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A B S T R A C T

This paper is concerned with a machine learning-based approach for sea state estimation using
the wave buoy analogy. In-situ sensor data of an advancing medium-size container vessel
has been utilized for the prediction of integral sea state parameters. The main novelty of
this contribution is the rigorous comparison of time and frequency domain models in terms
of accuracy, robustness and computational cost. The frequency domain model is trained on
sequences of spectral ordinates derived from cross response spectra, while the time domain
model is applied to 5-minute time series of ship responses. Multiple deep neural networks
were trained and the sensitivity of individual sensor recordings, sample length, and frequency
discretization on estimation accuracy was analysed. An Inception Architecture adapted for
sequential data yields the highest out of sample performance in both considered domains.
Additionally, multi-task learning was employed, as it is known for increased generalization
capability and diminished uncertainty. Overall, it was found that the frequency domain method
provides both superior performance and significantly less computational effort for training.

1. Introduction

1.1. Motivation

Ship safety and operational efficiency depend to a large degree on the prevalent sea state. As such, on-board identification
of the ambient wave system may assist the crew in the decision making processes for minimizing risks related to critical wave
encounters. For instance, large roll amplitudes are presently an immense concern due to the increasing number of lost containers
at sea over the last couple of years resulting from wave-related impact, Meister et al. [1]. Furthermore, estimates of the sea state
experienced throughout the vessel’s operational profile are of significant importance for shore-based vessel performance analysis
for the assessment of general energy efficiency and scheduling maintenance. Therefore, an accurate and reliable estimate of the
prevailing wave energy density spectrum is the key aspect of on-board decision support systems. In addition, with an ever-increasing
interest in autonomous ships, the significance of real time estimates of the wave environment and the corresponding ship response
grows further as the expertise of seafarers may not necessarily be available, Jalonen et al. [2]. For all of this, it is thought that
ship response-based sea state estimation (SSE) could be an essential building block. Hereby, it is understood that data in terms
of wave-induced responses from the ship is processed, thus facilitating a real-time identification of the sea state at the ship’s exact
position. In fact, this is the underlying idea of the wave buoy analogy, as presented by Nielsen [3]. Broadly speaking, the wave buoy
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analogy considers the ship as a wave rider buoy and establishes an inverse mathematical relationship between measured responses
and the encountered directional wave spectrum or the corresponding integral parameters.

1.2. Literature review

The methods for ship-based sea state estimation are manifold and an overview is given in Nielsen [4]. Initial studies addressing
he wave buoy analogy were carried out in the 1970s by e.g. Takekuma and Takahashi [5], but without considering forward speed,
.e. the Doppler shift. Iseki and Ohtsu [6] and Nielsen [7] present methodologies based on Bayes theorem for the calculation of
irectional wave spectra using both complex-valued transfer functions and cross response spectra under forward speed conditions.
ollowing the convention of Nielsen [3], the techniques for ship-board SSE are split into non-parametric and parametric approaches:
he former provides the directional or 2D wave spectrum, while parametric techniques by e.g. [8–10] yield input values to
arameterized wave energy density spectra with the possible addition of spreading functions. The applicability and accuracy of
he aforementioned estimation methods inherently depend on the availability of reliable transfer functions, also referred to by
esponse Amplitude Operators (RAO). Hence, Nielsen et al. [11] propose a correction or rather calibration methodology for the

pitch RAO using met-ocean hindcast data and in-service ship motion recordings of a container vessel. Mounet et al. [12] extend this
work and merge the correction technique into a sea state estimation approach using a network of ships as observation platforms.
Nevertheless, in individual cases, transfer functions may simply be unknown to the ship operator due to a lack of detailed hull shape
information. Moreover, the presented procedures are premised on the assumptions of linearity for which transfer functions can be
applied. These potential disadvantages of techniques relying on RAOs subsequently motivate data-driven machine learning studies
for the estimation of sea state conditions.

Nowadays, machine learning techniques are universally applied as so-called surrogate models in general ship hydrodynamics,
i.e. the model approximates data of computationally expensive methods in a regression task, e.g. Mittendorf and Papanikolaou [13].
In the field of ship-based SSE, machine learning is increasingly applied as well: Åvist and Pyörre [14], for instance, apply traditional
machine learning – non-parametric regression techniques in particular – for the prediction of the significant wave height and
encountered wave direction based on frequency domain features. Furthermore, Han et al. [15] predict the sea state parametrically
using a research vessel as a case study and compare three different machine learning methods. In addition, the data preprocessing
part is another key aspect and the feature space comprises elements from multiple domains. More importantly, deep learning
methods, i.e. artificial neural networks with more than one hidden layer, achieved significant results in a variety of tasks ranging
from image to speech recognition. The increased accuracy, versatility and scalability compared to traditional machine learning
methods is credited to special layer-types, such as convolutional or recurrent layers. For the theoretical intricacies of deep learning
consult Goodfellow et al. [16]. Its rapid development over the last decade subsequently sparked several studies in the ship-based
SSE domain. Cheng et al. [17] develop an end-to-end classification approach via a multi-channel convolutional network for sea state
estimation using the Beaufort sea scale for dynamic positioning, i.e. without forward speed. Instead of using raw time series data,
Cheng et al. [18] convert the ship motions to spectrograms and train a neural network in an image recognition task predicting the
sea state scale. The work is extended for forward speed cases in Cheng et al. [19] and an advanced architecture is employed. Their
so-called SSENET features attention mechanisms and residual skip connections for enhanced performance. Moreover, Düz et al. [20]
present a real-time multivariate time series regression approach for integral sea state parameters applying multiple deep architectures
n 2.5-min motion samples of a frigate-type ship. One distinct aspect of their work is the procedure of transfer learning: Initially,
he model is trained on simulated data obtained from time domain potential theory calculations and then re-trained on in-situ
easurement data. The displayed results show sufficient accuracy for the prediction of the sea state parameters under forward

peed conditions. Kawai et al. [21] present a simulation-based study of a container carrier in the frequency domain by extracting
equences of spectral values from a set of cross response spectra. The convolutional neural network predicts the parameters for an
chi–Hubble type spectrum, i.e. for both wind and swell waves. Scholcz and Mak [22] extend the work of Düz et al. [20] and present
deep learning methodology for the non-parametric estimation of the directional wave spectrum based on wave radar data using
convolutional encoder–decoder network applied to in-service time series data. Lastly, Han et al. [23] provide an investigation for
on-parametric SSE and establish an approach based on a generative adversarial network, in which the generator predicts the 2D
pectrum relying on cross response spectra, and the discriminator classifies the validity of the prediction. This iterative approach is
hen compared to a traditional model-based approach and shows satisfactory accuracy in non-forward speed scenarios; emphasizing
hat simulated time series data has been considered exclusively.

.3. Objective

This paper focuses on deep learning methods exclusively, whereas model-based approaches, dependent on availability of RAOs,
re not considered. In view of state of the art literature, it is concluded that the majority of deep learning studies use time domain
ata. Thus, the main novelty of this paper is the parallel application of deep neural networks in both the time and frequency
omains. In addition, a large part of the literature’s deep learning studies are based on simulated ship motion data. In the present
aper, however, in-service sensor recordings from a container vessel sailing in the Northern Atlantic are studied. A regression
pproach is proposed using sequential data from the time and frequency domain. The inverse mapping from several ship responses
o prevalent sea conditions, i.e. significant wave height, peak period and mean encounter wave direction, is achieved by advanced
eep neural networks, such as residual networks. Additionally, a novel approach for obtaining the optimal combination of ship
2
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Fig. 1. Case study in service taken from [24].

Table 1
Main particulars of the Panamax container vessel, cf. [24].
Dimension Unit Magnitude

𝐿𝑝𝑝 [m] 232.0
𝐵 [m] 32.2
𝑇 [m] 10.78
𝐶𝐵 [–] 0.685
𝑑𝑤𝑡 [t] 40,900
𝑃𝐵 (@ 93 rpm) [kW] 25,786

and frequency discretization will be determined in the frequency domain in another sensitivity study. Initially, four multi-output-
regressor architectures are compared in terms of prediction accuracy, and two different multi-task configurations will be applied to
the best-performing model in the first iteration. The application of multi-task learning for sea state estimation is another novelty
of this investigation, as the recent literature is only focused on multi-output estimators. Lastly, a contribution of this work is the
development of data-driven methods for the mapping of in-situ ship motion recordings to sea state parameters derived from data
of a directional wave radar.

1.4. Composition

The remaining sections of the article are organized in the following way: In the upcoming Section 2, the case study, its sensor
infrastructure and the data filtering methodology will be presented. Section 3 has its focus on the proposed methodology and conveys
the applied neural network architectures as well as the concept of multi-task learning. Furthermore, the obtained results are shown
and discussed in Section 4. In the final Section 5, the described work is summarized and suggestions for future work are presented.

2. Data analysis

The employed case ship of the present study is a 2800 TEU Panamax container vessel built in 1998. The vessel is displayed in
Fig. 1 and its main particulars are listed in Table 1. During a four-year period between August 2007 and July 2011, the vessel was
equipped with an extensive sensor framework and sailed in cross-Atlantic service. Even though the actual data acquisition period
was conducted over 4 years, the Miros wave radar Wavex was only installed until March 2009. Hence, the span of the data used
herein is 1.5 years and the GPS position of the vessel during that time is depicted in Fig. 2. Additional details of the measurement
campaign including a study pertaining to structural fatigue due to wave excitations, are described in Storhaug et al. [24].

It is noteworthy that draft and trim were not measured. This sort of epistemic (i.e. systematic) uncertainty within the data may be
influential on the following machine learning approach. In the paper of Storhaug et al. [24], it is stated that the typical transit draft
is approximately 9.5 m and the transit trim lies between 0.5 to 1.0 m. In addition, the loading condition, and thus the transverse
metacentric height 𝐺𝑀𝑇 , is not included in the dataset adding further uncertainty due to the widespread operational profile of
container vessels, in general.

In Fig. 2, the GPS position history of the case ship is visible and the effect of seamanship as well as weather routing stands
out since several routes deviate notably from the shortest distance. In one particular case, the container vessel even sails around
the British islands in order to circumnavigate possible adverse weather conditions. The case ship trades between Western Europe
(France, Belgium, Great Britain and Germany) and Quebec in Canada. Moreover, the ship obviously operates in coastal and restricted
waters, such as the St. Lawrence river; however, the focus of the present study is on deep water conditions. For this reason, samples
possibly influenced by shallow water or refraction from the coastline are disregarded by enforcing spatial boundaries at −55 and
−5 degrees of Longitude as indicated in Fig. 2.
3
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Fig. 2. Overview of the vessel’s GPS position history (black) and the applied spatial boundaries (red). The yellow dot indicates one particular measurement
sample.

The on-board measurement system comprises: (1) A Miros Wavex directional wave radar providing an averaged spectrum in a
30 min interval based on 1-min sample periods. The directional wave spectrum 𝐸(𝑓, 𝜇) is discretized into 31 frequencies 𝑓 [Hz]
and 36 directions 𝜇 [rad]. X-band marine radars are nowadays frequently applied as ocean remote sensors onboard of vessels due
to their high spatio-temporal resolution. However, the accurate estimation of the significant wave height is a matter of empirical
corrections (cf. Gangeskar [25]) and also the effect of rain clutter on data quality is noteworthy (cf. Chen et al. [26]). The accuracy
of the Wavex radar is in the range of ±10% in case of the three sea state parameters, cf. Miros [27]. The working principles of wave
radars are conveyed in Barstow et al. [28]. (2) The Motion Response Unit (MRU) was located 78.5 m forward of the aft perpendicular
(AP), 11.7 m above base line (BL), and at the centre line (CL). The MRU was installed in a socket filtering high frequency noise in
the range of 50–100 Hz caused by e.g. thrusters or pumps. (3) The bow accelerometer is installed on a vertical pillar in the bosun
store at the forward perpendicular and measures the vertical bow acceleration. (4) Moreover, four strain gauges are attached to
longitudinal stiffeners at port and starboard in the aft section (50.3 m from AP) and amidships (118.7 m from AP). As described
in [24], the port and starboard strain sensors are aggregated into two artificial or virtual sensors indicating vertical bending and
axial stress in the aft and midship section. Lastly, (5) the propeller revolutions (rpm), (6) the rudder angle 𝛿, (7) the GPS position,
as well as (8) the Speed Over Ground (SOG) were obtained during data acquisition period.

The present study is focused on the prediction of the three integral sea state parameters: The significant wave height 𝐻𝑠, peak
period 𝑇𝑝 and mean encounter wave direction 𝛽. The parameters were obtained from the directional wave spectrum provided by
the Wavex wave radar measurements. The significant wave height 𝐻𝑠 relates to the zeroth order spectral moment 𝑚𝑛 (with 𝑛 = 0)
and is defined using Eqs. (1)–(3). It is noted that the angular wave frequency is 𝜔 = 2𝜋𝑓 and the directional wave energy density
spectrum is denoted as 𝐸(𝜔, 𝜇).

𝐻𝑠 = 4
√

𝑚0 (1)

𝑚𝑛 = ∫

∞

0
𝜔𝑛𝐹 (𝜔) 𝑑𝜔 (2)

𝐹 (𝜔) = ∫

𝜋

−𝜋
𝐸(𝜔, 𝜇) 𝑑𝜇 (3)

The peak period 𝑇𝑝 is extracted from the integrated wave spectrum 𝐹 (𝜔) and corresponds to the period at which the wave energy
density is highest, cf. Eq. (4).

𝑇𝑝 =
2𝜋
𝜔𝑝

, 𝐹 (𝜔𝑝) ≡ max
𝜔

𝐹 (𝜔) (4)

The mean encounter wave direction 𝛽 is calculated as the circular mean according to Longuet-Higgins et al. [29] in Eqs. (5)–(7). It
is noted that the direction of the measured wave spectrum is relative to the ship’s heading and, thus, no transformation is necessary.

𝛽 = arctan(𝑑∕𝑐) (5)

𝑑 = ∫

𝜋

−𝜋 ∫

∞

0
𝐸(𝜔, 𝜇) sin(𝜇) 𝑑𝜔𝑑𝜇 (6)

𝑐 = ∫

𝜋

−𝜋 ∫

∞

0
𝐸(𝜔, 𝜇) cos(𝜇) 𝑑𝜔𝑑𝜇 (7)
4
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Fig. 3. Approaching directional wave spectrum 𝐸 obtained at the yellow dot in Fig. 2. It is stressed that 𝛽 = 180deg. indicates head waves and 𝛽 = 0deg. stands
for following waves; that is, in the polar diagram, the ship can be imagined to have its centre line aligned with the chord (diameter) from 0 to 180 deg.

In Fig. 3, a sample directional wave spectrum is depicted in its approaching form and it was obtained at the yellow dot in Fig. 2
on the 9th April 2008 (01:30 UTC). It is noted that 𝛽 = 180deg. refers to head wave conditions. As can be seen, the ship encountered
bow oblique waves and the calculated parameters using the aforementioned equations are: 𝐻𝑠 = 4.0 m, 𝑇𝑝 = 12.1 s and 𝛽 = 124.8deg.

The available data is preprocessed and filtered in four individual steps: (1) Initially, the wave radar data was merged with the
available GPS data and filtered for deep sea conditions using the enforced geographic boundaries (cf. Fig. 2). This reduced the wave
radar samples from 10 790 to 7051. (2) In addition, the wave radar data was synchronized with the entirety of sensor readings,
but samples with missing or corrupted recordings were disregarded. The majority of the readings had different sample frequencies
ranging from 100 to 1 Hz and hence 25 min time series samples sampled with a consistent frequency of 5 Hz were extracted for
each timestamp, i.e. in a 30 min interval. It is noted that 25 min are chosen as the maximum sample length since recordings close to
the 30 min threshold were frequently missing. In addition, the focus of the herein presented work is on using smaller time frames,
noting that other studies use longer durations, say, from 30 min in [23] to 60 min in [21]. The synchronization step decreased the
size of the dataset further to 5182 samples. (3) Lastly, the data was cleaned manually from erroneous time series and (4) samples
with significant wave heights 𝐻𝑠 < 0.5m were excluded, as the vessel’s response is negligible in this case. Altogether, the final
dataset comprises 4779 samples, and the distributions of the resulting sea state parameters as well as the ship advance speed 𝑈𝑠 are
presented in Fig. 4.

As can be inferred from Fig. 4(a), the probability density of the significant wave height follows an exponential distribution. The
theoretical probability density functions (PDF) Weibull and Gumbel are fitted to the measured data distribution using the Python
library scipy.1 The conclusions drawn in Nielsen and Ikonomakis [30] are also observed in this case: The Gumbel distribution matches
the actual data with higher accuracy than the Weibull PDF. In addition, it is visible that the ship is experiencing harsh conditions
despite seamanship and the utilization of weather routing. The distribution of the peak period, which is depicted in Fig. 4(b), is
symmetrical and centred around 10 s. The histogram of the relative wave direction as shown in Fig. 4(c) conveys that predominantly
head and following wave conditions are encountered which results from the fact that the Northern Atlantic is known for dominant
westerly wind conditions. Furthermore, the speed variation including involuntary and voluntary speed loss due to waves can be
seen in Fig. 4(d), where the data distribution arranges around an mean advance speed of 19 knots. In addition, the measured joint
distribution of 𝐻𝑠 and 𝑇𝑝 is compared to long term wave climate statistics in the Northern Atlantic provided by Söding [31] in
Fig. 5. It is noted that Fig. 5(a) is a combined scatter, kernel density and two-dimensional histogram plot for demonstrating the
overall data distribution as well as possible outliers in parallel.

As can be inferred from the comparison of Figs. 5(a) and 5(b), the joint distributions are in good agreement, in general. However,
the covariance in case of the measurements is slightly larger compared to the modelled long term statistics. It is noted that the latter
is based on hindcast wave spectra determined from wind fields during 10 years, [31]. Hence, different sources and magnitudes of
epistemic (i.e. systematic) measurement uncertainty may be responsible for the minor deviation of both joint distributions. On the
other hand, it is stated in [24] that the calibration of the Wavex wave radar is based on earlier studies and has not been performed for
this particular vessel. Even in case of a slightly biased wave radar, it has no direct impact on the machine learning methodology itself,
as the offset remained the same throughout the measurement campaign. Furthermore, transfer learning enables neural networks to
be retrained and adjusted on newly obtained sea state data — possibly even from different vessels.

1 https://scipy.org/.
5

https://scipy.org/


Marine Structures 85 (2022) 103274M. Mittendorf et al.
Fig. 4. Data distributions of integral sea state parameters and ship advance speed.

3. Methodology

The surface wave elevation in realistic seaways is often assumed to be stationary, ergodic, and a Gaussian random process
throughout the observation time. Following St. Denis and Pierson [32], a ship can be seen as a linear and time-invariant filter
in the frequency domain under these assumptions. Specifically, this leads to the underlying principle of the wave buoy analogy,
emphasizing a number of associated characteristics and concerns: (1) The filtering characteristics of ships are governed by their
hull geometries and the relative size compared to waves. (2) Generally, a ship acts as a low-pass filter which means that it is
irresponsive to higher wave frequencies. Furthermore, (3) when sailing with non-zero forward speed the Doppler shift is introduced
and (4) the assumption of the ship as a linear and time-invariant filter is subject to uncertainty under severe sea states or changing
wave conditions — especially in case of forward speed. All of these characteristics have an impact on a machine learning-based sea
state identification methodology.

3.1. Data processing

Initially, Mittendorf et al. [33] suggest that transformations to non-linear and skewed target variables positively affect prediction
accuracy even for non-linear regression algorithms, such as neural networks. For this reason, the logarithm is applied to the
significant wave height 𝐻 as it leads to a more symmetrical shape of the resulting distribution. It is noted that the application
6
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Fig. 5. Comparison of the wave statistics in the Northern Atlantic.

Fig. 6. Effect of the logarithmic transformation on the 𝐻𝑠 distribution.

of the log-transform is considered as standard practice in statistics and time series analysis for forcing a more symmetrical shape
onto an exponential distribution.

As shown in Fig. 6, applying the logarithm to the 𝐻𝑠 distribution leads, in fact, to a more symmetrical shape, even though it still
shows minor asymmetry in this case. Moreover, the relative mean wave direction 𝛽 is decomposed into corresponding sine and cosine
values, in order to circumvent the circular ambivalence in the machine learning approach. The peak period remains unchanged.
Ultimately, the output vector in both the time and frequency domain methodologies has the shape of {log(𝐻𝑠), 𝑇𝑝, sin(𝛽), cos(𝛽)} and
is passed through a linear activation function. It is noted that input and output data are normalized beforehand, which will be
described at a later stage.

In an earlier study of Mittendorf et al. [34], a time and frequency domain approach were applied based on simulated data of
a vessel in unimodal and unidirectional sea states. In that study, a frequency domain model was trained on spectral moments of
the auto cross response spectra and the peak spectral ordinates, as well as the corresponding peak frequencies obtained from the
off-diagonal cross response spectra. The temporal method, on the other hand, was based on raw heave, pitch and roll time series.
In the present work, raw 5 min acceleration time series with a sample frequency of 5 Hz are fed into the time domain models based
on the findings of [34]. This leads to an input matrix of 1500 × 𝑀 , where 𝑀 is the number of features. A sample plot of 5 min
acceleration time series resulting from the encountered sea state in Fig. 3 is depicted in Fig. 7. It is noted that a coordinate system
is adopted herein, where the 𝑥 -axis coincides with the ship’s centreline (positive forward) and the 𝑥 -coordinate points upwards.
7

1 2



Marine Structures 85 (2022) 103274M. Mittendorf et al.
Fig. 7. Measured accelerations corresponding to Fig. 3 in 6 degrees of freedom, namely surge, heave, sway, roll, yaw and pitch (starting at the upper left plot).

Fig. 8. Pitch-heave acceleration cross response spectrum demonstrating the frequency discretization with 16 spectral ordinates (black) resulting from the conditions
in Fig. 3.

It is stressed that not only the 6 Degree of Freedom (DOF) accelerations – shown in Fig. 7 – are considered in the feature space,
but also the bow acceleration and the strain measurements at the aft and midship sections. The underlying reasons are that both a
second reference point on the ship and an indication of the hull flexure might add value to the sea state identification approach.
The optimal number of features 𝑀 will be determined in sensitivity studies in both the temporal and spectral domain.

The prediction of the relative wave direction is a function of the individual phase differences of accelerations in several degrees
of freedom, which are obviously directly available in the time domain, cf. Fig. 7. In the frequency domain, however, cross spectral
analysis of two individual time series, is used as predictor for 𝛽. In contrast to [34], sequences of spectral ordinates extracted from
cross response spectra are fed into the neural network. This leads to an 𝑁 ×𝑁 complex-valued matrix, where 𝑁 is the number of
the considered DOF. It is noted that only one side of the off-diagonals are taken into account, as the matrix is complex conjugate
symmetric. It is noted that the sensor recordings of the bow acceleration and the strain measurements are also examined in the
sensitivity study and may be part of the final feature space. The matrix of cross-spectral densities is determined using the Welch
algorithm (cf. Welch [35]) with a Hanning window as well as a segment length of 512. The employed software package for the digital
signal processing procedures is scipy. In Fig. 8, the pitch-heave acceleration cross spectrum and the chosen frequency discretization
are visible for the same conditions as in Fig. 3.

In view of Fig. 8, it is appreciated that the discrete spectral ordinates are extracted in the range of 𝜔𝑒 ∈ [0, 2.05] rad/s with a
number of discrete frequencies denoted as 𝛺. The cut off frequency is selected for filtering the measurement noise and for responses
due to excitations which are not related to waves, e.g. hull-structural vibrations. From Fig. 8, it appears that the peak value is
well captured in case of the imaginary part of the cross response spectrum, but not in case of the real part. Thus, the number of
discrete frequencies 𝛺 is part of a second sensitivity study, in which also the effect of the sample length on prediction accuracy
will be investigated. For reference, 71 and 100 discrete spectral ordinates were extracted from individual cross response spectra in
the work of [21,23], respectively. Lastly, the shape of the input matrix for the machine learning model in the spectral domain has
a shape of 𝛺 ×𝑀 , where 𝑀 takes a maximum value of 43. Firstly, 30 real and imaginary sequences from the off diagonals of the
8
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C

cross response spectra and 6 sequences from the auto cross response spectra, i.e. the diagonal elements, will be part of the largest
possible feature space (with 𝑁 = 6). Moreover, 2 response spectra from the strain measurements in the aft and midship sections
may be included in the input matrix. In addition, the real-valued response spectrum of the bow acceleration as well as 4 real and
imaginary sequences from the cross spectra of bow and heave/pitch accelerations may be also considered as features. It is stressed
that only real valued numbers are permitted as input to the models. The optimal number of features 𝑀 and thus the shape of the
input matrices in both domains will be obtained in sensitivity studies presented in the further course of this contribution.

Before feeding the data into the neural networks, the dataset is split into training and validation sets, where the latter is
exclusively used for the model assessment. The validation set makes up 20% of the initial dataset and comprises 956 samples. The
training set, on the other hand, has a sample size of 3823. Neural networks are not scale invariant, thus, the individual sequences
as well as the elements of the output vector were normalized according to the extreme values of the training set.

3.2. Model architectures

The machine learning task itself is considered as a supervised regression approach and the models are trained on sequences from
the temporal and spectral domain. As has been stated in Section 1.3, the focus of this contribution is on deep learning methods.
Artificial neural networks are utilized as universal function estimators and are considered as composite functions  of two essential
building blocks: The weight matrix and the non-linear activation function. Concise theoretical considerations of artificial neural
networks are presented in Mittendorf et al. [33] and more detailed information is delivered by Goodfellow et al. [16].

Broadly speaking, deep learning architectures are capable of coping with high dimensional input tensors and have the ability of
implicit feature construction, i.e. derive meaningful data themselves. Additional advantages of deep neural networks over traditional
machine learning algorithms include higher scalability and increased generalization capability. The caveats of deep neural networks
are on one hand the relatively high computational cost of their training process, and on the other hand the tendency of overfitting
on small datasets due to their relatively large amount of trainable parameters. While, one particular problem has been most
influential on the development of deep learning methods: As the name suggests, deep learning achieves its superior performance
by stacking individual layers. However, very deep models suffer from the vanishing gradient problem. The parameters of neural
networks are updated under backpropagation in a gradient-based optimization problem of an arbitrary loss function . However,
with an increasing number of hidden layers, the magnitude of the gradient, i.e. the impact on parameter adjustment, reduces.
Batch normalization as proposed by Ioffe and Szegedy [36] standardizes the output of hidden layers before applying the activation
function mitigating vanishing gradients by resetting the parameter distribution. In addition, batch normalization leads to robust
neural networks reducing the need for hyperparameter optimization. The simplified activation function Rectified Linear Unit
(𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥)) not only decreases the chance of vanishing gradients, but also speeds up the training process, as it is faster
to differentiate in comparison to traditional activation functions, such as the hyperbolic tangent function. Moreover, numerous
advanced architectures, such as the LSTM (Long short-term memory) by Hochreiter and Schmidhuber [37] or residual networks by
He et al. [38], were proposed for alleviating the occurrence of vanishing gradients. In this paper, the residual network as well as the
Inception model proposed by Szegedy et al. [39] are applied.2 The herein employed models feature one-dimensional convolutional
layers, since they are best-suited to sequential data. Convolutional layers utilize spatially shared weights and are often followed
by a pooling or subsampling procedure. In theory, the convolution procedure has a multidimensional tensor as input, which is
modified by a kernel whose parameters are trainable. For more elaborate details consult the work of Krizhevsky et al. [40]. The
concepts and structures of the herein applied models are described in the following paragraphs. Moreover, the model architectures
and hyperparameters are the same in both the time and frequency domain for consistency.

3.2.1. Residual network
The Residual Network (ResNet) features a block-wise architecture and the blocks are bypassed by identity mappings or gates.

The ResNet was proposed by He et al. [38] and its concept draws inspiration from the pyramidal cells of the cerebral cortex and
its skip connections. The feedforward residual network is made out of multiple residual blocks as shown in Fig. 9(a) and the skip
connections allow the development of very deep models without vanishing gradients. The internal shape of the proposed residual
block comprises three convolutional layers of constant filter size, but with 8, 4 and 2 kernels, respectively. Filter size refers to the
number of output dimensions, whereas the kernel size denotes the length of the receptive field, i.e. of the convolutional window.
Lastly, the output of the block is the sum of the last layer’s output and the input matrix gated through the skip connection activated
by ReLU, as can be seen in Fig. 9(a). It is noted that the identity mapping is multiplied by a linear projection for expanding the
channels of the skip gate, in order to match the shape of the residual block’s output. The 4 blocks of the chosen model have filters
with the size of 32, 64, 64 and 64, respectively. The tail part of the ResNet consists of an average pooling layer and a fully connected
layer with a width of 50 neurons. It is noted that batch normalization is applied after each convolutional layer.

2 An early version of the Inception Network, namely the GoogLeNet, and a residual network were the winners of the ImageNet Large Scale Visual Recognition
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Fig. 9. Underlying concepts of the ResNet (a) and Inception (b).

3.2.2. Inception network
The Inception architecture was initially proposed by Szegedy et al. [39] in an end-to-end image classification procedure. The

model follows a similar block-wise methodology as the ResNet employing the novel Inception module as its building block. The
fundamental idea is that several convolutional layers of constant filter size of 16, but with different kernel sizes, i.e. different
receptive fields, are employed simultaneously at the same level. In doing so, the individual receptive fields capture different patterns
in the feature maps at varying scales. This concept is inspired by principles of the visual cortex in the human brain. The Inception
architecture is named after the eponymous movie3 indicating the common premise of embedding either networks within networks
in case of the model or dreams within dreams as in the movie. The architecture evolved in multiple iterations to Inception-v4, where
the model was extended with residual connections for increased performance, Szegedy et al. [41]. The proposed Inception module
has been adapted for sequential data following Ismail Fawaz et al. [42], i.e. one-dimensional convolutional layers are employed.
As can be inferred from Fig. 9(b), the module splits into four elements: (1) The bottleneck or dimensionality reduction element is
introduced in front of the computationally intensive parallel layers and takes cross-channel patterns into account. The bottleneck
layer reduces computational cost as well as the number of trainable parameters. (2) The second element is made out of the three
parallel convolutional layers with different kernel sizes, i.e. the core part of the Inception module. In the present work, kernel sizes
𝑙 ∈ {16, 8, 4} are applied. (3) The third part of the module is the skip connection, which is inspired by the ResNet, and consists of
a pooling layer and another dimensionality reduction layer. (4) The two gates are concatenated along the depth dimension in the
last element. It is stressed that the Inception architecture has additional outer residual skip connections bypassing entire Inception
modules. The general structure of the proposed Inception network can be inferred from Fig. 9(a) when replacing the residual block
with the Inception module shown in Fig. 9(b). The herein proposed Inception network is defined with filter size of 16 and 8 inception
modules in total with individual residual connections. In front of the output layer, the activations are fed through an average pooling
layer and batch normalization is also applied in the entire model prior to all activation functions.

3.2.3. Benchmark models
For comparison of ResNet and Inception to state of the art literature, two models are adopted as benchmarks: The convolutional

neural network (CNN) from Kawai et al. [21] and the multichannel convolutional LSTM (MLSTM) network as proposed by Düz
et al. [20]. The former network was applied in the frequency domain on cross spectral sequences, whereas the latter one used raw
time series as input for the prediction of sea state parameters.

3.3. Multi-task learning

Multi-Task Learning (MTL) has been pioneered by Caruana [43] and is considered as parallel transfer learning. As opposed to
a multioutput-regression task, each output is now considered as a separate task and has, thus, its own dedicated branch of fully
connected hidden layers and corresponding output layers. In the present paper, it is thought that considering sea state estimation as
a multi-task learning approach may be beneficial as there are obviously physical interdependencies between 𝐻𝑠 and 𝑇𝑝. According
to Ruder [44], a hard parameter sharing configuration is selected herein, as can be seen in Fig. 10, which mitigates overfitting and
improves generalization immensely.

3 Inception is a science fiction movie from 2010 written and directed by Christopher Nolan.
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Fig. 10. Hard parameter sharing concept from Ruder [44].

In view of Fig. 10, it is appreciated that the model is said to learn several tasks at once using a shared latent data representation.
Following [44], MTL improves the model’s generalization capability based on eavesdropping, i.e. the network learns complex
features and the relationships between other dependent variables, instead of receiving them as inputs. In addition, MTL leads to
increased regularization for improving the model’s robustness by reducing Rademacher complexity, i.e. the model’s tendency to fit
to stochastic noise. In this work, each task-related branch consists of two hidden layers with 100 and 50 neurons and an output
layer. Two different MTL architectures are examined in this contribution: (1) The MTL architecture has three branches for each of
the sea state parameters, however, the output layer of the third branch has a length of two, as both the sine and cosine of 𝛽 are
considered. (2) The MTL+ architecture, however, takes the advance speed 𝑈𝑠 as a fourth task into account. It has been demonstrated
by Caruana and de Sa [45] that potential input features with low variance may be better predicted as an additional task instead,
when the overall input data is subject to large variance — as in the present case. In addition, the inclusion of the mean advance speed
in the input space is impractical due to the mismatching dimensions. It is thought that the model is able to derive an understanding
of the Doppler shift and thus the forward speed for the correct prediction of the sea state. Hence, it will be studied herein, whether
the prediction of the forward speed enhances the prediction of the sea state parameters and could act simultaneously as a reliability
indicator. Lastly, the tasks of the two investigated architectures are related or even complementary, however, adversarial training
as in [23] is also feasible using multi-task learning.

3.4. Training setup

In the present work, the ADAM optimizer – proposed by Kingma and Ba [46] – is employed as the learning algorithm. The
ADAptive Momentum estimation (ADAM) optimizer uses the exponential moving average of the gradient and scales the learning
rate, i.e. the step size, according to the squared gradient. Moreover, the applied loss function is the mean squared error, the chosen
batchsize is 64, and the initial learning rate is set to 10−3. Mak and Düz [47] suggest that k-fold cross validation with shuffled
samples leads to increased performance in a sea state estimation methodology. Hence, we apply shuffled 5-fold cross validation
in 300 epochs. The employed model-checkpoint-callback stores the model’s parameters with the smallest cross validation loss, in
order to save the model with the highest generalization capability before overfitting occurs with an increasing number of epochs.
The computations of the training procedures were carried out using a GPU node of the DTU computing center equipped with two
Nvidia© Volta-100 GPUs, each with 16 GB of memory (RAM) and multiple Intel© Xeon© Gold 6126 CPU with 2.60 GHz were used.
Moreover, the utilized programming language is Python 3.6 and the deep learning framework is TensorFlow 2.6 as proposed by
Abadi et al. [48]. For GPU parallelization of the computations CUDA (Compute Unified Device Architecture) was employed.

4. Results and discussion

In the following, the obtained results are presented and discussed. The used metrics are the root mean squared error (𝑅𝑀𝑆𝐸)
and the mean absolute error (𝑀𝐴𝐸), and their definitions are given in Eqs. (8) and (9). It is noted that �̂�𝑖 indicates the model’s
prediction, whereas 𝑦𝑖 refers to the wave radar data.

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (8)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (9)

The 𝑅𝑀𝑆𝐸 attributes more weight to outliers or variance and the 𝑀𝐴𝐸 indicates the magnitude of the error without considering
the sign. Due to the circular ambiguity in case of the mean encounter wave direction, a similar approach as in Nielsen [49] is
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Fig. 11. Optimal selection of the considered ship responses according to the performance on the validation set. Note that the individual scales on the ordinates
are different.

adopted for error calculation, i.e. absolute values of 𝛽 are considered when calculating the performance metrics. It is stressed that
the accuracy on the validation dataset is assessed exclusively in this section and that the model performance on the training set is
presented in the Appendix.

4.1. Sensitivity studies

Model-based approaches of the wave buoy analogy, e.g. Nielsen [7], traditionally consider heave and pitch as well as one
additional asymmetric motion, such as roll or sway for satisfactory results with a distinguishing between waves approaching from
port or starboard side. The use of surge and yaw, however, is generally not pursued, since the RAOs provided by, say, strip theory
often turn out to be unreliable due to the missing restoring term. However, as the present study is not reliant on RAOs, all 6
DOF accelerations are considered in the sensitivity study. Mittendorf et al. [33] show in multiple iterations that there is an optimal
number of features 𝑀 to be found in a machine learning approach. In this work, the trade-off between accuracy and complexity will
be determined in a convergence study, i.e. the number of features and indirectly the number of measurement devices are increased
incrementally. Therefore, multiple models are trained on varying, expanding input matrices, and their 𝑅𝑀𝑆𝐸 on the validation
dataset is taken as the underlying score for all three sea state parameters. Based on the findings of Mittendorf et al. [34], a ResNet
was chosen as the baseline model using a frequency discretization with 𝛺 = 42 components. In Fig. 11, the following combinations
are considered in individual scenarios: (1) heave and pitch acceleration, (2) + roll acceleration, (3) + sway acceleration, (4) + surge
acceleration, (5) + yaw acceleration, (6) + vertical bow acceleration and (7) + deck strain measurements in the aft and mid-ship
positions.

When comparing Figs. 11(a) and 11(b), it is appreciated that the shape of the individual curves of the scores for 𝐻𝑠, 𝑇𝑝 and 𝛽 is
generally in qualitative agreement — even across domains. Moreover, it stands out that the consideration of all 6 DOF accelerations
yields the lowest scores, i.e. the highest out-of-sample accuracy. Thus, it is concluded from a practical point of view that, in the
present case, only the motion recordings from the MRU are needed; in the sole event of sea state identification. In fact, bow
acceleration and strain measurements do not lead to increased accuracy, but add complexity and noise into the machine learning
model. This may be attributed to the fact that the contained information in the mentioned features is redundant, but a larger input
matrix leads to a larger number of model parameters (i.e. complexity). Interestingly, the magnitude of the 𝑅𝑀𝑆𝐸 of the targets in
the time domain are roughly twice the ones in the frequency domain model, which is likely to be caused by the shorter considered
sample length. As expected, the inclusion of roll acceleration in the second scenario leads to the most significant increase in accuracy
for all sea state parameters. In theory, 𝐻𝑠 and 𝑇𝑝, i.e. the energy content of the spectrum and its distribution, may be determined by
just considering heave and pitch. However, the consideration of an asymmetric acceleration is essential for the sufficient estimation
of 𝛽. Lastly, an aggregated sensitivity indicator is used, i.e. irrespective of different conditions, in this study. However, Montazeri
et al. [50] as well as Andersen and Storhaug [51] indicate that the sensitivity of individual responses is not constant, but variable
under different sea state conditions. For instance, the relative importance of considering the vertical bending moment or its axial
stress in the hull girder increases in relatively low period waves, due to increased bandwidth of these RAOs compared to the motion
response RAOs, [50]. Therefore, [51] suggest an adaptive selection of the optimal responses in case of a model-based methodology.
Yet, it is stressed that a dynamic methodology is not feasible in this case, as the underlying computation graph of neural networks
is static. Ultimately, the optimal number of features is identified as 𝑀 = 𝑁 = 6 in both domains.
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Fig. 12. Sensitivity study for sample length 𝐿 and frequency discretization with 𝛺 indicated in the legend.

Linear spectral analysis is based on the assumption of stationarity, however, it has been shown by Brodtkorb et al. [52] that the
time-invariance of sea state parameters in 30 min samples is subject to uncertainty — even in a simulation-based study under zero-
forward speed conditions. It is thought that forward speed and in-situ measurement data result in additional uncertainty regarding
stationarity. In their work [52], it is deduced that the relative wave direction is most susceptible to instationarity, whereas 𝐻𝑠 and
𝑇𝑝 are seen as more stable. For minimizing this kind of uncertainty, it is the objective of this work to use shorter sample lengths
as compared to 30 min in [23] and 60 min in [21]. However, the uncertainty regarding stable spectral analysis is a counteracting
contribution, which will increase with shorter time series samples. Hence, the upcoming sensitivity study is about obtaining the
compromise of the smallest possible sample length with the most accurate frequency resolution at the same time. The sample
length 𝐿 is discretized as 𝐿 ∈ {5, 10, 15, 20, 25}min. Obviously, the frequency discretization is interrelated and, thus, the number of
frequencies 𝛺 is considered as the second discrete variable in the study, i.e. 𝛺 ∈ {16, 32, 64, 128}. For reference, [21] use 71 and [23]
employ 100 discrete frequencies. It is noted that the 𝑅𝑀𝑆𝐸 of the model applied to the validation dataset is taken as the score.

In view of Fig. 12, the conclusions drawn in Iseki and Nielsen [53] are confirmed, i.e. the longer the time frame, the clearer
the frequency resolution, and thus the higher the model score. For 𝐻𝑠 and 𝑇𝑝, monotone curves with minor variance are apparent,
which is expected as the accuracy obviously will be higher with less variance in the frequency representation. However, the same
is visible in case of 𝛽, even though a local minimum is located at 𝐿 = 15min. This is in contradiction to [52] and results, on one
hand, from the considered conditions, i.e. in deep water and without any major heading changes due to steering (mostly stationary
conditions). On the other hand, the presented sensitivity score is highly biased by the model and its learning algorithm. Thus, the
model not only reflects physical interdependencies, but also model uncertainty, since the loss function, which is minimized during
training, is the sum of the errors of all three target variables. Moreover, it is trivially concluded that, in general, a finer frequency
discretization results in lower error values, i.e. higher model performance or accuracy. However, in Fig. 12 it is visible that 𝛺 = 64
leads to the smallest validation error, which may be explained by the increased complexity of using 128 discrete frequencies. In
the latter case, no additional information is provided to the model, but the large feature space leads to more trainable parameters,
i.e. complexity. Ultimately, 25 min are identified as the best suited sample length and 64 discrete frequencies are chosen as the
dimension of the feature space for the frequency domain model. Subsequently, it can be seen that the uncertainty pertaining to the
spectral analysis is of greater relevance than the uncertainty of the time invariance assumption. The X-band wave radar provides
samples in a 30-min interval at time 𝑡𝑟𝑎𝑑𝑎𝑟. Thus, for consistency, we choose the starting point 𝑡1 = 𝑡𝑟𝑎𝑑𝑎𝑟 − 25 min in the frequency
domain approach, and in the time domain approach 𝑡2 = 𝑡𝑟𝑎𝑑𝑎𝑟 − 5 min. On a side note, it can be inferred that the higher validation
error in the time domain, cf. Fig. 11(b), results from the smaller sample length as the errors using 𝐿 = 5 min are of similar magnitude
in both time and frequency domains.
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Table 2
Metrics of model performance on the validation set in the frequency and time domains. The lowest error values are indicated
in bold font.

Frequency domain Time domain

ResNet Inception MLSTM CNN ResNet Inception MLSTM CNN

𝐻𝑠
𝑅𝑀𝑆𝐸 0.932 0.927 1.089 1.273 1.702 1.345 2.702 1.358
𝑀𝐴𝐸 0.620 0.626 0.767 0.868 0.909 0.916 1.979 0.991

𝑇𝑝
𝑅𝑀𝑆𝐸 0.881 0.878 0.925 1.051 1.253 1.266 2.379 1.300
𝑀𝐴𝐸 0.539 0.529 0.596 0.714 0.935 0.847 2.122 0.975

𝛽
𝑅𝑀𝑆𝐸 11.09 10.50 12.12 14.87 19.03 16.67 95.34 26.00
𝑀𝐴𝐸 12.34 11.29 77.60 16.67 12.33 11.29 77.60 16.67

Fig. 13. Histograms of the model performance on the validation set using the 𝑅𝑀𝑆𝐸. Note that 𝛽 is presented on the secondary axis.

4.2. Model assessment

The performance of frequency and time domain models is presented in the following in parallel. In Table 2, the metrics of the
prediction error for the validation dataset are presented for all four models in both domains. Moreover, the lowest error values,
i.e. the highest accuracy, are indicated in bold font. For the sake of clarity, corresponding histograms of the 𝑅𝑀𝑆𝐸 taken from
Table 2 are provided for all models in Figs. 13(a) and 13(b).

In view of Table 2, it is stated that the Inception network yields the lowest errors, i.e. the highest accuracy, on the validation
dataset in either domain. However, it turns out that the error values of the ResNet are comparable and even lower in certain
cases indicating similar model performance compared to the Inception architecture. The performance of MLSTM and CNN in the
frequency domain are considered as sufficient. However, the MLSTM shows a considerable drop-off in accuracy in the time domain. It
is thought that this results from the parallel architecture, i.e. splitting the model into a convolutional and a recurrent branch, leading
to decreased robustness. In contrast, convolutional layers are frequently used as feature construction layers prior to LSTM cells in
a sequential fashion. Moreover, it is obvious in the spectral approach (cf. Fig. 13(a)) that out of sample accuracy is dependent
on model complexity, as the Inception network comprises the most trainable parameters and the CNN the least. Conversely, in
the time domain, the overall picture is scattered, as the approach is subject to more variance and stochastic noise. The variance
results from the short considered sample lengths and is amplified by the larger number of parameters due to the increased input
matrix compared to the frequency domain approach. Thus, the temporal model is more susceptible to perturbations because of its
complexity. Ultimately, the Inception network is used as the underlying model for the multi-task learning methodology and the
results in both domains are conveyed numerically in Table 3 and visually using histograms in Fig. 14.

In view of Table 3, it is stated that the MTL-Inception models show satisfactory accuracy on the unseen validation dataset in
both configurations. In general, they achieve higher performances than the corresponding multi-output approach as presented in
Table 2. It can be seen in Fig. 14 that multi-task learning, indeed, may have a beneficial impact on model performance in a sea
state identification approach, however, this applies predominantly to the time domain. In Section 3.3 it has been described that MTL
reduces the model’s tendency to fit to stochastic noise, i.e. Rademacher complexity, (cf. Ruder [44]) and that the MTL+ architecture
performs well under noisy conditions, [45]. As can be seen in Table 3, the prediction of advance speed 𝑈𝑠 in the MTL+ architecture
is considered as satisfactory and, in fact, facilitates the prediction of sea state parameters despite the inherent uncertainty in the time
domain approach. The 𝑅𝑀𝑆𝐸 is a measure of the prediction’s variance and decreased consistently applying both MTL approaches.
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Table 3
Metrics of model performance on the validation set in the frequency and time domains using multi-task learning.
The lowest error values are indicated in bold font.

Frequency domain Time domain

Inception MTL MTL+ Inception MTL MTL+

𝐻𝑠
𝑅𝑀𝑆𝐸 0.927 0.883 0.871 1.345 1.228 1.248
𝑀𝐴𝐸 0.626 0.582 0.580 0.953 0.885 0.858

𝑇𝑝
𝑅𝑀𝑆𝐸 0.878 0.855 0.903 1.266 1.124 1.087
𝑀𝐴𝐸 0.529 0.472 0.501 0.916 0.752 0.744

𝛽
𝑅𝑀𝑆𝐸 10.50 12.82 11.57 16.67 18.75 16.84
𝑀𝐴𝐸 6.446 6.916 6.767 11.29 11.56 10.33

𝑈𝑠
𝑅𝑀𝑆𝐸 0.322 0.441
𝑀𝐴𝐸 0.227 0.331

Fig. 14. 𝑅𝑀𝑆𝐸 histogram indicating the performance on the validation dataset of different multi-task architectures. Note that 𝛽 is presented on the secondary
axis.

approach. Hence, the spectral approach is considered as more robust and it is concluded that the MTL methodology increases
robustness as well as accuracy for the temporal approach notably. Altogether, the MTL version is taken in the frequency domain
as the final model and the MTL+ architecture is adopted in the temporal approach. In Fig. 15, the predictions on the validation
set of the spectral MTL-Inception model are presented for ground truth values. Additionally, the loss curves of training and cross
validation set are presented on a logarithmic scale. It is stressed that Figs. 15(a)–15(c) are of similar type to Fig. 5(a). Moreover,
corresponding correlation and loss plots of the temporal MTL+-Inception model are depicted in Fig. 16 for comparison.

Generally, it is seen from Figs. 15 and 16 that both model types are capable of providing accurate predictions of the governing sea
state. Moreover, it proves again that the temporal approach is characterized by higher variance compared to the spectral approach.
This applies not only to the prediction of the three target variables, but also to the learning procedure, i.e. the behaviour of the loss
functions. The loss curves are already volatile in the frequency domain due to the application of 5-fold cross validation, however,
the variance is even larger in the time domain. From Fig. 16(d), it can be inferred that the time domain model was trained for
only 200 epochs in order to save computational resources, as it was evident in the spectral approach (cf. Fig. 15(d)) that the model
generalization converged before reaching 100 epochs anyhow. Therefore, implementing an early stopping callback is a key aspect
of extending the proposed training procedure. In case of the peak period 𝑇𝑝, minor heteroskedastic behaviour of the predictions is
visible, i.e. the variance is not constant for the entire definition range, cf. Figs. 15(b) and 16(b). Instead, the variance increases,
as the magnitude of 𝑇𝑝 decreases. It is assumed that this is due to the low pass filtering effect of the vessel, i.e. there is no vessel
response in low-period waves introducing uncertainty. However, in case of higher 𝐻𝑠 and 𝑇𝑝 values, both spectral and temporal
models exhibit reduced accuracy, which is due to the unbalanced training data and amplified by possible non-linear behaviour in
more severe sea states. Furthermore, when comparing both 𝐻𝑠 and 𝑇𝑝 for both models, it shows that the time domain model is
subject to larger uncertainty due to the more widespread joint distributions arranged around the identity line in the figures. In turn,
the variance of 𝛽 reveals only a small increase in the time domain model, when investigating Figs. 15(c) and 16(c). However, several
outliers are visible in Figs. 15(c) and 16(c) in beam-sea conditions, i.e. 𝛽 = ±90deg. It is noted that the scattered squares in Fig. 16
are part of the 2D histogram and their variance stems from the uncertainty of the predictions in the time domain. Obviously, the sea
state identification approach is subject to uncertainty resulting from e.g. the unknown loading conditions, as has been mentioned
in Section 2. Moreover, possible unfiltered measurement errors in both wave radar and MRU, i.e. corrupted samples, increase the
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Fig. 15. Correlation plots of the target variables and the loss curves in the frequency domain. Note that overhat denotes the model predictions.

aleatoric or statistical uncertainty. As discussed in Chen et al. [26], wave radars exhibit significant inaccuracies under precipitation
due to rain clutter.

4.3. General discussions

In the present work, it has been shown that the frequency domain models achieve higher out-of-sample accuracy, i.e. gen-
eralization capability, which is mainly due to the consideration of longer sample lengths as compared to the time domain. It is
stressed that both the computational effort and model complexity in the time domain are proportional to the considered sample
length. Conversely, both of these remain constant in the frequency domain. The computational time for one epoch – using the
exact same hardware and model architecture (ResNet) – was 56 s in the time domain and in the frequency domain one epoch
took 13 s. Specifically, the frequency domain requires approximately 77% less computing time, which is generally in accordance
with the ratio of the numbers of elements of the two input feature spaces, i.e. 1500 × 6 in the time domain and 64 × 36 in the
frequency domain, having obviously a direct impact on the trainable parameters of the model. Ultimately, it is concluded that the
spectral approach is characterized by better accuracy, robustness and computational efficiency. This finding is somewhat consistent
with other recent research on machine learning-driven sea state estimation that focuses on frameworks formulated in the frequency
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Fig. 16. Correlation plots of the target variables and the loss curves in the time domain. Note that overhat denotes the model predictions.

domain, e.g., [21,23]. In this context, it is also noteworthy that the generalization and extension towards methods for estimating
the full directional wave spectrum is an important aspect of future work, such as in [22,23].

The main drawback of frequency domain approaches is considered to be the dependency on relatively long time windows, up
to 25-30 min as found in this study, for a reasonable frequency resolution. Inherently, this can compromise results due to problems
related to nonstationary conditions, emphasizing that even the sea state itself, as encountered from a sailing ship going maybe +20
knots, can vary because of spatial and temporal progression [30,49]. On the other hand, the literature provides promising studies
that could be considered for mitigation of the drawback. For instance, Takami et al. [54] present the use of the prolate spheroidal
wave functions for spectral analysis. Its main advantage over, say, Fast Fourier Transformation (FFT) is to provide a higher frequency
resolution when applied on shorter time series, and with no need for manual choices with respect to smoothing. Alternatively, Cheng
et al. [18] employ a hybrid approach, based on time–frequency representations of ship motions using spectrograms also indicating
promising results.

Generally, sea state estimation is subject to substantial inherent uncertainty of both aleatoric and epistemic type. As such, the
extension of this work towards uncertainty quantification and minimization of sea state estimation seems promising. On one hand,
Mounet et al. [12] provide a methodology using a model-based sea state estimation approach while minimizing epistemic uncertainty
by both reducing the uncertainty of RAOs by tuning, and spatial uncertainty by considering a network of ships at the same time.
On the other hand, Han et al. [55] present an approach of visualizing and expressing the surrounding aleatoric or statistical
17
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uncertainty in a hybrid approach with a model-based approach and Gaussian process regression. It is thought that the herein
presented methodology may be extended towards both directions, however, the focus will be on the latter as aleatoric uncertainty
was more prominent in the presented results. Thus, two individual approaches show potential for the transparent representation
of uncertainty: (1) Following Mittendorf et al. [56], a quantile regression approach, i.e. training the neural network on quantile
loss functions, seems worthwhile in a deterministic attempt. (2) Conversely, establishing a Bayesian or probabilistic model using
the Monte Carlo dropout method as proposed by Gal and Ghahramani [57] shows great potential for future work, but may also
be limited by increased computational effort. Lastly, Bitner-Gregersen et al. [58] conclude that the identification of the sea state
with its surrounding uncertainty is and will be a vital research area in the maritime sector; and the changing climate contributes
additional relevance to the topic.

5. Conclusions

Real time monitoring of the governing wave environment during a vessel’s passage is directly linked to aspects of safety and
conomy. For this reason, the present contribution established a non-linear mapping from in-situ ship responses to prevalent sea
tate parameters using machine learning. The case ship was a midsize container vessel trading in Northern Atlantic. The ship was
quipped with a wave radar from which data was collected during 1.5 years. Machine Learning frameworks were formulated in
oth the time and frequency domains using four different deep neural network architectures. The Inception model gave the highest
erformance and was applied in a multi-task learning setting. The model assessment suggested satisfactory performance of the multi-
ask frequency domain model on unseen validation data. The time domain models, on the other hand, exhibited substantial aleatoric
or statistical) uncertainty due to the considered short sample length. Lastly, the frequency domain model also showed superior
haracteristics in terms of computational effort and robustness. From a practical perspective, it was demonstrated that a machine
earning methodology for sea state identification is applicable under realistic conditions, exclusively using response measurements
rom a cost effective MRU equipment.

Initially, it was thought that additional sensor recordings, such as relative wind speed and direction, could act as well-suited
redictors for the sea state and for reducing uncertainty. Moreover, the consideration of propeller revolutions and rudder angle (or
ather their variances) could be beneficial in a machine learning-based sea state estimation approach. These sensor readings were
isregarded herein, since they are mostly instationary and filtering these samples reduces the sample size even more. Additionally,
t stood out that a data acquisition period of 1.5 years only leads to approximately 5000 valid samples, i.e. complying to the
nforced boundary conditions defined in Section 2. The major drawback of deep learning methods is definitely the required large
mount of training data as well as limited applicability for extreme events. In turn, this motivates a parallel hybrid approach using a
odel-based method relying on RAOs and a machine learning model simultaneously, as investigated by Han et al. [55]. Model-based
ethods are not dependent on data availability, except for making the actual estimate, and may be considered as self-supervised in

machine learning terms as they generate their directional wave spectrum estimate from an RAO database, but without any ground
truth information. Therefore, it seems appealing to train a baseline model on results of model-based techniques and re-train an
advanced model on e.g. wave radar data in a transfer learning approach, similar to the work of Düz et al. [20]. Hence, model-based
and machine learning approaches are not seen as competitors, but as complementary — particularly when facing scarcity of sea
state data. Moreover, the methodology is not dependent on wave radar data, but may also be applied to hindcast metocean data,
e.g. from ERA 5 [59] being part of the EU Copernicus programme. Lastly, it is thought that the herein developed model may be
considered as a baseline and could be adapted to other vessels using transfer learning in case of limited data availability. Possibly,
the transfer learning procedure may be carried out in an incremental learning approach, i.e. the model is adapted in an online
fashion, as more data becomes available. All of the above are interesting aspects of extending the present work.
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Table 4
Metrics of predictions using the training dataset in both domains. The lowest error values are indicated in bold font.

Frequency domain Time domain

ResNet Inception MLSTM CNN ResNet Inception MLSTM CNN

𝐻𝑠
𝑅𝑀𝑆𝐸 0.413 0.425 0.649 1.033 1.353 0.883 2.568 1.196
𝑀𝐴𝐸 0.255 0.268 0.492 0.666 1.062 0.631 2.116 0.890

𝑇𝑝
𝑅𝑀𝑆𝐸 0.393 0.381 0.506 0.893 1.022 1.002 1.653 1.276
𝑀𝐴𝐸 0.225 0.216 0.329 0.633 0.768 0.755 1.374 0.956

𝛽
𝑅𝑀𝑆𝐸 5.106 4.910 5.486 10.84 13.49 10.20 31.99 21.38
𝑀𝐴𝐸 2.641 2.372 3.024 6.920 9.261 7.130 20.17 14.16

Table 5
Metrics of predictions using the training dataset in both domains using multi-task learning. The lowest error
values are indicated in bold font.

Frequency domain Time domain

Inception MTL MTL+ Inception MTL MTL+

𝐻𝑠
𝑅𝑀𝑆𝐸 0.425 0.341 0.324 0.883 0.945 0.672
𝑀𝐴𝐸 0.268 0.179 0.171 0.631 0.699 0.461

𝑇𝑝
𝑅𝑀𝑆𝐸 0.381 0.356 0.371 1.002 0.845 0.639
𝑀𝐴𝐸 0.216 0.170 0.192 0.755 0.599 0.463

𝛽
𝑅𝑀𝑆𝐸 4.910 5.031 5.082 10.20 12.75 9.022
𝑀𝐴𝐸 2.372 2.548 2.569 7.130 8.864 5.888

𝑈𝑠
𝑅𝑀𝑆𝐸 0.167 0.378
𝑀𝐴𝐸 0.103 0.282
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odel performance on training data

See Table 4 for the results of the four initial models and Table 5 for data pertaining to the multi-task learning approach.
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