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A B S T R A C T   

The Architecture, Engineering, and Construction (AEC) industry is transitioning toward using cloud-based 
Common Data Environments (CDEs) with interlinked BIM models. A CDE that engages all stakeholders of the 
building's design, construction, and operation phases represents the outset of BIM maturity level 3. This article 
introduces a CDE called Virtual Commissioning (VC), capable of commissioning an HVAC system before the 
physical commissioning of the HVAC system. The FSC diagram is introduced, to represent an HVAC BIM model 
within the VC CDE, and the Revit to FSC exporter, to serialize an HVAC object model from Revit to the FSC 
diagram. Three microservices were developed to exemplify the ease of developing independently scalable so-
lutions for the VC CDE. Furthermore, the article proves that Modelica simulations can be run, using the 
microservice architecture of the CDE. To test the robustness of the system architecture for the CDE, two example 
models were introduced, one simple and one with a high level of complexity. Transferring the example models 
from Revit to the VC CDE was successful. Finally, in the roadmap for future development, it is proposed that 
future work should focus on using the CDE for advanced hydraulic simulations, using Modelica and Spawn-of- 
EnergyPlus.   

1. Introduction 

Building information modeling (BIM) is the practice of generating 
and managing well-defined building data [1]. BIM data is typically 
geometric, spatial, geographic, physical, or quantitative, and it aims to 
provide a shared repository for stakeholders [2]. BIM can revolutionize 
the construction sector by streamlining integrated design processes, 
accurate construction scheduling, and comprehensive error screening 
[3]. It further can help mitigate climate change and resource depletion 
by simplifying and enhancing resource- and energy-efficient integrated 
design processes for new construction [4–6] or renovation [7]. How-
ever, most current workflows are manual or semiautomatic [8], often 
utilizing conventional spreadsheets [9], and most occur too late to 
impact the design [9] significantly. Most of these workflows do not 
utilize the full capabilities that BIM can offer if utilized to its full extent. 

Succar et al. introduced the BIM maturity levels to describe the BIM- 
based collaboration between stakeholders [10]. BIM-based collabora-
tion is defined from maturity Level 0 with almost no collaboration to 

Level 3 with full integration, in which all stakeholders collaborate using 
a shared model in a cloud-based common data environment (CDE) [10]. 
CDEs are applications that connect several services. Several CDEs have 
been developed for the AEC industry [11–13]. With a CDE, it is possible 
to create bi-directional links between a database model and simulation 
services. A CDE enables teams always to have the most updated model to 
run new simulations or make design decisions. Previously developed 
CDEs for advanced hydraulic simulations use either the format of gbXML 
(Green Building XML) or IFC (Industry Foundation Classes). Trans-
forming BIM data to BEM tools using gbXML and IFC formats can 
introduce extreme errors [14], and the process occurs only once due to 
the need for manual data entry [15]. More importantly, this BIM to BEM 
process relies on a file-based exchange mostly, which is more common to 
BIM Level 2. Therefore, to enable a real-time connection with live 
building data, building models, and simulation data, an approach needs 
to be taken that is not file-based, but rather web-based including data-
bases and microservices. That may lead to a simulation-enabled CDE. 
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1.1. BEM simulation through a micro-service architecture 

Tools for simulation of advanced hydraulic simulations have existed 
for many years, like HVACSIM+ [16], IDA ICE [17], the Modelica 
Buildings Library [18], and many more. Running advanced hydraulic 
simulations can be extremely useful to test, whether a building performs 
adequately compared to the original design. However, most AEC com-
panies today only perform simple calculations based on rule-of-thumb. 
This means that most systems are designed based on a static calcula-
tion that only applies the peak load for the system. This means that the 
system can be regulated for the peak load, but cannot regulate the flow 
for the remainder of the time, due to lacking valve/damper authority. 
The hydraulic systems are rarely simulated at all in the design phase of a 
building. This is mainly due to the labour intensive manual work of 
setting up the boundary conditions needed to run an advanced hydraulic 
simulation. Efforts should be made to be able to automatically convert 
from BIM to BEM. The suitability of tools for automatic integration of 
BIM and BEM varies considerably. Modelica is an equation-based object- 
oriented modeling language that provides a flexible means for con-
structing BEM while excelling at HVAC systems and controls [19,20]. 
Creating Modelica simulations today is a time consuming endeavor, due 
to the complexity of providing the boundary conditions for a complete 
solution. However, if the BIM model is used to automatically transfer the 
boundary conditions, this can eliminate a large part of the manual task, 
as shown by Fjerbæk et al. [21] There are substantial efforts to automate 
the translation from BIM to Modelica-based BEM [2,22,23]. Kim et al. 
[22] introduced a library with the name of ModelicaBIM. The idea of the 
library is to be able to perform Modelica simulations, based on a BIM 
model. Jeong et al. [23] introduced a tool that could export a building 
modeled in Revit to perform thermal simulations in Modelica. The 
article from Andriamamonjy et al. [2] directly translated the geometry, 
systems, and controls which was encapsulated in an IFC4 file and 
simulated in a Building Energy Performance Simulation (BEPS) model. 
There are also efforts to use less well-defined IFC files through enrich-
ment and identification [24] and grey-box modeling [25] to generate 
Modelica-based BEM. 

Even with the recent extension of the HVAC domain (Add2TC1) in 
the current IFC data model (IFC4), it does not provide the necessary 
structure and attributes to use third-party simulation tools for HVAC 
design [26] and therefore requires improvements. Many IFC classes do 
not map well to the (more detailed) classes needed in a BEM tool (e.g. 
MechanicalEquipment vs. Air Handling Unit). Therefore, a better object 
model is needed that includes these specialised HVAC classes and 
properties. This object model ideally serves as a common data format to 
enable a CDE to run advanced hydraulic simulations. Furthermore, this 
object model needs to be web-ready to enable a BIM Level 3 CDE 
approach (e.g. JSON, RDF), that includes a microservice architecture 
with horizontal scalability. 

Hence, this paper investigates the creation and use of such a common 
web-ready object model, plus its incorporation in a service-oriented 
CDE. This paper proposes to create a web application named Virtual 
Commissioning as a CDE. Virtual Commissioning is envisioned by the 
authors of this article to generate a virtual environment or CDE, that is 
capable of commissioning the building services, before, and during 
operation of the building. We do recognize that traditional commis-
sioning is a quality-focused process that delivers the entire building to 
the owner, according to the owner's objectives and criteria. In future 
work, we plan to make the VC platform operational for the full 
commissioning of the building. In this article, the VC CDE revolves solely 
on the commissioning of the building services, and their performance. 
The CDE connects a Revit model with an Application Programming 
Interface (API) endpoint to a MongoDB database. The database is 
structured based on the data structure of the FSC object model that is 
introduced in this paper. The FSC object model is generated from a Revit 
model using a Extract-Transform-Load (ETL) approach. Finally, the VC 
platform introduces a microservice architecture that makes it possible to 

create microservices that can run independently based on the FSC object 
model in the database. Three microservices are introduced and utilized 
on two use cases. After testing the VC platform with the creation of 
microservices, we will test the performance of the FSC exporter tool on a 
model obtained from a real-world project. 

1.2. Aim 

The aim of this article is to:  

1. Centralize BIM project data so all stakeholders have access to a single 
source of truth (SSOT) in a web-based CDE based.  

2. Create a data structure or object model that can represent a flow 
system  

3. Allow for easy scalability of the CDE using a microservice 
architecture. 

1.3. Outline 

Section 2 describes the current state-of-the-art CDEs that raise the 
BIM maturity to level 3. Section 3 describes in detail the system archi-
tecture of the proposed VC platform and the FSC object model (see 
Fig. 1). Section 4 introduces example models 1 and 2, which we will use 
to evaluate the performance in Section 5. Section 6 presents the 
achievements of this paper, together with the limitations. Furthermore, 
it offers a roadmap for future development. Finally, Section 7 concludes 
on the contribution of this paper. 

2. Background 

This section describes the efforts within the development of CDEs for 
buildings and HVAC systems. This includes the efforts sought to repre-
sent HVAC systems with object models. It also describes the state-of-the- 
art for simulation environments for full building simulation. Finally, the 
section introduces the state-of-the-art within software development 
using microservice system architecture. 

2.1. Simulation and computation 

Andriamamonjy et al. introduced an automated workflow, called 
IFC2Modelica, for the direct transfer of geometry, system, and control 
representations encapsulated in an IFC4 file [2]. One issue with this 
approach is that commercial BIM tools, like Revit, do not serialize all the 
needed information sufficiently well to carry out the complete data 
transfer introduced in the IFC2Modelica workflow. After transferring 
the IFC file from Revit or a similar proprietary BIM tool, the user must 
manually input the required information to run the simulation in the 
Modelica environment. Similarly, Jeong et al. created Revit2Modelica to 
transfer an architectural BIM model into Modelica for an advanced 
building energy simulation. The Revit2Modelica approach takes a pro-
prietary file format (.rvt) and translates it into the Modelica file format. 
However, it does not transfer HVAC systems. IFC2Modelica and 
Revit2Modelica provide a novel approach for simulation of HVAC sys-
tems and building energy modeling but based on file-based BIM models. 
This means that they do not live up to the BIM maturity level 3. A 
common data environment should be presented to raise the BIM matu-
rity from level 2 to level 3. 

2.2. Object models for representation of HVAC models 

Efforts have sought to enable a level 3 BIM maturity with automated, 
flexible data transformation using open standards (e.g., IFC) and se-
mantic web technologies to improve interoperability, data linking, and 
logical inference [27]. Afsari et al. implemented the IFC schema in a 
JSON (JavaScript Object Notation) format to facilitate web-based data 
exchange [28]. Do-Yeop Lee developed a novel framework using BIM 
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and linked data technologies to share defect data and enhance produc-
tivity during construction [29]. 

Many efforts have specifically concerned building operation, as it is 
continuous and benefits from a ‘live’ BIM database. Quinn et al. 
demonstrated a linked data approach integrating IoT data and BIM [30]. 
Meanwhile, Tang et al. developed and tested a prototype exchanging 
building automation system (BAS) data using BACnet and an IFC data 
model [31]. Similarly, Kim et al. proposed a semantic web-based facil-
ities management approach [32], while Bong et al. developed a BIM- 
enabled data architecture for fault detection and diagnostics [33]. 
Furthermore, Mohamed et al. devised an ontology to formalize as-is BIM 
knowledge for semantic web technologies to improve maintenance [34]. 
Finally, Balaji et al. created Brick [35] to represent sensors and sub-
systems, and the relationship between them. However, while the Brick 
schema is great at representing data points within the building and 
HVAC system, it does not represent passive components such as pipes 
and ducts. Therefore, it is not fit to represent an entire flow system and 
the aspects thereof. Such developments should help exchange BIM data 
openly and enable web service applications. 

2.3. Common data environments 

The development of BIMServer.org was an early effort in raising the 
BIM maturity level from 2 to 3 [?]. The primary purpose of the 
BIMServer.org project was to provide an IFC database that has features 
like model checking, versioning, project structures, merging, etc. While 
BIMserver.org is an open access open-sourced platform, it is based solely 
on the IFC schema, introducing serious errors and missing data 
depending on the tool it is generated by [14]. A proprietary file format 
approach was carried out by the software vendor Autodesk, with the 
introduction of the cloud platform A360 and the integration of Forge, 
which implements an API. For the project team, Forge provides an easy 
way to share and version Revit models in the cloud; it is still based on the 
proprietary file format from Autodesk Revit. This introduces a limitation 
in integrating a link with external applications A360 does not support 
[36]. Cheng et al. made an online CDE that was based on the gbXML 
schema [12]. Furthermore, they included an energy modeling approach 
using the open-sourced tool EnergyPlus. While providing an open plat-
form that eliminates the need for file-based sharing of BIM models, the 
platform only supports gbXML. The efforts mentioned in this subsection 
could be specified as CDEs, but none of them introduced a CDE capable 
of storing an HVAC model with the capability of HVAC simulation. The 
IBPSA project 1 introduced a CDE based upon IFC, CityGML, and 

Modelica [13]. The project seeks to create an open-source tool that al-
lows next-generation computing for the design and operation phases of 
buildings and district energy and control systems. The IBPSA project 1 
integrates the object-oriented modeling language Modelica into their 
CDE for HVAC simulations. They use IFC as the file format. While the IFC 
model represents an open data format, it is also known that most pro-
prietary tools, like Revit, have severe errors in parsing from their native 
format to IFC [14]. The IPBSA project 1 utilizes a classic monolithic 
architecture, which makes it difficult to scale the application to a cloud 
computing setup [37]. 

2.4. Microservice architecture 

With the software engineering domain moving toward cloud 
computing, microservices are becoming more mainstream [37]. Micro-
services are deployed, tested, and run independently, making it easy to 
scale an application, especially in a cloud computing setup [38]. This 
allows several developers to develop/maintain services while the CDE 
stays in operation. 

2.5. Summary 

In summary, CDEs have been introduced in earlier works, like 
BIMServer.org and Autodesk Forge. However, they are not capable of 
representing an HVAC object model. Furthermore, the IBPSA project 1 is 
a CDE that allows for next-generation computing in Modelica, based on 
the IFC model of an HVAC system. Though the IFC format is considered 
open, the parsing from proprietary BIM tools like Revit is error-prone, 
meaning there is a need to introduce an open format to represent flow 
systems. Furthermore, none of the CDEs above present a way to incor-
porate a microservice architecture, allowing for horizontal scaling of the 
web application. While developments of CDEs have concerned building 
operation, fewer have enabled BEM and dynamic simulations using web- 
based BIM. Kukkonen et al. devised a semantic web ontology for flow 
systems in buildings, which aimed to support web-based design and 
operation [39]. That ontology inspired the development of an FSC object 
model capable of handling entire flow systems and the component 
properties for hydraulic simulation. The data format of a flow system is 
not openly available from tools like Autodesk Revit, so our imple-
mentation of the FSC diagram yields a toolchain for enabling web-based 
services requiring flow specifications from a shared online BIM data-
base. This builds on the developments integrating BIM and BEMs, but it 
uses a database to increase the BIM maturity level from 2 to 3. 

Fig. 1. Proposed System Architecture allows the automated transfer of data from BIM to a database and then follows an automated transfer to a given microservice.  
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3. System architecture 

Based on Section 2, we propose the creation of a VC platform that 
serves as a CDE connected to a BIM tool that includes HVAC systems. 
This section considers three core developments for the VC platform: (1) 
The FSC object model for flow systems, (2) the implementation of the 
database, and (3) microservices for containerized and decentralized 
calculation. The source code for the FSC object model and the database 
is not shared specifically within this report. However, the class hierarchy 
is shared in Fig. B.1. The source code for microservices is open-source 
and has been shared in Section 3.3. 

In detail, this section describes the system architecture of the VC 
platform. The system architecture shows a conceptual model that de-
fines the structure and behavior of the platform. The platform allows for 
the decentralization of applications with the use of microservices. Fig. 1 
shows that the system architecture revolves around a web application 
with a MongoDB database. The platform provides a link between the 
BIM model in Revit and the database. The BIM model is transferred using 
the Revit API by mapping and serializing an FSC object model and 
sending it to the database in the VC platform. Once the data has been 
transferred to the database, microservices can be utilized for decen-
tralized calculation. The 3D model viewer is depicted in Fig. 3 to show 
its placement relative to the system architecture. The 3D model viewer 
will not be discussed further in this article. Section 3.1 introduces the 
FSC object model used to describe the flow system and its components. 
Furthermore, a UML class diagram for relating spaces to HVAC com-
ponents is presented. Section 3.2 showcases the database setup used for 
the VC platform. Finally, Section 3.3 shows how a microservice archi-
tecture is utilized, enabling several microservices to use the database 
FSC object model for decentralized calculation. 

3.1. The FSC object model 

This Section introduces the FSC object model. We used a Unified 
Modeling Language (UML) class diagram to create the FSC object model. 
FSC describes the composition of the flow system, with the relationship 
between the flow system and its components. Moreover, it appends the 
attributes needed to describe the physics of components in a flow sys-
tem. For instance, a component is defined by its properties and the 
relation to any connected components and systems. FSC contains three 
main features that enable the description of the flow system:  

1. The HVAC system is divided into subsystems, creating a system 
topology.  

2. Each component of the system is defined with its physical properties.  
3. The connectivity of all components are defined in sufficient detail. 

Fig. 2 shows a simple UML class diagram, that describes the HVAC-
System, SubSystem, Component, and Connector classes. In total, the FSC 
diagram contains 37 classes and 54 methods. This article will only 
describe the core classes in the class diagram and not all of the classes 
and methods in detail. To see a complete UML class diagram, see Section 
Appendix B. The FSC UML class diagram has been created using the 
Modelica Buildings library [40] as inspiration, since the purpose of 
future work is to be able to simulate in Modelica. 

3.1.1. Topology of a flow system 
Fig. 3 shows an example of a flow system. The HVACSystem can 

contain the distribution systems for Heating, Cooling, and Ventilation. 
Fig. 4 shows that within each of those categories, there are always two 
different SubSystems: a Supply system (solid lines), and a Return system 

Fig. 2. UML class diagram showing the connection between the four main components of the system. The HVACSystem contains the different SubSystems that is of 
type SubSystem. In a SubSystem, there is a list of Components. 
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(dashed lines). An end consumer, like a radiator, becomes the interface 
between the supply and return system. This is reflected by including the 
same instance of the Radiator in both the supply and return system, with 
the same Id and Tag. This principle is applied to components that make 
up the beginning and/or end of a circuit, such as Ener-
gyConversionDevices, and FlowTerminals. 

3.1.2. Component properties 
In addition to the systems and subsystems, FSC introduces a super- 

class (Component) that encompasses the properties that exist in all 
types of components within a system. Fig. 2 shows the properties and 

methods contained within the Component class. All FSC subclasses 
contain the following properties: (1) the Id uniquely identifies the 
component; (2) the tag identifies the component; (3) the classification of 
the component type; (4) the system name; (5) the system type; (6) a list 
of connectors (see Section 3.1.3); (7) the spaces that contain the 
component. Fig. 5 shows a list of all the subclasses of the Component 
class, which inherit properties from Component. To see the attributes of 
each component, see Appendix B.  

• EnergyConversionDevice is a device that converts energy from one 
fluid to another; it includes heating coils, heat exchangers, and 
radiators.  

• Fitting typically describes the connection from one Component to 
another or several other Component. It includes tees, bends, crosses, 
reductions and caps.  

• FlowController describes a component that controls the flow in a 
flow system. It includes valves and dampers. 

• FlowMovingDevice is a component that moves a fluid, which in-
cludes pumps and ventilators.  

• FlowSegment is a segment that connects any non-FlowSegment 
component, which includes pipes and ducts.  

• FlowTerminal is the terminal unit of any system, which includes 
ventilation air terminals. 

3.1.3. Component connectivity 
A logical description of a flow system must include a module to 

describe the connectivity of components since the purpose of flow sys-
tems is to transfer a fluid from one part of the system to another. Fig. 6 
shows that the Components contain a logical description of their re-
lations to each other. Pump-1 is supplied with fluid from Pipe-1, and it 
supplies fluid to Pipe-2. The description of the connection between one 
Component and another Component is done with the Connector class. In 
this example, it means that there will be two Connectors for Pump-1. 
One connector describes its relationship with Pipe-1 

Fig. 3. The overall system topology. An HVAC system can contain a heating, 
cooling, and ventilation system. 

Fig. 4. Every HVAC system contains a supply and return system. As it is 
illustrated in the figure, the components that bind the supply and return system 
are both on the supply and return system. 

Fig. 5. The tree structure showing all the subclasses to the Component 
super-class. 

Fig. 6. Example of a topology describing a flow system that consists of a pump 
connected by a pipe in each connector. 
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(SuppliesFluidFrom), and the second Connector describes the relation-
ship with Pipe-2 (SuppliesFluidTo). For consistency and efficiency, 
every Component describes the relationship to all connected Compo-
nents, even though the next Component contains a symmetrical 
connection to the previous Component. “SuppliesFluidTo” describes the 
forward direction of the flow, “SuppliesFluidFrom” describes from 
where the flow is coming. 

3.1.4. Spaces related to the flow system 
In addition to the system representation explained above, we created 

a class diagram for the properties of spaces to act as boundary conditions 
for the flow system (see Fig. 7). Such boundary conditions allow for 
calculating the airflow demand of a ventilation system and sizing the 
heating system. The ContainedInSpaces property in the Component class 
is used to describe the relation between spaces and components. The 
ContainedInSpaces property describes which spaces a component is 
contained within. 

3.1.5. Serialization to JSON data exchange format 
Section 3.1 introduced the FSC object model, making it possible to 

define a flow system and its components, including the spaces of a 
building. A data exchange mechanism is needed to exchange the FSC 
object model between platforms. While there are several options to 
implement such a data exchange (e.g. RDF graphs, XML, CSV, dedicated 
formats), we chose to focus on a serialization to the JavaScript Object 
Notation (JSON) format, as nearly all microservices and web service 

developments use this format. Listing 1 shows a JSON sample for an 
example model introduced later in this article. 

Listing 1: A JSON object example taken from Fig. 6. The listing shows 
a three component system. Only the most basic attributes from the base 
class of Component have been included for all the components. The “…” 
notation indicates that more components are present but not shown. 

Listing 2 The “Spaces” attribute is explained in Section 3.1.4. For 
simplicity, only the most basic attributes from the base class of Space 
have been included. The “…” notation indicates that more attributes are 
present but not shown in this example. 

3.2. Database implementation 

A mongoDB database stores the FSC object model. mongoDB is an 
object-oriented database (OOD). The objects created with the FSC object 
model are stored directly into the database. Representing the data in an 
OOD is so close to the programming objects that the code is simple to 
implement. In our implementation, the mongoDB database is instanti-
ated with the use of the serialized FSC object model, as seen in Listing 1. 

3.3. Microservice implementations 

With the object model and database infrastructure in place, the last 
element in the system architecture comprises of microservices that 
operate with the data, as shown in Fig. 1. The microservices developed 
for this article were all created as Python-Flask API endpoints. In our 

Fig. 7. A part of the UML class diagram for modeling Spaces. For simplicity, the full UML diagram is not shown.  

Fig. 8. Illustration of microservice setup. A JSON-file is posted with an HVAC system in the FSC format. Once handled in the microservice, a response JSON 
is returned. 
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case, we implemented three microservices of use in the HVAC engi-
neering domain:  

1. Rule-based checking of system integrity  
2. Airflow calculation of ventilation system  
3. Calculation of HVAC statistics 

Overall, these microservices rely on the infrastructure shown in 
Fig. 8. The figure illustrates how the microservices work using the first 
micro-service as an example (rule-based checking). The web application 
backend makes a POST request to the Flask microservice. The body of 
the request contains a JSON file that represents the entire flow system in 
a JSON format, as illustrated in Listing 1. The microservice then checks 
if all components are in compliance with the requirements described in 
Table A.1.1. Once it has checked the components, it returns a JSON to 
the backend, storing it in the mongoDB database. 

3.3.1. Microservice for rule-based checking of system integrity 
HVAC systems can be complex depending on the size. When handing 

over a BIM project of the HVAC system, it can be hard to uphold the level 
of detail, as promised in the Information, Communication, and Tech-
nology (ICT) contract of any building design phase. Therefore, it is 
highly beneficial to have a way to check that the system's integrity holds 
up. This microservice aims to provide a rule-based checking algorithm 
with a rule-set to check the FSC object model. The rule-set is shown in 
Table A.1.1. The source code is made available on GitHub.1 

The functionality of this microservice was already briefly explained 
in Fig. 8, as a combination of HTTP POST requests, JSON file exchange, 
microservice computations, and storing of results. The microservice 
returns a JSON file to the database that describes whether each 
component lives up to the rules. The result of each component is 
returned as a Boolean value. The return values are then stored in the 
database. 

3.3.2. Microservice for airflow calculation of ventilation system 
With the creation of the object model in the central database, it is 

possible to traverse through the given HVAC system from one point to 
another. We created a microservice for airflow calculation of the 
ventilation system2 to exemplify that the system can be traversed. The 

algorithm within the microservice starts by resetting all flows on the 
ventilation system. After resetting the flows, the algorithm takes the 
airflow demand available in each space and applies them to the air 
terminals contained in that space. The property ContainedInSpaces is 
used to find the connection between each AirTerminal and space. Fig. 9 
shows an example of the next step to the algorithm. The algorithm takes 
the airflow of the terminal and then applies it to the next component's 
connector. 

3.3.3. Microservice to calculate HVAC statistics 
The primary purpose of the HVAC statistics microservice is to make 

the VC platform capable of displaying statistics on the HVAC system, 
including the number of components in the system. Furthermore, it 
summarizes the total meters of duct/pipe in the model. In summary, the 
HVAC statistics microservice allows for validation of the FSC object 
model or even makes it possible to calculate the material usage. Python- 
Flask was used to create the HVAC statistics calculator with an endpoint 
that the VC platform can utilize.3 Listing 3 shows an example response 
from the microservice. 

Listing 3: The listing shows an example of a response JSON from the 
microservice presented in Fig. 8. Each component in the system is 
counted, and the length of all FlowSegments are summarized into the 
given cross-sectional dimension. 

4. Example models 

This Section introduces two example models for showcasing the VC 
platform and the FSC Object Model in particular. 

4.1. Example model 1 

4.1.1. The schematic / principle model 
Fig. 10 shows the first example model created by the authors of this 

article. The model contains a heating, cooling, and ventilation system, 
all connected. The heating system starts with a heat exchanger that 
converts the heat from the primary heating system (not depicted) to the 
secondary system, then branches out to a mixing loop for a heating coil 
(HeatingCoil) in the ventilation system and the radiators of each room. 
Each radiator is adjustable with a balancing valve (BalancingValve). The 
motorized valve (MotorizedValve) controls the mixing loop of the 
heating system. 

Fig. 9. The Figure shows how to traverse the ventilation system with a recursive function. The recursive function has a stop condition: the ComponentType ==

“Fan”. The red arrows show the path from the air terminal to the fan. In the supply system, the ConnectorType “supplesFluidFrom” is used as a keyword to find the 
next component that will lead to the supplying fan. When done for the return system, the ConnectorType “suppliesFluidTo” is used as a keyword to find the next 
return component that will lead to the returning fan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

1 https://github.com/Virtual-Commissioning/VC-HVAC_rule_ 

checking-Service  
2 https://github.com/Virtual-Commissioning/VC- 

Ventilation_dimensioning-service 

3 https://github.com/Virtual-Commissioning/VC-HVAC_ 

statistics-Service 
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The cooling system is on the secondary side of the heat exchanger 
(HeatExchanger). The cooling liquid supplies the mixing loop provided 
by a pump. A mixing loop with another pump may seem excessive in this 
case, but was included as an example. The shunt is controlled with a 
motorized valve (MotorizedValve) and a pump (Pump). 

The ventilation system contains a ventilation fan that takes the air 
from the air intake through a heat exchanger (HeatExchanger) and then 
a heating coil (HeatingCoil) and cooling coil (CoolingCoil) respectively. 
The air is supplied to space 1, 2, 3, and 4 with the use of air terminals 
(AirTerminal) controlled by a regulation damper. After supplying the air 
to the room, the air is extracted through the air terminal (AirTerminal). 
The air is then exhausted with the ventilation fan (Fan) after it has gone 
through the heat exchanger, exchanging any excess heat to the supply 
air.4 

The example contains spaces, to exemplify the connection between 
the systems and spaces as seen in Section 3.3.2. All of the spaces are 
heated by ventilation and radiators, and are cooled by ventilation. 

4.1.2. Instantiating the object model 
This subsection visualizes the instantiated FSC object model for the 

Revit model shown in Fig. 11. The serialized JSON which represents the 
FSC object model is provided for the reader.5 Fig. 10 shows a call-out 
with a red-dotted line. Fig. 12 visualizes part of the instantiation of 
the object model within the previously mentioned call-out of a system 
and then serializes it into JSON. Fig. 12 also shows how each component 
is instantiated with a relationship to the attached connector. For 

instance, the Tee (Tag: 1742043) is instantiated with Connector C2 and 
C3. This means that Connector C2 and C3 are instantiated within the 
ConnectedWith attribute of the Tee component. Connector C2, dis-
played in a blue box of Fig. 12, connects component 1742043 with 
component 1742044. Furthermore, the Connector class contains the 
physical properties of the connection port that interfaces with the 
adjacent component. Such physical properties include the dimension, 
shape, coordinates, and direction vector of the connector. The direction 
vector of the port will always orient away from the component. Finally, 
the ConnectorType displays whether another component supplies the 
connector or if it supplies another component. For instance, C2 suppli-
esFluidTo component 1742044, and C4 suppliesFluidFrom component 
1742043. 

Fig. 10. Example model 1 mechanical schematic. The Figure contains three subsystems: heating, ventilation, and cooling. Furthermore, it includes four spaces that 
have an airflow. The radiators and the heating coil of the ventilation system provides heating to the room. Similarly, the cooling coil provides cooling by air to 
the room. 

Fig. 11. The example model is shown in Fig. 10, modeled in Revit. The model 
contains the exact components and rooms shown in Fig. 10, except from the 
heat exchangers from the primary to the secondary system. The 3D model was 
modeled in Revit. 

4 https://github.com/Virtual-Commissioning/VC-HVAC_rule_ 

checking-Service/blob/main/app/ressources/example_model_ 

1.json  
5 
https://github.com/Virtual-Commissioning/VC-HVAC_rule_ 

checking-Service/blob/main/app/ressources/example_model_ 

1.json 
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Fig. 12. The figure shows a schematic a small flow system. The red callout from Fig. 10 makes up the example seen in this figure. For simplicity, only the connectors 
(in the blue boxes) C2 and C4 are shown. Orange boxes make out a component, and blue boxes show the connectors related to a given component. The figure does not 
contain all properties for all components. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Example model 2. Revit example model obtained from TU Eindhoven. The model shows a ventilation system with subsystems such as supply, extract, 
exhaust, and intake air. 
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4.2. Example model 2 

4.2.1. The schematic/principle model 
Fig. 13 illustrates the second example model. The Eindhoven Uni-

versity of Technology provided a real-case example model. The model 
contains a complex ventilation system with extract, supply, exhaust, and 
intake systems. Furthermore, it has heating coils attached to the supply- 
side of the ventilation system. The heating system is simplified and 
contains only the heating coil and the connected pipes. In general, this 
example aims to show the performance of the VC platform on an 
“imperfect” model. 

The air handling unit (AHU) provides air to the ventilation system. 
The AHU was modeled as a box with four connectors in this example. 
This differs from the example shown in Section 4.1 by not specifying the 
components inside the AHU. A typical AHU consists of fans for supplying 
and extracting air, heating and cooling coils, silencers, and filters, i.e. it 
illustrates a “real world problem” in which not all modeling standards 
are the same - some designers would model all the components within 
the AHU while some designers (depending on company standards, and 
the design phase) would model the AHU as a box. The supply and extract 
system was modeled with variable air volume (VAV) dampers. This 
means that the ventilation system can vary the airflow in specific rooms. 
This example model does not contain any spaces, as these are contained 
in the architectural BIM model. 

4.2.2. Instantiating the object model 
We used the FSC exporter to generate the FSC object model, based on 

the Revit model, seen in Fig. 13. Next, the FSC object model was seri-
alized into JSON and imported to the VC platform. 

5. Results 

This Section first displays the robustness of the format by visually 
explicating an example of the format. Following, it shows the platform's 
scalability with the use cases of a rule-based checker of the FSC object 
model, a BIM to airflow calculator, and an HVAC statistics tool. 

5.1. Example model 1 

5.1.1. Rule checking 
The rule-based checking algorithm was used to see whether example 

model 1 (Section 4.1) lives up to the rule-set presented in the rule-based 
checking algorithm (Section 3.3.1). Table 1 shows that 219 out of 225 
components lived up to the rules presented in Table A.1.1. The six 
components that did not live up to the rule-based check were the “open 
ended” components placed at the beginning and end of each system, 
including two from the ventilation system, two from the heating system, 
and two from the cooling system, which was expected. 

5.1.2. HVAC statistics 
Table 2 shows the result of running the HVAC statistics microservice 

from Section 3.3.3 on example model 1. The only component type 
counted differently by the microservice is the heat exchanger. Since the 
heat exchanger should always be connected with two systems - in this 
case the ventilation and the cooling system, and the ventilation and 
heating system, this is accepted. Even though every heat exchanger is 
represented twice in the format, it is also annotated with the same tag. 
Therefore, it is still possible to distinguish whether it appears twice. 

Table 3 shows that the length of the components was counted to a 
precision better than 0.01%. The precision is arguably caused by 
rounding off values in the microservice or Revit, which is normal and 
acceptable when dealing with geometry in different systems. Since the 
discrepancy is so small, it is considered insignificant. 

5.1.3. Airflow calculation 
Fig. 14 shows the airflow calculation microservice from Section 3.3.2 

applied to example model 1, to visualize the functionality and result of 
the tool. If Space-1 has an airflow demand of 35 l/s, the airflow demand 
is applied to the air terminals that are contained in Space-1. Then it is 
added to the existing airflow on the ventilation duct up to the ventilation 
fan. The script was tested by applying it to the example model described 
in Fig. 4.1.1. By using the microservice to analyze the ventilation system, 
it was found that the total airflow needed to run the system was 747 l/s 

Table 1 
The table shows the result of running the rule-based checking algorithm on 
example model 1. The table shows that the FSC object model contains 225 
components.  

Components checked True False 

225 219 6  

Table 2 
This table illustrates the total amount of components reported in Revit and after 
the transfer to the VC platform.  

Components Amount Revit Amount VC 

AirTerminal 8 8 
MotorizedDamper 8 8 
Bend 30 30 
Reduction 40 40 
Tee 14 14 
BalancingValve 8 8 
MotorizedValve 2 2 
HeatExchanger 2 4 
Fan 2 2 
Pump 4 4 
ShuntValve 2 2 
PressureSensor 2 2 
TemperatureSensor 2 2 
Radiator 4 4 
FlowSegment 96 96 
Total components 223 225  

Table 3 
The table illustrates the length of the FlowSegments transferred from Revit to the 
VC platform, before and after the transfer. Each duct or pipe type is reported 
with its deviation from the Revit model to the VC platform. All measurements 
are in millimeters.  

Duct Size Length Revit Length VC Dev % 

Round ducts 
Ø80 14,490 14,490 0 
Ø125 15,430 15,430 0 
Ø200 20,260 20,260 0  

Pipes 
Ø15 24,259 24,280 <0.01 
Ø18 7572 7570 <0.01 
Ø22 39,613 39,620 <0.01  

Fig. 14. The ventilation system is traversed and airflows are summed along the 
supply and return paths. 
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for the supply and return ventilation fan. The airflow calculation is one 
of the first steps in choosing a fan that can meet the airflow demand of 
the system. 

5.2. Example model 2 

This Section shows a use case test of the HVAC exporter on the 
example model introduced in Section 4.2. A BIM model has been ob-
tained from the industry to test the performance of the Revit to the VC 
platform with the use of the FSC exporter. The transfer will be quantified 
with the HVAC statistics tool (Section 3.3.3) and the HVAC rule checker 
tool (3.3.1). The purpose is to test the created FSC object model exporter 
tool with a BIM model that has not been built by the authors of this 
report. Once the BIM model has been transferred from Revit into the VC 
platform, the microservices for rule-based checking (Section 3.3.1) and 
HVAC statistics (Section 3.3.3) will be used to quantify how well the FSC 
object model based on the BIM model has been transferred into the VC 
platform. 

5.2.1. Rule checking 
Table 4 shows the result of the rule-based checking algorithm run on 

the transfer of the use case from Fig. 13. The table shows that 158 
components out of 493 lived up to the rule-check proposed in 
Table A.1.1. That means that the majority of elements did not pass this 
check. This will be documented further below in this article, yet the 
main reason is that the system in the particular building is not as com-
plete and correct as expected by the rules developed in this microservice. 

5.2.2. HVAC statistics 
Table 5 shows the number of components reported in Revit and the 

number of components reported after the transfer from Revit to the VC 
platform with the use of the FSC exporter. The total amount of compo-
nents for Revit and the VC platform was 487 and 493, respectively. This 
is explained in the way that FSC divides the flow system. The full system 
contains both a ventilation and heating system in the model (The 
heating system only consists of a few pipes connected to the heat ex-
changers). In the example model, the ventilation and heating systems 
are connected by heat exchangers. Fig. 3 shows an example of this, near 
the heat exchangers. This behavior intends to provide an internal 
connection for each of the systems. 

Table 6 shows the length of the FlowSegments reported in Revit and 
the length of the FlowSegments reported after the transfer from Revit to 
the VC platform with the use of the FSC exporter. In Table 6 it is reported 
that not every duct or pipe has the same length after it has been 

transferred to the VC platform. This behavior is caused by an incorrect 
Revit model, that does not contain “correct connectivity”. This problem 
is caused by the microservice not being able to handle specific cases, like 
it is seen in Fig. 15 where several AirTerminals are placed on the duct. 
This behavior has not been accounted for in the microservice. It also 
explains why the Ø630 ducts are not counted a single time in the HVAC 
statistics microservice. Listing 4 shows the JSON structure in the FSC 
format behind the object shown in Fig. 15. The Figure shows that five air 
terminals have been placed directly on the ventilation duct, which is 
usually not expected. This means that the FlowSegment has a total of 7 
connectors. 

Listing 4 The listing shows the component mapped from Fig. 15. Not 
all the connectors are shown, to improve readability of the JSON. 

Table 5 
This table illustrates the total amount of components reported in Revit and after 
the transfer of the FSC object model to the VC platform.  

Components Amount Revit Amount VC 

AirTerminal 33 33 
Cap 14 14 
Bend 69 69 
Reduction 125 125 
Tee 13 13 
BalancingDamper 29 29 
HeatExchanger 6 12 
FlowSegment 198 198 
Total components 487 493  

Table 4 
The table shows the result of running the rule-based checking algorithm on 
Fig. 13. The table shows that the FSC object model for example model 2 contains 
493 components.  

Components checked True False 

493 158 335  

Table 6 
This table illustrates the length of the FlowSegments transferred from Revit to 
the VC platform, before and after. Each duct or pipe type are reported with their 
deviation from the Revit model to the VC platform. All measurements are in 
millimeters.  

Duct Size Length Revit Length VC Dev % 

Round ducts  
Ø160 2862 340 88 
Ø250 7250 540 93 
Ø315 24,644 21,680 12 
Ø355 3624 3624 0 
Ø400 31,443 21,120 33 
Ø450 12,653 6430 49 
Ø500 33,286 24,980 25 
Ø600 8152 8152 0 
Ø630 21,916 0 100  

Square ducts 
1200 × 600 5600 0 100 
200 × 200 3402 3402 0 
2100 × 900 4535 3390 25 
2178 × 1538 500 500 0 
350 × 350 83 0 100 
400 × 400 33 0 100 
600 × 600 5214 340 93 
700 × 350 1868 0 100 
700 × 400 2118 0 100 
700 × 600 5238 620 88 
800 × 400 18,142 0 100 
850 × 600 3714 2840 24  

Pipes 
Ø32 2016 2016 0  

Fig. 15. The ventilation duct in this figure has seven connectors. It has the 
beginning and the end of the flow segment, but it also has five connectors from 
the 5 air terminals that have been placed directly on the ventilation duct. 
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6. Discussion and future work 

The VC platform is a common data environment used for HVAC 
projects during the building's design, construction, and operation pha-
ses. This paper describes the process required to develop a CDE and 
proposes a roadmap for further research and development. The re-
quirements for the VC CDE were that it should expose the proprietary 
format of a Revit HVAC system in a commonly available platform. Using 
Python-Flask microservices, we illustrated how the VC platform allows 
for continuous integration and continuous deployment of functionalities 
on the platform. The VC platform can scale in any direction with the 
integration of microservices. Furthermore, it allows for the extension of 
the FSC object model since the system architecture is based on a 
microservice architecture. For instance, if the exporter from Revit to the 
FSC object isn't working, that can be tested and patched independently 
of touching the code for any other microservices. 

6.1. Achievements 

We created a CDE with a microservice architecture and showed that 
the CDE is easily scalable by implementing simple microservices such as 
the airflow calculator (see Section 3.3.2). A rule-based checker was also 
implemented to check if the data transfer was successful from Revit to 
the FSC object model in the VC platform. Furthermore, a microservice 
was implemented to provide statistics of the data transfer carried out. It 
offers the user insights into the flow system, such as the length of 
different ventilation ducts or pipes. The FSC diagram and the FSC 
exporter allow for the serialization of the FSC object model. A mongoDB 
OOD stores the FSC object model. The FSC object model creates a con-
nected network of ducts and pipes, making it possible to represent the 
nature of a flow system. The FSC exporter allows the user to create an 
FSC object model serialized in JSON to work within the VC platform - or 
even in external platforms. We used the FSC exporter on an externally 
developed Revit model and were able to transfer the full FSC object 
model to the web application to run microservices on it. We proved that 
the FSC object model is able to link the demand of a space with the 
airflow system. This can be used to create dimensioning tools for 
ventilation systems or heating- and cooling systems. In order to enable 
future use of the VC platform, the authors of this article will continu-
ously maintain and update the platform with new features. 

6.2. Limitations of the study 

We created BIM model with LOD350 to evaluate the VC platform and 
the FSC object model, called example model 1. Therefore, the model 
used to evaluate the VC and FSC was “created to succeed”. For instance, 
all components must have precisely the right amount of connectors. 
There is a risk of designing the VC platform for “the perfect scenario” 
where all data is available in the BIM model. It is often a challenge in the 
AEC industry that BIM models do not contain all the data necessary for a 
complete model, like component connectivity, component naming, 
system naming, etc. To handle problems like this, the AEC industry in 
Denmark has introduced ICT agreements on building projects. It is a 
contract that obligates the company to deliver building documentation 
of a certain standard. However, while LOD descriptions are relatively 
detailed, consulting engineering companies in the HVAC branch still 
struggle to provide models that live up to the LOD350 standard. We built 
the VC platform to handle the delivery issues in the HVAC branch by 
integrating a microservice architecture. For instance, if the HVAC sys-
tem in the database has an error, it can be fixed later in the VC platform 
using the microservices. One of the microservices is the rule-based 
checking algorithm shown in Section 3.3.1. The rule-based checker 
will let the user know that some information is missing. For instance, 
such missing information could be that some components are connected 
incorrectly. Then, it is possible to specify the actual connectivity directly 
in the VC platform. 

The VC platform was tested on a model developed externally to 
emulate the situation of an imperfect BIM model, as seen in Section 4.2. 
In Section 5.2 the HVAC Statistics microservice in Section 3.3.3 and the 
rule-based checking algorithm in Section 3.3.1 was run on example 
model 2. The results showed that all components were transferred suc-
cessfully to the VC platform, see Table 5. However, the performance test 
with the rule-based checking algorithm showed that 158 of 493 com-
ponents lived up to the rules established in Table A.1.1. The results of 
this performance test were caused by, for instance, the modeling prac-
tice shown in Fig. 15. The figure highlights that the FSC exporter does 
not always map the components correctly. This behavior is expected for 
any Revit model that has not been modeled with the intent to transfer it 
to the database. The user can use the rule-based checking microservice 
to find which components do not live up to this algorithm. The 3D- 
viewer of the VC platform visualizes the results and alerts the user 
which components do not follow the rule-set. Thereby, the user can 
solve the issues manually. 

The test case presented in Section 4 showed the application of the 
FSC object model together with the VC platform. As part of the plat-
form's deployment, more extensive testing should be carried out on 
Revit models to ensure the robustness of the FSC exporter and platform. 

There are issues that the VC platform cannot solve. For example, the 
FSC exporter is highly dependent on the template used within the Revit 
model. If a flow segment like a pipe is modeled as the “Mechanical 
Equipment” category instead of a “Pipe” category in Revit, then the pipe 
will be mapped into the wrong category or not mapped at all. Such a 
fault will cause an exception within the FSC exporter, meaning that an 
error will cause the exporter to abort the operation and, therefore, fail to 
export the FSC object model from Revit to the database. 

The FSC exporter was designed to link the Revit model and the 
database. The FSC exporter demonstrates that it is possible to extract 
information from a BIM tool like Revit to work within a database. For the 
purpose of this article, Revit families from the Rambøll library was 
utilized and modified to be able to represent all the information needed 
to export it into the FSC object model. The work presented in this article 
does not exclude exporters from other file formats to be made. Such 
integration could include the open file format IFC. The VC platform is 
not dependent on the file coming from Revit or any other proprietary 
format, as long as it follows the FSC diagram. 

It will require detailed HVAC models for advanced hydraulic simu-
lations in Modelica. This presents a problem for the AEC industry with 
the current status of BIM modeling. The AEC industry needs to model 
buildings more realistically and contain information in the BIM model in 
an early design phase to provide a correct design based on actual per-
formance rather than rule-of-thumb. However, we believe that with the 
younger generation coming into the AEC industry, the market is ripe for 
the digital transformation it will take. Performing these simulations in 
the early design phase will be more time spent on design than fixing 
issues during the physical commissioning or operation phase. In the 
company supporting this article, the method will be employed to do just 
that - to save time in the long run. 

6.3. Roadmap for future development 

The VC platform and the FSC object model have been carried out as 
part of a development to create a CDE for full building simulation using 
BIM models. This paper introduces the FSC object model, and exem-
plifies how to use microservices for calculation or even simulations. The 
VC platform is envisioned as a three-stage development project. The 
stages are illustrated in Fig. 16. Stage 1 is the work presented in this 
paper and is the initial development of the VC platform and the FSC 
object model with the simple calculation microservices. The micro-
services seek to prove that adding microservices to the VC platform is 
possible. The authors of this article recognizes that the microservices are 
very simple, and constitute services that already exist within BIM pro-
grams like Revit. The microservices were added to exemplify that tools 
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developed within Revit can easily be replicated to a cloud-based CDE 
based on a non-proprietary format, as opposed to the proprietary format 
of Revit. The early development of the VC platform and the FSC object 
model provides a stepping stone for developing a complete CDE for 
continuous integration of simulation tools through microservices. Stage 
2 includes the development of a space class object model to represent a 
BIM energy model. A simple space class object model was presented in 
Section 3.1.4. Fig. 16 shows that the “HVAC BIM database” and the 
“Energy model database” share a relational bond. Thereby, it will be 
possible to link these two data formats together. Finally, stage 2 in-
troduces the possibility of running whole building simulations through 
Modelica and EnergyPlus with the use of Spawn Of EnergyPlus in 
Modelica [41]. Running simulations on indoor climate and HVAC sys-
tems simultaneously might help perform more accurate predictive en-
ergy models. The work on stage 2 has already begun, and the authors of 
this article have proved that the link from CDE to Modelica-based 
Dymola, is possible [21]. Fjerbæk et al. [21] simulated a small heating 
system in Modelica and was capable of showing the return temperature 
for each heating loop. The toolchain created by Fjerbæk et al. [21] made 
it possible to easily initiate Modelica simulations of a heating system - a 
process that under normal circumstances would be very time 
consuming, due to the manual labour of creating a Modelica simulation 
model. Stage 3 will include sensor data and connect it to the BIM model 
with a relational bond. It will be possible to take data from the operating 
building and do continuous fault detection on it with sensor data. That 

way, the digital twin in the VC platform can inform the Building Man-
agement System (BMS) of the actual building to make certain adjust-
ments. An example of an adjustment could be to run with the objective 
of minimizing energy costs (as opposed to minimal energy usage). 

7. Conclusions 

The three aims of this paper were to:  

1. Centralize BIM project data so all stakeholders have access to a single 
source of truth (SSOT) in a CDE based in a web application  

2. Create a data structure that can represent a flow system 
3. Allow for easy scalability of the web application utilizing the prin-

ciple of microservice architecture. 

This article introduces a CDE called the VC platform. The article 
exemplifies a paradigm shift from a proprietary file-based BIM model to 
a web-based database BIM model. The VC platform allows for the 
development of applications in a fully modularized way through 
microservices. Microservices make it possible to deploy custom appli-
cations that run specific tasks independently. We developed the VC 
platform to enable advanced simulations of HVAC systems that relate to 
the actual spaces of the building. Future work has been planned to 
integrate Modelica and Spawn of EnergyPlus as microservices on the VC 
platform. An externally provided Revit model was used to test the 

Fig. 16. The Figure shows a roadmap for the future development of the VC platform. The areas marked with red represent the work developed for and presented by 
this article. The area marked in green represents the next step in developing the VC platform. Finally, the blue area represents the final step, a module that includes 
sensor data in the VC platform. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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performance of the VC platform. The performance test proved that the 
FSC exporter from Revit to the VC platform worked as intended – it 
transferred all components to the database in the VC platform. After 
transferring Revit with the FSC exporter to the VC platform, the per-
formance test revealed that not all components were compliant with the 
rule-based checking algorithm. However, this is not problematic, as the 
rule-based checking algorithm intends to highlight errors like this so the 
user can solve them in the VC Platform frontend. 
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Appendix A  

Table A.1 
This table illustrates the rules that exist with all the subtypes of components in the class object model.  

Subclass of Component Rules 

FlowSegment Contains two connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

HeatExchanger Contains 4 connectors 
Contains two connectors: “suppliesFluidFrom” and two connectors: “suppliesFluidTo” 
Is contained within two different subsystems 

Radiator Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

Bend Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 
Has an angle greater than 0 

Cross Contains 4 connectors 
Contains at least one connector of “suppliesFluidFrom” and at least one connector of “suppliesFluidTo” 

Reduction Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

Tee Contains 3 connectors 
Contains at least one connector: “suppliesFluidFrom” and at least one connector: “suppliesFluidTo” 

BalancingDamper Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

MotorizedDamper Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

FireDamper Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

BalancingValve Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

CheckValve Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

DifferentialPressureValve Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

MotorizedValve Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

SafetyValve Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

ShuntValve Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

Fan Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

Pump Contains 2 connectors 
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo” 

AirTerminal Contains 1 connector 
Contains connector of “suppliesFluidFrom” if supply system 
Contains connector of “suppliesFluidTo” if return system  

Appendix B. UML class diagram FSC    
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Fig. B.1. Illustration of the full FSC UML diagram. It includes all elements that inherit from component. It extends the diagram displayed in Fig. 2. The methods displayed in the UML are used to create the FSC 
object model.  
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