or fewer publications were published:
congresses, summits, and forums.

Looking at the specific venues of publication (Figure 7),
it can be seen that the IEEE Transactions on Industrial
Informatics journal is by far the most popular venue, with
25 publications. One noteworthy observation here is that, out
of all considered studies, only 16 were published in venues
focused on security. The vast majority of IIoT security-related
works appears to be published in venues targeting industrial
systems or IoT instead.

VII. OPPORTUNITIES ENABLED BY FOG COMPUTING

In Section V, we have extracted security requirements for
the IIoT from the investigated literature and discussed a
number of challenges that stand in the way of the adoption of
conventional solutions to address these requirements. In this
section, we reflect on the challenges and discuss how Fog
computing shows promise as a remedy to a number of those.

It is important to note that Fog computing is a relatively new
paradigm the exact definition of which is still being debated
in the scientific community and often intersects with similar
paradigms, such as Edge computing, Mobile Edge computing,
and Mobile Cloud computing. To maintain consistency with
earlier work, we use the definition of Fog computing as used
in [254]; a paradigm that extends the Cloud and integrates
Edge and IoT, while providing a new, horizontally scalable
highly virtualized layer that distributes computing, storage,
control, and networking capabilities across the Cloud-To-
Things spectrum [8]. For a more detailed treatise on the
differences between Fog, Edge, and other paradigms we refer
the interested reader to [254].

Also, we are aware that a comprehensive and thorough
discussion on how Fog computing could tackle the IIoT
security requirements would require a dedicated treatment that
would result in an entire paper itself, which is out of the scope
of this work (for instance, in [255] we focus on how Cloud
requirements can impact IoT). Thus, the aim of this section
is to provide food for thought on the topic and a source
of inspiration for future research, rather than an exhaustive
analysis.

In detail, we first give the definition of Fog computing
assumed in this work. Then, we revisit the majority of topics
covered in Section V and depicted in Figure 8: authentication,
access control, maintainability, resilience, data security and
data sharing, security monitoring, and network security. For
each of these, we discuss how we envision what Fog-enabled

88
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 23

others
17.2%

South Korea
1.8%
Singapore
2.2%
Sweden
2.2%
France
2.2%
India
2.6%
Portugal
2.6%
Australia
3.5%
United Kingdom
4.4%
Italy
4.8%

China
16.7%

Germany
11.9%

Austria
10.1%

USA
7.0%

Spain
4.8%

Fig. 5. Demographic: geographical distribution of research activity based on first author’s country of affiliation.

94
89

16
10 9

N
º o

f p
ub

lic
at

io
ns

0

25

50

75

100

conference journal symposium workshop others

Fig. 6. Popularity of different venue types.

25

15

14

9

9

Nº of publications

IEEE Transactions
on Industrial

Informatics

IEEE Access

IEEE Internet of
Things Journal

IEEE International
Conference on

Emerging

IEEE International
Conference on

Industrial Informatics

0 5 10 15 20 25

Fig. 7. Popularity of specific venues for publications.

solutions might look like and suggest potential research op-
portunities, but we leave confirmation of the validity of these
ideas as a topic for further research. We close the section
with a discussion on limitations and open challenges for Fog
computing.

Fog	Computing
for

Industrial	IoT

Security	Monitoring

Access	Control

Data	Security
&	Sharing

Maintainability

Authentication

Network	Security

Resilience

Fig. 8. Fog computing opportunities for IIoT security.

A. Fog Computing

Fog computing is a relatively recent computing paradigm
born from the necessity to provide the missing link in the
Cloud-to-Thing continuum [8].

According to the IEEE standard 1934-2018 [256], Fog
computing is “a horizontal, system-level architecture that dis-
tributes computing, storage, control, and networking functions
closer to the users along a cloud-to-thing continuum”. Thus,
Fog computing can be considered as an extension of Cloud
computing that distributes the benefits of the Cloud closer to
the IIoT and across multiple layers of the network topology.

Any system that wants to be compliant with the aforemen-
tioned definition of Fog computing needs to present the fol-

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 89

24 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

lowing attributes, also referred to as pillars: security, scalabil-
ity, openness, autonomy, reliability, availability, serviceability,
agility, hierarchy, and programmability. A thorough discussion
of these pillars can be found in [8], [256].

In this setting, the fog node is “the physical and logical
network element that implements fog computing services”
[8]. Since Fog nodes can be placed on-premises, they can
be accessed by devices even when the connection to the
outside world is failing. This helps us in identifying research
opportunities for issues arising from intermittent connectivity.
Note that this can be generalized: if there is a connection
failure anywhere on the route from the (local) Fog node to the
(remote) Cloud, then all Fog nodes that are positioned before
the unreachable hop are still reachable and thus able to provide
the local system with their services.

B. Fog-enabled Authentication
When looking at the authentication challenges discussed in

Section V-B, it can be observed that there are a number of
points where a Fog node can be helpful in addressing them.

A first intuitive way of applying Fog computing to these
challenges can be found by considering existing authentication
solutions that require third-party servers in their setup or
execution, such as [63], [86], [93]. A Fog node fits the require-
ments for these servers perfectly, as it is not severely restrained
by computational or energy resources, is on-premises, and
has very low response times. If Fog computing nodes are
considered as part of the infrastructure, many of the issues
with relying on a third-party server are thus addressed “for
free”.

Secondly, Fog nodes can serve to enhance traditional PKI
infrastructures, where Fog nodes can act as “certificate au-
thorities” for local devices or help establish a federated and
robust key infrastructure through e.g. peer-to-peer networking
capabilities with other Fog nodes. To our knowledge, no work
investigating this currently exists.

In dynamic environments, Fog nodes can potentially help al-
leviate issues relating to node addition, removal, and rekeying
as well. For example, it could serve as a trusted "gateway"
to which Edge devices are paired, preventing them from
communicating directly with any other system. This is not
unlike how Bluetooth devices can be paired with smartphones
and other devices. Node addition, removal, and rekeying can
then be handled from the Fog node.

As we have seen in Section V-B2, some proposed solutions
require biometric features ([72], [77]), smart cards ([72])
or NFC tags ([36], [37], [67], [225]), in the authentication
process. Also here there is potential for Fog nodes: not every
lightweight system might be equipped with the necessary
sensors for this. However, it might be possible to equip
Fog nodes with sensors and use them as proxies for sensor
readings. This would increase scalability, as a Fog node can
be positioned so that it is more easily accessible than the Edge
devices connected to it. Thus, if maintenance engineers would
want to e.g. authenticate updates for the devices by using NFC
keys or biometrics, they will only need to seek out the Fog
node and present the relevant keys to it, as opposed to seeking
out every relevant device separately.

Fog nodes might also enable the possibility of bringing
TPM and/or TEE capabilities to Edge devices that do not
contain these modules themselves. For that to be possible,
the Edge devices need to set up a trusted channel between
the Fog node’s TPM/TEE module, which could be possible
through some form of a key setup protocol that involves a one-
time pairing step. Fog nodes could be equipped with multiple
TPM or TEE modules to serve more than one Edge device (or
itself) at the same time, such as the recently introduced Intel
SGX cards [257]. Trusted hardware capabilities in Fog nodes
can also be used for attestation purposes in various settings
(against remote Fog nodes, against Edge devices, and so on).
We expect that there are a lot of fruitful research directions
for the combination of Fog nodes and trusted hardware.

C. Fog-enabled Access Control

As with authentication, Fog nodes have the potential for
enhancing AC challenges in industrial scenarios.

Firstly, some AC policies could be outsourced from ex-
tremely resource-constrained devices to a Fog node (e.g.
accessing sensitive files from a central repository), or if the
scenario is suited for it, AC can be managed completely by a
Fog node. Another identified challenge for AC frameworks is
that while managing policies centrally gives more flexibility,
it introduces new risks due to the central server now being
a single point of failure. Fog nodes could provide a “hybrid”
middle ground where AC is federated between various Fog
nodes on-premises, and that Edge devices can then query
these Fog nodes, thus increasing the overall reliability and
scalability. To the best of our knowledge, this is still an open
research area.

As mentioned in Section V-C, compatibility with legacy
devices is another issue in the IIoT. Fog nodes could act as
a bridge between newer devices and legacy devices with poor
security, keeping them sufficiently isolated from the wider
network and providing security measures where necessary in
exposed interfaces, possibly through a ZTN approach.

D. Fog-enabled Maintainability

Fog computing can bring large benefits to the maintainabil-
ity of industrial systems.

By their very nature, industrial systems are connected to
the Internet, and thus enable the possibility of managing
software and configuration updates for attached Edge devices.
Fog nodes are perfectly situated to verify the validity of such
updates and perform in-depth tests such as performing the
updates in a sandboxed environment and then observing for
anomalies before deploying them on real devices, while at
the same time allowing for the application of updates with
minimal disturbance to the services themselves. In practice,
this would turn the solution proposed by [111] into a Fog
application.

Fog nodes also provide an ideal target platform for an “in-
dustrial app marketplace” such as proposed in [113]. It is not
difficult to envision a system where a Fog node would allow
users to view software packages together with their version
number and update information for all connected devices,

90
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 25

in an ordered and user-friendly way. Moreover, Fog nodes
could go further and allow for management of configuration
files for connected Edge devices as well. For example, one
could think of an application where configuration files are
retrieved from a Cloud service, verified by the Fog node and
subsequently delivered to specified Edge devices, filling in
sensitive information fields as necessary so as to prevent the
Cloud from requiring access to this information.

As Fog nodes could provide an easily accessible location
for the reading of NFC tags or other hardware authentication
modules, one could easily extend maintenance processes with
those extra authentication factors without requiring engineers
to physically attend to each affected device individually.

The ideas described here are merely speculative, and there
is plenty of room for research in any of these areas. We
expect a variety of maintainability-enhancing applications of
Fog computing will be identified and researched in the future.

E. Fog-enabled Resilience

Fog nodes could act as reactive security agents, isolating or
disabling connected devices when they appear compromised.
This allows security personnel to then further investigate the
issue, while the system itself can continue operations. This is
also discussed in [258], where a number of Fog use-cases and
research challenges are listed. The authors state that automatic
fault detection and reconfiguration is essential, and identify the
potential for Fog nodes to do this autonomously, but state that
this is a challenging topic that requires addressing. However,
a solution to this challenge would enable resiliency as it is
defined by the ICS.

A second challenge that can be overcome through Fog com-
puting, is maintaining normal operation through intermittent
internet connectivity. To an extent, a Fog node can take over
processes normally executed in the Cloud. Thus, when the
connection to the Cloud fails, the operational capability of
Edge devices is not affected. Related to this, some devices
continuously or periodically need to transmit data to the cloud,
where it can then be processed. If this were done directly,
data loss is a risk in case of intermittent connectivity. As an
alternative to introducing some data storage capabilities on the
Edge devices themselves, a Fog node could collect data from
the devices, and forward it to the Cloud. Then, when there is
no connection to the internet, the Fog node can act as a buffer
and send the buffered information upwards to the Cloud once
the connection is restored. This way, Edge devices do not need
to worry about failing internet connectivity at all.

Finally, Fog nodes and their application-independent soft-
ware can be developed to satisfy resiliency-related indicator
points, which in turn can aid in providing contractual service
guarantees as is currently often seen in Cloud service agree-
ments.

F. Fog-enabled data security and data sharing

Whenever it is necessary for a device to access sensitive data
that should be stored securely, this requires the device to firstly
have the storage capacity, and secondly the means to secure
this data at rest. For lightweight systems that do not have the

capacity to store and secure data securely, Fog nodes can pro-
vide a solution; they are not tied to severe resource constraints
and can be equipped with ample storage and computational
capacity for common encryption methods. Additionally, Fog
nodes can be deployed on the local network, meaning data
will never have to leave the premises. Even for extremely large
amounts of data, Fog nodes could act as middleware between
external Cloud storage, and encrypt/decrypt data stored in
the Cloud transparently, e.g. using the techniques described
in [149], [159]. To the Edge devices, it can be presented as
originating from the Fog node, and they do not need to be
aware of the underlying storage and security mechanisms.

As Fog nodes can be positioned between Edge devices and
external parties as gateways, this also unlocks the opportunity
to secure and control data flow to these external parties. A
Fog node can set up and maintain highly secure, authenticated
channels with remote parties, potentially alleviating some of
the challenges involved in designing lightweight Edge devices
that need to interact with these parties, as they only need
to concern themselves with secure communication with the
Fog node. If the Fog node additionally has the ability to
access the message content of traffic passing through it, it can
enforce data flow policies, e.g. as described in [164], allowing
fine-grained data security mechanisms on top of encryption
techniques.

In Section V-F4 we stated that the protection of sensitive
data is in many cases now a legal requirement in the European
Union. Fog nodes present a very natural way of meeting these
requirements, as they can store data locally, while at the same
time allowing for fine-grained data sharing with third parties,
should a user allow this. Moreover, it can become easier to
manage user rights such as the right to be forgotten.

G. Fog-enabled Security Monitoring

Because Fog nodes can take on central positions in In-
dustrial networks, they provide a great platform for security
monitoring solutions.

For example, a Fog node could run IDS software to detect
anomalies or attack signatures. This also provides an oppor-
tunity for the Fog and Cloud to augment each other. Intrusion
detection models could be trained in a Cloud environment,
while executed on a Fog node, thereby addressing the latency
issues normally apparent in Cloud solutions. Examples of this
can be found in [115], [193]. Because Fog nodes stand in
direct connection to sensor devices, they can also perform
simple anomaly detection techniques such as ensuring that
sensor values are within a certain value range, without adding
overhead to the sensors themselves.

Another use of Fog nodes as a security monitoring tool
could be the deployment of an anti-malware for IoT devices
that is supported by the Fog infrastructure [259]. Indeed, De
Donno et al. [260], [261] propose an anti-malware software
for IoT and they discuss how the use of Fog computing helps
to solve some of the challenges intrinsic in the deployment.

Fog nodes can also potentially take action based on incom-
ing traffic patterns, enabling the mitigation of DoS attacks
aimed at very specific devices, even when those devices are

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 91

26 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

not able to protect themselves against those attacks. This also
presents the opportunity for dynamic traffic shaping, and other
techniques that might help reduce battery consumption on
lightweight IoT devices connected to the Fog node.

H. Fog-enabled Network Security

Also in network infrastructure, Fog computing can poten-
tially help in overcoming current challenges.

With the rise of SDN and NFV technologies, Fog nodes
can possibly play a role as a platform for some of these.
For example, they can create isolated network environments
between themselves and each connected device.

Fog nodes could also be equipped to handle TSN standards
when there is a need for deterministic and timely deliv-
ery of network traffic between two connected devices. By
moving the management of these interfaces to a Fog node,
opportunities are created for easier (remote) management and
reconfiguration of time-critical systems, even going so far as to
move entire control applications to Fog nodes. As an extreme
manifestation of this vision, one could imagine “plug-and-
play” industrial hardware that can be connected to a Fog node
which will then autonomously configure and use it.

We also see opportunities for Fog nodes to improve the
availability of critical services, in two ways. Firstly, Fog
nodes could run critical applications in a federated fashion,
allowing migration or load balancing of tasks between them.
This way, the application only becomes unavailable when all
participating Fog nodes fail. Secondly, a Fog node can act
as a middleware for a critical service running in the Cloud.
By deploying this service on multiple Cloud providers, Edge
applications relying on it will not be affected by the outage of
any one cloud provider; the Fog node can automatically route
requests to the remaining available providers.

Finally, Fog nodes could potentially aid in securing wire-
less infrastructure, by incorporating wireless technologies in
security monitoring solutions. This way, jamming attacks or
other anomalies in the wireless spectrum can be detected.

I. Challenges and Limitations

Fog computing is not a panacea capable of filling any
Cloud-IIoT gap without much issue. The paradigm is very
much in its early stages, and deployment so far has been ex-
tremely limited. Open challenges include practical federation
frameworks, resource offloading, and resilience [262]. While
we believe that solutions to these challenges are capable of
satisfying the security requirements collected in this work, we
acknowledge that every solution comes with its own trade-
offs, and a thorough analysis of the benefits and drawbacks
of Fog computing can only be done once enough Fog-based
systems exist to investigate. Nevertheless, one can attempt to
make an analysis based on the current state-of-the-art. Thus,
in this section, we briefly discuss what we consider some of
the biggest potential drawbacks.

Firstly, Fog systems add extra workload to maintenance
personnel, and will likely require special training, making it
more costly than the Cloud. Whereas Cloud infrastructure
is maintained by a specialized team on the Cloud service

provider’s end, the Fog paradigm shifts this responsibility to
users of the system. The spread of functionality across the
Cloud-to-Things continuum potentially complicates this even
more. If a security issue is found in a well-known piece of Fog
infrastructural software, it is the responsibility of maintainers
at every point in the continuum to update their software, as
opposed to having to update just the Cloud infrastructure,
which is managed by one entity. If one maintainer of a Fog
node fails to do this within an appropriate time-window, this
can put all entities making use of that node at risk.

Secondly, incident response might be hampered by the dis-
tributed nature of Fog systems. We believe this might manifest
itself in multiple ways: necessary security expertise might
not be available on-site, and specialized incident response
teams will have to be called in from external parties. Further,
complex incidents might require cooperation between multiple
entities along the continuum for forensic analysis, which might
not always be possible or add a lot of overhead.

Finally, compatibility between Fog nodes can potentially
be a huge issue. If standards are not well-defined or not
followed rigorously, it will be very hard to meet the harsh
requirements set by industrial environments with nodes from
different providers that cannot interoperate efficiently and
accurately. This, in turn, can negatively impact the ability to
federate and offload tasks to other nodes in the local network,
as well as potentially violate security policies if some nodes in
the system are unable to uphold the necessary requirements.

VIII. CONCLUSION

In this work, we have performed a systematic literature
review about security for the IIoT.

As in any mapping study, it is challenging to take all
studies of the field into account, but it is more important
to have a good representation of studies rather than a high
number of studies [20]. To achieve a good representation,
we have methodologically constructed the search queries and
queried multiple literature repositories. After that, we utilized
reverse snowball sampling to further increase the quality, and
to mitigate any possible selection bias. Our initial search
queries resulted in 356 possibly relevant papers, which we
brought down to a selection of 218 papers through the use
of a systematic approach comprised of several phases. These
papers were fully read and analyzed for the purposes of this
study.

At glance, the work has elaborated around four main
research questions: (RQ1) what security requirements exist
for the IIoT, (RQ2) how scientific publications about IIoT
security are spread during the years, (RQ3) how IIoT security
research activity is geographically distributed, and (RQ4) what
publication venues are the most popular for IIoT security.

First, we have answered question RQ1 by extracting security
requirements for the IIoT from the investigated works and
exploring them, along with the related challenges that make
these requirements hard to meet with existing solutions and a
measure of their interest in the research community. Then,
we have addressed questions (RQ2)-(RQ4) by providing a
quantitative analysis of the investigated IIoT security research.

92
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 27

Finally, we provided a discussion on how Fog computing can
play a role in meeting the requirements posed by industrial
environments, by taking a Fog computing perspective and
revisiting the requirements that were extracted during our
investigation, as well as pointing out what limitation and
challenges still need to be faced to achieve massive Fog
computing deployment.

This work identifies an abundance of research opportunities
in the IIoT security area and shows that Fog computing, as
a rising computing paradigm, can become a powerful tool in
securing a variety of connected industrial environments, once
its limitations and challenges are overcome.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No. 764785, FORA – Fog Computing for Robotics
and Industrial Automation.

REFERENCES

[1] P. Daugherty and B. Berthon, “Winning with the industrial internet
of things: How to accelerate the journey to productivity and growth,”
Dublín: Accenture, Tech. Rep., 2015.

[2] N. Dragoni, A. Giaretta, and M. Mazzara, “The Internet of Hackable
Things,” in Proceedings of 5th International Conference in Software
Engineering for Defence Applications, P. Ciancarini, S. Litvinov,
A. Messina, A. Sillitti, and G. Succi, Eds. Springer, 2017, pp. 129–
140.

[3] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Analysis of
DDoS-Sapable IoT Malwares,” in Federated Conference on Computer
Science and Information Systems (FedCSIS). IEEE, 2017, pp. 807–
816.

[4] ——, “DDoS-Capable IoT Malwares: Comparative Analysis and Mirai
Investigation,” Security and Communication Networks, vol. 2018, 2018.

[5] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secu-
rity & Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[6] R. Lee, “CRASHOVERRIDE: Analysis of the threat to electric grid
operations,” Dragos Inc., Tech. Rep., 2017.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
ACM, 2012, pp. 13–16.

[8] OpenFog Consortium Architecture Working Group and others,
“OpenFog Reference architecture for Fog Computing,” OpenFog Con-
sortium, Tech. Rep., February 2017. [Online]. Available: https://www.
iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf

[9] “Good Practices for Security of Internet of Things in the Context of
Smart Manufacturing,” ENISA, Tech. Rep. TP-04-18-940-EN-N, 2018.

[10] X. Yu and H. Guo, “A Survey on IIoT Security,” in 2019 IEEE VTS
Asia Pacific Wireless Communications Symposium (APWCS), 2019, pp.
1–5.

[11] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella,
“IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities
in Real IoT Devices,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8182–8201, 2019.

[12] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabil-
ities and a First Empirical Look on Internet-Scale IoT Exploitations,”
IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp. 2702–
2733, 2019.

[13] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of things
security: A top-down survey,” Computer Networks, vol. 141, pp. 199
– 221, 2018.

[14] M. Lezzi, M. Lazoi, and A. Corallo, “"cybersecurity for industry 4.0 in
the current literature: A reference framework",” Computers in Industry,
vol. 103, pp. 97 – 110, 2018.

[15] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[16] F. Hofer, “Architecture, technologies and challenges for cyber-physical
systems in industry 4.0: A systematic mapping study,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’18. ACM, 2018, pp. 1:1–
1:10.

[17] A. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” in Proceedings of the 52Nd

Annual Design Automation Conference, ser. DAC ’15. ACM, 2015,
pp. 54:1–54:6.

[18] A. Sajid, H. Abbas, and K. Saleem, “Cloud-assisted IoT-based scada
systems security: A review of the state of the art and future challenges,”
IEEE Access, vol. 4, pp. 1375–1384, 2016.

[19] G. Hansch, P. Schneider, K. Fischer, and K. BÃűttinger, “A Unified
Architecture for Industrial IoT Security Requirements in Open Platform
Communications,” in 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2019, pp.
325–332.

[20] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, pp. 1–18, 2015.

[21] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” EBSE Technical Report,
Tech. Rep. EBSE-2007-01, 2007.

[22] J. Beel and B. Gipp, “Google scholar’s ranking algorithm: An introduc-
tory overview,” in Proceedings of the 12th International Conference on
Scientometrics and Informetrics (ISSI’09. Springer, 2009, pp. 439–
446.

[23] A. Bécue, Y. Fourastier, I. Praça, A. Savarit, C. Baron, B. Gradussofs,
E. Pouille, and C. Thomas, “Cyberfactory#1 — securing the industry
4.0 with cyber-ranges and digital twins,” in 2018 14th IEEE Interna-
tional Workshop on Factory Communication Systems (WFCS). IEEE,
2018, pp. 1–4.

[24] M. Beltrán, M. Calvo, and S. González, “Federated system-to-service
authentication and authorization combining pufs and tokens,” in 2017
12th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC). IEEE, 2017, pp. 1–8.

[25] A. Bicaku, S. Maksuti, S. Palkovits-Rauter, M. Tauber, R. Matischek,
C. Schmittner, G. Mantas, M. Thron, and J. Delsing, “Towards trust-
worthy end-to-end communication in industry 4.0,” in 2017 IEEE 15th

International Conference on Industrial Informatics (INDIN). IEEE,
2017, pp. 889–896.

[26] M. W. Condry and C. B. Nelson, “Using smart edge IoT devices for
safer, rapid response with industry IoT control operations,” Proceedings
of the IEEE, vol. 104, no. 5, pp. 938–946, 2016.

[27] J. Delsing, “Local cloud internet of things automation: Technology and
business model features of distributed internet of things automation
solutions,” IEEE Industrial Electronics Magazine, vol. 11, no. 4, pp.
8–21, 2017.

[28] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi, J. Rodriguez,
A. Bicaku, S. Maksuti, M. G. Tauber, C. Schmittner, and J. Bastos, “A
Lightweight Authentication Mechanism for M2M Communications in
Industrial IoT Environment,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 288–296, 2019.

[29] C. Esposito, A. Castiglione, B. Martini, and K. R. Choo, “Cloud
manufacturing: Security, privacy, and forensic concerns,” IEEE Cloud
Computing, vol. 3, no. 4, pp. 16–22, 2016.

[30] C. Esposito, A. Castiglione, F. Palmieri, and A. D. Santis, “Integrity
for an event notification within the industrial internet of things by
using group signatures,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 8, pp. 3669–3678, 2018.

[31] M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, and L. Shu,
“"authentication protocols for internet of things: A comprehensive
survey",” Security and Communication Networks, vol. 2017, 2017.

[32] X. Jiang, Z. Pang, M. Luvisotto, F. Pan, R. Candell, and C. Fischione,
“Using a Large Data Set to Improve Industrial Wireless Communica-
tions: Latency, Reliability, and Security,” IEEE Industrial Electronics
Magazine, vol. 13, no. 1, pp. 6–12, 2019.

[33] E. Kail, A. Banati, E. Lászlo, and M. Kozlovszky, “Security survey of
dedicated IoT networks in the unlicensed ism bands,” in 2018 IEEE
12th International Symposium on Applied Computational Intelligence
and Informatics (SACI). IEEE, 2018, pp. 000 449–000 454.

[34] S. Katsikeas, K. Fysarakis, A. Miaoudakis, A. V. Bemten, I. Askoxy-
lakis, I. Papaefstathiou, and A. Plemenos, “Lightweight amp; secure

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 93

28 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

industrial IoT communications via the mq telemetry transport protocol,”
in 2017 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2017, pp. 1193–1200.

[35] T. Kumar, A. Braeken, V. Ramani, I. Ahmad, E. Harjula, and M. Yliant-
tila, “SEC-BlockEdge: Security Threats in Blockchain-Edge based
Industrial IoT Networks,” in 2019 11th International Workshop on
Resilient Networks Design and Modeling (RNDM), 2019, pp. 1–7.

[36] C. Lesjak, T. Ruprechter, H. Bock, J. Haid, and E. Brenner, “Estado
— enabling smart services for industrial equipment through a secured,
transparent and ad-hoc data transmission online,” in The 9th Interna-
tional Conference for Internet Technology and Secured Transactions
(ICITST-2014). IEEE, 2014, pp. 171–177.

[37] C. Lesjak, T. Ruprechter, J. Haid, H. Bock, and E. Brenner, “A secure
hardware module and system concept for local and remote industrial
embedded system identification,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA). IEEE, 2014,
pp. 1–7.

[38] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller,
T. Ebner, T. Ruprechter, and G. Pregartner, “Securing smart mainte-
nance services: Hardware-security and tls for mqtt,” in 2015 IEEE 13th

International Conference on Industrial Informatics (INDIN). IEEE,
2015, pp. 1243–1250.

[39] C. Lesjak, D. Hein, and J. Winter, “Hardware-security technologies
for industrial IoT: Trustzone and security controller,” in IECON 2015
- 41st Annual Conference of the IEEE Industrial Electronics Society.
IEEE, 2015, pp. 002 589–002 595.

[40] C. Lesjak, H. Bock, D. Hein, and M. Maritsch, “Hardware-secured and
transparent multi-stakeholder data exchange for industrial IoT,” in 2016
IEEE 14th International Conference on Industrial Informatics (INDIN).
IEEE, 2016, pp. 706–713.

[41] Z. Ma, A. Hudic, A. Shaaban, and S. Plosz, “Security viewpoint in a
reference architecture model for cyber-physical production systems,” in
2017 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW). IEEE, 2017, pp. 153–159.

[42] S. Maksuti, A. Bicaku, M. Tauber, S. Palkovits-Rauter, S. Haas, and
J. Delsing, “Towards flexible and secure end-to-end communication in
industry 4.0,” in 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN). IEEE, 2017, pp. 883–888.

[43] H. Mouratidis and V. Diamantopoulou, “A security analysis method
for industrial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 9, pp. 4093–4100, 2018.

[44] E. T. Nakamura and S. L. Ribeiro, “A privacy, security, safety, resilience
and reliability focused risk assessment methodology for IIoT systems
steps to build and use secure IIoT systems,” in 2018 Global Internet
of Things Summit (GIoTS). IEEE, 2018, pp. 1–6.

[45] M. Niedermaier, F. Fischer, and A. von Bodisco, “Propfuzz — an
it-security fuzzing framework for proprietary ics protocols,” in 2017
International Conference on Applied Electronics (AE). IEEE, 2017,
pp. 1–4.

[46] Y. Nozaki and M. Yoshikawa, “Countermeasure of Lightweight Phys-
ical Unclonable Function Against Side-Channel Attack,” in 2019
Cybersecurity and Cyberforensics Conference (CCC), 2019, pp. 30–
34.

[47] OWASP, “2018 OWASP IoT Top 10,” OWASP, Tech. Rep.,
December 2018. [Online]. Available: https://www.owasp.org/images/1/
1c/OWASP-{IoT}-Top-10-2018-final.pdf

[48] M. S. Pardeshi and S. Yuan, “SMAP Fog/Edge: A Secure Mutual
Authentication Protocol for Fog/Edge,” IEEE Access, vol. 7, pp.
101 327–101 335, 2019.

[49] T. Pereira, L. Barreto, and A. Amaral, “Network and information
security challenges within industry 4.0 paradigm,” Procedia Manu-
facturing, vol. 13, pp. 1253–1260, 2017, manufacturing Engineering
Society International Conference 2017, MESIC 2017, 28-30 June 2017,
Vigo (Pontevedra), Spain.

[50] D. Preuveneers, W. Joosen, and E. Ilie-Zudor, “Data protection compli-
ance regulations and implications for smart factories of the future,” in
2016 12th International Conference on Intelligent Environments (IE).
IEEE, 2016, pp. 40–47.

[51] G. Shaabany and R. Anderl, “Security by design as an approach to
design a secure industry 4.0-capable machine enabling online-trading of
technology data,” in 2018 International Conference on System Science
and Engineering (ICSSE). IEEE, 2018, pp. 1–5.

[52] T. Ulz, T. Pieber, C. Steger, S. Haas, and R. Matischek, “Secured
remote configuration approach for industrial cyber-physical systems,”
in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, 2018,
pp. 812–817.

[53] K. Wallis, F. Kemmer, E. Jastremskoj, and C. Reich, “Adaption of a
privilege management infrastructure (pmi) approach to industry 4.0,”
in 2017 5th International Conference on Future Internet of Things and
Cloud Workshops (FiCloudW). IEEE, 2017, pp. 101–107.

[54] Z. Yang, J. He, Y. Tian, and J. Zhou, “Faster Authenticated Key
Agreement with Perfect Forward Secrecy for Industrial Internet-of-
Things,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2019.

[55] L. Zhou, K. Yeh, G. Hancke, Z. Liu, and C. Su, “Security and privacy
for the industrial internet of things: An overview of approaches to
safeguarding endpoints,” IEEE Signal Processing Magazine, vol. 35,
no. 5, pp. 76–87, 2018.

[56] O. Bergmann, S. Gerdes, and C. Bormann, “Simple keys for simple
smart objects,” in Workshop on Smart Object Security, 2012.

[57] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S – A
publish/subscribe protocol for Wireless Sensor Networks,” in 2008
3rd International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE’08). IEEE, 2008, pp. 791–
798.

[58] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN compressed DTLS
for CoAP,” in 2012 IEEE 8th International Conference on Distributed
Computing in Sensor Systems. IEEE, 2012, pp. 287–289.

[59] D. Airehrour, J. Gutierrez, and S. K. Ray, “Securing rpl routing
protocol from blackhole attacks using a trust-based mechanism,” in
2016 26th International Telecommunication Networks and Applications
Conference (ITNAC). IEEE, 2016, pp. 115–120.

[60] A. AlAbdullatif, K. AlAjaji, N. S. Al-Serhani, R. Zagrouba, and
M. AlDossary, “Improving an Identity Authentication Management
Protocol in IIoT,” in 2019 2nd International Conference on Computer
Applications Information Security (ICCAIS), 2019, pp. 1–6.

[61] P. C. Bartolomeu, E. Vieira, S. M. Hosseini, and J. Ferreira, “Self-
Sovereign Identity: Use-cases, Technologies, and Challenges for Indus-
trial IoT,” in 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2019, pp. 1173–1180.

[62] S. Blanch-Torné, F. Cores, and R. M. Chiral, “Agent-based pki for
distributed control system,” in 2015 World Congress on Industrial
Control Systems Security (WCICSS). IEEE, 2015, pp. 28–35.

[63] M. H. Eldefrawy, N. Pereira, and M. Gidlund, “Key distribution
protocol for industrial internet of things without implicit certificates,”
IEEE Internet of Things Journal, 2018, (early access).

[64] K. Huang, X. Zhang, Y. Mu, X. Wang, G. Yang, X. Du, F. Rezaeibagha,
Q. Xia, and M. Guizani, “Building Redactable Consortium Blockchain
for Industrial Internet-of-Things,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 6, pp. 3670–3679, 2019.

[65] D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu, “Survey of
advances and challenges in intelligent autonomy for distributed cyber-
physical systems,” CAAI Transactions on Intelligence Technology,
vol. 3, no. 2, pp. 75–82, 2018.

[66] ——, “Massive-Scale Automation in Cyber-Physical Systems: Vision
& Challenges,” in 2017 IEEE 13th International Symposium on Au-
tonomous Decentralized System (ISADS). IEEE, 2017, pp. 5–11.

[67] T. Ulz, T. Pieber, C. Steger, S. Haas, H. Bock, and R. Matischek,
“Bring your own key for the industrial internet of things,” in 2017 IEEE
International Conference on Industrial Technology (ICIT). IEEE,
2017, pp. 1430–1435.

[68] A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of thingsâĂŤa
survey of topics and trends,” Information Systems Frontiers, vol. 17,
no. 2, pp. 261–274, 2015.

[69] L. Marchegiani and I. Posner, “Long-term driving behaviour modelling
for driver identification,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 2018, pp. 913–919.

[70] F. Al-Turjman and S. Alturjman, “Context-sensitive access in industrial
internet of things (IIoT) healthcare applications,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 6, pp. 2736–2744, 2018.

[71] P. Autenrieth, C. Lörcher, C. Pfeiffer, T. Winkens, and L. Martin,
“Current significance of it-infrastructure enabling industry 4.0 in large
companies,” in 2018 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC). IEEE, 2018, pp. 1–8.

[72] A. K. Das, M. Wazid, N. Kumar, A. V. Vasilakos, and J. J. P. C.
Rodrigues, “Biometrics-based privacy-preserving user authentication
scheme for cloud-based industrial internet of things deployment,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 4900–4913, 2018.

[73] B. D. Deebak, F. Al-Turjman, M. Aloqaily, and O. Alfandi, “An
Authentic-Based Privacy Preservation Protocol for Smart e-Healthcare
Systems in IoT,” IEEE Access, vol. 7, pp. 135 632–135 649, 2019.

[74] S. Garg, K. Kaur, G. Kaddoum, and K. R. Choo, “Towards Secure
and Provable Authentication for Internet of Things: Realizing Industry
4.0,” IEEE Internet of Things Journal, pp. 1–1, 2019.

94
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 29

[75] S. Hussain and S. A. Chaudhry, “Comments on "Biometrics-Based
Privacy-Preserving User Authentication Scheme for Cloud-Based In-
dustrial Internet of Things Deployment",” IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10 936–10 940, 2019.

[76] K. K. Kolluru, C. Paniagua, J. van Deventer, J. Eliasson, J. Delsing, and
R. J. DeLong, “An AAA solution for securing industrial IoT devices
using next generation access control,” in 2018 IEEE Industrial Cyber-
Physical Systems (ICPS). IEEE, 2018, pp. 737–742.

[77] X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, and S. Kumari,
“A robust ecc-based provable secure authentication protocol with
privacy preserving for industrial internet of things,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 8, pp. 3599–3609, 2018.

[78] X. Li, J. Peng, J. Niu, F. Wu, J. Liao, and K. R. Choo, “A robust
and energy efficient authentication protocol for industrial internet of
things,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1606–1615,
2018.

[79] M. Loske, L. Rothe, and D. G. Gertler, “Context-Aware Authentication:
State-of-the-Art Evaluation and Adaption to the IIoT,” in 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), 2019, pp. 64–69.

[80] Z. Ma, Y. Yang, X. Liu, Y. Liu, S. Ma, K. Ren, and C. Yao, “EmIr-
Auth: Eye-movement and Iris Based Portable Remote Authentication
for Smart Grid,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2019.

[81] Q. Tian, Y. Lin, X. Guo, J. Wen, Y. Fang, J. Rodriguez, and S. Mumtaz,
“New Security Mechanisms of High-Reliability IoT Communication
Based on Radio Frequency Fingerprint,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 7980–7987, 2019.

[82] D. Wang and P. Wang, “"understanding security failures of two-
factor authentication schemes for real-time applications in hierarchical
wireless sensor networks",” Ad Hoc Networks, vol. 20, pp. 1–15, 2014.

[83] R. Ankele, S. Marksteiner, K. Nahrgang, and H. Vallant, “Requirements
and Recommendations for IoT/IIoT Models to Automate Security
Assurance through Threat Modelling, Security Analysis and Penetra-
tion Testing,” in Proceedings of the 14th International Conference on
Availability, Reliability and Security, ser. ARES âĂŹ19. New York,
NY, USA: Association for Computing Machinery, 2019.

[84] F. Fraile, T. Tagawa, R. Poler, and A. Ortiz, “Trustworthy industrial IoT
gateways for interoperability platforms and ecosystems,” IEEE Internet
of Things Journal, vol. 5, no. 6, pp. 4506–4514, 2018.

[85] A. Karati, S. H. Islam, and M. Karuppiah, “Provably secure and
lightweight certificateless signature scheme for IIoT environments,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3701–
3711, 2018.

[86] F. Li, J. Hong, and A. A. Omala, “Efficient certificateless access control
for industrial internet of things,” Future Generation Computer Systems,
vol. 76, pp. 285–292, 2017.

[87] C. Lin, D. He, X. Huang, K. R. Choo, and A. V. Vasilakos, “Bsein: A
blockchain-based secure mutual authentication with fine-grained access
control system for industry 4.0,” Journal of Network and Computer
Applications, vol. 116, pp. 42–52, 2018.

[88] F. Rezaeibagha, Y. Mu, X. Huang, W. Yang, and K. Huang, “Fully
Secure Lightweight Certificateless Signature Scheme for IIoT,” IEEE
Access, vol. 7, pp. 144 433–144 443, 2019.

[89] V. Sklyar and V. Kharchenko, “Challenges in assurance case application
for industrial IoT,” in 2017 9th IEEE International Conference on Intel-
ligent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), vol. 2. IEEE, 2017, pp. 736–739.

[90] T. Wu, C. Chen, K. Wang, and J. M. Wu, “Security Analysis and
Enhancement of a Certificateless Searchable Public Key Encryption
Scheme for IIoT Environments,” IEEE Access, vol. 7, pp. 49 232–
49 239, 2019.

[91] W. Yang, S. Wang, X. Huang, and Y. Mu, “On the Security of
an Efficient and Robust Certificateless Signature Scheme for IIoT
Environments,” IEEE Access, vol. 7, pp. 91 074–91 079, 2019.

[92] Y. Zhang, R. H. Deng, D. Zheng, J. Li, P. Wu, and J. Cao, “Efficient
and Robust Certificateless Signature for Data Crowdsensing in Cloud-
Assisted Industrial IoT,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 9, pp. 5099–5108, 2019.

[93] H. Cui, R. H. Deng, J. K. Liu, X. Yi, and Y. Li, “Server-aided attribute-
based signature with revocation for resource-constrained industrial-
internet-of-things devices,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 8, pp. 3724–3732, 2018.

[94] S. Paliwal, “Hash-Based Conditional Privacy Preserving Authentication
and Key Exchange Protocol Suitable for Industrial Internet of Things,”
IEEE Access, vol. 7, pp. 136 073–136 093, 2019.

[95] A. Hoeller and R. Toegl, “Trusted platform modules in cyber-physical
systems: On the interference between security and dependability,” in

2018 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW). IEEE, 2018, pp. 136–144.

[96] H. Laaki, Y. Miche, and K. Tammi, “Prototyping a Digital Twin for
Real Time Remote Control Over Mobile Networks: Application of
Remote Surgery,” IEEE Access, vol. 7, pp. 20 325–20 336, 2019.

[97] E. Weippl and P. Kieseberg, “Security in cyber-physical production
systems: A roadmap to improving it-security in the production system
lifecycle,” in 2017 AEIT International Annual Conference. IEEE,
2017, pp. 1–6.

[98] Z. Bakhshi, A. Balador, and J. Mustafa, “Industrial IoT security
threats and concerns by considering cisco and microsoft IoT reference
models,” in 2018 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). IEEE, 2018, pp. 173–178.

[99] G. Chen and W. S. Ng, “An efficient authorization framework for
securing industrial internet of things,” in TENCON 2017 - 2017 IEEE
Region 10 Conference. IEEE, 2017, pp. 1219–1224.

[100] G. Falco, C. Caldera, and H. Shrobe, “IIoT cybersecurity risk modeling
for scada systems,” IEEE Internet of Things Journal, vol. 5, no. 6, pp.
4486–4495, 2018.

[101] X. Feng, J. Wu, J. Li, and S. Wang, “Efficient secure access to ieee
21451 based wireless IIoT using optimized teds and mib,” in IECON
2018 - 44th Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2018, pp. 5221–5227.

[102] D. He, J. Bu, S. Zhu, S. Chan, and C. Chen, “Distributed Access
Control with Privacy Support in Wireless Sensor Networks,” IEEE
Transactions on Wireless Communications, vol. 10, pp. 3472–3481,
2011.

[103] Y. Kim, Y. Lee, and J. Kim, “RIPPLE: Adaptive fine-grained access
control in multi-hop LLNs,” in 2018 International Conference on
Information Networking (ICOIN). IEEE, 2018, pp. 863–868.

[104] A. Lahbib, K. Toumi, A. Laouiti, and S. Martin, “DRMF: A Distributed
Resource Management Framework for Industry 4.0 Environments,” in
2019 IEEE 18th International Symposium on Network Computing and
Applications (NCA), 2019, pp. 1–9.

[105] M. Langfinger, M. Schneider, D. Stricker, and H. D. Schotten, “Ad-
dressing security challenges in industrial augmented reality systems,”
in 2017 IEEE 15th International Conference on Industrial Informatics
(INDIN). IEEE, 2017, pp. 299–304.

[106] F. Martinelli, P. Mori, A. Saracino, and F. Di Cerbo, “Obligation
Management in Usage Control Systems,” in 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2019, pp. 356–364.

[107] D. Preuveneers, W. Joosen, and E. Ilie-Zudor, “Identity management
for cyber-physical production workflows and individualized manufac-
turing in industry 4.0,” in Proceedings of the Symposium on Applied
Computing, ser. SAC ’17. ACM, 2017, pp. 1452–1455.

[108] R. Vanickis, P. Jacob, S. Dehghanzadeh, and B. Lee, “Access control
policy enforcement for zero-trust-networking,” in 2018 29th Irish
Signals and Systems Conference (ISSC). IEEE, 2018, pp. 1–6.

[109] X. Yao, H. Kong, H. Liu, T. Qiu, and H. Ning, “An Attribute
Credential Based Public Key Scheme for Fog Computing in Digital
Manufacturing,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2297–2307, 2019.

[110] G. George and S. M. Thampi, “A graph-based security framework
for securing industrial IoT networks from vulnerability exploitations,”
IEEE Access, vol. 6, pp. 43 586–43 601, 2018.

[111] I. Mugarza, J. Parra, and E. Jacob, “Cetratus: Towards a live patching
supported runtime for mixed-criticality safe and secure systems,” in
2018 IEEE 13th International Symposium on Industrial Embedded
Systems (SIES). IEEE, 2018, pp. 1–8.

[112] I. Mugarza, A. Amurrio, E. Azketa, and E. Jacob, “Dynamic Software
Updates to Enhance Security and Privacy in High Availability Energy
Management Applications in Smart Cities,” IEEE Access, vol. 7, pp.
42 269–42 279, 2019.

[113] A. Seitz, D. Henze, D. Miehle, B. Bruegge, J. Nickles, and M. Sauer,
“Fog computing as enabler for blockchain-based IIoT app marketplaces
- a case study,” in 2018 Fifth International Conference on Internet of
Things: Systems, Management and Security. IEEE, 2018, pp. 182–188.

[114] G. Yadav and K. Paul, “PatchRank: Ordering updates for SCADA
systems,” in 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2019, pp. 110–117.

[115] Q. Yan, W. Huang, X. Luo, Q. Gong, and F. R. Yu, “A multi-level
ddos mitigation framework for the industrial internet of things,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 30–36, 2018.

[116] L. Zhou and H. Guo, “Anomaly detection methods for IIoT networks,”
in 2018 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI). IEEE, 2018, pp. 214–219.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 95

30 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

[117] P. Priller, A. Aldrian, and T. Ebner, “Case study: From legacy to
connectivity migrating industrial devices into the world of smart
services,” in Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), 2014, pp. 1–8.

[118] A. W. Atamli and A. Martin, “Threat-based security analysis for the
internet of things,” in 2014 International Workshop on Secure Internet
of Things, 2014, pp. 35–43.

[119] E. Bauer, O. Schluga, S. Maksuti, A. Bicaku, D. Hofbauer, I. Ivkic,
M. G. Tauber, and A. Wöhrer, “Towards a security baseline for iaas-
cloud back-ends in industry 4.0,” in 2017 12th International Conference
for Internet Technology and Secured Transactions (ICITST). IEEE,
2017, pp. 427–432.

[120] A. Bicaku, C. Schmittner, M. Tauber, and J. Delsing, “Monitoring
industry 4.0 applications for security and safety standard compliance,”
in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, 2018,
pp. 749–754.

[121] B. Dieber and B. Breiling, “Security Considerations in Modular Mo-
bile Manipulation,” in 2019 Third IEEE International Conference on
Robotic Computing (IRC), 2019, pp. 70–77.

[122] M. Ehrlich, H. Trsek, L. Wisniewski, and J. Jasperneite, “Survey of
Security Standards for an automated Industrie 4.0 compatible Man-
ufacturing,” in IECON 2019 - 45th Annual Conference of the IEEE
Industrial Electronics Society, vol. 1, 2019, pp. 2849–2854.

[123] Industrial Internet Consortium, “Industrial Internet of Things Volume
G4: Security Framework,” Tech. Rep. IIC:PUB:g4:V1.0:PB:20160926,
September 2016. [Online]. Available: https://www.iiconsortium.org/
IISF.htm

[124] International Electrotechnical Commission, IEC 62443 Security for
Industrial Automation and Control Systems, Std., 2009-2018.

[125] F. Januário, C. Carvalho, A. Cardoso, and P. Gil, “Security challenges
in scada systems over wireless sensor and actuator networks,” in 2016
8th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT). IEEE, 2016, pp. 363–368.

[126] A. Laszka, W. Abbas, Y. Vorobeychik, and X. Koutsoukos, “Synergistic
security for the industrial internet of things: Integrating redundancy,
diversity, and hardening,” in 2018 IEEE International Conference on
Industrial Internet (ICII). IEEE, 2018, pp. 153–158.

[127] B. Leander, A. Čaušević, and H. Hansson, “Applicability of the IEC
62443 Standard in Industry 4.0 / IIoT,” in Proceedings of the 14th
International Conference on Availability, Reliability and Security, ser.
ARES âĂŹ19. New York, NY, USA: Association for Computing
Machinery, 2019.

[128] V. Sklyar and V. Kharchenko, “ENISA Documents in Cybersecurity
Assurance for Industry 4.0: IIoT Threats and Attacks Scenarios,” in
2019 10th IEEE International Conference on Intelligent Data Acquisi-
tion and Advanced Computing Systems: Technology and Applications
(IDAACS), vol. 2, 2019, pp. 1046–1049.

[129] N. Benias and A. P. Markopoulos, “A review on the readiness level
and cyber-security challenges in industry 4.0,” in 2017 South Eastern
European Design Automation, Computer Engineering, Computer Net-
works and Social Media Conference (SEEDA-CECNSM). IEEE, 2017,
pp. 1–5.

[130] S. R. Chhetri, N. Rashid, S. Faezi, and M. A. A. Faruque, “Security
trends and advances in manufacturing systems in the era of industry
4.0,” in Proceedings of the 36th International Conference on Computer-
Aided Design, ser. ICCAD ’17. IEEE Press, 2017, pp. 1039–1046.

[131] R. Chong and W. Lee, “Accelerating ElGamal Partial Homomorphic
Encryption with GPU Platform for Industrial Internet of Things,”
in 2019 International Conference on Green and Human Information
Technology (ICGHIT), 2019, pp. 108–112.

[132] A. Hassanzadeh, S. Modi, and S. Mulchandani, “Towards effective
security control assignment in the industrial internet of things,” in 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015,
pp. 795–800.

[133] N. Jazdi, “Cyber physical systems in the context of industry 4.0,”
in 2014 IEEE International Conference on Automation, Quality and
Testing, Robotics. IEEE, 2014, pp. 1–4.

[134] M. Kiss, G. Breda, and L. Muha, “Information security aspects
of Industry 4.0,” Procedia Manufacturing, vol. 32, pp. 848 – 855,
2019, 12th International Conference Interdisciplinarity in Engineering,
INTER-ENG 2018, 4âĂŞ5 October 2018, Tirgu Mures, Romania.

[135] M. Ma, D. He, N. Kumar, K. R. Choo, and J. Chen, “Certificateless
searchable public key encryption scheme for industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 2,
pp. 759–767, 2018.

[136] J. Moyne, S. Mashiro, and D. Gross, “Determining a security roadmap
for the microelectronics industry,” in 2018 29th Annual SEMI Advanced

Semiconductor Manufacturing Conference (ASMC). IEEE, 2018, pp.
291–294.

[137] K. Niemann, “IT security extensions for PROFINET,” in 2019 IEEE
17th International Conference on Industrial Informatics (INDIN),
vol. 1, 2019, pp. 407–412.

[138] C. Yin, J. Xi, R. Sun, and J. Wang, “Location privacy protection based
on differential privacy strategy for big data in industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8,
pp. 3628–3636, 2018.

[139] M. Zhang, B. Peng, and Y. Chen, “An Efficient Image Encryption
Scheme for Industrial Internet-of-Things Devices,” in Proceedings of
the 2nd International ACM Workshop on Security and Privacy for the
Internet-of-Things, ser. IoT S&P’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 38–43.

[140] Y. Zhang, H. Huang, L. Yang, Y. Xiang, and M. Li, “Serious Challenges
and Potential Solutions for the Industrial Internet of Things with Edge
Intelligence,” IEEE Network, vol. 33, no. 5, pp. 41–45, 2019.

[141] Y. Zhao, L. T. Yang, and J. Sun, “Privacy-Preserving Tensor-Based
Multiple Clusterings on Cloud for Industrial IoT,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 4, pp. 2372–2381, 2019.

[142] H. Klaus, F. Hetzelt, P. Hofmann, A. Blecker, and D. Schwaiger,
“Challenges and Solutions for Industry-Grade Secure Connectivity,” in
2019 International Conference on Networked Systems (NetSys), 2019,
pp. 1–5.

[143] S. Marksteiner, “Reasoning on adopting opc ua for an IoT-enhanced
smart energy system from a security perspective,” in 2018 IEEE 20th

Conference on Business Informatics (CBI), vol. 02. IEEE, 2018, pp.
140–143.

[144] V. Nigam and C. Talcott, “Formal Security Verification of Industry
4.0 Applications,” in 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2019, pp.
1043–1050.

[145] OPC, “The OPC Unified Architecture,” Tech. Rep., 2008. [Online].
Available: https://opcfoundation.org/about/opc-technologies/opc-ua/

[146] B. Chen, L. Wu, N. Kumar, K. R. Choo, and D. He, “Lightweight
Searchable Public-key Encryption with Forward Privacy over IIoT Out-
sourced Data,” IEEE Transactions on Emerging Topics in Computing,
pp. 1–1, 2019.

[147] L. Deng, “Anonymous Aggregate Encryption Scheme for Industrial
Internet of Things,” IEEE Systems Journal, pp. 1–8, 2019.

[148] T. M. Fernandez-Carames and P. Fraga-Lamas, “A Review on the
Application of Blockchain to the Next Generation of Cybersecure
Industry 4.0 Smart Factories,” IEEE Access, vol. 7, pp. 45 201–45 218,
2019.

[149] J. Fu, Y. Liu, H. Chao, B. K. Bhargava, and Z. Zhang, “Secure data
storage and searching for industrial IoT by integrating fog computing
and cloud computing,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4519–4528, 2018.

[150] Z. Guan, X. Lu, N. Wang, J. Wu, X. Du, and M. Guizani, “Towards
secure and efficient energy trading in IIoT-enabled energy internet: A
blockchain approach,” Future Generation Computer Systems, 2019.

[151] J. Huang, L. Kong, G. Chen, M. Wu, X. Liu, and P. Zeng, “Towards
Secure Industrial IoT: Blockchain System With Credit-Based Consen-
sus Mechanism,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 6, pp. 3680–3689, 2019.

[152] Y. Jiang, Y. Zhong, and X. Ge, “Smart Contract-Based Data Commod-
ity Transactions for Industrial Internet of Things,” IEEE Access, vol. 7,
pp. 180 856–180 866, 2019.

[153] W. Liang, M. Tang, J. Long, X. Peng, J. Xu, and K. Li, “A Secure
FaBric Blockchain-Based Data Transmission Technique for Indus-
trial Internet-of-Things,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 6, pp. 3582–3592, 2019.

[154] C. H. Liu, Q. Lin, and S. Wen, “Blockchain-Enabled Data Collection
and Sharing for Industrial IoT With Deep Reinforcement Learning,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3516–
3526, 2019.

[155] Y. Miao, Q. Tong, K. R. Choo, X. Liu, R. H. Deng, and H. Li, “Secure
Online/Offline Data Sharing Framework for Cloud-Assisted Industrial
Internet of Things,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8681–8691, 2019.

[156] P. Nikander, J. Autiosalo, and S. Paavolainen, “Interledger for the
Industrial Internet of Things,” in 2019 IEEE 17th International Con-
ference on Industrial Informatics (INDIN), vol. 1, 2019, pp. 908–915.

[157] A. S. Sani, D. Yuan, W. Bao, P. L. Yeoh, Z. Y. Dong, B. Vucetic, and
E. Bertino, “Xyreum: A High-Performance and Scalable Blockchain
for IIoT Security and Privacy,” in 2019 IEEE 39th International

96
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 31

Conference on Distributed Computing Systems (ICDCS), 2019, pp.
1920–1930.

[158] N. Stifter, M. Eckhart, B. Brenner, and E. Weippl, “Avoiding Risky
Designs When Using Blockchain Technologies in Cyber-Physical
Systems,” in 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2019, pp. 1623–1626.

[159] P. Xu, S. He, W. Wang, W. Susilo, and H. Jin, “Lightweight searchable
public-key encryption for cloud-assisted wireless sensor networks,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3712–
3723, 2018.

[160] Y. Yu, R. Chen, H. Li, Y. Li, and A. Tian, “Toward Data Security in
Edge Intelligent IIoT,” IEEE Network, vol. 33, no. 5, pp. 20–26, 2019.

[161] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “FS-PEKS: Lattice-
based Forward Secure Public-key Encryption with Keyword Search for
Cloud-assisted Industrial Internet of Things,” IEEE Transactions on
Dependable and Secure Computing, pp. 1–1, 2019.

[162] R. Al-Ali, R. Heinrich, P. Hnetynka, A. Juan-Verdejo, S. Seifermann,
and M. Walter, “Modeling of dynamic trust contracts for industry 4.0
systems,” in Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings, ser. ECSA ’18. ACM, 2018,
pp. 45:1–45:4.

[163] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design
patterns for the industrial internet of things,” in 2018 14th IEEE
International Workshop on Factory Communication Systems (WFCS).
IEEE, 2018, pp. 1–10.

[164] J. Schuette and G. S. Brost, “Lucon: Data flow control for message-
based IoT systems,” in 2018 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/ 12th

IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 2018, pp. 289–299.

[165] D. Conzon, M. R. A. Rashid, X. Tao, A. Soriano, R. Nicholson, and
E. Ferrera, “BRAIN-IoT: Model-Based Framework for Dependable
Sensing and Actuation in Intelligent Decentralized IoT Systems,” in
2019 4th International Conference on Computing, Communications and
Security (ICCCS), 2019, pp. 1–8.

[166] The European Parliament and the council of the European
union, “REGULATION (EU) 2016/679 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL (GDPR),” European
Union, Tech. Rep., April 2016. [Online]. Available: http://data.europa.
eu/eli/reg/2016/679/oj

[167] G. Han, X. Miao, H. Wang, L. Liu, J. Jiang, and Y. Peng, “A
Dynamic Multipath Scheme for Protecting Source-Location Privacy
Using Multiple Sinks in WSNs Intended for IIoT,” IEEE Transactions
on Industrial Informatics, pp. 1–1, 2019.

[168] Z. A. Solangi, Y. A. Solangi, S. Chandio, M. bt. S. Abd. Aziz, M. S.
bin Hamzah, and A. Shah, “The future of data privacy and security
concerns in internet of things,” in 2018 IEEE International Conference
on Innovative Research and Development (ICIRD). IEEE, 2018, pp.
1–4.

[169] M. Usman, M. A. Jan, A. Jolfaei, M. Xu, X. He, and J. Chen, “DaaC:
A Distributed and Anonymous Data Collection Framework based on
Multi-Level Edge Computing Architecture,” IEEE Transactions on
Industrial Informatics, pp. 1–1, 2019.

[170] M. Al-Hawawreh and E. Sitnikova, “Industrial Internet of Things Based
Ransomware Detection Using Stacked Variational Neural Network,”
in Proceedings of the 3rd International Conference on Big Data
and Internet of Things, ser. BDIOT 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 126âĂŞ130.

[171] M. Al-Hawawreh, E. Sitnikova, and F. den Hartog, “An Efficient
Intrusion Detection Model for Edge System in Brownfield Industrial
Internet of Things,” in Proceedings of the 3rd International Conference
on Big Data and Internet of Things, ser. BDIOT 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 83âĂŞ87.

[172] C. Alcaraz, G. Bernieri, F. Pascucci, J. Lopez, and R. Setola, “Covert
Channels-Based Stealth Attacks in Industry 4.0,” IEEE Systems Jour-
nal, vol. 13, no. 4, pp. 3980–3988, 2019.

[173] S. Alem, D. Espes, E. Martin, L. Nana, and F. De Lamotte, “A Hybrid
Intrusion Detection System in Industry 4.0 Based on ISA95 Standard,”
in 2019 IEEE/ACS 16th International Conference on Computer Systems
and Applications (AICCSA), 2019, pp. 1–8.

[174] R. Antrobus, B. Green, S. Frey, and A. Rashid, “The forgotten I in IIoT:
A vulnerability scanner for industrial Internet of Things,” in Living in
the Internet of Things (IoT 2019), 2019, pp. 1–8.

[175] R. F. Babiceanu and R. Seker, “Cyber resilience protection for in-
dustrial internet of things: A software-defined networking approach,”
Computers in Industry, vol. 104, pp. 47 – 58, 2019.

[176] G. Bernieri, M. Conti, and F. Pascucci, “MimePot: a Model-based
Honeypot for Industrial Control Networks,” in 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), 2019, pp. 433–
438.

[177] Z. Birnbaum, A. Dolgikh, V. Skormin, E. O’Brien, and D. Muller,
“Unmanned aerial vehicle security using recursive parameter estima-
tion,” in 2014 International Conference on Unmanned Aircraft Systems
(ICUAS), 2014, pp. 692–702.

[178] R. Colelli, S. Panzieri, and F. Pascucci, “Securing connection between
IT and OT: the Fog Intrusion Detection System prospective,” in 2019
II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT),
2019, pp. 444–448.

[179] V. Deshpande, L. George, and H. Badis, “PulSec: Secure Element
based framework for sensors anomaly detection in Industry 4.0,” IFAC-
PapersOnLine, vol. 52, no. 13, pp. 1204 – 1209, 2019, 9th IFAC
Conference on Manufacturing Modelling, Management and Control
MIM 2019.

[180] S. D. Duque Anton, M. Strufe, and H. D. Schotten, “Modern Problems
Require Modern Solutions: Hybrid Concepts for Industrial Intrusion
Detection,” in Mobile Communication - Technologies and Applications;
24. ITG-Symposium, 2019, pp. 1–5.

[181] C. Enăchescu, H. Sándor, and B. Genge, “A Multi-Model-based Ap-
proach to Detect Cyber Stealth Attacks in Industrial Internet of Things,”
in 2019 International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2019, pp. 1–6.

[182] J. L. Flores and I. Mugarza, “Runtime vulnerability discovery as a
service on industrial internet of things (IIoT) systems,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1. IEEE, 2018, pp. 948–955.

[183] B. Genge, P. Haller, and C. Enachescu, “Anomaly Detection in Aging
Industrial Internet of Things,” IEEE Access, vol. 7, pp. 74 217–74 230,
2019.

[184] M. M. Hasan and H. T. Mouftah, “Cloud-centric collaborative secu-
rity service placement for advanced metering infrastructures,” IEEE
Transactions on Smart Grid, vol. 10, no. 2, pp. 1339–1348, 2017.

[185] Y. Hu, D. Zhang, G. Cao, and Q. Pan, “Network Data Analysis
and Anomaly Detection Using CNN Technique for Industrial Control
Systems Security,” in 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC), 2019, pp. 593–597.

[186] O. Ibitoye, O. Shafiq, and A. Matrawy, “Analyzing Adversarial Attacks
against Deep Learning for Intrusion Detection in IoT Networks,” in
2019 IEEE Global Communications Conference (GLOBECOM), 2019,
pp. 1–6.

[187] P. Kadera and P. Novák, “Performance modeling extension of directory
facilitator for enhancing communication in fipa-compliant multiagent
systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2,
pp. 688–695, 2017.

[188] M. E. Khoda, T. Imam, J. Kamruzzaman, I. Gondal, and A. Rahman,
“Robust Malware Defense in Industrial IoT Applications using Ma-
chine Learning with Selective Adversarial Samples,” IEEE Transac-
tions on Industry Applications, pp. 1–1, 2019.

[189] B. Kim and Y. Kang, “Abnormal traffic detection mechanism for
protecting IIoT environments,” in 2018 International Conference on
Information and Communication Technology Convergence (ICTC).
IEEE, 2018, pp. 943–945.

[190] V. Krundyshev and M. Kalinin, “Prevention of false data injections in
smart infrastructures,” in 2019 IEEE International Black Sea Confer-
ence on Communications and Networking (BlackSeaCom), 2019, pp.
1–5.

[191] A. Melis, D. Berardi, C. Contoli, F. Callegati, F. Esposito, and
M. Prandini, “A policy checker approach for secure industrial sdn,” in
2018 2nd Cyber Security in Networking Conference (CSNet). IEEE,
2018, pp. 1–7.

[192] R. Mitchell and I. Chen, “Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 5, pp.
593–604, 2014.

[193] N. Moustafa, E. Adi, B. Turnbull, and J. Hu, “A new threat intelligence
scheme for safeguarding industry 4.0 systems,” IEEE Access, vol. 6,
pp. 32 910–32 924, 2018.

[194] D. M. Nedeljkovic, Z. B. Jakovljevic, Z. D. Miljkovic, and M. Pajic,
“Detection of cyber-attacks in electro-pneumatic positioning system
with distributed control,” in 2019 27th Telecommunications Forum
(TELFOR), 2019, pp. 1–4.

[195] M. Niedermaier, F. Fischer, D. Merli, and G. Sigl, “Network Scanning
and Mapping for IIoT Edge Node Device Security,” in 2019 Interna-
tional Conference on Applied Electronics (AE), 2019, pp. 1–6.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 97

32 IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

[196] S. Potluri, C. Diedrich, S. R. Roy Nanduru, and K. Vasamshetty,
“Development of Injection Attacks Toolbox in MATLAB/Simulink for
Attacks Simulation in Industrial Control System Applications,” in 2019
IEEE 17th International Conference on Industrial Informatics (INDIN),
vol. 1, 2019, pp. 1192–1198.

[197] M. Smache, A. Olivereau, T. Franco-Rondisson, and A. Tria, “Au-
tonomous Detection of Synchronization Attacks in the Industrial
Internet Of Things,” in 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC), 2019, pp. 1–
9.

[198] G. Settanni, F. Skopik, A. Karaj, M. Wurzenberger, and R. Fiedler,
“Protecting cyber physical production systems using anomaly detection
to enable self-adaptation,” in 2018 IEEE Industrial Cyber-Physical
Systems (ICPS). IEEE, 2018, pp. 173–180.

[199] V. Sharma, G. Choudhary, Y. Ko, and I. You, “Behavior and vulnerabil-
ity assessment of drones-enabled industrial internet of things (IIoT),”
IEEE Access, vol. 6, pp. 43 368–43 383, 2018.

[200] S. Tamy, H. Belhadaoui, M. A. Rabbah, N. Rabbah, and M. Rifi,
“An Evaluation of Machine Learning Algorithms To Detect Attacks
in Scada Network,” in 2019 7th Mediterranean Congress of Telecom-
munications (CMT), 2019, pp. 1–5.

[201] A. Wadsworth, M. I. Thanoon, C. McCurry, and S. Z. Sabatto,
“Development of IIoT Monitoring and Control Security Scheme for
Cyber Physical Systems,” in 2019 SoutheastCon, 2019, pp. 1–5.

[202] T. Wang, P. Wang, S. Cai, Y. Ma, A. Liu, and M. Xie, “A Unified
Trustworthy Environment Establishment based on Edge Computing in
Industrial IoT,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2019.

[203] H. Yao, P. Gao, P. Zhang, J. Wang, C. Jiang, and L. Lu, “Hybrid
Intrusion Detection System for Edge-Based IIoT Relying on Machine-
Learning-Aided Detection,” IEEE Network, vol. 33, no. 5, pp. 75–81,
2019.

[204] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the Internet-of-Things,” in Proceedings of HotNets, Philadelphia, PA,
2015, pp. 1–7.

[205] L. Zhou, H. Guo, and G. Deng, “A fog computing based approach to
DDoS mitigation in IIoT systems,” Computers & Security, vol. 85, pp.
51 – 62, 2019.

[206] M. Zolanvari, M. A. Teixeira, and R. Jain, “Effect of imbalanced
datasets on security of industrial IoT using machine learning,” in
2018 IEEE International Conference on Intelligence and Security
Informatics (ISI). IEEE, 2018, pp. 112–117.

[207] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain,
“Machine Learning-Based Network Vulnerability Analysis of Industrial
Internet of Things,” IEEE Internet of Things Journal, vol. 6, no. 4, pp.
6822–6834, 2019.

[208] E. Zugasti, M. Iturbe, I. Garitano, and U. Zurutuza, “Null is not always
empty: Monitoring the null space for field-level anomaly detection in
industrial IoT environments,” in 2018 Global Internet of Things Summit
(GIoTS). IEEE, 2018, pp. 1–6.

[209] Y. Ai, M. Cheffena, T. Ohtsuki, and H. Zhuang, “Secrecy Performance
Analysis of Wireless Sensor Networks,” IEEE Sensors Letters, vol. 3,
no. 5, pp. 1–4, 2019.

[210] C. Alcaraz, R. Roman, P. Najera, and J. Lopez, “Security of industrial
sensor network-based remote substations in the context of the Internet
of Things,” Ad Hoc Networks, vol. 11, pp. 1091–1104, 2013.

[211] A. Bluschke, W. Bueschel, M. Hohmuth, F. Jehring, R. Kaminski,
K. Klamka, S. Koepsell, A. Lackorzynski, T. Lackorzynski,
M. Matthews, P. Rietzsch, A. Senier, P. Sieber, V. Ulrich,
R. Wiggers, and J. Wolter, “fastvpn - secure and flexible
networking for industry 4.0,” in Broadband Coverage in Germany;
12th ITG-Symposium. VDE, 2018, pp. 1–8. [Online]. Available:
https://imld.de/en/research/research-projects/fastvpn/

[212] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and
C. Zunino, “Leveraging sdn to improve security in industrial networks,”
in 2017 IEEE 13th International Workshop on Factory Communication
Systems (WFCS). IEEE, 2017, pp. 1–7.

[213] B. Czybik, S. Hausmann, S. Heiss, and J. Jasperneite, “Performance
evaluation of mac algorithms for real-time ethernet communication
systems,” in 2013 11th IEEE International Conference on Industrial
Informatics (INDIN). IEEE, 2013, pp. 676–681.

[214] S. Jeong, W. Na, J. Kim, and S. Cho, “Internet of things for smart
manufacturing system: Trust issues in resource allocation,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 4418–4427, 2018.

[215] C. Lipps, M. Strufe, S. B. Mallikarjun, and H. D. Schotten, “Physical
Layer Security for IIoT and CPPS: A Cellular-Network Security

Approach,” in Mobile Communication - Technologies and Applications;
24. ITG-Symposium, 2019, pp. 1–5.

[216] C. Lipps, D. Krummacker, and H. D. Schotten, “Securing Industrial
Wireless Networks: Enhancing SDN with PhySec,” in 2019 Conference
on Next Generation Computing Applications (NextComp), 2019, pp. 1–
7.

[217] J. O’Raw, D. Laverty, and D. J. Morrow, “Securing the Industrial
Internet of Things for Critical Infrastructure (IIoT-CI),” in 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), 2019, pp. 70–75.

[218] P. Hu, “A system architecture for software-defined industrial internet of
things,” in 2015 IEEE International Conference on Ubiquitous Wireless
Broadband (ICUWB). IEEE, 2015, pp. 1–5.

[219] T. Kobzan, S. Schriegel, S. Althoff, A. Boschmann, J. Otto, and
J. Jasperneite, “Secure and time-sensitive communication for remote
process control and monitoring,” in 2018 IEEE 23rd International Con-
ference on Emerging Technologies and Factory Automation (ETFA),
vol. 1. IEEE, 2018, pp. 1105–1108.

[220] T. Lackorzynski, S. Köpsell, and T. Strufe, “A Comparative Study
on Virtual Private Networks for Future Industrial Communication
Systems,” in 2019 15th IEEE International Workshop on Factory
Communication Systems (WFCS), 2019, pp. 1–8.

[221] G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentinit, “Formally verified
latency-aware vnf placement in industrial internet of things,” in 2018
14th IEEE International Workshop on Factory Communication Systems
(WFCS). IEEE, 2018, pp. 1–9.

[222] M. Alaluna, L. Ferrolho, J. R. Figueira, N. Neves, and F. M. V. Ramos,
“Secure Multi-Cloud Virtual Network Embedding,” arXiv e-prints, p.
arXiv:1703.01313, 2017.

[223] M. Chen, Y. Miao, Y. Hao, and K. Hwang, “Narrow band internet of
things,” IEEE Access, vol. 5, pp. 20 557–20 577, 2017.

[224] F. Kurtz, C. Bektas, N. Dorsch, and C. Wietfeld, “Network slicing
for critical communications in shared 5g infrastructures - an empirical
evaluation,” in 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft). IEEE, 2018, pp. 393–399.

[225] T. Ulz, T. Pieber, C. Steger, S. Haas, and R. Matischek, “Sneakernet on
wheels: Trustworthy nfc-based robot to machine communication,” in
2017 IEEE International Conference on RFID Technology Application
(RFID-TA). IEEE, 2017, pp. 260–265.

[226] Q. Wang, H. Dai, H. Wang, G. Xu, and A. K. Sangaiah, “UAV-enabled
friendly jamming scheme to secure industrial Internet of Things,”
Journal of Communications and Networks, vol. 21, no. 5, pp. 481–
490, 2019.

[227] N. Accettura and G. Piro, “Optimal and secure protocols in the
ietf 6tisch communication stack,” in 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE). IEEE, 2014, pp. 1469–
1474.

[228] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[229] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on lpwa technology:
Lora and nb-IoT,” Ict Express, vol. 3, no. 1, pp. 14–21, 2017.

[230] H. C. Pöhls, V. Angelakis, S. Suppan, K. Fischer, G. Oikonomou, E. Z.
Tragos, Rodrigo Diaz Rodriguez, and T. Mouroutis, “Rerum: Building
a reliable IoT upon privacy- and security- enabled smart objects,”
in 2014 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), 2014, pp. 122–127.

[231] H. Aranha, M. Masi, T. Pavleska, and G. P. Sellitto, “Securing Mobile
e-Health Environments by Design: A Holistic Architectural Approach,”
in 2019 International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2019, pp. 1–6.

[232] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (IIoT): An analysis framework,” Computers in
Industry, vol. 101, pp. 1–12, 2018.

[233] B. Craggs, A. Rashid, C. Hankin, R. Antrobus, O. Serban, and
N. Thapen, “A reference architecture for IIoT and industrial control
systems testbeds,” in Living in the Internet of Things (IoT 2019), 2019,
pp. 1–8.

[234] M. Eckhart, A. Ekelhart, A. LÃijder, S. Biffl, and E. Weippl, “Secu-
rity Development Lifecycle for Cyber-Physical Production Systems,”
in IECON 2019 - 45th Annual Conference of the IEEE Industrial
Electronics Society, vol. 1, 2019, pp. 3004–3011.

[235] H. Flatt, S. Schriegel, J. Jasperneite, H. Trsek, and H. Adamczyk,
“Analysis of the cyber-security of industry 4.0 technologies based on
rami 4.0 and identification of requirements,” in 2016 IEEE 21st Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2016, pp. 1–4.

98
B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing

Opportunities

TANGE et al.: A SYSTEMATIC SURVEY OF INDUSTRIAL INTERNET OF THINGS SECURITY: REQUIREMENTS AND FOG COMPUTING OPPORTUNITIES 33

[236] Y. Huang, W. Sun, and Y. Tang, “3aRAM: A 3-Layer AHP-Based Risk
Assessment Model and its Implementation for an Industrial IoT Cloud,”
in 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2019, pp. 450–457.

[237] R. A. Isbell, C. Maple, B. Hallaq, and H. Boyes, “Development of a
capability maturity model for cyber security in IIoT enabled supply
chains,” in Living in the Internet of Things (IoT 2019), 2019, pp. 1–8.

[238] I. Ivkic, A. Mauthe, and M. Tauber, “Towards a Security Cost Model
for Cyber-Physical Systems,” in 2019 16th IEEE Annual Consumer
Communications Networking Conference (CCNC), 2019, pp. 1–7.

[239] V. Kharchenko, S. Dotsenko, O. Illiashenko, and S. Kamenskyi,
“Integrated Cyber Safety Security Management System: Industry 4.0
Issue,” in 2019 10th International Conference on Dependable Systems,
Services and Technologies (DESSERT), 2019, pp. 197–201.

[240] A. Kondeva, V. Nigam, H. Ruess, and C. Carlan, “On Computer-Aided
Techniques for Supporting Safety and Security Co-Engineering,” in
2019 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), 2019, pp. 346–353.

[241] L. Liang, Y. Liu, Y. Yao, T. Yang, Y. Hu, and C. Ling, “Security
challenges and risk evaluation framework for industrial wireless sensor
networks,” in 2017 4th International Conference on Control, Decision
and Information Technologies (CoDIT). IEEE, 2017, pp. 0904–0907.

[242] J. M. Mcginthy and A. J. Michaels, “Secure Industrial Internet of
Things Critical Infrastructure Node Design,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 8021–8037, 2019.

[243] N. Mohamed and J. Al-Jaroodi, “Applying Blockchain in Industry 4.0
Applications,” in 2019 IEEE 9th Annual Computing and Communica-
tion Workshop and Conference (CCWC), 2019, pp. 0852–0858.

[244] S. Pasandideh, L. Gomes, and P. Malï£¡, “Improving Attack Trees
Analysis using Petri Net modeling of Cyber-Attacks,” in 2019 IEEE
28th International Symposium on Industrial Electronics (ISIE), 2019,
pp. 1644–1649.

[245] R. Sharpe, K. van Lopik, A. Neal, P. Goodall, P. P. Conway, and
A. A. West, “An industrial evaluation of an Industry 4.0 reference
architecture demonstrating the need for the inclusion of security and
human components,” Computers in Industry, vol. 108, pp. 37 – 44,
2019.

[246] L. Shu, M. Mukherjee, M. Pecht, N. Crespi, and S. N. Han, “Chal-
lenges and research issues of data management in IoT for large-scale
petrochemical plants,” IEEE Systems Journal, vol. 12, no. 3, pp. 2509–
2523, 2018.

[247] “TrustZone,” [Accessed 2 Jul. 2019]. [Online]. Available: https:
//developer.arm.com/ip-products/security-ip/trustzone

[248] “Intel R© Software Guard Extensions,” [Accessed 2 Jul. 2019].
[Online]. Available: https://software.intel.com/en-us/sgx

[249] I. O. for Standardization/International Electrotechnical Commission
et al., “Information technology-Trusted Platform Module–Part 1:
Overview,” International Standard, ISO/IEC, pp. 11 889–1.

[250] “Axiomtek’s Fanless Embedded System with TPM 1.2 and
Flexible Expansions,” [Accessed 2 Jul. 2019]. [Online].
Available: https://www.axiomtek.com/Default.aspx?MenuId=News&
FunctionId=NewsView&ItemId=12845

[251] “CC2652R SimpleLink Multiprotocol 2.4-GHz Wireless MCU,” 2019.
[Online]. Available: http://www.ti.com/lit/ds/symlink/cc2652r.pdf

[252] 3GPP, “The 3rd Generation Partnership Project Website,” Tech. Rep.
[Online]. Available: https://www.3gpp.org

[253] H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for
Implementing the Strategic Initiative INDUSTRIE 4.0 – Securing
the Future of German Manufacturing Industry,” acatech – National
Academy of Science and Engineering, München, Final Report of
the Industrie 4.0 Working Group, apr 2013. [Online]. Available:
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf

[254] M. De Donno, K. Tange, and N. Dragoni, “Foundations and evolution
of modern computing paradigms: Cloud, IoT, edge, and fog,” IEEE
Access, vol. 7, pp. 150 936–150 948, 2019.

[255] M. De Donno, A. Giaretta, N. Dragoni, A. Bucchiarone, and M. Maz-
zara, “Cyber-storms come from clouds: Security of cloud computing
in the IoT era,” Future Internet, vol. 11, no. 6, p. 127, 2019.

[256] I. S. Association et al., “IEEE 1934-2018-IEEE standard for adoption
of OpenFog reference architecture for Fog Computing,” 2018.

[257] R. Skillern, “Intel R© SGX Data Protections Now Available for
Mainstream Cloud Platforms,” Tech. Rep., 2019. [Online]. Available:
https://itpeernetwork.intel.com/sgx-data-protection-cloud-platforms/

[258] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing
in industrial internet of things and industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

[259] M. De Donno, J. M. D. Felipe, and N. Dragoni, “AntibIoTic 2.0: A
Fog-based Anti-Malware for Internet of Things,” in Proceedings of
the European Workshop on Security and Privacy in Edge Computing
(EuroSPEC 2019), located at IEEE Conference on Security & Privacy
(EuroS&P, 2019.

[260] M. De Donno and N. Dragoni, “Combining AntibIoTic with Fog
Computing: AntibIoTic 2.0,” in Proceedings of the 3rd International
Conference on Fog and Edge Computing (ICFEC). IEEE, 2019, pp.
1–6.

[261] M. De Donno, N. Dragoni, A. Giaretta, and M. Mazzara, “AntibIoTic:
protecting IoT devices against DDoS attacks,” in International Con-
ference in Software Engineering for Defence Applications. Springer,
2016, pp. 59–72.

[262] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog
computing and related edge computing paradigms: A complete survey,”
Journal of Systems Architecture, vol. 98, pp. 289 – 330, 2019.

Koen Tange is a PhD student at DTU Compute, Technical University of
Denmark (Denmark), under the supervision of Prof. Nicola Dragoni. He
received a B.Sc in Software Science at Eindhoven University of Technology
(TU/e), Eindhoven, the Netherlands, in 2016. Afterwards, in 2018, he received
a joint M.Sc. degree in Engineering, Security, and Mobile Computing from the
Technical University of Denmark, Lyngby, Denmark, and Aalto University,
Espoo, Finland, as part of the Nordic Masters Programme in Security and
Mobile Computing. His research interests include information security, Fog
computing, trusted hardware, and distributed systems.

Michele De Donno is a PhD Student at DTU Compute, Technical University
of Denmark (Denmark), under the supervision of Prof. Nicola Dragoni. He got
a M.Sc. Degree in Computer Engineering from Politecnico di Torino, Turin,
Italy, in 2017. His main research interests include cyber-security, networking,
distributed systems, Internet-of-Things, and Fog computing.

Xenofon Fafoutis (S’09-M’14-SM’20) received a PhD degree in Embedded
Systems Engineering from the Technical University of Denmark in 2014;
an MSc degree in Computer Science from the University of Crete (Greece)
in 2010; and a BSc in Informatics and Telecommunications from the Uni-
versity of Athens (Greece) in 2007. From 2014 to 2018, he held various
researcher positions at the University of Bristol (UK), and he was a core
member of SPHERE: UK’s flagship Interdisciplinary Research Collaboration
on Healthcare Technology. He is currently an Associate Professor with the
Embedded Systems Engineering (ESE) section of the Department of Applied
Mathematics and Computer Science of the Technical University of Denmark
(DTU Compute). His research interests primarily lie in Wireless Embedded
Systems as an enabling technology for Digital Health, Smart Cities, and the
(Industrial) Internet of Things (IoT).

Nicola Dragoni is Professor in Secure Pervasive Computing at DTU Compute,
Technical University of Denmark, where he also serves as Deputy Head of
the PhD School. He is also part-time Professor in Computer Engineering at
Centre for Applied Autonomous Sensor Systems, Örebro University, Sweden,
and he is affiliated with the Copenhagen Center for Health Technology
(CACHET) and the Nordic IoT Hub. Nicola Dragoni received the M.Sc.
(cum laude) and Ph.D. degrees in computer science from the University of
Bologna, Italy. His main research interests include pervasive computing and
cybersecurity, with current focus on Internet-of-Things, Fog computing and
mobile systems. He has co-authored 110+ peer-reviewed articles and he has
edited 3 journal special issues and 1 book. He is active in a number of national
and international projects.

B: A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities 99

100

Paper C
Fault-tolerant Clock Synchronization
using Precise Time Protocol
Multi-Domain Aggregation

E. Kyriakakis, K. Tange, N. Reusch, E. O. Zaballa, X. Fafoutis, M. Schoeberl, and N
Dragoni. “Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-
Domain Aggregation.” In: 2021 IEEE 24th International Symposium on Real-Time
Distributed Computing (ISORC). IEEE, 2021. doi: 10.1109/ISORC52013.2021.
00025

Fault-tolerant Clock Synchronization using Precise
Time Protocol Multi-Domain Aggregation

Eleftherios Kyriakakis∗§, Koen Tange ∗§, Niklas Reusch∗, Eder Ollora Zaballa†,
Xenofon Fafoutis∗, Martin Schoeberl∗, and Nicola Dragoni∗

{elky, kpta, nikre, eoza, xefa, masca, ndra}@dtu.dk
∗DTU Compute, †DTU Fotonik,
Technical University of Denmark

Abstract—Distributed real-time systems often rely on time-
triggered communication and task execution to guarantee end-
to-end latency and time-predictable computation. Such systems
require a reliable synchronized network time to be shared among
end-systems. The IEEE 1588 Precision Time Protocol (PTP)
enables such clock synchronization throughout an Ethernet-based
network. While security was not addressed in previous versions
of the IEEE 1588 standard, in its most recent iteration (IEEE
1588-2019), several security mechanisms and recommendations
were included describing different measures that can be taken to
improve system security and safety. One proposal to improve
security and reliability is to add redundancy to the network
through modifications in the topology. However, this recommen-
dation omits implementation details and leaves the question open
of how it affects synchronization quality.

This work investigates the quality impact and security proper-
ties of redundant PTP deployment and proposes an observation
window-based multi-domain, PTP end-system, design to increase
fault-tolerance and security. We implement the proposed design
inside a discrete-event network simulator and evaluate its clock
synchronization quality using two test-case network topologies
with simulated faults.

Index Terms—time-sensitive networking, precise time protocol,
clock synchronization, fault tolerance, availability, safety

I. INTRODUCTION

Modern Cyber-Physical Systems (CPS) are becoming in-
creasingly connected to the Internet through the advancements
of Fog Computing and Industrial Internet of Things. Thus
nowadays, security becomes an essential factor in the design of
such systems, in addition to the traditional safety and reliability
requirements [1], [2].

Time-triggered communication is often used in distributed
CPS that require strict guarantees on the timing of messages.
Such systems need a high precision global notion of time to be
shared among the nodes in the network to achieve synchronous
scheduled communication and computation [3], [4]. Time-
Sensitive Networking (TSN) [5] is a newly developed standard
that aims to enable deterministic real-time communication for
mixed-criticality traffic while preserving the high-bandwidth
capabilities of Ethernet. It is developed by the TSN Task
Group as an extension to the 802.1 Ethernet standard and
consists of many sub-standards for different components. TSN
uses a profile (802.1 AS-Rev [6]) of the IEEE 1588 Precision
Time Protocol (PTP) standard [7] to enable accurate clock

§These authors contributed equally to this work.

synchronization. Although PTP has been in use for decades,
recent research indicates that this protocol’s security and
safety aspects have been overlooked, leaving it vulnerable
to time synchronization attacks [8]. An attack on an automated
factory’s network time would disrupt the communication
and computation schedule leading to missed deadlines and
messages. This could have catastrophic consequences both
in the production line and operating machinery, as well as
possibly endanger human lives or the environment.

To address some of these issues, the IEEE Precise Networked
Clock Synchronization Working Group has included various
security measures in the updated IEEE 1588-2019 standard [9].
This updated standard proposes several measures involving
redundancy to mitigate security and safety issues due to
unavailable links. To support the proposed redundancy, the
standard recommends using a voting algorithm to derive a
converged clock offset from the multiple domains. However,
no further information is given, leaving the algorithm’s choice
and its implementation to the user.

While distributed consensus and voting algorithms are exten-
sively studied [10], to our knowledge, no such work exists in
the context of highly time-sensitive PTP networks. We explore
the concept of fault-tolerant clock synchronization within
TSN and propose a multi-domain synchronization scheme
that uses redundant paths combined with frame aggregation
and a time-based observation window to achieve secure and
fault-tolerant operation. We evaluate the proposed approach
by simulating three test-case network topologies in a discrete-
event network simulation tool OMNeT++ [11]. The achieved
clock synchronization is compared against standard PTP end-
systems and evaluated regarding two metrics, accuracy as
average mean and jitter as the standard deviation of the clock
offset. The proposed multi-domain design is able to preserve
microsecond precision despite the existence of network failures.
The contributions of this paper are:

• A fault-tolerant PTP end-system design that supports
multiple synchronization domains.

• A timed observation window mechanism that aims to
increase security by filtering received frames.

• A comparative analysis of clock synchronization quality
in different test-case scenarios with faults.

The remainder of this paper is structured in 6 sections:

114

2021 IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC)

2375-5261/21/$31.00 ©2021 IEEE
DOI 10.1109/ISORC52013.2021.00025

20
21

 IE
EE

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Re
al

-T
im

e
Di

st
rib

ut
ed

 C
om

pu
tin

g
(IS

O
RC

) |
 9

78
-1

-6
65

4-
04

14
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
O

RC
52

01
3.

20
21

.0
00

25

C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation 103

Section II presents the fundamental concepts of PTP and fault-
tolerant synchronization and introduces the problem statement.
Section III discusses the related work in PTP security and
fault tolerance. Section IV presents the proposed multi-domain
end-system architecture and discusses the required network
topology. Section V evaluates the proposed multi-domain
design and compares its performance against the standard PTP
mechanisms by simulating different test-cases with synthetic
scenarios. Section VI provides a discussion on the safety and
security implications of the proposed multi-domain aggregation
mechanism. Section VII presents the planned future extensions
of this work. Section VIII summarizes the presented work and
concludes the paper.

II. BACKGROUND

A. Fault-Tolerant Clock Synchronization

Precise and fault-tolerant time synchronization is an op-
erational requirement of distributed safety-critical real-time
systems, such as those found in aerospace and automotive
industry. Redundancy is the key to tolerate Byzantine faults
in these systems, as any master clock can exhibit arbitrary
behaviour and provide false readings of its local clock to
connected systems. Consequently, slave clocks can misinterpret
this information either because accurate convergence algorithms
have not been implemented or simply because the in-place
redundancy is not sufficient. It can lead to drift in the relative
clock offset of the network-wide time base.

This effect has been described in research [12], [13], where
the authors have analyzed the need for 3 f +1 nodes available in
a distributed system that can tolerate f faults and have provided
static bounds for different convergence algorithms. The most
predominant algorithm of these is the Fault-Tolerant Average
(FTA), which was first introduced in [14] and is incorporated
in the fault-tolerant clock synchronization of TTEthernet [15]
that is now part of the aerospace standard AS6802 [16]. In
this work, we try to incorporate FTA principles in PTP and
evaluate its performance in TSN networks as a means to provide
fault-tolerant multi-domain clock synchronization.

B. IEEE 1588-2019 Precise Time Protocol

PTP is a hierarchical clock synchronization protocol based
on a periodic exchange of Ethernet frames that estimates the
clock offset between end-system ports configured as slaves
and masters [17]. Typically, a PTP stack is assigned to each
PTP port and is responsible for executing the protocol. A
mechanism, called a clock servo, is responsible for correcting
the device clock using a proportional-integral filter [18]. The
PTP stack on a slave port calculates the time difference from
a master by collecting four timestamps using four respective
frames:

1) SYNC, from master to slave
2) FOLLOW UP, from master to slave
3) DELAY REQ, from slave to master
4) DELAY REPLY, from master to slave

Moreover, precise time-stamping of the received/sent frames
is a crucial part of the protocol, as it directly influences the

precision of the estimated clock offset. Select hardware units
can be used for this purpose [19] . In the rest of this work,
we assume that such time-stamping units are available in all
end-systems.

PTP allows for multiple masters to exist, but only one
master’s synchronization frames are used to calibrate an end
system’s internal clock at each given synchronization cycle.
This selection is made using the best master clock algorithm
(BMCA). The BMCA works by comparing an arbitary value,
which represents the remote clock quality, connected network
end-systems advertised that in dedicated periodic frames called
ANNOUNCE frames. From this information it derives the best
clock and then it compares that to the quality of its local clock
to determine its role as a master or a slave.

The IEEE-1588-2019 standard adds several security features
to PTP [9]. Most notably, it adds support for multiple types
of authenticated encryption, addressing many of the security
concerns that were present in its predecessor, IEEE-1588-
2008 [7]. However, none of the introduced features protects
against delay attacks, nor do they consider faulty master nodes
(e.g., compromised by a malicious party). A malicious master
node might try to influence the system time by announcing
high accuracy during the BMCA, subsequently moving the
time window once it has been elected. Delay attacks assume
that an attacker can control a link, and might delay messages
for an indefinite amount of time. To mitigate the impact of
such attacks, the IEEE-1588-2019 standard only includes two
recommendations: to deploy redundant master clocks; and to
deploy redundant network topologies. The first recommendation
works without any alterations to the protocol. As the PTP
protocol is a distributed algorithm, it will eventually select
one of the redundant master clocks if the primary one fails;
however, this can introduce significant time overhead that leads
to jitter. The second recommendation stands out: a PTP system
distils a logical minimum spanning tree topology with the
elected master clock as a root, and all slaves (i.e., consumers
of the synchronization signal) as leaves. A minimum spanning
tree does not allow multiple paths between any two nodes
to exist by its very definition. The solution to this is to run
multiple PTP domains in parallel, ensuring that they choose
different physical network paths for their tree topology. A PTP
domain is a numerical identifier included in every protocol
message. It allows multiple PTP systems to operate on one
network without interfering with other PTP systems.

A multi-domain setup combines neatly with the first rec-
ommendation of using multiple master clocks. With multiple
parallel domains, every slave system needs to execute a deter-
ministic voting algorithm to arrive at the same approximate time.
However, the IEEE-1588-2019 standard does not recommend
any voting algorithms. Additionally, it is left unclear what
the performance impact and effectiveness of these measures
will be. Therefore, we attempt to fill this knowledge gap by
analyzing two voting algorithms’ performance in a simulated
PTP system. Further, we explore the impact of link failures on
timing accuracy during the execution of a PTP system both
with and without redundancy in place.

115

104 C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation

III. RELATED WORK

In the broad spectrum of network attacks related to PTP,
disrupting the synchronization is the primary goal. Lack of
message authentication is one of the main attack vectors to
break master-slave synchronization. The authors of [8] analyze
the security risks associated with PTP by building a testbed
that shows synchronization disruption between PTP devices.
The tests conducted include master spoof attacks (spoofing
ANNOUNCE and SYNC packets), ANNOUNCE DoS attacks
(spamming target slave) and master clock takeover attacks.
Similarly, Lisova [20] presents a threat model that shows an
attack classification that lists several PTP clock synchronization
attacks (e.g. replay and delay attacks, flooding/DoS) that target
availability among other factors. Lisova proposes a distributed
monitoring strategy to detect if an attacker is affecting clock
synchronization. While both studies [8] [20] point out existing
threats to availability, the current work provides a fault-tolerant
design to guarantee availability.

To tackle some of the attacks mentioned earlier, IPSec and
MACSec have already been analyzed for time synchronization
[21] to provide authentication, encryption, and confidentiality.
However, neither provide any availability guarantees or fault
tolerance against a compromised endpoint or delay attacks.
We consider IPSec and MACsec complementary to the fault
tolerance algorithms and mechanism discussed in this work.

In 2014, Mizrahi published an informational Request For
Comments (RFC) with the requirements to secure time proto-
cols in packet-switched networks [22]. The document presents
a threat model and threat analysis that lists several attack
types such as packet manipulation, spoofing or replay attacks.
It focuses on listing minimum security requirements such
as authentication, authorization, confidentiality. While these
requirements could create a security basis for next versions
of time synchronization protocols, they do not guarantee
availability. Additionally, the document briefly references a
few mechanisms to protect against delay attacks or attacks
that degrade clock accuracy, such as using of multiple paths
[23]. This RFC also proposes that outliers in received time
values should be considered erroneous and be ignored. The
current study aims to fill the gap of fault tolerance, resilience
and availability that the RFC does not cover. Specifically, it
presents an implementation and evaluates its resilience to faults.

Mizrahi presents the concept of slave diversity [23] to obtain
high clock accuracy and reduce time error using multiple paths.
Similarly, Shipiner et al. present a multi-path approach [24]
that evaluates path diversity. While both studies demonstrate
the applicability of multiple path time synchronization, there
are significant differences with this work. First, Mizrahi [23]
does not tackle the master redundancy and availability features
into fault tolerance and Shipiner et al. [24] do not provide
simulation and performance results. In contrast, this work,
uses different PTP domains with multiple masters to guarantee
availability and evaluates the fault-tolerance in simulation.

...

IF#1 IF#2 ... IF#N

offset[1]

PTP
Stack

Instance
#1

offset[2]

PTP
Stack

Instance
#2

...

offset[N]

PTP
Stack

Instance
#N

time

RTC

align

Clock Servo

Domain
#1

Domain
#2

Domain
#N

Multi-domain PTP End-System

aggregated
offset

Fig. 1: Extended PTP end-system architecture to support multi-
domain aggregation. Each domain uses a separate network
interface and PTP stack. The calculated offsets are fed into an
aggregation function, which corrects the clock.

IV. MULTI-DOMAIN NODE AND ALGORITHM DESIGN

Our proposed approach consists of multiple design elements
and considerations spread over multiple layers. Firstly, we
introduce a redundant variant of a typical PTP node. A node’s
ability to interact with singular (i.e., non-redundant) nodes is
preserved, leaving room for hybrid PTP systems. Secondly, we
discuss network topology requirements that should be taken
into account when designing redundant PTP systems. Finally,
we describe the implemented convergence algorithms.

The design proposed in this section aims to mitigate link
failures and protect against Byzantine actors on the network,
but it does not guarantee the communicated messages’ integrity
or authenticity. It is intended to complement existing resilience
and security features proposed by the IEEE-1588-2019 standard,
which provide these properties.

A. Node Architecture

A redundant PTP node has to support running PTP on n
domains at once. To this end, we design a node architecture that
maintains n parallel PTP stacks and aggregates their computed
offsets. As is usual for Byzantine fault-tolerant systems, to
protect against f faults, n should be picked as n = 3 f + 1.
Figure 1 presents the design of the proposed node. Each PTP
stack is assigned an individual network interface port and
executes isolated from the others. Using only one network
interface is possible, but it would turn this into a bottleneck
and the weakest link for each node. If the node is a slave,
each stack periodically receives PTP messages that have to
be aggregated somehow. Each stack distils an offset from the
incoming messages. The calculated offset is combined with
the latest PTP frame ingress timestamps as a tuple and fed

116

C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation 105

into a convergence algorithm. If the node is a master node, it
simply has to transmit PTP messages on every domain.

The convergence algorithm aggregates the most recently
received offsets for each domain within an observation window,
and produces a single aggregated offset correction for the real-
time clock (RTC). This convergence algorithm is transparent to
the PTP stacks, the clock servo, and any applications depending
on the synchronized time of the RTC.

B. Network Topology

To effectively mitigate link/node failures and malicious PTP
actor nodes, network paths for each domain should be entirely
disjoint. Therefore, one can specify the main goal for the
network topology is to introduce redundancy where possible.
The observation window should be tuned according to the
maximum expected latency of all the redundant domain paths.
Thus, to minimize the observation window span , a design
using redundant network paths should strive to preserve a
symmetric topology with the same number of hops between
slaves and master nodes. Further optimization on the asymmetry
of links has been investigated by [25], [26]. Note that while
a fully symmetric topology describes an ideal situation, it is
not an explicit requirement. A symmetric topology allows for
balanced network delays with equal worst-case end-to-end
latency (WCEL), and thus it is hypothesized to lead to better
convergence algorithm performance. In the remainder of this
work, we thus assume a fully symmetric topology to explore
the ideal case.

C. Convergence Algorithms

The convergence algorithm is run on each PTP slave node
individually and takes as inputs a collection of latest observed
offsets from each domain PTP stack. We implement two
different convergence algorithms for evaluation. The first offset
aggregation algorithm is a simple averaging function (AVG)
over the available offsets. The second algorithm implements a
Byzantine Fault Tolerant approach (FTA) for clock synchro-
nization.

1) Observation Window Filtering: Figure 2 illustrates how
individual PTP frames from the different PTP stacks are
converged by initiating separate observation windows. Each
received SYNC, or FOLLOW UP frame initiates a new
observation window based on the ingress timestamp over which
the convergence algorithm operates. Only frames within an
observation window time are taken into account to calculate
the converged clock offset for that specific point in time. The
duration of the observation window, controls the accepted time
difference threshold of the received master frame timestamps
from the last received PTP frame timestamp. This parameter
should be tuned proportionally to the WCEL that the PTP
master frames can experience, i.e. the longest path delay
between a redundant master and the receiving slave.

The windowed decision algorithm is listed in Algorithm 1.
This algorithm takes a new (incoming) offset o from its local
clock as input, together with its ingress time i and PTP domain
d. The algorithm’s output is an approximate offset and ingress

Master Node D

Master Node C

Master Node B

Master Node A

t4t3t2timestamp: t1

4th Observation Window
Aggregated Frames: {D, C, B}

Slave Node

Frame A

Frame B

Frame C

Frame D Tim
elines

Fig. 2: Observation windows are generated by new SYNC/-
FOLLOW UP frames. Received frames that are within the
time window are used in the aggregated offset calculation.

Algorithm 1 Windowed Decision Algorithm

1: procedure WINDOWEDDECISION(o, i,d) . Executes a
windowed decision algorithm using the latest received
timestamps

State: S . A table d −→(od , id) mapping all domains d ∈ D
to (offset, ingress) tuples

2: S[d]← (o, i)
3: S′←{x−→(ox, ix) ∈ S where |i− ix| ≤WINDOW}

4: ia←

{
0 if |S′|= 0
Σx∈S′ ix
|S′| otherwise

5: oa← FTA(S′) or AVG(S′)
6: return (oa, ia)
7: end procedure

time, which can be used by the clock servo to correct the RTC.
First, it stores the tuple (o, i) in a table structure using the
domain as an index, ensuring that only one offset per domain
is considered. After this, the table S is filtered to S′, excluding
offsets that were not received within a given delta WINDOW from
the new ingress timestamp. Then, the ingress of all offsets in S′

are averaged to ia, and an approximate offset oa is calculated
using either the FTA or the AVG algorithm.

2) Averaging Algorithm (AVG): The AVG consists of a
simple averaging function that extracts all offsets from the
given map and returns the average of these, or 0 if there are
no offsets.

3) Fault Tolerant averaging Algorithm (FTA): The FTA [14]
is an algorithm that provides bounded clock synchronization
even in the presence of faulty and possibly malicious mas-
ter clocks (see also Section II). Algorithm 2 describes the
implemented FTA algorithm.

In the general case where k faults should be tolerated, this
algorithm drops the earliest and last k offsets and averages the
remaining offsets. First, usable offsets are extracted from the
given map structure S′, and special assignments are made for
the 2k most extreme offsets. Then, it distinguishes 3 cases:
firstly, if there is only one offset, we return that offset; secondly,
if there are only two offsets, their average is returned, and
finally, if there are three or more offsets, it drops the extremes

117

106 C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation

Algorithm 2 Fault Tolerant Algorithm

1: procedure FTA(S) . Executes a fault-tolerant
convergence algorithm over a set of offsets

2: if |S|= 0 then
3: return 0
4: end if
5: O = {ox|x ∈ S}
6: omin← k earliest offsets in O
7: omax← k latest offsets in O
8: if |O|= 1 then
9: return omin

10: else if |O|= 2 then
11: return omin+omax

2
12: else if |O| ≥ 3 then
13: O′← O\{omin,omax}
14: return Σx∈O′ x

|O′|
15: end if
16: end procedure

and returns the average of the remaining offsets.
The first two cases will usually only trigger if there are

remote failures, and the system does not receive enough offsets.
In this case, the failures are regarded as faulty nodes, thereby
exceeding the number of tolerated faults, and the most we can
do is a best-effort execution of the algorithm. The third case
covers the standard execution of the algorithm. By dropping
the 2k outer offsets, adversaries are forced to operate within
a limited time offset range. By taking the average of the
remaining offsets, adversaries would have to control more
master nodes than our model tolerates to have a considerable
effect on the aggregated offset. For a formal proof, we refer
the interested reader to [14], [12].

V. EVALUATION

To demonstrate the fault-tolerance of the proposed redundant
PTP scheme and evaluate the synchronization quality, we
generate two test-case network topologies 1. These topologies
are simulated witin the OMNeT++-4.6 [11] discrete-event
network simulator using our extended version 2 of a PTP
simulation library named LibPTP [27]. LibPTP [28] is a
complete simulation framework for OMNeT++ that allows
the simulation of standard PTP devices. To the RTC oscillator
noise and yield more realistic clock drift results, we utilize
a Power-law noise library (LibPLN [29]) as described in the
LibPTP documentation [27]. All experiments are done on a
64-bit i7-7700HQ CPU system running at 2.8 GHz with 32GB
RAM.

A. Simulation parameters

The presented experiments are based on the following
assumptions. Firstly, we assume that every node has multiple
network interfaces, one for each domain, which is in line with

1https://github.com/dtu-ese/ptp multidomain
2https://github.com/dtu-ese/libPTP

Standard PTP Slave 1

Multi-domain PTP Slave 2
(AVG aggregation)

Multi-domain PTP Slave 3
(FTA aggregation)

Transparent Clock
Domain 1

Transparent Clock
Domain 2

Transparent Clock
Domain 3

Transparent Clock
Domain 4

Multi-domain PTP
Master 1

Fig. 3: First test-case network topology of single multi-domain
PTP master on four isolated redundant domain paths. The
domains are isolated using four different switches.

the standard’s recommendations, where it is advised that each
domain operates over a separate network interface. Secondly, to
optimize the simulation time and isolate the PTP evaluation, we
assume that the network is used exclusively by PTP, so no other
network traffic is simulated in the experiments. Empirically, we
assume that every link has a bit-rate of 1 Gbps and is 1 meter
long. Finally, every PTP stack uses the recommended gPTP
profile for TSN [30] as shown in Table I and a peer-to-peer
(P2P) delay mechanism.

TABLE I: PTP port profile options. Values correspond to
the interval of the respective messages in seconds and are
represented as powers of two.

Parameter Value
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval -3
logMinDelayReqInterval -3
logMinDelayReqInterval -3

B. Test-case 1: Single PTP master on four redundant domains

This experiment aims to evaluate the stability of the proposed
multi-domain aggregation scheme using the custom design
of Figure 1 for both master and slave nodes. We generate a
synthetic topology with three nodes and four switches as shown
in Figure 3. A single multi-domain PTP master is connected
to four redundant transparent clock nodes over four different
domains. We integrate three different types of PTP slaves in
the network: (A) a standard PTP slave connected only to the
first transparent clock switch (domain), (B) a multi-domain
PTP slave that uses the AVG algorithm and is connected to
all domains and (C) a multi-domain PTP slave that uses the
proposed FTA algorithm and connects to all domains.

We evaluate the synchronization quality in terms of average
mean clock offset and standard deviation using a synthetic

118

C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation 107

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

No3link3failures3t=[30:60]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

First3link3failure3t=[60:90]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

Second3link3failure3t=[90:120]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

Third3link3failure3t=[120:150]

Fig. 4: Comparison of the mean clock offset and std. deviation
measurements through the link failures of the experimental
test-case 1 (see Section V-B) with topology from Figure 3.

scenario. We simulate a simple scenario of consecutive link
failures where at 60 seconds the first link between Master 1
and Transparent Clock 1 is disconnected. The rest of the links
between Master 1 and the transparent clocks are disconnect-
ed/fail similarly in intervals of 30 seconds. We simulate the
scenario for a total run-time of 180 seconds.

Figure 4 compares the measured mean clock offset and jitter
of the two clock servo aggregation methods (AVG and FTA).
Although the mean of the AVG and FTA aggregation methods
are similar when no failures occur, we measure significantly
less jitter using FTA throughout the experiment’s run-time,
resulting in more predictable clock synchronization. This is
likely due to the nature of the FTA: outliers are discarded ,
ensuring that the system will take the average of the most
consistent master clocks. If there are some master clocks that
drift at different rates, or if these clock oscillators are very
noisy, then it is likely that they are often discarded for the
aggregated timestamp.

C. Test-case 2: Four PTP masters on four redundant domains

For the second test-case, we generate and simulate two
network topologies comparing the standard BMCA against
the proposed multi-domain scheme. The first topology (see
Figure 5a) has four PTP master capable standard nodes and
a standard node that is configured as a PTP slave. All nodes
operate over the same domain and are connected through a
transparent clock switch in a star topology. The second topology
(see Figure 5b) has four standard PTP masters connected and
two redundant PTP slave nodes. The PTP masters operate over
four different domains and are respectively connected to four
different transparent clock switches. For simplicity, we assume
that individual PTP master node clocks are synchronized to each
other in order for the observation window to use all available
domains. This requirement is further discussed in Section VI.

Standard PTP Slave

Transparent Clock
Domain 1

Standard PTP Master 1

Standard PTP
Master 2

Standard PTP
Master 3

Standard PTP Master 4

(a) Connect one standard PTP slave to four PTP masters operating
on the same domain. Clock selection based on BMCA.

Multi-domain PTP Slave 1
(averaging aggregation)

Multi-domain PTP Slave 2
(FTA aggregation)

Transparent Clock
Domain 1

Transparent Clock
Domain 2

Transparent Clock
Domain 3

Transparent Clock
Domain 4

Standard PTP
Master 1

Standard PTP
Master 2

Standard PTP
Master 3

Standard PTP
Master 4

(b) Two multi-domain PTP slaves connected to four PTP masters
operating on separate domains. Clock offset calculation uses multi-
domain aggregation.

Fig. 5: Second test-case parallel network topologies evaluation.

PTP slave nodes 1 and 2 use respectively, the multi-domain
aggregation methods described in Section IV. We evaluate the
performance of the synchronization by simulating two synthetic
scenarios.

1) Link/node failure scenario: In the first scenario, each of
the PTP masters fails in sequence every 30 seconds after the
first minute of stable operation. This scenario covers a variety
of real-life failures such as device failures, cable failures or
denial-of-service attacks. We simulate the experiment for a
total run-time of 180 seconds.

Figure 6 presents the mean time difference of the three
PTP slave nodes and compares the upper/lower bounds of the
three PTP slave nodes. We observe that in contrast to Test-
case 1, the standard PTP slave node can stay synchronized
to the master through the consecutive link failures as it can
now select a new master, from each operating domain, after
each link failure. However, BMCA suffers from significant
synchronization drift of more than 2 µs. The FTA and the AVG
aggregation manage to achieve better clock synchronization
accuracy with tighter bounds than the standard BCMA during

119

108 C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

No=link=failures=t=[30:60]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

First=link=failure=t=[60:90]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

Second=link=failure=t=[90:120]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

Third=link=failure=t=[120:150]

Fig. 6: Comparison of the mean clock offset and std. deviation
measurements through the link failures of the experimental
test-case 2 (Section V-C1) with topology from Figure 5.

the first two link failures. As more links fail this difference
between the methodologies is normalized because fewer nodes
are available to aggregate.

2) Malicious PTP master scenario: In this scenario, we
investigate the effects of a malicious PTP master clock that
tries to offset the synchronized network time. The malicious
end-system is connected to the network at a specific point in
time and advertises that it has a higher clock quality that the
existing master clocks. We emulate this scenario by simulating
the instantaneous connection of a new PTP master with higher
quality clock attributes after one minute of run-time at the
first switch. The malicious master has its local clock offset
by 100 µs than the existing masters. Due the implemented
observation window’s properties, a malicious master must be
carefully implemented so that its local clock offset is within
the observation window’s bounds.

We measure this attack’s effects on the clock synchronization
precision of the topology’s three PTP slaves relative to node
Master 1. Figure 7 presents the measured results of the time-
difference for the three PTP slaves. The top plot corresponds
to the measurements taken from the Standard BMCA slave
shown in Figure 5a. In comparison, the bottom plot presents the
measurements from the multi-domain slaves shown in Figure 5b.
We run the experiment for 120 seconds of simulation time.

In the standard PTP topology 5a, the newly connected
malicious master is quickly elected as the best clock by the
BMCA. We note a significant initial drift of the PTP slave
relative to Master 1 after which the network is synchronized to
the time of the malicious master clock. In the redundant PTP
topology 5b, the connection of the malicious master cannot
influence the independent masters as they operate in different
domains. The simple approach of averaging the aggregated
multi-domain master clocks is not sufficient as it is easily
disturbed by the malicious clock’s offset. In this scenario, the

30 60 90 120
Time (s)

-10

-5

0

O
ff

se
t

(s
)

#10-5

Standard BCMA

30 60 90 120
Time (s)

-2

-1

0

O
ff

se
t

(s
)

#10-5

Averaging aggregation
FTA aggregation

Fig. 7: Measured PTP-Slave clock offset relative to Master 1
in the test-case scenario of a new malicious PTP master node
connection at t=60s (Section V-C2).

FTA proves to be the most resilient as the malicious master’s
relative clock offset is discarded according to Algorithm 2.

VI. DISCUSSION

In the evaluated test-cases, we experimentally showed that a
multi-domain approach could guarantee synchronized network
time availability despite network failures and malicious actions.

The platform designer has to guarantee that the PTP stack
processes are isolated and cannot affect each other if the
security of one PTP stack is compromised. This can be achieved
using specialized hardware or sandboxing techniques such as
virtualization. Considering the capabilities of modern industrial
computing systems [31], the software cost for running the
redundant PTP stacks in-parallel is minimal, especially if
the proposed design is implemented completely in software.
Preliminary results show that the CPU overhead generated
by the PTP stack is less than 1% of the available computing
resources. Nevertheless, the system designer should consider
the additional cost for the redundant network topology based
on the safety requirements of the application, as there is a
significant cost increase in the number of links and switches.

The results showed that the FTA convergence algorithm
could mitigate against link or node failures, as well as a
compromised master node broadcasting incorrect timestamps.
This work illustrates the importance of a fault-tolerant method
of converging the calculated offset from the multiple PTP
domains. It is worth noting that although the averaging
aggregation performed as well as the FTA method, it was
easily influenced by a malicious node and failed to provide
secure synchronization. While our design does not enforce
authentication and integrity of PTP messages by itself, the FTA
algorithm leaves very little room for tampered messages, as
it discards everything outside of a margin known to have a
majority of correct offsets. What this approach does inherently
provide is protection against various forms of DoS, timing,

120

C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation 109

and delay attacks where the number of affected links/nodes
is less than k. As already noted in Section IV, this can be
combined with the security measures proposed in IEEE-1588
(2019) to further harden the security by providing authenticity,
confidentiality and integrity of messages. Thus, the combined
application of the measures proposed in this work and the
standardized security measures results in a secure PTP system
that in addition to the standardized measures is difficult to
disrupt with DoS and timing attacks.

Finally, although the proposed multi-domain PTP end-system
scheme was tested with both master and slave roles, its
functionality is based on the assumption that the redundant
master clocks of each separate domains are synchronized to
each other. This assumption is easily achievable using the
proposed multi-domain PTP end-system design (see Figure 1),
however standard PTP master clocks on separate devices require
an external fault-tolerant mechanism of clock synchronization.
One possible solution to this would be to use dual roles for
master nodes, were on specific domains they would act as slaves
to each other and other domains as masters in an interleaved
scheme. It is hypothesized that the standard PTP boundary
clock component can support this dual role functionality, but its
implementation in a multi-domain network topology requires
further investigation.

VII. FUTURE WORK

As future work, we plan to explore the implementation
and characterization of boundary clocks as a mechanism to
enable standard PTP master clock synchronization in redundant
domains. Additionally, we plan to extend the evaluated sce-
narios and investigate different types of attacks on PTP, such
as frame spoofing. This will allow us to characterize further
the proposed multi-domain design performance and identify
its tuning parameters.

Moreover, one can think of a scenario where only a limited
subset of all nodes are connected to multiple domains. This
raises questions such as how many multi-domain nodes are
necessary to meet a certain required timing accuracy? For
this, we plan to explore the integration of the proposed design
in boundary clocks that are connected to multiple domains,
each maintaining slave clocks connected to only one of these
domains.

VIII. CONCLUSION

The presented work investigated the requirements for fault-
tolerance in TSN clock synchronization and proposed a PTP
end-system design that supports multi-domain aggregation. The
proposed design implements isolated PTP stacks that use an
FTA-based aggregation mechanism to correct the clock servo.
This is combined with a time-based observation window for
additional security. The multi-domain PTP end-system was
evaluated and compared against standard PTP nodes in two
scenarios with emulated link failures and possible malicious
PTP masters. Overall, this work illustrated empirically the ne-
cessity for fault-tolerance in PTP and multi-domain aggregation
design that manages to overcome network faults.

ACKNOWLEDGMENT

This is work was part of the Fog Computing for Robotics
and Industrial Automation (FORA) European Training Network
(ETN) funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie
grant agreement No 764785.

REFERENCES

[1] T. Pereira, L. Barreto, and A. Amaral, “Network and information security
challenges within Industry 4.0 paradigm,” Procedia Manufacturing,
vol. 13, 2017.

[2] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaaniche, and
Y. Laarouchi, “Survey on security threats and protection mechanisms in
embedded automotive networks,” Proc. DSN, 2013.

[3] S. S. Craciunas and R. S. Oliver, “An overview of scheduling mechanisms
for time-sensitive networks,” Proceedings of the Real-time summer school
LÉcole dÉté Temps Réel (ETR), pp. 1551–3203, 2017.

[4] E. Kyriakakis, J. Sparsø, P. Puschner, and M. Schoeberl, “Synchronizing
real-time tasks in time-aware networks: Work-in-progress,” in 2020
International Conference on Embedded Software (EMSOFT). IEEE,
2020, pp. 15–17.

[5] Official Website of the 802.1 Time-Sensitive Networking Task Group,
http://www.ieee802.org/1/pages/tsn.html, IEEE Std., 2016, ac-
cessed: 17.12.2020.

[6] 802.1AS-Rev - Timing and Synchronization for Time-Sensitive Ap-
plications, http://www.ieee802.org/1/pages/802.1AS-rev.html,
IEEE Std., 2016, accessed: 17.12.2020.

[7] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE Std., 2008.

[8] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. Wojciak, and
S. Guendert, “Impact of cyberattacks on precision time protocol,” IEEE
Transactions on Instrumentation and Measurement, 2019.

[9] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE Std., 2020.

[10] S. Bogomolov, C. Herrera, and W. Steiner, “Verification of fault-tolerant
clock synchronization algorithms.” in ARCH@ CPSWeek, 2016, pp. 36–
41.

[11] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08. Brussels, BEL: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2008.

[12] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger, “Distributed fault-tolerant real-time systems: The mars
approach,” IEEE Micro, vol. 9, no. 1, pp. 25–40, 1989.

[13] P. Ramanathan, K. G. Shin, and R. W. Butler, “Fault-tolerant clock
synchronization in distributed systems,” Computer, vol. 23, no. 10, pp.
33–42, 1990.

[14] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” Journal of
the ACM (JACM), vol. 33, no. 3, pp. 499–516, 1986.

[15] W. Steiner and B. Dutertre, “The TTEthernet synchronisation protocols
and their formal verification,” International Journal of Critical Computer-
Based Systems 17, vol. 4, no. 3, pp. 280–300, 2013.

[16] TTTech, AS6802: Time-Triggered Ethernet, SAE International Std., 2011.
[17] J. C. Eidson, Measurement, control, and communication using IEEE

1588. Springer Science & Business Media, 2006.
[18] G. Giorgi and C. Narduzzi, “Modeling and simulation analysis of PTP

clock servo,” in 2007 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, 2007.

[19] E. Kyriakakis, J. Sparsø, and M. Schoeberl, “Hardware Assisted
Clock Synchronization with the IEEE 1588-2008 Precision Time
Protocol,” in Proceedings of the 26th International Conference
on Real-Time Networks and Systems, ser. RTNS ’18. New
York, NY, USA: ACM, 2018, pp. 51–60. [Online]. Available:
http://doi.acm.org.proxy.findit.dtu.dk/10.1145/3273905.3273920

[20] E. Lisova, “Monitoring for securing clock synchronization,” Ph.D.
dissertation, Mälardalen University, 2018.

121

110 C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation

[21] T. Mizrahi, “Time synchronization security using IPsec and MACsec,” in
2011 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control and Communication, 2011, pp. 38–43.

[22] T. Mizrahi, Security Requirements of Time Protocols in Packet Switched
Networks, RFC 7384, Std. 7384, Oct. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7384.txt

[23] T. Mizrahi, “Slave diversity: Using multiple paths to improve the
accuracy of clock synchronization protocols,” in 2012 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Control
and Communication Proceedings, 2012, pp. 1–6.

[24] A. Shpiner, Y. Revah, and T. Mizrahi, “Multi-path time protocols,” in
2013 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control and Communication (ISPCS) Proceedings,
2013, pp. 1–6.

[25] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-path
delay measurements,” in Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No. 01CH37213),

vol. 2. IEEE, 2001, pp. 1038–1044.
[26] S. Lee, “An enhanced IEEE 1588 time synchronization algorithm for

asymmetric communication link using block burst transmission,” IEEE
communications letters, vol. 12, no. 9, pp. 687–689, 2008.

[27] W. Wallner, “Simulation of time-synchronized networks using ieee 1588-
2008,” Ph.D. dissertation, Wien, 2016.

[28] W. Wallner. (2016) LibPTP: A Library for PTP Simulation. https://github.
com/ptp-sim/libPTP.

[29] W. Wallner. (2016) LibPLN: A Library for Efficient Powerlaw Noise
Generation. https://github.com/ptp-sim/libPLN.

[30] K. Sridharan, K. Goossens, N. Concer, and H. B. Vermeulen, “In-
vestigation of time-synchronization over ethernet in-vehicle networks
for automotive applications,” Master’s thesis, Eindhoven: Eindhoven
University of Technology, 2015.

[31] Intel’s Fog Reference Design Overview, Intel, April 2018. [Online].
Available: https://www.intel.com/content/www/us/en/internet-of-things/
fog-reference-design-overview.html

122

C: Fault-tolerant Clock Synchronization using Precise Time Protocol Multi-Domain Aggregation 111

112

Paper D
Fogification of Electric Drives:
an Industrial Use Case

M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, and J. Kuusela. “Fogi-
fication of electric drives: An industrial use case.” In: 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2020.
doi: 10.1109/ETFA46521.2020.9212010

Fogification of electric drives: An industrial use case

Mohammadreza Barzegaran1, Nitin Desai2, Jia Qian1, Koen Tange1, Bahram Zarrin1, Paul Pop1, and Juha Kuusela3

1DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
2School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

3Danfoss Power Electronics A/S, Gråsten, Denmark

Abstract—Electric drives are used to control electric motors,
which are pervasive in industrial applications. In this paper we
propose enhancing the electric drives to fulfil the role of fog
nodes within a Fog Computing Platform (FCP). Fog Computing
is envisioned as a realization of future distributed architectures
in Industry 4.0. We identify the system-level requirements of
such an FCP, including requirements that are extracted from the
current architecture of drives, which we consider as a baseline.
These requirements are then used to design a system-level
architecture, which we model using the Architecture Analysis &
Design Language (AADL). We identify the “technology bricks”
(components such as hardware, software, middleware, services,
methods and tools) needed to implement the FCP. The proposed
fog-based architecture is then used to implement a Conveyor Belt
industrial use case. We evaluate the resulting use case on several
aspects, demonstrating the usefulness of the proposed fog-based
approach. By developing the electric drives as fog nodes, that
we call fogification, new offerings like programmability, analytics
and connectivity to customer Clouds are expected to increase the
added value. Increased flexibility allows drives to assume a larger
role in industrial and domestic control systems, instrumenting
thus also legacy systems by using drives as the data source.

I. INTRODUCTION
Digitalization will affect all industries and sectors, with a

potential cumulative value to society and industry of more
than $100tn by 2025 [1]. This paper focuses on the industrial
area, where the worldwide cumulative net value will be $1.7tn
by 2020 worldwide [2]. We are at the beginning of a new
industrial revolution (we will use the term Industry 4.0), which
will bring increased productivity and flexibility, mass cus-
tomization, reduced time-to-market, improved product quality,
innovations and new business models [3].

The infrastructure of the information society is underpinned
by Information Technologies (IT) such as Cloud Computing,
Artificial Intelligence (AI), and Big Data. However, these
technologies are not directly applicable to industrial applica-
tions [4]. The industrial area uses Operational Technologies
(OT) consisting of cyber-physical systems (CPS) that monitor
and control physical processes that manage, e.g., automated
manufacturing, critical infrastructures, smart buildings and
smart cities. These application areas are typically safety-
critical and real-time, requiring guaranteed extra-functional
properties, such as real-time behavior, reliability, availability,
conformance to industry-specific safety standards, and secu-
rity.

Industry 4.0 will only become a reality through the conver-
gence of OT and IT [5], which are currently separated and
use different computation and communication technologies.
Currently, the industrial domains use OT, which is costly,
completely separated from IT, and cannot support Industry
4.0 [5]. IT such as Cloud Computing has gained significant
popularity and we use Cloud-based services on a daily basis
as a commodity. However, Cloud Computing cannot provide
dependability or quality-of-service guarantees, so it cannot
be used for industrial applications. Additionally, technology

paradigms such as AI and Big Data are resource-demanding
and may compromise the performance of industrial applica-
tions under intensive workloads [4]. Thus, they cannot be used
for these applications. Instead, a new paradigm called Fog
Computing (FC), is needed as an architectural means to realize
the IT/OT convergence [6]. Fog Computing is a “system-
level architecture that distributes resources and services of
computing, storage, control and networking anywhere along
the continuum from Cloud to Things” [7].

This paper proposes the use of a Fog Computing Plat-
form (FCP) for the implementation of industrial applications.
We focus on the application areas where electric drives are
present, since they are pervasive in industrial installations and
are used in many domains, such as automotive, food and
beverage, marine and offshore, hydraulics, refrigeration and air
conditioning, etc. Electric drives are used to control the speed,
torque and position of electrical motors (see Fig. 1), with
real-time software that resides on heterogeneous safety-critical
embedded systems controlling the power electronic circuits.
Electric drives sit in the “control level” (see Fig. 2) and
typically operate on the factory floor, working cooperatively
with other devices to automate machinery. Also, data produced
by each electric drive is a very critical asset because it carries
vital information about the machinery it controls, so the factory
owners are reluctant to expose this type of data over the
Internet. In addition, data can be massive, often repetitive and
not sensitive to delay. Sending it over the control network
would eat capability, hence there is a need for each drive to
be capable of data analytics locally. Our approach is to use
a fog computing architecture (which we call fogification) in
the implementation of electric drives, and show how such an
architecture can be successfully used for the development of
an industrial use case.

By developing the electric drives as fog nodes, new offerings
like programmability, analytics and connectivity to customer
Clouds are expected to increase the added value. Increased
flexibility allows drives to assume a larger role in industrial
and domestic control systems by benefiting from the ability
to instrument as the data source which can help in boot-
strapping the data economy. The main direct business benefit
comes from the ability to instrument also legacy systems
by using drives as the data source. Edge analytics will help
in off-loading the network and extend the Internet-of-Things
(IoT) solutions market. Digital services allow efficient service
provisioning, improved uptime, and decreased overall costs.
Correctly configured products and processes decrease energy
consumption and improve quality. Open data ecosystems will
allow anyone to innovate new value-added services and will
create long term benefits for all ecosystem participants.

In the remainder of this paper, we take the current ar-
chitecture of electric drives, tailor an FCP-based architecture

978-1-7281-8956-7/20/$31.00 ©2020 IEEE 77

D: Fogification of Electric Drives: An Industrial Use Case 115

Fig. 1. An electric drive (in red) shown in an industrial setting.

for it and model them in Sect. II. We next identify the
challenges related to the fogification of electric drives and
collect the requirements that drive both architectures and also
the “technology bricks” needed to implement the fogified
electric drives in Sect. III. The proposed fog-based architecture
is then used to model an industrial use case. We evaluate
the resulting use case on several aspects, demonstrating the
usefulness of the proposed fog-based platform in Sect. IV.
We study the related work in Sect. V and conclude the paper
in Sect. VI.

II. ARCHITECTURE
In this section, we first introduce electric drives and how

they work in Sect. II-A. Then, we describe the current ar-
chitecture of the drives in Sect. II-B and take it as baseline.
We have derived a set of high-level requirements (presented
in detail in Sect. III-A) that will drive the definition of the
fog-based drives architecture in Sect. II-C. We compare the
baseline and fogified architectures in Sect. II-D. We use the
Architecture Analysis & Design Language (AADL) [8], which
has the ability to model large-scale architectures from many
aspects in a single analyzable model via its strong syntactic
and semantic support for the description of both hardware and
software systems. Hence, we use AADL to model the baseline
and fogified architectures.
A. Electric Drives

An electric motor is an electro-mechanical machine which
converts electricity into mechanical rotary movement of its
shaft. The mechanical rotary movement of the shaft is gen-
erated through the interaction of a magnetic field and an
electric current which impacts the movement, i.e. rotation
speed, rotation torque, and position of the shaft. Electric drives,
alternatively called drives, are used to alter characteristics of
the electric current such as frequency and voltage to control
the motor speed, torque and position [9].

To automate and control machinery and industrial equip-
ments, which comprise the first level of the automation pyra-
mid (see Fig. 2) and sit on the “Machine level”, a preliminary
control device is used to determine the required output of
the actuators: electric motors in our case. The electric drives,
as secondary control equipment which are placed close to
the actuators and industrial devices on the factory level, are
connected to the preliminary control equipment, and control
the actuators to generate the required output.

Fig. 2. Automation Pyramid

Fig. 3. Internals of an electric drive

The internals of an electric drive have a communication
module, a control module, and a power module. The com-
munication module receives the required motor output as a
reference from the preliminary control equipment via indus-
trial network. The control module runs a control application
to drive the output to the given reference value via the power
module which alters the frequency or voltage, based on the
type of the drive, to generate the electric current that leads
to the desired motor output. A drive is an embedded cyber-
physical system that requires real-time response and reliability
in order to meet degrees of quality in its output to be able to
interact with other devices.

Electric drives are designed for either general purposes, i.e.
to control certain power range motors, or specific purposes, i.e.
to control a specific electric motor with specific requirements.
The drives come in various types, indicated by their power
modules, which use different electric current characterizations.
Moreover, safety features such as a motor brake are embedded
in the control module. Internals of an electric drive are
depicted in Fig. 3.
B. Baseline Architecture

In this section, we consider a VLT drive from Danfoss
Power Electronics [10], and describe its current architecture,
which we call the baseline. The hardware platform of the
baseline has four modules: the communication module, the
operation module, the control module and the power module.
Each of the first three modules has a dedicated single-core
processor and memory unit. The software stack for each
module is dedicated. We model the baseline with AADL and
show it in Fig. 4.

As depicted in the figure, the communication module has a
network switch to connect through the Fieldbus interface with
the ProfiNet/RT [11] standard. Its software stack has a real-
time operating system which runs a time-triggered application
with a limited cycle time that handles the network protocol.
We assume that the drive communicates with a Programmable
Logic Controller (PLC) as the preliminary controller to get the
desired output of the motor, and a Human Machine Interface
(HMI) to set the drive parameters such as communication
and motor control configurations. The control module runs a

Fig. 4. AADL diagram of the baseline architecture.

78

116 D: Fogification of Electric Drives: An Industrial Use Case

feedback control application on the same real-time operating
system, implemented according to the IEC61131-3 standard
function blocks, once it is engaged. The control module has
I/O links with the power module to get the feedback and set
the control signal.

The software stack of the operation module has the same
real-time operating system and runs applications which have
priorities commensurate with their execution rates. The appli-
cations are: a mode application which engages and disengages
the motor controller, a monitoring application which pre-
analyzes the drive data, and a management application which
configures the communication and controller parameters. The
monitoring application collects data such as voltage and tem-
perature and does local machine learning to predict the drive
maintenance. The operation module shares separate dedicated
buses with the communication module and the control module
for data exchange.
C. Fogified Architecture

We propose a fogified architecture for drives, based on
extending the initial designs proposed in the Fog Computing
for Robotics and Industrial Automation (FORA) European
Training Network [12]. The proposed fogified drives architec-
ture can be used both within the traditional hierarchical model
of industrial automation (Fig 2) and in future distributed cyber-
physical systems architectures (Fig. 5) that are envisioned
to be used in Industry 4.0. In such a distributed architec-
ture, the integration of computational and storage resources
into the communication devices is realized in the fog node.
In many applications, including industrial automation and
robotics, several layers of fog nodes with differing computa-
tion, communication and storage capabilities will evolve, from
powerful high-end fog nodes to low-end fog nodes with limited
resources. Researchers have started to propose solutions for
the implementation of fog nodes [13] and fog node solutions
have started to be developed by companies [13]. Fog nodes
could be connected to each other and to the machines through
a deterministic communication solution, such as IEEE 802.1
Time-Sensitive Networking (TSN) [14], see Fig. 5. In TSN,
time sensitive traffic is transmitted using schedule tables called
“Gate Control Lists” (GCLs). Such an FCP-based architecture
allows to increase the spatial distance between the physical
process and the fog nodes that controls it, allowing the
control functions to be executed remotely on the fog nodes.
Several initiatives are currently working towards realizing this
vision [12], [13].

We model the fogified architecture with AADL and show
its schematic architecture in Fig. 6. The model consists of a
hardware platform which has a dual-core processor, a switch

Fig. 5. Fog Computing platform. Boxes represent fog nodes, connected with
each other and to the Cloud; the thick lines are the network. Applications
(Apps) run on the fog and Cloud.

Fig. 6. AADL diagram of the fogified architecture

and a power module, and a software stack which has a
hypervisor, a middleware, an OS and an application layer.

The mixed-criticality applications running on the dual-
core processor are using temporal isolation enforced by the
hypervisor, to prevent them from interference. The hardware
platform has a TSN-enabled network switch and a power
module which generates electric current according to the given
control signal to drive motors, all connected through a shared
bus. As depicted in the figure, the module has I/O with the
processor which enables getting feedback and setting control
signals.

We assume using PikeOS [15] as the hypervisor which
implements temporal partitioning to isolate the applications. In
our model, we have three partitions, indicated by the applica-
tions assigned to them: control, communication and operation.
The hypervisor schedules the execution of partitions. We also
consider using a middleware on top of the hypervisor to enable
data exchange between the partitions and provide features like
runtime updates.

The control partition has a soft-PLC OS, and the control
application is implemented using the IEC61131-3 standard
function blocks. The control application is configurable via
the middleware. The communication partition has a real-time
OS which runs applications for controlling the network traffic,
applying security mechanisms, handling the applications traf-
fic, and setting the message schedule tables (GCLs), all via
the middleware. We assume that the operation partition has an
OS to run different type of applications including a machine
learning application for predictive maintenance (same as the
predictive maintenance application in the baseline).
D. Comparison

The most significant difference between the baseline and
the fogified architecture, is the change in isolation mechanism
from spatial to temporal. The multicore processor and the
shared resources such as bus and memory increase the unpre-
dictable delays and overheads in the execution of tasks, as well
as the data exchange of applications. Although the fogified
architecture brings more interference and unpredictability, it
provides a programmable platform for monitoring purposes.

In the fogified architecture, we proposed using a hypervisor
to enforce temporal isolation with the added cost of over-

79

D: Fogification of Electric Drives: An Industrial Use Case 117

TABLE I
SYSTEM LEVEL REQUIREMENTS

Requirement Realization in the baseline architecture Realization in the fogified architecture
1 Drives shall be designed according to the indus-

trial standards
IEC61800-based design IEC61800-based design

2 Drives shall have time–constraint interface 1 ms time–constraint ProfiNet interface Jitter-free TSN interface
3 Drives shall be able to monitor and process data

for predictive maintenance purpose
Machine Learning framework with appropriate
Safety Integrity Level

Machine Learning framework with appropriate
Safety Integrity Level

4 Drives shall run mixed-criticality applications
according to the industrial standards

Spatial separation according to IEC61508 Temporal separation according to IEC61508

5 Drives shall control the electric motor accurately Motor control with response time of 30 ms and
good quality-of-control

Motor control with response time of 20 ms and
good quality-of-control

6 Drives shall be configurable according to the
industrial standards

Configurable according to IEC61508 Configurable according to IEC61131

7 Drives shall have secure access to the Cloud Cloud connection provided by external devices Cloud connection provided by TSN interface
with security mechanisms

head to the computation. The best effort partitions provide a
programmable platform to collect data from different sensors,
perform sensor fusion already in the drive as edge node, run
simple machine learning algorithms in the device, and finally
stream data over the interface.

The other significant difference between the two architec-
tures lies in the use of TSN instead of ProfiNet/RT which
helps in Cloud connectivity and IT/OT convergence. We also
consider applying selected security mechanisms to protect
against possible cyber-attacks. We see that the technology bot-
tlenecks are in the hypervisor and TSN where applications and
traffic should be scheduled, isolated and protected concerning
industrial grade standards.

III. CHALLENGES
In this section, we identify the system level requirements

that drive the baseline and fogified architectures in Sect. III-A.
We discuss the challenges inherent in the design and develop-
ment of fogified drives and propose the necessary technology
bricks in Sect. III-B.
A. Requirements

We identify the system level requirements and the relevant
realization in Tab. I, where the requirements are shown in
column 2, the baseline realization in column 3 and the fogified
realization in column 4. Unlike special-purpose drives which
have to satisfy certain requirements that are needed for their
specific purpose, the general-purpose drives which are consid-
ered in this paper have to satisfy more generic requirements
that aim to make the drive compatible with a wide-range of
electric motors.

For each of the requirements, we sort the relevant archi-
tecture components by the order of flexibility, take the least-
flexible one as a pivot point, apply the requirement on the
component to achieve the best possible performance, refine
the requirement concerning the achieved performance, and
apply the refined requirement to the next component. The
system level requirements are qualitative at the beginning, and
become quantitative after several iterations of applying them
to the components, since each requirement aims to achieve
the best performance. In industry, the strongest requirement is
generally the financial aspect which mostly covers the costs,
and prevents achieving the best performance.

Requirement 1 implies that the drive design should comply
with the industrial standards, which is met by both architec-
tures in the same way via IEC61800 that states control strate-
gies and performance requirements of the motor controller
and converter in different operation conditions. Industrial time
constraint communication is considered in requirement 2,
which is realized by ProfiNet in the baseline, and TSN in the
fogified architecture. We consider a machine learning approach

for drive maintenance prediction as a service in requirement 3.
The service is implemented as an application with lower
criticality in both architectures and addressed with different
isolation approaches with respect to IEC61508, as imposed
by requirement 4. Requirement 5 imposes accuracy (control
performance) constraints on the control application along
with performance constraints (imposed by requirement 1) and
integrity constraints (imposed by requirement 4 where the
control application has the highest priority and highest Safety
Integrity Level). The configurability of the applications for per-
formance and operation is addressed in requirement 6, which
needs communication between applications that is realized
in different ways in the baseline and fogified architectures.
Secure access to the Cloud (imposed by requirement 7) is
applied by using external equipment such as a gateway that
has cloud connection in the baseline architecture, and by using
security mechanisms on the TSN interface in the fogified
architecture.
B. Technology Bricks

The fogified architecture proposed in Sect. II-C has been
driven by and meets the requirements from Sect. III-A. To
implement such an architecture, we identify in this section the
needed “technology bricks”, which can be methods, models,
hardware, software, tools, mechanisms, etc. We have identified
the following technology bricks:

The FCP Configuration provides a configuration for tem-
poral separation and scheduling of mixed-criticality tasks. The
configuration also considers the extra functional requirements
of the tasks such as the quality-of-control (QoC) for control
applications (see [16] for more details). The configuration
consists of partition tables, the task schedule tables inside
each partition and GCLs of TSN switches; which addresses
requirements 2, 4, 5 and 6. A Machine Learning Framework
brings the capability to predict when the drive maintenance
is needed, by accessing the drive data via middleware. We
propose a decentralized framework concerning the TSN capa-
bility of the fogified architecture which leads to more accurate
prediction. We also propose a fault detection, isolation, and
recovery (FDIR) method to be applied on TSN communi-
cation and tasks execution. The method is implemented on
the middleware and monitors tasks execution and network
communication traffic. It applies detection and identification
techniques, and provides recovery mechanisms in case of
faults. Furthermore, we propose to deploy various Security
Mechanisms which protect TSN from cyber-attacks and unau-
thorized access to the node. The mechanisms are implemented
on the hypervisor where low-level access to hardware is
possible.

80

118 D: Fogification of Electric Drives: An Industrial Use Case

Fig. 7. Conveyor Belt Use Case

IV. EVALUATION
We have used the proposed fogified architecture to model

a Conveyor Belt Use Case (UC): a conveyor belt is used to
distribute packages from an inventory to different destinations
based on the package. The conveyor belt is well-known and
widely used in inventories for the automatic distribution of
packages, and is realized using electric motors and drives. In
the UC we consider a typical machine as depicted in Fig. 7.
The machine is fed with packages from one side and reads
the tag of the received package. It gets the destination of
the package by accessing a database with the read tag; and
drives the package towards the destination from one of the
other sides of the machine. The UC has been realized using
the proposed fogified architecture from Sect. II-C and the
technology bricks from Sect. III-B. In this section we evaluate
the resulting implementation on several aspects to address the
requirements (showing the suitability of the implementation
for industrial applications) and exhibit the new offerings such
as programmability, analytics and connectivity to customer
Clouds (showing the added value of the implementation for
industrial applications) as shown in the subsections.
A. Network configuration for QoC

Since the fogified architecture shares the same communi-
cation medium for hard and soft real-time, non-critical and
best effort communication, we propose the scheduling of the
traffic on TSN to guarantee timing requirements of the streams.
We assume that the communication between drives and other
industrial equipment is achieved via TSN and also the control
applications are a set of streams which have hard real-time
requirements. All messages are scheduled using the schedule-
based time-sensitive traffic type in TSN, which, as mentioned,
uses schedule tables in the switches (GCLs) to schedule
the transmission of messages. The streams are prioritized in
accordance with their criticality and scheduled with respect to
their requirements. Recent works that address scheduling of
TSN traffic can be found in [17].

We employ the constraint programming-based schedule syn-
thesis strategy aiming at maximizing the QoC and satisfying
the deadlines of real-time messages, proposed in [18] to
schedule the traffic.

TABLE II
STREAMS IN THE CONVEYOR BELT USE CASE

Size Period Routing Max. delay
(bytes) (µs) (µs)

1 500 3000 C1 → N4 → A1 4
2 100 1000 C2 → N5 → N2 → N4 → A1 8
3 150 3000 C1 → N4 → N2 → A2 4
4 250 4000 C2 → N5 → A3 2
5 1200 10000 A2 → N2 → N5 →C2 57
6 300 4000 A1 → N8 → N6 →C1 3
7 400 3000 S1 → N1 → N3 →C1 20
8 400 6000 S2 → N1 → N3 →C1 20
9 1500 15000 S3 → N2 → N5 →C2 59

TABLE III
TASKS IN THE CONVEYOR BELT USE CASE

Applications Tasks WCET (µs) P (ms)
γ1 τ1 500 10

τ2 2500 10
τ3 2500 10

γ2 τ4 1500 12
τ5 3000 12

γ3 τ6 15000 50
γ4 τ7 2000 20

τ8 3000 20
τ9 1500 20
τ10 1500 20

We have evaluated our proposed network configuration
strategy on our Conveyor Belt UC. In the given example, the
five switches (denoted with N) connect three sensors (denoted
with S) to two controllers (denoted with C), and transmit the
messages from controllers to four actuators (denoted with A).
The details of the streams are shown in Tab. II where the
stream name, size, period and routing are shown in columns 1
to 4 respectively. We assume that one of the controllers runs a
motor control application for speed control of electric motors.
The motor speed controller running on the node C1 receives
message 7 which is the sensor data S1, and sends message 1
to our proposed fogified drive A1, which controls an electric
motor. We assume that all links have 1 Gbps bandwidth.

The proposed strategy has successfully scheduled all
streams, i.e., none of the deadlines are missed, and minimized
delay and jitter of streams, resulting in an optimized control
performance. The results show that all streams have zero
jitter, which improves control. The column 5 in Tab. II shows
the maximum delay of streams. We used JitterTime [19] to
simulate the behavior of the control application which reports
a value of 0.008 for the QoC (see [18] for the exact cost
function), i.e., a good control performance.
B. Configuration of hypervisor partitions and task schedules

Since the real-time applications are virtualized and imple-
mented as tasks, the FCP configuration (e.g., task scheduling)
has impact on the performance of control applications. We as-
sume the use of deterministic hypervisors for virtualization of
applications on the fog node similar to [20], where hypervisors
provide a deterministic access to shared resources via a static
configuration table and provide spatial and temporal isolation
of mixed-criticality applications via “partitioning”. We propose
a metaheuristic solution to optimize the hypervisor partition
tables, map the tasks to the processing cores of the multi-
core processors of fog nodes, assign the tasks to partitions
and schedule the tasks inside the partition tables.

Our proposed solution provides temporal separation of tasks
similar to [21], [22] and assignment of the tasks to the
cores, and scheduling of the tasks inside the partition slices,
similar to the optimization strategy presented in [16] where
the static scheduling of tasks considers the QoC of control
applications. We have evaluated our solution, while ignoring
the temporal isolation of tasks, on the UC in which four
applications, including a control application denoted with γ1,
are running on a fog node that has two cores. Each application
has number of tasks and each task has a worst-case execution
time (WCET) and a period (P). The control application is the
drive’s controller for controlling electric motors. The details
of the applications are shown in Tab. III.

Our proposed optimization strategy has successfully sched-
uled all the tasks and decided the task mapping to the
cores. The results show that none of the tasks has missed
its deadline. Furthermore, the control application has a good

81

D: Fogification of Electric Drives: An Industrial Use Case 119

control performance which is evaluated with JitterTime [19]
that calculates a value of 0.011 for the QoC (cf. the cost
function from [16]).
C. Addressing security mechanisms in TSN

In order to adequately protect the system against adver-
saries, security mechanisms are required. A compromised sys-
tem may lead to safety requirements being violated, meaning
that security services must run with at least the same priority
as critical tasks. We briefly discuss security solutions that are
enabled by fogification of the drive in our UC. These should
all be deployed in parallel, as an instance of a defense-in-
depth approach. The various mechanisms proposed here are
summarized in Table IV.

Firstly, the drive will communicate sensitive data over the
Internet, such as usage statistics for predictive maintenance.
To ensure confidentiality and integrity of the data, as well
as authenticity of the remote party, secure communication
standards such as TLS should be used to provide confiden-
tial authenticated communication channels. The FCP should
block any attempt at communication to endpoints it cannot
authenticate. To further limit the attack surface, a firewall
should be active on the hypervisor level, ideally making use of
the predictable nature of machine-to-machine communication
by using whitelists for known addresses and services. These
measures protect against attacks known as the Man-in-the-
Middle (MitM) attacks, where an adversary sits between the
legitimate sender and receiver, capable of snooping on and/or
modifying data in transit.

Services that communicate with the Internet (including
Cloud service) form a major attack vector of Internet-
connected devices, and should be placed in separate partitions
by the FCP, isolating them from other services. This makes
it more difficult for attackers to pivot to other parts of the
system, should they break into an Internet-facing service, thus
limiting the impact of an intrusion.

Additionally, a security monitoring service should run in
a separate highly-privileged partition, capable of detecting
anomalous behavior in the system, while also improving
forensic possibilities. These are important factors in a fast
detection of system intrusion, impact analysis, and attacker
attribution.

Because of the time-critical nature of TSN, the protocol
itself provides only minimal security, it is necessary to isolate
this as much as possible from the rest of the system. In this
UC, the architecture is perfectly positioned to isolate all TSN
traffic from the rest of the physical network using Software
Defined Networks (SDN), or similar techniques. For further
protection within TSN, per-stream filtering as described in the
IEEE 802.10qw [14] standard can be applied as a light-weight
monitoring technique. In order to mitigate Denial of Service
(DoS) attacks as much as possible, careful consideration to the
network topology should be given during the design phase, so
that if a single link in the network were to fail, traffic can be
routed over different paths.

Finally, within industrial networks, physical access to ma-
chines is a relatively common attack vector, therefore, config-
uration changes of the electric drive should not be possible
without some form of authentication of the operator, such as
a secure hardware element.
D. Distributed predictive maintenance in the fog

Here we propose a distributed Machine Learning frame-
work where the distributed drives and the centralized server
jointly (collaboratively) train one global model. Typically,

TABLE IV
THREATS AND THEIR MITIGATIONS

Threat Mitigations
MitM, impersonation Confidential, authenticated com. channels
Attack impact Service isolation (e.g. partitions)
Remote attacks Firewalls, endpoint whitelisting
DoS Redundant network topologies
TSN security Isolation of TSN protocol, per-stream filtering
Physical attacks Hardware token for configuration changes
Detection Security monitoring service

the distributed drives placed in different locations, generate
data that captures the local information instead of global
information and they train their local models based on the
partial knowledge. The aggregation step at the server-side
enables the information sharing between drives and server to
obtain one model with overall knowledge. Consecutively, the
server sends the aggregated model back to drives. The whole
procedure may iterate several times. In a nutshell, as depicted
in Fig. 8, it is divided into four steps: (i) local model training,
(ii) model (or gradient) transmission, (iii) aggregation and (iv)
sending aggregated model back to decentralized devices.

We applied this method combing with active learning [23] in
the work [24], which experimentally proves its effectiveness.
This collaborative learning scheme mainly has two virtues.
Firstly, it may save the cost of bandwidth by avoiding the
transmission of the massive training dataset (transmit model
parameter or gradient instead). Secondly, it may preserve user
privacy by keeping data in the generation place, and at the
same time train a model that has comprehensive knowledge.
Yet, recently some researchers argue the gradient may breach
the privacy by reverse engineering work, but it can be defended
by plugging noises to the gradient before the transmission, e.g.,
noises generated from Laplace distribution. As we mentioned
before, data produced by electric drives is a very critical asset
because it carries precious information about the machinery it
controls, and we believe it can be addressed by the proposed
collaborative model.

We experimented on a public simulated engine run-to-
failure events dataset [25] to demonstrate our method, since
a public drive failure dataset was not available. We assume
four edge devices and one fog node in the experiment. The
dataset is composed of 24 features and the binary labels
where zero represents failure within one preset period (30
days), one otherwise. For the sake of a more elaborated result,
we can chunk time-to-failure into more periods to convert
it to a multiple-classification problem. For instance, label
zero indicates time-to-failure less than two weeks, label one
indicates the period between 2 weeks and one month, etc. We
employ Logistic Regression [26] as the model to carry out the
binary classification task. The one-shot binary classifier result
is depicted in Fig. 9, where the accuracy of the devices and
the aggregated model is shown. The aggregation step improves
the overall performance and the accuracy of the devices. Note

Fig. 8. Distributed ML Diagram

82

120 D: Fogification of Electric Drives: An Industrial Use Case

Dev.1 Dev.2 Dev.3 Dev.4 Aggregated
90

95

100
97.73

95.28
93.52 93.53

97.15

A
cc

ur
ac

y
%

Fig. 9. One-shot Predictive Maintenance Performance

that here we only demonstrate the one-shot result, but it can
be repeated multiple times according to the requirement.
E. Fault detection, identification and recovery for the UC

In this section, first, we list the safety requirements of the
IEC61508 standard, and then we propose a way to provide
safety assurance for the safety functions in the proposed UC.
The primary safety requirement for electric drives, whether
fogified or not, is to shutdown and stop the motor in case
of emergency situations such as voltage/current surges, which
can result in uncontrolled motor speeds, short-circuits and
possible danger to human life. Additionally, we present below
a set of safety requirements that needs to be included in the
design of the fogified electric drives. The identification of
failure modes for fogified electric drives shall be documented
at design time. A safe timer is a common practice since
functions related to drives require safe timers. The safety
of the drive is directly relying on the fact that the timer is
correct. Deadlock prevention among safety and non-safety
functions in the drives is one of the critical requirements
since a deadlock brings non-deterministic behaviors and is
the major cause of deadline misses for safety tasks. All
emergency and process shutdown functions (ESD, PSD) need
to be executed regardless of concurrent processes running in
the FCP. Their criticality must always be the highest. A failure
event should have a persistence parameter which specifies the
duration of the failure detection before a failure is declared.
The parameter should specify either a time duration or a
repeated detection threshold. The persistence time may be
zero so that any detection is immediately treated as a failure.
Adequate redundancy measures for safety functions are a
standard practice as well as temporal and spatial isolation
of safety and non-safety functions. The system shall have a
defined behavior on detection of a fault or a failure event.
This may be either a safe state or a well-defined consequence
or behavior. Last but not least, any run-time changes (such
as over-the-air firmware updates) in the fogified drives should
only be done to the non-critical parts or should undergo a
validation for safety.

To provide safety function guarantees, we have turned the
safety instructions into drive operational states by introducing
a marginal behavior. Therefore, the values of the operational
state of the drive are decided based on the satisfactory behavior
as a tool. We propose to deploy the tool on the middleware
of the architecture, which has access to all the partitions that
have applications with different criticality assigned to them.

We take the Conveyor Belt UC as an example to define

TABLE V
OPERATIONAL STATES AND SAFETY ACTIONS

Operational state Safety action
Switch failure Re-route stream on alternate switch
Part presence sensor failure Stop conveyor belt if item is fragile
Emergency brake failure Trigger emergency shutdown function
Motor over-heating Inject coolant
Controller malfunction Switch to safety controller (redundant)

several operational states for the drive and also proportional
safety actions to take. An unsafe safety state is one wherein
the safety state variables breach their threshold values. The
objective is that we have no overlapping conditions and the
drive always falls into one of the conditions which has a safety
action to take. For example, as shown in Tab. V, a safety
critical operational state such as an emergency brake failure
will trigger a safety action like an emergency shutdown that
is executed in a separate system partition.

V. RELATED WORK
Several research projects have addressed mixed-criticality

applications on that share multicore-based distributed archi-
tectures. The EMC2 European project1, aims to provide ef-
ficient handling of mixed criticality applications under real-
time conditions, scalability and utmost flexibility, full scale
deployment and management of integrated tool chains, through
the entire life cycle. Research on Fog computing platform
architectures has made progress in recent years [13], [27].
For example, the European projects FORA2 and mF2C3 focus
on creating open source, standards-compliant fog platforms
using COTS hardware to execute hard real-time industrial
control applications such as the electric drives discussed in this
paper. Companies such as TTTech Computertechnik AG and
Nebbiolo Technologies, Inc. are pioneers in the field of com-
mercializing the Fog computing paradigm with market ready
products for industrial automation. While design paradigms for
the fog are still in their early stages, there are certain generic
guidelines that are followed to ensure isolation of tasks of
varying criticality. In [28] the authors describe an execution
framework wherein applications are isolated temporally on
many-core processors.

Safety certification as proof of guarantees for the proper
execution of safety functions is needed for the FCP. Classi-
cal safety controller design such as the simplex architecture
[29], [30] provide a switching mechanism between a high
performance but non-safety certified controller and a simple
certified controller for safety functions. However, for complex
systems such as the FCP, the simplex design is non-optimal
due to the switching latencies. Selicean et al. [21] propose a
method in which different Safety-Integrity Levels (SILs) are
assigned to the applications. In this method applications with
the same SIL are mapped to a single partition. Virtualization
of control applications can be realized through separation
and scheduling the control tasks inside the partitions similar
to [22]. The modification of hypervisors provides different
degrees of separation. Modification of the Xen hypervisor to
guarantee timing constraints are proposed by Masrur et al.
[31]. The authors modify the hypervisor with a new scheduler
based on a fixed-priority policy and a control loop to control
timing constraints of virtual machines. [32] addresses safety
critical applications running in the Fog and how the FCP must
cater to these specific requirements.

One of the major research themes is resource management
in the Fog. In [33], the authors identify and classify the
architectures, infrastructure, and underlying algorithms for
managing resources in fog/edge computing. [34] proposes
a list scheduling-based heuristic to solve this problem. The
authors demonstrate the feasibility of reconfiguring the sched-
uled network at runtime for industrial applications within the
fog. [35] introduces a vulnerability-based method to quantify

1www.artemis-emc2.eu
2www.fora-etn.eu
3https://www.mf2c-project.eu

83

D: Fogification of Electric Drives: An Industrial Use Case 121

the security performance of communications on distributed
systems. Fault tolerant aspects are discussed in [36] where the
design problem is to minimize the schedule length and security
vulnerability of the application, subject to given fault-tolerant
constraints. A multi-objective optimization method to find
the best solutions is then proposed. [37] discuss potentially
contradicting design constraints: real-time capability versus
scalability. This paper suggests a design methodology and
architecture as a step towards perfectly scalable real-time
systems, i.e. systems with deterministic timing behavior and
run-time reconfiguration.

VI. CONCLUSIONS
In this paper, we have addressed a novel fog-based archi-

tecture that is a key enabling technology for Industry 4.0. We
have proposed to re-engineer electric drives and turn them
into fog nodes. We take the current drives architecture as
baseline, apply our proposed fog computing architecture to it,
and compare the two architectures. The proposed architecture
is driven by the stringent safety and performance requirements
of industrial applications. In addition, we have identified fog-
specific requirements and challenges.

We have modeled our proposed architecture with AADL and
studied the interaction of the components, identified the needed
“technology bricks” and bottlenecks, and mapped the proposed
architecture to a computing platform for the realization of
an industrial use case, a Conveyor Belt application. We have
evaluated the use case in relation to the proposed technology
bricks. As the evaluation shows, a fog-based implementation
of industrial applications is a promising approach to realize
the vision of Industry 4.0.

ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No. 764785, FORA—Fog Computing for Robotics
and Industrial Automation.

REFERENCES
[1] World Economic Forum, “Digital Transformation of Industries,” http://

reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/
files/pages/files/wef-digital-transformation-2016-exec-summary.pdf,
2016 (accessed March 15, 2020).

[2] D. Floyer, “Defining and sizing the industrial internet,” http://wikibon.
org/wiki/v/Defining and Sizing the Industrial Internet, 2013 (accessed
March 15, 2020).

[3] H. Bauer, C. Baur, D. Mohr, A. Tschiesner, T. Weskamp, K. Alicke,
and D. Wee, “Industry 4.0 after the initial hype–where manufacturers
are finding value and how they can best capture it,” McKinsey Digital,
2016.

[4] M. Garcı́a-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time
virtualization and predictable cloud computing,” Journal of Systems
Architecture, vol. 60, no. 9, pp. 726–740, 2014.

[5] D. R. Harp and B. Gregory-Brown, “IT/OT convergence bridging the
divide,” NEX DEFENSE, 2014.

[6] W. Steiner and S. Poledna, “Fog computing as enabler for the Industrial
Internet of Things,” e & i Elektrotechnik und Informationstechnik, vol.
133, no. 7, pp. 310–314, 2016.

[7] OpenFog Consortium, “OpenFog reference architecture for fog
computing,” https://www.iiconsortium.org/pdf/OpenFog Reference
Architecture 2 09 17.pdf, 2017 (accessed January 5, 2020).

[8] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, Tech. Rep. CMU/SEI-2006-
TN-011, 2006.

[9] I. Boldea and S. A. Nasar, Electric drives. CRC press, 2016.
[10] Danfoss, “Danfoss Electric Drives,” https://www.danfoss.com/en/

products/ac-drives/?sort=default sort, 2020 (accessed March 15, 2020).
[11] Siemens Simatic, “Profinet system description–system manual,” Issue

A5E00298288-04, vol. 6, 2008.
[12] Fog Computing for Robotics and Industrial Automation (FORA), “Fog

Computing Platform: requirements and initial designs,” https://drive.
google.com/file/d/1QwBfcqij72ZdeMWmhwAwm MdSHePElUy/view,
2019 (accessed March 25, 2020).

[13] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the Internet of Things: A Survey,” ACM Transactions on
Internet Technology (TOIT), vol. 19, no. 2, pp. 1–41, 2019.

[14] IEEE, “Official Website of the 802.1 Time-Sensitive Networking Task
Group,” http://www.ieee802.org/1/pages/tsn.html, 2016 (accessed March
5, 2020).

[15] R. Kaiser and S. Wagner, “The PikeOS concept: History and design,”
SysGO AG White Paper. Available: http://www.sysgo.com, 2007.

[16] M. Barzegran, A. Cervin, and P. Pop, “Towards Quality-of-Control-
Aware Scheduling of Industrial Applications on Fog Computing Plat-
forms,” in Proceedings of the Workshop on Fog Computing and the IoT.
ACM, 2019, pp. 1–5.

[17] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,”
in Proc. of the International Conference on Real-Time Networks and
Systems, 2016, pp. 183–192.

[18] M. Barzegaran, B. Zarrin, and P. Pop, “Quality-Of-Control-Aware
Scheduling of Communication in TSN-Based Fog Computing Platforms
Using Constraint Programming,” in 2nd Workshop on Fog Computing
and the IoT, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020, pp. 3:1–3:9.

[19] A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, “Using
JitterTime to Analyze Transient Performance in Adaptive and Recon-
figurable Control Systems,” in Proc. of IEEE International Conference
on Emerging Technologies and Factory Automation. IEEE, 2019, pp.
1025–1032.

[20] J. Ruh and W. Steiner, “The need for deterministic virtualization in
the Industrial Internet of Things,” in Proc. of the Workshop on Fog
Computing and the IoT. ACM, 2019, pp. 26–30.

[21] D. Tamas-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time systems,” ACM Transaction on Embedded Computing, vol. 14,
no. 3, pp. 50–78, May 2015.

[22] M. Barzegaran, A. Cervin, and P. Pop, “Performance Optimization of
Control Applications on Fog Computing Platforms Using Scheduling
and Isolation,” IEEE Access, vol. 8, pp. 104 085–104 098, 2020.

[23] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” in Proc. of the International Conference on Machine
Learning. JMLR. org, 2017, pp. 1183–1192.

[24] J. Qian, S. Sengupta, and L. K. Hansen, “Active learning solution on
distributed edge computing,” arXiv preprint arXiv:1906.10718, 2019.

[25] A. Saxena and K. Goebel, “Turbofan engine degradation simulation data
set. NASA Ames Prognostics Data repository, NASA Ames Research
Center, Moffett Field,” 2008.

[26] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic
regression. Springer, 2002.

[27] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog Computing: Platform and
Applications,” in Proc. of IEEE Workshop on Hot Topics in Web Systems
and Technologies, 2015, pp. 73–78.

[28] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet,
“Temporal Isolation of Hard Real-Time Applications on Many-Core
Processors,” in Proc. of IEEE Real-Time and Embedded Technology and
Applications Symposium, 2016, pp. 1–11.

[29] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The System-Level Simplex Architecture for Improved Real-
Time Embedded System Safety,” in Proc. of IEEE Real-Time and
Embedded Technology and Applications Symposium, 2009, pp. 99–107.

[30] Lui Sha, “Using simplicity to control complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, 2001.

[31] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty, “VM-Based
Real-Time Services for Automotive Control Applications,” in IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, Aug 2010, pp. 218–223.

[32] N. Desai and S. Punnekkat, “Safety of Fog-Based Industrial Automation
Systems,” in Proc. of the Workshop on Fog Computing and the IoT.
ACM, 2019, p. 6–10.

[33] C.-H. Hong and B. Varghese, “Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms,”
ACM Computing Surveys, vol. 52, no. 5, 2019.

[34] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling Fog
Computing for Industrial Automation Through Time-Sensitive Network-
ing (TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[35] W. Jiang, P. Pop, and K. Jiang, “Design Optimization for Security- and
Safety-Critical Distributed Real-Time Applications,” Microprocessors
and Microsystems, vol. 52, no. C, p. 401–415, 2017.

[36] W. Jiang, H. Hu, J. Zhan, and K. Jiang, “Work-in-Progress: Design of
Security-Critical Distributed Real-Time Applications with Fault-Tolerant
Constraint,” in Proc. of International Conference on Embedded Software,
2018, pp. 1–2.

[37] P. Priller, W. Gruber, N. Olberding, and D. Peinsipp, “Towards perfectly
scalable real-time systems,” in Proc. of International Conference on
Computer Safety, Reliability, and Security. Springer, 2014, pp. 212–
223.

84

122 D: Fogification of Electric Drives: An Industrial Use Case

Paper E
rTLS: Lightweight TLS Session Resumption
for Constrained IoT Devices

K. Tange, D. Howard, T. Shanahan, S. Pepe, X. Fafoutis, and N. Dragoni. “rTLS:
Lightweight TLS Session Resumption for Constrained IoT Devices.” English. In: Pro-
ceedings of the 22nd International Conference on Information and Communications
Security. Springer, 2020. doi: 10.1007/978-3-030-61078-4_14

rTLS: Lightweight TLS Session Resumption for
Constrained IoT Devices

Koen Tange1, David Howard2, Travis Shanahan2, Stefano Pepe3,
Xenofon Fafoutis1, and Nicola Dragoni1,4

1 DTU Compute, Technical University of Denmark, {kpta,xefa,ndra}@dtu.dk
2 Itron Idea Labs, USA

3 UniquID, USA
4 AASS, Örebro University

Abstract. The Transport Layer Security (TLS) 1.3 protocol supports
a fast zero round-trip time (0-RTT) session resumption mechanism, en-
abling clients to send data in their first flight of messages. This protocol
has been designed with Web infrastructure in mind, and requires these
first messages to not change any state on the server side, as it is suscepti-
ble to replay attacks. This is disastrous for common IoT scenarios, where
sensors often transmit state-changing data to servers. As bandwidth is
a huge concern in the IoT, the field stands to benefit significantly from
an efficient session resumption protocol that does not suffer from these
limitations. Building on the observation that in IoT scenarios the set
of clients is often bounded and fairly static, we propose rTLS (ratchet
TLS), an efficient 0-RTT session resumption protocol that dramatically
decreases bandwidth overhead, while adding forward secrecy and break-
in resilience, and is not susceptible against replay attacks.

Keywords: Network · Security · IoT · IIoT · TLS · Protocol

1 Introduction

There are many examples of well-established communication protocols that are
able to satisfy contextually-defined requirements and are in use in modern tech-
nology. Arguably the most well-known example is the TLS protocol [16]. This
protocol is widely used in today’s Internet, with Web security as its main focus.
Recently, this protocol has been gaining traction in the Internet of Things (IoT)
domain as well. To better suit the heterogeneous needs present in this domain,
new extensions of the TLS protocol are needed, specifically to enable extremely
lightweight devices to partake in TLS connections as well.

A typical TLS handshake can require anywhere between 1 and 4 KB of
traffic. This is a large amount of traffic overhead for lightweight devices running
on battery power, where powering a wireless radio is very costly. Therefore,
there is a need to reduce this handshake overhead as much as possible. To aid
in reducing bandwidth and latency, TLS 1.3 features a new session resumption
protocol capable of transmitting application data already in the first flight of

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 125

2 K. Tange et al.

messages. This allows users to quickly reopen a session without having to go
through the expensive handshake again. Unfortunately, this resumption protocol
is only marginally useful for IoT applications, as it does not allow for data that
might change server-sided state, as a result of its weakness against replay attacks.

A second motivator for reducing traffic overhead is that the financial costs
of sending this data might become unbearable. For example, it is expected that
with 5G Low-Power Wide Area Networks (LPWAN) services such as Long Term
Evolution - Machine (communication) (LTE-M) and Narrow Band Internet of
Things (NB-IoT), network providers will charge users based on data usage [2,
21, 9]. Moreover, if the cost of setting up a secure connection is tens of times the
cost of the payload itself, users might opt not to secure it at all, or implement
their own cryptographic protocol, with associated risks.

In a standard TLS setup, servers are not likely to keep state on a client in
between sessions, and the protocol is designed with that assumption in mind. In
an IoT setting, however, the set of clients is fairly static, and often even known
a priori, or traceable through some key infrastructure. Keeping state on these
clients between connections can help in reducing the handshake overhead, but
this is not yet utilized in TLS 1.3. There is thus a pressing need for IoT-focused
TLS extensions that enable secure yet efficient communication with lightweight
devices.

In this work, we introduce rTLS, a TLS extension that can authenticate
two endpoints and set up a secure connection with minimal additional over-
head, given that the client and server have initiated a session in the past. In
particular, we introduce an extension to TLS 1.3 that changes the 0-RTT ses-
sion resumption protocol, reducing overhead compared to the standard protocol,
while adding new security features including replay protection, forward secrecy,
and break-in protection. We build the protocol on the assumption that servers
can store state on clients, with the IoT in mind. We provide equations on the
lower bound for traffic overhead of any TLS resumption protocol as well as our
proposed extension, and compare it to overhead observed from the OpenSSL [13]
implementation of TLS 1.3. We also provide estimations for storage overhead for
both client and server.

The remainder of this paper is organized as follows: In Section 2 we briefly
discuss the foundations necessary to understand our proposed extension. In Sec-
tion 5 we discuss related work on lightweight protocols and other TLS extensions.
Then, in Section 3 we explain our extension in detail. After that, we evaluate the
storage and transmission overhead as well as the security properties in Section 4,
after which we conclude this work in Section 6

2 Preliminaries

This work proposes an improvement of session resumption for the TLS 1.3 proto-
col, building on Key Derivation Function (KDF)-chains, described in the double
ratchet protocol description in the Signal documentation [14]. In this section, we
briefly discuss the essentials needed to understand our proposed solution.

126 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 3

2.1 TLS 1.3

The TLS 1.3 protocol [16] negotiates a secure communication channel (a session)
between two parties, typically referred to as client and server. In the most typi-
cal scenario, one-way authentication is provided, that is, the server authenticates
itself to the client, building on the certificate authority paradigm for key distri-
bution. The protocol also supports session resumption, allowing users to more
quickly renegotiate a session, leveraging state data from past sessions between
those two users. In this section, we only briefly discuss necessary elements of the
protocol. For a more in-depth discussion, we refer to the standard [16].

In order to speed up session negotiation, TLS 1.3 provides several improve-
ments over its predecessor, TLS 1.2 [17]. One of the major improvement points
is the introduction of 0 Round Trip Time session resumption, or 0-RTT. This
allows clients to send application data already in their first message to the server
when initiating a session resumption. In the standard, this comes with the caveat
that this so-called early data must be idempotent; it should not result in state
changes. This is due to 0-RTT handshakes being weak against replay attacks.

The 0-RTT key data is transmitted to the client in a NewSessionTicket

message. The server bundles up necessary data for it to continue the session later
on, along with a Pre-Shared Key (PSK). The standard describes a structure for
NewSessionTicket messages, but not for the tickets which these encapsulate,
essentially leaving room for a variety of implementations from e.g. databases
with lookup keys to self-encrypted and authenticated messages. In this work, we
assume the mechanism first explained in RFC 5077 [10], a solution optimized
for the Web, and which requires no server-side state variables on closed sessions.
With this approach, the server encrypts the necessary state variables with a
secret key, before handing them over to the client. Upon session resumption,
the client sends over this encrypted bundle again, and these variables are then
decrypted and in turn, can be used to decrypt the early data.

2.2 Double Ratchet Algorithm

The Double Ratchet Algorithm [14] is a cryptographic protocol enabling highly
secure, asymmetric message exchange. Originally developed for Signal [20], it
is now also used in WhatsApp [22]. It has received significant cryptographic
attention and has been formally verified [5].

At the heart of this protocol lies a KDF-chain, which is a feedback loop where
part of its output is fed back into the function as input for the next iteration,
while also providing key material for encrypting messages. This creates a ratchet-
like construction, because of the one-way nature of the KDF function; new keys
can be generated constantly, while one can never retrieve old keys. Therefore, it is
also common to refer to this construction as a ratchet. These properties provide
ratchets with protection against replay attacks as well as forward secrecy.

A double ratchet is a setup where one “outer” ratchet and one or more
“inner” ratchets work together to provide stronger security properties. The outer
ratchet uses external entropy from a Diffie-Hellman (DH) handshake as input.

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 127

4 K. Tange et al.

When the outer ratchet is spun (i.e. its KDF function is executed), it generates
new input keys for its inner ratchets, thereby resetting them, and providing
post-compromise, or break-in, protection. When only the inner ratchet is spun,
it generates encryption keys for messages, and uses its own output as input for
the next inner KDF execution. The outer ratchet is often called the DH ratchet,
while the inner ratchets are called symmetric ratchets.

In the Double Ratchet Algorithm, both parties maintain one DH ratchet and
two symmetric ratchets, for outgoing respectively incoming messages. In our
work, we use only one symmetric ratchet, as only the client will ever initiate
a connection, and the client will thus only need a ratchet for sending, while
the server only needs one for receiving. For more details on the double ratchet
algorithm, we refer the reader to [14].

3 ratchet TLS (rTLS)

In this section we describe our proposed extension in detail. Note that it is
designed with the goal of making maximal use of existing extensions and utilities
available in the TLS suite, and requiring only a minimal amount of change, to
increase ease of verification and implementation.

This extension uses a Symmetric Ratchet mechanism to generate the keys
involved in session resumption. Additionally, it uses standard TLS mechanisms to
provide an outer DH ratchet, providing forward secrecy and break-in protection.
The original TLS specification leaves room to enable this elegantly by allowing
us to transmit relevant data as a PSK. Then, we can make use of the existing
psk key exchange modes extension included in the RFC [16], by specifying a
custom exchange mode for ratcheting to let the server know that we want to use
this mode for session resumption. As we will see in the following sub-sections,
this leads to a minimal number of changes in the protocol itself.

In the remainder of this section, we will first explore the differences between
standard TLS handshakes and ratchet-mode handshakes in Sections 3.1 and 3.2,
after which we explain the protocol setup and operation in detail in Section 3.3

3.1 Initial handshake

Figure 1a depicts the communication pattern of a typical initial handshake for
a TLS session making use of our extension. To improve ease of comparison
with the RFC [16], we have adopted the same syntax and included the same
common extensions. In fact, the communication pattern of this handshake is
indistinguishable from a standard TLS handshake. However, we further extend
PSK-related extensions to achieve our goals. We denote those elements in the
communication pattern that are relevant to this extension in blue.

The inclusion of the psk key exchange modes extension in the first flight of
messages signals to the server that the client wants to obtain a session ticket. To
create our desired ratchet construction, we need to know what symmetric ciphers
should be used during resumption, and also agree on a KDF. In principle, any

128 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 5

Client Server
ClientHello

+key_share

+psk_key_exchange_modes

ServerHello

+key_share

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[Application Data*]

{Certificate*}

{CertificateVerify*}

{Finished}

[NewSessionTicket]

[Application Data][Application Data]

(a) The communication pattern of the ini-
tial handshake.

Client Server
ClientHello

+early_data

+key_share*

+psk_key_exchange_modes

+pre_shared_key

(Application Data)

ServerHello

+pre_shared_key

+key_share*

{EncryptedExtensions}

+early_data*

{Finished}

[Application Data*]

(EndOfEarlyData)

{Finished}

[Application Data][Application Data]

(b) The communication pattern of the re-
sumption handshake.

Fig. 1: Figure 1a and 1b depict the initial respectively resumption handshake
communication patterns. + denotes an extension, * denotes an optional or
situation-dependent component while {} and [] denote encryption with a deriva-
tion of the handshake or application secret, respectively. Modifications from the
original handshakes are printed in blue.

secure cipher and KDF can be used for this, however, in an effort to keep the
number of required protocol changes to a minimum, we reuse the TLS cipher-
suite agreed upon by the client and server, since this already includes apt choices
for the required primitives while also guaranteeing that these are supported by
the client. Note that the choice of cipher-suite is only definite after the server has
replied with its own ServerHello and key share messages. The DH secret key
that is established through the key share elements is used to derive all secrets
used in TLS, including the PSK resumption secret. This means that whenever
the key share extension is included, the subsequently generated PSK resump-
tion secret is derived from a fresh entropy source. The psk key exchange modes

extension list of a byte-sized enumerated type, indicating a PSK type. The cur-
rently standardized values are 0 for a static PSK and 1 for PSK with (EC)DHE
key establishment. We add another value 3 indicating a PSK with key ratchet-
ing. This list of types indicates to the server which PSK types are supported by
the client.

After the initial handshake is done, the server sends a NewSessionTicket

to the client. While it is allowed for a server to send multiple of these tickets
in one session, this is not necessary: session resumption can add entropy when
needed and thus provide fresh resumption tickets at a later point in time. Table 2
contains all fields in this structure, as specified in the TLS specification.

The ticket field contains an identifier that the client can later send to the
server allowing it to identify the connection and access corresponding stored
state. It does not contain an encryption key for resumption. Instead, a resump-
tion master secret is derived as described in the standard: from the ticket nonce

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 129

6 K. Tange et al.

Table 1: Layout of the NewSessionTicket structure.
type Field name Description

uint 32 ticket lifetime ticket lifetime in seconds
uint 32 ticket age add used to obscure ticket age
opaque ticket nonce (max. 255 bytes) nonce
opaque ticket (max. 232 bytes) ticket itself
Extension extensions (max. 232 bytes) extensions

and master secret. The extension field must also contain the early data indication
extension indicating that the PSK may be used for early data.

3.2 Session resumption

Upon resumption of a session using the ratchet PSK mode, the communication
pattern once again looks identical to that of a standard TLS 0-RTT session
resumption, as can be seen in Figure 1b. The blue text indicates fields that
deviate in usage or content in this mode.

Firstly, the client chooses whether to include a key share extension. This is
not strictly necessary for every resumption, but depends on the desired gran-
ularity of break-in resilience; including a DH handshake in every resumption
handshake implies that break-in recovery occurs after every resumption, while
including these every n resumption handshakes implies break-in recovery after
every n handshakes and so on. If the server receives a key share from the client
during resumption, it includes a key share extension in its response carrying the
necessary DH parameters, otherwise it does not need to include this extension.

The client also includes a psk key exchange modes extension to indicate
which PSK mode is used for the pre shared key field. This is mandated by the
standard, and the content of this field is identical to the same field in the initial
handshake.

Further, the client now includes a pre shared key field containing neces-
sary data for the server to identify the connection as well as the ratchet index
currently used by the client. This value is used by the server to determine if it
missed any previous connection attempts, and if so, how many times it should
ratchet its symmetric ratchet before decrypting the received early data. The
pre shared key extension consists of two components: a list of PskIdentity

and a list of PskBinderEntry structures. The latter is a list of Hash-Based Mes-
sage Authentication Code (HMAC) values that authenticate the ClientHello

up-to-and-including the list of PskIdentity entries, while the former consists
of an identity and obfuscated ticket age value. The ticket age is further
described in the standard and not important to this work, so we refrain from
discussing it in detail. The identity value is defined as an opaque value in the
standard, allowing us to populate it with a connection ID received from the
server during the initial handshake (4 bytes), and the 1-byte ratchet index in-
dicating the index of the symmetric KDF chain (after having derived the latest
resumption master secret).

130 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 7

Every time the client initiates a resumption handshake with the server, the
resumption master secret is ratcheted, going one step further down the KDF
chain. From the ratcheted resumption master secret an early traffic secret is
derived, which is used to encrypt the early application data sent by the client.
Once the server has received a ClientHello with the necessary extensions for a
ratchet-mode resumption, it can find the correct ratchet based on the connection
ID obtained from the received identity field. It then spins this ratchet until
the number of spins equals the ratchet index in the identity field.

When the resumption handshake includes the key share extension, i.e. it
initiates a DH handshake, the resulting shared secret is used to derive all sub-
sequent secrets for a TLS session, as specified in its key schedule [16]. Notably,
when a resumption secret already exists, the newly derived master secret de-
pends on both the existing resumption secret and the DH shared secret. From
this new master secret a new resumption master secret is then generated for
use in future resumptions, and the ratchet index must be reset to 0. This con-
struction ensures that an adversary cannot attack the protocol by replacing the
client’s shared key field with its own parameters, as the adversary will not have
access to the existing resumption and therefore cannot derive a correct next
resumption secret.

We only reserve 1 byte for the ratchet index because we expect it to be reset
to 0 well before 255 communication attempts have been made. Nevertheless, we
add the requirement that if the ratchet index is 255, both parties must delete
their PSK and negotiate a new PSK after a standard handshake.

3.3 Double Ratchet setup and operation

Next, we summarize the extra steps needed for both the initial- and resumption
handshakes in a step-by-step fashion.

Initial Handshake The initial handshake is largely unmodified, but some spe-
cial steps have to be taken by both the client and the server.

1. ID generation: The server generates a globally unique connection ID. This
ID is transmitted to the client in the NewSessionTicket;

2. Symmetric ratchet initialization: The client and server initialize the
ratchet index variable to 0. The symmetric ratchet key is the resumption
master secret.

3. Persistent state storage: Both client and server store their state variables
for anticipated session resumptions;

Resumption Below we describe the extra steps needed for a typical session
resumption. A DH exchange may take place, but we do not consider that as an
extra step – the TLS standard already accommodates for this.

Client

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 131

8 K. Tange et al.

1. Ratchet step: The client ratchets its symmetric ratchet before the resump-
tion master secret is used to derive any other secret. The early-data secret
is thus derived from the ratcheted master secret;

2. PSK exchange: During the handshake, the client sends its ratchet index
and connection ID to the server, as part of the pre shared key;

Server

1. Access state: The server receives a 0-RTT resumption, and after having
verified the pre shared key’s HMAC field, finds the relevant state variables
using the received connection ID as a key (e.g. in a hash map);

2. Replay condition The server ensures that is < ic where is and ic are the
server respectively received client ratchet indices for this connection.

3. Ratchet step: The server spins the symmetric ratchet ic − is times where
ic is the received ratchet index in pre shared key and is its own ratchet
index. The early data encryption key is derived from the new state of the
sym. ratchet;

Both

1. Reset ratchet index: If a DH exchange was performed during the resump-
tion handshake, then the client and server reset their ratchet index to 0.

2. Persistent state storage: Both the client and server store their state vari-
ables for future session resumptions;

3.4 Ratchet state variables

This extension expects both the client and server to maintain some state for
each connection. This state consists of the following data:

1. Mapping: a connection ID → ratchet mapping, to identify which ratchet
belongs to which connection;

2. Resumption Master Secret: This is used to derive the keys used for
encryption, upon next resumption (32 bytes);

3. Ratchet Index: To indicate the number of ratchet steps that occured since
the last DH exchange (1 byte);

4 Evaluation

4.1 Security evaluation

In this section, we discuss the security properties of the proposed protocol exten-
sion. We only discuss the resumption handshake, as the initial handshake is left
untouched by this extension. Firstly, note that because the NewSessionTicket

message gets transmitted by the server as application data after the initial hand-
shake, it is by definition authenticated, verified, and confidential. Since we require
both the client and server to securely store their state variables, we can further
assume that any keys derived from the resumption master secret can only be
computed by the client and server.

132 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 9

Replay attacks We divide replay scenarios into two groups: those that occur
within one DH handshake period, and those that span across at least one DH
handshake. In the former, when an attacker replays a session resumption hand-
shake m without any modifications, the server will reject m and not process
the associated early data, as the replay condition is < ic will be violated. ci
cannot be forged either, as it is protected by an HMAC and we assume secu-
rity of the cryptographic hash function, and secrecy of the HMAC keys. In the
second group, an attacker records n different resumption message m0, . . . ,mn−1

where n is the DH handshake frequency. Let c0, . . . , cn−1 be the corresponding
ratchet indices. Now, the attacker is certain that at least one DH handshake has
been performed since m0 was sent, and the next message mn will have ratchet
index cn = c0. As the ratchet indices are equal, one could attempt to bypass
the replay condition check. However, the resumption master keys for m0 and m1

are different, and therefore the HMAC keys used for the PSK binder fields are
different. Thus, when an attacker sends m0 to a server after n resumptions have
passed, the HMAC validation will fail before ic gets checked, and m0 will thus
be rejected.

Forward Secrecy The 0-RTT resumption also enjoys forward secrecy, as we
only store the last resumption key. After every attempt, a key is derived using
a cryptographic hash function, so it is not feasible for an adversary to compute
past keys based on a compromised resumption key.

Break-in protection Additionally, the protocol enjoys break-in protection,
proportional to the frequency of DH exchanges in resumption handshakes. These
exchanges effectively function as the DH ratchet in the Signal protocol. the
shared secret resulting from such a DH exchange is used as key input for the
key derivation function, adding new entropy to it. This means that if an adver-
sary compromises one of the endpoints at some moment in time, and extracts
resumption keys from it, they will not be able to decrypt any messages after the
next DH exchange has occurred; they do not possess the required shared secret.

4.2 Traffic Overhead estimation

Initial handshake The number of bytes transmitted by each side during the
initial handshake is unchanged – the one addition to the protocol just defines
an extra value for an enumerated field (psk key exchange modes). After the
handshake is done, the server transmits a NewSessionTicket message to the
client. As this is part of the extension setup, in this context we consider this
as part of the initial handshake; without it, resumption would not be possible.
The structure and size of a minimal NewSessionTicket message is displayed in
Table 2. The client does not need to send any reply to this message. We set
the size of the ID field and nonce field to 4 respectively 32 bytes. Therefore,
compared to no session resumption at all, minimal overhead is 14 + 4 + 32 = 50
bytes. Compared to a session ticket in standard TLS 1.3, which is typically in
the hundreds of bytes, this is a significant improvement.

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 133

10 K. Tange et al.

Table 2: The message struc-
ture and size of a minimal
NewSessionTicket message. Here
|ID| refers to the identifier length
and |N | to the size of the nonce.

Size (bytes) Field name
4 ticket lifetime
4 ticket age add;
|N | ticket nonce
|ID| ticket
2 extensions length
4 Early data extension

Total 14 + |ID| + |N |

Table 3: Symbol definitions for mes-
sage elements, where x ∈ {c, s}
refers to the message sender (client
resp. server).

Symbol Description

Hx (Client or Server) Hello

edx early data

Dx Application data
pex psk key exchange modes

pskx pre shared key

ksx key share

ee EncryptedExtensions

eed EndOfEarlyData

f Finished

R Record Layer headers

Resumption handshake The resumption handshake will ideally be performed
much more often than the initial handshake, thus it is important that the traffic
overhead for this handshake is as small as possible. The fixed cost for any re-
sumption handshake consists of boilerplate parts of the handshake that cannot
be eliminated without rigorous change to the protocol. In the following, we write
client and server as c and s, respectively. We map symbols to every message el-
ement in the resumption handshake in Table 3, where x can be either c or s to
indicate the message sender. We refer to the size of message X as |X|.

We define the fixed cost C of any 0-RTT resumption handshake as:

C = 3|R|+ |Hc|+ |Hs|+ |edc|+ |pex|+ |ee|+ 2|f |+ |eed|

This cost is not a fixed number of bytes, but rather is not negotiable; any PSK
extension will have to include these elements, and their size is independent of
the actual PSK mode. The total cost of a minimal resumption handshake where
the server does not respond with any early data is C+ |pskc|+ |psks|. Note that
ksc and kss are not required for a minimal handshake. Conform to the standard,
pkss is defined as a 2-byte value representing an identity index in pskc, and is
wrapped in a 4-byte TLS extension structure. ksc is more complex however, and
we write the full layout in Table 4. As we only send one identity and binder,
The size of pskc becomes |pskc| = 15 + α + β, where α denotes the size of the
identity field, and β the size of the binder HMAC. The identifier field PSKID
can be written as PSKID = ID||i where ID is the identifier received in the
session ticket during the initial handshake and i is the symmetric KDF chain
index. Now, |PSKID| = |ID| + 1 = 5. The exact value of β depends on the
chosen HMAC function, which is usually either Secure Hash Algorithm (SHA)-
256 (32 bytes) or SHA-384 (48 bytes). The complete traffic cost c1 for session
resumption can thus be written as c = |psks|+ |pskc|+ C = 26 + β + C, and is
58 + C if SHA-256 is chosen.

134 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 11

Table 4: Layout of the pre shared key structure and its sub-structures, when
sent by a client.

pre shared key
Size Field name Description

2 extension type Extension type
2 extension data Size of the extension
2 PSKIdentities length Nr. of PSK identities

identities PSKIdentity values
2 binders length Nr. of PSK binders

binders PSKBinder values

PSKIdentity
2 identity length Size of identity field
α identity value of this identity
4 obfuscated ticket age ticket age (see [16])

PSKBinder
1 binder length size of the binder value
β binder HMAC value (see [16])

When a DH exchange is included, we will have to add the size of the ksc and
kss elements. The size of ksc is of variable length depending on the number of
supported DH groups the client advertises. Each key share entry takes up 4 + l
bytes where l is the size of the supported group. The smallest supported group
is X25519 with a 32-byte field, while the largest is P-521 with 132 bytes. ksc also
reserves 2 bytes to denote the number of listed groups, therefore ksc = 6 + l.
The server replies with a single key share entry, thus kss = 4 + l. As with
any TLS extension, these entries are wrapped in an extension structure with
a 4-byte type field. The total cost of a resumption with DH exchange is thus
c2 = c1 + |ksc|+ |kss| = c1 + 18 + 2l.

0 5 10 15 20 25 30 35 40 45
Diffie-Hellman key exchange frequency

50

100

150

200

250

300

350

tr
a
n
sm

is
si

o
n
 o

v
e
rh

e
a
d
 (

b
y
te

s)

P-512/SHA256

P-256/SHA256

X25519/SHA256

P-512/SHA384

P-256/SHA384

X25519/SHA384

Fig. 2: Average transmission overhead v. DH key exchange frequency

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 135

12 K. Tange et al.

If we take into account a key share every n messages, we arrive at the final
equation for the total average cost ct:

ct =

{
26 + β + C for n = 0
26 + β + 18+2l

n + C for n > 0

}
where β is the hash digest size, l the elliptic curve coordinate length, n the DH
handshake rate, and C the fixed cost. Figure 2 shows the average overhead versus
the key exchange frequency, for various common cipher suites.

Giving an exact value for C is somewhat difficult: multiple fields in Hc, Hs,
and ee can vary a lot in length, depending on the supported cipher suites and
provided extensions among other things. Instead, we count the minimum size for
these fields as they are defined in the standard, thereby giving a lower bound for
C. Note that in practice, a handshake with so few extensions is not useful for
overhead minimization, as more round-trips will be needed to establish necessary
parameters such as the cipher suite. Moreover, it leaves out extensions meant
to increase overall security. Minimal sizes, including all headers, for Hc and Hs

are 50 and 48 bytes, respectively. edc and eed both require 2 and 4 bytes. pex
is at least 3 + m bytes in size, where m is the number of supported modes
(at least 1). ee is at least 6 bytes in size, but may vary a lot, depending on the
supported extensions. The length of f is determined by the chosen hash function.
The record layer headers are 5 bytes in size. With one PSK key exchange mode
and the SHA-256 hash function, the total cost of C is then at least 193 bytes.
Therefore, the lower bound on transmission overhead of a resumption handshake
with our extension is 251 bytes without, or 333 bytes with a key exchange.

4.3 Storage overhead estimation

Both the client and server need to store some state variables in between sessions.
This differs from the standard session resumption protocol where only the client
stores the PSK. The client needs to securely store the secret KDF key (depends
on digest size), as well as its connection ID (4 bytes) and the ratchet index (1
byte). The client thus needs to store 37 bytes if SHA-256 is used.

The server needs to store the same amount of state, but for every client that
it shares a ratchet for resumption with. This can be done through e.g. a hash
map using the connection ID as a key, and a structure containing the other state
variables as value. If state is being kept for the maximum amount of clients of 232

(with a 4-byte connection ID), this amounts to roughly 270GB worth of data.

4.4 Overhead comparison with TLS 1.3

Based on measurements performed on OpenSSL [13], a standard PSK in TLS 1.3
adds 571 and 603 bytes of overhead, when SHA-256 respectively SHA-384 is used.
In Table 5 we compare the overhead of rTLS for various values of n to that of
a standard TLS 1.3 PSK. We use a higher value of C, obtained from handshake
measurements in OpenSSL, which includes a minimal number of extensions by

136 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 13

default, and acts as an indicative value that represents a lightweight use case.
In this table, the values are computed using the smallest allowed hash function
(SHA-256) and curve (X25519). As can be seen, a rTLS PSK requires only
roughly 11% of the traffic overhead compared to a standard TLS PSK, and can
be expected to reduce the total amount of transmitted data roughly by half.

Table 5: A comparison between rTLS session resumption and openSSL standard
session resumption

Indicative Lightweight Use (C = 408)
Scenario Avg. Overhead (b) Avg. Total size (b)

rTLS, n = 0 58 466
rTLS, n = 1 108 516
rTLS, n = 10 63 471
Standard TLS 1.3 571 979

5 Related Work

There exist ample communication security protocols aimed at embedded de-
vices [1]. We look at the TLS protocol and its variants, specifically those that
are relevant to the usage of this protocol in embedded environments.

Initially developed for Web security, TLS is now gaining traction in the IoT
world, partly due to widely available libraries and broad support in software rele-
vant to IoT. For example, many Message Queuing Telemetry Transport (MQTT)
brokers support TLS as a security layer.

While this is fine for most devices (mostly upwards from class 1 in the In-
ternet Engineering Task Force (IETF) classification [4]), it becomes problematic
when working with class 0 or low-end class 1 devices, as they do not possess
the capability to maintain TLS connections or can simply not afford it due to
resource constraints (e.g. due to a power budget). To address this, several op-
timizations have been proposed over the years. One of the first was Sizzle [7],
which is an implementation of the Secure Socket Layer (SSL) protocol, and is
capable of running on extremely constrained devices with only tens of kilobytes
of memory. While the authors showed that heavyweight cryptographic opera-
tions required for the protocol to function were certainly possible on heavily
constrained devices, they did not attempt to reduce the amount of transmitted
data.

Datagram Transport Layer Security (DTLS) [18] modifies the TLS protocol
to work over User Datagram Protocol (UDP), while retaining most of the security
guarantees provided by TLS. This reduces the data overhead and latency some-
what. There exist multiple open-source implementations [23], and several works
exist detailing extremely lightweight implementations [3, 11]. In these works,

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 137

14 K. Tange et al.

lightweight mostly pertains to computational and memory cost, while transmis-
sion overhead is either not addressed or addressed to a much lesser degree. Other
approaches have been taken as well, such as [15], compressing DTLS messages
to fit into 6LowPAN frames.

Several extensions for TLS have been proposed that also bring the poten-
tial to lower message overhead. The TLS Cached Info specification [19] allows
clients to store server certificates and certificate requests, making it possible to
leave these out in future handshakes. The TLS Raw Public Key extension [24]
allows clients and servers to authenticate each other through public keys, in-
stead of X.509 certificates. This can significantly reduce the handshake size.
This method does require an out-of-band means of verifying public keys, which
might very well be possible in a controlled environment such as a factory. An-
other promising adaptation of TLS that might lower the size overhead of TLS
significantly is the Compact Transport Layer Security (CTLS) IETF draft [6]. In
this draft, the authors propose optimizing the TLS protocol for size by eliminat-
ing redundancy where possible and making aggressive use of space-optimization
techniques such as variable-length integers. The result is isomorphic to TLS, but
not interoperable.

TLS is also proposed as the default mechanism to secure connections in the
QUIC protocol, a network protocol building on UDP that provides advanced
features such as multiplexing and authenticated encryption of its data by default.

Session resumption in TLS 1.3 has been subject to debate, as it is vulner-
able to replay attacks and provides no forward secrecy [16]. While for a Web
environment, there exists some justification for these design choices, for an IoT
environment where short conversations with short messages are the norm, this
is less than ideal, as it effectively removes the possibility to optimize overhead
through use of the session resumption protocol. None of the extensions discussed
in this section address session resumption, which means that this is an open is-
sue we think has significant potential for minimizing protocol overhead, when
designed carefully.

At the time of writing, National Institute of Standards and Technology
(NIST) is hosting an ongoing competition for lightweight cryptographic primi-
tives [12]. Many of the candidates specifically target very short messages. Once
the candidates have received sufficient cryptanalytic attention, these can be-
come valuable tools in future lightweight communication protocols, as well as
potentially helping protocols such as TLS adapt to constrained devices.

In [8], Hall-Andersen et al. acknowledge the complexity of TLS and propose
nQUIC as a lightweight, less complex alternative to QUIC’s default TLS config-
uration. Their experiments show a significant reduction in bandwidth compared
to TLS.

6 Conclusion

In this work, we proposed an IoT-friendly and standard-compliant adaption of
the TLS 1.3 0-RTT session resumption protocol. We first argued that in order

138 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 15

to be applicable to IoT, replay resistance is a necessary property, as lightweight
sensor devices are much more likely to transmit data that will change server
state.

Building from the observation that in IoT scenarios the group of possible
clients for a server changes relatively slowly and is typically much smaller than
possible clients for a Web server, we argued that it is reasonable to require a
server to keep some state variables for each of its clients. We then took inspira-
tion from the Double Ratchet algorithm to design a 0-RTT resumption protocol
that fits neatly into the existing message structure, and makes use of exist-
ing functionality where possible. In our extension, the PSK utilizes a ratchet
construction, which provides replay protection as well as forward secrecy and
break-in resilience to early data transmitted in a 0-RTT handshake. The intro-
duction of these properties in the 0-RTT subprotocol is a step towards making
TLS suitable for IoT scenarios.

We estimated a lower bound of 193 bytes on traffic overhead for any 0-RTT
resumption protocol in TLS 1.3, and then showed that our protocol requires at
least 251 bytes of traffic overhead. Compared to the standard session resumption
overhead of roughly 764 bytes, this is a significant improvement.

In future work, we aim to further reduce the transmission overhead by ex-
ploring different opportunities, such as replacing the original message structure
for resumption altogether, thereby reducing the fixed cost.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk lo-
dowska-Curie grant agreement No. 764785, FORA – Fog computing for Robotics
and Industrial Automation

References

1. Authentication protocols for internet of things: A comprehensive survey. Security
and Communication Networks

2. AT&T: LTE-M and NB-IoT, https://www.business.att.com/products/lpwa.

html

3. Bergmann, O., Gerdes, S., Bormann, C.: Simple keys for simple smart objects. In:
Workshop on Smart Object Security (2012)

4. Bormann, C., Ersue, M., Keränen, A.: Terminology for Constrained-Node Net-
works. RFC 7228 (May 2014). https://doi.org/10.17487/RFC7228, https://

rfc-editor.org/rfc/rfc7228.txt

5. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A for-
mal security analysis of the signal messaging protocol. In: 2017 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp. 451–466 (April 2017).
https://doi.org/10.1109/EuroSP.2017.27

6. E. Rescorla, R. Barnes, H.T.: Compact TLS 1.3 (IETF draft), https://

datatracker.ietf.org/doc/draft-rescorla-tls-ctls/

E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices 139

16 K. Tange et al.

7. Gupta, V., Wurm, M., Zhu, Y., Millard, M., Fung, S., Gura, N., Eberle, H., Shantz,
S.C.: Sizzle: A standards-based end-to-end security architecture for the embedded
internet. Tech. rep., USA (2005)

8. Hall-Andersen, M., Wong, D., Sullivan, N., Chator, A.: NQUIC: Noise-Based QUIC
Packet Protection. In: Proceedings of the Workshop on the Evolution, Performance,
and Interoperability of QUIC. p. 22–28. EPIQ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3284850.3284854

9. Hologram: Hologram pricing, https://hologram.io/pricing/
10. J. Salowey, H. Zhou, P.E.H.T.: Transport Layer Security (TLS) Ses-

sion Resumption without Server-Side State. RFC 5077 (Jan 2008).
https://doi.org/10.17487/RFC5077, https://rfc-editor.org/rfc/rfc8446.txt

11. Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., Carle, G.: A dtls based end-to-
end security architecture for the internet of things with two-way authentication.
In: 37th Annual IEEE Conference on Local Computer Networks - Workshops. pp.
956–963 (Oct 2012). https://doi.org/10.1109/LCNW.2012.6424088

12. NIST: Lightweight Cryptography, https://csrc.nist.gov/projects/

lightweight-cryptography

13. OpenSSL Software Foundation: OpenSSL, https://www.openssl.org
14. Perrin, T., Marlinspike, M.: The double ratchet algorithm (2016), https://www.

signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

15. Raza, S., Trabalza, D., Voigt, T.: 6LoWPAN Compressed DTLS for CoAP. In: 2012
IEEE 8th International Conference on Distributed Computing in Sensor Systems.
pp. 287–289 (May 2012). https://doi.org/10.1109/DCOSS.2012.55

16. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446, https://rfc-editor.org/rfc/

rfc8446.txt

17. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Aug 2008). https://doi.org/10.17487/RFC5246, https://rfc-editor.
org/rfc/rfc5246.txt

18. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security. RFC 4347
(Apr 2006). https://doi.org/10.17487/RFC4347, https://rfc-editor.org/rfc/

rfc4347.txt

19. Santesson, S., Tschofenig, H.: Transport Layer Security (TLS) Cached Information
Extension. RFC 7924 (Jul 2016). https://doi.org/10.17487/RFC7924, https://

rfc-editor.org/rfc/rfc7924.txt

20. Systems, O.: Signal, https://www.signal.org
21. Verizon: Verizon thingspace, https://thingspace.verizon.com/service/

connectivity/

22. WhatsApp: Whatsapp encryption overview, https://www.whatsapp.com/

security/WhatsApp-Security-Whitepaper.pdf

23. WolfSSL: TLS 1.3 Protocol Support, https://www.wolfssl.com/docs/tls13/
24. Wouters, P., Tschofenig, H., Gilmore, J., Weiler, S., Kivinen, T.: Using Raw Pub-

lic Keys in Transport Layer Security (TLS) and Datagram Transport Layer Secu-
rity (DTLS). RFC 7250 (Jun 2014). https://doi.org/10.17487/RFC7250, https:
//rfc-editor.org/rfc/rfc7250.txt

140 E: rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices

Paper F
rTLS: Secure and Efficient TLS Session
Resumption for the Internet of Things

K. Tange, S. A Mödersheim, A Lalos, X. Fafoutis, and N. Dragoni. “rTLS: Secure
and Efficient TLS Session Resumption for the Internet of Things.” In: Sensors (2021).
doi: 10.3390/s21196524

sensors

Article

rTLS: Secure and Efficient TLS Session Resumption
for the Internet of Things †

Koen Tange *, Sebastian Mödersheim, Apostolos Lalos, Xenofon Fafoutis and Nicola Dragoni

����������
�������

Citation: Tange, K.; Mödersheim, S.;

Lalos, A.; Fafoutis, X.; Dragoni, N

rTLS: Secure and Efficient TLS

Session Resumption for the Internet

of Things. Sensors 2021, 21, 6524.

https://doi.org/10.3390/s21196524

Academic Editor: Wenjuan Li

Received: 8 September 2021

Accepted: 26 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads, 2800 Kongens Lyngby, Denmark; samo@dtu.dk (S.M.); lalosapost@gmail.com (A.L.);
xefa@dtu.dk (X.F.); ndra@dtu.dk (N.D.)
* Correspondence: kpta@dtu.dk
† This paper is an extended version of our paper published in the 2020 International Conference on Information and

Communications Security as “rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices”.

Abstract: In recent years, the Transport Layer Security (TLS) protocol has enjoyed rapid growth
as a security protocol for the Internet of Things (IoT). In its newest iteration, TLS 1.3, the Internet
Engineering Task Force (IETF) has standardized a zero round-trip time (0-RTT) session resumption
sub-protocol, allowing clients to already transmit application data in their first message to the
server, provided they have shared session resumption details in a previous handshake. Since it is
common for IoT devices to transmit periodic messages to a server, this 0-RTT protocol can help in
reducing bandwidth overhead. Unfortunately, the sub-protocol has been designed for the Web and is
susceptible to replay attacks. In our previous work, we adapted the 0-RTT protocol to strengthen it
against replay attacks, while also reducing bandwidth overhead, thus making it more suitable for IoT
applications. However, we did not include a formal security analysis of the protocol. In this work,
we address this and provide a formal security analysis using OFMC. Further, we have included more
accurate estimates on its performance, as well as making minor adjustments to the protocol itself to
reduce implementation ambiguity and improve resilience.

Keywords: network; security; protocol; formal verification

1. Introduction

There are many examples of well-established communication protocols that are able to
satisfy contextually-defined requirements and are in use in modern technology. Arguably
the most well-known example is the TLS protocol [1]. This protocol is widely used in
today’s Internet, although originally designed for the Web. Recently, this protocol has been
gaining traction in the IoT domain, as well. To better suit the heterogeneous needs present
in this domain, adaptions and new extensions of the TLS protocol are needed, specifically
to enable extremely lightweight devices to partake in TLS connections, as well.

While securely browsing the Web, it is not unusual for a TLS handshake to require
between 1 and 4 KB of traffic. For consumer devices with browsers, this is often not an
issue, but it is a lot of traffic overhead for lightweight devices running on battery power,
where powering a wireless radio is very costly. Therefore, there is a need to reduce this
handshake overhead as much as possible. To reduce bandwidth overhead, as well as latency,
TLS 1.3 features a new zero round-trip time (0-RTT) session resumption protocol capable
of transmitting application data already in its first flight of messages. This allows for the
quick reopening of a session without having to go through an expensive full handshake
again. Unfortunately, this resumption protocol is susceptible to replay attacks, a design
decision deemed acceptable by the TLS committee since web connections usually start an
HTTP GET request, which is idempotent. For IoT applications, however, this assumption
does not hold. For example, consider a temperature sensor that periodically reports its

Sensors 2021, 21, 6524. https://doi.org/10.3390/s21196524 https://www.mdpi.com/journal/sensors

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 143

Sensors 2021, 21, 6524 2 of 21

readings to a server. This is our primary motivation for extending the 0-RTT protocol with
an IoT-friendly alternative.

As a secondary goal, we aim to further reduce traffic overhead of the resumption
handshake. The reason for this is that the financial costs of sending TLS handshakes
for every periodic IoT transmission could increase rapidly. For example, it is expected
that many network providers for 5G and Low-Power Wide Area Networks (LPWAN)
will charge their users based on data usage [2–4]. Additionally, the transmission cost of
setting up a secure connection should be within reasonable proportions to the size of the
payload itself. If it is tens of times higher, users might choose not to use secure channels, or
alternatively implement their own cryptographic protocols, with associated risks.

The standard TLS protocol is designed with the assumption in mind that servers do
not keep state on a client in between sessions. This is justifiable for the Web, where the set of
potential clients is unbounded and it is often hard to predict if a client will resume a session
at all. However, for many IoT systems, it is reasonable to assume that the set of clients
is fairly static and known a priori, or otherwise traceable through a key infrastructure.
Thus, keeping state on these clients in between sessions is a lot easier than for the Web,
and having state information at the ready can aid in further reducing handshake overhead.
TLS 1.3 does not offer any such mechanism, leaving this as a gap that can be filled by
IoT-friendly extensions.

In previous work, we introduced rTLS [5], a TLS extension that can authenticate two
endpoints and set up a secure connection with minimal additional overhead, given that
the client and server have initiated a session in the past. We described how the extension
changes the 0-RTT session resumption protocol to reduce overhead compared to the
standard protocol, while adding new security features including replay protection, forward
secrecy, and break-in protection. We built the protocol on the assumption that servers can
store state on clients, with the IoT in mind. Additionally, we provided equations on the
lower bound for traffic overhead of any TLS resumption protocol, as well as our proposed
extension, and compared it to overhead observed from the OpenSSL [6] implementation of
TLS 1.3. We also provided estimations for storage overhead for both client and server.

In this work, we extend upon the original work on multiple points. The first and
main extension point is the addition of a formal analysis of protocol security using the
Open-source Fixed-point Model Checker (OFMC) [7], including the development of a
new intermediate specification language to help with this verification. To this end, the
original text covering security analysis has been completely revised and is included in
a new separate section, Section 4. Other points include the addition of more accurate
performance and storage overhead estimates, based on better observations and a better
understanding of TLS implementations. The protocol itself has also received some minor
updates relating mainly to which data is stored between sessions. Further, we have made
minor improvements to the presentation of the protocol design section.

The remainder of this paper is organized as follows: In Section 2, we briefly discuss
the foundations necessary to understand our proposed extension. We then explain our
extension in detail in Section 3. After that, we provide a formal analysis of several secu-
rity properties in Section 4. Then, we evaluate the storage and transmission overhead
in Section 5, after which we discuss related work in Section 6. Finally, we conclude in
Section 7.

2. Preliminaries

In this section, we briefly discuss the essentials needed to understand the concepts
upon which our proposed solution is built. First, we summarize the TLS 1.3 protocol, after
which we discuss the Double Ratchet algorithm and Key Derivation Function (KDF)-chains.
Both of these are described in more detail in the the Signal documentation pages [8].

144 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 3 of 21

2.1. TLS 1.3

The TLS 1.3 protocol [1] establishes a secure communication channel (a session)
between a client (the initiator) and a server. The most common use establishes one-way
authentication; only the server is authenticated, using a key distribution method, such as
certificate authorities.

In the most typical scenario, one-way authentication is provided, that is, the server
authenticates itself to the client, building on the certificate authority paradigm for key
distribution. The protocol also supports session resumption, allowing users to quickly
renegotiate a session in fewer round-trips, leveraging state data from past sessions between
those two users. In this section, we only briefly discuss necessary elements of the protocol.
For a more in-depth discussion, we refer to the standard [1].

In order to speed up session negotiation, TLS 1.3 provides several improvements over
its predecessor, TLS 1.2 [9]. One of the major improvement points is the introduction of
0 Round-Trip Time session resumption, or 0-RTT. The defining feature of 0-RTT resumption
is that application data can already be transmitted to the server in the first message sent by
the client. The standard refers to this as early data. The standard specification comes with
a caveat: early data must be idempotent, that is, it should result in a state change on the
server. This is because 0-RTT handshakes are susceptible to replay attacks.

The 0-RTT protocol is set up as follows: After the initial (non-resumption) handshake,
0-RTT key data is transmitted to the client in a NewSessionTicket message. The message
contains a ticket, as well as other data later needed by the server to continue a session.
When the client later initiates a session resumption, it will send this ticket to the server as
part of the first message, enabling the server to continue the session without needing a full
TLS handshake. Note that, while the standard describes a structure for NewSessionTicket
messages, it does not not prescribe a specific structure for the tickets which these encap-
sulate, essentially leaving room for a variety of implementations from, e.g., databases
with lookup keys to self-encrypted and authenticated messages. In this work, we assume
the mechanism first introduced in RFC 5077 [10], a solution optimized for the Web, and
which requires no server-side state variables on closed sessions. This method has already
seen use in TLS 1.2 and is supported by many TLS libraries, such as OpenSSL [6] and
WolfSSL [11]. With this approach, the ticket contains all state variables needed by the server
and is encrypted with a key known only to the server. From the client’s perspective, it
receives an opaque blob of encrypted data. When the client initiates session resumption, it
will send over this ticket, which can then be decrypted by the server, enabling it to restore
the session state.

2.2. Double Ratchet Algorithm

The Double Ratchet Algorithm [8] is a cryptographic protocol enabling highly secure,
asymmetric message exchange between multiple parties. The protocol was originally
developed for Signal [12] but is now also used in the popular messaging app WhatsApp [13].
It has received significant cryptographic attention and has been formally verified [14].

At the heart of this protocol lies a KDF-chain. This is a KDF function that can be
iteratively applied to its own output, creating a feedback loop where part of the output
of each iteration is fed back into the function as input for the next iteration, while also
providing key material for encrypting messages. This construction is commonly referred to
as a ratchet because of the one-way nature of the KDF function; new keys can be generated
constantly, but one cannot reverse the process to produce old keys. Because of this, when
used correctly ratchets are resilient against replay attacks and can provide forward secrecy.

A double ratchet is a combination of multiple ratchet-like constructions. Firstly, it
contains one “outer” ratchet, and secondly one or more “inner” ratchets. These ratchets
work together to provide stronger security properties. The outer ratchet receives periodic
(e.g., every 10 messages) external entropy from a Diffie-Hellman (DH) handshake as part of
its input. Whenever this outer ratchet is spun (i.e., its KDF function is invoked), its output
includes new input keys for the inner ratchets. These inner ratchets are reset completely and

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 145

Sensors 2021, 21, 6524 4 of 21

seeded with the new input keys. This provides post-compromise, or break-in, protection.
One can also spin just one of the inner ratchets to produce keys that can be used to encrypt
or decrypt messages. The outer ratchet is also commonly referred to as the DH ratchet,
and the inner ratchets are often called symmetric ratchets (because their input keys are
symmetric). Figure 1 illustrates the ratchet process. As can be seen in the figure, with
the progression of time, multiple symmetric ratchets may be instantiated in succession
(or, in other words, the same inner ratchet is reset whenever the outer ratchet is spun).
The first inner ratchet, producing keys K1, K2, and K3 received entropy from the first DH
handshake (this is visualized by a yellow color). When the outer ratchet is spun a second
time, the inner ratchet will be reset and receive fresh entropy from the outer ratchet, which
we emphasize with a green color, to indicate that the inner ratchets have different entropy.

DH

Sym.

K1 K2 K3

Sym.

K4 K5 K6

DH secret 1 DH secret 2

time

outer ratchet

inner ratchet

Figure 1. The double ratchet process and structure. Rectangles indicate initial states, circles indicate
“spins” of the ratchets, and colors indicate the flow of entropy from a DH exchange. The outer ratchet
is depicted on the bottom, with the inner ratchet above it.

In the standard Double Ratchet Algorithm, both parties maintain one DH ratchet and
two symmetric ratchets, respectively, for outgoing incoming messages. In our work, we
use only one symmetric ratchet, as only the client will ever initiate a connection, and, thus,
the client will only need a ratchet for sending, while the server only needs one for receiving.
For more details on the double ratchet algorithm, we refer the reader to Reference [8].

3. Ratchet TLS (rTLS)

In this section, we specify our proposed extension, ratchet TLS (rTLS). Note that
we have designed the specification with the following design goals in mind: firstly, to
maximize the use of existing extensions and utilities in the TLS suite; secondly, to require
only minimal changes to those parts that are changed; thirdly to minimize bandwidth
overhead; and, finally, to provide stronger 0-RTT security properties.

Our extension relies on a Symmetric Ratchet to generate the encryption keys for early
data encryption in session resumption. Further, it builds on standard TLS extensions to
provide an (outer) DH ratchet, providing forward secrecy and break-in protection. We
can elegantly transmit the data relevant to our new extension as a Pre-Shared Key (PSK),
and can signal support for rTLS by making use of the psk_key_exchange_modes extension
specified in RFC 8446 [1]. As the following sub-sections will show, the changes necessary
to the TLS protocol to achieve this are kept to a minimum.

We will first discuss the differences between standard TLS handshakes and ratchet-
mode handshakes. First, we will discuss the changes to the initial handshake in Section 3.1,
after which we look at the differences for the resumption handshake in Section 3.2. Finally,
we specify the protocol setup and operation in detail in Section 3.3.

3.1. Initial Handshake

Figure 2a shows the communication pattern of the initial handshake of a typical rTLS-
enabled TLS sessions. For ease of comparison with the RFC [1], we utilize the same syntax
and have adopted the common extensions depicted in the standard. The communication

146 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 5 of 21

pattern of this handshake looks identical to a standard TLS handshake. This is because no
new extensions are added. Rather, we further extend the existing PSK-related extensions.
In the figure, the extensions that are affected by rTLS are denoted in blue.

Client Server
ClientHello

+key_share

+psk_key_exchange_modes

ServerHello

+key_share

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[Application Data*]

{Certificate*}

{CertificateVerify*}

{Finished}

[NewSessionTicket]

[Application Data][Application Data]

(a) The communication pattern of the initial
handshake.

Client Server
ClientHello

+early_data

+key_share*

+psk_key_exchange_modes

+pre_shared_key

(Application Data)

ServerHello

+pre_shared_key

+key_share*

{EncryptedExtensions}

+early_data*

{Finished}

[Application Data*]

(EndOfEarlyData)

{Finished}

[Application Data][Application Data]

(b) The communication pattern of the re-
sumption handshake.

Figure 2. (a,b) The initial resumption handshake communication patterns, respectively. + denotes an extension, and
* denotes an optional or situational component, while {} and [] denote encryption with a derivation of the handshake or
application secret, respectively. Modifications from the original handshakes are printed in blue.

In the first flight of messages, the psk_key_exchange_modes extension is included by
the client to tell the server that it wants to obtain a session ticket. The client and server must
agree on a KDF and which ciphers to use for resumption. In principle, any secure KDF and
cipher can be used; however, to keep the number of protocol changes to a minimum, we
reuse the ciphers included in the cipher-suite, agreed upon by both parties through the
TLS handshake. This way, we can ensure that both client and server support the chosen
ciphers. Additionally, this makes reasoning about the protocol easier because we only have
to consider one type of KDF. Note that the agreement on which cipher-suite to use is only
finalized after the server has sent its ServerHello message. The secret key derived from
the DH handshake conducted through the key_share extension is used in the derivation of
all secrets used in TLS, including the PSK resumption secret. Thus, whenever a key_share
extension is part of a handshake, a fresh entropy source is introduced into the key schedule.
The psk_key_exchange_modes extension consists of a list of a byte-sized enumerated type.
This type indicates the PSK mode to use. Currently, TLS supports value 0 for a static
PSK and 1 for an (EC)DHE established PSK. We extend this by adding another value
indicating a PSK with key ratcheting. This list of PSK modes advertises which types the
client supports to the server.

After finalizing the initial handshake, the server sends a NewSessionTicket to the
client. The specification explicitly allows for sending multiple tickets in one session,
although this is not necessary, since session resumption by itself can add fresh entropy
when needed (through a DH handshake), thereby introducing freshness into resumption
tickets at a later time. All fields specified in the TLS specification for the NewSessionTicket
structure are listed in Table 1.

Since the specification enables the ticket field to carry opaque binary data, we specify it
to include a 4-byte “connection identifier” that the server can later use to uniquely identify
the session so that it may access the locally stored state for that session. Note that it does
not include a shared resumption key. The standard defines the resumption key as being
derived from the ticket nonce and TLS master secret. Further, we include a fresh DH public
key generated by the server, which the client will use to initialize its DH ratchet for the first

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 147

Sensors 2021, 21, 6524 6 of 21

resumption. In later resumptions, DH parameters can be shared through the key_share
extensions; however, for the very first resumption, we have to make an exception since
the client needs to be able to initialize the ratchet. The extensions field should include
the early_data extension, which tells the client that this PSK can be used to transmit
early data.

Table 1. Layout of the NewSessionTicket structure.

Type Field Name Description

uint_32 ticket_lifetime ticket lifetime in seconds
uint_32 ticket_age_add used to obscure ticket age
opaque ticket_nonce (max. 255 bytes) nonce
opaque ticket (max. 232 bytes) ticket itself

Extension extensions (max. 232 bytes) extensions

3.2. Session Resumption

Figure 2b shows the resumption handshake communication pattern. Again, it looks
indistinguishable from a standard TLS 0-RTT resumption handshake, but the elements
noted in blue text indicate that they deviate in usage or content in rTLS.

Firstly, the client can optionally include a key_share extension. This is not necessary
for every resumption handshake, and the exact frequency with which these should be
included depends on the desired granularity of break-in resilience; if it is included in every
handshake, then break-in recovery occurs with every resumption, while including it only
every n resumption handshakes will imply break-in recovery every n resumptions and so
on. We refer to the frequency with which n is included as the DH exchange period. If the
server receives a key_share from the client, it will reply with a key_share of its own, to
complete the DH handshake.

Secondly, the client includes a psk_key_exchange_modes extension indicating which
PSK mode is used for the pre_shared_key field. This should be set to the enumerated type
value representing rTLS.

The pre_shared_key field contains the connection identifier, which the server can
identify this session, as well as the current ratchet index used by the client. Based on this
index, the server can determine if it missed any previous resumption attempts and spin
its ratchet enough times to catch up and ensure the encryption keys are synchronized
with the client. The pre_shared_key contains a list of PskIdentity structures, as well as a
list of PskBinderEntry structures. Each entry in the PskIdentity consists of an identity
value and a obfuscated_ticket_age value. We do not make any changes to the ticket
age, and refer to the standard for details on how to derive the obfuscated ticket age. The
identify field is defined as opaque binary data, which allows us to use it to transmit
the 4-byte connection ID that was transmitted by the server in the initial handshake, as
well as a 1-byte ratchet index representing the current index (after having derived the
latest resumption master secret) of the symmetric KDF-chain. The PskBinderEntry list is a
list of Hash-Based Message Authentication Code (HMAC) values which authenticate the
handshake from the ClientHello up to (and including) the list of PSKIdentity entries.

The client spins its symmetric ratchet whenever it initiates a resumption handshake,
thereby ensuring that the resumption master secret changes all the time. As described in
the standard, an early traffic is derived from the resumption master secret, which, in turn, is
used as an encryption key for the early data. The server can decrypt this early data once it
has received a ClientHello with the necessary extensions for ratchet-mode resumption. It
is then able to access the ratchet state for the given connection ID and spin this ratchet until
it is equal to the received ratchet index, thereby obtaining the keys necessary to decrypt the
early data.

When a DH handshake occurs during the resumption handshake (i.e., a key_share
extension is included by both parties), the shared DH secret is used to derive all subsequent

148 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 7 of 21

secrets for a TLS session as specified in the key schedule [1]. The TLS key schedule is
included in Figure 3, with rTLS additions marked in red. This figure is an adaption of the
one included in RFC 8446 [1]; for details on the key schedule itself, we refer the reader
to the RFC. If a resumption secret already exists (e.g., because this is not the first session
resumption), then the derivation will depend on both the existing resumption secret and
the DH shared secret. This produces a new master secret, which (as per the key schedule)
eventually generates a new resumption master secret, as can be seen by following the
arrows in Figure 3. Whenever a DH handshake occurs, the ratchet index must be reset to
0, as the inner ratchets will be completely reset. Additionally, this makes it harder for a
Man In The Middle (MITM) adversary to replace the client’s shared_key field with its own
parameters, as it will also need to know the existing resumption secret, implying it would
need to have access to either client or server already. Note that, when no DH handshake is
performed, the ratchet Root Key is not updated at all. Instead, the Chain key feeds into
itself (a ratchet step) and into the Early Secret.

0

Early Secret

Binder Key

Client Early Traffic Secret

Early Exporter Master Secret

Handshake Secret

Client Handshake Traffic Secret

Server Handshake Traffic Secret

Master Secret0

Client Application Traffic Secret

Server Application Traffic Secret

Exporter Master Secret

Resumption Master Secret

Chain KeyRoot Key

Res. Master Secret

(EC)DHE

Figure 3. The rTLS key schedule. Red indicates added KDF instances. Blue indicates a default TLS
HKDF instance. Grey diamonds indicate applications of the KDF function to produce a key.

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 149

Sensors 2021, 21, 6524 8 of 21

Since we expect that, for virtually every scenario, one will want to reset the ratchets
well before 255 communication attempts have been made, we only reserve 1 byte for the
ratchet index. Additionally, when the ratchet index hits 255, we require both parties to
delete their PSK and negotiate a new PSK with a standard handshake.

3.3. Double Ratchet Setup and Operation

Next, we summarize the extra steps needed for both the initial and resumption
handshakes in a step-by-step fashion.

3.3.1. Initial Handshake

The initial handshake is largely unmodified, but some special steps have to be taken
by both the client and the server.

1. ID generation: The server generates a globally unique connection ID. This ID is
transmitted to the client in the NewSessionTicket, together with a DH public key
that the Client can use to initialize future resumption handshakes.

2. Symmetric ratchet initialization: The client and server initialize the ratchet index
variable to 0. The symmetric ratchet root key is the resumption master secret.

3. Persistent state storage: Both client and server store their state variables for antici-
pated session resumptions.

3.3.2. Resumption

Below we describe the extra steps needed for a typical session resumption. A DH
exchange may take place, but we do not consider that as an extra step—the TLS standard
already accommodates for this.

Client

1. Ratchet step: The client ratchets its symmetric ratchet before the resumption master
secret is used to derive any other secret. Thus, the early-data secret is derived from
the ratcheted master secret.

2. PSK exchange: During the handshake, the client sends its ratchet index and connec-
tion ID to the server, as part of the pre_shared_key. If a DH exchange happens, the
ClientHello includes a key_share structure, as well.

Server

1. Access state: The server receives a 0-RTT resumption, and after having verified the
pre_shared_key’s HMAC field, finds the relevant state variables using the received
connection ID as a key (e.g., in a hash map).

2. Replay condition The server ensures that is < ic, where is and ic are, respectively, the
server received client ratchet indices for this connection.

3. Ratchet step: The server spins the symmetric ratchet ic − is times, where ic is the
received ratchet index in pre_shared_key, and is its own ratchet index. The early
data encryption key is derived from the new state of the sym. ratchet.

Both

1. Reset ratchet index: If a DH exchange was performed during the resumption hand-
shake, then the client and server reset their ratchet index to 0.

2. Persistent state storage: Both the client and server store their state variables for future
session resumptions.

3.4. Ratchet State Variables

This extension expects both the client and server to maintain some state for each
connection. This state consists of the following data:

1. Mapping: a connection ID→ ratchet mapping, to identify which ratchet belongs to
which connection. We set the connection ID to be 4 bytes in size as an initial estimate.
It can be increased if necessary.

150 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 9 of 21

2. Ratchet Index: To indicate the number of ratchet steps that occurred since the last
DH exchange (1 byte).

3. Private DH key: Current private DH key, used to compute a DH secret from which a
common root key can be derived (32 bytes).

4. Remote public DH key: Last received remote public DH key for deriving aforemen-
tioned secret (32 bytes). Additionally, the Client and Server are expected to keep track
of the Resumption Master Secret. We do not list it with the above state variables
as this is something that already comes with standard TLS, thus not being unique
to rTLS.

4. Security Evaluation

In this section, we discuss and analyze the security properties of the rTLS protocol
extension. We formally define the intruder model, and then present a formal model of the
rTLS protocol extension itself. Various security properties are automatically verified by the
OFMC software, thereby giving us high certainty that they hold for the protocol, as well.

4.1. Formal Verification

Now, we present a formalization and verification in OFMC [7], a tool for formal veri-
fication of security protocols. It uses a symbolic Dolev-Yao-style model of cryptography,
i.e., messages are represented in a term algebra where the algebraic properties of operators
are represented (e.g., the properties of exponentiation needed for Diffie-Hellman). It formal-
izes a state-transition system through multi-set rewriting rules, and the main technique is a
constraint-based representation of the intruder, dubbed the lazy intruder, which allow for
verification without bounding the number of steps that the intruder can perform. However,
the steps that the honest participants can perform needs to be bounded (or the tool will
not terminate, in general). This choice of formal analysis software is motivated by the
fact that most tools, such as ProVerif and Tamarin, run into problems with the ratchets
since in an unbounded number of sessions, this creates structures for which the usual
abstractions and bounding lemmata fail, but they do work in OFMC due to the bounds,
allowing us to express the ratchets without problems. There are several input languages for
OFMC, the native one being the AVISPA Intermediate Format IF [15] based on set-rewriting
(similar to the input language of Tamarin). This can be considered kind-of a “protocol
assembly language”, i.e., it is hard to write by hand. The high-level languages available
are Alice-and-Bob-style language AnB, but this language is too limited to express ratchets.
There is also the AVISPA [16] High-Level Protocol Specification Language HLPSL [17] and
its successor ASLan from the AVANTSSAR project [18]. Both languages would be suitable
for our purposes, but the updating of local states that we have to perform make them not
much more easy for the specification than IF, so we directly relied on IF for an initial formal
verification [19]. We have, however, inspired by this work, developed a more high-level
notation for protocols of this style and are currently working on a general compiler from
this notation to IF to benefit in similar projects from it. We will use this high-level notation
in the following presentation to explain our formal model.

4.1.1. Intruder Model

We define two roles, Client and Server. Each role can, in principle, be instantiated
arbitrarily often by any number of clients and servers. We need to limit this for OFMC to
two sessions, albeit symbolic ones, meaning that the name of the client and the server is a
variable where the intruder can determine who is playing. Thus we include at all kinds of
two-session scenarios, e.g., an honest Alice as client with the intruder as server in parallel
with a session between honest Alice and Bob as client and server. Note that the intruder
can play any of the roles under his real name, where he has access to appropriate initial key
material shared with a client or server; the payload messages exchanged in such a session
are of course not secret. To allow the intruder to participate as a “normal” agent is essential
to capture attacks where an intruder is, for instance, a dishonest server contacted by an

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 151

Sensors 2021, 21, 6524 10 of 21

honest Alice, and uses part of the messages from this session to attack another session, as
in the famous Needham-Schroeder PublicKey Protocol (NSPK) attack [20].

In the style of the Dolev-Yao intruder model, the intruder also controls the network,
i.e., every message an honest agent sends goes to the intruder, and every message an honest
agent receives comes from the intruder. The intruder can perform normal cryptographic
operations with keys he knows, just as any other agent.

The starting point is that a Client and Server have successfully established a secure
TLS 1.3 session in the past and, thus, share a resumption master secret; moreover, the Client
has obtained a session ticket containing a DH public key, as well as connection ID from
the Server.

4.1.2. Resumption Handshake Model

Next, we present a detailed model of the resumption handshake protocol. This is
effectively the standard TLS 1.3 0-RTT resumption protocol, with early data protected
through a rotating (ratcheted) key.

First, every session of an agent is characterized by a number of state variables that are
updated during the course of the session. These are shown in Table 2. Both share the same
resumption master secret (RES_MASTER_SECRET) and connection ID (CONN_ID). In OFMC,
we model this by a secret function resMasterSecret(C, S, CONN_ID) that, for a given client
name, servername, and connection ID, returns a unique strong key; the intruder is given
all keys where he is C or S. The root key RK is derived from RES_MASTER_SECRET. Note
that CONN_ID is simply a unique identifier.

Table 2. The initial state for both client and server.

Client State Server State
State Variable Initial State State Variable Initial State

RES_MASTER_SECRET from TLS RES_MASTER_SECRET from TLS
RK . . . RK . . .

CONN_ID from TLS CONN_ID from TLS
ServerDHsPub gX ClientDHsPub -

currPrivate - currPrivate X
ClientCKs - ServerCKr -
ClientNs 0 ServerNr 0

CHR - CHR -
SHR -

Step 0 Step 0

Both the Client and Server store the latest DH public key received from the other
side as ServerDHsPub and ClientDHsPub, respectively. They also store their own latest
DH private key currPrivate. Because the Client has received a DH public key from the
server during the first session in a NewSessionTicket, we assume that ServerDHsPub and
the Server’s currPrivate are initially populated. In OFMC, we model the initial private
key of the server again with a private function secret_exponent(S, CONN_ID) for the server
(known to the intruder whenever S = i).

Finally, the Client needs to store its sending chain and the server needs to store
its receiving chain. These consist of a chain key and a chain index, which are defined
as ClientCKs and ClientNs for the Client, and ServerCKs and ServerNs for the server.
However, these do not need to be initialized at the start. The Client will compute its private
key before transmitting the first resumption message.

Similar to the session bounding in OFMC, we also need to bound how many ratchet
turns each agent can make in each session. Again we have to limit ourselves to a quite low
bound of 2 repetitions, but this should cover all likely scenarios. As a modeling trick, we
just initialize both counters with 2, and, in each resumption, we decrease until it is 0.

152 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 11 of 21

4.1.3. Step 1: ClientHello

Now, we use the state variables to construct a detailed description of an execution of
the 0-RTT protocol. Note that all steps come in two variants: with a new DH key exchange
and without. In the OFMC implementation, the client can choose which variant. We
describe only the variant in detail that does the DH key exchange, and we only mention
the difference when no DH key exchange is done.

If a DH key exchange is to be included in the handshake, then, the first action is that
the Client generates a new private key, as well as a shared DH key, together with the
Server’s DH public key. When the Client has computed this DH secret, it passes the key
into its inner ratchet, by applying the KDF function on the DH secret combined with a root
key RK, and, finally, obtains the ClientCKs:

new currPrivate
RK := bkdf(RK ,exp(ServerDHsPub ,currPrivate))
ClientCKs := kdf(RK)

where we use kd f and bkd f to model the corresponding key derivation functions.
Now, we can describe the initial message sent from a Client. First, it spins its ratchet

and increases ClientNs by one (i.e., actually in the OFMC model, decreases, if not yet zero).
The key generated through this is used as input material for the Early Secret in the TLS key
schedule. We focus only on the relevant parts of a resumption ClientHello message, specif-
ically, the early data itself (MOUT, TLS session ID, client randomness and the relevant resump-
tion parameters. The keys K1, the client_early_traffic_secret and K2, the binder_key
are derived from the Early traffic secret as can be seen in Figure 3. At this point, it is impor-
tant to note that since the Client can choose to include an optional key_share extension
(DH handshake) in the ClientHello, the inclusion of ClientDHsPub in the resumption hand-
shake is also optional. The early data is encrypted with client_early_traffic_secret.
Additionally, the plaintext data is integrity protected through a MAC with key binder_key.
Both keys are derived from the master key conform the TLS standard:

let MSG1=step0(ClientNs ,exp(g,currPrivate),CHR)
let K1=hkdf(ClientCKs ,MSG1)
let K2=hkdf(ClientCKs ,pair(exp(ServerDHsPub ,currPrivate),
pair(C,S)))

send(step1(scrypt(K2 ,MOUT),hmac(K1,MSG1),MSG1))

Here, step0 and step1 are message formats that represent how the cleartext data is
serialized (i.e., every agent, including the intruder, can compose and decompose such
messages without any keys). hkd f is another key-derivation function, pair stands for pure
string concatenation, and scrypt(k, m) stands for symmetric encryption of message m with
key k, and hmac(k, m) stands for a hash-mac with key k of message m.

When the Server receives a ClientHello with early data indication, it first has to spin
its inner ratchet to derive an early_secret identical to that of the Client. Included in this
step is the incrementing of ServerNr. The Server can then derive the keys necessary to
authenticate and decrypt the received early data. After this point, the Server proceeds
differently based on whether the key_share extension was included by the Client. If
the extension was not included, the Server continues using the current chain for future
resumptions and can simply continue the current handshake as usual. If the extension was
included, the Server will have to spin its DH ratchet, as well, which, in turn, leads to an
update of the Server’s receiving chain root key. Note that this new DH secret is not just
for future sessions and is already used in the remainder of this handshake as it normally
would be in a TLS session, as we explain in the next paragraph.

In the high-level notation, we have:

receive(step1(SM2 ,HM1 ,M1))
try step0(SN,ClientDHsPub ,CHR)==M1

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 153

Sensors 2021, 21, 6524 12 of 21

let DH = exp(ClientDHsPub ,currPrivate)
RK := bkdf(RK ,DH)
ServerCKr := kdf(RK)

let K1=hkdf(ServerCKr ,M1)
try HM1==hmac(K1 ,M1)

let K2=hkdf(ServerCKr ,pair(DH,pair(C,S)))
try MIN== dscrypt(K2 ,SM2)

Note that the try is used to describe operations that might fail, such as trying to
decrypt, parse, or check for equality. When it fails, the agent simply does aborts the
transaction and rolls back to the state before the transaction. In particular, the first try in
the above code snippet parses the received message M1 as the step0 format, extracting the
three components of the message. The next try is checking that the received hmac HM1 is
the same as constructing hmac(K1,M1), and the last try is trying to decrypt the message
SM2. Note that we assume here symmetric encryption with MACs that tells us if decryption
succeeded. Observe the contrast to the let x=t command, which simply means replacing
all further occurrences of x with t, and the x:=t command, which means that the state
variable x is set to t.

4.1.4. Step 2: ServerHello

Next, the Server will reply with a ServerHello message. If the Client included
a key_share extension, then the server will reply with its newly generated DH public
key from the previous step. Before the response can be sent, the Server has to com-
pute all the remaining keys from the TLS key schedule. This starts with computing the
handshake_secret. The KDF function for this secret takes two inputs, one being the hash
product of the previous phase in the key schedule, and another being fresh Input Key
Material (IKM). If a DH handshake occurred, then the resulting DH secret should be used
as IKM here. If no DH handshake occurred, the IKM is simply set to 0. The ServerHello
response itself includes a number of fields which are not relevant for our verification, so
we leave them out. We do include EncryptedExtensions (EE) as a representative message
payload and the contents of the Finished message type, which has a field verify_data,
containing an HMAC of the handshake context. This HMAC protects the integrity of
ServerDHsPub and Server_rand, as well; therefore, we add these to the encrypted payload,
while leaving other parts out to keep the model concise. We can do this, as the HMAC key is
directly derived from the server_handshake_traffic_secret. We include Server_rand,
as this is 32 bytes or randomness that is used for various cryptographic purposes and
acts as a nonce. Finally, the Server has the opportunity to already send application data
(App_Data) with its response.

Different parts of the transmission are encrypted with different keys derived from the
master secret conform the TLS standard. The remainder of the handshake, i.e., most of the
ServerHello message is encrypted with the server_handshake_traffic_secret. If the
Server chooses to include a response payload, then this optional response can already be
encrypted with the server_application_traffic_secret.

new currPrivate
new SHR
let DH = exp(ClientDHsPub ,DHs)
RK := bkdf(RK,DH)
ServerCKr := kdf(RK)

let K2=serverK(hkdf(DH ,pair(ServerCKr ,pair(CHR ,pair(C,S))))
)
let MSG2=scrypt(K2 ,pair(exp(g,DHs),SHR))

154 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 13 of 21

let K1=serverK(hkdf(DH ,pair(ServerCKr ,pair(SHR ,pair(CHR ,
pair(C,S))))))
let MSG1=scrypt(K1 ,MOUT)
send(step2(MSG1 ,MSG2 ,SHR ,exp(g,DHs)))

When the Client receives the Server’s ServerHello, it first has to continue with its
own execution of the TLS key schedule. If the Client initiated with a new DH public key
and, thus, a key_share extension, the server replied with a fresh DH public key in its own
key_share. This is then used by the Client as input for the handshake secret identically
to how the server processed the DH secret. With this, the Client can continue the TLS key
schedule until all keys are derived. Note that, for both the Server and Client, the newly
computed Resumption Master Secret is assigned to the inner chain’s root key, but not
necessarily included in the current chain; if no DH handshake was included, the inner
chain is not reset. This does not matter, as no new entropy was introduced during the
handshake either way. As is evident from the description of the operations of the rTLS
resumption process given in this section, the optional DH exchanges feed into the TLS
keyschedule and provide new entropy that gets propagated through to the inner chains
and as a result future executions of the key schedule.

receive(step2(M1 ,M2 ,SHR ,ExpgDHs))
let DH=exp(ExpgDHs ,currPrivate)

ServerDHsPub := ExpgDHs
RK :=bkdf(RK,DH)
ClientCKs :=kdf(RK)
ClientNs :=s(ClientNs)

let K2=serverK(hkdf(DH ,pair(ClientCKs ,pair(CHR ,pair(C,S))))
)
try pair(ExpgDHs ,SHR)== dscrypt(K2,M2)

let K1=serverK(hkdf(DH ,pair(ClientCKs ,pair(SHR ,pair(CHR ,
pair(C,S))))))
try MIN== dscrypt(K1 ,M1)

4.1.5. Step 3: Finished

The Client finishes the 0-RTT handshake with an EndOfEarlyData message and a
Finished message. The EndOfEarlyData message is simply an indicator that the Client
has no more early data to transmit and that all future data will be encrypted with the
client_application_traffic_secret.

let TMP=pair(pair(C,S),pair(ExpgDHs ,pair(CHR ,SHR)))
let K3=clientK(hkdf(DH ,pair(ClientCKs ,TMP)))
send (scrypt(K3 ,MOUT))

4.1.6. Verification

We verify a number of security goals, the first of which is secrecy. We want the early
data, i.e., MOUT/MIN payloads, to be secret between Client and Server. The second security
goal we verify is injective agreement [21]. This means that, when an honest party B receives
a payload message apparently from A, then, either A is the intruder under his real name
(no authentication guarantees) or A indeed sent that payload message for B (and they
agree on all roles). Moreover, this is injective in the sense that B does not accept the same
payload more often than it was sent by A, so there is no replay.

Using OFMC, we verify the described properties to hold for the rTLS resumption
protocol. Due to an exponential increase of the search spaces with the number of sessions
and resumptions, we bounded the number of sessions to 2, and the number of resumptions
in each session also to 2. Note, however, that we have here symbolic sessions, i.e., they can

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 155

Sensors 2021, 21, 6524 14 of 21

be arbitrarily instantiated, including with the intruder as a client or server. Moreover, in
each session and resumption, the client can decide to either perform a new DH key or not.
We also extensively tested the specification, namely that all expected steps could be taken,
in particular that honest agents can communicate, and the intruder can play each of its
roles under his real name as a normal participant.

OFMC reported that no attacks were found in any runs which gives a high assurance
that the rTLS session resumption protocol provides secrecy and injective agreement: While
this is only proved for 2 sessions and with 2 resumptions each, it seems unlikely that further
sessions and resumptions would allow for additional attacks because of the symmetry of
all further repetitions.

Finally, we want to look at the so-called selfie attack [22]: this is an attack that works
on some pre-shared-key deployments of TLS 1.3, where a client C and server S use the
same pre-shared key psk(C, S) = psk(S, C) in both directions of communication, allowing
for reflection attacks. Similarly, if we allow in our rTLS model:

RES_MASTER_SECRET(C, S, CONN_ID) = RES_MASTER_SECRET(S, C, CONN_ID),

then we still do not get a selfie-attack because the setup of the Diffie-Hellman ratchet is
different for client and server role. This is, however, looking only at the initial state of the
resumption handshake rTLS, not at the preceding steps of the original TLS. This means that,
if the setup of TLS is such that it does not allow for a selfie attack, then, by construction,
rTLS cannot induce a selfie attack either.

5. Performance Evaluation

In this section, we present numeric estimates of the performance of rTLS, with as
performance indicators traffic overhead and storage overhead. The numerical data is based
on the estimated data structure size of the state variables and TLS message structures as
they are defined in the TLS standard.

5.1. Traffic Overhead estimation
5.1.1. Initial Handshake

The rTLS initial handshake does not differ in traffic overhead from a normal TLS
handshake, since the only change defines an extra value for an enumerated field, which
is (psk_key_exchange_modes). After finishing the handshake, the server transmits a
NewSessionTicket message to the client. While technically not part of the initial hand-
shake, we consider it as such in this context; without it, resumption would not be possible.
The structure and size of a minimal NewSessionTicket message are displayed in Table 3.
Here, |X| indicates the size in bytes of element X. The client does not need to send any
reply to this message. The ticket field itself has to contain the connection identifier, as well
as a public DH key that the client can use for the first resumption; so, we set the size of
the ticket field to 4 + 32 bytes, and we include a 32 byte nonce, as well. We do not need to
explicitly include a ratchet index here, as it can be initialized to 0 by both parties. Therefore,
compared to no session resumption at all, minimal overhead is 14 + 36 + 32 = 72 bytes.
Compared to a session ticket in standard TLS 1.3, which, in OpenSSL, is typically around
528 bytes, this is a significant improvement of 86 percent.

5.1.2. Resumption Handshake

It is important to reduce traffic overhead for the resumption handshake as much
as possible, since this will typically be performed much more often than an initial hand-
shake. The minimal cost for any resumption handshake consists of boilerplate parts of the
handshake that cannot be eliminated without rigorous change to the TLS protocol. In the
following, we write client and server as c and s, respectively. We map symbols to every
message element in the resumption handshake in Table 4, where x can be either c or s to
indicate the message sender.

156 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 15 of 21

Table 3. The message structure and size of a minimal NewSessionTicket message. Here, |T| refers
to the ticket length, and |N| to the size of the nonce.

Size (bytes) Field Name

4 ticket_lifetime
4 ticket_age_add;
|N| ticket_nonce
|T| ticket
2 extensions length
4 Early data extension

Total 14 + |T|+ |N|

Table 4. Symbol definitions for message elements, where x ∈ {c, s} refers to the message sender
(client resp. server).

Symbol Description

Hx (Client or Server) Hello
edx early_data
Dx Application data
pex psk_key_exchange_modes
pskx pre_shared_key
ksx key_share
ee EncryptedExtensions

eed EndOfEarlyData
f Finished
R Record Layer headers

We define the minimal traffic overhead cost C of any 0-RTT resumption handshake as:

C = 3|R|+ |Hc|+ |Hs|+ |edc|+ |pex|+ |ee|+ 2| f |+ |eed|. (1)

This cost is not a fixed number of bytes but, rather, is not negotiable; any PSK extension
will have to include these elements, and their size is independent of the actual PSK mode.
The total cost of a minimal resumption handshake is then C + |pskc|+ |psks|. Note that
ksc and kss are not required for a minimal handshake. Conforming to the standard, psks is
defined as a 2-byte value representing an identity index in pskc and is wrapped in a 4-byte
TLS extension structure. However, ksc is more complex, and we write the full layout in
Table 5. Note that the term “identifier” here refers in the standard to the ticket field itself,
but we use it to transmit a concatenation of the connection identifier and ratchet index.
Because we only send one identity and binder, The size of pskc becomes |pskc| = 15+ α+ β,
where α denotes the size of the identity field, and β the size of the binder HMAC. The
identifier field PSKID can be written as PSKID = ID||i, where ID is the identifier received
in the session ticket during the initial handshake, and i is the symmetric KDF chain index.
Now, |PSKID| = |ID| + 1 = 5. The exact value of β depends on the chosen HMAC
function, which is usually either Secure Hash Algorithm (SHA)-256 (32 bytes) or SHA-384
(48 bytes). The complete traffic cost c1 for session resumption can, thus, be written as
c = |psks|+ |pskc|+ C = 26 + β + C, and it is 58 + C if SHA-256 is chosen.

When a DH exchange is included, we will have to add the size of the ksc and kss
elements. The size of ksc is of variable length depending on the number of supported
DH groups the client advertises. Each key share entry takes up 4 + l bytes, where l is the
size of the supported group. The smallest supported group is X25519 with a 32-byte field,
while the largest is P-521 with 132 bytes. ksc also reserves 2 bytes to denote the number of
listed groups. If we only transmit one group, the size is, therefore, ksc = 6 + l. The server
replies with a single key share entry; thus, kss = 4 + l. As with any TLS extension, both kss

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 157

Sensors 2021, 21, 6524 16 of 21

and ksc are wrapped in an extension structure with a 4-byte type field. The total cost of a
resumption with DH exchange is, thus, c2 = c1 + |ksc|+ |kss| = c1 + 18 + 2l.

Table 5. Layout of the pre_shared_key structure and its sub-structures, when sent by a client.

pre_shared_key
Size Field Name Description

2 extension_type Extension type
2 extension_data Size of the extension
2 PSKIdentities_length Nr. of PSK identities

identities PSKIdentity values
2 binders_length Nr. of PSK binders

binders PSKBinder values

PSKIdentity
2 identity length Size of identity field
α identity value of this identity
4 obfuscated_ticket_age ticket age (see Reference [1])

PSKBinder
1 binder length size of the binder value
β binder HMAC value (see Reference [1])

If we take into account a key_share every n messages, we arrive at the final equation
for the total average cost ct:

ct =

{
26 + β + C for n = 0
26 + β + 18+2l

n + C for n > 0

}
, (2)

where β is the hash digest size, l the elliptic curve coordinate length, n the DH handshake
rate, and C the minimal cost. Figure 4 shows the average overhead (i.e., without C) versus
the key exchange period, for various common cipher suites.

0 5 10 15 20 25 30 35 40 45
Diffie-Hellman key exchange period

50

100

150

200

250

300

350

tra
ns

m
iss

io
n

ov
er

he
ad

 (b
yt

es
) P-512/SHA256

P-256/SHA256
X25519/SHA256
P-512/SHA384
P-256/SHA384
X25519/SHA384

Figure 4. Average transmission overhead versus DH key exchange period.

Giving an exact value for C is somewhat difficult: multiple fields in Hc, Hs, and ee can
vary a lot in length, depending on the supported cipher suites and provided extensions
among other things. Instead, we count the minimum size for these fields as they are defined
in the standard, thereby giving a lower bound for C. Note that, in practice, a handshake
with so few extensions is not useful for overhead minimization, as more round-trips will
be needed to establish necessary parameters, such as the cipher suite. Moreover, it leaves
out extensions meant to increase overall security. Minimal sizes, including all headers, for

158 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 17 of 21

Hc and Hs are 50 and 48 bytes, respectively. edc and eed both require 2 and 4 bytes. pex is,
at least, 3 + m bytes in size, where m is the number of supported modes (at least 1). ee is,
at least, 6 bytes in size but may vary a lot, depending on the supported extensions. The
length of f is determined by the chosen hash function. The record layer headers are 5 bytes
in size. With one PSK key exchange mode and the SHA-256 hash function, the total cost of
C is then, at least, 193 bytes. Therefore, the lower bound on transmission overhead of a
resumption handshake with our extension is 251 bytes without, or 333 bytes with a key
exchange. If we include several extensions for a more realistic minimal handshake, we can
expect the cost to be between 400 and 600 bytes.

5.2. Storage Overhead Estimation

Both the client and server need to store some state variables in between sessions. This
differs from the standard session resumption protocol where only the client stores the PSK.
The client needs to securely store the secret KDF key (depends on digest size), as well as its
connection ID (4 bytes) and the ratchet index (1 byte). Additionally, the client needs to keep
track of its current DH private key and the last received DH public key from the server,
the size of these depends on the chosen group. Thus, the client needs to store 101 bytes if
SHA-256 and X25519 are used.

The server needs to store the same amount of state, but for every client that it shares
a ratchet for resumption with. This can be done through, e.g., a hash map using the
connection ID as a key, and a structure containing the other state variables as value. If state
is being kept for the maximum amount of clients of 232 (with a 4-byte connection ID), this
amounts to roughly 433 GB worth of data. When there is a large set of clients connecting
to the server and, thus, a large amount of state variables, one should be mindful of access
times and pick data structures that minimize access time, such as hash maps, to provide
some protection against denial of service attacks.

5.3. Overhead comparison with TLS 1.3

Based on measurements performed on OpenSSL [6], a standard PSK in TLS 1.3 adds
571 and 603 bytes of overhead, respectively, when SHA-256 SHA-384 is used. In Table 6,
we compare the overhead of rTLS for various key exchange periods n to that of a standard
TLS 1.3 PSK. We use a higher value of 408 for C, obtained from handshake measurements
in OpenSSL, which includes a minimal number of extensions by default, and acts as
an indicative value that represents a lightweight use case. In this table, the values are
computed using the smallest allowed hash function (SHA-256) and curve (X25519). As
can be seen, a rTLS PSK requires only roughly 11% of the traffic overhead compared to
a standard TLS PSK and can be expected to reduce the total amount of transmitted data
roughly by half.

Table 6. A comparison between rTLS session resumption and OpenSSL standard session resumption.

Indicative Lightweight Use (C = 408)
Scenario Avg. Overhead (b) Avg. Total Size (b)

rTLS, n = 0 58 466
rTLS, n = 1 108 516
rTLS, n = 10 63 471

Standard TLS 1.3 571 979

6. Related Work

There exist ample communication security protocols aimed at embedded devices [23].
We look at the TLS protocol and its variants, specifically those that are relevant to the usage
of this protocol in embedded environments. We also briefly look at QUIC.

Initially developed for Web security, TLS is now gaining traction in the IoT world,
partly due to widely available libraries and broad support in software relevant to IoT. For

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 159

Sensors 2021, 21, 6524 18 of 21

example, many Message Queuing Telemetry Transport (MQTT) brokers support TLS as a
security layer.

While this is fine for most devices (mostly upwards from class 1 in the IETF classifica-
tion [24]), it becomes problematic when working with class 0 or low-end class 1 devices, as
they do not possess the capability to maintain TLS connections or can simply not afford
it due to resource constraints (e.g., due to a power budget). To address this, several opti-
mizations have been proposed over the years. One of the first was Sizzle [25], which is an
implementation of the Secure Socket Layer (SSL) protocol, capable of running on extremely
constrained devices with only tens of kilobytes of memory. While the authors showed that
heavyweight cryptographic operations required for the protocol to function were certainly
possible on heavily constrained devices, they did not attempt to reduce the amount of
transmitted data.

Datagram Transport Layer Security (DTLS) [26] modifies the TLS protocol to work
over User Datagram Protocol (UDP), while retaining most of the security guarantees
provided by TLS. This reduces the data overhead and latency somewhat. Recently, the
DTLS 1.3 draft [27] was approved by the IETF. This revision brings 0-RTT and other
TLS 1.3 improvements to DTLS. There exist multiple open-source implementations [28],
and several works exist detailing extremely lightweight implementations [29,30]. In these
works, lightweight mostly pertains to computational and memory cost, while transmission
overhead is either not addressed or addressed to a much lesser degree. Other approaches
have been taken, as well, such as Reference [31], compressing DTLS messages to fit into
6LowPAN frames. Recently, a performance comparison of TLS 1.3 and DTLS 1.3 on
lightweight IoT devices was published [32], showing that, while both TLS and DTLS 1.3
add suffer from larger overhead in terms of memory usage and transmission overhead,
these are within bounds for these protocols to be used on devices that can already run
the 1.2 version. Additionally, the authors state that there is room for optimizations in
software to further reduce the overhead. In Reference [33], a DTLS fast session resumption
mechanism is proposed, making use of free UDP ports on the server-side. However,
the proposed protocol does not address forward security and provides no analysis of its
security claims.

While DTLS has less bandwidth overhead than TLS, it is still not ideal for lightweight
scenarios with message proxies (e.g., brokers, such as in MQTT). To address this, the
recently standardized application-layer Object Security for Constrained RESTful Environ-
ments (OSCORE) protocol aims to enable selective encryption of parts of the Constrained
Application Protocol (CoAP) protocol. Gunnarsson et al. [34] show that this provides a
slight performance improvement over the default DTLS security option. Due to OSCORE’s
selective encryption approach, it can provide end-to-end encryption in situations where
messages are relayed through proxies, whereas TLS-based protocols have to setup separate
secure channels between each proxy. However, when no proxies are needed, TLS-based
protocols might offer better performance especially when 0-RTT is taken into account.

Several extensions for TLS have been proposed that also bring the potential to lower
message overhead. The TLS Cached Info specification [35] allows clients to store server cer-
tificates and certificate requests, making it possible to leave these out in future handshakes.
The TLS Raw Public Key extension [36] allows clients and servers to authenticate each
other through public keys, instead of X.509 certificates. This can significantly reduce the
handshake size. This method does require an out-of-band means of verifying public keys,
which might very well be possible in a controlled environment, such as a factory. Another
promising adaptation of TLS that might lower the size overhead of TLS significantly is
the cTLS! (cTLS!) IETF draft [37]. In this draft, the authors propose optimizing the TLS
protocol for size by eliminating redundancy where possible and making aggressive use of
space-optimization techniques, such as variable-length integers. The result is isomorphic
to TLS, but not interoperable.

Additionally, in our previous work [5], we introduced rTLS, a TLS 1.3 protocol exten-
sion that focuses specifically on the 0-RTT session resumption protocol, with the goal of

160 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 19 of 21

making it more usable for the IoT. In our original work, we presented the protocol and
included numerical estimates on its performance but did not include a thorough analysis of
its security properties. In this work, we extended upon that and present a formal security
analysis, as well as some fixes to the protocol that were overlooked in the original work.
The rTLS extension is compatible with the aforementioned cTLS draft, as well as other TLS
extensions. For DTLS, it is very likely that some adjustments are necessary as the DTLS
resumption protocol is slightly different.

DTLS is also proposed as the default mechanism to secure connections in the QUIC
protocol, a network protocol building on UDP that provides advanced features, such as
multiplexing and authenticated encryption of its data by default.

Session resumption in TLS 1.3 has been subject to debate, as it is vulnerable to replay
attacks and provides no forward secrecy [1]. While, for a Web environment, there exists
some justification for these design choices, for an IoT environment where short conversa-
tions with short messages are the norm, this is less than ideal, as it effectively removes the
possibility to optimize overhead through use of the session resumption protocol. None of
the extensions discussed in this section address session resumption, which means that this
is an open issue we think has significant potential for minimizing protocol overhead, when
designed carefully.

At the time of writing, National Institute of Standards and Technology (NIST) is
hosting an ongoing competition for lightweight cryptographic primitives [38]. Many of
the candidates specifically target very short messages. Once the candidates have received
sufficient cryptanalytic attention, these can become valuable tools in future lightweight
communication protocols, as well as potentially helping protocols, such as TLS adapt to
constrained devices.

In Reference [39], Hall-Andersen et al. acknowledge the complexity of TLS and pro-
pose nQUIC as a lightweight, less complex alternative to QUIC’s default TLS configuration.
Their experiments show a significant reduction in bandwidth compared to TLS.

7. Conclusions

In this work, we extended upon an IoT-friendly and standard-compliant adaption
of the TLS 1.3 0-RTT session resumption protocol. We first argued that, in order to be
applicable to IoT, replay resistance is a necessary property, as lightweight sensor devices
are much more likely to transmit data that will change server state.

Building from the observation that, in IoT scenarios, the group of possible clients for a
server changes relatively slowly and is typically much smaller than possible clients for a
Web server, we argued that it is reasonable to require a server to keep some state variables
for each of its clients. We then took inspiration from the Double Ratchet algorithm to
design a 0-RTT resumption protocol that fits neatly into the existing message structure,
and makes use of existing functionality where possible. In our extension, the PSK utilizes
a ratchet construction, which provides replay protection, as well as forward secrecy and
break-in resilience to early data transmitted in a 0-RTT handshake. The introduction
of these properties in the 0-RTT sub-protocol is a step toward making TLS suitable for
IoT scenarios.

We estimated a lower bound of 193 bytes on traffic overhead for any 0-RTT resumption
protocol in TLS 1.3 and then showed that a resumption handshake with our protocol
would result in around 466–516 transmitted bytes, depending on the chosen DH key
exchange period. Compared to the standard session resumption transmission size of
roughly 979 bytes, this is a significant improvement.

Extending our previous work, the protocol received minor updates relating to what
state should be kept. Additionally, we improved the presentation of the protocol, including
a more detailed description of how the TLS key schedule is affected. These minor changes
are also propagated into the performance evaluation estimates, affecting mainly the storage
overhead estimates. We also added a new section detailing a formal security analysis of

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 161

Sensors 2021, 21, 6524 20 of 21

the protocol in the Dolev-Yao model. The results of this analysis give high assurance that
the protocol provides secrecy, as well as security against replay attacks.

In future work, we aim to further reduce the transmission overhead by exploring
different opportunities, such as replacing the original message structure for resumption
altogether, thereby reducing the fixed cost. Moreover, we are currently testing a proof-of-
concept implementation to support the overhead estimations with empirical results.

Author Contributions: Conceptualization, K.T.; Methodology, K.T. and X.F.; Validation, K.T. and
S.M.; Formal Analysis, S.M. and A.L.; Writing—original draft preparation, K.T. and S.M.; writing—
review and editing, K.T., S.M., A.L., X.F. and N.D.; supervision: X.F. and N.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This is work was part of the Fog Computing for Robotics and Industrial Automation
(FORA) European Training Network (ETN) funded by the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie grant agreement No 764785.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. Available online: https://rfc-editor.org/rfc/rfc8446.txt

(accessed on 9 August 2021).
2. AT&T. LTE-M and NB-IoT. Available online: https://www.business.att.com/products/lpwa.html (accessed on 9 August 2021).
3. Verizon. Verizon Thingspace. Available online: https://thingspace.verizon.com/services/connectivity.html (accessed on

9 August 2021).
4. Hologram. Hologram Pricing. Available online: https://hologram.io/pricing/ (accessed on 9 August 2021).
5. Tange, K.; Howard, D.; Shanahan, T.; Pepe, S.; Fafoutis, X.; Dragoni, N. rTLS: Lightweight TLS Session Resumption for

Constrained IoT Devices. In Proceedings of the 22nd International Conference on Information and Communications Security,
Copenhagen, Denmark, 24–27 August 2020; pp. 243–258, doi:10.1007/978-3-030-61078-4_14.

6. OpenSSL Software Foundation. OpenSSL. Available online: https://www.openssl.org (accessed on 9 August 2021).
7. Basin, D.A.; Mödersheim, S.; Viganò, L. OFMC: A symbolic model checker for security protocols. Int. J. Inf. Sec. 2005, 4, 181–208.
8. Perrin, T.; Marlinspike, M. The Double Ratchet Algorithm. Available online: https://www.signal.org/docs/specifications/

doubleratchet/doubleratchet.pdf (accessed on 9 August 2021).
9. Rescorla, E.; Dierks, T. The Transport Layer Security (TLS) Protocol Version 1.2. Available online: https://rfc-editor.org/rfc/rfc5

246.txt (accessed on 9 August 2021).
10. Salowey, J.; Zhou, H.; Eronen, P.; Tschofenig, H. Transport Layer Security (TLS) Session Resumption without Server-Side State.

Available online: https://rfc-editor.org/rfc/rfc4507.txt (accessed on 9 August 2021).
11. WolfSSL. WolfSSL Embedded SSL/TLS Library. Available online: https://www.wolfssl.com/ (accessed on 21 September 2021).
12. Systems, O. Signal. Available online: https://www.signal.org (accessed on 9 August 2021).
13. WhatsApp. WhatsApp Encryption Overview. Available online: https://www.whatsapp.com/security/WhatsApp-Security-

Whitepaper.pdf (accessed on 9 August 2021).
14. Cohn-Gordon, K.; Cremers, C.; Dowling, B.; Garratt, L.; Stebila, D. A Formal Security Analysis of the Signal Messaging Protocol.

In Proceedings of the 2017 IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, 26–28 April 2017;
pp. 451–466, doi:10.1109/EuroSP.2017.27.

15. Armando, A.; Basin, D.A.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.; Kouchnarenko, O.;
Mantovani, J.; et al. The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications. In Proceedings
of the Computer Aided Verification, 17th International Conference, CAV 2005, Edinburgh, UK, 6–10 July 2005; Etessami, K.; Rajamani,
S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3576, pp. 281–285.

16. European Union. The AVISPA Project. Available online: http://www.avispa-project.org/main.html (accessed on 9 August 2021).
17. Yannick, C.; Compagna, L.; Cuellar, J.; Drielsma, P.; Mantovani, J.; S. Mödersheim, A.L.V. A High Level Protocol Specification

Language for Industrial Security-Sensitive Protocols. In Proceedings of the SAPS’04, Linz, Austria, 20–24 September 2004.
18. Viganò, L. Automated validation of trust and security of service-oriented architectures with the AVANTSSAR platform. In

Proceedings of the 2012 International Conference on High Performance Computing Simulation (HPCS), Madrid, Spain, 2–6 July
2012; pp. 444–447, doi:10.1109/HPCSim.2012.6266956.

19. Lalos, A. A Formal Library of IoT Protocols. 2021. http://findit.dtu.dk (accessed on 9 August 2021).

162 F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things

Sensors 2021, 21, 6524 21 of 21

20. Lowe, G. An attack on the Needham-Schroeder public-key authentication protocol. Inf. Process. Lett. 1995, 56, 131–133.
doi:10.1016/0020-0190(95)00144-2.

21. Lowe, G. A hierarchy of authentication specifications. In Proceedings of the 10th Computer Security Foundations Workshop,
Rockport, MA, USA, 10–12 June 1997; pp. 31–43.

22. Lowe, G. Selfie: reflections on TLS 1.3 with PSK. J. Cryptol. 2021, 34, 27, doi:10.1007/s00145-021-09387-y.
23. Ferrag, M.A.; Maglaras, L.A.; Janicke, H.; Jiang, J.; Shu, L. Authentication Protocols for Internet of Things: A Comprehensive

Survey. Secur. Commun. Netw. 2017, 2017, 6562953, doi:10.1155/2017/6562953.
24. Bormann, C.; Ersue, M.; Keränen, A. Terminology for Constrained-Node Networks. Available online: https://rfc-editor.org/rfc/

rfc7228.txt (accessed on 9 August 2021).
25. Gupta, V.; Wurm, M.; Zhu, Y.; Millard, M.; Fung, S.; Gura, N.; Eberle, H.; Shantz, S.C. Sizzle: A Standards-Based End-to-End

Security Architecture for the Embedded Internet. Pervasive Mob. Comput. 2005, 1, 425–445.
26. Rescorla, E.; Modadugu, N. Datagram Transport Layer Security. Available online: https://rfc-editor.org/rfc/rfc4347.txt

(accessed on 9 August 2021).
27. Rescorla, E.; Tschofenig, H.; Modadugu, N. The Datagram Transport Layer Security (DTLS) Protocol Version 1.3. Available

online: https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-41.txt (accessed on 9 August 2021).
28. WolfSSL. TLS 1.3 Protocol Support. Available online: https://www.wolfssl.com/docs/tls13/ (accessed on 9 August 2021).
29. Bergmann, O.; Gerdes, S.; Bormann, C. Simple keys for simple smart objects. In Proceedings of the Workshop on Smart Object

Security, Paris, France, 23 March 2012.
30. Kothmayr, T.; Schmitt, C.; Hu, W.; Brünig, M.; Carle, G. A DTLS based end-to-end security architecture for the Internet of Things

with two-way authentication. In Proceedings of the 37th Annual IEEE Conference on Local Computer Networks—Workshops,
Clearwater, FL, USA, 22–25 October 2012; pp. 956–963, doi:10.1109/LCNW.2012.6424088.

31. Raza, S.; Trabalza, D.; Voigt, T. 6LoWPAN Compressed DTLS for CoAP. In Proceedings of the 2012 IEEE 8th International Confer-
ence on Distributed Computing in Sensor Systems, Hangzhou, China, 16–18 May 2012; pp. 287–289, doi:10.1109/DCOSS.2012.55.

32. Restuccia, G.; Tschofenig, H.; Baccelli, E. Low-Power IoT Communication Security: On the Performance of DTLS and TLS 1.3.
In Proceedings of the 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks
(PEMWN), Berlin, Germany, 1–3 December 2020; pp. 1–6, doi:10.23919/PEMWN50727.2020.9293085.

33. Caminati, G.; Kiade, S.; D’Angelo, G.; Ferretti, S.; Ghini, V. Fast Session Resumption in DTLS for Mobile Communications. In
Proceedings of the 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA,
10–13 January 2020; pp. 1–6, doi:10.1109/CCNC46108.2020.9045119.

34. Gunnarsson, M.; Brorsson, J.; Palombini, F.; Seitz, L.; Tiloca, M. Evaluating the performance of the OSCORE security protocol in
constrained IoT environments. Internet Things 2021, 13, 100333, doi:doi/10.1016/j.iot.2020.100333.

35. Santesson, S.; Tschofenig, H. Transport Layer Security (TLS) Cached Information Extension. Available online: https://rfc-editor.
org/rfc/rfc7924.txt (accessed on 9 August 2021).

36. Wouters, P.; Tschofenig, H.; Gilmore, J.; Weiler, S.; Kivinen, T. Using Raw Public Keys in Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS). Available online: https://rfc-editor.org/rfc/rfc7250.txt (accessed on 9 August 2021).

37. E. Rescorla, R. Barnes, H.T. Compact TLS 1.3 (IETF Draft). Available online: https://datatracker.ietf.org/doc/draft-rescorla-tls-
ctls/ (accessed on 9 August 2021).

38. NIST. Lightweight Cryptography. Available online: https://csrc.nist.gov/projects/lightweight-cryptography (accessed on
9 August 2021).

39. Hall-Andersen, M.; Wong, D.; Sullivan, N.; Chator, A. NQUIC: Noise-Based QUIC Packet Protection. In Proceedings of
the Workshop on the Evolution, Performance, and Interoperability of QUIC—EPIQ’18, Heraklion, Greece, 4 December 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 22–28, doi:10.1145/3284850.3284854.

F: rTLS: Secure and Efficient TLS Session Resumption for the Internet of Things 163

