

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

A common data environment for HVAC design and engineering

Seidenschnur, Mikki; Kücükavci, Ali; Fjerbæk, Esben Visby; Smith, Kevin Michael; Pauwels, Pieter;
Hviid, Christian Anker

Published in:
Automation in Construction

Link to article, DOI:
10.1016/j.autcon.2022.104500

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Seidenschnur, M., Kücükavci, A., Fjerbæk, E. V., Smith, K. M., Pauwels, P., & Hviid, C. A. (2022). A common
data environment for HVAC design and engineering. Automation in Construction, 142, Article 104500.
https://doi.org/10.1016/j.autcon.2022.104500

https://doi.org/10.1016/j.autcon.2022.104500
https://orbit.dtu.dk/en/publications/0a96511a-bb18-494b-aa88-041d38888ca5
https://doi.org/10.1016/j.autcon.2022.104500

Automation in Construction 142 (2022) 104500

Available online 7 August 2022
0926-5805/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A common data environment for HVAC design and engineering

Mikki Seidenschnur a,c,*, Ali Kücükavci a, Esben Visby Fjerbæk a, Kevin Michael Smith a,
Pieter Pauwels b, Christian Anker Hviid a

a Department of Civil and Mechanical Engineering, Technical University of Denmark, Copenhagen, Denmark
b Department of Civil Engineering, Technical University of Eindhoven, Eindhoven, Netherlands
c Ramboll, Copenhagen, Denmark

A R T I C L E I N F O

Keywords:
Building information modeling
HVAC
Object models
Common data environment
BIM level 3

A B S T R A C T

The Architecture, Engineering, and Construction (AEC) industry is transitioning toward using cloud-based
Common Data Environments (CDEs) with interlinked BIM models. A CDE that engages all stakeholders of the
building's design, construction, and operation phases represents the outset of BIM maturity level 3. This article
introduces a CDE called Virtual Commissioning (VC), capable of commissioning an HVAC system before the
physical commissioning of the HVAC system. The FSC diagram is introduced, to represent an HVAC BIM model
within the VC CDE, and the Revit to FSC exporter, to serialize an HVAC object model from Revit to the FSC
diagram. Three microservices were developed to exemplify the ease of developing independently scalable so-
lutions for the VC CDE. Furthermore, the article proves that Modelica simulations can be run, using the
microservice architecture of the CDE. To test the robustness of the system architecture for the CDE, two example
models were introduced, one simple and one with a high level of complexity. Transferring the example models
from Revit to the VC CDE was successful. Finally, in the roadmap for future development, it is proposed that
future work should focus on using the CDE for advanced hydraulic simulations, using Modelica and Spawn-of-
EnergyPlus.

1. Introduction

Building information modeling (BIM) is the practice of generating
and managing well-defined building data [1]. BIM data is typically
geometric, spatial, geographic, physical, or quantitative, and it aims to
provide a shared repository for stakeholders [2]. BIM can revolutionize
the construction sector by streamlining integrated design processes,
accurate construction scheduling, and comprehensive error screening
[3]. It further can help mitigate climate change and resource depletion
by simplifying and enhancing resource- and energy-efficient integrated
design processes for new construction [4–6] or renovation [7]. How-
ever, most current workflows are manual or semiautomatic [8], often
utilizing conventional spreadsheets [9], and most occur too late to
impact the design [9] significantly. Most of these workflows do not
utilize the full capabilities that BIM can offer if utilized to its full extent.

Succar et al. introduced the BIM maturity levels to describe the BIM-
based collaboration between stakeholders [10]. BIM-based collabora-
tion is defined from maturity Level 0 with almost no collaboration to

Level 3 with full integration, in which all stakeholders collaborate using
a shared model in a cloud-based common data environment (CDE) [10].
CDEs are applications that connect several services. Several CDEs have
been developed for the AEC industry [11–13]. With a CDE, it is possible
to create bi-directional links between a database model and simulation
services. A CDE enables teams always to have the most updated model to
run new simulations or make design decisions. Previously developed
CDEs for advanced hydraulic simulations use either the format of gbXML
(Green Building XML) or IFC (Industry Foundation Classes). Trans-
forming BIM data to BEM tools using gbXML and IFC formats can
introduce extreme errors [14], and the process occurs only once due to
the need for manual data entry [15]. More importantly, this BIM to BEM
process relies on a file-based exchange mostly, which is more common to
BIM Level 2. Therefore, to enable a real-time connection with live
building data, building models, and simulation data, an approach needs
to be taken that is not file-based, but rather web-based including data-
bases and microservices. That may lead to a simulation-enabled CDE.

* Corresponding author at: Department of Civil and Mechanical Engineering, Technical University of Denmark, Copenhagen, Denmark.
E-mail addresses: msei@ramboll.dk (M. Seidenschnur), alikuc@byg.dtu.dk (A. Kücükavci), evifj@byg.dtu.dk (E.V. Fjerbæk), kevs@byg.dtu.dk (K.M. Smith), p.

pauwels@tue.nl (P. Pauwels), cah@byg.dtu.dk (C.A. Hviid).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2022.104500
Received 25 March 2022; Received in revised form 16 June 2022; Accepted 24 July 2022

mailto:msei@ramboll.dk
mailto:alikuc@byg.dtu.dk
mailto:evifj@byg.dtu.dk
mailto:kevs@byg.dtu.dk
mailto:p.pauwels@tue.nl
mailto:p.pauwels@tue.nl
mailto:cah@byg.dtu.dk
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2022.104500
https://doi.org/10.1016/j.autcon.2022.104500
https://doi.org/10.1016/j.autcon.2022.104500
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2022.104500&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Automation in Construction 142 (2022) 104500

2

1.1. BEM simulation through a micro-service architecture

Tools for simulation of advanced hydraulic simulations have existed
for many years, like HVACSIM+ [16], IDA ICE [17], the Modelica
Buildings Library [18], and many more. Running advanced hydraulic
simulations can be extremely useful to test, whether a building performs
adequately compared to the original design. However, most AEC com-
panies today only perform simple calculations based on rule-of-thumb.
This means that most systems are designed based on a static calcula-
tion that only applies the peak load for the system. This means that the
system can be regulated for the peak load, but cannot regulate the flow
for the remainder of the time, due to lacking valve/damper authority.
The hydraulic systems are rarely simulated at all in the design phase of a
building. This is mainly due to the labour intensive manual work of
setting up the boundary conditions needed to run an advanced hydraulic
simulation. Efforts should be made to be able to automatically convert
from BIM to BEM. The suitability of tools for automatic integration of
BIM and BEM varies considerably. Modelica is an equation-based object-
oriented modeling language that provides a flexible means for con-
structing BEM while excelling at HVAC systems and controls [19,20].
Creating Modelica simulations today is a time consuming endeavor, due
to the complexity of providing the boundary conditions for a complete
solution. However, if the BIM model is used to automatically transfer the
boundary conditions, this can eliminate a large part of the manual task,
as shown by Fjerbæk et al. [21] There are substantial efforts to automate
the translation from BIM to Modelica-based BEM [2,22,23]. Kim et al.
[22] introduced a library with the name of ModelicaBIM. The idea of the
library is to be able to perform Modelica simulations, based on a BIM
model. Jeong et al. [23] introduced a tool that could export a building
modeled in Revit to perform thermal simulations in Modelica. The
article from Andriamamonjy et al. [2] directly translated the geometry,
systems, and controls which was encapsulated in an IFC4 file and
simulated in a Building Energy Performance Simulation (BEPS) model.
There are also efforts to use less well-defined IFC files through enrich-
ment and identification [24] and grey-box modeling [25] to generate
Modelica-based BEM.

Even with the recent extension of the HVAC domain (Add2TC1) in
the current IFC data model (IFC4), it does not provide the necessary
structure and attributes to use third-party simulation tools for HVAC
design [26] and therefore requires improvements. Many IFC classes do
not map well to the (more detailed) classes needed in a BEM tool (e.g.
MechanicalEquipment vs. Air Handling Unit). Therefore, a better object
model is needed that includes these specialised HVAC classes and
properties. This object model ideally serves as a common data format to
enable a CDE to run advanced hydraulic simulations. Furthermore, this
object model needs to be web-ready to enable a BIM Level 3 CDE
approach (e.g. JSON, RDF), that includes a microservice architecture
with horizontal scalability.

Hence, this paper investigates the creation and use of such a common
web-ready object model, plus its incorporation in a service-oriented
CDE. This paper proposes to create a web application named Virtual
Commissioning as a CDE. Virtual Commissioning is envisioned by the
authors of this article to generate a virtual environment or CDE, that is
capable of commissioning the building services, before, and during
operation of the building. We do recognize that traditional commis-
sioning is a quality-focused process that delivers the entire building to
the owner, according to the owner's objectives and criteria. In future
work, we plan to make the VC platform operational for the full
commissioning of the building. In this article, the VC CDE revolves solely
on the commissioning of the building services, and their performance.
The CDE connects a Revit model with an Application Programming
Interface (API) endpoint to a MongoDB database. The database is
structured based on the data structure of the FSC object model that is
introduced in this paper. The FSC object model is generated from a Revit
model using a Extract-Transform-Load (ETL) approach. Finally, the VC
platform introduces a microservice architecture that makes it possible to

create microservices that can run independently based on the FSC object
model in the database. Three microservices are introduced and utilized
on two use cases. After testing the VC platform with the creation of
microservices, we will test the performance of the FSC exporter tool on a
model obtained from a real-world project.

1.2. Aim

The aim of this article is to:

1. Centralize BIM project data so all stakeholders have access to a single
source of truth (SSOT) in a web-based CDE based.

2. Create a data structure or object model that can represent a flow
system

3. Allow for easy scalability of the CDE using a microservice
architecture.

1.3. Outline

Section 2 describes the current state-of-the-art CDEs that raise the
BIM maturity to level 3. Section 3 describes in detail the system archi-
tecture of the proposed VC platform and the FSC object model (see
Fig. 1). Section 4 introduces example models 1 and 2, which we will use
to evaluate the performance in Section 5. Section 6 presents the
achievements of this paper, together with the limitations. Furthermore,
it offers a roadmap for future development. Finally, Section 7 concludes
on the contribution of this paper.

2. Background

This section describes the efforts within the development of CDEs for
buildings and HVAC systems. This includes the efforts sought to repre-
sent HVAC systems with object models. It also describes the state-of-the-
art for simulation environments for full building simulation. Finally, the
section introduces the state-of-the-art within software development
using microservice system architecture.

2.1. Simulation and computation

Andriamamonjy et al. introduced an automated workflow, called
IFC2Modelica, for the direct transfer of geometry, system, and control
representations encapsulated in an IFC4 file [2]. One issue with this
approach is that commercial BIM tools, like Revit, do not serialize all the
needed information sufficiently well to carry out the complete data
transfer introduced in the IFC2Modelica workflow. After transferring
the IFC file from Revit or a similar proprietary BIM tool, the user must
manually input the required information to run the simulation in the
Modelica environment. Similarly, Jeong et al. created Revit2Modelica to
transfer an architectural BIM model into Modelica for an advanced
building energy simulation. The Revit2Modelica approach takes a pro-
prietary file format (.rvt) and translates it into the Modelica file format.
However, it does not transfer HVAC systems. IFC2Modelica and
Revit2Modelica provide a novel approach for simulation of HVAC sys-
tems and building energy modeling but based on file-based BIM models.
This means that they do not live up to the BIM maturity level 3. A
common data environment should be presented to raise the BIM matu-
rity from level 2 to level 3.

2.2. Object models for representation of HVAC models

Efforts have sought to enable a level 3 BIM maturity with automated,
flexible data transformation using open standards (e.g., IFC) and se-
mantic web technologies to improve interoperability, data linking, and
logical inference [27]. Afsari et al. implemented the IFC schema in a
JSON (JavaScript Object Notation) format to facilitate web-based data
exchange [28]. Do-Yeop Lee developed a novel framework using BIM

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

3

and linked data technologies to share defect data and enhance produc-
tivity during construction [29].

Many efforts have specifically concerned building operation, as it is
continuous and benefits from a ‘live’ BIM database. Quinn et al.
demonstrated a linked data approach integrating IoT data and BIM [30].
Meanwhile, Tang et al. developed and tested a prototype exchanging
building automation system (BAS) data using BACnet and an IFC data
model [31]. Similarly, Kim et al. proposed a semantic web-based facil-
ities management approach [32], while Bong et al. developed a BIM-
enabled data architecture for fault detection and diagnostics [33].
Furthermore, Mohamed et al. devised an ontology to formalize as-is BIM
knowledge for semantic web technologies to improve maintenance [34].
Finally, Balaji et al. created Brick [35] to represent sensors and sub-
systems, and the relationship between them. However, while the Brick
schema is great at representing data points within the building and
HVAC system, it does not represent passive components such as pipes
and ducts. Therefore, it is not fit to represent an entire flow system and
the aspects thereof. Such developments should help exchange BIM data
openly and enable web service applications.

2.3. Common data environments

The development of BIMServer.org was an early effort in raising the
BIM maturity level from 2 to 3 [?]. The primary purpose of the
BIMServer.org project was to provide an IFC database that has features
like model checking, versioning, project structures, merging, etc. While
BIMserver.org is an open access open-sourced platform, it is based solely
on the IFC schema, introducing serious errors and missing data
depending on the tool it is generated by [14]. A proprietary file format
approach was carried out by the software vendor Autodesk, with the
introduction of the cloud platform A360 and the integration of Forge,
which implements an API. For the project team, Forge provides an easy
way to share and version Revit models in the cloud; it is still based on the
proprietary file format from Autodesk Revit. This introduces a limitation
in integrating a link with external applications A360 does not support
[36]. Cheng et al. made an online CDE that was based on the gbXML
schema [12]. Furthermore, they included an energy modeling approach
using the open-sourced tool EnergyPlus. While providing an open plat-
form that eliminates the need for file-based sharing of BIM models, the
platform only supports gbXML. The efforts mentioned in this subsection
could be specified as CDEs, but none of them introduced a CDE capable
of storing an HVAC model with the capability of HVAC simulation. The
IBPSA project 1 introduced a CDE based upon IFC, CityGML, and

Modelica [13]. The project seeks to create an open-source tool that al-
lows next-generation computing for the design and operation phases of
buildings and district energy and control systems. The IBPSA project 1
integrates the object-oriented modeling language Modelica into their
CDE for HVAC simulations. They use IFC as the file format. While the IFC
model represents an open data format, it is also known that most pro-
prietary tools, like Revit, have severe errors in parsing from their native
format to IFC [14]. The IPBSA project 1 utilizes a classic monolithic
architecture, which makes it difficult to scale the application to a cloud
computing setup [37].

2.4. Microservice architecture

With the software engineering domain moving toward cloud
computing, microservices are becoming more mainstream [37]. Micro-
services are deployed, tested, and run independently, making it easy to
scale an application, especially in a cloud computing setup [38]. This
allows several developers to develop/maintain services while the CDE
stays in operation.

2.5. Summary

In summary, CDEs have been introduced in earlier works, like
BIMServer.org and Autodesk Forge. However, they are not capable of
representing an HVAC object model. Furthermore, the IBPSA project 1 is
a CDE that allows for next-generation computing in Modelica, based on
the IFC model of an HVAC system. Though the IFC format is considered
open, the parsing from proprietary BIM tools like Revit is error-prone,
meaning there is a need to introduce an open format to represent flow
systems. Furthermore, none of the CDEs above present a way to incor-
porate a microservice architecture, allowing for horizontal scaling of the
web application. While developments of CDEs have concerned building
operation, fewer have enabled BEM and dynamic simulations using web-
based BIM. Kukkonen et al. devised a semantic web ontology for flow
systems in buildings, which aimed to support web-based design and
operation [39]. That ontology inspired the development of an FSC object
model capable of handling entire flow systems and the component
properties for hydraulic simulation. The data format of a flow system is
not openly available from tools like Autodesk Revit, so our imple-
mentation of the FSC diagram yields a toolchain for enabling web-based
services requiring flow specifications from a shared online BIM data-
base. This builds on the developments integrating BIM and BEMs, but it
uses a database to increase the BIM maturity level from 2 to 3.

Fig. 1. Proposed System Architecture allows the automated transfer of data from BIM to a database and then follows an automated transfer to a given microservice.

M. Seidenschnur et al.

http://BIMServer.org
http://BIMServer.org
http://BIMserver.org
http://BIMServer.org

Automation in Construction 142 (2022) 104500

4

3. System architecture

Based on Section 2, we propose the creation of a VC platform that
serves as a CDE connected to a BIM tool that includes HVAC systems.
This section considers three core developments for the VC platform: (1)
The FSC object model for flow systems, (2) the implementation of the
database, and (3) microservices for containerized and decentralized
calculation. The source code for the FSC object model and the database
is not shared specifically within this report. However, the class hierarchy
is shared in Fig. B.1. The source code for microservices is open-source
and has been shared in Section 3.3.

In detail, this section describes the system architecture of the VC
platform. The system architecture shows a conceptual model that de-
fines the structure and behavior of the platform. The platform allows for
the decentralization of applications with the use of microservices. Fig. 1
shows that the system architecture revolves around a web application
with a MongoDB database. The platform provides a link between the
BIM model in Revit and the database. The BIM model is transferred using
the Revit API by mapping and serializing an FSC object model and
sending it to the database in the VC platform. Once the data has been
transferred to the database, microservices can be utilized for decen-
tralized calculation. The 3D model viewer is depicted in Fig. 3 to show
its placement relative to the system architecture. The 3D model viewer
will not be discussed further in this article. Section 3.1 introduces the
FSC object model used to describe the flow system and its components.
Furthermore, a UML class diagram for relating spaces to HVAC com-
ponents is presented. Section 3.2 showcases the database setup used for
the VC platform. Finally, Section 3.3 shows how a microservice archi-
tecture is utilized, enabling several microservices to use the database
FSC object model for decentralized calculation.

3.1. The FSC object model

This Section introduces the FSC object model. We used a Unified
Modeling Language (UML) class diagram to create the FSC object model.
FSC describes the composition of the flow system, with the relationship
between the flow system and its components. Moreover, it appends the
attributes needed to describe the physics of components in a flow sys-
tem. For instance, a component is defined by its properties and the
relation to any connected components and systems. FSC contains three
main features that enable the description of the flow system:

1. The HVAC system is divided into subsystems, creating a system
topology.

2. Each component of the system is defined with its physical properties.
3. The connectivity of all components are defined in sufficient detail.

Fig. 2 shows a simple UML class diagram, that describes the HVAC-
System, SubSystem, Component, and Connector classes. In total, the FSC
diagram contains 37 classes and 54 methods. This article will only
describe the core classes in the class diagram and not all of the classes
and methods in detail. To see a complete UML class diagram, see Section
Appendix B. The FSC UML class diagram has been created using the
Modelica Buildings library [40] as inspiration, since the purpose of
future work is to be able to simulate in Modelica.

3.1.1. Topology of a flow system
Fig. 3 shows an example of a flow system. The HVACSystem can

contain the distribution systems for Heating, Cooling, and Ventilation.
Fig. 4 shows that within each of those categories, there are always two
different SubSystems: a Supply system (solid lines), and a Return system

Fig. 2. UML class diagram showing the connection between the four main components of the system. The HVACSystem contains the different SubSystems that is of
type SubSystem. In a SubSystem, there is a list of Components.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

5

(dashed lines). An end consumer, like a radiator, becomes the interface
between the supply and return system. This is reflected by including the
same instance of the Radiator in both the supply and return system, with
the same Id and Tag. This principle is applied to components that make
up the beginning and/or end of a circuit, such as Ener-
gyConversionDevices, and FlowTerminals.

3.1.2. Component properties
In addition to the systems and subsystems, FSC introduces a super-

class (Component) that encompasses the properties that exist in all
types of components within a system. Fig. 2 shows the properties and

methods contained within the Component class. All FSC subclasses
contain the following properties: (1) the Id uniquely identifies the
component; (2) the tag identifies the component; (3) the classification of
the component type; (4) the system name; (5) the system type; (6) a list
of connectors (see Section 3.1.3); (7) the spaces that contain the
component. Fig. 5 shows a list of all the subclasses of the Component
class, which inherit properties from Component. To see the attributes of
each component, see Appendix B.

• EnergyConversionDevice is a device that converts energy from one
fluid to another; it includes heating coils, heat exchangers, and
radiators.

• Fitting typically describes the connection from one Component to
another or several other Component. It includes tees, bends, crosses,
reductions and caps.

• FlowController describes a component that controls the flow in a
flow system. It includes valves and dampers.

• FlowMovingDevice is a component that moves a fluid, which in-
cludes pumps and ventilators.

• FlowSegment is a segment that connects any non-FlowSegment
component, which includes pipes and ducts.

• FlowTerminal is the terminal unit of any system, which includes
ventilation air terminals.

3.1.3. Component connectivity
A logical description of a flow system must include a module to

describe the connectivity of components since the purpose of flow sys-
tems is to transfer a fluid from one part of the system to another. Fig. 6
shows that the Components contain a logical description of their re-
lations to each other. Pump-1 is supplied with fluid from Pipe-1, and it
supplies fluid to Pipe-2. The description of the connection between one
Component and another Component is done with the Connector class. In
this example, it means that there will be two Connectors for Pump-1.
One connector describes its relationship with Pipe-1

Fig. 3. The overall system topology. An HVAC system can contain a heating,
cooling, and ventilation system.

Fig. 4. Every HVAC system contains a supply and return system. As it is
illustrated in the figure, the components that bind the supply and return system
are both on the supply and return system.

Fig. 5. The tree structure showing all the subclasses to the Component
super-class.

Fig. 6. Example of a topology describing a flow system that consists of a pump
connected by a pipe in each connector.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

6

(SuppliesFluidFrom), and the second Connector describes the relation-
ship with Pipe-2 (SuppliesFluidTo). For consistency and efficiency,
every Component describes the relationship to all connected Compo-
nents, even though the next Component contains a symmetrical
connection to the previous Component. “SuppliesFluidTo” describes the
forward direction of the flow, “SuppliesFluidFrom” describes from
where the flow is coming.

3.1.4. Spaces related to the flow system
In addition to the system representation explained above, we created

a class diagram for the properties of spaces to act as boundary conditions
for the flow system (see Fig. 7). Such boundary conditions allow for
calculating the airflow demand of a ventilation system and sizing the
heating system. The ContainedInSpaces property in the Component class
is used to describe the relation between spaces and components. The
ContainedInSpaces property describes which spaces a component is
contained within.

3.1.5. Serialization to JSON data exchange format
Section 3.1 introduced the FSC object model, making it possible to

define a flow system and its components, including the spaces of a
building. A data exchange mechanism is needed to exchange the FSC
object model between platforms. While there are several options to
implement such a data exchange (e.g. RDF graphs, XML, CSV, dedicated
formats), we chose to focus on a serialization to the JavaScript Object
Notation (JSON) format, as nearly all microservices and web service

developments use this format. Listing 1 shows a JSON sample for an
example model introduced later in this article.

Listing 1: A JSON object example taken from Fig. 6. The listing shows
a three component system. Only the most basic attributes from the base
class of Component have been included for all the components. The “…”
notation indicates that more components are present but not shown.

Listing 2 The “Spaces” attribute is explained in Section 3.1.4. For
simplicity, only the most basic attributes from the base class of Space
have been included. The “…” notation indicates that more attributes are
present but not shown in this example.

3.2. Database implementation

A mongoDB database stores the FSC object model. mongoDB is an
object-oriented database (OOD). The objects created with the FSC object
model are stored directly into the database. Representing the data in an
OOD is so close to the programming objects that the code is simple to
implement. In our implementation, the mongoDB database is instanti-
ated with the use of the serialized FSC object model, as seen in Listing 1.

3.3. Microservice implementations

With the object model and database infrastructure in place, the last
element in the system architecture comprises of microservices that
operate with the data, as shown in Fig. 1. The microservices developed
for this article were all created as Python-Flask API endpoints. In our

Fig. 7. A part of the UML class diagram for modeling Spaces. For simplicity, the full UML diagram is not shown.

Fig. 8. Illustration of microservice setup. A JSON-file is posted with an HVAC system in the FSC format. Once handled in the microservice, a response JSON
is returned.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

7

case, we implemented three microservices of use in the HVAC engi-
neering domain:

1. Rule-based checking of system integrity
2. Airflow calculation of ventilation system
3. Calculation of HVAC statistics

Overall, these microservices rely on the infrastructure shown in
Fig. 8. The figure illustrates how the microservices work using the first
micro-service as an example (rule-based checking). The web application
backend makes a POST request to the Flask microservice. The body of
the request contains a JSON file that represents the entire flow system in
a JSON format, as illustrated in Listing 1. The microservice then checks
if all components are in compliance with the requirements described in
Table A.1.1. Once it has checked the components, it returns a JSON to
the backend, storing it in the mongoDB database.

3.3.1. Microservice for rule-based checking of system integrity
HVAC systems can be complex depending on the size. When handing

over a BIM project of the HVAC system, it can be hard to uphold the level
of detail, as promised in the Information, Communication, and Tech-
nology (ICT) contract of any building design phase. Therefore, it is
highly beneficial to have a way to check that the system's integrity holds
up. This microservice aims to provide a rule-based checking algorithm
with a rule-set to check the FSC object model. The rule-set is shown in
Table A.1.1. The source code is made available on GitHub.1

The functionality of this microservice was already briefly explained
in Fig. 8, as a combination of HTTP POST requests, JSON file exchange,
microservice computations, and storing of results. The microservice
returns a JSON file to the database that describes whether each
component lives up to the rules. The result of each component is
returned as a Boolean value. The return values are then stored in the
database.

3.3.2. Microservice for airflow calculation of ventilation system
With the creation of the object model in the central database, it is

possible to traverse through the given HVAC system from one point to
another. We created a microservice for airflow calculation of the
ventilation system2 to exemplify that the system can be traversed. The

algorithm within the microservice starts by resetting all flows on the
ventilation system. After resetting the flows, the algorithm takes the
airflow demand available in each space and applies them to the air
terminals contained in that space. The property ContainedInSpaces is
used to find the connection between each AirTerminal and space. Fig. 9
shows an example of the next step to the algorithm. The algorithm takes
the airflow of the terminal and then applies it to the next component's
connector.

3.3.3. Microservice to calculate HVAC statistics
The primary purpose of the HVAC statistics microservice is to make

the VC platform capable of displaying statistics on the HVAC system,
including the number of components in the system. Furthermore, it
summarizes the total meters of duct/pipe in the model. In summary, the
HVAC statistics microservice allows for validation of the FSC object
model or even makes it possible to calculate the material usage. Python-
Flask was used to create the HVAC statistics calculator with an endpoint
that the VC platform can utilize.3 Listing 3 shows an example response
from the microservice.

Listing 3: The listing shows an example of a response JSON from the
microservice presented in Fig. 8. Each component in the system is
counted, and the length of all FlowSegments are summarized into the
given cross-sectional dimension.

4. Example models

This Section introduces two example models for showcasing the VC
platform and the FSC Object Model in particular.

4.1. Example model 1

4.1.1. The schematic / principle model
Fig. 10 shows the first example model created by the authors of this

article. The model contains a heating, cooling, and ventilation system,
all connected. The heating system starts with a heat exchanger that
converts the heat from the primary heating system (not depicted) to the
secondary system, then branches out to a mixing loop for a heating coil
(HeatingCoil) in the ventilation system and the radiators of each room.
Each radiator is adjustable with a balancing valve (BalancingValve). The
motorized valve (MotorizedValve) controls the mixing loop of the
heating system.

Fig. 9. The Figure shows how to traverse the ventilation system with a recursive function. The recursive function has a stop condition: the ComponentType ==

“Fan”. The red arrows show the path from the air terminal to the fan. In the supply system, the ConnectorType “supplesFluidFrom” is used as a keyword to find the
next component that will lead to the supplying fan. When done for the return system, the ConnectorType “suppliesFluidTo” is used as a keyword to find the next
return component that will lead to the returning fan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

1 https://github.com/Virtual-Commissioning/VC-HVAC_rule_

checking-Service
2 https://github.com/Virtual-Commissioning/VC-

Ventilation_dimensioning-service

3 https://github.com/Virtual-Commissioning/VC-HVAC_

statistics-Service

M. Seidenschnur et al.

https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service
https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service
https://github.com/Virtual-Commissioning/VC-Ventilation_dimensioning-service
https://github.com/Virtual-Commissioning/VC-Ventilation_dimensioning-service
https://github.com/Virtual-Commissioning/VC-HVAC_statistics-Service
https://github.com/Virtual-Commissioning/VC-HVAC_statistics-Service

Automation in Construction 142 (2022) 104500

8

The cooling system is on the secondary side of the heat exchanger
(HeatExchanger). The cooling liquid supplies the mixing loop provided
by a pump. A mixing loop with another pump may seem excessive in this
case, but was included as an example. The shunt is controlled with a
motorized valve (MotorizedValve) and a pump (Pump).

The ventilation system contains a ventilation fan that takes the air
from the air intake through a heat exchanger (HeatExchanger) and then
a heating coil (HeatingCoil) and cooling coil (CoolingCoil) respectively.
The air is supplied to space 1, 2, 3, and 4 with the use of air terminals
(AirTerminal) controlled by a regulation damper. After supplying the air
to the room, the air is extracted through the air terminal (AirTerminal).
The air is then exhausted with the ventilation fan (Fan) after it has gone
through the heat exchanger, exchanging any excess heat to the supply
air.4

The example contains spaces, to exemplify the connection between
the systems and spaces as seen in Section 3.3.2. All of the spaces are
heated by ventilation and radiators, and are cooled by ventilation.

4.1.2. Instantiating the object model
This subsection visualizes the instantiated FSC object model for the

Revit model shown in Fig. 11. The serialized JSON which represents the
FSC object model is provided for the reader.5 Fig. 10 shows a call-out
with a red-dotted line. Fig. 12 visualizes part of the instantiation of
the object model within the previously mentioned call-out of a system
and then serializes it into JSON. Fig. 12 also shows how each component
is instantiated with a relationship to the attached connector. For

instance, the Tee (Tag: 1742043) is instantiated with Connector C2 and
C3. This means that Connector C2 and C3 are instantiated within the
ConnectedWith attribute of the Tee component. Connector C2, dis-
played in a blue box of Fig. 12, connects component 1742043 with
component 1742044. Furthermore, the Connector class contains the
physical properties of the connection port that interfaces with the
adjacent component. Such physical properties include the dimension,
shape, coordinates, and direction vector of the connector. The direction
vector of the port will always orient away from the component. Finally,
the ConnectorType displays whether another component supplies the
connector or if it supplies another component. For instance, C2 suppli-
esFluidTo component 1742044, and C4 suppliesFluidFrom component
1742043.

Fig. 10. Example model 1 mechanical schematic. The Figure contains three subsystems: heating, ventilation, and cooling. Furthermore, it includes four spaces that
have an airflow. The radiators and the heating coil of the ventilation system provides heating to the room. Similarly, the cooling coil provides cooling by air to
the room.

Fig. 11. The example model is shown in Fig. 10, modeled in Revit. The model
contains the exact components and rooms shown in Fig. 10, except from the
heat exchangers from the primary to the secondary system. The 3D model was
modeled in Revit.

4 https://github.com/Virtual-Commissioning/VC-HVAC_rule_

checking-Service/blob/main/app/ressources/example_model_

1.json
5
https://github.com/Virtual-Commissioning/VC-HVAC_rule_

checking-Service/blob/main/app/ressources/example_model_

1.json

M. Seidenschnur et al.

https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service/blob/main/app/ressources/example_model_1.json
https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service/blob/main/app/ressources/example_model_1.json
https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service/blob/main/app/ressources/example_model_1.json
https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service/blob/main/app/ressources/example_model_1.json
https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service/blob/main/app/ressources/example_model_1.json
https://github.com/Virtual-Commissioning/VC-HVAC_rule_checking-Service/blob/main/app/ressources/example_model_1.json

Automation in Construction 142 (2022) 104500

9

Fig. 12. The figure shows a schematic a small flow system. The red callout from Fig. 10 makes up the example seen in this figure. For simplicity, only the connectors
(in the blue boxes) C2 and C4 are shown. Orange boxes make out a component, and blue boxes show the connectors related to a given component. The figure does not
contain all properties for all components. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Example model 2. Revit example model obtained from TU Eindhoven. The model shows a ventilation system with subsystems such as supply, extract,
exhaust, and intake air.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

10

4.2. Example model 2

4.2.1. The schematic/principle model
Fig. 13 illustrates the second example model. The Eindhoven Uni-

versity of Technology provided a real-case example model. The model
contains a complex ventilation system with extract, supply, exhaust, and
intake systems. Furthermore, it has heating coils attached to the supply-
side of the ventilation system. The heating system is simplified and
contains only the heating coil and the connected pipes. In general, this
example aims to show the performance of the VC platform on an
“imperfect” model.

The air handling unit (AHU) provides air to the ventilation system.
The AHU was modeled as a box with four connectors in this example.
This differs from the example shown in Section 4.1 by not specifying the
components inside the AHU. A typical AHU consists of fans for supplying
and extracting air, heating and cooling coils, silencers, and filters, i.e. it
illustrates a “real world problem” in which not all modeling standards
are the same - some designers would model all the components within
the AHU while some designers (depending on company standards, and
the design phase) would model the AHU as a box. The supply and extract
system was modeled with variable air volume (VAV) dampers. This
means that the ventilation system can vary the airflow in specific rooms.
This example model does not contain any spaces, as these are contained
in the architectural BIM model.

4.2.2. Instantiating the object model
We used the FSC exporter to generate the FSC object model, based on

the Revit model, seen in Fig. 13. Next, the FSC object model was seri-
alized into JSON and imported to the VC platform.

5. Results

This Section first displays the robustness of the format by visually
explicating an example of the format. Following, it shows the platform's
scalability with the use cases of a rule-based checker of the FSC object
model, a BIM to airflow calculator, and an HVAC statistics tool.

5.1. Example model 1

5.1.1. Rule checking
The rule-based checking algorithm was used to see whether example

model 1 (Section 4.1) lives up to the rule-set presented in the rule-based
checking algorithm (Section 3.3.1). Table 1 shows that 219 out of 225
components lived up to the rules presented in Table A.1.1. The six
components that did not live up to the rule-based check were the “open
ended” components placed at the beginning and end of each system,
including two from the ventilation system, two from the heating system,
and two from the cooling system, which was expected.

5.1.2. HVAC statistics
Table 2 shows the result of running the HVAC statistics microservice

from Section 3.3.3 on example model 1. The only component type
counted differently by the microservice is the heat exchanger. Since the
heat exchanger should always be connected with two systems - in this
case the ventilation and the cooling system, and the ventilation and
heating system, this is accepted. Even though every heat exchanger is
represented twice in the format, it is also annotated with the same tag.
Therefore, it is still possible to distinguish whether it appears twice.

Table 3 shows that the length of the components was counted to a
precision better than 0.01%. The precision is arguably caused by
rounding off values in the microservice or Revit, which is normal and
acceptable when dealing with geometry in different systems. Since the
discrepancy is so small, it is considered insignificant.

5.1.3. Airflow calculation
Fig. 14 shows the airflow calculation microservice from Section 3.3.2

applied to example model 1, to visualize the functionality and result of
the tool. If Space-1 has an airflow demand of 35 l/s, the airflow demand
is applied to the air terminals that are contained in Space-1. Then it is
added to the existing airflow on the ventilation duct up to the ventilation
fan. The script was tested by applying it to the example model described
in Fig. 4.1.1. By using the microservice to analyze the ventilation system,
it was found that the total airflow needed to run the system was 747 l/s

Table 1
The table shows the result of running the rule-based checking algorithm on
example model 1. The table shows that the FSC object model contains 225
components.

Components checked True False

225 219 6

Table 2
This table illustrates the total amount of components reported in Revit and after
the transfer to the VC platform.

Components Amount Revit Amount VC

AirTerminal 8 8
MotorizedDamper 8 8
Bend 30 30
Reduction 40 40
Tee 14 14
BalancingValve 8 8
MotorizedValve 2 2
HeatExchanger 2 4
Fan 2 2
Pump 4 4
ShuntValve 2 2
PressureSensor 2 2
TemperatureSensor 2 2
Radiator 4 4
FlowSegment 96 96
Total components 223 225

Table 3
The table illustrates the length of the FlowSegments transferred from Revit to the
VC platform, before and after the transfer. Each duct or pipe type is reported
with its deviation from the Revit model to the VC platform. All measurements
are in millimeters.

Duct Size Length Revit Length VC Dev %

Round ducts
Ø80 14,490 14,490 0
Ø125 15,430 15,430 0
Ø200 20,260 20,260 0

Pipes
Ø15 24,259 24,280 <0.01
Ø18 7572 7570 <0.01
Ø22 39,613 39,620 <0.01

Fig. 14. The ventilation system is traversed and airflows are summed along the
supply and return paths.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

11

for the supply and return ventilation fan. The airflow calculation is one
of the first steps in choosing a fan that can meet the airflow demand of
the system.

5.2. Example model 2

This Section shows a use case test of the HVAC exporter on the
example model introduced in Section 4.2. A BIM model has been ob-
tained from the industry to test the performance of the Revit to the VC
platform with the use of the FSC exporter. The transfer will be quantified
with the HVAC statistics tool (Section 3.3.3) and the HVAC rule checker
tool (3.3.1). The purpose is to test the created FSC object model exporter
tool with a BIM model that has not been built by the authors of this
report. Once the BIM model has been transferred from Revit into the VC
platform, the microservices for rule-based checking (Section 3.3.1) and
HVAC statistics (Section 3.3.3) will be used to quantify how well the FSC
object model based on the BIM model has been transferred into the VC
platform.

5.2.1. Rule checking
Table 4 shows the result of the rule-based checking algorithm run on

the transfer of the use case from Fig. 13. The table shows that 158
components out of 493 lived up to the rule-check proposed in
Table A.1.1. That means that the majority of elements did not pass this
check. This will be documented further below in this article, yet the
main reason is that the system in the particular building is not as com-
plete and correct as expected by the rules developed in this microservice.

5.2.2. HVAC statistics
Table 5 shows the number of components reported in Revit and the

number of components reported after the transfer from Revit to the VC
platform with the use of the FSC exporter. The total amount of compo-
nents for Revit and the VC platform was 487 and 493, respectively. This
is explained in the way that FSC divides the flow system. The full system
contains both a ventilation and heating system in the model (The
heating system only consists of a few pipes connected to the heat ex-
changers). In the example model, the ventilation and heating systems
are connected by heat exchangers. Fig. 3 shows an example of this, near
the heat exchangers. This behavior intends to provide an internal
connection for each of the systems.

Table 6 shows the length of the FlowSegments reported in Revit and
the length of the FlowSegments reported after the transfer from Revit to
the VC platform with the use of the FSC exporter. In Table 6 it is reported
that not every duct or pipe has the same length after it has been

transferred to the VC platform. This behavior is caused by an incorrect
Revit model, that does not contain “correct connectivity”. This problem
is caused by the microservice not being able to handle specific cases, like
it is seen in Fig. 15 where several AirTerminals are placed on the duct.
This behavior has not been accounted for in the microservice. It also
explains why the Ø630 ducts are not counted a single time in the HVAC
statistics microservice. Listing 4 shows the JSON structure in the FSC
format behind the object shown in Fig. 15. The Figure shows that five air
terminals have been placed directly on the ventilation duct, which is
usually not expected. This means that the FlowSegment has a total of 7
connectors.

Listing 4 The listing shows the component mapped from Fig. 15. Not
all the connectors are shown, to improve readability of the JSON.

Table 5
This table illustrates the total amount of components reported in Revit and after
the transfer of the FSC object model to the VC platform.

Components Amount Revit Amount VC

AirTerminal 33 33
Cap 14 14
Bend 69 69
Reduction 125 125
Tee 13 13
BalancingDamper 29 29
HeatExchanger 6 12
FlowSegment 198 198
Total components 487 493

Table 4
The table shows the result of running the rule-based checking algorithm on
Fig. 13. The table shows that the FSC object model for example model 2 contains
493 components.

Components checked True False

493 158 335

Table 6
This table illustrates the length of the FlowSegments transferred from Revit to
the VC platform, before and after. Each duct or pipe type are reported with their
deviation from the Revit model to the VC platform. All measurements are in
millimeters.

Duct Size Length Revit Length VC Dev %

Round ducts
Ø160 2862 340 88
Ø250 7250 540 93
Ø315 24,644 21,680 12
Ø355 3624 3624 0
Ø400 31,443 21,120 33
Ø450 12,653 6430 49
Ø500 33,286 24,980 25
Ø600 8152 8152 0
Ø630 21,916 0 100

Square ducts
1200 × 600 5600 0 100
200 × 200 3402 3402 0
2100 × 900 4535 3390 25
2178 × 1538 500 500 0
350 × 350 83 0 100
400 × 400 33 0 100
600 × 600 5214 340 93
700 × 350 1868 0 100
700 × 400 2118 0 100
700 × 600 5238 620 88
800 × 400 18,142 0 100
850 × 600 3714 2840 24

Pipes
Ø32 2016 2016 0

Fig. 15. The ventilation duct in this figure has seven connectors. It has the
beginning and the end of the flow segment, but it also has five connectors from
the 5 air terminals that have been placed directly on the ventilation duct.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

12

6. Discussion and future work

The VC platform is a common data environment used for HVAC
projects during the building's design, construction, and operation pha-
ses. This paper describes the process required to develop a CDE and
proposes a roadmap for further research and development. The re-
quirements for the VC CDE were that it should expose the proprietary
format of a Revit HVAC system in a commonly available platform. Using
Python-Flask microservices, we illustrated how the VC platform allows
for continuous integration and continuous deployment of functionalities
on the platform. The VC platform can scale in any direction with the
integration of microservices. Furthermore, it allows for the extension of
the FSC object model since the system architecture is based on a
microservice architecture. For instance, if the exporter from Revit to the
FSC object isn't working, that can be tested and patched independently
of touching the code for any other microservices.

6.1. Achievements

We created a CDE with a microservice architecture and showed that
the CDE is easily scalable by implementing simple microservices such as
the airflow calculator (see Section 3.3.2). A rule-based checker was also
implemented to check if the data transfer was successful from Revit to
the FSC object model in the VC platform. Furthermore, a microservice
was implemented to provide statistics of the data transfer carried out. It
offers the user insights into the flow system, such as the length of
different ventilation ducts or pipes. The FSC diagram and the FSC
exporter allow for the serialization of the FSC object model. A mongoDB
OOD stores the FSC object model. The FSC object model creates a con-
nected network of ducts and pipes, making it possible to represent the
nature of a flow system. The FSC exporter allows the user to create an
FSC object model serialized in JSON to work within the VC platform - or
even in external platforms. We used the FSC exporter on an externally
developed Revit model and were able to transfer the full FSC object
model to the web application to run microservices on it. We proved that
the FSC object model is able to link the demand of a space with the
airflow system. This can be used to create dimensioning tools for
ventilation systems or heating- and cooling systems. In order to enable
future use of the VC platform, the authors of this article will continu-
ously maintain and update the platform with new features.

6.2. Limitations of the study

We created BIM model with LOD350 to evaluate the VC platform and
the FSC object model, called example model 1. Therefore, the model
used to evaluate the VC and FSC was “created to succeed”. For instance,
all components must have precisely the right amount of connectors.
There is a risk of designing the VC platform for “the perfect scenario”
where all data is available in the BIM model. It is often a challenge in the
AEC industry that BIM models do not contain all the data necessary for a
complete model, like component connectivity, component naming,
system naming, etc. To handle problems like this, the AEC industry in
Denmark has introduced ICT agreements on building projects. It is a
contract that obligates the company to deliver building documentation
of a certain standard. However, while LOD descriptions are relatively
detailed, consulting engineering companies in the HVAC branch still
struggle to provide models that live up to the LOD350 standard. We built
the VC platform to handle the delivery issues in the HVAC branch by
integrating a microservice architecture. For instance, if the HVAC sys-
tem in the database has an error, it can be fixed later in the VC platform
using the microservices. One of the microservices is the rule-based
checking algorithm shown in Section 3.3.1. The rule-based checker
will let the user know that some information is missing. For instance,
such missing information could be that some components are connected
incorrectly. Then, it is possible to specify the actual connectivity directly
in the VC platform.

The VC platform was tested on a model developed externally to
emulate the situation of an imperfect BIM model, as seen in Section 4.2.
In Section 5.2 the HVAC Statistics microservice in Section 3.3.3 and the
rule-based checking algorithm in Section 3.3.1 was run on example
model 2. The results showed that all components were transferred suc-
cessfully to the VC platform, see Table 5. However, the performance test
with the rule-based checking algorithm showed that 158 of 493 com-
ponents lived up to the rules established in Table A.1.1. The results of
this performance test were caused by, for instance, the modeling prac-
tice shown in Fig. 15. The figure highlights that the FSC exporter does
not always map the components correctly. This behavior is expected for
any Revit model that has not been modeled with the intent to transfer it
to the database. The user can use the rule-based checking microservice
to find which components do not live up to this algorithm. The 3D-
viewer of the VC platform visualizes the results and alerts the user
which components do not follow the rule-set. Thereby, the user can
solve the issues manually.

The test case presented in Section 4 showed the application of the
FSC object model together with the VC platform. As part of the plat-
form's deployment, more extensive testing should be carried out on
Revit models to ensure the robustness of the FSC exporter and platform.

There are issues that the VC platform cannot solve. For example, the
FSC exporter is highly dependent on the template used within the Revit
model. If a flow segment like a pipe is modeled as the “Mechanical
Equipment” category instead of a “Pipe” category in Revit, then the pipe
will be mapped into the wrong category or not mapped at all. Such a
fault will cause an exception within the FSC exporter, meaning that an
error will cause the exporter to abort the operation and, therefore, fail to
export the FSC object model from Revit to the database.

The FSC exporter was designed to link the Revit model and the
database. The FSC exporter demonstrates that it is possible to extract
information from a BIM tool like Revit to work within a database. For the
purpose of this article, Revit families from the Rambøll library was
utilized and modified to be able to represent all the information needed
to export it into the FSC object model. The work presented in this article
does not exclude exporters from other file formats to be made. Such
integration could include the open file format IFC. The VC platform is
not dependent on the file coming from Revit or any other proprietary
format, as long as it follows the FSC diagram.

It will require detailed HVAC models for advanced hydraulic simu-
lations in Modelica. This presents a problem for the AEC industry with
the current status of BIM modeling. The AEC industry needs to model
buildings more realistically and contain information in the BIM model in
an early design phase to provide a correct design based on actual per-
formance rather than rule-of-thumb. However, we believe that with the
younger generation coming into the AEC industry, the market is ripe for
the digital transformation it will take. Performing these simulations in
the early design phase will be more time spent on design than fixing
issues during the physical commissioning or operation phase. In the
company supporting this article, the method will be employed to do just
that - to save time in the long run.

6.3. Roadmap for future development

The VC platform and the FSC object model have been carried out as
part of a development to create a CDE for full building simulation using
BIM models. This paper introduces the FSC object model, and exem-
plifies how to use microservices for calculation or even simulations. The
VC platform is envisioned as a three-stage development project. The
stages are illustrated in Fig. 16. Stage 1 is the work presented in this
paper and is the initial development of the VC platform and the FSC
object model with the simple calculation microservices. The micro-
services seek to prove that adding microservices to the VC platform is
possible. The authors of this article recognizes that the microservices are
very simple, and constitute services that already exist within BIM pro-
grams like Revit. The microservices were added to exemplify that tools

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

13

developed within Revit can easily be replicated to a cloud-based CDE
based on a non-proprietary format, as opposed to the proprietary format
of Revit. The early development of the VC platform and the FSC object
model provides a stepping stone for developing a complete CDE for
continuous integration of simulation tools through microservices. Stage
2 includes the development of a space class object model to represent a
BIM energy model. A simple space class object model was presented in
Section 3.1.4. Fig. 16 shows that the “HVAC BIM database” and the
“Energy model database” share a relational bond. Thereby, it will be
possible to link these two data formats together. Finally, stage 2 in-
troduces the possibility of running whole building simulations through
Modelica and EnergyPlus with the use of Spawn Of EnergyPlus in
Modelica [41]. Running simulations on indoor climate and HVAC sys-
tems simultaneously might help perform more accurate predictive en-
ergy models. The work on stage 2 has already begun, and the authors of
this article have proved that the link from CDE to Modelica-based
Dymola, is possible [21]. Fjerbæk et al. [21] simulated a small heating
system in Modelica and was capable of showing the return temperature
for each heating loop. The toolchain created by Fjerbæk et al. [21] made
it possible to easily initiate Modelica simulations of a heating system - a
process that under normal circumstances would be very time
consuming, due to the manual labour of creating a Modelica simulation
model. Stage 3 will include sensor data and connect it to the BIM model
with a relational bond. It will be possible to take data from the operating
building and do continuous fault detection on it with sensor data. That

way, the digital twin in the VC platform can inform the Building Man-
agement System (BMS) of the actual building to make certain adjust-
ments. An example of an adjustment could be to run with the objective
of minimizing energy costs (as opposed to minimal energy usage).

7. Conclusions

The three aims of this paper were to:

1. Centralize BIM project data so all stakeholders have access to a single
source of truth (SSOT) in a CDE based in a web application

2. Create a data structure that can represent a flow system
3. Allow for easy scalability of the web application utilizing the prin-

ciple of microservice architecture.

This article introduces a CDE called the VC platform. The article
exemplifies a paradigm shift from a proprietary file-based BIM model to
a web-based database BIM model. The VC platform allows for the
development of applications in a fully modularized way through
microservices. Microservices make it possible to deploy custom appli-
cations that run specific tasks independently. We developed the VC
platform to enable advanced simulations of HVAC systems that relate to
the actual spaces of the building. Future work has been planned to
integrate Modelica and Spawn of EnergyPlus as microservices on the VC
platform. An externally provided Revit model was used to test the

Fig. 16. The Figure shows a roadmap for the future development of the VC platform. The areas marked with red represent the work developed for and presented by
this article. The area marked in green represents the next step in developing the VC platform. Finally, the blue area represents the final step, a module that includes
sensor data in the VC platform. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

14

performance of the VC platform. The performance test proved that the
FSC exporter from Revit to the VC platform worked as intended – it
transferred all components to the database in the VC platform. After
transferring Revit with the FSC exporter to the VC platform, the per-
formance test revealed that not all components were compliant with the
rule-based checking algorithm. However, this is not problematic, as the
rule-based checking algorithm intends to highlight errors like this so the
user can solve them in the VC Platform frontend.

Declaration of Competing Interest

The authors recognize that there is a potential for conflicts of interest
via industry affiliations. Mikki Seidenschnur is working on a doctoral
dissertation in Technical University of Denmark, while also working in
Ramboll. Ali Kücükavci is working on a doctoral dissertation in

Technical University of Denmark, while also working in COWI. Esben
Visby Fjerbæk is working as a research assistant at Technical University
of Denmark Kevin Michael Smith is working as a researcher at Technical
University of Denmark Pieter Pauwels is working as a professor at
Technical University of Eindhoven Christian Anker Hviid is working as a
associate professor at Technical University of Denmark.

Acknowledgments

Funding: This work was funded by the Ramboll Foundation and the
Innovation Fund Denmark (grant 9065-00266A). The use case test
model in Section 4.2 was provided by TU Eindhoven. We would like to
acknowledge the work of the reviewers of this manuscript for improving
the quality of the manuscript with thorough and constructive comments
on content and writing.

Appendix A

Table A.1
This table illustrates the rules that exist with all the subtypes of components in the class object model.

Subclass of Component Rules

FlowSegment Contains two connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

HeatExchanger Contains 4 connectors
Contains two connectors: “suppliesFluidFrom” and two connectors: “suppliesFluidTo”
Is contained within two different subsystems

Radiator Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Bend Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”
Has an angle greater than 0

Cross Contains 4 connectors
Contains at least one connector of “suppliesFluidFrom” and at least one connector of “suppliesFluidTo”

Reduction Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Tee Contains 3 connectors
Contains at least one connector: “suppliesFluidFrom” and at least one connector: “suppliesFluidTo”

BalancingDamper Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

MotorizedDamper Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

FireDamper Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

BalancingValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

CheckValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

DifferentialPressureValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

MotorizedValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

SafetyValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

ShuntValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Fan Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Pump Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

AirTerminal Contains 1 connector
Contains connector of “suppliesFluidFrom” if supply system
Contains connector of “suppliesFluidTo” if return system

Appendix B. UML class diagram FSC

M. Seidenschnur et al.

AutomationinConstruction142(2022)104500

15

Fig. B.1. Illustration of the full FSC UML diagram. It includes all elements that inherit from component. It extends the diagram displayed in Fig. 2. The methods displayed in the UML are used to create the FSC
object model.

M
. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

16

References

[1] K.M. Kensek, Handbook of green building design and construction, Build. Informa.
Model. (2014) 1–285, https://doi.org/10.4324/9781315797076.

[2] A. Andriamamonjy, D. Saelens, R. Klein, An automated IFC-based workflow for
building energy performance simulation with Modelica, Automation in
Construction 91 (September 2017), 2018, pp. 166–181, https://doi.org/10.1016/j.
autcon.2018.03.019.

[3] B. Hardin, D. McCool, BIM and Construction Management: Proven Tools, Methods,
and Workflows, 2nd edition, Sybex/Wiley, 2015.

[4] F.H. Abanda, L. Byers, An investigation of the impact of building orientation on
energy consumption in a domestic building using emerging BIM (Building
Information Modelling), Energy 97 (2016) 517–527, https://doi.org/10.1016/j.
energy.2015.12.135.

[5] T.O. Olawumi, D.W. Chan, Identifying and prioritizing the benefits of integrating
BIM and sustainability practices in construction projects: a Delphi survey of
international experts, Sustain. Cities Soc. 40 (February) (2018) 16–27, https://doi.
org/10.1016/j.scs.2018.03.033.

[6] J.P. Carvalho, L. Bragança, R. Mateus, Optimising building sustainability
assessment using BIM, Autom. Constr. 102 (2018) (2019) 170–182, https://doi.
org/10.1016/j.autcon.2019.02.021. URL 10.1016/j.autcon.2019.02.021.

[7] R.E. Edwards, E. Lou, A. Bataw, S.N. Kamaruzzaman, C. Johnson, Sustainability-led
design: feasibility of incorporating whole-life cycle energy assessment into BIM for
refurbishment projects, J. Build. Eng. 24 (February) (2019), 100697, https://doi.
org/10.1016/j.jobe.2019.01.027. URL 10.1016/j.jobe.2019.01.027.

[8] K. Safari, H. AzariJafari, Challenges and opportunities for integrating BIM and LCA:
methodological choices and framework development, Sustain. Cities Soc. 67
(2020) (2021), 102728, https://doi.org/10.1016/j.scs.2021.102728.

[9] T.P. Obrecht, M. Röck, E. Hoxha, A. Passer, BIM and LCA integration: a systematic
literature review, Sustainability (Switzerland) 12 (14) (2020) 1–19, https://doi.
org/10.3390/su12145534.

[10] B. Succar, W. Sher, A. Williams, Measuring BIM performance: five metrics,
Architect. Eng. Des. Manag. 8 (2) (2012) 120–142, https://doi.org/10.1080/
17452007.2012.659506.

[11] J. Beetz, N. Gu, BIMserver.org - an open source IFC model server, in: Proceedings of
the CIB W78 2010, 2009, pp. 1–9. URL, https://www.academia.edu/1905765/
BIMSERVER_ORG_AN_OPEN_SOURCE_IFC_MODEL_SERVER.

[12] J.C. Cheng, M. Das, A bim-based web service framework for green building energy
simulation and code checking, J. Inform. Technol. Construct. 19 (June) (2014)
150–168. URL, http://www.itcon.org/2014/8.

[13] M. Wetter, C.V. Treeck, L. Helsen, A. Maccarini, D. Saelens, D. Robinson,
G. Schweiger, IBPSA project 1: BIM / GIS and Modelica framework for building and
community energy system design and operation – ongoing developments, lessons
learned and challenges, in: IOP Conf. Ser.: Earth Environ. Sci., 2019, https://doi.
org/10.1088/1755-1315/323/1/012114.

[14] G.B. Porsani, K.D.V. de Lersundi, A.S.O. Gutiérrez, C.F. Bandera, Interoperability
between building information modelling (Bim) and building energy model (bem),
Appl. Sci. 11 (5) (2021) 1–20, https://doi.org/10.3390/app11052167.

[15] K.U. Ahn, Y.J. Kim, C.S. Park, I. Kim, K. Lee, BIM interface for full vs. semi-
automated building energy simulation, Energy Build. 68 (PART B) (2014)
671–678, https://doi.org/10.1016/j.enbuild.2013.08.063. URL 10.1016/j.
enbuild.2013.08.063.

[16] C. Park, HVACSIM+ User’s Guide Update, 2008, https://doi.org/10.6028/NIST.
IR.7514. URL, http://www.fire.nist.gov/bfrlpubs/build08/PDF/b08030.pdf.

[17] Equa, IDA Indoor Climate and Energy, URL, https://www.equa.se/en/ida-ice.
[18] L. B. N. Laboratory, Modelica Buildings Library, URL, https://simulationresearch.

lbl.gov/modelica/, 2022.
[19] M. Wetter, Modelica-based modelling and simulation to support research and

development in building energy and control systems, J. Build. Perform. Simul. 2
(2) (2009) 143–161, https://doi.org/10.1080/19401490902818259.

[20] W. Zuo, M. Wetter, W. Tian, D. Li, M. Jin, Q. Chen, Coupling indoor airflow, HVAC,
control and building envelope heat transfer in the Modelica Buildings library,
J. Build. Perform. Simul. 9 (4) (2016) 366–381, https://doi.org/10.1080/
19401493.2015.1062557.

[21] E.V. Fjerbæk, M. Seidenschnur, A. Kücükavci, K.M. Smith, C.A. Hviid, From BIM
databases to Modelica - automated simulations of heating systems, in: REHVA 14th
HVAC World Congress, 2022, pp. 1–7, https://doi.org/10.34641/clima.2022.365.

[22] J.B. Kim, W. Jeong, M.J. Clayton, J.S. Haberl, W. Yan, Developing a physical BIM
library for building thermal energy simulation, Autom. Constr. 50 (C) (2015)
16–28, https://doi.org/10.1016/j.autcon.2014.10.011.

[23] W.S. Jeong, J.B. Kim, M.J. Clayton, J.S. Haberl, W. Yan, A framework to integrate
object-oriented physical modelling with building information modelling for

building thermal simulation, J. Build. Perform. Simul. 9 (1) (2016) 50–69, https://
doi.org/10.1080/19401493.2014.993709.

[24] D. Jansen, E. Fichter, V. Richter, A. Barz, J. Brunkhorst, M. Dahncke, P. Jahangiri,
C. Warnecke, P. Mehrfeld, M. Dirk, C.V. Treeck, L. Bruno, R. Otto, M. Technik,
C. Kg, BIM2SIM -Development of semi-automated methods for the generation of
simulation models using Building Information Modeling BIM2SIM – Development
of semi-automated methods for the generation of simulation models using Building
Information Modeling (September), 2021, pp. 2–4.

[25] A. Andriamamonjy, R. Klein, D. Saelens, Automated grey box model
implementation using BIM and Modelica, Energy Build. 188-189 (2019) 209–225,
https://doi.org/10.1016/j.enbuild.2019.01.046. URL doi:10.1016/j.
enbuild.2019.01.046.

[26] S. Hauer, A. Bres, R. Parti, M. Monsberger, An approach for the extension of
openBIM MEP models with metadata focusing on different use cases, Build. Simul.
Conf. Proc. 1 (2019) 182–189, https://doi.org/10.26868/25222708.2019.210932.

[27] P. Pauwels, S. Zhang, Y.C. Lee, Semantic web technologies in AEC industry: a
literature overview, Autom. Constr. 73 (2017) 145–165, https://doi.org/10.1016/
j.autcon.2016.10.003. URL 10.1016/j.autcon.2016.10.003.

[28] K. Afsari, C.M. Eastman, D. Castro-Lacouture, JavaScript object notation (JSON)
data serialization for IFC schema in web-based BIM data exchange, Autom. Constr.
77 (2017) 24–51, https://doi.org/10.1016/j.autcon.2017.01.011. URL 10.1016/j.
autcon.2017.01.011.

[29] D.Y. Lee, H.L. Chi, J. Wang, X. Wang, C.S. Park, A linked data system framework
for sharing construction defect information using ontologies and BIM
environments, Autom. Constr. 68 (2016) 102–113, https://doi.org/10.1016/j.
autcon.2016.05.003.

[30] C. Quinn, A.Z. Shabestari, T. Misic, S. Gilani, M. Litoiu, J.J. McArthur, Building
automation system - BIM integration using a linked data structure, Autom. Constr.
118 (May) (2020), 103257, https://doi.org/10.1016/j.autcon.2020.103257.

[31] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi, X. Gao, BIM assisted
building automation system information exchange using BACnet and IFC, Autom.
Constr. 110 (2019) (2020), 103049, https://doi.org/10.1016/j.
autcon.2019.103049. URL 10.1016/j.autcon.2019.103049.

[32] K. Kim, H. Kim, W. Kim, C. Kim, J. Kim, J. Yu, Integration of ifc objects and facility
management work information using Semantic Web, Autom. Constr. 87 (2017)
(2018) 173–187, https://doi.org/10.1016/j.autcon.2017.12.019.

[33] B. Dong, Z. O’Neill, Z. Li, A BIM-enabled information infrastructure for building
energy fault detection and diagnostics, Autom. Constr. 44 (2014) 197–211,
https://doi.org/10.1016/j.autcon.2014.04.007.

[34] A. Gouda Mohamed, M.R. Abdallah, M. Marzouk, BIM and semantic web-based
maintenance information for existing buildings, Autom. Constr. 116 (March)
(2020) 103209, https://doi.org/10.1016/j.autcon.2020.103209.

[35] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,
J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta, M.B. Kjærgaard,
M. Srivastava, K. Whitehouse, Brick: Towards a unified metadata schema for
buildings, in: BuildSys ‘16: Proceedings of the 3rd ACM International Conference
on Systems for Energy-Efficient Built Environments, 2016, pp. 41–50, https://doi.
org/10.1145/2993422.2993577.

[36] C. Preidel, A. Borrmann, C. Oberender, M. Tretheway, Seamless integration of
common data environment access into BIM authoring applications: the BIM
integration framework, eWork and eBusiness in architecture, Eng. Construct.
(2016) 119–128. https://doi-org.proxy.findit.cvt.dk/10.1201/9781315386904.

[37] L.D. Lauretis, From monolithic architecture to microservices architecture, IEEE Int.
Symp. Software Reliability Eng. Workshops (ISSREW) (2019) 93–96, https://doi.
org/10.1109/ISSREW.2019.00050.

[38] J. Thönes, Microservices, IEEE Softw. 32 (1) (2015), https://doi.org/10.1109/
MS.2015.11.

[39] V. Kukkonen, A. Kücükavci, M. Seidenschnur, M.H. Rasmussen, K.M. Smith, C.
A. Hviid, An ontology to support flow system descriptions from design to operation
of buildings, Autom. Construct. 134 (2020) (2022), 104067, https://doi.org/
10.1016/j.autcon.2021.104067.

[40] M. Wetter, W. Zuo, T.S. Nouidui, X. Pang, Modelica Buildings library, J. Build.
Perform. Simul. 7 (4) (2014) 253–270, https://doi.org/10.1080/
19401493.2013.765506.

[41] M. Wetter, T.S. Nouidui, D. Lorenzetti, E.A. Lee, A. Roth, Prototyping the next
generation energyplus simulation engine, in: 14th International Conference of
IBPSA - Building Simulation 2015, BS 2015, Conference Proceedings, no. April
2016, 2015, pp. 403–410. URL, https://www.semanticscholar.org/paper/
PROTOTYPING-THE-NEXT-GENERATION-ENERGYPLUS-ENGINE-Wetter-
Nouidui/8faf811f9752b54dd56ab6e60ebf204ff7c74cfc.

M. Seidenschnur et al.

https://doi.org/10.4324/9781315797076
https://doi.org/10.1016/j.autcon.2018.03.019
https://doi.org/10.1016/j.autcon.2018.03.019
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0015
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0015
https://doi.org/10.1016/j.energy.2015.12.135
https://doi.org/10.1016/j.energy.2015.12.135
https://doi.org/10.1016/j.scs.2018.03.033
https://doi.org/10.1016/j.scs.2018.03.033
https://doi.org/10.1016/j.autcon.2019.02.021. URL 10.1016/j.autcon.2019.02.021
https://doi.org/10.1016/j.autcon.2019.02.021. URL 10.1016/j.autcon.2019.02.021
https://doi.org/10.1016/j.jobe.2019.01.027. URL 10.1016/j.jobe.2019.01.027
https://doi.org/10.1016/j.jobe.2019.01.027. URL 10.1016/j.jobe.2019.01.027
https://doi.org/10.1016/j.scs.2021.102728
https://doi.org/10.3390/su12145534
https://doi.org/10.3390/su12145534
https://doi.org/10.1080/17452007.2012.659506
https://doi.org/10.1080/17452007.2012.659506
https://www.academia.edu/1905765/BIMSERVER_ORG_AN_OPEN_SOURCE_IFC_MODEL_SERVER
https://www.academia.edu/1905765/BIMSERVER_ORG_AN_OPEN_SOURCE_IFC_MODEL_SERVER
http://www.itcon.org/2014/8
https://doi.org/10.1088/1755-1315/323/1/012114
https://doi.org/10.1088/1755-1315/323/1/012114
https://doi.org/10.3390/app11052167
https://doi.org/10.1016/j.enbuild.2013.08.063. URL 10.1016/j.enbuild.2013.08.063
https://doi.org/10.1016/j.enbuild.2013.08.063. URL 10.1016/j.enbuild.2013.08.063
https://doi.org/10.6028/NIST.IR.7514
https://doi.org/10.6028/NIST.IR.7514
http://www.fire.nist.gov/bfrlpubs/build08/PDF/b08030.pdf
https://www.equa.se/en/ida-ice
https://simulationresearch.lbl.gov/modelica/
https://simulationresearch.lbl.gov/modelica/
https://doi.org/10.1080/19401490902818259
https://doi.org/10.1080/19401493.2015.1062557
https://doi.org/10.1080/19401493.2015.1062557
https://doi.org/10.34641/clima.2022.365
https://doi.org/10.1016/j.autcon.2014.10.011
https://doi.org/10.1080/19401493.2014.993709
https://doi.org/10.1080/19401493.2014.993709
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0120
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0120
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0120
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0120
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0120
http://refhub.elsevier.com/S0926-5805(22)00373-9/rf0120
https://doi.org/10.1016/j.enbuild.2019.01.046. URL doi:10.1016/j.enbuild.2019.01.046
https://doi.org/10.1016/j.enbuild.2019.01.046. URL doi:10.1016/j.enbuild.2019.01.046
https://doi.org/10.26868/25222708.2019.210932
https://doi.org/10.1016/j.autcon.2016.10.003. URL 10.1016/j.autcon.2016.10.003
https://doi.org/10.1016/j.autcon.2016.10.003. URL 10.1016/j.autcon.2016.10.003
https://doi.org/10.1016/j.autcon.2017.01.011. URL 10.1016/j.autcon.2017.01.011
https://doi.org/10.1016/j.autcon.2017.01.011. URL 10.1016/j.autcon.2017.01.011
https://doi.org/10.1016/j.autcon.2016.05.003
https://doi.org/10.1016/j.autcon.2016.05.003
https://doi.org/10.1016/j.autcon.2020.103257
https://doi.org/10.1016/j.autcon.2019.103049. URL 10.1016/j.autcon.2019.103049
https://doi.org/10.1016/j.autcon.2019.103049. URL 10.1016/j.autcon.2019.103049
https://doi.org/10.1016/j.autcon.2017.12.019
https://doi.org/10.1016/j.autcon.2014.04.007
https://doi.org/10.1016/j.autcon.2020.103209
https://doi.org/10.1145/2993422.2993577
https://doi.org/10.1145/2993422.2993577
https://doi.org/10.1201/9781315386904
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1016/j.autcon.2021.104067
https://doi.org/10.1016/j.autcon.2021.104067
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506
https://www.semanticscholar.org/paper/PROTOTYPING-THE-NEXT-GENERATION-ENERGYPLUS-ENGINE-Wetter-Nouidui/8faf811f9752b54dd56ab6e60ebf204ff7c74cfc
https://www.semanticscholar.org/paper/PROTOTYPING-THE-NEXT-GENERATION-ENERGYPLUS-ENGINE-Wetter-Nouidui/8faf811f9752b54dd56ab6e60ebf204ff7c74cfc
https://www.semanticscholar.org/paper/PROTOTYPING-THE-NEXT-GENERATION-ENERGYPLUS-ENGINE-Wetter-Nouidui/8faf811f9752b54dd56ab6e60ebf204ff7c74cfc

	A common data environment for HVAC design and engineering
	1 Introduction
	1.1 BEM simulation through a micro-service architecture
	1.2 Aim
	1.3 Outline

	2 Background
	2.1 Simulation and computation
	2.2 Object models for representation of HVAC models
	2.3 Common data environments
	2.4 Microservice architecture
	2.5 Summary

	3 System architecture
	3.1 The FSC object model
	3.1.1 Topology of a flow system
	3.1.2 Component properties
	3.1.3 Component connectivity
	3.1.4 Spaces related to the flow system
	3.1.5 Serialization to JSON data exchange format

	3.2 Database implementation
	3.3 Microservice implementations
	3.3.1 Microservice for rule-based checking of system integrity
	3.3.2 Microservice for airflow calculation of ventilation system
	3.3.3 Microservice to calculate HVAC statistics

	4 Example models
	4.1 Example model 1
	4.1.1 The schematic / principle model
	4.1.2 Instantiating the object model

	4.2 Example model 2
	4.2.1 The schematic/principle model
	4.2.2 Instantiating the object model

	5 Results
	5.1 Example model 1
	5.1.1 Rule checking
	5.1.2 HVAC statistics
	5.1.3 Airflow calculation

	5.2 Example model 2
	5.2.1 Rule checking
	5.2.2 HVAC statistics

	6 Discussion and future work
	6.1 Achievements
	6.2 Limitations of the study
	6.3 Roadmap for future development

	7 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A
	Appendix B UML class diagram FSC
	References

