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Distributed Collaborative
Optimization of a Multi-Region
Integrated Energy System Based
on Edge Computing Unit
Mengxue Wang1, Haoran Zhao1*, Hang Tian1 and Qiuwei Wu2

1Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan,
China, 2Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark

The coordinated optimization scheduling of the integrated energy systems is vital in multi-
energy complementarity and hierarchical utilization. However, the centralized optimization
is inferior to the distributed optimization of the large-scale multiregion integrated energy
system (MRIES) in data processing capacity and information security. This study proposes
a distributed computing architecture based on the edge computing unit (ECU), which
takes the energy hub as the main body and sets the partitioning principle and method of
MRIES. The ECU can finally realize the whole-system collaborative optimization of MRIES,
which contains electrical, natural gas, and district heating networks through internal
autonomous optimization and boundary information interaction with the cloud computing
center. At the same time, an improved nested algorithm based on the consensus-
alternating direction method of multipliers is proposed, which ensures the convergence
of the mixed-integer linear program and effectively improves the convergence speed.
Combining the advantages of the model and algorithm provides a theoretical and
algorithmic support for the optimization research of the MRIES.

Keywords: edge computing unit, multiregional integrated energy system, distributed collaborative optimization,
energy hub, energy conservation

1 INTRODUCTION

Carbon peak and carbon neutrality targets put forward higher requirements for accelerating
energy transformation in China. Therefore, the optimization of energy structure, energy
conservation, and improvement of energy efficiency has become the most basic direction
of energy development (Yunzhou et al., 2021). The construction of the IES is conducive to
promoting the integration of source, network, load and storage, and multi-energy complementarity,
which can realize the sustainable development for optimizing energy structure and improving
energy efficiency. As the crucial part of IES research, RIES (Na et al., 2020) is mostly
modeled in the form of EH. With EH as the main body, the RIES can be divided into
functional units such as industrial areas, commercial areas, and residential areas. Based on
the advantages of the geographical range, the RIES can conveniently realize the flexible
optimization and scheduling decisions, which cannot be achieved without the assistance of
multi-energy collaborative management, direct monitoring, and analysis of the operational
data. Therefore, the RIES is an effective control and computing unit of IES intelligent evolution
at present.
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The IES distributed optimization has unique advantages
over the centralized optimization in data acquisition cost,
processing difficulty, application scale, information privacy, and
security. A reasonable partition method of the IES and a
suitable distributed algorithm are the fundamental problems
of the IES distributed optimization. Haozhong et al. (2019) and
Jianzhu Chen et al. (2019) used the different improved ADMM
to conduct the distributed optimization of the IES based on
the energy network decoupled. Jianzhu Chen et al. (2019) took
CHP as the central part of the model and optimized the
RIES in the distributed double layer, which took the delay of
the bottom thermal ring network into account. In the study
by Zhang et al., (2018), ADMM was adopted to optimize the
pricing strategy of the multi-EH system with the underlying
heating network. In the studies by Chen et al. (2018) and
Chen et al. (2021), the static and dynamic characteristics of the
EHs were taken into consideration and optimized, respectively.
Zhang et al. (2018) proposed a multi-agent bargaining learning
method, which optimized the large-scale IES in a distributed
way, while the EH worked as the agent. Based on C-ADMM,
Xu et al. (2019) improved the algorithm and analyzed the
MRIES consisting of electrical, gas, and thermal three-ring
networks with the four EHs. In comparison, Wen et al. (2017)
used an improved method based on the C-ADMM dealing
with the distributed optimization of a large-scale electric-gas
system. ADMM was used for the distributed optimization
of the multi-agent IES in the study by Haitao et al. (2021).
Wu et al. (2020) used a hierarchical optimization method to
carry out the distributed optimization of the electric–thermal
system.

At present, the distributed collaborative optimization of the
MRIES still has shortcomings:

(1) The role of MRIES in energy management and allocation
is weakened by the decoupling method based on the
different energy networks, which will be more complicated
with the increase of the number and types of coupling
devices.

(2) The distributed optimization with the EH as the main body
does not consider the upper and lower energy network
constraints. As a result, the global optimal solution cannot
be obtained directly through the data interaction between the
EHs.

(3) There is lack of a suitable distributed algorithm considering
the EH off-design performance to support the expansion of
the MRIES.

Therefore, this study proposes a distributed computing
architecture based on an ECU and develops an IES partitioning
method corresponding to it. And then, this study puts forward
an improved algorithm adapted to the distributed characteristics
of the model, forming a complete set of distributed computing
methods based on ECU.

With the EH as the main body, the ECU is equivalent to RIES
in geographical scope and structural level. The global optimal
scheduling scheme is finally obtained through optimization
within the unit and information interaction with the cloud.
This architecture not only protects the information privacy

and security of the RIES but also dramatically reduces the
pressure of data transmission, storage, and processing in the
cloud through edge computing, which reduces the difficulty
of processing complex data of the IES. In addition, this study
proposes a set of IES partitioning methods according to
the connected positions of the EHs to reasonably partition
ECU regions and provide a model basis for algorithm
improvement. Based on the detailed RIES model, the improved
C-ADMM nested algorithm fits the ECU model well, which
can solve the nonconvergence problem caused by MISOCP
and guarantee the optimization results with fewer iterations.
They complement each other and provide a theoretical and
methodological support for the MRIES distributed cooperative
optimization.

In this article, the concept of the proposed ECU, modeling
method, and improved algorithm are introduced in detail, and
an example of the MRIES is used to verify the scalability and
effectiveness of them.

2 EDGE COMPUTING UNIT FRAMEWORK
FOR IES DISTRIBUTED OPTIMIZATION
SCHEDULING

Internet of things, cloud computing, edge computing,
and other technologies have played an important role in
smart home management (Albataineh et al., 2020), power
market (Chen S. et al., 2019), smart grid (Liu et al., 2021),
(Cao et al., 2019), and other fields, but they have not fully
emerged in the IES. Therefore, the ECU model proposed
in this article will serve as a new energy management
framework and provide a new idea for the unified management
and coordinated scheduling of the IES multiple energy
sources.

2.1 Framework of Edge Computing Unit
Corresponding to the cloud computing center in the IES, the ECU
proposed in this article is the local energy data management unit,
which can reduce cloud computing burden by finishing a part
of the computing tasks at the local (Weisong et al., 2017). The
structure of the ECU model presented in this article is shown in
Figure 1.

EC, HP, CHP, and GB, as the coupling equipment convert
power and natural gas into cold, heating, and power. Cooling and
power are directly supplied to the local load, while the heating is
transmitted to the HS or the DHN to jointly support the heating
demand of the local load.

The modeling method of the upper radiant heat network
is similar to that of the power grid and natural gas
network. Therefore, the ring heating network is only
established at the lower layer in this study for heat
circulation. The ring network has high security and reliability
(Wang et al., 2016), and the computing method for the ring
network also meets the requirements of the radial heating
network.
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FIGURE 1 | Structure diagram of ECU.

The ECU supports the multizone expansion, where the units
are connected to each other through a power grid, natural gas
network, and DHN, becoming the main body of the MRIES.

2.2 Data Exchange Process of
Optimization Scheduling in Multiregion
Integrated Energy System
The ECU obtains the data of the devices and nodes through
the local awareness layer and submits the boundary information
to the cloud after internal optimization. Then, the cloud feeds
back the consensus information obtained from the centralized
computing to each ECU. After that, the ECU adjusts the internal
operation according to the consensus information. The MRIES
achieves global optimization through several iterations.

The centralized optimization needs to submit all the
device data to the cloud, which results in vast costs of
communication facility construction, data transmission, storage,
and processing. It deviates from the energy development idea
of energy conservation and emission reduction. Meanwhile, the
information security and privacy cannot be guaranteed, as shown
in Figure 2A.

Figure 2B shows the distributed optimization based on the
energy system decoupled. Each computing unit needs to process
the data of the whole system, which is themainstream distributed
computing method at present. Although the amount of cloud
workload is reduced by two to three times, it is still affected by
the wide geographical range of the MRIES. Meanwhile, the cost
of the communication facility construction is still relatively high.
In addition, this method deconstructs the EHmodel, resulting in
the separate operation of each coupling device. As the number
and types of the coupling devices increase, the computational
complexity of this method will increase and the cost of data
transmission and storage will also increase significantly.

The decoupled method based on the ECU is shown in
Figure 2A, where the data are transmitted within the RIES
and only submits the boundary information at the coupling
point between the ECUs to the cloud. This decoupled method
dramatically reduces the cost of communication facility
construction, data transmission, storage, and processing, while
ensuring the security and privacy of the data. Furthermore,
the ECU collects the data of three types of energy and
processes them in a centralized manner, which can better play a
synergistic role in optimization. In addition, this method lays
a foundation for future research work of the unified energy
management.

FIGURE 2 | Data flow of different optimization methods in IES. (A) Data flow of the centralized optimization and the ECU architecture distributed optimization. (B)
Data flow of the distributed optimization decoupled according to energy networks.
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3 MODELING OF THE EDGE COMPUTING
UNIT

3.1 IES Decoupled Principle Based on
Edge Computing Unit
As previously mentioned, EH is the main body and the energy
management unit of the RIES. Therefore, the EH serves as the
main body of the ECU to decouple the energy system. The
partition principle should be based on the whole system’s lowest
communication cost. The communication cost is proportional to
the physical distance between the nodes. Therefore, we decouple
the energy networks separately according to the adaptive method
of P-median problem as shown in Eq. 1.

min∑
r∈R
∑
f ∈F

lrf yrf

s.t.∑
r∈R

yrf = 1, ∀f ∈ F

yrf ∈ {0,1} , ∀r ∈ R,∀f ∈ F.

(1)

The objective function minimizes the information
transmission distance within the network partitions, while the
constraints ensure that the nodes are completely partitioned
without repetition and omission. The IES model contains an
electrical network, natural gas network, and DHN in the study.
Therefore, the objective function should be applied in the three
networks. After that, we can get the indices of the nodes in each
unit of every network, but we need to further determine the
boundaries between the units to provide the boundary data for
cloud computing. As a result, section 3.2 provides a decoupled
method to distinguish the boundaries between the units under
different EH connection conditions.

3.2 IES Decoupled Method Based on the
Edge Computing Unit
As previously mentioned, the units contain different nodes but
are connected by an energy transmission line. The transmission
line also falls within the scope of unit internal optimization, so
the virtual node needs to be inserted into the transmission line to
establish clear boundaries between the units and serve as a data
collection point of the connecting transmission line.

This study proposed a decoupledmethod, where the EH serves
as the core in each ECU. Based on the connected position of
the EH to the energy network, the whole system is decoupled
by the partition method as given below. In Figure 3, the source
represents the source of the energy network, which is the
generator in the electrical network and the compressor in the
natural gas network. EH represents a real hub.The virtual node is
located in the middle of the transmission line, and the node data
are the energy data in the middle of the transmission line. The
virtual transmission line is lossless, aiming to reduce the coupling
degree between the nodes.

3.2.1 Tandem Type
This type refers to the nodes of the EHs that are series nodes in
the network. It contains three subtypes, such as the head subtype,
concatenation subtype, and end subtype.

FIGURE 3 | Network partition method.

The concatenation subtype refers to the condition where the
node of the EH is neither the end nor the head in the network. In
this condition, the energy transmission line should be split in the
middle and inserted with a virtual node on each side of the EH.
The virtual node is included by the ECUs on both sides, and the
insertion position of the virtual node is the boundary between the
units. The data of the virtual node during the local optimization
within the ECU are the boundary information submitted to the
cloud.

The head/end subtype refers to the condition where the node
of the EH is the head/end in the network. In this case, a virtual
node should be inserted into the middle of the transmission line
on only one side.

3.2.2 Parallel Type
This type contains two subtypes: same node subtype and same
level node subtype, which, respectively, mean the EHs connected
to the same nodes and the same level nodes in the network, as
shown in Figure 3. When dealing with the same level node, a
virtual node is inserted in the middle of one transmission line
to transform it to the end subtype. As for the same node subtype,
these node data for the EHs couple tightly, so a section of virtual
transmission line should be added before each EH, which is
transformed into the same level node subtype.

The energy networks are decoupled based on the
abovementioned methods. The total energy consumption of a
single ECU is the amount of the difference between the inflow
and outflow.

3.3 Electrical Network Model in the Edge
Computing Unit
In this study, the Distflow model is used to simulate the
power flow of the distribution network in the ECU (Baran and
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Wu 1989), and the SOCP is used to deal with the nonlinear
model. The power balance of the node described in Eqs 2–4 is
the voltage loss equation, and Eq. 5 represents the relationship
between the branch current, node voltage, and power.

Pin
j,t =− ∑

g∈Π
(j)PG

g ,t − ∑
pv∈Π
(j)PPV

pv,t − ∑
wt∈Π
(j)PWT

wt,t − (Pij,t − ̂Iij,tRij)

+ ∑
o∈Ω
(j)Pjo,t + ∑

d∈Π
(j)PLD

d,t + P
EH
j,t . (2)

Qin
j,t = −(Qij,t − ̂Iij,tXij) + ∑

o∈Ω
(j)Qjo,t + ∑

d∈Π
(j)QLD

d,t . (3)

̂Vj,t = ̂Vi,t − 2(Pij,tRij +Qij,tXij) + ̂Iij,t (R2
ij +X

2
ij) . (4)

(2Pij,t)
2 + (2Qij,t)

2 + ( ̂Iij,t − ̂Vi,t)
2 ≤ ( ̂Iij,t + ̂Vi,t)

2 . (5)

The capacity limitation of the transmission line is shown as
Eq. 6.

{
̂Imin
ij,t ≤ ̂Iij,t ≤ ̂I

max
ij

̂Vmin
i ≤ ̂Vi,t ≤ ̂V

max
i
. (6)

Power consumption of the ECU is shown as Eq. 7.

PECU
n,t = ∑

i∈Iuppern

Pin
i,t − ∑

j∈Jundern

Pin
j,t . (7)

3.4 Natural Gas Network Model in the
Edge Computing Unit
The natural gas network model in the ECU is similar to the
electrical network, including the node energy balance constraint
and pipeline transport constraint. Eq. 8 represents the balance
between the inflow and outflow of node b.

Gin
b,t = −Gab,t + ∑

ω∈Λ
(b)Gbω,t +∑

d∈Υ
(b)GLD

d,t +G
EH
b,t . (8)

The natural gas network in this article is a medium–low
pressure network without considering the compressor model
(Hu et al., 2020). The second-order cone programming is used
to relax the Weymouth equation of the natural gas network, as
shown in Eq. 9 (Liu et al., 2020). Eqs 10,11 are the upper and
lower limits of the gas transmission volume and natural gas
pressure of the pipeline, respectively.

(Gab,t)
2 + (Kabπb,t)

2 ≤ (Kabπa,t)
2 . (9)

0 ≤ Gab,t ≤ G
max
ab . (10)

πmin
a ≤ πa,t ≤ πmax

a . (11)

The natural gas consumption of the ECU is shown as Eq. 12.

GECU
n,t = ∑

a∈Aupper
n

Gin
a,t − ∑

b∈Bunder
n

Gin
b,t . (12)

3.5 DHN Model in the Edge Computing
Unit
This study uses the available heating Hav to describe the thermal
flow in a pipe. Two strong-coupled variables, temperature T and
mass flow q in theDHNmodel are decoupled to form the thermal
flow network model and the basic flow-temperature equation.

The linearized heat loss equation shows as Eq. 14, and
Wei et al., (2017) prove that it has good accuracy when the initial
temperature is 88 ∼92°C. Section 4.2 will introduce the improved
distributed algorithm based on linear heat loss.

Hav = μq (T −T rw) (13)

ΔHav
uv = 2pi

T sw −Te

∑R
luv. (14)

The setup of the reference direction of heating medium flow
in the DHN is shown in Figure 4. The EHn represented the nth
EH. The thermal flow network model is shown as Eq. 15.

{
{
{

HEH
n,u,t +∑m∈Ψ(u)H

av
um,t = 0

Hav
um,t = −(H

av
mu,t −ΔHav

mu) , ifH
av
mu,t > 0

Hav,min
um ≤H

av
um,t ≤Hav,max

um , ifH
av
um,t > 0

. (15)

A mixed-integer model of the thermal flow network is
established based on the abovementioned equation to obtain the
available heating distribution. Combined with the basic flow-
temperature equation below, we can calculate the transmission
temperature and thermal flow in the pipe.

{{{{{{{{{{
{{{{{{{{{{
{

HEH
u,t = kq

EH
u,t (T

EH
u,t −T

rw)
Hav

uv,t = kquv,t (Tuv,t −T
rw)

TEH
u,t = Tu,t , ifH

EH
u,t > 0

TEH
u,t = T sw, ifHEH

u,t < 0
Tuv,t = Tu,t , ifH

av
uv,t > 0

qEHu,t +∑m∈Ψ(u)qum,t = 0
quv,t + qvu,t = 0

. (16)

The DHN operation cost is caused by the operation cost of
circulating water pumps in the network. Therefore, the EHR is
introduced to describe the cost of the circulating water pumps.
Eq. 17 represents the heat network operation cost of the nth ECU.

FIGURE 4 | Direction of heating medium flow in the DHN.
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Each pipe is configured with a circulating water pump in this
study.

Cheat
n =∑

t

W

∑
p=1
(EHRpce,t |Hp,t|) . (17)

3.6 EH Model Considering Off-Design
Performance
The EH is the energy conversion main body of the ECU.
In this article, the standard matrix model is adopted for the
EH model (Wang et al., 2017), and the piecewise linearization
method is used to improve the accuracy of the EH model
(Huang et al., 2019).

The energy flow direction of the coupling equipment is
shown in Figure 5. Eqs 18–20 describe the standard model
of the EH. The heating output from the EH and the heating
obtained from the DHN jointly support the heat load in this
region.

V = [PGrid
in PEC

in PHP
in PCHP

in PGB
in PEC

out P
HP
out P

CHP
out, e P

CHP
out, h P

GB
out P

HS
in PHS

out ]
T .

(18)

V1 = [PEH GEH Lcool Lelec (Lheat −HEH) 0 0]T (19)

Z ×V = V1. (20)

To simplify the nonlinearity of the coupling equipment
efficiency, this study uses the piecewise linearization method
as shown in Eqs 21–23 dealing with the nonlinear efficiency
function of the coupling devices instead of the constant
efficiency.

FIGURE 5 | Energy flows inside the EH.

X = X0 +∑
γ∈Γ

σγ. (21)

FL (X) = F (X0) +∑
γ∈Γ

ηγσγ. (22)

Iγ+1 (Xγ −X_γ) ≤ σγ ≤ Iγ (Xγ −X_γ) . (23)

3.7 Objective Function of the Edge
Computing Unit
The model of the ECU has been completed. The internal power
grid and the natural gas network build up the SOCP, while the
DHN and EH build up the MILP problem. This study takes
the minimum economic cost as the optimization objective, and
the objective function and the constraints of each ECU are
shown in Eq 24.

min∑
t
[(ce,tP

ECU
n,t + cg ,tG

ECU
n,t ) +

W

∑
p=1
(EHRpce,t |Hp,t|)]

s.t. (2) − (16) , (18) − (23)
. (24)

4 NESTED ALGORITHM BASED ON
C-ADMM

The ADMM algorithm performs well in the distributed
optimization and has many improved forms. The multiregion
expansion form of the standard ADMM, which guarantees
convergence, is complex and does not conform to the
calculation form of the ECU proposed in this article
(Wang et al., 2013). The GS-ADMM cannot guarantee the
convergence of multiregion expansion when n ≥ 3, which is
in the form of a serial computation (Ma et al., 2016). The C-
ADMM supports the multizone expansion and is a parallel
computing form, so it is used as the improved basis of the
distributed algorithm in this study.

It is the key to coordinate the consensus information for
the C-ADMM. The ECUs connect with each other through
the power line, natural gas pipeline, and heat pipe as shown
in Figure 6. The coupled information includes P,Q, I,U of the
power line, G,π of the natural gas pipeline, and H of the heat
pipe, which has an equality relationship with the consensus
parameters at the virtual node as shown in Eq. 25.

xαβ,α,t = zαβ,t = xαβ,β,t (25)

According to Eq. 24, the Lagrange expansion of the C-
ADMM is shown in Eq. 26. Eq. 27 is used to update the
consensus variables and penalty factor.

Ln =
T

∑
t=1
{(ce,tP

ECU
n,t + cg ,tG

ECU
n,t ) +

W

∑
p=1
(EHRpce,t |Hp,t|)

+ ∑
α∈Θn

[λαβ,α,t (xαβ,α,t − zαβ,t) +
ρ
2
‖xαβ,α,t − zαβ,t‖

2

2
]}. (26)
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FIGURE 6 | Consensus variables between the ECUs.

{
{
{

zk+1αβ,t =
1
2 [x

k+1
αβ,α,t + x

k+1
αβ,ρ,t +

1
ρ (λ

k
αβ,α,t + λ

k
αβ,β,t)]

λk+1αβ,α,t = λ
k
αβ,α,t + ρ(x

k+1
αβ,α,t − z

k+1
αβ,t)

. (27)

In order to ensure the convergence of the optimization
problems with discrete variables, previous work improved
the C-ADMM algorithm, such as solving the MISOCP

nonconvergence caused by the ring natural gas network through
the nested computation of the discrete variables relaxation
(Wen et al., 2017). The nonconvergence problem was solved
by embedding the NC-ADMM method into the subproblem
(Chen et al., 2020).

In order to ensure the convergence of the MISOCP
constituent, a nested subalgorithm was added to the C-
ADNN algorithm in this article, as shown in Eq. 28. The
additional increment term describes that all the ECUs support
transmission loss of the DHN which can constrain the direction
of each iteration and improve the convergence speed, while
the loss linearization of the heat network is the premise of
this improvement. The algorithm flow chart is shown in
Figure 7.

Ln = (25) + λHloss (
N

∑
n=1

HEH
n,t −

W

∑
p=1

ΔHav
p )+

ρ
2
‖

N

∑
n=1

HEH
n,t −

W

∑
p=1

ΔHav
p ‖

2

2

.

(28)

The nested subalgorithm is introduced as given below.

Step 1. Initializing the discrete variables B, k, and θ. Setting the
error tolerance δ.

FIGURE 7 | Algorithm flow chart of the improved C-ADMM.
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Step 2. Combining Eqs 2–16 and Eqs 18–23 to solve Eq. 29
and then obtaining the value of CB, before which
the unknown variable CB takes place of the discrete
variable B.

Ck+1
B,s = arg min

C_B←B
[(27) +

S

∑
s=1

θ
2
‖Bk

s −C
k
B,s + z

k
B,s‖

2

2
]. (29)

Step 3. Updating the discrete variables B and auxiliary variables
zB as shown in Eq. (30).

{
{
{

Bk+1
s = arg min

B
∑Ss=1‖B

k
s −C

k
B,s + z

k
B,s‖

2

2

zk+1B,s = z
k
B,s + (B

k
s −C

k
B,s)

. (30)

Step 4. Comparing the error obtained by Eq. 29 with δ. If the
error is little enough, the iterative process will be broken,
and if on the contrary, steps two to four will be repeated.

The addition of the nested subalgorithm makes the solution
approach the feasible region infinitely. When the difference
between the original and the dual errors of the original problem
is small enough, the convergence process can be sped up
significantly.

5 CASE STUDY

5.1 System Description
According to the partition method, the insertion of virtual
nodes into the energy networks and partitioning them is
based on the principle stated in section 3.1. The ECUs
can completely contain all the nodes without repeat, as
shown in Figure 8A. The partition details are shown in
Figure 8B.

This article uses the improved C-ADMM algorithm to
complete the distributed optimization of the MRIES in two
scenarios.

Scenario A: Optimizing the MRIES containing electrical, gas,
and heating networks based on the ECUs.

Scenario B: Optimizing the MRIES containing the electrical
and natural gas networks based on the ECUs.

In both the scenarios, the MRIES have the same loads.
Nevertheless, in Scenario B, the coupling equipment produces the
heating to meet the heating demands.

Conversion efficiency functions of the coupling devices are
shown in Table 1. The types of coupling devices in the MRIES
are shown in Table 2. The energy prices and loads of each EH are
shown in Figure 9.

The codes were written in MATLAB 9.4.0.813654 (R2018a),
and all the experiments were conducted on a desktop with
3.00 GHz Intel Core i5 and 16.0 GB RAM.

FIGURE 8 | MRIES partition based on ECU. (A) Overall partition of MRIES. (B) Partition details of MRIES.
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TABLE 1 | Parameters of the energy coupling equipment.

Coupling
Device

Capacity
(kW)

Efficiency Function

EC 400 Out = −0.00003041*In3+0.01901*ln2+0.2593*ln
HP 400 Out = 3*In
CHP e:300 Out = 0.0001150*In2+0.2305*In

h:420 Out = 0.0001611*In2+0.3228*In
GB 900 Out = 0.8*In
HS 800 h = −0.00005*In+0.93

(3.2 MWh) g = −0.00005*Out+0.93

TABLE 2 | Region type and the configuration of EHs.

Region Types Equipment

EC HP CHP GB HS

  EH1 Residential area ✓ ✓ ✓
  EH2 Office area ✓ ✓ ✓ ✓
  EH3 Business area ✓ ✓ ✓ ✓
  EH4 Industrial area ✓ ✓ ✓ ✓

5.2 Analysis of Optimization Results
The improved algorithm proposed is used to optimize this
MRIES in this article. The energy inputs to the equipment
of the four ECUs in the different scenarios are shown in
Figure 10.

As shown in Figure 10A, to support the heating load
concentrated inmidday, the HP is constantly working during low
loading time of energy consumption when the power is cheaper.
The heating is stored in the HS at night, which releases when the
electricity price is high. In addition to this, the GB supports the

remaining heating demand. Since there is no GB in EH3, it can
only generate heat through the CHP. Furthermore, EH3 has the
largest electric load at midday. As a result, the CHP runs at full
capacity at all the time. In addition, the CHPs in EH2 and EH4
also run at full capacity at midday when the electric and heating
load is large. On the other hand, the electric and heating load is
relatively small in EH1. Therefore, the CHP is mainly used for
power and heating supply in the peak load period, and the HP
will start up for heat supplement during the flat power demand
period.

As shown in Figure 10B, EH4 uses HP and GB with a high
cost to supply heat due to the lack of DHN for heat exchange
in scenario B. EH3 no longer needs to provide the heating to
the DHN, which produced significant heating in scenario A.
As a result, the utilization rate of HP and HS becomes lower.
The overall energy cost response of the MRIES weakened in
scenario B.

The heating generated by the EH, which is beyond the
local heating load, is transmitted to the DHN. As shown in
Figure 11, the energy represented by the blue block is equal
to the energy of other color blocks higher than the heat load
line (except the purple block that indicates heating storage).
It should be noted that for the intuitive description, the load
curves in Figure 11 are superimposed of electricity, gas, and
heating load curves.

Because the coupling of the ECU in the electric network and
natural gas network is only reflected in energy transmission,
the energy interaction of each ECU in the DHN is mainly
analyzed. The energy outputs of each EH device and the energy
interaction with the DHN are integrated into Figures 11A–D.
Evidently, the DHN realizes the heating interaction between
the ECUs and dramatically increases the flexibility of energy
utilization of the system. In scenario A, the EH1 internal
equipment composition is relatively simple, which mainly

FIGURE 9 | Model data of MRIES. (A) Energy price of system. (B) Daily cooling load of each EH. (C) Daily heat load of each EH. (D) Daily electrical load of each EH.
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FIGURE 10 | Energy input of each equipment. (A) Energy input of each equipment in scenario A. (B) Energy input of each equipment in scenario B.

absorbs the heat from the DHN. Although EH4 has many
types of internal heat generation equipment, it still mainly
absorbs the heat from the DHN due to its large heating
load.

From Figure 11E–H, we can see that the heating support of
EH3 is significantly reduced in scenario B. EH1, EH2, and EH4
have to convert energy through the coupling equipment in their
units to meet the local loads, confirming the previous analysis
conclusion. The total energy cost of scenario A is 12,281.24
dollars while that of scenario B is 15,234.56 dollars. For now,
we can get the importance of the multi-energy cooperative
scheduling.

5.3 Comparison of Algorithm Performance
The accuracy and convergence performance of the algorithm
proposed are improved in this article. As analyzed previously, the
improved algorithm can realize the MRIES global optimization
through the unit internal optimization and information
interaction between the units.The distributed optimization is not
based on the whole system data; it can only approach the result
of the centralized algorithm infinitely but cannot be better than
that, and the insufficient iteration of the MISOCP will aggravate
this error. The centralized algorithm which optimizes based on

the whole system data can provide a precision reference for
the improved distributed algorithm. The improved C-ADMM
algorithm in this article adds the nested subalgorithm, which can
not only overcome the nonconvergence problem caused by the
MISOCP but can also approach the feasible region more closely
than the C-ADMM algorithm, making the results more accurate.
The results of the centralized algorithm, C-ADMM algorithm,
and improved C-ADMM algorithm are shown as Table 3. The
total energy cost error of the improved C-ADMM algorithm is
about 0.1%. In contrast, the error of the C-ADMM algorithm
is about 1.3%. In addition, the electricity and gas cost error
are also relatively less. This shows that the improved algorithm
proposed in this article achieves better optimization results than
the original C-ADMM.

By comparing the convergence performance of the improved
algorithm proposed in this article with that of the C-ADMM,
the improved algorithm meets the accuracy requirement after
40 iterations. In comparison, the original algorithm needs 90
iterations under the same parameters as shown in Figure 12. In
this article, the unit internal optimization and the information
interaction between the units with the cloud are integrated and
simulated on a computer. According to the simulation statistics,
the C-ADMM algorithm takes 79.71 s, while the improved
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FIGURE 11 | Energy components of the EHs in scenario A and B. (A) Energy components of EH1 in scenario A. (B) Energy components of EH2 in scenario A. (C)
Energy components of EH3 in scenario A. (D) Energy components of EH4 in scenario A. (E) Energy components of EH1 in scenario B. (F) Energy components of
EH2 in scenario B. (G) Energy components of EH3 in scenario B. (H) Energy components of EH4 in scenario B.

C-ADMM algorithm takes 40.76 s. Therefore, the convergence
performance of the improved algorithm is better than that of the
original algorithm.

The rationality of the distributed optimization with the
ECU as a subsystem was verified by the improved algorithm.

At the same time, the improved algorithm is proven to
be superior to the original algorithm. The ECU provides
a standard unit form for the improved consensus-ADMM
algorithm, and their strengths are closely combined to achieve
good optimization results.

TABLE 3 | Comparison of the algorithm error.

Algorithm Total cost Power cost Natural gas cost

data/$ error data/$ error data/$ error

  Centralized optimization 12,281.24 0 5,950.02 0 6,343.91 0
  C-ADMM 12,436.12 1.3% 5,694.48 4.3% 6,741.64 6.3%
  Improved C-ADMM 12,293.95 0.1% 5,715.71 3.9% 6,578.99 3.7%
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FIGURE 12 | Comparison of the residual convergence in the distributed algorithms.

6 CONCLUSION AND PROSPECTS

From the perspective of the data interaction architecture, this
study compares the differences, advantages, and disadvantages
of the centralized optimization and distributed optimization,
where the IES is decoupled according to the energy networks
and the distributed optimization based on the proposed
ECU framework. In addition, a unified network partition
method is proposed, and the ECU model is introduced
in detail.

This study improved the C-ADMM method to adapt to the
ECU model. A study case verifies the improved convergence
performance of the improved algorithm, and the algorithm was
proven to assist the ECU model in completing the distributed
optimization of the MRIES well.

In conclusion, the ECU model proposed in this article
can fully play the advantages of energy utilization and data
management of the RIES and serve as a distributed unit
connected to the upper energy network and the lower load
layer. Moreover, it breaks through the limitation that the IES
distributed optimization with EH as the main body failed to
consider the constraints of networks. In addition, the ECU
framework can be used as the unit of the MRIES for further
research, such as model predictive control and study for the
uncertainty involved by wind power and photovoltaic. In
addition, the future work will consider carbon emission in

the optimization objective for the carbon peak and carbon
neutrality targets.
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NOMENCLATURE

Abbreviations
ADMM Alternating direction multiplier method

C-ADMM Consensus-alternating direction multiplier method

CHP Combined heat and power

DHN District Heating Network

ECU Edge computing unit

EC Electrical chiller

EHR Electricity consumption to transferred heating quantity ratio

EH Energy hub

GB Gas boiler

GS-ADMM Gauss–Seidel alternating direction multiplier method

HP Heat pump

HS Heat storage

IES Integrated energy system

MILP Mixed-integer linear programming

MISOCP Mixed-integer second-order cone programming

MRIES Multiregion integrated energy system

NC-ADMM Nonconvex alternating direction multiplier method

RIES Regional integrated energy system

SOCP Second-order core programing

Indices
a,b,ω Index of natural gas network nodes

d Index of loads in energy networks

g,pv,wt Indices of electrical generating units, photovoltaic power plants,
and wind turbines

i, j,o Index of electrical network nodes

k Index of iteration numbers

p Index of heating network pipelines

r, f Indices of unpartitioned nodes and EH nodes in energy networks

s Index of binary variables

t Index of time intervals

u,v,m Index of heating network nodes

Parameters
μ Proportionality constant

ρ Penalty factor in the C-ADMM algorithm

∑R Total thermal resistance between the heat medium and surrounding
medium per kilometer of pipe

θ Penalty factor in the subalgorithm

ce,t,cg,t Electricity price and natural gas price at t

Kab Weymouth characteristic parameter of the pipeline ab

luv Length of the pipe uv

N Number of EHs

pi Circular constant

S Number of binary variables

W Number of pipes in the DHN

Sets
γ ∈ Γ Set of segments in piecewise linearization

Λ(b),Υ(b) Set of loads and downstream nodes connected to node j in the
natural gas network

Φ(u) Set of downstream nodes connected to node u in the DHN

Π(j),Ω(j) Set of devices and downstream nodes connected to node j in
the power system

Θn Set of energy transmission lines between the nth ECU with others

Aupper
n ,Bunder

n Set of upstream and downstream virtual nodes of the ECU
n in the natural gas network

Iuppern , Jundern Set of upstream and downstream virtual nodes of the ECU n
in the power system

Variables
𝚫Hav

p Available heating loss of the pth pipe

𝚫Hav
uv ,𝚫Hav

mu Available heating loss of pipe uv and pipemu
̂Iij,t Square value of branch ij current at t

̂Imax
ij , ̂I

min
ij Lower/upper bounds of square value of branch ij current

̂V(⋅),t Square value of the node voltage at t

̂Vmax
i , ̂V

min
i Lower/upper bounds of square value of node i voltage

𝕀γ, 𝕀γ+1 Binary variables to guarantee the continuity of X and FL(X)

Xγ,Xγ Lower/upper bounds of the γ-th segment of X

π(⋅),t Gas pressure of node at t

πmin
a ,πmax

a Lower/upper bounds of gas pressure of node a

σγ,ηγ Value of the γ-th segment of X and coefficient of the γ-th segment of
FL(X)

EHRp The EHR of the water pump p

CB,zB,B Continuous variable, auxiliary variable, and binary
variable,CB ∈ [0,1]

Cheat
n Cost of the DHN connected to EH n

F (X) ,FL(X) Nonlinear function and its linearized function

G(⋅⋅),t Natural gas in pipeline at t

Gin
(⋅),t Natural gas injected into the node at t

Gmax
ab Upper bounds of natural gas in the pipeline ab

GEH
b,t Natural gas injected to the EH connected to node b at t

GLD
d,t Natural gas injected to load d at t

GECU
n,t Natural gas consumption of the ECU n at t

HEH Heating input of EH from the DHN

Hav Available heating
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Hp,t Heating transferred in pipe p

HEH
u,t Heating injected into the EH connected to the node u at t

Hav,min
um,t ,H

av ,max
um,t Lower/upper bounds of available heating from node u

to nodem

Hav
um,t ,H

av
mu,t Available heating fromnodeu to nodem andnodem to node

u at t

Hav
uv,t ,H

av
vu,t Available heating from node u to node v and node v to node

u at t

Lcool,Lelec,Lheat Cooling, electricity, and heating loads of the EH

PEH,GEH Power and natural gas input of the EH

P(⋅⋅),t ,Q(⋅⋅),t Active power and reactive power on branch at t

Pin
(⋅),t ,Q

in
(⋅),t Active power and reactive power injected to node at t

PCHP
in ,P

CHP
out, e ,P

CHP
out, h Input and output energy of the CHP

PEC
in ,P

EC
out Input and output energy of the EC

PGB
in ,P

GB
out Input and output energy of the GB

PGrid
in Input energy from the grid

PHP
in ,P

HP
out Input and output energy of the HP

PHS
in ,P

HS
out Input and output energy of the HS

PLD
d,t ,Q

LD
d,t Active power and reactive power injected to load d at t

PG
g ,t Active power generated from the generator g at t

PEH
j,t Active power injected to the EH connected to node j at t

PECU
n,t Power consumption of the ECU n at t

P PV
pv,t Active power generated from photovoltaic power plants pv at t

PWT
wt,t Active power generated from wind turbine wt at t

q Mass flow

qEHu,t Mass flow injected into the EH of node u at t

quv,t,qvu,t Mass flow from node u to node v and node v to node u at t

Rij,Xij Resistance and reactance of branch ij

T,Te Real temperature and ambient temperature

Trw,Tsw Return water temperature and supply water temperature

T(⋅),t Node temperature at t

TEH
u,t Temperature of heat medium injected into the EH connected to node

u at t

Tuv,t,Tvu,t Temperature of heat medium from node u to node v and node
v to node u at t

V Matrix of coupling equipment’s input and output energy

V1 Matrix of the EH’s input resources and loads

X,X0 Continuous variable and its initial value

xαβ,α,t,xαβ,β,t Coupling variables on both sides of the virtual node at t

yrf Binary variable of node r partition to region f

Z Standard matrix of the EH

zαβ,t Consensus variable of the virtual node at t

λαβ,α,t,λαβ,β,t Lagrangemultipliers of the ECUs on both sides of the virtual
node at t

λHloss Lagrange multiplier in terms of the transmission loss in the DHN at t

Bk
s ,Bk+1

s The sth binary variables in the kth and the (k+ 1)-th iteration

Ck
B,s,C

k+1
B,s The sth continuous variables in the kth and the (k+ 1)-th

iteration

zkB,s,z
k+1
B,s The sth auxiliary variables in the kth and the (k+ 1)-th iteration
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