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Summary
Modern engineering systems are often comprised of multiple components that dete-
riorate with use. In a civil structure, this deterioration will, over time, lead to an
unacceptable risk of failure. In manufacturing and production systems, component
failures caused by deterioration lead to unforeseen downtime. Since more manufac-
turing processes are being automated and the requirements for safety become stricter,
the maintenance function accounts for an increasingly larger fraction of the total oper-
ational costs for such systems. An effective maintenance policy is, therefore, necessary
to compensate for this trend.

Both industry and academia are now mostly focused on a maintenance paradigm
called Condition-Based Maintenance (CBM), where maintenance activities are car-
ried out based on the monitored deterioration state of the system. In a more tradi-
tional approach, Time-Based Maintenance (TBM), the next maintenance activity is
scheduled based on the elapsed time since the previous maintenance activity without
consideration to the condition of the system at the scheduled time. By monitoring
the condition of the system, the CBM approach can potentially reduce the number
of redundant maintenance activities and unforeseen failures.

In this dissertation, we consider the problem of maintenance optimization in multi-
component systems, both for the TBM and the CBM approach. The dissertation is
divided into six chapters, three of which are academic paper manuscripts.

Many heuristic maintenance policies have been developed for multi-component
systems. We focus on optimal maintenance policies identified using Markov Decision
Process (MDP) models and dynamic programming optimization algorithms. Identify-
ing the optimal policy in a general MDP model is computationally demanding if the
state space has multiple dimensions. In paper A, we use one MDP state dimension
for each component in a unifying model framework for the TBM and CBM approach
in a multi-component system. We then perform numerical experiments to determine
the practical computational size limit of the MDP, that is, the largest number of
components in the system, for which we can obtain an optimal maintenance policy.

In Paper B, we consider a CBM system with continuously deteriorating compo-
nents and investigate the effects of discretization, which is a necessary step for dy-
namic programming optimization. We compare different methods for discretization
and demonstrate that a relatively coarse discretization still results in a near-optimal
maintenance policy. Even though the discretization is primarily a technical matter
pertaining to the optimization procedure, we can also draw a connection between
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the results from one of the tested discretization methods and a common practice of
classifying the system condition on a discrete scale.

Many companies are currently seeking to improve their maintenance practices by
implementing CBM. The rationale is that CBM is more cost-efficient than TBM,
because maintenance can be performed just in time before a component fails in CBM.
In Paper C, we quantify this benefit by comparing the performance of optimal TBM
and CBM policies for a multi-component system. Specifically, we show how changing
the number of components and the degree of stochastic and economic dependence
between components affect the difference between the performance of the TBM and
CBM policies.
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Moderne tekniske systemer består ofte af flere komponenter, som slides ved brug. I
en konstruktion vil sådan slitage over tid fører til en uacceptabel risiko for en defekt.
I fremstillings- og produktionssystemer fører komponentfejl forårsaget af slitage til
uforudset nedetid. Da flere og flere fremstillingsprocesser automatiseres, og kravene
til sikkerhed bliver strengere, udgør vedligehold en stadig større andel af de samlede
driftsomkostninger for sådanne systemer. For at kompensere for denne tendens er et
effektivt vedligeholdelsesprogram nødvendigt.

Både industrien og den akademiske verden er i denne tid mest fokuseret på et
vedligeholdelsesparadigme kaldet tilstandsbaseret vedligehold (CBM), hvor vedlige-
hold udføres baseret på systemets overvågede fysiske tilstand. I en mere traditionel
tilgang, tidsbaseret vedligehold (TBM), planlægges den næste vedligeholdelsesopgave
baseret på den forløbne tid siden sidste vedligeholdelsesopgave uden at tage hensyn
til systemets tilstand på det planlagte tidspunkt. Ved at overvåge systemets tilstand
løbende kan CBM reducere antallet af overflødige vedligeholdelsesopgaver og spon-
tane fejl.

Denne afhandling omhandler vedligeholdelsesoptimering i flerkomponentsystemer,
både for TBM- og CBM-tilgangen. Afhandlingen er opdelt i seks kapitler, hvoraf tre
er manuskripter til videnskabelige artikler.

Der er blevet udviklet mange heuristiske vedligeholdelsesprogrammer til flerkom-
ponentsystemer, men vi fokuserer på optimale vedligeholdelsesprogrammer, som udreg-
nes ved brug af Markov beslutningsprocesser (MDP) og dynamisk programmering. At
finde den optimale løsning i en generel MDP er beregningsmæssigt krævende, hvis
tilstandsrummet har mange dimensioner. I artikel A bruger vi én dimension i MDP til-
standsrummet for hver komponent i en samlet model for TBM- og CBM-tilgangen af
et flerkomponentsystem. Herefter fremlægger vi numeriske eksperimenter, der bestem-
mer den praktiske beregningsmæssige øvre grænse for MDP’en, det vil sige antallet
af komponenter i systemet, hvor vi stadig kan beregne et optimal vedligeholdelsespro-
gram.

I artikel B betragter vi et CBM flerkomponentsystem, hvor komponenterne føl-
ger en kontinuert slitageproces, og vi undersøger effekterne af diskretisering, som er
nødvendigt for at kunne optimere med dynamisk programmering. Vi sammenligner
forskellige metoder til diskretisering og viser, at en relativt grov diskretisering stadig
resulterer i et næsten optimalt vedligeholdelsesprogram. Diskretiseringen er umid-
delbart kun en beregningsmæssig nødvendighed for optimeringsalgoritmen, men vi
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relaterer også resultaterne fra en af de afprøvede diskretiseringsmetoder til en almin-
delig praksis, hvor systemtilstanden klassificeres på en diskret skala.

Mange virksomheder forsøger i øjeblikket at forbedre deres vedligeholdelsespro-
cesser ved at implementere CBM. Rationalet er, at CBM er mere omkostningseffek-
tivt end TBM, fordi vedligeholdelse kan udføres umiddelbart før en komponent fejler
i CBM. I artikel C kvantificerer vi denne forskel ved at sammenligne omkostningen
ved at bruge optimale TBM- og CBM-programmer for et flerkomponentsystem. Mere
specifikt viser vi, hvordan ændringer i antallet af komponenter og graden af  stokastisk
og økonomisk afhængighed mellem komponenterne påvirker forskellen mellem omkost-
ningen af TBM of CBM vedligeholdelsesprogrammerne.
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CHAPTER1
Introduction

In manufacturing, many process improvement efforts have aimed at increasing qual-
ity and reducing waste. In a Six Sigma process for example the requirement is to
observe no more than 3.4 defective parts per million parts produced (Montgomery
and Woodall 2008). When such a level of precision and high quality is achieved,
increasing the production rate is the primary way to ensure competitiveness. One
of the roadblocks in this pursuit is the excessive system downtime. In a survey of
Swedish manufacturing companies the estimated downtime costs amount to 23.9%
of the total cost of manufacturing on average (Tabikh 2014). An effective strategy
for the maintenance of equipment is critical for all production companies that aim
to stay competitive. In 2016, U.S. census data estimated that companies spent $50
billion dollars on outsourced maintenance and repair work, excluding the internal ex-
penditures on labor and materials (Thomas 2018). In Mobley (2002) it is stated that
the U.S. industry spends more than $200 billion on maintenance of production plant
facilities each year, while one third of this is wasted on unnecessary or improperly
carried out activities. In the chemical industry, the amount of maintenance personnel
can be as high as 30% of the total work force (Waeyenbergh and Pintelon 2002). In
a case study of an Italian oil refinery, Bevilacqua and Braglia (2000), it is estimated
that maintenance department costs account for between 15% and 70% of the total
production cost. The operation and maintenance costs of a wind turbine can account
for 75%-90% of the investment cost according to Vachon (2002). In the maritime
sector, maintenance and repair of bulk carriers account for 40% of the operating
costs (Eruguz et al. 2017). The maintenance expenditures for engineering structures
such as roads, bridges and railways were predicted by Dekker and Scarf (1998) to
be continuously increasing, due to higher performance requirements and outsourcing
of maintenance. Figure 1.1 shows the government financed maintenance expenditure
on road infrastructure for various countries relative to the year 1998. Indeed, these
numbers indicate the prediction of Dekker and Scarf (1998) was generally accurate.
Regarding outsourcing, Bowman and Schmee (2001) consider a maintenance service
provider for aircraft engines, where a typical maintenance contract for a fleet of air-
crafts span many years and the total costs for the service provider exceed a billion
dollars. The magnitude and uncertainty of the costs could be a significant financial
risk for the service provider, and in Bowman and Schmee (2001) a mathematical
model is developed for pricing the contracts in order to mitigate this risk.

Besides the references already mentioned, we were not able to find any concrete
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Figure 1.1: Increase in public expenditure on road infrastructure maintenance rela-
tive to the year 1998. Source: ITF (2021).

numbers on costs of maintenance in industry. Even though, some of the references
are old, they still illustrate the vast economic scales. During this PhD project, we
have also been in contact with several large companies, all of which are currently
invested in improving their maintenance processes. Altogether, this underlines the
importance of mathematical models for maintenance optimization, which is the topic
of this thesis.

The field of maintenance optimization is very diverse and relates to many aca-
demic fields ranging from mathematical disciplines such as statistics, econometrics,
stochastic modeling, operations research, and machine learning to domain specific
field such as electrical, mechanical, and civil engineering. In this thesis we mainly
consider the field of operations research, and more specifically, sequential decision-
making under uncertainty. It is easy to see why the latter subject plays a particularly
large role within maintenance literature. We perform maintenance on equipment in
order to extend its life and keep it from failing. The uncertainty comes into play,
because we never know with certainty how much we extend the life or when in the
future the equipment will fail. The sequential decision-making part is because we
typically perform multiple maintenance activities throughout the period, in which
we need the equipment, and the decisions then concern the “when” and “how” we
perform maintenance.
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1.1 A generic example
There are many different approaches to maintenance optimization, but they all share
some of the same characteristics. Let us first consider a minimal example that al-
lows us to identify six key aspects that are common for the majority of maintenance
optimization problems.

We consider a physical system, which is continuously operating, and we wish to
keep it in an operating state. Very often the system is a mechanical machine, but it
may also be a civil structure or an electronic device. In the context of a production
assembly line, the system could be any part of the line that would in some way
inhibit the production if it fails. It is common to only consider part of a system,
for instance a single critical component. The manner and frequency, by which the
system is observed, are also important aspects that influence how the system should
be modeled. We might have imperfect or no incoming information about the state of
the system. The system state can also have multiple dimensions, for instance if the
system consists of multiple components.

The system is subject to deterioration and if it is left to itself, it will ultimately
fail and stop operating. There are many different ways of modeling deterioration
depending on the type of system and the nature of the failure. If the deterioration
is gradual, then a stochastic process with a continuous state space, like the one
illustrated in Figure 1.2, is usually appropriate.

The deterioration state of the system is usually not known by the decision-maker at
all times. It might be that the state can only be observed by stopping the equipment
and inspecting its components. Other times, it may not even be possible to observe
the deterioration state, but only whether or not the system is still functioning. The
information about the system state available to the decision-maker is therefore also
important to consider in a maintenance model. For the current example, we assume
the system is inspected periodically with intervals of unit length, and that inspections
reveal the condition perfectly, i.e., the level of the stochastic process.

To keep the system from failing we must perform maintenance on the system,
in order to improve its condition. In the current example, let us assume that we only
use the simplest and most extreme form of maintenance, namely replacement of the
entire system with a new and identical one. At each inspection, we then decide if a
replacement is needed or not.

The underlying reason we want to keep the system operating is because we want
to maximize a certain utility. Usually this is formulated in terms of minimizing
maintenance costs. Let us assume that it is cheaper to replace the system before
it fails, than after it fails. There are many situations where this could be the case.
For instance, if the system is connected to other systems that are also damaged by
the failure, these could need maintenance as well. Very often the corrective cost also
reflects a system downtime cost because of loss of production or availability. For
safety critical systems, a minimum required reliability may also be incorporated in
the utility as a constraint that conflicts with maintenance cost minimization.

This brings to the final aspect, which is the optimization part. Every main-
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Figure 1.2: Graphical depiction of a generic maintenance optimization problem.
The gradually worsening condition of the system is represented by the
solid line. The system is inspected at times 1, 2, 3, . . . and preventive re-
placements (blue circles) are performed when the system is found above
the threshold, M . The system fails when the condition exceeds the
failure threshold and is then correctively replaced (red squares).

tenance policy has an associated utility, and we want to identify the policy that
maximizes this utility. For the current example, a good maintenance policy is one
that balances the cost of performing frequent preventive replacements with the infre-
quent, but more costly, corrective replacements. To identify a policy that does this,
it is first necessary to define the set of feasible candidate policies. For the current
example a simple class of polices is the set of control-limit policies; A replacement
is carried out if the condition is found above a threshold value, M , or when the
component has failed, which is illustrated in Figure 1.2. We also need to be more
specific about how different policies are compared. A common optimality criterion is
to choose among the candidate control-limit policies, the one that minimizes the long
run average cost per time unit. This raises two more issues, which are at the core
of the optimization. First, for a given threshold, how do we calculate the resulting
average cost per time unit? Secondly, there is an infinite number of thresholds, M ,
between “New” and “Failure” in Figure 1.2, so how do we perform the search for the
threshold that yields the global minimum cost? For the example we have set up here,
Abdel-Hameed (1987) provides an analytical expression for the long-run average cost
under a given M , when the condition of the system evolves according to a pure-jump
Markov process. A one-dimensional search, e.g., a bisection method, between “New”
and “Failure” can then be used to identify the optimal threshold. In addition, the
author also proves that under the assumption of periodic inspections, the optimal
policy is indeed contained in the class of control-limit policies.
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1.2 Thesis scope

The above example is perhaps very simple, but it captures the essence of most main-
tenance optimization models. In all practical applications there are challenges within
all of the above six aspects: system, deterioration, information, maintenance,
utility, and optimization. Some challenges are related to modeling, and others are
related to optimization once the model is established, but the two things are highly
interwoven. This thesis contains work that addresses this interplay of modeling and
optimization issues. There is a correspondence between the two since a system model
that is too detailed leads to an optimization problem that is intractable, thus heuris-
tics and approximate methods must be employed. On the other hand, if we simplify
the system model to facilitate the optimization part, we obviously run the risk of not
adequately capturing the dynamics, hence we will be finding a policy that works very
well on a system model that does not correspond to reality.

The mathematical framework we use in this thesis to describe the system and
its dynamics is the Markov Decision Process (MDP). The MDP framework is very
versatile, and maintenance models based on MDPs have been applied successfully
in various domains. We provide examples of applications in the next section. The
generic example in Section 1.1 is simple enough that it could be stated without using
the MDP formalism. For more complex systems, such as systems with multiple dete-
riorating components, the MDP is a particularly useful modeling tool. Furthermore,
the analytical optimization approach that Abdel-Hameed (1987) uses for the Section
1.1 example is infeasible for most multi-component systems, due to their complex
dynamics. For MDP models there is, however, a standard toolbox for optimization,
namely Dynamic Programming (DP). Provided that the MDP meets a number of
fairly weak conditions, a DP algorithm will be able to identify a globally optimal
maintenance policy. In this thesis, we focus on the application of MDPs and DP for
multi-component systems. We present results regarding the generality of the systems
that can be modeled with MDP and the computational limitations of using DP for
exact computation of optimal policies.

An assumption in the example in Section 1.1 is that the system deteriorates ac-
cording to some stochastic process. It is common in theoretical studies of maintenance
policies to make such an assumption. However, for a real-world system it is non-trivial
to model the deterioration. In fact, predicting the time until failure from monitored
system variables is an academic field in itself. The optimization of maintenance activ-
ities can therefore be seen as a second step, which follows after a method of predicting
system failures from the available information is in place. The focus of this thesis is
on the optimization part, and therefore we will assume a specific stochastic process
to represent deterioration in a generic system.
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1.3 Applications
In this section we provide examples of real-world systems, where maintenance op-
timization models are applied. The simple example in the previous section was an
initial attempt to describe the overall maintenance problem in its most generic form.
The decomposition of the problem into the six aspects system, deterioration, in-
formation, maintenance, utility, and optimization is similar to that of Dekker
(1996), where the author surveys all scientific papers that involve applications of
maintenance optimization models up to the year 1996. The author was able to iden-
tify 43 case studies where models have been used on real data. The most popular
areas are equipment and vehicle replacement, maintenance of electric power stations,
and road maintenance.

A successful example of a road maintenance application is presented in Golabi
et al. (1982), where the system under consideration is the 7400-mile road network in
Arizona. Over time, the wear from vehicles driving on the roads and the constant
exposure to the weather lead to cracks and unevenness in the pavement. Resurfacing is
therefore needed in order to keep the road condition up to U.S. federal standards. The
price of a resurfacing increases with the thickness of the asphalt layer. A constrained
MDP model is formulated for each individual mile of pavement in the network, and
a policy that outputs the appropriate resurfacing thickness depending on the current
road condition is obtained.

The model in Golabi et al. (1982) is a high-level model for the entire road network.
A model presented by Medury and Madanat (2013) incorporates more localized details
in the utility. These are aspects such as budget constraints and costs for a decreased
road capacity or rerouting of traffic when maintenance is performed. The resulting
model is much more complex and harder to optimize, but the result is a maintenance
policy on a more tactical level.

Similar to roads, bridges have a life span of several decades. In general, infras-
tructure management is a domain where maintenance optimization models are well
suited. The sheer amount of maintainable units and the fact that public funds are
involved require a quantitative method for prioritizing maintenance projects. In Pa-
pakonstantinou and Shinozuka (2014a), it is reported that the AASHTOWareTM

maintenance management system is used for over 750,000 structures in the United
States, and it uses MDP as its core optimization procedure. There is still room for
improvement of the models used in such management software, and academic work
on the subject is ongoing. For instance in Andriotis and Papakonstantinou (2019), a
truss bridge with two substructures of 25 components each and a planning horizon
of 70 years is considered. The steel trusses are subject to corrosion, and the rate
of corrosion increases with the number of years of exposure without maintenance.
Furthermore, inspections of the truss components are imperfect, which adds an extra
layer of uncertainty. Possible maintenance activities range from minor interventions
such as cleaning and repainting, which only delay the aging process, to structural
strengthening and replacements that also improve the damage state. Accounting for
all this, plus the economic savings from maintaining several of these components si-
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multaneously rather than at different times, makes the optimization problem very
challenging.

According to Arismendi et al. (2021), the bridge management systems used in
Denmark, Norway, Finland, France, South Africa, United Kingdom, China, and South
Korea all prescribe inspections from predefined procedures, and a global condition
rating is assigned to the structure among a very limited number of discrete levels.
The authors consider the specific case of Norway, a country with 18,000 road bridges,
where safety regulations dictate the maximum delay for the next repair activity based
on the condition found at an inspection. The discrete condition state formalism fits
well in the MDP framework that is used in the above mentioned studies. However,
the delay between the decision and the action related to maintenance is difficult to
incorporate in an MDP model, which is why Arismendi et al. (2021) presents another
framework based on a piece-wise deterministic Markov process.

One of the challenges of implementing maintenance optimization models is the
specification and estimation of a deterioration model, which require historical condi-
tion and failure data. In some cases, this data is being recorded for regulatory safety
reasons, however the information may be limited to a high-level rating system such as
the bridge examples above. Welte et al. (2006) treats the case of hydro power plants
in Norway, where such a rating system is already in place for the main components,
which are the generator, the turbine, and the cooling water and drainage equipment.
The high-level rating system may not be ideal for modeling the long-term behavior
of the components. However, the time, effort, and cost required for gathering more
accurate data can be substantial and possibly a bad investment. Unless there is ev-
idence that large savings can be gained from the resulting optimized maintenance
policy, a simplified model of the system dynamics can be estimated from the discrete
condition states. In Welte et al. (2006), the authors model the deterioration as a
Markov chain, and use this as a basis for optimization of the inspection intervals.

The purpose of public roads and bridges is not to create a profit, but to provide a
mode of convenience for their users. Therefore, it makes sense to constrain the allowed
amount of downtime or decreased capacity due to maintenance work by requiring a
minimum level of availability and reliability. Contrary to this, the cost of downtime for
a production system such as a wind turbine is easily visible through lost revenue from
the output power. Choosing a meaningful utility therefore appears to be easier for
production systems. There are, however, other challenging problems for maintenance
optimization for offshore wind farms. For instance, seasonal weather conditions pose
an additional difficulty, since harsh weather restrains the possibility of reaching the
offshore structures. Byon and Ding (2010) proposes a maintenance optimization
procedure based on the Partially Observable Markov Decision Process (POMDP)
framework that accounts for the possibility that maintenance must be postponed or
put on hold if weather conditions become too harsh.

In the above studies, the overall system has been the main focus point. In Elwany
et al. (2011), the authors perform a in-depth case study for a specific type of com-
ponent found in most rotating machinery, namely a rolling bearing. Accelerometer
signals are used to measure the vibration magnitude, which increases as the bearing
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wears down. A geometric Brownian motion is proposed for modeling the exponen-
tial nature of the sensor signal. Under the same cost and inspection assumptions
as in the example in Section 1.1, the authors show how the optimal policy is also
a control-limit policy. Furthermore, to account for unit-to-unit variability, normally
distributed priors are assumed for the parameters in the deterioration model. The
optimal control-limit is then adjusted with real-time observations of the vibration
signal.

1.4 Time-based & condition-based maintenance
The example in Section 1.1 and all applications mentioned in Section 1.3 assume that
the level of deterioration can be obtained by inspecting the system. The decision
whether or not to perform maintenance is based on this information. This practice is
known as Condition-Based Maintenance (CBM).

Another and more traditional approach, is to base the decision on the elapsed time,
which is known as Time-Based Maintenance (TBM). For the example in Section 1.1,
suppose that the deterioration of the system cannot be observed, only the time of
failures. It is then not possible to explicitly model the deterioration process. Instead
the failure rate as a function of the component age would serve as the basis of the
optimization. Now, it is still possible to perform preventive replacements, however,
the time since the last replacement is the only information we can utilize. The optimal
policy in this case is an age threshold, say T , at which we replace the system if it has
not failed yet. This is illustrated in Figure 1.3.

One of the assumptions of the initial CBM model was that the system is inspected
periodically. Provided the time between inspections is short enough, it is readily seen
how the CBM policy is superior to a TBM policy. Due to the randomness of the
deterioration process, some realizations will exhibit a slower increase than others. If
at one realization, the system is bound for failing before time T , the TBM policy
will not prevent this failure, thus we incur the high corrective cost. In the opposite
situation, where the system will fail sometime after T , the TBM policy will replace the
system too early, which affects the long-run average cost negatively. In both scenarios
the CBM policy is more likely to replace the system just before failure occurs, thus
avoiding the corrective replacement cost and getting the most out of the system’s
useful life.

The potential savings from using CBM over TBM have lead to an increased focus
on implementing CBM in industry. During the PhD project, we have been in contact
with different companies that are currently doing so. Through these exchanges, we
have identified a number of common practical challenges. In Chapter 2 we present
these challenges and relate them to the generic models that we investigate. The
interest in CBM is not limited to industry, but is also reflected in academic work,
which in the last few decades has shifted from developing and studying TBM models
to CBM models (Alaswad and Xiang 2017; Jonge and Scarf 2020).
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Figure 1.3: A TBM equivalent to the CBM control-limit policy in Figure 1.2. Cor-
rective replacements (red squares) are triggered upon failure, and pre-
ventive replacements (blue circles) are performed if the age of the system
reaches a threshold age, T .

In general, all technical systems that are expensive and have an important function
require maintenance. It is safe to say the most common process for designing a
maintenance policy is not mathematical modeling and optimization. Indeed, both
the CBM and the TBM approach can be employed without undergoing a rigorous
optimization. The most common ways of designing a maintenance policy are through
recommendations from the system manufacturer or simply by the best judgment
of the maintenance responsible based on his or her experience with the equipment
(Ahmad and Kamaruddin 2012).

1.5 The role of maintenance models
There are two purposes of academic papers on maintenance optimization that should
be highlighted at this point. First, from the range of applications, summarized in
the previous section, it is clear that different systems have different requirements and
opportunities that must be taken into account when creating a maintenance strategy.
This could for instance be situations, where maintenance must be optimized together
with a second objective, or if there are specific practical constraints that go against
the common assumptions. For any particular application, the specific circumstances
often lead to a tailor-made policy and optimization procedure. A major part of main-
tenance literature is concerned with developing the necessary mathematical models
and algorithms on a case-by-case basis.

The second purpose is to derive general insights about the effectiveness of different
maintenance practices under varying assumptions about the system. Some studies
consider generic models that mimic a common phenomenon from real-world systems
and then perform sensitivity analyses on the system parameters. The goal is to
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identify, which parameters that are crucial for the performance of a given policy.
The models may be of limited practical use, since there are certain quantities in a
real-world system that can be very difficult to estimate, such as the accuracy of the
information we observe and the effectiveness of maintenance activities. But, knowing
that these aspects are in fact present in real-world systems, valuable insights can
still be gained by considering the behavior of a generic model that mimics the real
phenomenon.

1.6 Optimal policies
In Section 1.3 we summarized a number of applications, where MDPs have been used
as the modeling framework. All of the mentioned examples consider multi-component
systems, which is also the category of systems we consider in this thesis.

In multi-component systems, the components are connected in ways that render
threshold policies like the CBM policy in Section 1.1 and the TBM policy in Sec-
tion 1.4 suboptimal. This can for instance be a consequence of dependence in the
deterioration processes, the reliability of the overall system, or joint setup costs when
initiating maintenance activities.

Identifying an optimal policy in an MDP can be done using DP algorithms. The
computational requirements of doing so grow exponentially with the number of dimen-
sions in the MDP state description, which is known as the curse of dimensionality. In
a multi-component maintenance model it is natural to have at least one state variable
per component, in which the relevant information about the component’s condition
is stored. Therefore, optimal maintenance policies in multi-component systems are
hard to obtain.

Most studies that have a practical application in mind resort to approximate
solution methodologies, since the number of components is often too large to be
handled with exact methods. However, for a moderate number of components, it is
still feasible to compute optimal policies. In this thesis, we will focus on computing
and analyzing optimal policies for as large systems as possible.

Among the approximate solution approaches is reinforcement learning, which is
currently receiving a lot of attention in the academic world, due to a number of very
successful applications, see e.g., Silver et al. (2016), Andrychowicz et al. (2020), and
Mnih et al. (2015). With the development of these methods it is likely that the appli-
cation of maintenance optimization models based on MDPs become more widespread.
Reinforcement learning algorithms are in general not guaranteed to converge to the
globally optimal policy. From the perspective of investigating the behavior of generic
multi-component systems through sensitivity analyses, the generality of any given re-
sult is compromised somewhat by a possibility that a sub-optimal maintenance policy
was used. We avoid this, by only considering optimal policies. We elaborate further
on this point in Chapters 2 and 5.
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1.7 Outline of the thesis
Given that the complexity of modern technical systems and the performance require-
ments of them are only increasing, there still remains a lot to be uncovered about
how to maintain these systems in an cost-efficient way. The work presented in this
thesis falls under the second purpose of maintenance modeling mentioned in Section
1.5. Throughout the thesis, we consider generic models of multi-component systems,
and attempt to derive general insights about them.

A number of choices regarding the models and solution methods are constant in all
chapters. We use the MDP modeling framework, and we use DP to obtain optimal
policies. Components are assumed to deteriorate according to a gamma process.
Maintenance actions are limited to replacement of components as in Section 1.1, i.e.,
the components are brought back to an as-good-as-new state. We assume a fixed set-
up cost that is incurred whenever we perform at least one replacement of at least one
component. Under these assumptions we consider both the TBM approach and the
CBM approach and investigate the relationship between system complexity, model
accuracy, computational requirements, and performance of the optimal maintenance
policy.

There are no closed-form solutions to the optimization problems in the multi-
component models we consider. The results we present are therefore based on nu-
merical experimentation. The rest of the thesis is comprised of 5 chapters, which are
summarized below:

• In chapter 2 we review the basic theory of MDPs, its extensions, and DP. We
also relate this theory to other modeling and optimization techniques that are
prevalent in maintenance literature. The specific assumption about the sys-
tem we listed above are quite general, and so the review serves as motivation
and context for these choices and also for the experiments we conduct in later
chapters based on them.

• In Chapter 3 the computational limitations for obtaining optimal policies in
multi-component models formulated as MDPs are investigated. The overall
objective is to assess the practical limit for the number of components in the
system, which we found had not been documented before. Based on the system
assumptions listed above, we formulate both a CBM version and a TBM version
of the problem. The models themselves are also novel. The combination of MDP
with continuous and stochastically dependent deterioration of components has
not been considered before. A multi-component TBM model constructed from
an underlying unobserved deterioration process is also new.

• Chapter 4 contains a study of the different discretization methods that can be
used when combining continuous deterioration processes with DP. The theory
of solving general MDPs with uncountable state spaces is based on proofs that
the optimal policy can be approximated arbitrarily well with a sufficiently fine
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discretized versions of the problem. For the case maintenance optimization mod-
els, a few different ways of performing the discretization have been suggested.
However, the comparison of the methods has not been carried out before. Our
investigation led to some interesting results regarding the DP algorithm perfor-
mance and methodological aspects of MDP for maintenance optimization.

• In Chapter 5 we compare the performance of optimal TBM and CBM policies
in multi-component systems. The models constructed in Chapter 3 provided
a unified framework for comparing the performance of the two maintenance
approaches. Previous comparisons of TBM and CBM have either been limited
to single-component systems, or have only compared heuristic policies. We make
the comparison by the performance of the optimal policies given the available
information in the respective approaches. The effects of varying setup costs, the
number of components, and degree of stochastic dependence are investigated.

• A final discussion of the overall findings throughout the Ph.D. project are given
in Chapter 6 along with some directions for further research.



CHAPTER2
Modeling &
Optimization

This chapter is an overview of the literature and theory that is the foundation of the
work in the later chapters.

We start the chapter by summarizing the basic theory of MDP and DP, which
are the modeling framework and optimization method we use throughout the thesis,
respectively. In Section 2.1 we also mention the extensions of the basic models and
algorithms as they demonstrate the broader possibilities and limitations of general
maintenance optimization.

The models and algorithms used for modeling systems and optimizing mainte-
nance activities come in as many varieties as the real-world systems that require
maintenance. In fact, in application papers, problem specific factors often lead to a
tailor-made maintenance model (Dekker 1996), which is also true for the examples
of applications we presented in Section 1.3. The specific MDP models we consider in
this thesis are quite generic, and even though they cover many different phenomena
that may be found in real-world systems, they are not all-encompassing. In Section
2.2, we provide an overview of the terminology and concepts in maintenance modeling.
The objective is to provide a frame of reference for the contributions of the models
and results we present in the later chapters.

Although we focus on DP, there are a number of other popular approaches to
maintenance optimization. In Section 2.3, we categorize the different optimization
approaches and give a high-level comparison of their different advantages and short-
comings.

Finally in Section 2.4, we also discuss the practical aspects of applying mainte-
nance optimization models in real life. As point of reference, we draw on a case study
of railway tamping optimization, and exchanges we have had with a handful of large
companies over the course of the PhD project.
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2.1 Markov decision processes & dynamic
programming

In this section, we provide a summary of the basic theory of MDPs and DP, since
the models and solution algorithms we consider all through the thesis belong to
these frameworks. We attempt to keep the exposition brief by focusing the specific
assumptions that we make in later chapters. However, the general theory is very rich
and MDPs come in many variations depending on the generality of the assumptions
about the problem. Furthermore, there are many approximate DP algorithms that
extend the capabilities in terms of the problem sizes we can handle. In order to
discuss the full perspective of the specific models we consider, we also provide a
minimal account of some the MDP and DP extensions that go beyond the basic
definitions.

Most of the notation we use is adopted from the book by Puterman (2005). In
later chapters, we sometimes for convenience deviate slightly from the notation we
use below.

2.1.1 MDP definition
An MDP in its simplest form is a controlled Discrete-Time Markov Chain (DTMC),
where the transitions between states are influenced by actions chosen by a decision-
maker. The goal for the decision-maker is to choose actions that maximize a predeter-
mined performance criterion. The MDP is characterized by the following elements:

• a set of decision epochs, {0, 1, . . . , T}, T ≤ ∞,

• a set of states, S,

• a set of actions, A,

• a reward function, r : S ×A→ R, and

• a transition probability function, p : S × S ×A→ [0, 1].

The decision epochs, {0, 1, . . . , T} are discrete points in time, where actions are
chosen by the decision-maker. The time between two epochs is called a period. If
T < ∞ then the problem of choosing actions is called a finite-horizon problem. If
T = ∞ the process continuous forever, and the problem is called an infinite-horizon
problem. All problems we consider are of the infinite-horizon type. The MDP can
also be defined such that r and p are allowed to change at each epoch, denoted with
a subscript rt and pt. This is mostly relevant for finite-horizon problems, hence we
assume that r and p are time-homogeneous here.

The set of states, S, and the set of actions, A, can be uncountable, countable
infinite, or finite. We consider finite state- and action spaces, since the resulting
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MDPs can be solved with general-purpose algorithms. Such models are also called
finite MDPs. We discuss the case of uncountable S Section 2.1.4.

At any given epoch, the following events take place. The process occupies a state,
s ∈ S. The decision-maker chooses an action, a ∈ A, and receives the reward, r(s, a).
The process transitions to a new state, s′ ∈ S, with probability p(s′|s, a). Because
the decision-maker wants to maximize the received rewards, the action, a, could be
chosen such that r(s, a) is maximized. However, at the same time the action must be
chosen such that we increase the probability of obtaining large rewards in subsequent
epochs. That is, a must be chosen such that p(s′|s, a) is large for more “favorable”
states, s′ ∈ S. This balance between immediate rewards and guiding the process
towards maximizing the future rewards is at the heart of sequential decision-making.

With the above definition of the reward function, r, we have assumed that rewards
are deterministic, which is true in the maintenance problems we consider in the later
chapters. In general, the reward received in a period may also be random, for instance
by being dependent on the subsequent state, s′. In this case r(s, a) represents the ex-
pectation over the possible rewards, as this quantity is sufficient for choosing optimal
actions under the common optimality criteria we define below in Section 2.1.2.

Maintenance example The following is an old example from Derman (1963) of a
simple maintenance model that can be formulated as an MDP. An operating system
is inspected at equally spaced points in time, t = 0, 1, . . ., and at each inspection it is
classified into one of D + 1 states, S = {0, 1, . . . , D}. The system is considered new
(inoperative) if it is in state 0 (D). After each inspection, we can choose to replace
the system with a new one (a = 1), unless the system is inoperative in which case a
replacement is compulsory. Upon replacement, a new system starts in state 0 at the
following inspection. If we do not replace the system (a = 0), it moves from state i to
state j with probability qij . Hence, the action space is A = {0, 1} and the transition
probabilities are given by

p(s′|s, a) =
{

qss′ a = 0, s < D,
1 s′ = 0, s = D or s′ = 0, a = 1.

(2.1)

The cost of replacing the system before it becomes inoperative is cp < 0, and the cost
of replacing an inoperative system is cc < 0, where cc < cp. The reward function is
therefore given by

r(s, a) =

 cp s < D, a = 1
cc s = D
0 otherwise.

(2.2)

2.1.2 Policies and optimality criteria
The mathematical object used to describe the decision-makers preference for choosing
an action, a ∈ A, is called a policy, which we denote by π : S → A. In all the
MDPs we consider, we assume finite S and A and stationary rewards and transition
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probabilities. For this class of MDPs it can be proven that the optimal action at any
given epoch depends only on the current state of the system. Hence, the optimal
policy is contained in the set of mappings from S to A, denoted Π, and we need
not consider the more general randomized and history-dependent policies (Puterman
2005, Theorem 6.2.10 and Theorem 8.4.5).

Optimality can be defined in a number of different ways. We consider two different
optimality criteria, namely the expected total discounted reward, and the average
reward criterion. Supposing we start the MDP in an initial state s0 ∈ S, a policy,
π ∈ Π, induces a DTMC of visited states, Xt, t = 0, 1, . . ., where X0 = s0 and
P (Xt+1 = s′|Xt = s) = p(s′|s, π(s)). Let γ ∈ [0, 1) denote a discount factor. The
expected total discounted reward when following policy π and starting in state s0 ∈ S
is then defined as

vπ
γ (s0) = E

[ ∞∑
t=0

γtr(Xt, π(Xt))

]
, (2.3)

where vπ
γ : S → R is known as the value function of policy π. Under the expected total

discounted reward criterion, a discount-optimal policy π∗ ∈ Π is one that satisfies

vπ∗

γ (s0) = max
π∈Π
{vπ

γ (s0)}, for all s0 ∈ S. (2.4)

Assuming that the reward function r is bounded, vπ
γ is well-defined. Furthermore, S

and A being finite implies that Π is a finite set, hence the maximum is attained in
the definition of vπ∗

γ .
The average reward when following a policy, π ∈ Π and starting in state s0 ∈ S

is defined by

gπ(s0) = lim
N→∞

1
N

E

[
N∑

t=0
r(Xt, π(Xt))

]
, (2.5)

and an average-optimal policy π∗ ∈ Π is one that satisfies

gπ∗
(s0) = max

π∈Π
{gπ(s0)}, for all s0 ∈ S. (2.6)

The existence of the limit in Equation 2.5 and the average-optimal policy requires
more intricate analysis and additional assumptions about the DTMC, Xt, induced
by policy π ∈ Π. Specifically, for any π ∈ Π, Xt must be unichain, meaning that
it contains at most one recurrent class of states, see Puterman (2005, chp. 8). In
Chapter 4, where we first consider the average reward criterion, we give an argument
that shows how the unichain assumptions holds for the models we consider.

2.1.3 Dynamic programming
Dynamic programming is the name used to collectively describe the algorithms for
finding optimal policies in MDPs. We describe the two most common algorithms,
Value Itereation (VI) and Policy Itereation (PI), which are algorithms for finite MDPs.
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In MDPs with countable infinite or uncountable state spaces, optimal policies can be
approximated by solving a finite-state MDP (Puterman 2005; Chow and Tsitsiklis
1991; Rust 1997), so VI and PI are also fundamental tools for solving these problems.
Here we summarize VI and PI for the expected total discounted reward criterion,
which we use in Chapter 3. Both algorithms exist in a version for the average-reward
optimality criterion as well, and we consider these in Chapters 4 and 5.

In the case of the expected total discounted reward criterion, the value function,
vπ∗

γ , of a discount-optimal policy, π∗, can be shown to be a unique fixed point of the
following set of |S| nonlinear equations, known as the Bellman equations,

v(s) = max
a∈A

r(s, a) + γ
∑
j∈S

p(j|s, a)v(j)

 , ∀s ∈ S, (2.7)

and with a solution to these equations, we can recover the discount-optimal policy.

Value iteration The VI algorithm solves the system of equations (2.7) iteratively
starting at some arbitrary guess, v0, and calculating a sequence of value function
estimates, vn, n = 1, 2, . . . by

vn+1(s) = max
a∈A

r(s, a) + γ
∑
j∈S

p(j|s, a)vn(j)

 , ∀s ∈ S. (2.8)

This sequence converges to the fixed point, vπ∗

γ , and for a given tolerance, ϵ > 0, we
terminate the algorithm when

max
s∈S
|vn+1(s)− vn(s)| < ϵ

1− γ

2γ
. (2.9)

When this criterion is satisfied, we have maxs∈S |vn+1(s) − vπ∗

γ (s)| < ϵ and a final
policy, π, whose corresponding value function deviates at most ϵ from vπ∗

γ , can be
recovered by

π(s) ∈ arg max
a∈A

r(s, a) + γ
∑
j∈S

p(j|s, a)vn+1(j)

 , ∀s ∈ S, (2.10)

where arg maxa∈A{·} is the subset of elements in A at which the maximum of the
expression in the braces is obtained. Note that we are not guaranteed that the final
policy, π, is also a discount-optimal policy as defined in Equation (2.4). However,
we can obtain an arbitrarily close approximation to an optimal policy, by choosing ϵ
sufficiently small.
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Policy iteration The PI algorithm is different from VI in that it computes a se-
quence of improving policies πn, n = 0, 1, 2, . . ., starting from an arbitrary policy,
π0 ∈ Π, and then terminating when the policies cannot be improved anymore. Each
iteration in PI consists of two steps. In the first step, known as policy evaluation,
the value function, vπn

γ , corresponding to the current policy, πn, is calculated. In the
second step, policy improvement, a new and improved policy is then computed as

πn+1(s) ∈ arg max
a∈A

r(s, a) + γ
∑
j∈S

p(j|s, a)vπn
γ (j)

 , ∀s ∈ S. (2.11)

An informal argument for why πn+1 is better than πn is that the maximizing values
in Equation (2.11) correspond to the expected total discounted reward of a policy
that chooses optimal actions at the very first decision epoch, and then take actions
according to πn from there on. Therefore πn+1 will be no worse than πn. Note
that there can be more than one maximizing action in Equation (2.11), so we choose
πn+1(s) = πn(s) whenever it is possible. The algorithm terminates when πn+1 = πn,
and this happens after a finite number of iterations since the number of policies, |Π|,
is finite.

The policy evaluation step goes as follows. Similar to the value of the discount-
optimal policy, the value function, vπ

γ , of any given policy, π ∈ Π, is a unique fixed
point of the following system of linear equations

v(s) = r(s, π(s)) + γ
∑
j∈S

p(j|s, π(s))v(j), ∀s ∈ S. (2.12)

In vector notation this can be written as

(I − γPπ)v = rπ, (2.13)

where v, rπ ∈ R|S| with elements v(s) and r(s, π(s)) respectively, and Pπ ∈ R|S|×|S|

with elements Pπ = [p(j|s, π(s))]sj is the transition probability matrix of the DTMC,
Xt, induced by π. The linear system of equations can be solved directly by inverting
the matrix (I − γPπ) in Equation (2.13). This leads to an exact evaluation1 of
the policy π, and as a consequence the final policy obtained in the PI algorithm is
discount-optimal. However, if the number of states |S| is very large, as it will be in
the MDPs we solve in this thesis, storing the matrix Pπ is prohibitive. It is then
necessary to solve the linear equations iteratively starting with an initial guess, v̂0,
and calculating

v̂k+1(s) = r(s, π(s)) + γ
∑
j∈S

p(j|s, π(s))v̂k(j), ∀s ∈ S, (2.14)

iteratively until the criterion in Equation (2.9) is satisfied for some low tolerance, ϵ > 0.
Just as for the VI algorithm, the final policy is in this case a close approximation to
a discount-optimal policy.

1Modulo the inherent rounding error on finite precision digital computers.
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Curse of dimensionality In Section 2.1.2 we mentioned that the computational
requirements of DP grow exponentially with the number of components in multi-
component systems. From the summary of VI and PI above, it becomes apparent
why this is the case. Both VI and PI are iterative algorithms, and each iteration
involves an update of either the value function or the policy in each state, s ∈ S.
The VI update in Equation (2.8) and the policy improvement step in Equation (2.11)
perform maximization over the action space and involves an expectation over the
subsequent states, hence the number of operations is in the order of |A||S|2. In the
example in Section 2.1.1 the system is regarded as a single entity, which can be in any
of |S| = D + 1 different states and there are only two possible actions, |A| = 2. Even
if D is very large, the VI and PI algorithms implemented on a modern computer will
converge in a very short time. The natural extension of this MDP model to a system
consisting of N components, is to have the state of each component belong to the
set {0, . . . , D}. The state space of the MDP then becomes S = {0, . . . , D}N where a
state s = (s1, . . . , sN ) ∈ S is a vector containing individual component states. The
number of operations in each iteration of VI and PI therefore grows exponentially
with the number of components in the system, N .

Besides the standard algorithms, VI and PI, there is a hybrid algorithm, Modified
Policy Itereation (PI), and a number of techniques for improving the convergence
of the algorithms. These are considered in Chapter 3, where the computational
limitations of DP for multi-component maintenance MDP models are investigated.

2.1.4 Extensions
We now proceed with a summary of the possible extensions to the finite MDP and
DP theory. Without delving too much into the maintenance terminology (we save
that for the next section), we also provide examples from literature that show how
these extensions are useful in the context of maintenance.

Uncountable state space The assumption that S is finite is somewhat limiting
when modeling maintenance systems. Ideally, we would like to consider models with
S = [0,∞) (or S = [0,∞)N for multi-component systems) in order to model gradual
deterioration realistically. A more general formulation of the MDP in terms of Borel
spaces exists, which allows us to consider MDPs with uncountable state spaces. The
Bellman equation equivalent to Equation (2.7) switches sums out with integrals

v(s) = max
a∈A

{
r(s, a) + γ

∫
S

v(u)p(u|s, a)du

}
, (2.15)

where p is now a probability density function rather than a probability mass function
as in the case of discrete S. Ensuring the existence and uniqueness of solutions to
Equation (2.15) requires appropriate assumptions of measurability of r and p (Puter-
man 2005; Bertsekas 2012), and analytical solutions to Equation (2.15) are rare. Rust
(1986) provides an example of a replacement problem for durable goods, which can
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also be thought of as replacement in a deteriorating system. For this problem, Equa-
tion (2.15) was shown to have a closed-form solution and the corresponding optimal
policy a control-limit policy.

For more complicated models of multi-component systems, the solution to Equa-
tion (2.15) can only be found by discretizing the problem (Özekici 1988; Rust 1997),
but discretization can be shown to approach the optimal solution, under additional
assumptions of Lipschitz continuity of r and p (Bertsekas 1975; Chow and Tsitsiklis
1991). In this thesis, we consider systems with multiple continuously deteriorating
components. However, because they are multi-component systems, we do not delve
into the theory of the Borel model, but jump straight to the discrete MDP formulation,
which can be solved algorithmically.

Semi-MDP The default assumption in an MDP is that decision epochs are equidis-
tant in time and the MDP is therefore a discrete-time model. A Semi-Markov De-
cision Process (SMDP) is a continuous-time generalization of the MDP, where the
time spent in a state is a random variable, with a distribution that can depend both
on the current state and the action taken. Decision epochs are then placed at the
moments where the state changes. In Chen and Trivedi (2005), a CBM model is
constructed in the SMDP framework, where the discrete deterioration state changes
according to a Continuous-Time Markov Chain (CTMC) (a.k.a. a Markov jump pro-
cess), and the duration of maintenance, the duration of inspections, and the time
between inspections are all random variables. Using a transformation of the SMDP
into an embedded MDP, the optimal policy can be found with ordinary DP algorithms
(Puterman 2005).

Constrained MDP Besides iterative DP algorithms, finding the optimal policy in
an MDP can also be formulated as a linear programming problem. Although this
method is restricted to smaller problem sizes (Sutton and Barto 2018), it is useful
because we can include constraints that ensure the limiting probability of the sys-
tem being in a specific state is either above or below a predetermined level. Such a
models is known as a Constrained Markov Decision Process (CMDP) (Altman 1999).
In (Altman 1999) solution methods based on ideas from DP are also presented, but
we mention the linear programming approach due to its use in an application in a
maintenance context, namely the road resurfacing model proposed in Golabi et al.
(1982). The states in the MDP represent the condition of the asphalt. Constraints
are added to the linear programming formulation for the maximum limiting proba-
bility of a road being in poor condition states, and guaranteeing a minimum limiting
probability of being in good condition states. Because the model is applied separately
to 7,400 one-mile segments of road, these probabilities also have a second interpreta-
tion, namely that the expected proportion of all segments in good and bad states is
within the limits defined by the constraint. CMDP is therefore one way of handling
multiple conflicting objectives.



2.1 Markov decision processes & dynamic programming 21

Partially observable MDP In the normal MDP, the process will at each decision
epoch occupy one of the states in S, and actions are chosen according to this state.
But, what if we do not know exactly which of the states in S the system is occupying?
A Partially Observable Markov Decision Process (POMDP) is a model for this situa-
tion. When the system occupies state s ∈ S and action a ∈ A is chosen, the system
transitions to state s′ ∈ S with probability p(s′|s, a), but, the decision-maker does
not see s′, only an observation, o ∈ O with a probability pO(o|s′, a), where O is a set
of possible observation. The decision-maker now has to choose a new action based
on which state the system is believed to be in, which is described by a probability
distribution b over S. Finding a good policy in a POMDP is therefore harder than in
the normal MDP, since the set of probability distributions over S has |S| − 1 contin-
uous dimensions, and approximate algorithms, such as point-based solvers (Pineau
et al. 2003), are therefore used for solving POMDPs. In a maintenance context, the
POMDP model is useful for CBM scenarios, where the true condition of the system
is not fully revealed. For instance, in Papakonstantinou and Shinozuka (2014b), non-
destructive techniques for inspections of steel damage in corroding reinforced concrete
structures are assumed to be imperfect.

Approximate DP & reinforcement learning As we described in the end of
Section 2.1.3, the standard DP algorithms like value iteration and policy iteration
cannot be used when the dimension of the state space is large. However, maintenance
optimization in systems with many components can be done approximately using
Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL). Both
RL and ADP are collections of algorithmic techniques designed to overcome the curse
of dimensionality (Powell 2011; Sutton and Barto 2018) and to a large extend RL
and ADP are two names for the same thing. The difference between ADP and RL
is that ADP is concerned with solving a given (large) MDP by exploiting everything
we can from its specific structure, whereas RL focus more on model-free algorithms,
and the aspect of the agent (decision-maker) learning from direct interaction with an
environment (MDP).

In both ADP and RL, the overall basic principle is to learn how to make good
decisions through simulation of the MDP. In many of the approximate algorithms
this involves estimates, Q̂(s, a), of the value of each state-action pair, (s, a) ∈ S ×A,
so-called Q-values, Q(s, a). The relation between Q-values and the value function in
Equation (2.3) of a given policy π is

Q(s, a) = r(s, a) + γ
∑
j∈S

p(j|s, a)vπ
γ (j). (2.16)

One of the simplest and most well-known algorithms is Q-learning. At time t
during simulation, the system occupies a state st, an action at is chosen according
to the values Q̂(st, ·), we receive a reward rt, transition to state st+1, the Q-value is



22 2 Modeling & Optimization

updated by

Q̂(st, at)← Q̂(st, at) + α

[
rt + γ max

a∈A
Q̂(st+1, a)− Q̂(st, at)

]
, (2.17)

and the simulation clock advances to t + 1. There are two immediate benefits of
using an ADP/RL algorithm like Q-learning compared to DP. First, we avoid the
exhaustive DP iterations, where values in each state are updated before moving on
to the next iteration. Secondly, we only update the value of relevant states, i.e., we
do not spend time updating states that are unlikely to be visited.

In basic Q-learning, Q̂(s, a) is a table with one value for each state-action pair.
For large MDPs, parametric approximations of the Q-values are needed in order to
reduce the size of the problem. One way is to use a linear function on a number of
preselected features:

Q̂(s, a) =
∑
f∈F

θf ϕf (s, a). (2.18)

Here, F is a set of features with a size much smaller than the number of state-action
pairs, ϕf (·, ·) are basis functions transforming states-action pairs to features, and
θf are weights that are updated regularly during simulation to improve the Q-value
estimates.

In Medury and Madanat (2013), ADP/RL is used in the context of Maintenance,
rehabilitation and replacement planning in a road network with capacity constraints.
Using the notation from the end of Section 2.1.3, the network has N road segments,
and vector states s = (s1, . . . , sN ) and vector actions a = (a1, . . . , aN ) represent
the condition and maintenance for all segments, respectively. The authors use linear
function approximation, where all basis functions are binary indicators such that
Equation (2.18) takes the form

Q̂t(st, at) =
∑
f∈F

θftϕf (st, at) =
∑
i∈N

θ′
t,G(i),si,ai

, (2.19)

where G is a mapping to a set of groups having a homogeneous response to the
capacity constraints in the network. A problem instance with 11 road segments is
solved using temporal difference learning with a finite horizon, T , hence the subscript
t in Equation (2.19).

Another and more flexible class of function approximators are artificial neural net-
works. In Andriotis and Papakonstantinou (2019), both the value function and the
policy are parametrized using separate networks, which is known as an actor-critic
algorithm. The algorithm is used to optimize maintenance for a 25-component steel
truss bridge, where inspections are imperfect. Because different degrees of mainte-
nance are included in the model, the number of actions becomes larger than 2.25×1015,
but using a parametrized policy is a way to overcome this problem.

An example of an algorithm that exploits problem structure, and should therefore
be categorized as ADP rather than RL, is found in Jiang and Powell (2015). The
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authors device an ADP algorithm for problems, in which the value function is mono-
tone w.r.t. a multi-dimensional state variable. The state space is equipped with a
component-wise inequality, denoted ≼, and monotone then means s ≼ s′ → v(s) ≤
v(s′) for states s and s′ and value function v. The key difference from other ADP/RL
algorithms is that the estimate of the value function is updated with a monotonicity
preserving operator. The authors demonstrate how this leads to faster convergence
by solving a multi-component CBM problem with and without the special operator.

Another ADP example is found in Xia et al. (2008), where the authors prove
for a multi-component TBM problem that the optimal policy satisfies a shortest-
remaining-lifetime-first rule, which simply means that older components are replaced
before younger ones. As a consequence, the action space is reduced from all 2N

combinations for replacing N components to choosing how many of the N components
to replace. The authors consider a 30-component numerical example and solves it
with temporal difference learning with linear approximation of the value function.
The action selection step in this algorithm includes a maximization over all actions
(similar to Equation (2.10)), which is not feasible without the reduced action space.

A few ADP/RL algorithms, for instance Q-learning, can be proved to converge to
the optimal solution, but the majority of algorithms do not come with such guarantees
(Sutton and Barto 2018). The converge proof of Q-learning relies on the property that
every state in the MDP is visited infinitely many times, so it is an impractical method
for computing optimal policies. In practice, ADP/RL algorithms are often terminated
when the performance of the approximate policy appears to have stabilized, which
requires a subjective judgment (Powell 2011). Furthermore, because we typically use
these algorithms on large problems, the only means of assessing how well they work,
is to compare with optimal solutions to small instances of the same problem, or to
compare with simple heuristic policies.

2.2 General system modeling
We already touched upon the overall constituents of a maintenance model when we
described the generic example in Section 1.1. To recap, these are: system, dete-
rioration, information, maintenance, utility, and optimization. Just as these
constituents are reoccurring in all maintenance models, there is a common termi-
nology in the academic literature for specifying the finer details within each of the
six aspects. In this section, we review the terminology and common assumptions
within the first five aspects, and relate it to the MDP theory above. The final aspect,
optimization, is treated separately in Section 2.3.

As can be seen from the various applications listed in Section 1.3, the system can
be any physical entity that could require maintenance. However, from a modeling
perspective, there exist only two major types of systems, namely single-component
systems and multi-component systems. The former can be seen as a subset of the
latter, and therefore all concepts that are relevant for single-component systems keep
their relevance for multi-components systems. In this thesis, we only deal with multi-
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component systems. Therefore, at the end of this section, we provide a separate
treatment of the aspects, which are only relevant for multi-component systems.

In the following we only present a general overview of maintenance modeling, and
some subtopics have been left out. More detailed reviews are given by Cho and Parlar
(1991), Dekker et al. (1997), Wang (2002), Nicolai and Dekker (2008), Olde Keizer
et al. (2017), Alaswad and Xiang (2017), and Jonge and Scarf (2020).

2.2.1 Information
Perhaps the aspect with the most influence on the available optimization approaches
is the assumptions we make about the incoming information we have about the system
as time progresses. The are two things to consider here. First, the type of information
we receive about the state of the system and secondly, the points in time, where the
information about the state arrives.

Regarding the former, we have already introduced the two major categories in Sec-
tion 1.4, namely TBM and CBM. From the references collected throughout the PhD
studies, it appears that after the turn of the millennium, the majority of academic
works in maintenance have focused on studying CBM. One reason is the development
of sensor technology for monitoring equipment deterioration (Alaswad and Xiang
2017; Shin and Jun 2015; Jardine et al. 2006). This has made CBM attractive and
also accessible to a larger segment of industry. The previous focus on TBM models
thus reflects the nature of the problem that industry was facing, with respect to the
available information about the systems that were generally present at the time. This
is supported by the review on multi-component models by Dekker et al. (1997). With
very few exceptions, this review only contains TBM models where maintenance is
triggered based on component age information. We primarily use the term TBM to
refer to this kind of policy, but in Section 2.3.1 we give an example of another type
of TBM policy, where maintenance is triggered by calendar time.

Information about the state In CBM it is assumed that we observe the condition
of the system or its components, but we distinguish between two cases. First, we
can assume that we observe the true condition of the system. This is done in the
majority of CBM studies (Alaswad and Xiang 2017), however, it is not always possible
in practice. Secondly, we can consider that the true condition is partially observable
by assuming a distribution on the observed state conditioned on the true underlying
state. The POMDP framework described in Section 2.1.4 and used in, e.g., Nguyen
et al. (2019) and Papakonstantinou and Shinozuka (2014b) is an example of this
approach.

All maintenance models, both TBM and CBM, have some notion of system failure.
Although TBM models assume that we have no information about possible intermedi-
ate condition states, the failure of the system may reveal itself automatically, which is
also called self-announcing failures (Jonge and Scarf 2020). The available information
in a TBM model may therefore include whether or not the system is functioning. In
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a TBM model, where failures are not self-announcing, maintenance must be planned
based only on assumed knowledge about the time-to-failure distribution for the sys-
tem, since we never actually observe the state of the system. An example of this
is the Block-Replacement (BR) policy, where the system is replaced at pre-specified
times kT , k = 1, 2, . . ., T > 0, which is described in more detail in Section 2.3.1.

Besides the intrinsic deterioration of the system, relevant external environment
information (temperature, humidity, season, etc.) may also be included in the model
if this influences the rate of deterioration or cost of maintenance (Kurt and Kharoufeh
2010; Byon and Ding 2010; Deloux et al. 2009).

CBM inspection schedules In TBM models, self-announcing failures are the only
new information that may arrive as time progresses. The arrival of new information
is therefore mostly related to CBM, and the possible schedules for when the condition
of the system is inspected. The inspection schedule can either be continuous or dis-
crete. Furthermore, the discrete schedule can be divided into periodic and aperiodic
inspection. Continuous monitoring of the system condition may refer to a situation,
where the system is monitored in real time using sensors (Castro et al. 2020). Periodic
inspections is a common assumption in the literature, both because it may be the
only practical schedule, e.g. during an annual production plant shutdown (Alaswad
and Xiang 2017), and also because it can make the modeling of the system and the
optimization problem more tractable. Other times, periodic inspections are manda-
tory due to safety regulations (Arismendi et al. 2021). An aperiodic schedule can be
beneficial if there is a high cost associated with inspections. For instance, in (Grall
et al. 2002) a policy is considered, where the system condition at the current inspec-
tion determines the time until the next inspection. Inspections are then less frequent
as long as the system condition is good, and more frequent when the system is close
to failure.

Whether or not failures are self-announcing is also relevant for CBM with discrete
inspection schedules. If failures are self-announcing, they may occur in between two
inspections, and an appropriate reaction to the failure can then immediately be de-
cided. However, if a failure is hidden, then the system will remain in the failed state
until the next inspection, which can have negative economical and safety-related con-
sequences. Klutke and Yang (2002) provides a CBM example with hidden failures,
namely power systems with protective relaying, that operate in stand-by mode until
needed. Even in stand-by mode the relaying equipment deteriorates, so it is necessary
to physically inspect them every now and then, otherwise failures may be hidden until
the equipment is suddenly needed.

Time and epochs Following Noortwijk (2009), a maintenance optimization model
can also be classified according to the possible moments for decision epochs. In a
continuous-time model, decision epochs can be at any time, t ∈ [0,∞). This can
either be through a continuous inspection schedule in CBM (Castro et al. 2020), or
by epochs triggered by self-announcing failures, which may occur anywhere in [0,∞).
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A model is also continuous in time if, for any t ∈ [0,∞), there is a policy in the set
of admissible policies that has an epoch at time t. For instance, in the BR policy the
decision variable, T , for the time between replacements can be set equal to t.

An MDP, like the example in Section 2.1.1, is a discrete-time model. However,
through the SMDP framework described in Section 2.1.4, continuous-time MDP mod-
els can also be formulated. As described above, the period length in a CBM model
with periodic inspections, is sometimes a decision variable. In Xu et al. (2021), Chen
et al. (2015), and Sun et al. (2018) joint optimization of maintenance and inspec-
tions is done by varying the inspection period and solving a discrete-time MDP for
each considered period length. In that sense, an ordinary MDP can also become a
continuous-time model.

2.2.2 Deterioration
Here, we cover some of the models used to describe and predict how the condition of
the system evolves over time. We use the term deterioration model to cover all differ-
ent ways a system can go from being new to failed, although this term is sometimes
reserved for gradual and observable deterioration.

Which kind of deterioration model is appropriate depends on the available infor-
mation about the system condition and the nature of failures.

Lifetime distribution When the information about the system state is limited
to whether the system has failed or not, it is natural to only model the time to
failure, T . The distribution of T is often given via a failure (hazard) rate function,
h(t) = f(t)/R(t), where f is the probability density function of T and R is the
reliability (survival) function, R(t) = P (T > t). Choices for the distribution for T are,
for instance a Weibull distribution (Dekker et al. 1996), an exponential distribution
(Assaf and Shanthikumar 1987), a gamma distribution (Haurie and L’Ecuyer 1982),
or a “bathtub” failure rate distribution (Archibald and Dekker 1996; Ahmad and
Kamaruddin 2012).

Hard and soft failures In CBM for single-component systems, the most common
modeling approach is to represent the deterioration of the system by a univariate
stochastic process, {Xt}t∈T , where T is either a discrete set or the nonnegative real
numbers, [0,∞). The system failure is modeled as the first passage time of a limit,
L > 0, i.e., the time of failure is T = inf{t ∈ T : Xt ≥ L}. In Meeker and Escobar
(2014) two types of failures are defined, where the limit, L, is either fixed or random,
respectively. For some systems, the failure event is obvious, because the system stops
functioning. These failures are named hard failures, and it is in general appropriate
to let L be a random variable in this case. If Xt represent some physical variable
measured on the system (e.g., vibration magnitude, power consumption, etc.), then
failures will in general not correspond to Xt crossing a specific level, instead the value
of Xt when the system fails will vary from unit to unit. Soft failures on the other hand
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are when the performance of the system decreases gradually as the system deteriorates.
In this case, L can be a fixed critical level, at which the system performance has
become unacceptable. For manufacturing systems, the performance loss can be an
increasing defect product rate, and Xt might even represent this quantity directly
(Grall et al. 2002). A fixed L may also be motivated by safety-requirements, where
the risk of a hard failure is too large for a system operating above the limit. We
elaborate further on this point in Section 2.2.4.

Continuous-state processes There are several choices for the process, {Xt}t∈T .
Examples of processes where the state space is a continuum include the Wiener pro-
cess (Sun et al. 2018; Guo et al. 2013; Zhang et al. 2018), the inverse Gaussian process
(Chen et al. 2015), fatigue crack-growth models (Ditlevsen and Madsen 1996; Kozin
and Bogdanoff 1989; Meeker and Escobar 2014; Morato et al. 2019), the compound
Poisson process (Klutke and Yang 2002; Ranjkesh et al. 2019), geometric Brownian
motion (Elwany et al. 2011), and the gamma process (Andriotis and Papakonstanti-
nou 2019; Shafiee et al. 2015; Jonge et al. 2017; Noortwijk 2009; Nguyen et al. 2015;
Mercier and Castro 2019; Grall et al. 2002).

The gamma process is very often used in numerical examples in maintenance opti-
mization research papers. We also use the gamma process as the standard example in
all the later chapters, and therefore we describe this particular process in more detail.
A random variable, X, is said to be gamma distributed with shape parameter α > 0
and rate parameter β > 0, denoted X ∼ Gamma(α, β), if its probability density
function, fX , can be written

fX(x) = βα

Γ(α)
xα−1e−βx, (2.20)

where Γ is the gamma function. The stationary (time-homogeneous) gamma process
is a special case of a pure-jump increasing Lévy process, and it is characterized by
the three properties:

1. X0 = 0 with probability one;

2. Xt −Xs ∼ Gamma(α(t− s), β) for all t > s ≥ 0;

3. Xt has independent increments.

The gamma process is suitable when deterioration is caused by monotonically accu-
mulating damage by a sequence of increments, which is a reasonable assumption for
many systems. In contrast, a deterioration process such as the Wiener process assigns
non-negligible probability to negative increments, thus allowing for spontaneous im-
provements in the condition. At time t, the expected value of a gamma process is
given by E[Xt] = αt/β, and the variance is given by V [Xt] = αt/β2. When V [Xt]
is small compared to E[Xt], the trajectories of X(t) are almost linear. Conversely,
if V [Xt] is large compared E[Xt], accumulated damage is caused by a few but large
jumps. Figure 2.1 illustrates the two cases plus an intermediate case. In the large
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variance case, there is not much benefit in using CBM over TBM, since failures are
likely to be caused by a single jump, that occurs at an exponentially distributed time
(i.e., according to a Poisson process). The same is true for the small variance case,
since the lifetime of the system varies very little (Jonge et al. 2017). In Noortwijk
et al. (1995) and Noortwijk et al. (1997) it is shown that the gamma process follows
minimal assumptions of non-negative and exchangeable increments, where the order
of occurrence is irrelevant (l1-isotropy). In summation, the gamma process is both
very versatile in the types of deterioration behaviors it can model, and the justifica-
tion for using it as a generic example also has a theoretical basis. More details about
the gamma process can be found in Noortwijk (2009) which contains a comprehen-
sive overview including theoretical properties, estimation techniques, and the author
points out case studies where the gamma process is used to model deterioration of
various systems, such as dikes, steel coatings, steel pressure vessels, auto-mobile brake
pads, and more.

Discrete-state models The DTMC (Byon and Ding 2010; Kurt and Kharoufeh
2010; Zhou et al. 2013), the CTMC (Chan and Asgarpoor 2006; Arismendi et al. 2021),
and semi-Markov chains (Chen and Trivedi 2005) are the most common discrete-state
deterioration models. In fact, in one review of CBM optimization (Alaswad and Xiang
2017) these are the only discrete-state deterioration models mentioned. The same is
true for the review on general maintenance optimization, Jonge and Scarf (2020).

There are two immediate reasons for assuming a discrete state space. First, there
are systems, where an exact real-valued measure of deterioration cannot be obtained,
and instead deterioration is categorized into qualitative levels such as “no deteriora-
tion”, “mild deterioration”, “severe deterioration”, etc. (Alaswad and Xiang 2017;
Welte et al. 2006; Arismendi et al. 2021). Secondly, the assumption of a DTMC
deterioration process allows us to model the system as an MDP and optimize the
maintenance policy with DP. A number of studies also form the initial model using
one of the continuous-state processes described above, and then perform discretization
of the state space in order to facilitate the optimization (Hontelez et al. 1996; Elwany
et al. 2011; Chen et al. 2015; Sun et al. 2018; Andriotis and Papakonstantinou 2019;
Xu et al. 2021). The discretization approach is used in all the work we present in the
following chapters, where generic maintenance models are investigated. However, in
Section 2.4 we also describe a railway case study, where we found the discretization
of af continuous-state deterioration process to be useful in practice.

Condition monitoring, diagnostics, and prognostics We defined CBM (also
known as predictive maintenance) in Section 1.4 as maintenance, where decisions are
based on information about the condition of the system. Although this definition
is consistent everywhere in the literature on CBM, there is a vast amount of work,
where the focus lies on the part of obtaining and analyzing the condition information.
Jardine et al. (2006) provides a good overview of the general steps involved in CBM,
and the summary we provide here is mainly based on this reference.
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Figure 2.1: Simulated gamma process trajectories with: E[X1] = 2 , V [X1] = 4.44
(dotted), E[X1] = 1.12 , V [X1] = 0.25 (dashed), E[X1] = 1.02 ,
V [X1] = 0.01 (solid).

The process of collecting measurements related to the health of the system is
called condition monitoring. As we have already mentioned in Section 2.2.1, condition
monitoring can either be done automatically using sensors mounted on the system
or manually by inspection. Examples of data obtained with sensors are vibration
data, temperature, acoustic data, oil analysis data, humidity, and pressure. For a
better interpretation of the data, a data processing step follows the monitoring step.
The method needed for processing depends on the nature of the data. For instance,
vibration and acoustic data are waveform type data and require signal processing
tools, such as time- or frequency-domain analysis.

After relevant features have been extracted from the data, comes the final step,
namely maintenance decision support. From the CBM reviews in Jardine et al. (2006)
and Shin and Jun (2015), it appears that this mostly involves diagnostics and prognos-
tics, both of which are terms that describe methods for relating the monitored data to
the occurrence of system failures. Simply put, diagnostics are methods for detecting
failures when they occur, while prognostics are methods that predict when a failure
will happen in the future (also called remaining-useful-life estimation). Various statis-
tical and machine learning approaches for diagnostics are mentioned in Jardine et al.
(2006) and Shin and Jun (2015), for instance principal component analysis, logistic
regression, cluster analysis, artificial neural networks, support vector machines, and
autoregressive-moving-average forecasting. These are all data-driven approaches. For
specific system components, physics-based mathematical models are also mentioned
as means for diagnostics and prognostics, but stochastic process models such as those
described above, are barely mentioned in Jardine et al. (2006) and not mentioned at
all in Shin and Jun (2015). In both CBM review papers, prognostics are presented as
a method for avoiding critical system failures because maintenance can be performed
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preventively before they happen. However, Jardine et al. (2006) also acknowledges
that “prognostics, like any other prediction techniques, cannot be 100% sure to pre-
dict faults and failures.” This leaves us with an optimization problem of balancing the
risk of expensive failures with the unnecessary costs of over-maintaining the system.

A stochastic deterioration process, {Xt}t∈T , as presented above, describes the
evolution of the condition of the system. In the context of studying maintenance
optimization of a generic system model, it is common to assume full knowledge about
{Xt}t∈T , but this is an idealized scenario. In reality, most of what we can measure
on the system such as vibrations, temperature, acoustics, etc. are only covariates that
indicate upcoming failures. The “true” condition of a system modeled by {Xt}t∈T is
therefore an abstraction of the condition monitoring process. Defining a meaningful
measure of deterioration and modeling its evolution with any of the above deteriora-
tion processes, can be a very difficult task in practice. Nonetheless, in Section 2.4 we
argue that a model-based approach is necessary in order to optimize the long-term
performance of a maintenance policy.

2.2.3 Maintenance
Just as we need a deterioration model to describe the evolution of the system condi-
tion, we also need a model of the impact of maintenance activities. In maintenance
literature, there are two main classes of maintenance activities: Corrective Mainte-
nance (CM), which is maintenance as a result of a system failure, and Preventive
Maintenance (PM), which is maintenance performed before a failure occurs in order
to retain the condition of the system (Wang 2002). Maintenance can also be clas-
sified by effectiveness. Perfect maintenance, is when the condition of the system is
reset to an as-good-as-new state. This is synonymous with replacement of the system
with a new and identical one, in the sense that the condition of the new and the old
systems evolve according to i.i.d. stochastic processes. Imperfect maintenance, is any
maintenance that reverts the condition of the system to somewhere between the as-
good-as-new state and the state right before maintenance was performed (Pham and
Wang 1996; Mercier and Castro 2013; Xu et al. 2021). When perfect maintenance
is assumed to be the only available action, the system is said to be non-repairable.
A light bulb, a brake pad, or a rolling bearing (Elwany et al. 2011) are examples
of non-repairable systems. Examples of repairable systems are the truss bridge in
Andriotis and Papakonstantinou (2019), where cleaning and repainting of corroded
surfaces lowers the deterioration rate of steel truss members, or the different thickness
of the pavement resurfacing in Golabi et al. (1982).

Besides timing and effectiveness, the duration of the maintenance activities can
also differ. Maintenance planning time, obtaining the necessary spare parts, trans-
porting a maintenance crew to the site, and the maintenance activity itself can all
cause a delay between the time of the decision and the time the system is operational
again (Jonge et al. 2017; Mercier and Castro 2013). Nonetheless, most studies assume
in the model of the system that maintenance activities are instantaneous, which can
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be justified if the true duration is negligible compared to the time between failures.

2.2.4 Utility
In the context of optimization, utility is a performance measure used to compare
policies, which allows us to search for the optimal policy within a set of admissible
policies.

Cost rate The most commonly used utility in maintenance optimization is the
average cost per time unit, also known as the cost rate. To give a general definition
on a continuous time axis, we use the CBM model in Grall et al. (2002) as an example.
We define the cumulative cost up to time t as

C(t) = ciNi(t) + cpNp(t) + ccNc(t) + cdd(t). (2.21)

Here, ci, cp, cc and cd are cost parameters and Ni(t) is the number of inspections in
[0, t], Np(t) is the number of PM actions in [0, t], Nc(t) is the number of CM actions
in [0, t], and d(t) is the total amount of time spent in the failed state in [0, t]. The
cost rate is then defined as

lim
t→∞

E[C(t)]
t

. (2.22)

Assuming negative cost parameters, i.e., ci, cp, cc, cd < 0, the goal is to choose a policy
that maximizes (2.22).

The parameters ci, cp, cc and cd are mostly self-explanatory, but there are a few
remarks to be made. The cost of an inspection, ci, is only relevant if the inspection
schedule is being optimized. The parameter, cd, is the cost of downtime, which often
reflects production losses (Byon and Ding 2010; Dekker et al. 1997; Elwany et al.
2011).

Regarding the PM cost, cp, and the CM cost, cc, it is always assumed that cc < cp

(or cc > cp in a formulation with positive parameters). The reasoning is that a
failure can induce catastrophic damage to the system and its surroundings and this
makes CM actions more complicated and expensive than PM actions. For instance, an
engine can be totaled if one of its connecting rods break, so it is cheaper to preventively
replace the rod rather than correctively replacing the whole engine (Pham and Wang
1996).

The cost function, C(t), is not always defined as the sum of the four terms included
in Equation (2.21). When multiple degrees of maintenance and inspection are possible,
multiple cost parameters are assumed, whose values increase with the effectiveness
of the action (Golabi et al. 1982; Nguyen et al. 2019). Nonetheless, C(t) is usually
comprised of costs that accrue either at a constant rate such as cd, or lump costs which
are accrued at discrete events such as ci, cp, cc. More complicated cost structures
are also possible, an example being Broek et al. (2021). Here, production rate and
maintenance are jointly optimized, such that a balance is struck between maximizing
revenue while minimizing maintenance costs. The authors assume a fixed planning
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time for maintenance, and that the deterioration rate of the system is proportional
to the controlled production rate. During the maintenance planning time, it can
therefore be beneficial to lower the production rate to minimize the risk of failure
before the maintenance has been carried out.

Other utilities For manufacturing systems, the cost rate is a suitable utility, but
obtaining accurate estimates of the individual cost parameters can be difficult. If the
durations of maintenance and inspection are non-negligible, then availability can act
as a proxy for cost, as the duration parameters may be easier to obtain than the cost
parameters (Klutke and Yang 2002).

Besides using the average cost per time unit, the robustness of a maintenance pol-
icy can also be compared through the variability if the incurred costs. In Cherkaoui
et al. (2018) this is done by comparing the standard deviation of the cost in a renewal
cycle, and in Hong et al. (2014) the authors attempt a similar goal using stochastic
dominance rules. These two methods account for the decision-maker’s attitude to-
wards risk in the cost rate. The decision-maker’s attitude towards the risk of failures,
can also be considered by including in C(t) a penalty in form of an operating cost as
a function of the deterioration of the system (Medury and Madanat 2013; Andriotis
and Papakonstantinou 2019). The specific degree of risk aversion is difficult to inter-
pret in this case. In particular, the operating cost function seems to be chosen rather
arbitrarily in the two mentioned references. In Almeida et al. (2015), it is noted that
a translation of a system failure into a cost might even be inappropriate for certain
systems. For instance, in systems where failures may result in environmental disaster
or the loss of human lives, e.g., nuclear power plants, oil distribution systems, or med-
ical equipment, multi-objective optimization methods such as Pareto front solutions
and multi-attribute utility theory are more suitable. By using multi-objective opti-
mization, cost minimization is not considered in isolation, but safety and reliability,
which are obviously also influenced by the maintenance policy, are taken into account.
These methods are reviewed in Almeida et al. (2015).

Although it is difficult to merge safety and cost into a single objective function
in service-oriented systems, such as transportation systems, there are cases, where
stipulated safety requirements determine the set of admissible maintenance policies.
The road network CMDP model of Golabi et al. (1982) described Section 2.1.4 is an
example of this. In the multi-component TBM model presented in Xia et al. (2008),
safety-critical components in an airplane must be replaced before the components
reach a predetermined maximum age. Components older than the maximum age are
assumed to have a too high failure rate. In CBM models, a fixed failure level in a
stochastic deterioration process can also represent a predetermined safety constraint.
We give an example of such a system in Section 2.4.
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2.2.5 Multi-component systems
Every modeling aspect we have covered so far are relevant for maintenance modeling
of single-component systems. If a system consists of multiple integral components that
interact with each other, the modeling and optimization become more complicated.
Here we describe the overall kinds of dependences between components, and how they
can be accounted for in the modeling.

Whether a system is single or multi-component is a matter of perspective. Any
real-world system has a hierarchical structure, because a system consist of sub-systems,
and each sub-system again consists of smaller subsystems, etc. (Jonge and Scarf 2020).
For instance, a wind turbine is a system, which consists of a rotor, a tower, and a
drive train. The rotor is comprised of multiple blades, the drive train consists of
bearings, a gearbox, and a generator, and the tower consists of several pieces and a
foundation. We can also consider the entire wind turbine as a single component that
is part of a larger multi-component system, namely a wind farm. Such a system is
subject to the same kinds of dependences, and therefore from a modeling perspective,
multi-component is synonymous with multi-unit, multi-item and multi-asset.

Whether we choose to model a system as a single component or as multiple com-
ponents also affects if the system is non-repairable or repairable. A brake pad in a car
can be considered a single-component non-repairable system. However, replacing a
brake pad is also an imperfect maintenance action, because the car as a whole is not
restored to the as-good-as-new state. From this example we also see that a general
feature of a multi-component maintenance model is that at least some of the available
maintenance actions only applies to individual components in the system (Jonge and
Scarf 2020).

Reviews of multi-component maintenance models, for instance Cho and Parlar
(1991), Dekker et al. (1997), Nicolai and Dekker (2008), and Olde Keizer et al. (2017),
distinguish between three major types of dependences between components, namely
structural dependence, economic dependence, and stochastic dependence.

Structural dependence According to Olde Keizer et al. (2017), there are two
types of structural dependence. The first kind is technical dependence, which is
present if some components structurally form a part, such that maintenance of one
component requires dismantling or maintaining other components as well. The sec-
ond kind is performance dependence, which concerns the reliability structure of the
system, that is, how the failures of individual components affect the overall system
performance. The most common reliability structures are: series system, where one
component failure causes a system failure; parallel system, where the system retains
some performance as long as one component is still functioning; series-parallel system,
which is blocks of parallel components in a series; and K-out-of-N system, where the
system functions as long as there are at least K functioning components. A K-out-
of-N system generalizes series and parallel systems, because a 1-out-of-N system is
a parallel system, and a N -out-of-N system is a series system. References to studies
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that consider each of these structures and also more complex structures are given in
Olde Keizer et al. (2017).

Economic dependence Economic dependence concerns the impact of perform-
ing maintenance on multiple components simultaneously. The effects of this can be
either negative or positive. Negative economic dependence occurs if simultaneous
downtime of components is undesirable, in which case maintenance should be spread
out as much as possible (Dekker et al. 1997). Positive economic dependence is when
maintaining multiple components simultaneously is cheaper than maintaining the in-
dividual components at different times. It is also known by the name opportunistic
maintenance, which is named from the situation where an unexpected system shut-
down, for instance due to a failure in one component, is an opportunity to maintain
other components if these are also worn but still functional. Positive economic de-
pendence is usually built into the optimization problem as a joint setup cost that is
only paid once even if multiple components are being maintained. The setup cost
can represent the commission when hiring a maintenance crew, the price of putting
up a scaffolding around a structure, or the transportation costs of getting a crew
to a remote location (Dekker et al. 1996). Positive economic dependence can also
be reflected in the reduced system downtime costs, when maintenance durations are
assumed to be non-negligible.

Stochastic dependence Stochastic dependence is the dependence between the
deterioration processes of each component in the system. This can either be intrinsic
or caused by external factors.

Intrinsic stochastic dependence happens, for instance, if the failure of one com-
ponent sends a transient shock through the entire system, thereby damaging other
components (Zhang et al. 2020). Another kind of intrinsic dependence is found in
Olde Keizer et al. (2018), which is a load-sharing deterioration model in a parallel
system, where the amount of stress on the system is distributed out on all functioning
components. In this discrete-time discrete-space model, the number of deterioration
increments are Poisson distributed, and when one component fails, the Poisson dis-
tribution parameter of the other components increase. Bian and Gebraeel (2014)
considers a slightly more complex version of load-sharing. Here, intrinsic stochastic
dependence is modeled by each component following a Wiener process with drift,
and where an increase in the deterioration level of one component increases the drift
parameter of other components.

Stochastic dependence can also arise, if deterioration of components is caused by
external forces from the operating environment. For instance, stormy weather can
cause damage to the rotor blades on multiple wind turbines in a farm simultaneously
(Olde Keizer et al. 2017). In Feng et al. (2015), this kind of dependence is modeled by
a Poisson process for the arrival of shocks that affect all components, where the shock
damage magnitudes to individual components are independent random variables.
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Another way to model stochastic dependence caused by external factors, is to use
copula functions (Shi et al. 2020; Hong et al. 2014; Li et al. 2016; Xu et al. 2021; Jiang
et al. 2021), which introduce dependence between the deterioration increments of
individual components. In Chapters 3 and 5, we consider a multivariate Lévy process,
Xt = (X1

t , . . . , XN
t ), where each marginal process Xi

t , i = 1, . . . , N , is a gamma
process that represents the deterioration of component i. The gamma process is a
Lévy process with intensity measure νi(x) = αix

−1 exp(−βix), where αi and βi are
the shape and rate parameter of component i. The Lévy measure ν of the multivariate
process Xt is represented through a Lévy copula function C : [0,∞)N → [0,∞). This
function links the tail integral U : [0,∞)N → [0,∞] of the Lévy measure ν given by

U(x1, . . . , xN ) = ν([x1,∞)× · · · × [xN ,∞)) (2.23)

to the tail integral Ui : [0,∞)→ [0,∞] of νi by the relation

U(x1, . . . , xN ) = C(U1(x1), . . . , UN (xN )). (2.24)

In Chapters 3 and 5, we use the positive Clayton-Lévy copula function

C(x1, . . . , xN ) = (x−θ
1 + · · ·+ x−θ

N )−1/θ, θ > 0. (2.25)

The parameter θ dictates the dependence of jump sizes, where larger values increase
the tendency to observe simultaneous large jumps in each component. Figure 2.2
shows simulated realizations of X1 with two components for different values of θ.
Detailed information about Lévy copula functions can be found in Grothe and Hofert
(2015) and Kallsen and Tankov (2006).

2.3 Optimization methods
Using the classification from Nicolai and Dekker (2008), maintenance optimization
methods can be classified into exact, heuristic, and policy optimization. The au-
thors define the former as methods designed to find the exact optimum solution to
a given optimization problem. An MDP model together with an optimality criterion
(e.g. the expected total discounted reward) define an optimization problem, and the
optimal solution can be found with DP. Another example of a model formulation,
for which there exist exact optimization methods, is Mixed Integer Linear Program-
ming (MILP). We give an example of such a model in Section 2.3.2. A heuristic
optimization method, is any method that can find a solution of reasonable quality
in a reasonable amount of time. The ADP/RL algorithms for MDPs described in
Section 2.1.4 are in that sense heuristic methods. In policy optimization, the search
for a solution is restricted to a predetermined class of policies. Usually, the class is
specified by a relatively small number of parameters, which then need to be tuned to
the best configuration possible.
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Figure 2.2: Simulated bivariate-gamma process increments, X1 = (X1
1 , X2

1 ) with
α1 = α2 = 5, β1 = β2 = 4.45, and Clayton-Lévy copula depedence
with: θ = 0.2 (left), θ = 1.5 (middle),and θ = 3.0 (right).

2.3.1 Policy optimization
The policy optimization approach is perhaps the most common type of optimization
in maintenance literature. As mentioned in the survey, Wang (2002), thousands
of models for optimal maintenance have been developed, and this survey classifies
them according to the design of the maintenance policy. We will not repeat all the
classes here, but simply mention the most traditional policies, a few more complicated
policies, and the methods used to optimize them.

The basic policy designs for single-component systems are:

Age-Replacement (AR) The system is replaced at age T or failure, whichever
comes first. This is the TBM policy illustrated in Figure 1.3. For repairable
systems this can be extended by allowing for imperfect maintenance upon fail-
ures (Wang 2002).

Block-Replacement (BR) The system is replaced at times kT , T > 0, k = 1, . . . ,
regardless of the system state at the time of replacements. This is a TBM policy
primarily for systems without self-announcing failures, hence when the system
fails it remains so until the next planned replacement.

Periodic Inspection and Replacement (PIR) The system is inspected periodi-
cally with period ∆ and is replaced if the deterioration of the system exceeds a
threshold value, M . This is the basic CBM policy illustrated in Figure 1.2.

The above policies are all specified with either one or two parameters. Optimizing
for the best parameter configuration requires a method for evaluating the utility
(e.g., the cost rate) for a given input of parameters, and a search method over the
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set of possible parameter values. For the evaluation of the cost rate, such as it
is defined in (2.22) analytical expressions are usually derived using regenerative and
semi-regenerative properties of the evolution of the system state and standard renewal
theory arguments (Barlow and Proschan 1996; Abdel-Hameed 1987; Grall et al. 2002;
Zhang et al. 2020; Guo et al. 2013; Zhou et al. 2013; Castro et al. 2020; Castanier
et al. 2005; Dieulle et al. 2002). The expressions usually contain complicated nested
integrals that require numerical methods in order to be evaluated. Alternatively, the
cost rate evaluation can be performed with Monte-Carlo simulation (Hong et al. 2014;
Jonge et al. 2017; Shafiee et al. 2015; Nguyen et al. 2015). If there are only a few
parameters to be optimized, an exhaustive search on a fine grid (Jonge et al. 2017;
Guo et al. 2013; Nguyen et al. 2015; Castro et al. 2020) or an iterative grid search
(Shafiee et al. 2015; Hao et al. 2020) suffices.

The policies developed for multi-component systems are very often based on mul-
tiple threshold parameters per component (Olde Keizer et al. 2017). A number of
studies of multi-component systems with economic dependence consider variations of
the (mi, Mi)-policy. This policy can either be an extension of the AR policy in the
TBM case or the PIR policy in the CBM case. Each component, i, is correctively
replaced upon failure, or preventively replaced if its deterioration (or age) exceeds
the Mi threshold. Furthermore, if another component j ̸= i is being replaced, com-
ponent i is also preventively replaced if it exceeds the mi threshold. The structure
of this policy is illustrated in Figure 2.3. In van der Duyn Schouten and Vanneste
(1990), the AR version is used, where mi and Mi are age thresholds, and the authors
develop an efficient algorithm for the two-component system based on the PI algo-
rithm. In Castanier et al. (2005) the PIR version of the (mi, Mi) policy is extended
in a two-component system with additional thresholds that decide the time until the
next inspection depending on the current state. The policy is extended even further
in Zhou et al. (2013) to N -component series-parallel systems. When the number of
components is large, an exhaustive search through all combinations of possible thresh-
old values is infeasible. Therefore, a tailored heuristic is developed for the task in
Zhou et al. (2013), and other studies optimize threshold values using general heuristic
search methods such as genetic algorithms (Marseguerra et al. 2002) or ant colony
optimization (Liu and Huang 2010).

The fact that the maintenance optimization survey in Wang (2002) categorizes
papers according to the type of policy being studied, is itself an indication that policy
optimization is used more often than exact methods. In this thesis, the focus is on
DP, which is an exact method that is limited by high computational requirements.
Tuning a parametrized policy to its optimal configuration can also be computationally
demanding, if the number of parameters is large. However, we can stop the procedure
at any point and obtain a solution, only it will be a suboptimal configuration of the
parametrized policy. The same is not true in a DP algorithm, where completing even
a single iteration is sometimes impossible if the state space is very large. Further-
more, the optimal policy may have a complex structure, and therefore be difficult
to implement in practice. Although a parametrized policy may lead to a suboptimal
solution in terms of utility, it is possibly easier to implement, especially if it has been
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Figure 2.3: Example of an (mi, Mi) policy in a two-component system. X1
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t

denote component deterioration and L is a fixed failure limit. Paren-
theses indicate actions.

tailored to the case-specific circumstances.

2.3.2 Non-stationary policies
So far, we have mainly described optimization of maintenance on an infinite horizon,
where the dynamics of the system and the policy obtained from the optimization are
stationary. In the following chapters we only consider infinite-horizon models, but
there are two alternatives, namely finite-horizon and rolling-horizon models, which
have some advantages and disadvantages compared to infinite-horizon models.

In finite-horizon models, the system is only considered up to some final time,
T <∞. Finite horizon models can be formulated as MDPs, but MILP formulations
are also common. In Caetano and Teixeira (2015), an MILP model is developed
for scheduling replacement activities for a 10-year period in a 336km railway track
multi-component system. The optimization is performed with a commercial solver,
but other than that the authors do not mention if and how the optimal solution is
found. The finite horizon formulation adds flexibility to the model, because we can
incorporate non-stationary behaviors of the operating environment or cost parameters,
and available actions. For instance, in Caetano and Teixeira (2015), the authors
include time-dependent budget constraints and an operational constraint that ensures
each track segment is replaced exactly once during the planning horizon. However,
a finite-horizon model also requires that we specify the scrap value of the system,
rT (s) (using MDP notation), which is the reward received from ending the process in
state s ∈ S. Unless the system is in fact taken out of operation at time T , specifying
a meaningful rT (s) is difficult. In Caetano and Teixeira (2015), the scrap value is
defined somewhat arbitrarily from a loss of life for not reaching the maximum allowed
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number of maintenance operations in the last epoch. Therefore, even though no real
system will remain in operation for eternity, the alternative finite-horizon models
also have a conceptual shortcoming due to the difficulty of choosing a meaningful
scrap value. Sedghi et al. (2021), Nicolai and Dekker (2008), and Moghaddam and
Usher (2011) contain more references to MILP maintenance models and the exact-
and heuristic methods for solving them.

A rolling-horizon model attempts to get the best from both infinite-horizon and
finite-horizon models. Decisions are based on a tentative infinite-horizon plan and
are then adapted in each epoch by solving a finite-horizon problem that includes
short-term information (Dekker et al. 1997). For multi-component systems it often
involves a two-step optimization that first optimizes a policy for each individual com-
ponent, and then decides in the second step how to group maintenance activities
based on a finite-horizon binary mathematical programming formulation, i.e., a set-
partitioning problem. In the first step, the long-term policies are found by solving a
single-component model for each component in the multi-component system, which
is computationally cheap. The second step is a large combinatorial problem and it
is therefore often solved approximately using e.g. ant-colony optimization or genetic
algorithms (Liu et al. 2018; Bouvard et al. 2011; Vu et al. 2014). Even when the
second step is solved exactly, the overall procedure is not guaranteed to be globally
optimal because in the second step the optimizer only looks for optimal groupings
in the near future and do not account for groupings after the finite horizon (Dekker
et al. 1996).

2.3.3 Optimality and assumptions
A simple scheme of the high-level process of maintenance optimization is

1.Real-world system
↓

2.Mathematical model
↓

3.Optimization
↓

4.Maintenance policy

The stages are: Starting from a real-world system (1.), we construct a mathematical
model (2.) that mimics reality. Based on the model, an appropriate optimization
procedure is chosen (3.), which yields an optimized maintenance policy (4.). Along
these stages we have to make some assumptions, but the reason behind an assumption
depends on which stage it belongs to. Assumptions at stage 1 are general assump-
tions that reflect the true nature of the real-world system. Assumptions at stage 2
simplify reality in order to construct the mathematical model, for instance because



40 2 Modeling & Optimization

the real-world dynamics of the deterioration and failure mechanisms cannot be mod-
eled perfectly. Finally, there are also assumptions at stage 3, which can be additional
simplifications that facilitate the optimization.

The general MDP and MILP frameworks do not impose any structure on set of
admissible policies, and when an exact method is used for optimization, we can regard
the resulting policy as globally optimal. Policy optimization imposes some structure
on the set of admissible policies. Between system assumptions (1.) and optimization
assumptions (3.), the definition of a globally optimal policy can be different depending
on the situation. The question is whether we count assumptions about the structure
of a maintenance policy as something that is inherent to the problem, e.g., a practical
constraint, or something we impose to make the optimization tractable. This is not
always clearly stated in studies that use policy optimization, but in general we regard
the policy optimization approach to be a kind of heuristic. That is, unless it can
be proven that the globally optimal policy has a specific parametric structure, e.g.,
a control-limit structure (Abdel-Hameed 1987; Kurt and Kharoufeh 2010; Derman
1963).

2.3.4 How good are the heuristics?
In the previous sections, we have reviewed the different methods of optimization. In
this section, we present a sample from the literature, of how well policies obtained
from the different approaches compare. In particular, the optimal policies found in
MDP models of multi-component systems have on different occasions been compared
to simpler, but easier to optimize, parametrized policies. The optimal policies in
MDPs are more difficult to obtain, but how much better are they in terms of the
resulting cost rate? Also, the optimal policy may have a complex structure and
therefore be difficult to implement in practice, as shown in Figure 2.4. On the other
hand, optimizing a parameterized policy also requires a model of the system dynamics,
so we may as well attempt to obtain the best policy possible.

The (mi, Mi) policy described in Section 2.3.1 has on multiple occasions been
compared to optimal policies. In Haurie and L’Ecuyer (1982), the authors consider a
6-component series system and compare an optimal TBM policy to a special case of
the AR version of the (mi, Mi) policy2. In the worst case the (mi, Mi) policy is only
an 1.3% increase in costs compared to the optimal policy. van der Duyn Schouten
and Vanneste (1990) is an extensive analysis of a two-component series system where
the optimal TBM policy and the AR version of the (mi, Mi) are compared again. 45
parameter configurations are tested, and in all cases the (mi, Mi) is less than 0.6%
worse than the optimal policy. In Olde Keizer et al. (2016), the authors consider var-
ious parameter configurations with N ∈ 2, 3, 4 in a K-out-of-N system and compare
an optimal CBM policy to the PIR version of the (mi, Mi) policy. The increase in
cost here lies between 1.5% and 10.2%.

2It is proven that if no components have failed it is optimal to do nothing, so only (mi, D)
policies need to be considered, where D denotes the failed state of a component.



2.4 Practical aspects 41

L

L

(0,0)

(0,1) (1,1)

(1,0) (0,0)

(0,1) (1,1)

(1,0)

Figure 2.4: Examples of a optimal CBM policy (left) and a optimal TBM policy
(right) the a two-component systems from Chapter 5. Parentheses de-
note actions.

For systems with many components, optimal policies cannot be computed exactly,
so policies obtained from approximate ADP/RL algorithms are compared to simpler
heuristic policies. For instance, in Andriotis and Papakonstantinou (2019) summa-
rized in Section 1.3, a policy obtained with RL is 5.8% better than an optimized PIR
policy.

Some studies also compare optimal policies found with DP to parametrized policies
simpler than the (mi, Mi) policy. In Barreto et al. (2014), a generalization that
includes stochastic dependence in the multi-component TBM model from van der
Duyn Schouten and Vanneste (1990) and Haurie and L’Ecuyer (1982) is formulated.
The optimal TBM policy is here 24.7% better compared to an AR policy that uses the
same age threshold for all components. In Olde Keizer et al. (2016), the authors also
compare the optimal CBM policy with PIR, AR, and BR policies resulting in cost
increases in the ranges 3.8%-20.0%, 40.3%-62.0%, and 21.9%-64.2% respectively. In
Olde Keizer et al. (2018) the same model is extended to include stochastic dependence
and the optimal CBM policy is again compared to the PIR policy with cost increases
between 5% and 52% in the considered examples.

Although the numbers we have presented in this section are not a comprehensive
comparison of the optimization methods, they illustrate that there are both situations
where a simple policy performs close to optimally in a complex systems and also
situations where major savings can be obtained if the optimal policy can be identified.

2.4 Practical aspects
Several hurdles for applying maintenance optimization models in the real world have
already been identified in the academic literature (Dekker 1996), and still a large gap
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remains between the theory of maintenance and what is actually practiced in industry
(Veldman et al. 2011; Fraser et al. 2015). Over the course of the PhD studies, we have
been in contact with companies that are currently taking steps towards improving
their maintenance processes. Common for all of them is a focus on implementing
CBM. The systems in question are, shipping containers and dockside cranes, plastic
injection molds, a steel coil production line, power plant components, and railway
tracks. From our exchanges with these companies, we acquired a few insights that
help to explain the major difficulties in implementing the modeling and optimization
techniques presented in the previous sections.

We start by describing the railway track case. Railway maintenance is an applica-
tion domain, where practical use of maintenance optimization seems realistic, due to
a number of features that are inherent to the system. Furthermore, this case is also
motivation for some of the assumptions we make for the generic models considered
in the later chapters.

2.4.1 Railway case study
In a railway track, the two parallel rails are fastened to perpendicular concrete ele-
ments called sleepers, which rest on a bed of crushed stone called ballast. As the track
is subjected to the stresses of passing trains, the ballast begins to settle, which may
cause misalignments in the geometry of the rails. Ultimately, high levels of misalign-
ment lead to an increased risk of train derailment. To counteract this, maintenance
in the form of ballast tamping must be performed, which is done by a machine that
lifts the rails and sleepers back in place and packs the ballast underneath. The need
for tamping is decided based on rail geometry data, which is collected at frequent
measuring campaigns by a track recording car. A dataset from a line between two
Swedish cities was provided by Trafikverket, and more details about the following can
be found in Eegholm-Larsen and Olesen (2021).

The multivariate geometry data is aggregated into summary statistics for each
200 meter segment. A particular statistic, the standard deviation of the longitudinal
level, is used as the variable that indicate the need for tamping (Caetano and Teixeira
2015). The European standard 13848-5 (2017) specifies safety limits for this variable.
If the limit is exceeded, the entire line must be closed temporarily or the train speeds
must be reduced, until the track has been realigned. From a modeling perspective, the
standardized limits simplifies the problem as a component failure is then predefined.
Because the deterioration rate of this variable is not the same for different segments,
tamping is usually not performed on all segments at the same time. The railway can
therefore be considered as a multi-component system with a series reliability structure,
where components correspond to individual segments.

An example of the data for a single segment is show in Figure 2.5. Because the
time between tampings for a segment is usually in the order of years, and because
there is some required planning time when scheduling tampings, a discrete-time model
formulation with one year between epochs is appropriate. However, there are usually
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several measuring campaigns each year, and these are not equidistant, hence the
deterioration is more naturally modeled on a continuous time-scale. A uncountable
state space is also natural, since the measured geometry variable is continuous. In
the analysis in Eegholm-Larsen and Olesen (2021), different candidate models are
tested and the one that describes the deterioration best is a Wiener process with drift
and error terms. The heterogeneous behavior of segments is modeled with normally
distributed drift and infinitesimal variance parameters in the Wiener process. A
single-component version of the problem is modeled as an MDP. As a consequence
of the doubly stochastic deterioration process, the optimal policy found with DP is a
time-inhomogeneous control-limit policy, where the tamping threshold increase with
the time since the last tamping. The same form of policy is proven to be optimal in
Elwany et al. (2011) for a similar CBM problem for bearings. The complex structure
in the policy is not easy to parameterize, and this is only accentuated in the multi-
component problem, which justifies formulating the problem in the general framework
of MDP.

Discretization is, however, a necessary step for solving an MDP with a uncountable
state space as we discussed in Section 2.1.4. This effectively turns the continuous-time
continuous-space Wiener deterioration process into a DTMC. In Chapters 3 and 5 we
analyze the approach of combining continuous deterioration processes with MDP and
DP optimization. Another approach would be to model the deterioration directly as
a DTMC, however as it is pointed out in Hontelez et al. (1996), it is very difficult in
practice to obtain enough data to fill a one-step transition probability matrix. Indeed,
this was also an issue when attempting to fit a DTMC on the geometry variable data.
On the other hand, estimating a few parameters of a continuous process is more
practical, and this also has the benefit of retaining the intrinsic continuous nature of
the system (Grall et al. 2002).

2.4.2 Data
Compared to the other cases mentioned in the introduction of this section, mainte-
nance modeling and optimization seems particularly suited for the railway case. The
main reason for this is the mandatory collection of condition data for the tracks, de-
fined according to an international standard. The dataset for the railway case spans
more than a decade, but, for some of the other companies we talked to, condition mon-
itoring procedures were at a very early stage, and a proper indicator for deterioration
had yet to be identified. Obviously, the condition of the system must be observed
for a considerable amount of time, before an appropriate deterioration model can be
established, or the remaining useful life can be predicted with accuracy.

In Dekker (1996) they highlight replacements in vehicle fleets, such as buses and
trucks, as a fruitful area for maintenance optimization, because a large number of
copies of the same system allows for data pooling. The same can be done in the
railway case, because all segments are structurally identical. This is not possible for
specialized equipment found in a steel coil production line, or power plants. Another
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Figure 2.5: Example of geometry measurements over time for a single track segment.
Tampings indicates with dashed lines..

reason the railway case is suited for optimization is that the system essentially remains
the same for a long period of years. In production systems, new technologies are
continuously developed, so instead of replacing components by identical ones, they
are sometimes replaced by a newer generation. As a consequence, historical data
records become obsolete.

A problem present in most of the cases, was that very few or no failures had
ever been recorded. This can be attributed to the historical data records being fairly
short, but it can also be a symptom of maintenance being done too often. No recorded
failures makes deterioration modeling and failure prediction difficult, since the data
contains too little variance to be useful for these purposes (Kulahci et al. 2020).
Furthermore, it was sometimes the case that more emphasis was put on collecting
and analyzing condition monitoring data, wheres as event data, such as when and
how the system was maintained, and cost data would receive little or no attention.
In Jardine et al. (2006), the authors also make this observation, and point out that
condition monitoring data and event data are equally important.

2.4.3 Prognostics and horizons
Condition monitoring and data-driven prognostics were the main concerns for some
of the companies that we have been in contact with. Indeed, condition monitoring is
a prerequisite for CBM, and no optimization can be done without a solid condition-
monitoring method in place. Prognostics based on data-driven methods are sufficient
if we only care about the time until failure and the primary goal is to avoid unex-



2.4 Practical aspects 45

pected breakdowns and expensive CM by performing last-minute maintenance activ-
ities. However, failure predictions mainly serve as an alarm mechanism, and are not
very useful for optimization of the maintenance policy over a longer horizon.

For long-term optimization of maintenance, we argue that a stochastic deteriora-
tion model is necessary. At any given time, the decision-maker must decide when
maintenance should be performed, given the current information about the system.
This requires comparing the different alternatives, but in order to compare the choice
of performing maintenance sooner rather than later, we must have a way of accounting
for what happens after the maintenance intervention. The stochastic deterioration
model provides a way of doing this, since it models the evolution of the system state
after maintenance has been performed. Without a model of the system, we are faced
with the problem that we do not have any way of weighing the downside of perform-
ing maintenance too early, since we do not account for anything that happens post
maintenance and therefore do not know how much useful life we sacrifice.
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CHAPTER3
Computational
aspects of DP

The following paper is a numerical study of the problem size constraints we encounter
when using DP for maintenance optimization of multi-component systems. From a
practical point of view it is of course relevant to know the maximum number of
components a system can have, where we can still solve the problem with DP in
a reasonable amount of time. The motivation for this study comes from the fact
that numerous papers model multi-component systems with MDPs and solve them
with DP, but only few address the curse of dimensionality. We have not found any
references in the maintenance literature that answers the question of problem size
limits to a satisfactory level.

Quantifying the computational limitations of DP is also important when com-
paring DP to the alternatives described in Chapter 2, namely policy optimization,
heuristics, and approximate MDP methods such as ADP and RL. All of these meth-
ods are also hampered by some form of the curse of dimensionality. For instance, once
an MDP model has been established, we can turn to ADP to find well-performing
policies. Usually, ADP algorithms are tailored to the specific MDP at hand, in order
to exploit any structural properties in the MDP. In Jiang and Powell (2015), an ADP
algorithm is developed that exploits the monotonicity in the value function to en-
hance the convergence rate. They test it on a regenerative optimal stopping problem,
which can be seen as a finite-horizon CBM problem. The ADP algorithm achieves
90% of the performance of the optimal policy using between one and two orders of
magnitude less time compared to DP. However, when the number of components in
the problem increases, the time required by ADP and DP grow with the same factor.
Approximate algorithms are therefore unfortunately not silver bullets, but in terms
of multi-component problems they are able to find good policies in problems that
are substantially larger. Regarding policy optimization, we described in Section 2.3.1
how threshold-based policies must be optimized approximately using various meta-
heuristics when the number of components is large (14 components in the examples
in Liu and Huang (2010) and Zhou et al. (2013)). The curse of dimensionality is
therefore something that is inherent to the problem, and not to the algorithm for
optimization (Sutton and Barto 2018).
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In Section 2.2 we gave an overview of the different maintenance modeling as-
pects. From this we can summarize the system considered in this chapter as a multi-
component system with non-repairable components that all deteriorate according to
a gamma process. Self-announcing failures occur when component deterioration ex-
ceeds a fixed failure limit, L. The system is subject to structural dependence from a
K-out-of-N system reliability, stochastic dependence modeled with a Clayton-Lévy
copula function, and economic dependence via a joint setup cost for replacement ac-
tions. Regarding the available information, we formulate both a TBM MDP model
and a CBM MDP model. In the TBM model, we assume that we only know the age
of components, and whether or not they are still functioning. In the CBM model we
assume that the deterioration level is observed. Hence, the CBM model is the case,
where we have full information about the gamma deterioration process of a compo-
nent, {Xt}t∈[0,∞), and the TBM model then represents a case, where we have full
knowledge about the distribution of the failure time T = inf{t ∈ [0,∞) : Xt ≥ L}.
We use the Gamma process primarily because this is the most common deterioration
process in maintenance optimization papers, and secondly to analyze the combination
of a continuous deterioration process and DP optimization.

The main reason we consider both TBM and CBM models, is that the transition
probability structure in the two MDPs are quite different, and therefore the computa-
tional requirements are also different. Nonetheless, we also see a contribution in the
construction of the models themselves. In particular, at the time this chapter was
written, the incorporation of continuously deteriorating and stochastically dependent
components in an MDP model had not been considered before. In a recent study, Xu
et al. 2021, a comprehensive sensitivity analysis is carried out for a CBM model that
resembles the one we consider. This includes components deteriorating according to
gamma processes with copula dependence. However, the authors do not address the
computational aspects, and they also restrict the action space such that an optimal
policy is not guaranteed to be identified1.

The unified view of considering a multi-component system, in which we compute
both optimal TBM and optimal CBM policies, is also a novelty. As a side note,
this is also the first TBM model for a system with stochastic dependence caused by
an external environment (recall Section 2.2.5). This multi-component TBM model
may be of limited practical use, since estimating its transition probabilities requires a
tremendous amount of data for each possible combination of component failure and
the possible combinations of components ages at the moment of failure. However, in
Chapter 5 we consider both the CBM and the TBM model again, and compare the
performance of the optimal policies obtained from each model. We argue that this
comparison is only meaningful if we compare the optimal policies. In Chapter 5, the
TBM model therefore has a purpose from a maintenance theoretical perspective.

1Components closest to failure must always be replaced before less deteriorated components, and
if all components fail they must all be replaced again. In Chapter 4 we describe an example of how
it is sometimes optimal to let a component fail and never replace it again.
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1. Introduction

In traditional maintenance models, the decision to maintain a system is often based on its age

at the time of the decision, also known as Time-Based Maintenance (TBM). Records of failure

times of similar systems make it possible to estimate a lifetime distribution that describes the

uncertainty in the time to failure within that population of systems. An alternative approach

is Condition-Based Maintenance (CBM), where information about the physical condition of the

system is utilized for maintenance decisions.

For both TBM and CBM, the methods for optimizing the maintenance policy can be classified

using the scheme presented in Nicolai & Dekker (2008). Here, the authors divide optimization

procedures into policy optimization, exact-, and heuristic methods. They also classify according

to the planning horizon, which can be either infinite or finite. We consider exact methods and an

infinite horizon in this study. Policy optimization is the most common approach for infinite planning

horizons, where the system dynamics are assumed stationary. A parametrized policy, for instance

a variation of a control-limit policy, is considered and its parameters are optimized by deriving an

analytical expression for the long-run cost per time unit using renewal theory (Castanier et al., 2005;

Abdel-Hameed, 1987; Zhang et al., 2020). The restriction to a specific type of policy facilitates

the analyses, but the solution is generally not guaranteed to be globally optimal. An example of a

heuristic optimization approach is given in Vu et al. (2014) for a multi-component system, where

cost reductions can be obtained by grouping maintenance activities for different components. The

approach is to optimize separate infinite-horizon policies for each component and then use a genetic

algorithm on a rolling horizon for grouping decisions. Similar to the policy optimization approach,

the method proposed by Vu et al. (2014) does not necessarily yield a globally optimal policy, but

the heuristic allows for many components to be considered simultaneously. Further examples of

policy- and heuristic optimization are found in recent review papers by Olde Keizer et al. (2017)

and De Jonge & Scarf (2020).

In both TBM and CBM, a decision is made towards maintaining the system based on new

evidence (data) collected from the system. This makes Markov Decision Processes (MDPs), a

?Article in press DOI: https://doi.org/10.1016/j.ejor.2021.07.007
∗Corresponding author
Email addresses: jfan@dtu.dk (Jesper Fink Andersen), arean@dtu.dk (Anders Reenberg Andersen),

muku@dtu.dk (Murat Kulahci), bfni@dtu.dk (Bo Friis Nielsen)
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modeling framework for sequential decision making, a natural candidate for TBM and CBM models.

The methods for optimizing the policy in an MDP can be either Dynamic Programming (DP),

which is an exact optimization method, or reinforcement learning and approximate DP, which

both belong to the category of heuristic optimization methods. DP algorithms are, under very mild

assumptions, guaranteed to find globally optimal solutions in finite time. However, the required

computational effort grows exponentially with the dimension of the state space in the MDP. This

is known as the curse of dimensionality in dynamic programming.

Several MDP models have already been proposed for single-component systems, and because

dimensionality is not an issue, these are solved using DP (Elwany et al., 2011; Chen et al., 2015;

Neves et al., 2011). In a review on CBM optimization by Alaswad & Xiang (2017) the authors

emphasize that as modern industrial systems rarely consist of a single maintainable component,

there is an increasing need for multi-component models. In a more recent review on maintenance

optimization (De Jonge & Scarf, 2020), it is pointed out that there has been a shift towards heur-

istic policies and approximate methodologies for multi-component systems. Indeed, reinforcement

learning algorithms, even though they are not guaranteed to converge to a globally optimal policy,

have been used on both multi-component TBM problems (Xia et al., 2008) and CBM problems

(Andriotis & Papakonstantinou, 2019) of massive size.

In this study, we investigate the largest problem size, or correspondingly the maximum number

of components, for which it is computationally feasible to obtain a globally optimal solution with

DP. We focus on models with replacement as the only maintenance action, fixed regular inspection

intervals, and full system observability. In accordance with the motivation for practical use of

MDPs given in a recent book (Boucherie & van Dijk, 2017), we give the following two reasons for

investigating this:

• Firstly, even though policy optimization and heuristics might scale well for a given multi-

component maintenance problem, they should be validated by comparison with optimal solu-

tions to instances of the problem that are ideally as large as possible. This is the only way

of strengthening the belief that the heuristics perform well for even bigger problems.

• Secondly, the computational power of a present-day CPU combined with an optimized imple-

mentation may be efficient enough for solving real-life multi-component problems of moderate

size.

3
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In this study we consider a multi-component system, and formulate two MDP models for the

replacement problem for CBM and TBM. The system is general enough that the two resulting

models closely resemble most of the MDP models considered in other papers. We solve both

MDPs for a varying number of components using DP. We do not discuss the cost performance of

the resulting TBM and CBM optimal policies, but consider how the computational requirements

for solving the MDPs scale with the number of components. Since the structure of the two MDPs

are largely different, the answer is not the same in the two cases.

Single-component CBM studies using MDPs, as proposed in Derman (1963); Kurt & Khar-

oufeh (2010); Neves et al. (2011), model component deterioration on a discrete set of states

S′ = {0, . . . , D} with 0 being as good as new and D being a failed component. In TBM modeling,

these states represent the age of a component (Dekker et al., 1996; Barreto et al., 2014). When

formulating an MDP for a system with N components, a natural choice for the state space, S,

would be S = (S′)N , which has size |S| = (D + 1)N . The numerical examples presented in most

multi-component CBM studies are limited to a few components, so that general conclusions from

identified structures in the optimal policy and sensitivity analyses are easier to convey. For in-

stance, in Sun et al. (2018) the authors consider a system with N = 3 and D = 19 as their largest

example, which results in |S| = (19 + 1)3 = 8000. A larger example is found in Jiang & Powell

(2015) where a finite-horizon CBM replacement problem with N = 7 components, D = 10, and a

state space size of |S| = (10 + 1)7 ≈ 1.9× 107 is solved to optimality. Concerning multi-component

TBM models using MDP, the largest example we found is in Barreto et al. (2014), where an

infinite-horizon TBM replacement problem with up to N = 5 components and |S| ≈ 1.6 × 105 is

solved to optimality. The reported computation times in these studies are heavily dependent on

the algorithm implementation and the hardware that is used. Their purpose is to act as a baseline

for comparison with novel heuristic algorithms, and as such we cannot use them as guidelines for a

general size limit of the multi-component maintenance problems. The implementation details are

an often overlooked aspect in studies using DP, but they have a crucial impact on the performance.

For example, our implementation is able to solve numerical examples from Olde Keizer et al. (2016)

and Barreto et al. (2014) orders of magnitude faster, than the times reported in the studies.

Maintenance models using MDP often start by assuming a discrete state space, because this

is a requirement of DP algorithms. In practice, the condition monitoring procedure in a CBM

4
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application includes processing raw data signals of physical variables such as vibration or temper-

ature. In this case, the deterioration process of the components is most naturally modeled on a

continuous state-space. In accordance, we assume the underlying deterioration of the components

follow a gamma process in the system we consider. We then explore the effects of discretization,

that is, number of intermediate states between as-good-as-new and failure. The level of discret-

ization greatly affects the number of components we can handle in a multi-component system.

Nonetheless, we have not found any studies that go into detail in this aspect. Our results indicate

that a coarser discretization level than previously suggested is adequate.

The potential for optimization in an implementation of DP depends on the system charac-

teristics, for instance how we compute and store the transition probabilities in the MDP. In this

context, it is important whether the deterioration processes of the system components are depend-

ent, also known as stochastic dependence. In the system we consider, the dependence between the

gamma process of each component is modeled using a Lévy Copula. We illustrate how the level of

dependence affects the computational requirements for solving the MDP.

In summation, the contributions of our paper are the following:

• We propose a unifying modeling framework for TBM and CBM in multi-component systems.

• We provide realistic limits to the size of multi-component replacement problems, for which

they can still be solved to optimality using commonly accessible computer resources.

• We empirically demonstrate the different computational limitations when solving large CBM

problems compared to large TBM problems.

• We show that a relatively coarse choice of discretization level is sufficient to solve multi-

component CBM problems with continuous-state deterioration processes, such that a near-

optimal solution is obtained.

• We show how stochastic dependence among components affects the computational require-

ments.

The rest of the paper is organized as follows: In Section 2, we present the system and formulate

the MDP models for CBM and TBM. In Section 3, we summarize the DP algorithms we use to solve

the MDPs, and relevant implementation details. Section 4 contains the results of the numerical

experiments, and in Section 5 we provide a conclusion to the study.

5
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2. Problem description

We consider a multi-component system for which we formulate two replacement models for

CBM and TBM, both using an MDP. In the models, we assume (a) fixed inspection intervals, (b)

full system observability, and (c) perfect maintenance actions, i.e., replacements.

The purpose of this study is to investigate the computational requirements for solving the two

models, and we note that relaxing any of the three assumptions makes this task more difficult.

Before we proceed to the formulation of the models, we therefore provide some examples of how

assumptions (a)–(c) can be relaxed and how this affects the resulting optimization problem.

(a) The inspection frequency, for revealing the system condition, is sometimes assumed to

be a decision variable. An example of a policy optimization approach is the delay-time model

with delayed postponement in van Oosterom et al. (2014). Here, the policy is parametrized by a

threshold for the age at which we inspect a component, and if it is found to be close to failing, a

second parameter determines the time until it is replaced. One way to include irregular inspections

in an MDP formulation is to consider a very short interval between decision epochs and include

“inspection” and “no inspection” as possible actions (Andriotis & Papakonstantinou, 2019). The

MDP version then considers a more flexible policy space than the policy optimization version,

since an inspection or replacement may be triggered by any combination of the time since the last

inspection and the condition found at that inspection. In that sense, this MDP formulation can

also be seen as a hybrid of TBM and CBM. However, an obvious caveat is that the state space in

this MDP has a higher dimension than a pure CBM or TBM model, since it requires two variables

per system component, namely age and condition.

(b) The issue of partial information is due to inspections not being perfect. This can be dealt

with by formulating the optimization problem as a partially observable MDP. Except for very

small problems, these models can only be solved approximately either using point-based algorithms

(Nguyen et al., 2019; Pineau et al., 2003), or a policy optimization approach as in Naderkhani ZG

& Makis (2015).

(c) Imperfect maintenance can be incorporated by including actions in the MDP that improve

the condition or reduce the age of components, but not all the way to the as-good-as-new state.

The result is a larger action space and, if the effect of the imperfect maintenance is random,

more nonzero transition probabilities in the MDP. Both of these factors make for a more difficult

6
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optimization problem.

2.1. System description

We consider a multi-component system with N deteriorating components with a K-out-of-

N reliability structure, meaning that the system is functioning as long as K components are

functioning. We choose this reliability structure as it is quite general and it includes the special

cases of series systems (K = N) and parallel systems (K = 1). We note that other reliability

structures, such as series-parallel systems, can be modeled by appropriately changing the reward

function in Section 2.3. Examples of other studies that use MDP and the K-out-of-N structure

are Sun et al. (2018); Olde Keizer et al. (2016); Andriotis & Papakonstantinou (2019).

The components are subject to deterioration, and their joint condition is described by a mul-

tivariate stochastic process {Xt}t∈[0,∞) = {(X1
t , . . . , X

N
t )}t∈[0,∞), with Xi

t being the condition of

component i at time t. We assume Xi
0 = 0 and that component i fails when Xi

t reaches a failure

threshold L, which is assumed to be the same for all components without loss of generality for the

process we describe in Section 2.2. The components are stochastically dependent, meaning that

the marginal processes Xi
t are mutually dependent. This is relevant for systems where the deteri-

oration of components are affected by the same external factors in the operating environment, e.g.,

weather condition.

In the CBM model, we assume that we observe the process, i.e., the condition of each com-

ponent. In the TBM model, we only observe whether components are functioning or not, and

replacement decisions are based on the ages of the components. We assume that replacements can

be carried out at regularly spaced maintenance windows, and that the time required to replace a

component is negligible. If component i is replaced before it fails, we incur a preventive replace-

ment cost, cip, and if the replacement happens after the failure we incur a corrective replacement

cost, cic. Furthermore, we assume there is a setup cost, cs, if at least one component is replaced in a

given maintenance window and a system failure cost, cf , if less than K components are functioning

at the time of replacement.

2.2. Deterioration process

In practice, CBM often involves monitoring physical variables of the components, hence it is

natural to model the deterioration as a continuous-state stochastic process. The choice of stochastic

7
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Figure 1: Realizations of Xt for N = 2, α1 = α2 = 7/4, β1 = β2 = 15/2 and θ = 0.2 (dotted), θ = 1 (dashed), θ = 3

(solid).

process is often dictated by the nature of the physical deterioration process, whether it is corrosion,

shock damage, crack growth, and the kind of data that is collected, e.g. temperature, vibration

magnitude, or geometry. In several CBM studies, MDPs are used in conjunction with such de-

terioration processes. For example, the inverse Gaussian process (Chen et al., 2015), the gamma

process (Nguyen et al., 2019; Andriotis & Papakonstantinou, 2019), Brownian motion with drift

(Sun et al., 2018), and geometric Brownian motion (Elwany et al., 2011). Recently, Xu et al. (2021)

used the first three of these in a CBM MDP model for a K-out-of-N system like the one considered

in this paper. Their focus is on the structure and cost performance of the policies.

In this paper, we assume that Xt is a multivariate Lévy process, which has time-homogeneous

and independent increments Xt−Xs, 0 ≤ s < t. We assume for each i = 1, . . . , N that the marginal

process is a gamma process, that is, Xi
t − Xi

s ∼ Gamma((t − s)αi, βi), where αi and βi are the

shape and rate parameter of component i. The dependence between the components is described

via a Clayton-Lévy copula function. This copula has one parameter, θ > 0, which dictates the

dependence of jump sizes, where larger values increases the tendency to observe simultaneous large

jumps in each component. Figure 1 shows simulated realizations of Xt with two components for

different values of θ. We will also consider the special case of independent components, which we

will abbreviate as the θ = 0 case. We will not go into details about Lévy Copulas but refer the

reader to Grothe & Hofert (2015), which presents the simulation algorithm we use in Appendix

A, or Shi et al. (2020); Li et al. (2016); Jiang et al. (2019), where gamma processes and the

Clayton-Lévy copula are used in the context of deterioration modeling.

8
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2.3. MDP formulation

In this section we formulate an MDP for both the CBM and the TBM version of the replacement

problem. In both models we consider the maintenance windows, which in MDP terminology are

called decision epochs, to be spaced with unit distance, τ ∈ {0, 1, . . .}. At each epoch, the system

occupies one of a finite set of states S = {0, . . . , D}N , where an element s = (s1, . . . , sN ) describes

the state of the system. In both the CBM and the TBM model, the state of component i is a

number si ∈ {0, . . . , D}, where si = 0 corresponds to a new component and si = D is a failed

component. The information in si is different for the two models though. In the CBM model, si is

a discretized version of the condition, Xi
τ , and in the TBM model si is the age of the component,

i.e., the number of epochs since the last replacement.

At each decision epoch we choose an action from a finite set A = {0, 1}N . When an element

ai of an action a ∈ A equals 1 (0), this corresponds to replacing (not replacing) component i.

Depending on the current state s ∈ S and action a ∈ A we receive a reward r(s,a) and the system

transitions to a new state s′ ∈ S with probability p(s′|s,a). Together S, A , p(·|·, ·), and r(·, ·) define

an MDP. Actions are chosen according to a policy, π ∈ Π, where Π is the set of all mappings from

S to A. Solving the MDP means to identify an optimal policy, π∗ ∈ Π, that maximizes the reward

received over an infinite horizon. The optimal policy π∗ minimizes the long-run maintenance cost,

which we formulate as a maximization problem where all rewards in the MDP are negative.

The reward function is the same for both the TBM and the CBM model and it is defined by

r(s,a) =

N∑
i=1

ai
(
cip1si<D + cic1si=D

)
+ cs

(
1−

N∏
i=1

(1− ai)

)
+ cf1|{i:si<D}|<K , (1)

where 1A is the indicator function for event A. The first term of Equation (1), is the replacement

costs. The second and third terms account for the setup cost and system failure cost, respectively.

In Sections 2.4 and 2.5 we describe, for each of the two models, how we obtain transition

probabilities p(s′|s,a) from the underlying deterioration process Xt. Since the replacement of a

component is assumed to be instantaneous, the replacement action a instantly moves the system

from state s to a post-decision state, ((1 − a1)s1, . . . , (1 − aN )sN ) ∈ S, that is, the same state

only with zero entries for the replaced components. The transition to state s′ then occurs with

probability p(s′|((1 − a1)s1, . . . , (1 − aN )sN ),0), where 0 ∈ A is the action of not replacing any

components. Let q(s′|s) = p(s′|s,0). It now suffices to specify q(s′|s) for all s, s′ ∈ S, which is

determined from the evolution of Xt.

9
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The process Xt describes the condition of the unmaintained system, where no replacements

are performed. The condition of the maintained system, here denoted Yt = (Y 1
t , . . . , Y

N
t ) is the

process, with the same increments Yt2 −Yt1 = Xt2 −Xt1 , 0 ≤ t1 < t2 <∞, when no replacements

are done in the interval [t1, t2], and for which a replacement, say of component i at time t, leads to

Y i
t = 0. The time of replacements depends on the policy, π being used. Specifically, at epoch τ , the

true system condition is mapped to an element of the discrete MDP state space, Zτ = (Z1
τ , . . . , Z

N
τ ),

and Zτ is then mapped to a replacement action via π. The mapping to Zτ is defined differently

for the CBM model and the TBM model. In Section 2.6, we discuss the implications of using Zτ

to make decisions.

2.4. CBM model

For the CBM model, a state s ∈ S is the condition information from the process Yt, only

in a discretized form. We could formulate the MDP using the same continuous state space as

the process Yt. Such a model can be useful if the objective is to prove that the optimal policy

has a specific structure, which is done in Elwany et al. (2011); Chen et al. (2015); Sun et al.

(2018); Özekici (1988). Identifying the optimal policy in an MDP with a continuous state-space is

equivalent to solving a nonlinear functional equation, namely the Bellman equation. But, even with

a characterization of the optimal policy, it is generally impossible to solve this equation analytically

(Özekici, 1988). The MDP must therefore be solved using the iterative algorithms in Section 3,

but in order to do so, the state space must first be discretized and transition probabilities between

the new discrete states must be approximated. Besides the references already mentioned in this

paragraph, Andriotis & Papakonstantinou (2019); Nguyen et al. (2019); Olde Keizer et al. (2016)

also discretize a continuous deterioration process in order solve an MDP.

Recall that L denotes the failure limit for each of the marginal deterioration processes. We

discretize the interval [0, L) intoD equally sized intervals Ik = [kL/D, (k+1)L/D), k = 0, . . . , D−1,

and let ID = [L,∞). We then form a mapping of the true condition of component i at epoch τ ,

Y i
τ , to a discrete state si ∈ {0, . . . , D}, by letting Ziτ = si, if Y i

τ ∈ Isi . Thus, Yτ ∈ Is where

Is = Is1× . . .× IsN is mapped to Zτ = s. In the MDP, we approximate the transition probabilities,

q(s′|s), between the discrete states s, s′ ∈ S by

q(s′|s) = P (Xτ+1 ∈ Is′ |Xi
τ = siL/D, i = 1, . . . , N), (2)
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i.e., we assume component i is at the left endpoint of interval Isi at epoch τ .

In the case of independent component deterioration (θ = 0), the probability in Equation (2)

factorizes. Let qi(s
′|s) = P (Xi

τ+1 ∈ Is′ |Xi
τ = sL/D), s, s′ ∈ {0, . . . , D}, i.e. the probability that

component i moves from discrete state s to s′. Then

q(s′|s) =

N∏
i=1

qi(s
′
i|si). (3)

We can calculate qi(s
′
i|si) from the distribution function of the marginal process Xi

t . When θ > 0

there is, however, no known analytical expression for the distribution of Xt, so we resort to Monte-

Carlo simulation to estimate the probabilities in Equation (2). The details of this procedure are

described in Appendix A.1. We note that for other deterioration processes with stochastic de-

pendence, the MDP transition probabilities can be calculated without the need for Monte Carlo

methods. In Shi et al. (2020) an analytical expression for the joint distribution function is given for

an α-stable deterioration process with Lévy copula dependence. In Zhang et al. (2020) stochastic

dependence is modeled by having a failure of one component induce shock damage to other com-

ponents.

2.5. TBM model

A number of studies consider multi-component TBM models similar to the MDP we formulate

in this section, namely Haurie & l’Ecuyer (1982); Dekker et al. (1996); Sun et al. (2007); Xia et al.

(2008); Barreto et al. (2014). In a TBM model, the element si of a state s ∈ S represents the age

of component i. At each transition, a component can either fail and transition to state D, or age

by one time unit, thereby transitioning to state si + 1. In the mentioned references, the failure

probability is assumed to be a known function of the component age. In our model, we construct

the failure probabilities from the underlying unobserved deterioration process. That is, Ziτ = si

if Y i
τ < L and the last replacement was at epoch τ − si. If the component has failed, Y i

τ ≥ L, or

the last replacement was at least D epochs ago, then Ziτ = D. Therefore, D is also a truncation

point for the maximum age of a component, because the algorithms we describe in Section 3 only

work for finite state spaces. We want to set D at a level high enough that the components are very

unlikely to reach that age. On the other hand, we do not want the state space to be larger than

necessary, so D is set individually for each component, Di, i ∈ {1, . . . , N}, such that P (Xi
Di
< L)

is close to zero. The state space of the TBM MDP is therefore S = {0, . . . , D1}× . . .×{0, . . . , DN}.
11
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We first look at the transition probabilities of a system with independent component deteriora-

tion (θ = 0) as these are easier to express. Let qi(s
′|s) denote the transition probability of a single

component as in Section 2.4. For the TBM model we define it as

qi(s
′|s) =



P (Xi
s+1 ≥ L|Xi

s < L) s′ = Di, s < Di − 1

P (Xi
s+1 < L|Xi

s < L) s′ = s+ 1 < Di

1 Di − 1 ≤ s ≤ s′ = Di

0 else.

(4)

The first line is the probability of a functioning component of age s failing, the second line is the

probability of not failing. If component i has age s = Di − 1 or is failed, s = Di, it will be in state

Di at the next epoch with certainty, which is the content of the third line. For θ = 0, the joint

transition probability q(s′|s) can again be calculated using Equation (3).

Now consider θ > 0 and that the system is in (post-decision) state s ∈ S. We define Fs, Es ⊆

{0, . . . , N} by Fs = {i : si = Di} and Es = {i : si = Di − 1}, i.e., the set of failed and almost

failed components, respectively. The only possible transitions are to the states s′ ∈ S for which

Fs ∪ Es ⊆ Fs′ and s′i = si + 1 for i ∈ F c
s′ , where Ac denotes the set complement of A. In other

words, each working component in state s has the possibility of failing, and there is one state, s′,

for each combination of possible failures. We approximate this transition probability with

q(s′|s) = P

 ⋂
i∈Fs′\(Fs∪Es)

Y i
τ+1 ≥ L

 ∩
 ⋂
i∈F c

s′

Y i
τ+1 < L

∣∣∣∣∣ ⋂
i∈(Fs∪Es)c

Y i
τ < L

 , (5)

where the policy that decides replacement times in Yt are described together with the Monte Carlo

estimation procedure in Appendix A.2. The set Fs′ \ (Fs ∪Es) in Equation (5) are the functioning

components that fail by exceeding the limit L in the transition to s′. The appearance of this set

is because we do not require the components in Fs ∪ Es to exceed the failure limit L as they are

by definition already certain to be in the failed state after the transition. The set F c
s′ are the

components that are still functioning in state s′. In Section 2.6 we elaborate on why Equation (5)

is only an approximation and the implications for the policy we obtain by solving the MDP.

2.6. Markov properties of induced stochastic processes

Globally optimal policies can be obtained via MDPs and DP, as we mentioned in the introduc-

tion. However, due to the assumed deterioration process, we can only obtain close approximations
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to a globally optimal policy for the system we consider. For the TBM case this is a consequence

of the Lévy copula dependence between components, and in the CBM case it is because of the

discretization of the state space. We provide further details in this section.

In an MDP, any policy, π : S → A, induces a Markov chain, Sτ , τ = 0, 1 . . ., on the set

of states S, where Sτ is the state at epoch τ . Specifically, Sτ has the Markov property since

P (Sτ+1 = s′|Sτ = s) = p(s′|s, π(s)), which does not depend on Sτ−1, . . . ,S0. Recall that Zτ is the

stochastic process obtained by mapping the true system condition, Yτ , to the MDP state space

S. The transition probabilities, p(s′|s, π(s)) defined in Equations (2) and (5), are approximations

of the probabilities P (Zτ+1 = s′|Zτ = s), s, s′ ∈ S; thus, the processes Zτ and Sτ have different

properties. This is demonstrated in Sections 2.6.1 and 2.6.2 through examples showing that Zτ is

not necessarily Markovian.

2.6.1. TBM

Consider the case of a two-component system where the policy is to never replace any com-

ponents. Suppose we have observed the following: At the beginning of the previous epoch, both

components were new, Zτ−1 = (0, 0), and at the current epoch the first component has failed

while the second has aged by one, Zτ = (D1, 1). The failure is caused by a large increment,

Y 1
τ − Y 1

τ−1, in the underlying deterioration process. Since this is correlated with Y 2
τ − Y 2

τ−1,

knowing Zτ−1 provides additional information about how likely the second component is to fail

before the next epoch, τ + 1, so it is possible that P (Zτ+1 = (D1, D2)|Zτ = (D1, 1)) and

P (Zτ+1 = (D1, D2)|Zτ = (D1, 1),Zτ−1 = (0, 0)) are not equal.

The implication is that in a multi-component system with dependent deterioration increments

among components, the globally optimal TBM policy is a history-dependent policy (Puterman,

2005). This means that actions are chosen based on the entire history of observed states, and

finding the optimal policy within this class is generally computationally intractable. The MDP

we propose in Section 2.5 is therefore only an approximate model. Nonetheless, we include it in

the numerical study for two reasons: First, the policy obtained from solving the MDP is at least

as good as any heuristic policy that is contained in the set of Markovian policies, e.g., age-based

and block-replacement policies. Secondly, from a computational aspect the case with dependent

components is interesting as it represents the situation that all transition probabilities in the MDP

have to be estimated in advance, which requires additional memory. Finally, it is important to
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notice that when components deteriorate independently, the issues regarding the Markov property

disappear, since the MDP transition probabilities in Equation (4) are not approximations as in

Equation (5) but exact.

2.6.2. CBM

In the CBM case, it is possible to construct a two-component example similar to that in

Section 2.6.1, to show that the process Zτ is non-Markovian. However, this is also true even

in a single-component system. Suppose we observe Zτ−2 = 0, Zτ−1 = 0, and Zτ = 0, which

from the definitions of Zτ and S imply that Y 1
0 , Y

1
1 , Y

1
2 ∈ [0, L/D). Knowing that Y 1

τ spent two

periods in [0, L/D) provides additional information about whether it will stay in this interval, so

in general P (Zτ+1 = 0|Zτ = 0) and P (Zτ+1 = 0|Zτ = Zτ−1 = Zτ−2 = 0) are not equal. As

the example illustrates, the non-Markovian behavior of the observed MDP states, Zτ , stems from

the discretization of the continuous state space. As we increase the number intervals, D, the

error introduced by the discretization diminishes, hence the policy we obtain from the MDP will

approach a globally optimal CBM policy.

3. Solution methods

Our overall goal is to solve as large instances of the MDPs formulated in Section 2 as possible.

To solve the MDPs, we use iterative DP algorithms. There are two different avenues of optimization

for these algorithms: Lowering the required number of iterations, and optimizing the speed of the

calculations within each iteration. The latter mainly revolves around how transition probabilities

are handled in the implementation. Details regarding this are provided in Section 3.7.

The former can be achieved by choosing the best algorithm configuration from a toolbox of

methods. These are presented in Sections 3.1–3.6. The three main algorithms, Value Iteration

(VI), Policy Iteration (PI), and Modified Policy Iteration (MPI) are briefly reviewed in Sections

3.1–3.3. It is generally impossible to know in advance, which of the three algorithms is better

for a particular MDP. Complexity results for MPD algorithms are surveyed in Littman et al.

(1995), however, the authors conclude with the statement that these results are of marginal use

to practitioners. In practice, the algorithms are usually much faster than their theoretical worst-

case run times (Sutton & Barto, 2018). The empirical approach we employ is therefore justified.

Besides iterative algorithms, optimal policies can also be obtained via linear programming, but
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this method becomes impractical already at much smaller problem sizes (Sutton & Barto, 2018),

and is therefore not included.

We solve the infinite-horizon version of the problems using the expected total discounted reward

optimality criterion. That is, from the set of all mappings from S to A, Π, we seek to find the

optimal policy, π∗ ∈ Π, satisfying vπ∗(s) = maxπ∈Π vπ(s) ∀s ∈ S, where vπ : S → R is called the

value function and where vπ(s) is the expected total discounted reward when starting in state s ∈ S

and following policy π ∈ Π. The optimal policy is found by solving the Bellman equations,

v(s) = max
a∈A

{
r(s,a) + γ

∑
s′∈S

p(s′|s,a)v(s′)

}
∀s ∈ S, (6)

where 0 ≤ γ < 1 is the discount factor.

3.1. Value iteration

The standard value iteration algorithm is an iterative algorithm that in each iteration, n,

updates an estimate of the value function, vn ∈ R|S|. Starting with an arbitrary v0 the updates

are computed by

vn+1(s) = max
a∈A

{
r(s,a) + γ

∑
s′∈S

p(s′|s,a)vn(s′)

}
∀s ∈ S. (7)

When Equation (7) is used repeatedly vn(s)→ vπ∗(s) as n→∞, see Theorem 6.3.1 in Puterman

(2005). When the value function converges, the final policy is obtained from the maximizing actions

in the last use of Equation (7). We elaborate more on convergence in Section 3.5.

3.2. Policy iteration

PI is based on two fundamental steps: Policy evaluation in which the value function of the

current best policy is computed, and Policy improvement, in which the policy is improved based

on the recently computed value function.

Let πn denote the policy in iteration n, and let vn denote the value function that corresponds

to policy πn. The purpose of the first step of PI is to derive vn by solving the linear system

(I − γPπn)vn = rπn . Here, rπn ∈ R|S| is the reward vector with elements r(s, πn(s)) and Pπn ∈

R|S|×|S| is the transition probability matrix with elements p(s′|s, πn(s)), s, s′ ∈ S. Subsequently, the

second step of PI finds an improved policy by applying Equation (7) and assigning the maximizing

actions to πn+1. The algorithm is initiated with an arbitrary π0 ∈ Π and continues until an

15

64 3 Computational aspects of DP



improving policy can no longer be obtained — i.e., when πn+1 = πn. Because the problem instances

we wish to solve are quite large, we solve the linear system (I − γPπn)vn = rπn using iterative

methods. Letting v̂0 be the value function after using Equation (7) in the improvement step we

then produce iterates v̂k that approach vn as k →∞ in the following manner,

v̂k+1(s) = r(s, πn(s)) + γ
∑
s′∈S

p(s′|s, πn(s))v̂k(s
′) ∀s ∈ S. (8)

In practice, the required number of policy improvement steps can be quite low, and if this is

the case, PI is often superior to VI. However, for some MDPs it may be inefficient to perform an

exact policy evaluation at each iteration, in particular if the number of actions is low, because the

VI update in Equation (7) is then not much more expensive than the policy evaluation step in

Equation (8). The next algorithm can be seen as a combination of VI and PI and attempts to

incorporate the advantages of both algorithms.

3.3. Modified policy iteration

We do not require an exact estimate of the value function vn to find a better policy in the

improvement step of PI. If we terminate the policy evaluation procedure in Equation (8) prema-

turely, we get the MPI algorithm (Puterman, 2005). The evaluation step is now referred to as

partial evaluation, and in our implementation we stop at k = m or when the sequence v̂k converges

to vn, whichever comes first. The optimal iteration limit, m ∈ N, is determined experimentally.

The MPI algorithm terminates when the value function converges upon being updated to v̂0 in the

improvement step.

3.4. Update schemes

The updates of the value function in Equations (7) and (8) will be referred to as standard

(STD) in Section 4. Besides this, we test two additional update schemes, namely the Gauss-Seidel

(GS) method and Successive Over-Relaxation (SOR). Both schemes speed up the convergence of

the algorithms by inserting updated values v̂k+1(s) (vn+1(s)) into Equation (8) (Equation (7)) as

soon as they become available. The SOR method involves a relaxation parameter, 1 ≤ ω < 2, and

the best value must be determined experimentally.
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3.5. Stopping criteria

All three algorithms that were presented in Sections 3.1–3.3 require a definition of convergence

to be able to stop. In this study, we test two different methods: The supremum norm, ‖vn+1−vn‖ =

maxs∈S |vn+1(s) − vn(s)|, and the span seminorm, sp(vn+1 − vn) = maxs∈S{vn+1(s) − vn(s)} −

mins∈S{vn+1(s) − vn(s)}. Let ε > 0 denote a tolerance parameter. When using the supremum

norm, we stop the algorithm when ‖vn+1 − vn‖ < ε(1− γ)/2γ and for the span seminorm we stop

when sp(vn+1 − vn) < ε(1 − γ)/γ . This ensures that ‖vπn+1 − vπ∗‖ < ε, see Theorem 6.3.1 and

Proposition 6.6.5 in Puterman (2005). The span criterion is more sensitive and often terminates

the algorithm much earlier. However, it does not apply to the GS and SOR update, which is why

we consider both criteria.

3.6. Initializations

The initialization v0, and π0 in PI and MPI, affects the number of iterations that are required

for algorithms to terminate. In order to assess the effect of the initialization, we consider three

different strategies. First, an initialization above the optimal value function, vπ∗ ≤ v0, which is

simply a zero initialization v0(s) = 0 and π0(s) = 0 for all s ∈ S. Secondly, an initialization below

the optimal value function, vπ∗ ≥ v0, which is formed by setting π0(s) = argmaxa{r(s,a)} and

v0(s) = r(s, π0(s)) + γ(1 − γ)−1 mins{r(s, π0(s))} for all s ∈ S. Thirdly, we also use a random

initialization where π0(s) is sampled randomly from A and v0(s) is sampled randomly between the

upper and lower bound from the other two initializations.

3.6.1. Multigrid algorithm

In the CBM model we also consider a multigrid algorithm similar to that in Chow & Tsitsiklis

(1991), where the MDP is solved multiple times for successively finer discretization levels. We first

solve the MDP with a small value of D (coarse grid), and use the resulting value function, vD, and

policy, πD, to initialize the algorithm for solving the MDP with a 2D discretization (finer grid),

that is, where the length of each interval Ik ⊂ [0, L) defined in Section 2.4 has been halved. More

formally, just as we defined S and the regions Is ⊂ [0, L)N for s ∈ S for the discretization level D,

we let S′ and I′s′ for s′ ∈ S′, be defined correspondingly for the discretization level 2D. Then for

each s′ ∈ S′ there is exactly one state s ∈ S such that I′s′ ⊂ Is, and we initialize the MDP for 2D

discretization with v0(s′) = vD(s) and π0(s′) = πD(s). After solving this MDP, the whole process

is repeated until a policy for a sufficiently fine discretization has been obtained.
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3.7. Implementation details

In this section we describe different strategies for handling transition probabilities in the al-

gorithm implementation, as this is the main performance bottleneck when solving large MDPs.

3.7.1. Store in memory

The most efficient method in terms of speed is to calculate all transition probabilities q(s′|s),

for all s′, s ∈ S where q(s′|s) > 0, and store them in memory before we run the algorithm. For the

TBM model the memory requirement for this is in the order of |S|2N because it requires storing

a probability for each combination of failures of the N components for each state s ∈ S. For the

CBM model the number of nonzero transition probabilities is in the order of |S|2. However, since

the deterioration process Xt is assumed to have stationary increments, we can choose to only store

|S| probabilities at the expense of additional computations. For u ∈ S, q(u|0) = P (X1 ∈ Iu) is the

probability that each component advances ui discrete states in one transition. We define the set

Us,s′ = {u ∈ S : ui + si ≥ D if si ≤ s′i = D and ui + si = s′i if si ≤ s′i < D}, (9)

which are the possible increments that moves us from state s to s′. Note that if s′i = D, then any

increment ui ∈ {0, . . . , D} such that si + ui ≥ D will result in s′i = D. The probability q(s′|s) can

now be calculated at runtime as the sum

q(s′|s) =
∑

u∈Us,s′

q(u|0), (10)

provided we calculate and store q(s|0) for all s ∈ S before running the algorithm. The simulation

procedure for estimating q(s|0) is provided in Appendix A.1.

3.7.2. Calculate at runtime

At some point, when the number of components is large enough, storing all probabilities is

impossible. Whether or not we can still solve the MDP depends on how fast we can compute the

transition probabilities as they appear in the algorithm at runtime. For the case of dependent

components, we would have to do this with Monte-Carlo estimation, which is extremely slow. In

the case of independent components it can be done quite efficiently using Equation (3), and it

only requires storing qi(s
′
i|si) for each s′, s ∈ {0, . . . , D} and i ∈ {1, . . . , N} which is (D + 1)2N

probabilities.
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When updating the value function at a system state s ∈ S, as in e.g. Equation (7), we need

the transition probabilities for all states s, s′ ∈ S for which q(s′|s) > 0. Suppose q(s′|s) > 0,

q(s′′|s) > 0, and that s′j 6= s′′j for some j but s′i = s′′i for i 6= j. If we have already calculated

q(s′|s) then we have q(s′′|s) = q(s′|s)qj(s′′j |sj)/qj(s′j |sj), which is faster than calculating Equation

(3) from scratch. In our implementation, we use a lexicographical ordering of the states in S to

systematically go through all possible transitions knowing which components are identical in s′

and s′′, and thereby avoid a substantial number of unnecessary operations.

4. Numerical study

The difficulty of solving the TBM and CBM models described in Section 2 might depend on

the parameters of the system. For each number of components, N , we therefore consider three

levels of component dependence: Independence (θ = 0), weak dependence (θ = 0.2), and strong

dependence (θ = 3.0). For each combination of θ and N we then generate 30 system instances

with varying deterioration and cost parameters chosen as follows: K is uniformly distributed

on {1, . . . , N}, L = 1, αi ∼ U(13/8, 15/8), βi ∼ U(25/4, 35/4), cs = −25 − 5(N − K), cf =

−500 − 500(N − K), cip ∼ N (−6βi/αi, 5
2), cic ∼ N (−12βi/αi, 5

2), where U(a, b), and N (µ, σ2)

denote the uniform distribution on the interval [a, b] and the Normal distribution with mean µ

and variance σ2, respectively. We found these parameter ranges, by experimenting with different

configurations for N = 2 and N = 3, and inspecting the resulting optimal policy. If the parameters

are not balanced, the resulting optimal policy might be trivial, e.g. π∗(s) = 0 for all s ∈ S, which

can be identified very quickly, and we want to avoid these uninteresting cases.

For each value of N , we now have 90 MDPs for CBM and 90 MDPs for TBM. The transition

probabilities in the CBM models are estimated from 109 realizations of X1, and in the TBM models

we estimate from 108 trajectories of Xt as described in Appendix A. In the TBM models, the age

truncation, Di, for component i, is set as the lowest integer such that P (Xi
Di

< L) < 10−6. For

the chosen distributions of αi and βi, this results in Di being in the range of 12 to 17.

All numerical experiments were performed on a Huawei XH620 V3 server node, which has two

Intel Xeon Processor 2660v3 with ten 2.60GHz cores each (we only utilize one core unless explicitly

mentioned) and 128GB RAM. All the algorithms were implemented in C++.
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4.1. Algorithm comparison

In this section we test each configuration of the solution methods presented in Sections 3.1–3.6.

The objective is to identify a configuration that is consistently fast across all system instances.

We test all feasible configurations of algorithm (VI, PI, MPI), value function update (STD,

GS, SOR), stopping criterion (supremum, span), MPI iteration limit m ∈ {10, 20, . . . , 100}, SOR

relaxation ω ∈ {1.0, 1.1, . . . , 1.9}, and initialization (above, below, and one random per MDP). The

number of feasible combinations is 468 for the TBM model, and 624 for the CBM model because

the CBM model also includes the multigrid initialization method. The discount factor and the

tolerance parameter are set to γ = 0.99 and ε = 0.001, respectively.

Testing all configurations is too time consuming for the MDPs where |S| is large. Initially

we therefore focus on a set of smaller MDPs, where the fastest algorithm configuration for each

MDP uses between 10 seconds and 250 seconds to solve it. In the TBM case, we have 51 MDPs

with N = 4 and |S| between 57,344 and 143,640. In the CBM case, we have 318 MDPs with

combinations of N ∈ {2, 3, 4, 5} and D ∈ {4, 6, 8, 12, 16, 24} resulting in |S| between 2197 and

15625.

Table 1 shows the best performing configurations, and demonstrates that the fastest config-

uration is not the same for all MDPs. In the TBM case, no configuration is the fastest in more

than 7 out of the 51 MDPs. Furthermore, any one configuration is on average at least 30% slower

when comparing its runtime to the lowest runtime among all configurations. We also note that

among the fastest configurations for each MDP, the initialization methods “below”, “above”, and

“random” were present 68%, 28%, and 4% of the time, respectively. Furthermore, for the MPI-

m-STD-span-(. . . ) configurations the average increase in runtime from the worst initialization to

the best initialization increases with m, from 9% at m = 20 to 21% at m = 90. Taking all of this

into account, we choose the MPI-60-STD-span-below configuration when solving larger system

instances in the Section 4.3.

In the CBM case, we pick the MPI-20-STD-span-multigrid configuration for solving large

MDPs. For all combinations of MDP and algorithm configuration, the multigrid initialization is

the fastest 74% of the time. In these 74% of the combinations, the second fastest initialization is

60% slower on average. In comparison, when the multigrid initialization is not the fastest, it is 17%

slower on average. In 7 out of the 318 CBM MDPs a configuration using the SOR update scheme
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was the fastest. In these 7 cases, the MPI-20-STD-span-multigrid configuration is 78% slower on

average, so for a given set of system parameters there is a small chance that an SOR configuration

will be most effective. However, in many of the MDPs the SOR configurations do not converge,

and when they do, they are between 8 and 16 times slower than the fastest configuration.

TBM: 51 MDPs Configuration Relative runtime #fastest

Top 3

relative runtime

MPI-80-STD-span-above +30.0% 0

MPI-80-STD-span-below +30.1% 1

MPI-90-STD-span-below +30.2% 3

Top 3

#fastest

MPI-40-STD-span-below +39.0% 7

MPI-100-SOR-1.0-sup-below +54.0% 7

MPI-60-STD-span-below +32.0% 4

CBM: 318 MDPs

Top 3

relative runtime

MPI-30-STD-span-multigrid +16.0% 35

MPI-20-STD-span-multigrid +16.3% 42

MPI-40-STD-span-multigrid +17.3% 15

Top 3

#fastest

MPI-10-STD-span-multigrid +19.0% 186

MPI-20-STD-span-multigrid +16.3% 42

MPI-30-STD-span-multigrid +16.0% 35

Table 1: Best performing algorithm configurations. The abbreviation in the configuration column denotes algorithm-

m-update scheme-stopping criterion-initialization. The column relative runtime is a measure for whether the config-

uration works well across different system parameter settings. Specifically it is the configuration runtime relative to

the lowest runtime among all configurations and then averaged over all the solved MDPs. The column #fastest is

the number of MDPs for which the configuration had the lowest runtime.

4.2. CBM discretization

When we constructed the MDP for the CBM case in Section 2.4, we discretized the continuous

deterioration process. Let π∗D denote the policy we obtain from solving the CBM MDP with D

discretization intervals. This policy is optimal w.r.t. the discretized deterioration process, and

by choosing a large enough D, π∗D will also be near-optimal w.r.t. the original continuous-state

process. In this section, we solve the CBM MDP for increasing values of D and identify the value,

where a further increase does not improve the performance of the policy, π∗D. The CBM MDPs

are solved using a discount factor γ = 0.99. A low tolerance, ε, is redundant if we cannot solve the

problem for a sufficiently large value of D, hence we use a less strict tolerance ε = 1.

Because of the discretization, the value function we get from solving the MDP, vπ∗D , is only an

approximation to the true value of π∗D. As a way of assessing the true performance of π∗D, we look
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at the total discounted reward obtained from simulating the maintained system, Yt, when actions

are chosen according to π∗D(Zτ ). For each value of D and system instance j = 1, . . . , 90, we let v̄Dj

denote a Monte Carlo estimate of the expected total discounted reward when starting with all new

components, i.e., in state Y0 = 0. In Figure 2, v̄Dj is shown for N = 4 and discretization levels

D ∈ {2, 3, 4, 6, 8, 12, 16, 24}. These particular values of D are used as they appear when starting

the multigrid procedure with either D = 2 or D = 3. We calculate v̄Dj as the average of 10,000

realizations of 1000 time steps of Yt. We choose this simulation length because after time 1000 all

remaining rewards in an infinitely long horizon account for only γ1000/(1− γ) ≈ 0.5% of the total.

2 3 4 6 8 12 16 24

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

Figure 2: For each 4-component system instance, j = 1, . . . , 90, the estimated expected total discounted reward v̄Dj is

plotted for increasing discretization levels, D. All estimates, v̄Dj are shifted by v̄24j in order to show all j = 1, . . . , 90

simultaneously. Standard errors of v̄Dj lies between 3.4 and 19.6 where the 95th percentile is 11.3.

As Figure 2 indicates, in all the 90 instances of 4-component systems the performance of π∗D

does not improve beyond D = 16. A reasonable conjecture is that a higher number of components

requires a finer discretization. To test this, we compare the incremental improvement of v̄Dj for

different N . Define δD→D
′
, D < D′, as the mean relative increase in the estimated total discounted

reward when using policy π∗D′ instead of policy π∗D, that is

δD→D
′

=
1

90

90∑
j=1

v̄Dj − v̄D
′

j

v̄Dj
. (11)
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Table 2 shows the rate at which δD→D
′

tends towards zero for different values of N . Seeing as

δ12→16 is well below one percent for N ≤ 4, the expected total discounted reward from using π∗D is

already close to the asymptote value when D = 12. Furthermore, when solving N = 2 and N = 3

with D = 64 we get an estimated δ12→64 of 0.48%(0.28%) and 0.75%(0.19%), respectively. Together

with the results from Table 2 showing that the incremental improvements decay at the same rate

for all values of N up to D = 12, this is a strong indication that the performance improvement

beyond D = 12 is very small.

N 2 3 4 5

δ2→3 2.11%(7.77%) 4.82%(8.27%) 5.28%(9.63%) 6.63%(8.37%)

δ3→4 2.44%(8.33%) 1.70%(8.06%) 1.67%(8.53%) 1.43%(7.07%)

δ4→6 2.63%(3.80%) 4.11%(3.87%) 5.04%(4.46%) 5.10%(3.83%)

δ6→8 1.45%(2.27%) 1.18%(1.67%) 1.17%(1.60%) 1.52%(1.45%)

δ8→12 0.97%(1.37%) 0.87%(0.78%) 0.97%(0.80%) 1.04%(0.72%)

δ12→16 0.15%(0.46%) 0.31%(0.46%) 0.36%(0.32%) –

δ16→24 0.19%(0.25%) 0.23%(0.33%) 0.20%(0.21%) –

Table 2: The mean relative increase in the estimated total discounted reward for increasing discretization levels.

Standard deviations are shown in parentheses. The missing entries take more than one week to calculate.

Olde Keizer et al. (2016) presents a two-component example with D = 48, Elwany et al. (2011)

uses D = 20 for a single-component system, Andriotis & Papakonstantinou (2019) uses D = 24

for a 25-component system (solved approximately), and in Sun et al. (2018) the authors suggest

using a D such that the interval length is in the same order of magnitude as the precision of

the sensors that measure the degradation level. Undoubtedly, the coarsest discretization level for

which a near-optimal policy can be obtained depends on which deterioration process is assumed.

The gamma process is arguably the most commonly used deterioration process in maintenance

optimization literature. As our results indicate, for this deterioration process, setting D lower than

in the aforementioned studies is adequate. Indeed, by replicating the gamma process example from

Olde Keizer et al. (2016) with different values of D, we find that D = 9 results in a policy with

the same performance as when D = 48.
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4.3. Runtime and memory

In this section we solve the models with as many components as possible based on the hardware

we use. The TBM MDPs are solved with the MPI-60-STD-span-below configuration and ε = 0.001.

The CBM MDPs are solved using the MPI-20-STD-span-multigrid configuration with ε = 1 and

D = 12. The results are summarized in Table 3, which shows the runtime and memory usage for

the different transition probability storage methods in Section 3.7.

N

TBM 4 5 6 7

All θ store q(s′|s)
5seconds(3) 3minutes(1.5) 1.6hours(0.8) –

21MB(2) 394MB(58) 9GB(2) > 128GB

θ = 0 calculate q(s′|s)
10seconds(5) 7minutes(4) 4.5hours(2.4) 47hours(2)*

8MB(0.4) 67MB(10) 1GB(0.1) 4GB(0.3)*

CBM

θ = 3

store q(s′|s)
30seconds(10) 1hours(0.5) – –

700MB(80) 15GB(1) > 128GB > 128GB

store q(s′|0)
8minutes(2) 57hours(21) > 1week* –

8MB(0) 61MB(0) – –

θ = 0.2

store q(s′|s)
2minutes(0.3) 9hours(3) – –

2GB(0) 80GB(0.2) > 128GB > 128GB

store q(s′|0)
8minutes(3) 60hours(19) > 1week* –

8MB(0) 61MB(0) – –

θ = 0

store q(s′|s)
2minutes(0.3) 9hours(2) – –

2GB(0.3) 80GB(0.1) > 128GB > 128GB

calculate q(s′|s)
4minutes(1) 26hours(4) > 1week* –

8MB(0) 55MB(0) – –

Table 3: Runtime and used memory for each transition probability storage method from Section 3.7. Each cell is

the mean over the 30 different MDPs for either θ = 0, θ = 0.2, or θ = 3, except the first TBM row which includes all

90 MDPs. Parentheses denote standard deviations. (*Parallel implementation using 10 cores.)

In all cases where it is possible to store all nonzero q(s′|s), s′, s ∈ S, we can solve the MDP

within a relatively short amount of time. The TBM models are faster to solve than the CBM

models because the number of nonzero probabilities out of all the |S|2 possible combinations of s′

and s is smaller in the TBM models, as shown in Table 4. It is worth noting that when storing all
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probabilities, the CBM MDPs for which components are strongly dependent (θ = 3) have a lower

runtime and use less memory compared to θ = 0.2 and θ = 0. The reason is that deterioration

increments, where some components have large jumps and others do not, are very unlikely and

therefore estimated to have zero probability. However, the benefit in terms of memory is limited

since storing all nonzero q(s′|s) is still only feasible up to five components.

N

TBM 4 5 6 7

|S| 5× 104 9× 105 1× 107 2× 108

Nonzero 1× 10−4 2× 10−5 2× 10−6 4× 10−7

CBM

|S| 3× 104 4× 105 5× 106 6× 107

Nonzero (θ < 3) 0.08 0.05 0.02 –

Nonzero (θ = 3) 0.03 0.01 – –

Table 4: Mean state space sizes |S| and the mean fraction of transition probabilities that are nonzero, i.e., |{(s′, s) :

s′, s ∈ S, q(s′, s) > 0}|/|S|2. The missing entries take more than one week to calculate.

In the case of independent component deterioration (θ = 0), calculating the probabilities at

runtime is at most 3 times slower than storing all probabilities. Considering that adding one

component generally increases the runtime by a factor of 40 for TBM and 300 for CBM, this is a

relatively small difference. Furthermore, the low memory requirements of calculating probabilities

at runtime enable us to attempt solving MDPs with more components. Our serial implementation

is too slow for N = 6 in CBM and N = 7 in TBM. Table 3 includes the runtimes of a parallel

implementation that divides Equations (7) and (8) between 10 CPU cores when these are calculated

for each s ∈ S. This implementation solves the TBM MDPs with θ = 0 and N = 6, in an average

of 34 minutes, which is an eightfold speedup compared to the 4.5 hour runtime of the serial

version. For the CBM MDPs where θ = 0 and N = 5, the 10 cores use 2.6 hours on average,

which is a tenfold speedup. Even so, we where not able to solve the N = 6 CBM instance within

a one-week time limit. It is possible that instances with more components can be solved with

more computer resources, given that the parallel algorithm scales linearly up to 10 cores. At

some number of components it does, however, become difficult to even store the solution to the

optimization problem. For instance, the 128GB available memory allows us to store a value function

in an MDP with |S| = 3.4 × 1010 using single-precision floating point numbers. This corresponds
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to 9 components for the values of D and Di we use in our numerical experiments.

Finally we note that our parallel implementation does not scale as well for the CBM MDPs

where θ = 0.2 and θ = 3. It solves the N = 5 instances in an average of 11 hours, which is

only a 5-fold speedup. Combined with the fact that the TBM models, where θ > 0, require a

lot of memory, we consider it infeasible to solve larger models with copula dependence between

components. There are, however, other ways of modeling stochastic dependence, that allows for

efficient runtime calculations of transition probabilities. In the TBM model in Barreto et al. (2014)

and the CBM model in Olde Keizer et al. (2018), stochastic dependence is modeled such that the

failure rate and deterioration increments are conditionally independent given the current state of

the system. Hence, transition probabilities can be written on the form

q(s′|s) =

N∏
i=1

qi(s
′
i|s). (12)

This equation resembles Equation (3), and we can calculate transition probabilities at runtime

using a procedure similar to the one in Section 3.7.2.

5. Conclusion

In this paper we consider the optimization of component replacements in multi-component

systems. We find that other works in maintenance literature assume at least one of the following:

discrete system dynamics, single-component system, or a heuristic optimization approach. We

present a unified view of TBM and CBM in a general setting where all three of these assumptions

are relaxed. We do this by formulating MDP models for TBM and CBM based on the same

multi-component system where the component deterioration process is continuous. We use DP

to compute optimal policies in the MDPs, which are also optimal with respect to the controlled

system when deterioration increments are independent among the components.

For the CBM model, discretization of the continuous deterioration process must be employed

in order to use DP. The performance of the resulting policies do not improve when the component

condition is discretized into more than twelve levels, which is fewer than suggested in previous

studies. According to our results, this number is not sensitive to the system parameters or the

number of components. This is an important finding, as it indicates that DP is a feasible solution

approach in systems with several components.
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We investigate the computational limitations of the proposed TBM and CBM models. An

efficient implementation of DP algorithms allows us to solve instances that have 200 million states

and 400 thousand states for the TBM and CBM model, respectively. The different size limits are a

consequence of the number of possible transitions between states, which is inherently different for

the two maintenance approaches. Therefore, multi-component CBM problems are generally harder

to solve to optimality than multi-component TBM problems. Furthermore, the limiting factor

for the TBM model investigated here is the memory requirement of storing the MDP transition

probabilities. However, for the special case of independent component deterioration, the transition

probabilities can be calculated efficiently at runtime, allowing for larger instances to be solved via

parallelization of the DP algorithm.

Heuristic optimization methods are necessary when dealing with industrial systems composed

of dozens of components or assets. However, we argue that the MDPs presented in this study

provide a more general and flexible class of policies, and though the optimal policy is difficult to

obtain, they serve an important purpose of validating heuristics. Being able to solve large instances

to optimality can strengthen statements on how the performance of the heuristics scale with the

size of the problem.
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Appendices

A. Monte Carlo estimation

In both models, we use Algorithm 4.2 from Grothe & Hofert (2015) to sample from the dis-

tribution of the one-epoch increments, X1. The algorithm requires a truncation parameter, K,

for the number of jumps to include from an infinite sum of process jumps. For θ = 0.2 we use

K = 4000 and for θ = 3 we use K = 30. These values were determined using the method from

Section 5.1 in Grothe & Hofert (2015).

A.1. CBM

When θ > 0, the transition probabilities q(s′|s), s′, s ∈ S are calculated via Equation (10),

so we only have to estimate q(s|0). We do this by sampling M realizations of X1, denoted xk1,

k = 1, . . . ,M , and then form the estimates as

q(s|0) =
|{k : xk1 ∈ Is}|

M
, s ∈ S. (13)

A.2. TBM

When θ > 0, we estimate q(s′|s) given by Equation (5). This equation is the probability of

a specific combination of component failures, conditioned on these components not having failed

at the ages given in the vector s ∈ S. In the following procedure, we therefore account for all

the likely combinations of component ages, and for each age combination, then account for each

combination of failures.

First, we simulate M trajectories of Xτ , denoted xkτ = (x1,k
τ , . . . , xN,kτ ), k = 1, . . . ,M , τ =

0, . . . , Dmax, where Dmax = maxi{Di}. For each k and τ , we then consider all possible combinations

of component ages up to age τ , via all the possible replacement times of each component. With

the restriction that each component is replaced exactly once, there are (τ + 1)N combinations for
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N components. Let r = (r1, . . . , rN ) ∈ {0, . . . , τ}N be a vector denoting the replacement times of

each component. For each k, τ , and r ∈ {0, . . . , τ}N we can then construct a realization of Yτ

were each component i was last replaced τ − ri epochs ago. We define these by

ykτ,r = (y1,k
τ,r , . . . , y

N,k
τ,r ) = (x1,k

τ − x1,k
r1 , . . . , x

N,k
τ − xN,krN

), (14)

that is, the k’th simulated trajectory at time τ if we replaced components at the times given in

r ∈ {0, . . . , τ}N .

Now, let Vs be the set of tuples, (k, τ, r), where ykτ,r corresponds to the MDP being in state

s ∈ S. Furthermore, we let Ws,s′ be the set of tuples, (k, τ, r), where ykτ,r and ykτ+1,r corresponds

to the MDP being in state s ∈ S at time τ and state s′ ∈ S at time τ + 1. The estimates q(s′|s)

are now calculated as

q(s′|s) =
|Ws,s′ |
|Vs|

, s, s′ ∈ S. (15)

The sets Vs and Ws,s′ are formally defined as

Vs =
{

(k, τ, r) : k ∈ {1, . . . ,M}, τ ∈ {0, . . . , Dmax}, r ∈ {0, . . . , τ}N ,

si = τ − ri and yi,kτ,r < L for si < Di,

yi,kτ,r ≥ L for si = Di

}
, s ∈ S,

(16)

and

Ws,s′ =
{

(k, τ, r) : (k, τ, r) ∈ Vs, s′i = τ + 1− ri and yi,kτ+1,r < L for s′i < Di,

yi,kτ+1,r ≥ L for s′i = Di

}
, s, s′ ∈ S.

(17)
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CHAPTER4
Discretization

Some studies that use MDP for maintenance modeling assume a discrete-state dete-
rioration process (Olde Keizer et al. 2016; Kurt and Kharoufeh 2010; Byon and Ding
2010). This is a logical choice since the theory of DP is mostly concerned with finite
or countable state spaces. In Section 2.4 we gave an example of a situation where a
continuous-state deterioration process is more suited. However, discretization is re-
quired in order to formalize the optimization problem in a way that it can be solved
with DP.

Motivated by this, we also used discretization of a continous deterioration process
for the CBM model in Chapter 3. In this chapter, we investigate the discretization
step for CBM in more detail. More specifically we compare the different ways of going
from the continuous process dynamics to the discrete-state transition probabilities for
the MDP.

What we present in this chapter is mostly a continuation of the discretization ex-
periment results in Section 4.2 of paper A in Chapter 3. The primary purpose of these
experiments is to assess the difficulty of optimizing maintenance for multi-component
systems where we have full knowledge about the continuous deterioration process.
However, there is also a second interpretation of the experiment, which relates to the
practical aspect of maintenance modeling. One motivation for using a discrete-state
model is that categorizing the condition of a system into a few qualitative levels leads
to a more simplified maintenance decision-making process (Nguyen et al. 2019). But
if too few discrete levels are used, some performance of the resulting maintenance
policy is undoubtedly sacrificed. The results we present in the following paper also
illustrate how much performance is lost if the true deterioration of the system follows
a continuous-state process, but we as decision-makers only model the deterioration
with a finite number of qualitative levels.

4.1 Independent components
In the following paper, we only change the model from Chapter 3 in a few ways. Most
importantly, we now assume that the deterioration processes of the components, Xi

t ,
i = 1, . . . , N , are independent. The reason is that some of the methods of discretiza-
tion we test, require that we know the distribution function of the deterioration
increments. In Chapter 3, we used a copula function to model stochastic dependence
between components, which resulted in the distribution of the joint process, Xt, not
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having an analytical expression. The discretization method we used in Chapter 3,
which we in the following refer to as exact integration, was therefore estimated with
Monte Carlo simulation. Among all the studies that use discretization for the purpose
of MDP modeling, exact integration is the most commonly used method. It turns
out that there is a better method that produces a more accurate approximation to
the continuous deterioration process.

4.2 Unichain condition
The most common utility in maintenance optimization papers is the cost rate, i.e. long-
run average reward per time unit in MDP terminology. In Chapter 3, we used another
utility, namely the expected total discounted reward. The reason for this is that the
DP algorithms using Gauss-Seidel or Successive over-relaxation iterations cannot be
used with the cost rate utility. In the present chapter we do, however, consider the
cost rate, but in order to guarantee the convergence of standard DP algorithms under
this optimality criterion, a unichain condition must be satisfied: for every policy,
π : S → A, the corresponding transition probability matrix, Pπ = [p(j|i, π(i))]ij ,
i, j ∈ S, must consist of a single recurrent class plus a possibly empty set of transient
states (Puterman 2005, p. 348).

In all the models we consider, we use the gamma process as the underlying true
deterioration process. The increments of this process between two decision epochs are
gamma distributed, and this distribution has support (0,∞), hence there is positive
probability that all components will exceed the failure limit, L, and fail. In the MPDs
we construct via discretization, the state space is on the form S = {0, . . . , D}N , where
D is the failed state of a component. Because all components can fail between any
two epochs, we get p(s′|s, a) > 0, where s′ = (D, . . . , D) for all s ∈ S and a ∈ A.
Therefore, Pπ can only contain one recurrent class and the action π(s′) decides the
size of it.
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In this paper we take a closer look at the issue of discretization that arises when combining

continuous deterioration processes with dynamic programming. We consider an example of a

multi-component condition-based maintenance problem modeled as a Markov decision process.

Components are assumed to deteriorate independently according to a gamma process. We compare

the different methods of discretizing this process that have been tried in previous studies. We

identify a discretization scheme that accurately estimates the true value of a policy with respect

to the continuous deterioration process, and we present an exact evaluation of this scheme, which

has so far only been estimated with Monte Carlo methods. Furthermore, we show how a more

accurate discretization enables us to solve the optimization problem faster in certain cases using a

multigrid algorithm.
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1. Introduction

In this paper we consider condition-based maintenance optimization in multi-component sys-

tems modeled using Markov Decision Processes (MDPs). An MDP is a versatile framework capable

of modeling a wide variety of maintenance scenarios. Another common maintenance optimization

approach is cost minimization based on renewal reward theory [1]. Whereas the renewal theory
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such restrictions. The limitation of using MDPs is that the dynamic programming algorithms used

for finding the optimal policy require that the state space of the MDP is discrete. In a CBM

context this means the deterioration of components must be modeled as a discrete-time Markov

chain. The many transition probabilities in this model can, however, be difficult to specify, and the

states only represent a categorization into high-level condition states such as “new”, “mild deteri-

oration”, “severe deterioration”, and “failed”, see e.g. [2, 3, 4, 5]. There are many systems, where

the component deterioration is most naturally modeled as a continuous-time and continuous-state

stochastic process. For instance, this can be the case if condition monitoring is based on meas-

urements of a continuous variable, such as vibration magnitude, product scrap rate, temperature,

or corrosion penetration depth. A prevalent example of a continuous deterioration process is the

gamma process [6], which we also use as an example in this paper. If there is not enough data to

directly estimate all transition probabilities in a discrete state transition matrix, fitting a continu-

ous deterioration process is also a way of interpolating in the areas of the state space for which we

have little data.

There is a benefit in combining the dynamic programming with continuous deterioration pro-

cesses, since the former enables us to identify the complex structures of optimal policies in multi-

component systems, and using the latter can be a more accurate model of the system dynamics.

Under an additional and common assumption that the system is periodically inspected, the result-

ing optimization problem becomes an MDP with an uncountable state space. General algorithms

for solving these MDPs are analyzed in [7] and [8], and in both cases the solution approach is to ap-

proximate the optimal policy by discretizing the continuous dynamics and solving a discrete-state

version of the problem. In this study, we consider an uncountable state space, [0, L)N ⊂ RN , L > 0,

N ∈ N and perform the discretization by dividing this state space into equally sized regions. From

here on we refer to the definition of the transition probabilities between regions as a discretization

scheme or method.

In [9], the author analyzes a periodic replacement problem in a multi-component system with

a continuous deterioration process, similar to the example problem we consider in this paper. A

characterization of the optimal policy is obtained, but even so the conclusion is that dynamic pro-

gramming is still needed to compute the policy, hence the deterioration process must be dicsretized.

This practice has also been adopted in other maintenance optimization studies, but the issue of

2
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discretization is usually treated superficially. In single-component systems considered in [10] and

[? ], the choice of the discretization method is not a large concern, since the problem can be solved

easily with a very fine discretization. For multi-component models that are solved with dynamic

programming [11, 12, 13, 14], the accuracy of the discretized deterioration process matters because

a small increase in the number of discretization intervals causes a large increase in the total number

of states in the MDP. As we demonstrate in this paper, the accuracy of the different discretization

methods used in [11, 12, 13, 14] is not the same. This has some interesting consequences for how

close the resulting policy is to being optimal, and how fast we can solve the MDP with a desired

discretization fineness. To the best of our knowledge, a comparison of different discretization

schemes has not been carried out before, and therefore the results we present are novel.

We find that the most accurate method of discretization is the one used in [11] and [15]. The

uncountable state space is divided into equally sized intervals and the frequency of transitions from

one interval to another is estimated with Monte Carlo simulation. We show how to numerically

evaluate these probabilities for the continuous deterioration process we use in our example, which

eliminates the estimation error. In [15] this discretization method is initially presented as a way

of estimating the transition probabilities in the discretized process from data. In this light, the

numerical experiments we present are also a validation of the practice of defining the component

deterioration states as a small number of qualitative levels for instance by expert judgement. We

simulate the maintained system with the continuous deterioration process and choose maintenance

actions according to the policies obtained from an MDP with a varying number of discretization

intervals. From the maintenance costs we observe in the simulations, we get an indication of

how effective this method of maintenance optimization is. Furthermore, we show how a better

discretization method can lead to a faster reduction in the approximation error, and in some cases

this allows us to solve the problem faster via a multigrid algorithm similar to that analyzed in [7].

The rest of the paper is structured as follows. In Section 2 we describe the system assumptions

and the finite-state MDP formulation of the CBM model. In Section 3 we briefly summarize

four different discretization methods and derive an exact evaluation procedure for one of them. In

Section 4 we summarize the dynamic programming algorithms we use to solve the MDP. In Section

5 we present the empirical results of the comparison on accuracy and algorithm runtime for the

different discretization methods, and in Section 6 we provide a conclusion to the study.

3
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2. Model formulation

As a basis for comparison of the different discretization methods, we consider a multi-component

replacement optimization problem, with an infinite planning horizon, and where the optimal policy

has a complex structure.

The system consists of N components. Each component i = 1, . . . , N deteriorate independently

of the other components according to a time-homogeneous gamma process, {Xi
t}t≥0, i.e., we assume

Xi
0 = 0 and for 0 ≤ s < t, Xi

t −Xi
s ∼ Gamma(αi(t− s), βi), where αi is the shape parameter and

βi is the rate parameter of component i. Component i fails when Xi
t reaches a failure threshold L.

We assume the system is periodically inspected at discrete points in time, τ ∈ N0 = {0, 1, . . .},

also called decision epochs in MDP terminology. At each inspection we can decide to replace

any combination of components. Replacements are assumed to be instantaneous, and bring the

components back to an as-good-as-new state. The cost of a preventive replacement, before failure,

is cip. If the replacement happens after a failure, we incur a larger corrective replacement cost,

cic. Furthermore, we assume there is a joint setup cost, cs, if at least one component is replaced.

The system is assumed to have a K-out-of-N reliability structure, meaning that the system is

functioning as long as K components are functioning. We therefore incur a failure cost, cf , if less

than K components are functioning at any given inspection.

2.1. Finite MDP formulation

We formulate the optimization problem as an finite MDP in order to optimize the replacement

policy with dynamic programming. At each decision epoch, τ ∈ N0, the following events take place

in the MDP: The system occupies a state s ∈ S, where S is a finite set; an action, a, is chosen

from a finite set of actions, A; we receive a reward r(s,a); and the system transitions to another

state s′ ∈ S with probability p(s′|s,a).

The system state is a vector s = (s1, . . . , sn) ∈ S where si ∈ SD = {0, . . . , D} is the state

of component i and S = SND . The discrete set, SD, is formed by dividing the interval [0, L) into

D equally sized intervals Ik = [kL/D, (k + 1)L/D), k = 0, . . . , D − 1, and we let ID = [L,∞).

Component i being in the discrete state si ∈ SD at epoch τ then corresponds to Xi
τ ∈ Isi .

Replacement actions are chosen from the set A = {0, 1}N . An element ai of an action a =

(a1, . . . , aN ) ∈ A equals 1 (0) if we replace (do not replace) component i.

4
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The reward function is defined as

r(s,a) =

N∑
i=1

ai
(
cip1si<D + cic1si=D

)
+ cs

(
1−

N∏
i=1

(1− ai)

)
+ cf1|{i:si<D}|<K , (1)

where 1A is the indicator function for event A. The first term of Equation (1) is the replacement

costs. The second and third terms account for the setup cost and system failure cost, respectively.

We formulate the MDP in terms of maximizing rewards, but we note that cip, c
i
c, cs, and cf are all

negative numbers, so r(s,a) < 0 for all s ∈ S, and a ∈ A.

Since the replacement of a component is assumed to be instantaneous, the transition probab-

ilities, p(s′|s,a), can be described in a convenient way. Replacement action a instantly moves the

system from state s to a post-decision state that has zero entries for the replaced components,

((1 − a1)s1, . . . , (1 − aN )sN ) ∈ S. It therefore suffices to specify the transition probability from

any post-decision state s ∈ S to s′ ∈ S, which we denote q(s′|s). Furthermore, since components

deteriorate independently, q(s′|s) can be written as a product

q(s′|s) =

N∏
i=1

qi(s
′
i|si), (2)

where qi(s
′
i|si) is the probability of component i transitioning from post-decision state si ∈ Si to

state s′i ∈ Si.

3. Discretization methods

In this section we describe the different ways of constructing the MDP component transition

probabilities, qi(s
′|s), s, s′ ∈ Si, i = 1, . . . , N from the evolution of the continuous deterioration

process, Xi
t . In principle, the best choice is

P (Xi
τ+1 ∈ Is′ |Xi

τ ∈ Is), (3)

however, this probability is dependent on the history of occupied states at epochs, 0, . . . , τ −1. For

instance, knowing that Xi
τ−2, X

i
τ−1 ∈ Is provides information about the exact location of Xi

τ in

the interval Is, thus influencing the probability of Xi
τ+1 being in interval Is′ . In an infinite-horizon

MDP, qi(s
′|s) must be independent of time and the policy being used, and any definition that

obeys this therefore ends up being an approximation to Equation (3). There are several choices

for the construction of qi(s
′|s) for which the approximation error will diminish, as the number of

5
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discretization intervals, D, increases. In the remainder of this section we describe four different

methods.

Since the underlying deterioration process is non-negative and has stationary increments, it is

convenient in three of the methods to define qi(s
′|s) from the probability of component i advancing

k discrete states, which we denote ui,k, k = 0, . . . , D − 1. We then have

qi(s
′|s) =


ui,s′−s s ≤ s′ < D

1−
∑D−s−1

k=0 ui,k s ≤ s′ = D

0 s′ < s.

(4)

We let fXi
1
, and FXi

1
denote the probability density function and the distribution function of the

one-period increment of component i, respectively.

3.1. Normalized density

This method is in used in [7? , 16]. For the problem we consider, the method defines the

probability of advancing k discrete states as a normalized ratio of the density, fXi
1
. The width of

one interval is L/D and fXi
1
(kL/D) is therefore the density at the point where Xi

t advances exactly

k intervals. We use this to define ui,k as

ui,k =
fXi

1
(kL/D)∑∞

j=0 fXi
1
(jL/D)

, k = 0, . . . , D − 1. (5)

The sum in the denominator is truncated at an appropriately large value depending on the gamma

process parameters, αi and βi in the density function, fXi
1
. We let qdeni denote the transition

probabilities we obtain by using ui,k from Equation (5) in Equation (4). This method is the most

general among those we consider in this paper. The reason is that it does not require the discrete

states to be defined from a partition of the uncountable state space into disjoint regions, like the

intervals, Ik, in Section 2.1. Instead, the discretization can simply be a finite set of, possibly

random, sample points in the uncountable state space [16].

3.2. Exact integration

The probabilities qdeni (s′|s) can be seen as the probability of Xi
t transitioning from one repres-

entative point in Is to another representative point in Is′ . In this next method, we construct ui,k

as the probability of Xi
t transitioning from one representative point in Is to any point in Is+k. The

name of the method is adopted from [16]. In [16] and [12] the representative point of interval Is is

6
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the midpoint, (s+ 1/2)L/D, while [10] uses the right endpoint (s+ 1)L/D. In Section 5 we only

report the results from using the midpoint, as we found this to be the best choice for the example

problem. Using the distance from the midpoint of Is to the endpoints of Is+k we get

ui,k = FXi
1
((k + 1/2)L/D)− FXi

1
((k − 1/2)L/D), k = 0, . . . , D − 1. (6)

We let qinti denote the transition probabilities we obtain by using ui,k from Equation (6) in Equation

(4).

3.3. Uniform in origin interval

In [17], a slightly more advanced discretization scheme is proposed. Instead of using a repres-

entative point in Is, an approximation of the probability in Equation (3) is formed by assuming

Xi
τ is uniformly distributed in Is. This leads to

ui,k =

∫ 1

0
FXi

1
((k + 1− x)L/D)− FXi

1
((k − x)L/D)dx, k = 0, . . . , D − 1. (7)

We use qunii to denote the transition probabilities we obtain by using ui,k from Equation (7) in

Equation (4). It is argued in [17] that the uniform distribution is a good approximation to the

true distribution of the deterioration level within an interval Is in all but the first intervals, that

is, when s in qunii (s′|s) is a low number.

3.4. Expected number of transitions

When we discretize, we lose some information about the original continuous deterioration pro-

cess since P (Xi
τ+1 ∈ Is′ |Xi

τ ∈ Xs) is dependent on τ . The density normalization, qdeni , and exact

integration, qinti , do not account for this time dependency, while the uniform method, qunii adjusts

for it. However, a replacement is assumed to bring a component back to the as-good-as-new state,

so it is obvious how the uniform method is inaccurate at least in the first epoch after a replacement,

since Xi
0 equals zero and is not uniformly distributed in I0 = [0, L/D). There is a way of lessening

this discrepancy and averaging out the time dependency. The idea is to form estimates qi(s
′|s)

from the expected number of times that the process Xi
τ , τ = N0, moves from Is to Is′ before it

exceeds the failure limit, L. This method is also mentioned in [15] as a way of estimating qi(s
′|s)

directly from field data. The discrete transition probabilities are here calculated as

qi(s
′|s) =

Number of transitions from Is to Is′

Number of data in Is
. (8)

7
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When discretizing the continuous deterioration process, we could use Monte Carlo simulation of

Xi
t to generate a data set and form estimates from Equation (8), which is also the approach used

in [15] and [11]. The estimates in Equation (8) can also be written as an analytical expression, and

because we know FXi
t
, this can be evaluated numerically rather than via simulation. We observe

Xi
t at the decision epochs τ = N0. Let Bs, 0 ≤ s < D, denote the number of times Xi

τ is found in

interval Is, that is,

Bs = |{τ ∈ N0 : Xi
τ ∈ Is}|.

Let Cs,s′ , 0 ≤ s < D and 0 ≤ s′ ≤ D denote the number of times Xi
t transitions from Is to Is′ from

one epoch to the next,

Cs,s′ = |{τ ∈ N0 : Xi
τ ∈ Is, Xi

τ+1 ∈ Is′}|.

The transition probabilities, which we name qexpi , are then defined as

qexpi (s′|s) =
E[Cs,s′ ]

E[Bs]
=

∑∞
τ=0 P (Xi

τ ∈ Is, Xi
τ+1 ∈ Is′)∑∞

τ=0 P (Xi
τ ∈ Is)

, (9)

for 0 ≤ s < D, 0 ≤ s′ ≤ D and qexpi (D|D) = 1. The summands in the denominator in Equation (9)

are calculated by

P (Xi
τ ∈ Is) = FXi

τ
((s+ 1)L/D)− FXi

τ
(sL/D)

and the summands in the numerator by

P (Xi
τ ∈ Is, Xi

τ+1 ∈ Is′)

=

∫ (s+1)L/D

sL/D
P (Xi

τ+1 ∈ Is′ |Xi
τ = x)fXi

τ
(x)dx

=

∫ (s+1)L/D

sL/D
P (s′L/D − x ≤ Xi

τ+1 −Xi
τ < (s′ + 1)L/D − x)fXi

τ
(x)dx

=

∫ (s+1)L/D

sL/D

[
FXi

1
((s′ + 1)L/D − x)− FXi

1
(s′L/D − x)

]
fXi

τ
(x)dx

for 0 ≤ s ≤ s′ < D and

P (Xi
τ ∈ Is, Xi

τ+1 ∈ ID) =

∫ (s+1)L/D

sL/D

[
1− FXi

1
(L− x)

]
fXi

τ
(x)dx, s < D. (10)

We use Gauss-Kronrod quadrature to evaluate the integrals numerically. The summands in the

expectations in Equation (9) quickly tend to 0 as τ → ∞ for the parameters αi and βi of the

8
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gamma density function, fXi
t
, we use in Section 5. Therefore, we can truncate the sums at an

appropriately large number of terms. In Section 5, we truncated at 30 terms.

The method presented in this section is only applicable when components deteriorate inde-

pendently. In [14] and [12] stochastic dependency among components is modeled using copula

functions. Since the resulting processes have no analytical expressions for the joint distribution of

deterioration increments, these studies instead use Monte Carlo simulation to estimate the exact

integration method from Section 3.2.

4. Dynamic programming

In this section, we briefly review the Value Iteration (VI) algorithm we use to find an optimal

policy for the MDP defined by S, A , p(·|·, ·), and r(·, ·) in Section 2.1. In the set of all mappings

from S to A, Π, we seek to find a policy, π ∈ Π, that maximizes the average reward per period,

which is often called the cost rate in maintenance literature. The VI algorithm solves this problem

by successively computing for n ∈ N0

vn+1(s) = max
a∈A

{
r(s,a) +

∑
s′∈S

p(s′|s,a)vn(s′)

}
∀s ∈ S, (11)

where vn : S → R is the value function. The iterative process is stopped when

max
s∈S
{vn+1(s)− vn(s)} −min

s∈S
{vn+1(s)− vn(s)} < ε, (12)

where ε > 0. When this criterion is met, an approximation to the optimal average reward per

period is given by

gD = (max
s∈S
{vn+1(s)− vn(s)}+ min

s∈S
{vn+1(s)− vn(s)})/2, (13)

which is at most ε/2 from the true value [? ]. The final policy, πD, consists of the maximizing

actions in the final calculation of Equation (11), and we use vD to denote the final value function.

The subscript in gD, πD, and vD indicates this is the solution when solving the MDP from Section

2.1 with D discretization intervals. In addition, we let πdenD , πintD , πuniD , and πexpD denote the policies

and gdenD , gintD , guniD , and gexpD denote the associated cost rate for the MDP with component transition

probability definitions indicated by the superscript. Each of these policies are optimal with respect

to a system that obeys a discretized version of the deterioration dynamics. For a sufficiently large

9
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value of D, they are also near-optimal for the system with continuous deterioration. We use g∗ and

π∗ to denote the solution to the continuous-state MDP formulation of the problem. We cannot

compute g∗ and π∗ exactly, but these are the asymptotic values that gD and πD approach as D

increases.

We also consider the Gauss-Seidel version of VI, where the optimality criterion is the expected

total discounted reward. The update equation is here given by

vn+1(s) = max
a∈A

r(s,a) + γ

∑
s′<s

p(s′|s,a)vn+1(s
′) +

∑
s′≥s

p(s′|s,a)vn(s′)

 ∀s ∈ S, (14)

where 0 ≤ γ < 1 is the discount factor. This version of VI is terminated when

max
s∈S
{vn+1(s)− vn(s)} < ε(1− γ)/2γ, (15)

at which point vn+1(s) is within ε/2 from the optimal value function for all s ∈ S.

5. Results

In this section, we compare the different discretization methods by solving the multi-component

replacement problem with parameters, N = 2, K = 1, L = 1, cs = −30, cf = −1000, α1 = 1.67,

β1 = 7.27, c1p = −33.43, c1c = −54.04, α2 = 1.78, β2 = 6.88, c2p = −16.24, and c2c = −52.19.

The numerical experiments we present have been carried out on 10 parameter settings for two

components, and 10 settings for four components. The results from the different settings all

exhibited the same patterns, so we only present the results from one of the parameter settings.

5.1. Cost rate comparison

As a way of assessing how close πD is to the globally optimal policy, π∗, we look at the cost

rate obtained from simulating the system with the continuous deterioration process and choosing

actions according to πD. At each epoch in the simulation, the continuous state of each component

will belong to one of the intervals Is, s = 0, . . . , D, and the replacement action is determined by

πD(s). This can be seen as a piece-wise flat extension of πD to the uncountable state space, [0, )N .

For each value of D, we let ḡD denote the estimated cost rate, which we calculate from the average

of 108 time steps of the maintained system, disregarding the rewards from the first 104 steps to

avoid any influence of the transient phase induced by the initial state. Figure 1 shows, gD and ḡD

10
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Figure 1: The cost rate for different number of discretization intervals, D. Cost rates from MDP solution, gD (dotted)

and estimates, ḡD, obtained from simulation of the continuous deterioration (solid). The discrete state transition

probabilities are: density normalization (plus sign), exact integration (square), uniform in origin interval (circle),

and expected number of transitions (triangle).

for different values of D, when the transition probabilities in the MDP are calculated with either

qdeni , qinti , qunii , or qexpi . All methods produce good policies already at D = 4, even though gexpD

is the only MDP-estimated cost rate close to the realized cost rate ḡexpD , indicating that qexpi is a

better approximation of the continuous deterioration process. As shown in Figure 2, already at

D = 4 the policies πdenD , πintD , πuniD , and πexpD prescribe the same replacement actions on most of the

state space. Furthermore, from the structure of the D = 16 policies, it appears that the asymptotic

optimal policy, π∗, consists of few but irregularly shaped regions. Even for low values of D, the

policies πdenD , πintD , πuniD , and πexpD only differ close to the boundary of these regions. For D = 4 the

transition matrices for the first component in the four different methods are

[qden1 ]s,s′ =



0.0000 0.7540 0.1945 0.0414 0.0100

0.0000 0.0000 0.7540 0.1945 0.0514

0.0000 0.0000 0.0000 0.7540 0.2460

0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 0.0000 0.0000 1.0000


. (16)
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Figure 2: Policies πden
D , πint

D , πuni
D , and πexp

D superimposed on each other, with gray areas indicating where they are

not identical. From left to right the panels show, D = 2, D = 4, D = 8, D = 16.

[qint1 ]s,s′ =



0.3295 0.4972 0.1365 0.0296 0.0072

0.0000 0.3295 0.4972 0.1365 0.0368

0.0000 0.0000 0.3295 0.4972 0.1733

0.0000 0.0000 0.0000 0.3295 0.6705

0.0000 0.0000 0.0000 0.0000 1.0000


, (17)

[quni1 ]s,s′ =



0.3212 0.4907 0.1474 0.0327 0.0081

0.0000 0.3212 0.4907 0.1474 0.0407

0.0000 0.0000 0.3212 0.4907 0.1881

0.0000 0.0000 0.0000 0.3212 0.6788

0.0000 0.0000 0.0000 0.0000 1.0000


, (18)

and

[qexp1 ]s,s′ =



0.4721 0.3892 0.1091 0.0237 0.0058

0.0000 0.3205 0.4911 0.1476 0.0408

0.0000 0.0000 0.3212 0.4907 0.1882

0.0000 0.0000 0.0000 0.3212 0.6788

0.0000 0.0000 0.0000 0.0000 1.0000


. (19)

The fact that qden1 deviates substantially from the other three methods and still results in the four

policies for D = 4 being identical in all but one state, demonstrates a degree of robustness to

transition probabilities being inaccurate.

In terms of the accuracy of the cost rate estimate from the MDP solution, gD, the expected

transitions method, qexpi is the only method that results in a consistently accurate estimate. Sur-

prisingly, the uniform method does not produce a more accurate cost rate estimate than the simpler

12
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Figure 3: The estimated cost rate gexpD (dotted) and the realized cost rate ḡexpD (solid) for different inspection interval

lengths, ∆t.

exact integration method. The transition probabilities from the uniform method, quni1 , are quite

close in value to the expected transitions method, qexp1 , in all but the first row. Evidently, this

difference has a quite large influence on the cost rate estimate, guniD . As it is much faster to calculate

qunii than qexpi we tried improving the uniform method by splitting the interval I0 = [0, L/D) into

two discrete states, such that SD = ∆ ∪ {0, . . . , D}, where state ∆ ∈ SD corresponds to Xi
τ = 0

and letting state 0 ∈ SD correspond to Xi
τ ∈ (0, L/D). The transitions from ∆ to the other states

s′ ∈ {0, . . . , D − 1} are calculated as FXi
1
((s′ + 1)L/D)− FXi

1
(s′L/D) and transition to state D is

with probability 1−FXi
1
(L). Unfortunately this only improves the estimate gD to halfway between

guniD and gexpD . Alternatively, the two methods can be combined such that qexpi (s′|s) is used for the

first few values of s and qunii (s′|s) is used for the larger values of s, which saves a lot of computation

when D is large.

In Section 2 we defined the model such that inspections occur with unit time intervals. For

the considered example parameters, the number of inspections in between replacements is 2.8 on

average when following the πexpD policies. This may explain why only D = 4 discretization intervals

are needed to get a near-optimal policy. Let ∆t denote the time between inspections. Figure 3

shows the cost rates gexpD and ḡexpD for different values of ∆t. An increased frequency of inspections

13
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allows for components to deteriorate closer to the failure threshold before being replaced, which

explains the improved cost rate for ∆t = 1/2 and ∆t = 1/4. When ∆t = 1/2 we need more

than D = 4 intervals to get the full benefit of these just-in-time replacements, which is shown in

Figure 3 by the slightly steeper increase between D = 4 and D = 16 for ∆t = 1/2 compared to

∆t = 1. When ∆t = 1/4 the simulated cost rate, ḡexpD , is constant across all values of D. Looking

at the corresponding policies, πexpD , this is because component one is never replaced once it has

failed, and coincidentally component two should be replaced approximately when X2
t > 1/2. This

policy structure can be captured already at D = 2. We consider a 1-out-of-2 system and when it

is inspected very often, the cost of keeping both components working outweighs the cost of a rare

system failure. This behaviour is quite specific to the particular system parameter setting we have

chosen, but it illustrates an extreme case where the cost rate estimate, gexpD , is inaccurate. Even

so, gexpD is still the most accurate in both the ∆t = 1/2 and ∆t = 1/4 case compared to the other

estimated cost rates gdenD , gintD , and guniD which converge similarly to the ∆t = 1 case depicted in

Figure 1.

In any real-life application of MDP for maintenance optimization there is inevitably going to

be a model inaccuracy in that qi will never perfectly capture the true deterioration dynamics of

the components in the system. However, the fact that we obtain a near-optimal policy even with

inaccurate transition probabilities is reassuring. Furthermore, the results in Figure 1 suggest that

dynamic programming for optimization of systems with several components is feasible, since we

only need few discrete states for each component. From the perspective of the practical use of MDP,

our results also indicate that estimating discrete transition probabilities from data via Equation (8)

is a sound approach, because the cost rate estimate we get from solving the corresponding MDP

is accurate.

5.2. Multigrid algorithm

When the objective is to approximate the optimal policy, π∗, in the continuous-state MDP for-

mulation of the problem, we can exploit the fact that the qexpi method approximates the continuous

deterioration process better than the other methods. The one-way multigrid algorithm analyzed

in [7] is a method for approximating π∗ by solving multiple discrete MDP with an increasingly fine

discretization (grid). When an MDP with D intervals has been solved, the resulting value func-

tion, vD, is used as the initialization of the algorithm for solving the MDP with 2D discretization

14
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without multigrid multigrid

method runtime #iterations runtime #iterations

qdeni 10.29sec 18 8.71sec 13

qinti 10.22sec 18 8.37sec 12

qunii 10.39sec 18 7.70sec 12

qexpi 10.22sec 18 6.45sec 10

Table 1: Runtime and number of iterations for different discretization methods when using D = 64, VI with the

average reward optimality criterion and ε = 0.001.

intervals. This leads to a shorter total computational time, since most of the work is being carried

out on the coarse discretization MDPs. When using the qexpi probabilities, the value function, vD,

is very close to its asymptotic value already at D = 4, so it is plausible that the subsequent steps

in the multigrid algorithm will be faster using this method compared to using qdeni , qinti , or qunii .

Table 1 shows the runtime and number of iterations of solving the example problem using the

multigrid algorithm starting with D = 2 and ending at D = 64. At each D, the VI algorithm with

the average reward optimality criterion, and ε = 0.001 is used. The multigrid runtimes are the

accummulated time required for solving all MDPs with D ∈ {2, 4, 8, 16, 32, 64}, while the number of

iterations are only for the D = 64 MDP since these account for most of the total runtime. As Table

1 shows we can solve the D = 64 problem somewhat faster when using qexpi . The relative benefit

is, however, greater when solving MDPs under the expected total discounted reward optimality

criterion. This is shown in Table 2. Compared to the convergence criterion in Equation (12) for

the average reward case, the convergence criterion in Equation (15) is less sensitive, which is the

reason for the runtimes in Table 2 being a lot higher than in Table 1. The Gauss-Seidel version

of VI is a special case of an asynchronous dynamic programming algorithm, which is better suited

for parallelization [18] and can sometimes be faster than using the standard VI with span norm

stopping criterion in Equation (12) [14]. For ε = 0.001 the relative decrease in runtime when using

qexpi is roughly the same as for the average reward case. However, using a tolerance of ε = 1,

the runtime is suddenly an order of magnitude lower. This suggests that when solving the final

D = 64 MDP, which is initialized with the D = 32 solution, each method uses the same number

of iterations when taking the value function from an accuracy of 1 to 0.001 and that the effect of
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ε = 0.001 ε = 1

method runtime #iterations runtime #iterations

qdeni 525.29sec 798 137.65sec 193

qinti 515.36sec 760 114.54sec 157

qunii 511.49sec 761 117.42sec 158

qexpi 356.53sec 527 12.60sec 16

Table 2: Runtime and number of iterations for the multigrid algorithm for different discretization methods when

using D = 64, Gauss-Seidel VI and the expected total discounted reward optimality criterion.

a more accurate initialization is gone at this point. For ε = 1 and ε = 0.001 the policies πexpD are

identical up to D = 16 and almost identical for D = 32 and D = 64. Considering this, and that

we will still have a slight discretization error at D = 64, it is not worth solving the MDP with a

low tolerance, ε, as the computational requirements are a lot higher.

6. Conclusion

In this paper we compare different methods of discretization, which is necessary when using

dynamic programming for optimizing maintenance of continuously deteriorating components. Even

though the transition probabilities obtained from each method are different, the policies we obtain

in the considered example are already nearly identical when the discretization is very coarse.

Additionally, the number of discretization intervals needed to obtain a near-optimal policy is also

quite low for all methods. Due to the discretization error, the value of the policy we find with

dynamic programming is only an estimate of its value w.r.t. the continuous deterioration process.

As our results indicate, this estimate can be inaccurate depending on how transition probabilities

between states are defined. We use Monte Carlo simulation of the continuously deteriorating system

to reveal how large the error is. A scheme based on the expected number of transitions between

discretization intervals, is the only method among the ones we tested that accurately estimates the

performance of the policy w.r.t the continuous deterioration process. We show how this scheme

can be evaluated exactly rather than via Monte Carlo estimation.

Condition monitoring is sometimes done with a categorization into a few qualitatively labeled

states such as “new”, “worn”, and “failed”. The scheme based on the expected number of trans-
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itions between discretization intervals is conceptually the same as estimating transition probabilites

between such qualitative states directly from field data. One may fear that a very simple deteriora-

tion model might hamper the performance of the policy obtained from the optimization algorithm.

The fact that only a few intervals are needed to obtain near-optimal performance in our example

is therefore an indication that this is not necessarily the case.

The accurate discretization scheme allowed us to solve the MDP faster when using a multigrid

algorithm. In this procedure, the MDP is solved repeatedly, using the solution from coarse dis-

cretizations to initialize the algorithm on finer discretizations. Using the accurate discretization

method, the value function is close to its asymptotic value already at coarse discretization levels.

Therefore, fewer iterations are needed before convergence, when the MDP is solved with finer levels

of discretization.

Throughout the study, we use a piece-wise flat extension of the policies obtained from the

discretized problem to the state space of the continuous deterioration process. This was done to

mimic a practical application, where the condition is not measured exactly but based on a coarse

categorization of condition levels. Assuming the true continuous deterioration is observed, there

are more advanced techniques for extending the discrete-state optimal policy to the state space of

the continuous deterioration process [16]. An interesting continuation of our study is to investigate

how much these techniques improve the solution for the problem we considered.
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CHAPTER5
TBM versus CBM

In the previous two chapters we have only focused on the computational aspects and
modeling aspects of the optimization. Little attention has been given to the actual
policies we obtain, their structure, or their performance in terms of costs. In chapter 1,
we mentioned that one purpose of maintenance studies, is to provide general guidelines
for good maintenance practices for various systems and circumstances. The following
paper falls into this category of maintenance studies. Specifically, the purpose is to
investigate the performance of optimal TBM and CBM policies in a multi-component
system, and how the difference in performance changes with the configuration of the
system parameters.

The gaining interest in CBM from both practitioners and researches is founded
in a rationale that CBM generally outperform traditional TBM. While this is true in
many situations, there are also cases where there is little or no benefit (Jonge et al.
2017; Shin and Jun 2015). Given the practical difficulty of establishing a condition
monitoring process and modeling the deterioration, it is therefore relevant to study,
which kinds of systems benefit the most from a CBM policy. Indeed, there is also a
high cost associated with implementing CBM (Shin and Jun 2015), so the decision to
do so should of course be done with consideration to the possible long term benefits.

There have been other studies that compare CBM and TBM, which we describe
in more detail in the paper, but most of these studies focus on single-component
systems. The few studies that do consider multi-component systems only perform a
superficial comparison, and they do not attempt to derive any general insights. The
sensitivity analysis we conduct is a contribution in this direction.

We make the comparison between CBM and TBM based on the unifying modeling
framework from Chapter 3, however, we consider a special case of the system we
presented there. In this chapter, we consider a simpler cost structure of the system,
where we omit the system failure cost, cf , and the structural dependence from a K-out-
of-N reliability structure. Instead, each component has a preventive and corrective
replacement cost, and must be replaced upon failure. For the K-out-of-N structure we
assumed previously, it was sometimes optimal to let a component fail and then never
replace it again. The same behavior is observed in Olde Keizer et al. (2018), where
a K-out-of-N system is also considered. This behavior would make a comparison
between CBM and TBM more intricate, which is why we limit the scope of the
analysis to a simpler multi-component system. Without the structural dependence, a
more appropriate name would be a multi-asset system. We can imagine the system in
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this chapter being an offshore wind turbine farm, where each turbine may fail without
affecting the state of the others. In this system, there is still stochastic dependence
stemming from the same operating environment, and economic dependence via a
joint setup cost, which represent the travel of the maintenance crew to the offshore
location.

The reader may notice that the largest system we consider in this chapter has four
components, while the largest number of components in Chapter 3 was five and seven
for CBM and TBM, respectively. The reason for this is that the truncation of the
state space in the TBM MDP model is determined by the how long a component will
be functioning in terms of number of decision epochs. In Chapter 3, the parameters
of the gamma process were chosen such that at most 17 epochs would pass before a
component would have failed with high probability. In this chapter, we choose these
parameters such that we need between 58 and 114 epochs, hence the TBM MDP state
spaces are much larger in this chapter. The reason for the difference choice is that
we want to ensure a higher level of flexibility in the set of admissible TBM policies,
which we also discuss in detail in the following manuscript. Here, we simply note the
fact that at most four components are solved in this chapter does not compromise
the results or conclusions from Chapter 3.
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modeled with a Clayton-Lévy copula function. Economic dependence between components is

modeled as a joint setup cost for replacing components. Optimal CBM and TBM policies are

identified by formulating the two cases as separate Markov decision processes and using dynamic

programming for optimization. We compare the optimal TBM and CBM policies under varying

system parameter configurations, using the average cost per time unit as a measure of perform-

ance. The results from our numerical experiments show that the performance difference between

the TBM policy and the CBM policy decreases as the setup cost increases, and the difference

increases when the degree of stochastic dependence increases. Furthermore, when the number of

components increase, the difference between TBM and CBM become less sensitive to the ratio

between the preventive replacement cost and the corrective replacement cost. Overall, the benefit

of CBM over TBM is smaller in the multi-component system compared to the single-component

system.

Keywords: Time-based maintenance, Condition-based maintenance, Multi-component system,

Markov decision process

?Declarations of interest : none
∗Corresponding author
Email addresses: jfan@dtu.dk (Jesper Fink Andersen), muku@dtu.dk (Murat Kulahci), bfni@dtu.dk (Bo Friis

Nielsen)

Manuscript in preparation 30th September 2021

5.1 Paper C 103



1. Introduction

For engineering systems that are subject to deterioration and failures, two major categories of

maintenance strategies exist; Time-Based Maintenance (TBM) and Condition-Based Maintenance

(CBM). As the names suggest, the decision to maintain the system is based on the elapsed time

in TBM and the physical condition of the system in CBM.

Mathematical optimization models for both concepts date back to the early 1960’s (Derman,

1963; Barlow & Proschan, 1996). A prerequisite for performing CBM is a mechanism for monitoring

the deterioration of the system. The practical application of CBM was held back for a long time by

a lack of methods for condition monitoring (Dekker, 1996), but there has been a steadily growing

interest in CBM in industry over the last couple of decades. This is partly due to the increasing

need for better maintenance strategies for the more expensive and more complex systems that exist

today. Secondly, recent developments in sensor technology and condition monitoring techniques

have also made CBM more accessible to a larger segment (Alaswad & Xiang, 2017; Shin & Jun,

2015).

TBM and CBM policies exist in varying degrees of sophistication. The two simplest forms

of TBM are the Block Replacement (BR) policy and the Age Replacement (AR) policy. Under

the BR policy, periodic maintenance is scheduled according to calendar time, and under the AR

policy, maintenance is performed whenever the system reaches an age threshold or fails (Barlow

& Proschan, 1996). A simple CBM policy is a Periodic Inspection and Replacement (PIR) policy

that prescribes maintenance actions, whenever the observed deterioration of the system exceeds a

predetermined threshold. It is common to describe the deterioration of the system with a stochastic

process, and then model inspections by assuming the points in time where this process is observed.

In this study, we use the gamma process to model deterioration, a commonly used process in studies

of maintenance policies (van Noortwijk, 2009).

Both CBM and TBM attempt to balance the cost of frequent maintenance activities with the

cost of system failures. When the deterioration of the system is gradual, CBM has an advantage

over TBM, since maintenance can be performed just before a failure occurs in the former. If a

cost is associated with inspecting the condition of the system, CBM may no longer be the cheapest

strategy, since TBM does not involve condition monitoring. Furthermore, the benefit of CBM over

TBM diminishes if the deterioration process is close to one of the two extremes of either being

2
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completely deterministic or completely unpredictable. The latter implies that failure is induced by

a single jump in the process occurring after an exponentially distributed time, in which case neither

TBM nor CBM can prevent the failure (de Jonge et al., 2017). It is therefore not always obvious

that maintenance managers should pursue an implementation of CBM, because the long-term cost

savings may not be very large. From a practical point of view, TBM is simpler to implement as

CBM has an investment cost for setting up the condition monitoring process (Shin & Jun, 2015).

Previous studies have considered the relative performance of TBM and CBM when costs and

deterioration process parameters are varied. From the review given in de Jonge et al. (2017), the

focus has almost exclusively been on single-component systems. In de Jonge et al. (2017), the

PIR policy and the AR policy described above are compared for a single-component system. The

authors investigate the practical factors of planning time, imperfect condition information, and an

uncertain deterioration failure limit. Cherkaoui et al. (2018) also consider a single component, and

they use the BR policy as the representative for TBM. They consider two CBM policies, a periodic

inspection PIR policy, and a variation of the PIR policy where the next inspection is chosen such

that a given level of reliability of the system is ensured. The main focus in Cherkaoui et al. (2018),

is the robustness of policies, both in terms of the cost variability and also the expected cost when

the policy is at a sub-optimal configuration. In uit het Broek et al. (2021), BR and PIR are

compared for a single-component production system, when the policies are jointly optimized with

a controllable production rate.

Regarding multi-component systems, we have only found two studies that compare TBM and

CBM. In Bouvard et al. (2011), a rolling-horizon optimization of a heuristic policy is developed,

and the authors compare the case were condition information is utilized to the case where only

age information is utilized. They consider a 3-component numerical example with fixed cost para-

meters, and vary the inspection interval and deterioration parameters. As such, no attempts are

made to investigate the aspects that are particularly relevant in multi-component systems, namely

stochastic, structural, and economic dependence between components.

The AR, BR, and PIR policies have all been studied extensively and in many variations Wang

(2002). Therefore, they are the natural choice as representative TBM and CBM policies in a TBM

and CBM comparison for a single-component system. All three policies are examples of policy

optimization (Nicolai & Dekker, 2008), where the solution is searched for within a parameterized

3
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class of policies. This is also a common approach for optimization in multi-component systems.

The second multi-component TBM and CBM comparison is found in Olde Keizer et al. (2016).

The authors consider a K-out-of-N system with economic dependence through a joint maintenance

setup cost. The authors compare an optimal CBM policy found via dynamic programming to six

different parameterized policies. The six reference policies are: 1) replace components only upon

failure, 2) individual AR for each component, 3) BR of all components simultaneously, 4) BR

with intermediate replacements of failed components, 5) individual PIR for each components, and

6) an (mi,Mi) multi-threshold CBM policy, where component i is replaced either correctively

upon failure, preventively when the deterioration exceeds Mi, or opportunistically if deterioration

exceeds mi and another component is also being replaced. Policies 2)-4) are TBM and policies 5)-6)

are CBM. Even though the sensitivity analysis includes varying the setup cost and the number of

components, the main focus of the comparison is to demonstrate the benefit of using a policy that

exploit the K-out-of-N reliability structure over the six heuristics that are easier to implement in

practice. The comparison mainly revolves around the optimal CBM policy compared to policy 6),

because the latter is consistently the best out of the six reference policies.

None of the TBM policies 2)-4) in Olde Keizer et al. (2016) exploit the possibility of clustering

maintenance. The (mi,Mi) policy does so through the threshold mi, and this policy can also be

an extension of AR, when mi and Mi represent age thresholds. A more relevant comparison of

TBM and CBM would therefore be between the PIR version and the AR version of the (mi,Mi)

policy. There are, however, many possible extensions of the basic AR, BR and PIR policies besides

the (mi,Mi) policy (Dekker et al., 1997). In multi-component systems it is generally the case that

such extensions do not contain the globally optimal policy (Nicolai & Dekker, 2008). We believe

a fair comparison between TBM and CBM requires that the chosen representative policies are

then “equally suboptimal” compared to their respective globally optimal policies. It is impossible

to check this without also computing the globally optimal policies, which is why we focus on

comparing the latter in this study.

When we say globally optimal policy, we mean optimal within a space of policies with as

few restrictions as possible, given the available information and a set of assumptions about the

system. We obtain such policies, by formulating both the TBM and the CBM problem as Markov

Decision Processes (MDPs) and solving them with Dynamic Programming (DP). We assume a
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continuous deterioriation process, i.e., the gamma process, such that the variance of the component

deterioration and the degree of stochastic dependence between components can be adjusted easily

in the sensitivity analysis. General purpose DP algorithms can only handle discrete-time and

discrete-space MDPs, but through sufficiently fine discretization of both time and space, we obtain

policies that closely approximate the globally optimal policies.

We consider a multi-component system that has economic dependence through a joint mainten-

ance setup cost and stochastic dependence modeled via a Lévy copula function. We investigate the

effects of varying aspects that pertain to multi-components systems, namely, the number of com-

ponents, the setup cost, and the degree of stochastic dependence between components. For each

system configuration, we compare the optimal TBM and CBM policies via the long-run average

maintenance cost per time unit, which we also refer to as the cost rate. It is currently unknown

if and how the above-mentioned aspects affect the relative performance of TBM and CBM. As

the relevance of multi-component models is growing with the increasing complexity of modern in-

dustrial systems, this study is a contribution that provides relevant insights to both maintenance

practitioners and theoreticians alike.

The remainder of this paper is structured as follows. In Section 2 we define the multi-component

system and formulate the problem of replacing components as a CBM MDP model and as a TBM

MDP model. In Section 3 we briefly review the DP algorithm used to obtain optimal policies in

the MDPs. In Section 4 we present and discuss the result from the sensitivity analysis, and in

Section 5 we provide a conclusion to the study.

2. Model description

We consider a system with N components each of which are subject to deterioration. In

order to keep the system in operation, the components can be replaced with new and identical

ones. We let Xt = (X1
t , . . . , X

N
t ), t ≥ 0, be a stochastic process that describes the condition of

the deteriorating system, when no component replacements are performed. The condition of the

maintained system, here denoted Yt = (Y 1
t , . . . , Y

N
t ) is the process, with the same increments

Yt2 −Yt1 = Xt2 −Xt1 , 0 ≤ t1 < t2 < ∞, when no replacements are done in the interval [t1, t2],

and for which a replacement, say of component i at time t, leads to Y i
t = 0.

We make the following assumptions about the system:
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A1 For all i ∈ {1, . . . , N}, the marginal deterioration process {Xi
t}t≥0, is a time-homogeneous

gamma process. This process is a non-decreasing Lévy process for which Xi
0 = 0, and where

increments Xi
t −Xi

s, s < t, are gamma distributed with shape parameter α(t − s) and rate

parameter β. Hence, the deterioration processes for the individual components have identical

probability laws.

A2 We assume that decisions to replace components are made at discrete points in time, τ∆,

τ = 0, 1, . . .. We refer to the time τ∆ as decision epoch τ , and we assume the time between

epochs, ∆ > 0, is fixed.

A3 Component i is assumed to fail when Y i
t ≥ L, where L is a fixed failure level. Failures are

self-announcing in the sense that they are known at the following decision epoch.

A4 All replacements are perfect and instantaneous. Upon a replacement of component i at epoch

τ we have Y i
τ∆ = 0.

A5 A component can be replaced at any epoch, τ . If the component is replaced preventively, i.e.,

when Y i
τ∆− < L, we the cost of replacement is cr. If the component has failed, Y i

τ∆− ≥ L, it

must be replaced correctively at a cost cr + cb, where cb is an additional breakdown cost.

A6 Whenever at least one component is replaced we incur a joint setup cost, cs.

A7 In the TBM case, we assume that the age of each component is known at each epoch, that

is, the number of epochs since the last replacement.

A8 In the CBM case, we assume that the (discretized) deterioration level is known at each epoch.

We formulate the TBM version and the CBM version of the replacement problem as MDPs,

and refer to these as the TBMDP and CBMDP model, respectively. The TBMDP and CBMDP

models we construct are multi-component extensions of the base model in de Jonge et al. (2017),

where all the same system assumptions are made (except A6 and the discretization part of A8).

There are some subtle yet important implications of the assumptions A1-A8 on the scope of the

comparison between TBM and CBM, some of which are not addressed in de Jonge et al. (2017). It

is therefore appropriate to first address some conceptual differences of the TBM and CBM problem

under these and alternative assumptions.
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For the TBM problem, the discrete epochs in assumption A2 imply a discrete state space in the

TBMDP, since this state space contains the possible ages of components. For the CBM problem we

also construct a discrete-state MDP, by discretization of the state spaces of the gamma deterioration

processes, Xt. Because we consider a multi-component system, the discrete-time and discrete-state

MDP formulation is required for optimization with DP algorithms. While Haurie & L’Ecuyer (1982)

consider a continuous-time discrete-state formulation and Özekici (1988) considers a discrete-time

continuous-state formulation of multi-component replacement problems, these models are analyzed

in order to characterize the structure of the optimal policies. In both studies, the authors conclude

that during computation one must approximate the optimal policy with a solution from a discrete

model, and this is also the approach we use here.

Assumption A2 is somewhat restrictive for the TBM case. For instance, when N = 1 the

optimal AR policy is characterized by a threshold value for preventive replacement (Barlow &

Proschan, 1996), and this may very well not be a multiple of ∆, but can be any value in the

interval (0,∞). However, by setting ∆ very low compared to the expected life of the components,

the discrete-time formulation may be regarded as a good approximation to the continuous-time

problem.

In a CBM setting, assumptions A2 and A8 correspond to periodic inspection of the component

condition. This discrete-time formulation is more natural in the CBM case, since continuous in-

spection of a gradual deterioration process allows the decision-maker to always replace components

just before failure occurs. This is hardly an interesting problem, and therefore CBM studies with

continuous inspections assume additional complications such as L being a random variable (Zuck-

erman, 1978), a condition-dependent failure rate (Park, 1988b), or a system with both monitored

and non-monitored components (Castro et al., 2020).

Since the deterioration process is continuous in time, a component failure may occur at some

time tfail, between two epochs, say (τ − 1)∆ and τ∆. By assumption A3 the component is known

to have failed at epoch τ in both the TBM case and the CBM case. We call this self-announcing

failures, albeit it is with a delay of τ∆− tfail due to the time discretization.

In a CBM context, the τ∆− tfail delay usually follows from an assumption that failure are not

self-announcing and that they are only detected upon inspection. It is then common to include

a downtime cost proportional to τ∆ − tfail (Xu et al., 2021; Sun et al., 2018; Grall et al., 2002;
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Abdel-Hameed, 1987). The downtime cost often appears together with a cost of inspecting the

system condition. The inspection interval, ∆, is then considered a decision variable that must

be optimized. In Cherkaoui et al. (2018), the PIR policy is jointly optimized with the inspection

interval for a single-component system and is then compared to the BR policy.

The BR policy is a suitable TBM representative policy when failures are not self-announcing.

The BR policy is static, in the sense that all replacement times are prescheduled. The AR policy, on

the other hand, is dynamic because the replacement times depend on when failures of components

occur. We therefore see the case of self-announcing failures and TBM policies based on component

ages as the more interesting case to compare with CBM.

Park (1988a) considers a single-component CBM system with periodic inspections and self-

announcing failures. When the component fails, it is replaced immediately and a new inspection

cycles start. In the present study, we regard the CBMDP model as a multi-component extension

of the model proposed by Park (1988a). However, just as for the TBMDP model, the replacement

delay τ∆− tfail appears as a time discretization error. For a fixed value of ∆ this error is of equal

magnitude in the CBM and the TBM case, hence the comparison is still meaningful.

2.1. MDP formulation

At each epoch, the following events take place in an MDP. The system occupies a state s ∈ S,

where S is a finite set; an action a ∈ As is chosen, where As is also a finite set; a reward, r(s,a) is

received; and the system transitions to a new state, s′ ∈ S, with probability p(s′|s,a).

In both the CBMDP and TBMDP, the state is a vector with N elements, s = (s1, . . . , sN ),

where si ∈ {0, . . . , D}, and the state space is given by S = {0, . . . , D}N . Component i is new

when si = 0, and si = D means it has failed. The interpretation of si and D for the CBMDP and

TBMDP are given in Sections 2.1.1 and 2.1.2, respectively.

An action is a binary vector a = (a1, . . . , aN ), where ai equal to 1 (0) indicates component i

is replaced (not replaced). By assumption A5, a failed component must be replaced, so the set of

possible actions in occupied state, s ∈ S, is given by As = {a ∈ {0, 1}N : ai = 1 if si = D}.

In both MDP models, the reward function is given by

r(s,a) =

N∑
i=1

ai (cr + cb1si=D) + cs

(
1−

N∏
i=1

(1− ai)

)
, (1)
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where 1si=D is the indicator function for the event si = D. The first term in Equation (1) account

for the replacement cost and breakdown cost introduced in assumption A5, and the second term

is the setup cost from assumption A6.

By assumption A4, at epoch τ∆ an action, a ∈ As, instantly moves the system from state s

to a post-decision state, ((1 − a1)s1, . . . , (1 − aN )sN ) ∈ S, where the elements corresponding to

replaced components now have the value zero. From the post-decision state and still at epoch

τ∆, the system then transitions to the state s′ ∈ S at epoch (τ + 1)∆ with probability p(s′|((1−

a1)s1, . . . , (1− aN )sN ),0), where 0 ∈ As is the action of not replacing any components. Instead of

specifying p(s′|s,a) for all s, s′ ∈ S and a ∈ As, it is therefore enough to specify the probabilities

q(s′|s) = p(s′|s,0).

2.1.1. CBMDP

In this model, the state vector, s ∈ S, represents a discretized version of the condition of the

maintained system, Yt. For the discretization, we divide the interval [0, L) into D equally sized

intervals Ik = [kL/D, (k + 1)L/D), k = 0, . . . , D − 1, and let ID = [L,∞). An element si = k,

k ∈ {0, . . . , D}, of the state vector, s ∈ S, then corresponds to Y i
t ∈ Ik. The CBMDP occupying

state s ∈ S at epoch τ therefore corresponds to Yτ∆ ∈ Is, where Is = Is1 × · · · × IsN .

We define the transition probabilities between the discrete states s, s′ ∈ S by

q(s′|s) = P (X(τ+1)∆ ∈ Is′ |Xi
τ∆ = (si + 1/2)L/D, i = 1, . . . , N). (2)

This is the probability that the deterioration process, Xt, advances to the region Is′ in epoch τ + 1

given each component had a deterioration level equal to the midpoint of their respective origin

interval, Isi , at epoch τ . In the case of independent component deterioration, the probability in

Equation (2) can be calculated as the product

q(s′|s) =

N∏
i=1

P (Xi
(τ+1)∆ ∈ Is′i |X

i
τ∆ = (si + 1/2)L/D), (3)

where each factor in Equation (3) can be evaluated from the gamma distribution function of the

increment Xi
(τ+1)∆−X

i
(τ)∆. The case of dependent component deterioration is discussed in Section

2.1.3.
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2.1.2. TBMDP

In this section, we construct an MDP for the situation described in assumption A7, where the

condition of the maintained system, Yt, is not observed, with the exception that failures are self-

announcing in accordance with assumption A3. In this model, the element, si ∈ {0, . . . , D− 1}, of

the state vector, s ∈ S, represents the age of component i measured as the number of epochs since

the last replacement. The value si = D indicates that the component has failed. In principle, it

is possible for a component to reach an age higher than D without failing. However, general DP

algorithms, like the one we describe in Section 3, only work for finite state spaces. Therefore, D is

also a truncation point for the maximum age a component can attain in the TBMDP model. As

long as the value of D is chosen large enough, the optimal TBM policy can be identified from the

TBMDP. If, however, D is set to a low value, it may be better to let components age for longer

than D epochs. In this case, the policy we obtain from solving the TBMDP cannot be optimal,

as the set of admissible policies has been restricted too much by the truncation. We avoid this

by choosing D such that the probability of a component surviving for D epochs, P (Xi
D∆ < L), is

close to zero, which we describe further in Section 4.

For the case of independent component deterioration, the transition probabilities in the TBMDP

are defined as follows. At each transition, a component in state si < D can either fail and

transition to state D, or age by one time unit, thereby transitioning to state si + 1. Let qi(s
′|s),

s, s′ ∈ {0, . . . , D}, denote the probability of component i transitioning from s to s′. We define this

probability as

qi(s
′|s) =



P (Xi
(s+1)∆ ≥ L|X

i
s∆ < L) s′ = D, s < D − 1

P (Xi
(s+1)∆ < L|Xi

s∆ < L) s′ = s+ 1 < D

1 D − 1 ≤ s ≤ s′ = D

0 else.

(4)

The first line in Equation (4) is the probability that a functioning component of age s fails, and

the second line is the probability that it does not fail. When a component has age s = D − 1 or

is failed, s = D, it will be in state D at the next epoch with certainty, which is the content of the

third line. We can now define the transition probability from the vector state s ∈ S to state s′ ∈ S

as

q(s′|s) =

N∏
i=1

qi(s
′
i|si). (5)
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2.1.3. Stochastic dependence

In Sections 2.1.1 and 2.1.2 we formulated the CBMDP and TBMDP models for the case, where

the marginal deterioration processes, X1
t , . . . , X

N
t , are independent. In Section 4, we also investig-

ate the effects of dependence between the marginal deterioration processes, which in a broad term

is known as stochastic dependence (de Jonge & Scarf, 2020). We model this dependence through

a Clayton-Lévy copula function, which has previously been used in the context of deterioration

modeling (Shi et al., 2020; Li et al., 2016; Jiang et al., 2021). When this dependence is introduced,

Equations (3) and (5) for the MDP transition probabilities are no longer valid. Instead we use the

Monte Carlo estimation procedure described in Andersen et al. (2021). For the sake of brevity,

we will not repeat the full description of the procedure here, but simply note that the Clayton-

Lévy copula function contains a parameter, θ > 0, and the larger the value of θ, the bigger is the

probability that large jumps in processes X1
t , . . . , X

N
t occur simultaneously. The MDP transition

probability estimation procedures described in Andersen et al. (2021) are based on the simulation

algorithm for Lévy processes with copula dependence developed in Grothe & Hofert (2015).

3. Dynamic programming

The optimal policies in the MDP models are found using the Value Iteration (VI) algorithm. In

the set of all mappings from S to A, Π, the VI algorithm identifies a policy, π ∈ Π, that maximizes

the average reward per time unit, i.e. the cost rate, by successively computing for n ∈ N0

vn+1(s) = max
a∈A

{
r(s,a) +

∑
s′∈S

p(s′|s,a)vn(s′)

}
∀s ∈ S, (6)

where vn : S → R is the value function. The process is stopped when

max
s∈S
{vn+1(s)− vn(s)} −min

s∈S
{vn+1(s)− vn(s)} < ε, (7)

where ε > 0 is a accuracy tolerance parameter. When this criterion is met, an approximation to

the optimal cost rate is given by

g = (max
s∈S
{vn+1(s)− vn(s)}+ min

s∈S
{vn+1(s)− vn(s)})/2, (8)

which is at most ε/2 from the true value Puterman (2005). The output policy, π, consists of the

maximizing actions in the final calculation of Equation (6).
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4. Comparative study

In the following, we compare the cost rates gCBM and gTBM obtained from the optimal policies

πCBM and πTBM in the CBMDP and TBMDP, respectively. Specifically, we look at the absolute

difference in cost rate, g̃ = gCBM − gTBM, under various parameter configurations of the system.

Because we have formulated the problem as one of maximization with negative cost parameters,

we always have gTBM < 0 and gCBM < 0. Furthermore, gTBM < gCBM and g̃ > 0 for all system

parameter settings.

All MDPs are solved with the VI algorithm using a tolerance of, ε = 10−5. The algorithm is

implemented in C++ and all numerical experiments were performed on a Huawei XH620 V3 server

node, which has two Intel Xeon Processor 2660v3 with ten 2.60GHz cores each (we only utilize one

core) and 128GB RAM.

Because of the discretization of the state-space in the CBM model, the cost rate obtained

as output from the VI algorithm is only an approximation. The cost rates gCBM and gTBM are

therefore estimated from the average of 10 Monte Carlo simulations of the maintained system

process, Yt, each having a length of 108 epochs. In all CBMDPs, the discretization parameter,

D, is set to 16. The improvement in gCBM when using finer discretization is very small, and also

restricts the number of components, for which we can solve the CBMDP in a reasonable amount

of time. The state space truncation, D, in the TBMDP is chosen as the smallest value such that

P (Xi
D∆ < L) is less than 10−6, 10−3, and 0.05 for N ∈ {1, 2}, N = 3, and N = 4, respectively. The

reason for the dependence on N is that the size of the state space otherwise becomes prohibitively

large. The value of D in the TBMDP also depends on the period, ∆, and the gamma process

parameters, α and β, and for the values we select below D is in the range 58 to 267.

4.1. Parameter settings

Let gCM denote the cost rate of the purely Corrective Maintenance (CM) policy, where com-

ponents are replaced only upon failure. All parameter configurations are normalized, such that

gCM ≈ −1, which allows for an easier interpretation of the individual parameter’s effect on the cost

rate difference, g̃.

We let two parameters remain the same in all considered system configurations, namely the

failure limit, L = 1, and the time between epochs ∆ = 0.02.
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Following Assumption A1, we choose the component deterioration parameters, α, and β, such

that components are identical. Let τfail = min{k ∈ N0 : Xi
k∆ ≥ L}, that is, the first epoch after a

failure. Then

E[τfail] =

∞∑
k=1

k∆P (τfail ≥ k∆) =

∞∑
k=1

k∆P (Xi
(k−1)∆ < L). (9)

The values of α are chosen in the range [0.5, 100] and β are chosen such that E[τfail] = 1, which

is done with a numerical search in Equation (9). By selecting pairs of α and β this way, we get

components with varying increment standard deviations, σ =
√
α/β2 and with the same average

time between replacement under the CM policy.

The components are also assumed to be identical w.r.t. the cost parameters cr and cb. We

consider all combinations of cs ∈ {0,−0.1/N, . . . ,−0.5/N}, and cr, cb ∈ {−0.1/N, . . . ,−0.9/N},

such that

cs + cr + cb = − 1

N
. (10)

In an N -component system with E[τfail] = 1 the cost of a corrective replacement of a single

component is given by Equation (10), and therefore gCM ≈ −1. The reason gCM is not exactly

equal to one, is that multiple components sometimes fail simultaneously, and the setup cost is then

only paid once, thus gCM ≥ −1. For the chosen values of α, β, and ∆ simultaneous failures are

rare so gCM is in fact very close to negative one.

There is a trade-off between how small we can set ∆ and how large we can set N . Recall from

Section 2 that both MDP models have a time-discretization error originating from the combination

of continuous deterioration, self-announcing failures, and periodic epochs. We want ∆ to be small in

order to minimize this error, and also because we do not want to restrict the set of admissible policies

in the TBM model too much, by only having epochs at far-spaced component ages. However, a

smaller ∆ means that the state space of the TBMDP becomes larger. This is because components

will reach a higher age in terms of number of epochs before they fail, and therefore the truncation

D must be larger. We have chosen ∆ = 0.02 and E[τfail] = 1, so the average number of epochs

between failures is 50. Table 1 shows how ∆ affects the cost rate for an N = 1 system configuration,

when α and β are fixed. By lowering ∆ from 0.02 to 0.01 the set of admissible policies is expanded

in the TBMDP, however, the cost rate only changes at the fourth decimal place, so the benefit

of lowering ∆ is negligible. In fact, the cost rate becomes worse as ∆ decreases. This is the

time discretization error decreasing as the distance between the actual time of failure tfail and the
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∆ gTBM t∗ gCBM

0.04 -0.64722(0.00008) 0.56 -0.43161(0.00007)

0.02 -0.64808(0.00010) 0.56 -0.4242(0.00007)

0.01 -0.64887(0.00013) 0.55 -0.41976(0.00013)

0.005 -0.64907(0.00020) 0.55 -0.41759(0.00017)

Table 1: Cost rates for varying period lengths, ∆. The value t∗ is the age-threshold in the optimal TBMDP policy,

πTBM. The system parameters are N = 1, α = 4, β = 3.46, cr = 0.2, cb = 0.8. Parentheses indicate standard errors

following epoch τfail becomes shorter, so the overall time between replacements is shortened as ∆

decreases. This is also the case in the CBMDP, but here the cost rate, gCBM, improves because

the system condition is inspected more often. As Table 1 shows, the standard errors of the Monte

Carlo estimated cost rates, gTBM and gCBM, are very small for the chosen simulation length, so we

do not report these in the results below.

The number of components is chosen in the range N ∈ {1, 2, 3, 4}, since with this choice of ∆,

the maximum number of components, for which we can still solve the problems in a reasonable

amount of time is four. The N = 4 CBMDPs solved in Figure 4 have |S| = 83521 and take

between to 2 and 31 hours to solve, while the corresponding TBMDPs have |S| between 1.2× 106

and 1.7× 108 and take between 17 and 109 hours to solve.

Finally, for the stochastic dependence, we test four different values for the Clayton-Lévy copula

parameter, θ ∈ {0, 0.2, 1.5, 3.0}, where θ = 0 indicates that components are independent.

4.2. Single-component system

When N = 1, the setup cost, cs, and stochastic dependence, θ, are redundant, and the system

simplifies to the base model considered in de Jonge et al. (2017). The optimal policies are in this

case the one-dimensional control-limit policies, AR and PIR. Figure 1 shows the difference in cost

rate, g̃, when varying σ and cb. The replacement cost is determined by cr = −1− cb to normalize

gCM to one. The largest difference between CBM and TBM is found where the breakdown cost,

cb, is comparatively large to the replacement cost cr, and overall the benefit of CBM over TBM

diminishes for both low and high values of σ. At σ close to zero both gCBM and gTBM are close

to cr since replacement can be made just in time before failure. At the other end for large σ the

hazard rate becomes constant in time. It is therefore favorable to wait for a failure before replacing
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Figure 1: The difference in cost rates, g̃ (left), and the corresponding cost rates (right) for CBM, gCBM (red), and

TBM, gTBM (blue), in the N = 1 system. Maximum g̃ is indicated with a red circle.

the component, because the hazard rate is the same immediately after the replacement, hence

gCBM and gTBM are both close to cr + cb = −1 for high σ. A consequence of this is that for some

combinations of σ and cb the TBMDP state space truncation, D, is too low because the optimal

replacement threshold lies at some higher age. In these cases the optimal policy is not identified,

although it is closely approximated since the selected truncation point, D, defined above ensures

that components rarely survive long enough to reach the true optimal replacement threshold.

Figure 1 mainly serves as a reference for the multi-component system results presented below.

In all figures, we omit the data points, where the TBMDP truncation, D, is too low and gTBM <

−0.99 in order to make the figures easier to read and since these points do not reveal anything of

significance.

4.3. Setup cost

In this section, we consider the N = 2 system with independent component deterioration

(θ = 0). Figure 2 shows g̃ wit varying setup cost, cs. When cs = 0 there is no economic dependence

between the two components and the plot of the cost rate difference, g̃, is identical to the N = 1

system depicted in Figure 1. Comparing the maximum values of g̃ indicated in Figures 1 and 2

we see that g̃ becomes smaller in systems with a nonzero setup cost, and Figure 2 shows that the

decrease is greater when the setup cost is larger.
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Figure 2: The difference in cost rate, g̃, for CBM and TBM in an N = 2 system with θ = 0 and setup cost:

cs = −0.1/N (blue), cs = −0.2/N (green), cs = −0.3/N (yellow), and cs = −0.5/N (red). Note that high values of

cs, means fewer feasible values of cb, because the cost parameter combinations should comply with Equation (10).

Maximum g̃ is indicated with a red circle. The optimal policies, πTBM, πCBM corresponding to the black squares are

shown in Figure 3.

For a fixed breakdown cost cb, both gTBM and gCBM improve when cs becomes larger relative

to cr. Figure 3 shows the optimal policies, πTBM and πCBM, for a fixed value of cb = −0.6/N

and two different values of cs. gTBM improves by 0.152 and gCBM improves by 0.098 when cs

increases from −0.1/N to −0.3/N . The reason for the improvements is that there are more system

states where it makes sense to perform joint replacements, since the additional cost of a preventive

replacement of one component if the other is being replaced is cr, which correspondingly reduces

from −0.3/N to −0.1/N . It is evident from the cost rates in Figure 3 that gTBM is more sensitive

to cs than gCBM, which is why the difference, g̃, decreases as cs increases. It is difficult to find an

intuitive explanation of why this is the case, and therefore these results demonstrate the necessity

of numerical experimentation when comparing CBM and TBM in multi-component systems.

4.4. Number of components

Figure 4 shows g̃ for systems with different number of components. For the small setup cost,

cs = −0.1/N , there is almost no visible changes in g̃ for different values of N . However, for
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Figure 3: Optimal TBM policies (top), CBM policies (bottom), for N = 2, θ = 0, cb = −0.6/N , α = 4.0, and

β = 3.46. The setup and replacement costs are cs = −0.1/N , cr = −0.3/N (left) and cs = −0.3/N , cr = −0.1/N

(right). The optimal action in each region is indicated with parenthesis.
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Figure 4: The difference in cost rate, g̃, for CBM and TBM in a system with θ = 0 and with setup cost cs = −0.1/N

(left), cs = −0.3/N (right) for N = 2 (blue), N = 3 (yellow), and N = 4 (red) components. The value of g̃ at the

points marked with 4 and � are given in Table 2

Figure 4 mark cb N gTBM gCBM g̃

� −0.6/N
2 −0.677 −0.547 0.130

4 −0.560 −0.467 0.093

4 −0.1/N
2 −0.988 −0.960 0.028

4 −0.980 −0.926 0.054

Table 2: Cost rates for varying number of components. cs = −0.3/N , α = 4, β = 3.46, θ = 0.

cs = −0.3/N the cost rate difference, g̃, appear to become less sensitive to changes in cb and cr,

as N increases. Indeed, g̃ is not always lower for N = 4 than N = 2. Table 2 shows the specific

gTBM and gCBM values for two points in Figure 4, one where N = 4 has the highest g̃ value (4)

and another where N = 4 has the lowest g̃ value (�).

In Table 2 and in general, the N = 4 system has better cost rates, gCBM and gTBM, than the

N = 2 system. This demonstrates an interaction effect between cs and N . Loosely explained,

in an N = 2 system, the opportunities for joint replacement “saves” one setup cost, however in

systems with a higher number of components, certain system states create opportunity for joint

replacement of more than two component, which saves a multiple of the setup cost.
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Figure 5 mark cs cb θ gTBM gCBM g̃

� −0.3/N −0.6/N
0 −0.677 −0.547 0.130

3.0 −0.628 −0.471 0.157

4 0 −0.6/N
0 −0.880 −0.664 0.216

3.0 −0.873 −0.664 0.209

Table 3: Cost rates for varying levels of stochastic dependence. cs = −0.3/N , α = 4, β = 3.46, N = 2.

4.5. Stochastic dependence

In this section we consider the N = 2 system with varying levels of stochastic dependence.

Figure 5 shows g̃ for two different values of cs. The cs = −0.3/N plot shows that g̃ is generally

increases with θ. From the specific cost rates shown in Table 3, the increase in g̃ is because gCBM

improves more than gTBM. The fact that both gCBM and gTBM improve can be explained by the

deterioration processes X1
t and X2

t attaining a level of synchronization when θ increases, which

leads to more opportunities for joint replacements.

For the case of cs = 0, Figure 5 (left), the N = 2 system has no economic dependence, yet there

is still a change in g̃ as θ increases. The CBM policy πCBM remains the same and the cost rate

gCBM is identical to that of the N = 1 system in Figure 1 for both θ = 0 and θ = 3. However, as

Figure 6 shows the optimal TBM policy πTBM goes from being two independent AR control-limit

policies at θ = 0 to having a non-trivial structure at θ = 3. This is somewhat surprising, although

the change in gTBM is only 0.007. In summary, g̃ generally increases with θ except for systems

with a very small or no setup cost, for which g̃ decreases slightly as θ increases.

In systems with considerable setup cost, the increase in g̃ from a large θ does not outweigh the

decrease in g̃ from the setup cost. That is, systems with no economic dependence have a larger g̃

than systems with both economic and stochastic dependence.

5. Conclusion

In this paper, we present a comparison between optimal TBM and CBM policies in a multi-

component system. Previous studies that compare TBM and CBM only investigate single-component

systems and heuristic policies. The general maintenance literature is increasingly focusing on mod-

eling complex multi-component systems and developing CBM policies for such systems. The ana-
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Figure 6: Optimal TBM policies for4marked points in Figure 5, which have parameters N = 2, cs = 0, cb = −0.6/N ,

cr = −0.4/N α = 4.0, β = 3.46. θ = 0 (left) and θ = 3 (right). The optimal action in each region is indicated with

parenthesis.

20

122 5 TBM versus CBM



lysis we present is therefore an investigation into the underlying justification for this shift in the

literature.

In the multi-component system we consider, there is economic dependence between compon-

ents through a joint setup cost for maintenance actions and stochastic dependence modeled by

dependent component deterioration increments. The degree of both of these dependences and the

number of components in the system all affect the relative benefit of CBM over TBM. We measure

the benefit as the difference between the cost rates of the optimal CBM policy and the optimal

TBM policy.

When the setup cost increases, the cost rate difference decreases. A special case of the multi-

component system is the single-component system, in which there is no setup cost. Consequently,

the benefit of CBM over TBM is in general lower in the multi-component system compared to the

single-component system. The benefit increases with the degree of stochastic dependence between

components. However, a decrease in the cost rate difference as a result of a small setup cost

outweighs the increase from stochastic dependence, even if this is a strong degree of stochastic

dependence. As the number of components increase, the cost rate difference becomes less sensitive

to the values of the replacement and breakdown cost parameters. Furthermore, both the CBM

cost rate and the TBM cost rate generally improve as the number of components in the system

increases.

In order to limit the number of variables in our sensitivity analysis, we do not include any

cost for periodic inspection of the condition of the components in the CBM model. Therefore, the

difference in cost rate, which we use as a measure to compare TBM and CBM, is equal to the

inspection cost per time unit that would render the TBM and CBM policies equally good in terms

of total costs. Considering that condition monitoring in practice involves a running inspection

cost, the relative benefit of CBM over TBM is in fact smaller than the results from our numerical

experiments suggest. Besides the inspection costs associated with CBM, the benefit of CBM over

TBM is also determined by other practical circumstances (de Jonge et al., 2017). For a given

real-world system, whether and how the currently used TBM policy or the future CBM policy are

optimized also impacts the potential cost reduction from implementing CBM. Our comparative

study is based on optimal policies identified using DP. An example of a policy, which is suboptimal

but easier to optimize and implement in practice, is the (mi,Mi) policy described in Section 1. A
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comparison of TBM and CBM based on the (mi,Mi) policy or another heuristic policy is a possible

continuation of the research we present in this paper.

We limited the scope of this study, by only considering multi-component systems with economic

dependence and stochastic dependence. Another possible continuation of this study, is to compare

CBM and TBM in multi-component systems with structural dependence, for instance, by including

systems with a reliability structure such as series-, parallel-, or K-out-of-N systems.
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CHAPTER6
Summary and
Perspectives

The main topic of this dissertation is modeling and optimization of maintenance
in multi-component systems. Modeling the dynamics of a given real-world multi-
component system is challenging in itself, and from the review we presented in Chap-
ter 2 it is clear that there are many aspects to consider. Moreover, the possible
dependences between components in such systems lead to some very difficult opti-
mization problems.

The underlying motivation for the research presented in Chapter 3 was the ques-
tion of the practicality of DP optimization compared to other forms of optimization,
given the general trade-off between computational requirements and the performance
of the resulting policy. DP optimization generally results in the best policy, but the
computational requirements grow exponentially with the number of components in
the system. We considered a generic multi-component system and investigated the
practical system size limit in terms of computation in DP algorithms, both in the case
of TBM and CBM. A feature of the chosen system is that the components deteriorate
according to a stochastic process that is continuous in time and state space, namely
the gamma process. This allowed us to explore the effects of discretization in the
CBM case, which is a necessary step when using iterative DP algorithms. Compared
to results presented in other studies that consider st systems and DP optimization,
the results of our numerical experiments indicate that relatively few discretization
intervals are needed to obtain a near-optimal policy.

Chapter 4 is a more detailed investigation of the possible ways of performing
the discretization in the CBM model. The conclusion from this study is that the
choice of discretization procedure affects how accurate the DP algorithm estimates
the value of the output policy, but that the policy itself is fairly robust to the choice
of discretization method even when the discretization is coarse. Among the different
methods of discretization we investigated, one is only applicable when the compo-
nents deteriorate independently of each other. This particular method is based on
the expected number of transitions between discretization intervals observed in the
continuous deterioration process. This method proved to produce a more accurate
estimate of the value of the output policy. We demonstrated how to exploit this in a
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multigrid algorithm in order to speed up the convergence of the DP algorithm.
When the CBM model becomes so large that DP is no longer a feasible option,

approximate algorithms may be used. Most ADP and RL algorithms are based on
Monte-Carlo simulation of the system, and for this purpose we may use the origi-
nal continuous deterioration process. In this case, the discretization is not strictly
needed. Nonetheless, for computational reasons it might be more practical to use the
discretized process for simulating of the system. For instance, the deterioration of
the stochastically dependent components we consider in Chapters 3 and 5 is modeled
by a multivariate gamma process with the Clayton-Lévy copula dependence. When
the components are weekly dependent, simulating one time step in this process accu-
rately requires a sum of 4000 sampled jump sizes, and this can potentially make an
approximate algorithm quite slow. In that sense, our results related to discretization
have a broader relevance than iterative DP algorithms.

Besides being a technical detail in the DP optimization, the discretization also has
a practical interpretation. In CBM the condition monitoring is sometimes performed
by inspecting the system and classifying the observed deterioration on a qualitatively
labeled scale with a small number of levels. The discretization method in Chapter
4 based on the expected number of transitions between discretization intervals is
conceptually the same as modeling the deterioration as a DTMC with a state for
each qualitative level. Any maintenance optimization based on a simple deterioration
model such as this could result in a policy that performs poorly. However, in the
example we consider with the gamma process to describe deterioration, a coarse
discretization is shown to be sufficient, and this result is therefore a validation of the
condition monitoring practice described above.

In Chapter 5 we compared TBM and CBM in a multi-component system. Mod-
ern technical systems are often comprised of several components, and within industry
there is a growing interest in CBM. The work in Chapter 5 is a quantification of how
much can be gained by implementing CBM in a multi-component system. Designing
the numerical experiments that help answer this question is not as straightforward
as for a single-component system. There are more choices for the candidate multi-
component system model because of the dependences between components. Further-
more, the optimization of TBM and CBM policies can be done in different ways, and
the sensitivity analysis is computationally demanding when many system parameter
settings are considered. We speculate the latter is the primary reason why a similar
study was not carried out before. In our study, we reuse the model framework devel-
oped in Chapter 3 and investigate how the optimal CBM policy and the optimal TBM
policy differ in performance when the parameters of the multi-component system are
varied. The parameters that are exclusive to the multi-component version of the
considered system are the setup cost, the number of components, and the degree of
stochastic dependence between components. We observed that increasing the setup
cost decreases the difference between CBM and TBM, while increasing the degree
of stochastic dependence increases the difference. When the number of components
increases, the sensitivity to the ratio between PM cost and CM cost decreases. Fi-
nally, of all the possible combinations of system parameter values, most result in a
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smaller difference between CBM and TBM than the corresponding difference in the
single-component system.

6.1 Research directions
From the conclusions and insights we have obtained through the work in the previous
chapters, we see a number of possible topics for further research.

Continuous-time discretization In all the systems we have considered, the de-
terioration of components has been assumed to be continuous in time and space. In
the CBM models we then discretized this process into a DTMC. The resulting MDP
has equidistant epochs corresponding to periodic inspection of the system condition.
However, the primary motivation for the discretization is to obtain a finite state
space, because this enables the use of DP for optimization. Therefore, an alterna-
tive method of discretization is to use a CTMC, which results in an SMDP model.
The time to failure of a component in the discretized deterioration process is then
phase-type distributed. The class of phase-type distributions is dense in distributions
with positive support, so the CTMC is in fact a sensible choice for approximating
the time to failure of a continuous deterioration process, such as a gamma process.
It is therefore also plausible, that the CTMC discretization is a better choice than
the DTMC in terms the number of discretization intervals needed for obtaining a
near-optimal policy. The practical interpretation of the CBM policy obtained from
the SMDP model is also somewhat different. The decision epochs in the SMDP are
not equidistant, so the interpretation of periodic inspection of the system is not valid.
Instead, the policy obtained from the SMDP is useful in modeling a system with
continuous monitoring, where it is possible to perform maintenance actions at any
given moment.

Harmonization In Section 2.3.4, we reviewed some results from the literature that
compared the performance of heuristics to that of optimal policies. It is not obvious
from these results that we can draw any general conclusions for which kind of sys-
tems a heuristic performs nearly as well as the optimal policy. However, the number
of components is a factor that partially determines this in multi-component systems
with economic dependence through a joint setup cost, such as the systems considered
in this dissertation. When a multi-component system has many components, then
at almost all decision epochs, some components will have failed and require mainte-
nance. In this case, deciding if maintenance activities for different components should
be grouped is less important, since the setup cost is paid at almost every epoch any-
way. This effect is referred to as harmonization in Dekker et al. (1996). For such
systems, an optimization problem, where all components are considered simultane-
ously, is not necessarily the best approach. Instead we can optimize a policy for each
individual component separately, which is the basis for the heuristic developed in
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Dekker et al. (1996). Another example of this approach is Zhu et al. (2015), in which
a numerical example with 60 components of three different types is considered. The
three types have expected times to failure of 116, 141, and 143 days, respectively,
while the optimal inspection interval is found to be 36 days. For this system and
this inspection policy it is demonstrated in the paper that every epoch is likely to
have a failed component. However, the choice of inspection interval affects the degree
of harmonization. For instance, if the 60 components are inspected every day, the
fraction of epochs, where no failure has occurred, will be larger.

As far as we know, no systematic study of the harmonization effect has been con-
ducted so far. This is an interesting research subject, because a better understanding
of this effect will help to determine the appropriate method of optimization a given
multi-component system. In systems with a relatively small number of components,
DP algorithms can be used to find optimal maintenance policies. For systems with
a very large number components, heuristics that are easy to optimize may perform
almost as well as the optimal policy due to the harmonization effect, so there is no
reason to pursue the latter. It is not obvious whether there is a gap between small
systems, where we can obtain the optimal policy, and large systems, where we no
longer need it. If the gap exists, it is also an interesting question whether approxi-
mate algorithms from ADP/RL are enough to deal with these systems of intermediate
size.

Case studies All the models we have considered in the previous chapters are of
generic multi-component systems. Although no specific real-world system has been
modeled, the motivation behind the numerical experiments we have conducted was
to test the applicability of MDP and DP. Undoubtedly, the ultimate test of the
applicability of maintenance optimization is to use the methodology on real-world
technical systems.

Maintenance is in principle an applied research field, but in spite of this relatively
few case studies are being published in maintenance-related journals. In Dekker
(1996), the author states that even though maintenance optimization has thrived as
a mathematical discipline within operations research, its impact on decision making
in maintenance organizations has been limited. Another paper that makes this point
is Scarf (1997), where the overall purpose of the paper is to be an appeal for mainte-
nance researchers to do more collaborations with industry. More recently, Fraser et al.
(2015) quantify the problem by analyzing how many maintenance papers in the top
maintenance journals show any empirical evidence for their models being of practical
use. Between the years 1995 and 2010 the three most prominent maintenance jour-
nals, Reliability Engineering and System Safety, Journal of Quality in Maintenance
Engineering, and International Journal of Quality and Reliability Management pub-
lished 493 papers on maintenance models, and only 39 of them contained empirical
evidence, which corresponds to 8%. This rate is arguably too low for an applied field
such as maintenance, but the authors acknowledge that a comparison with the rate
of empirical studies in other fields is needed. Of all the references we mention in this
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thesis that are published after 2010, the majority are purely theoretical, so the issue
is still present today.

It is not surprising to us that there is a lack of published case studies. Since
a successful case study of maintenance optimization is a collaboration project that
requires a high level of commitment from both the researchers and the industry part-
ner, the research outcome can be more unpredictable and work may take longer than
theoretical research (Scarf 1997). Furthermore, assessing the success of implementing
a new maintenance policy should take a long time if the policy is optimized for a long
horizon. If the change of policy is successful, another issue is that private companies
may be reluctant to publish the results of such a study, if it means that they lose a
competitive edge (Dekker 1996). Nonetheless, from a perspective of advancing the
field of maintenance, case studies are worthwhile the effort, because they bridge the
gap between theory and practice that is currently too large.
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