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ABSTRACT: This is a critical review of artificial intelligence/machine learning (AI/ML) methods
applied to battery research. It aims at providing a comprehensive, authoritative, and critical, yet
easily understandable, review of general interest to the battery community. It addresses the
concepts, approaches, tools, outcomes, and challenges of using AI/ML as an accelerator for the
design and optimization of the next generation of batteriesa current hot topic. It intends to
create both accessibility of these tools to the chemistry and electrochemical energy sciences
communities and completeness in terms of the different battery R&D aspects covered.
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1. INTRODUCTION

The latest reports on climate change from the United Nations
show that humanity has a few years’ budget of CO2 emissions at
the present rate to keep the temperature rise below 1.5 °C by
2100.1 This remains true despite the temporary slight decrease
in global CO2 emissions due to the COVID-19 pandemic.2,3 In
order to mitigate this and limit the damages, urgent and massive
deployment of emissionless energy sources, such as nuclear and
renewable, is required. Renewable energy sources are fluctuat-
ing, and hence, their deployment has to be accompanied by
efficient energy storage, where rechargeable batteries are at the
forefront for short- to medium-term storage, due to operation
efficiency and flexibility. Among them, lithium-ion batteries
(LIBs) constitute one of the most influential technologies of the
modern society, which has enabled the wide emergence of
portable electronics devices and which is triggering the growth
of the electric vehicle (EV) market.4,5 Even if LIBs have been
very significantly improved, by more than 200% in energy
density since the first LIB cells were successfully commercialized
by Sony in 1991,6 their massive deployment for EV or stationary
applications requires them to be even further optimized in terms
of performance, durability, safety, cost, as well as reducing their
CO2 footprint and increasing their reusability and recyclability.
This is true for both current LIBs and any next generation
batteries currently being developed or produced.
Several international initiatives have been created to develop

novel tools and protocols for reducing the number of
experiments in battery research by a factor of 3,7 and, more
generally, for boosting the pace of material discovery for energy
applications by a factor of ∼10.8 Artificial intelligence (AI), and
particularly its fruitful branch known as machine learning (ML),
stands out as a promising approach that could lead to a paradigm
shift in the way we do battery R&D,9 hopefully enabling us to
overcome the major challenges dealing with a vast number of
variables and large quantity of data:

• Battery R&D is a complex multivariable problem, where
very different properties, such as performance, life-cycle
analyses, safety, cost, environmental effects, and resource
issues, are contained. Furthermore, the overall battery

circular economy should eventually be includedfrom
the mining, production, and assembly stage via the long
usage phase to the final reuse and recycling processes. The
present research workflow, however, relies heavily on a
forward trial-and-error approach and is largely materials
centered: synthesizing materials, manufacturing electro-
lytes and electrodes, assembling cells, and finally assessing
performance. Even considering only these aspects, there
are >10100 possibilities to synthesize active materials and
prepare electrolytes,10 almost an infinite number of
possibilities for choosing the electrode manufacturing
parameters and dozens of possible cell formats, which is
far greater than what a human brain can handle. This
makes difficult the emergence of inverse design tools
enabling the prediction of the battery component
properties needed for a given performance target and
cell format.

• The amount of battery R&D data grows exponentially,
following the world data-sphere trend.11 For example,
BASF, the second largest chemical producer in the world,
recently announced that they produce >70million battery
characterization data points per day,12 and in an academic
context, as an example, the French Network on
Electrochemical Energy Storage (RS2E) with its 17
academic partners13 generates ca. 1 petabyte of battery
data per year. These enormous data sets are currently not
accessible to the scientific community as a whole, but
actions have been taken toward establishing open and
FAIR14 battery databases.15−17 Furthermore, there is
already a massive amount of data spread out in scientific
publications: almost 30,000 LIB publications already
exist, and this number is growing rapidly.18 A researcher
reading 200 papers per year will need nearly 150 years to
read all of the LIB publications available today.

AI and ML will thus need to assist researchers to efficiently
solve the parameters and data challenges of LIBs19 as well as
assist the R&D of battery technologies beyond LIBssuch as
Na-ion, all-solid-state, and Li−S batteriesand electrochemical
capacitors (supercapacitors). For this to become true, several
challenges need to be tackled, for instance, defining widely
accepted standards in battery R&D combined with systematic
data disclosure,20 the identification of the most suited
descriptor(s) for a certain ML model, or the determination of
the associated error, among others. In addition, different battery
technologies bring different challenges and AI- and ML-based
approaches can be already helpful in many aspects, as ML-
assisted operando imaging techniques aiming to study Li
dendrite formation and growth for all-solid-state batteries
(ASSBs). Other examples could be the increase in time and
length scales of current physics-based simulations or the
development of innovative multiscale approaches.21−23

This Review aims at providing a comprehensive, authoritative,
and critical, yet easily understandable, review about AI and ML
of general interest to the chemistry and electrochemical energy
sciences community. It addresses the concepts, approaches,
tools, outcomes, and challenges of using them as an accelerator
for the design and optimization of batteries. Making the
booming and highly dynamic AI-related literature more
accessible to the battery community as a whole is critical. To
move AI applied to batteries from hype to reality, a strong
collaboration between experimentalists, modeling specialists,
and AI experts is needed; thus, AI and ML must be properly
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explained and reviewed in a way suitable for a broad audience.
We aim here to create better accessibility of these tools and
completeness in terms of the different battery R&D aspects
currently covered.
In addition, the multitude of battery R&D fields in which AI

and ML are being applied lead to heterogeneity in the
terminology used and a lack of clarity on both the direction
that AI/ML applied to batteries is undertaking and the main
challenges that need to be overcome. Reviews in the field have so
far focused either on battery diagnosis of, e.g., LIBs or solely on
materials, with few examples at the full battery level.24−29 No
review so far has provided an overview of applications across the
full range of battery R&D across multiple scales (from materials
to cells), as we aim to do here.
The aim of this first section is offering to researchers with no

or little knowledge on the topic a simplified but easily
understandable idea of how AI (and more specifically ML)
works. We hope this can assist them in reading in a critical way
modern scientific literature where AI or ML are applied to
battery research, as well as easing the collaboration between AI/
ML experts and other researchers in the field. Readers interested
in more detailed discussions on AI/ML in general can refer to
the many excellent books already published on the topic.30−40

Subsection 1.1 defines AI and ML, giving a short historical
perspective. Then, the importance of data (subsection 1.2) and
the differences between supervised and unsupervised (sub-
section 1.3) ML methods are discussed, together with the
importance of their hyperparameters (subsection 1.4). After-
ward, we describe in an accessible way the working principles
behind the most widely used ML techniques (subsection 1.5)
and the programming languages and software available to
develop them (subsection 1.6). Finally, the outline of the rest of
the Review (next sections) is presented (subsection 1.7).

1.1. What Is AI?

AI is ubiquitous in our modern world, equipping many modern
digital devices.41 AI equips Internet search engines like Google
to learn from our search habits and suggest the most relevant
results to us. It is implemented in social networks, like Facebook
or Twitter, and Amazon for personalizing news feeds,
recognizing people or objects in photos, offering machine
translations, or detecting inappropriate content, among other
uses. Online video-on-demand services, like Netflix, use AI to
personalize movie offerings, and our cell phones use AI as
personal assistants (e.g., Siri, Google Now, and Bixby). Other
widely adopted AI applications have capabilities spanning from
sorting spam and performing speech recognition to making
personalized sales offers in e-commerce, among others. Another
widely known example of application is gaming, whose major
breakthroughs are the chess-playing computer Deep Blue,42

AlphaGo,43 and Watson.44 AI is also at the heart of the
development of modern robotics,45 autonomous driving,46 and
smart power grids.47 Chemistry fully follows this trend. Aiming
to decrease the cost and increase the quality of their products,
chemical industries are investing in AI and digitalization to
accelerate their R&D,48 while academics intend to use AI and
ML to accelerate research on materials, pharmaceuticals,
catalysts, and more.49−52

In spite of this, for the vast majority of its history, AI was not as
widely accepted as it is today.53−55 Even if typically associated
with the fields of informatics and computer science, the concept
of AI also belongs to fields like philosophy and psychology,
interrogating on the relationships between human beings and

machines. From the beginning of human history, the develop-
ment of new machines and tools guaranteed the survival of
humankind, resulting in a strong relationship between humans
and machines since early times. An example of this can be found
in the Egyptian society, in which the announcement of the next
pharaoh was indicated to the population by the God Amon’s
statue, through a mechanically moveable arm.56,57 However, the
emergence of the AI concept and the development of
computers, both originating from the English mathematician
Alan Turing, triggered a revolution in this relationship. For the
first time in human history, the question about the capability to
develop machines able to reason as humans raised from the
ground, as formalized in the philosophical question “Can
machines think?” by Alan Turing himself.58 In his publication of
1950, he proposed a test, today known as the Turing test, whose
aim is to verify if a human being, who is asked to interact with
either a human or a machine through a few questions and
without knowing her/his/its identity, is capable of distinguish-
ing machines from humans.59 Despite the limitations of such a
test,30 it enabled Turing to speculate about a time in which
machines will become smart enough to reproduce human
intelligence, giving birth to the era of modern AI.
The idea of Turing rapidly attracted the interest of the

scientific community, leading to the Dartmouth AI summer
research conference in 1956, widely considered as the founding
event of the field and where the term artif icial intelligence was
first proposed. The aim of this conference was defined by its
organizer, John McCarthy, who stated: “Every aspect of learning
or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it”.60

Considering this as the starting point of the field, it is not
surprising that the first attempts to develop AI algorithms aimed
to simulate the human brain behavior.61,62

Historically, AI has been defined as making machines think
humanly, act humanly, think rationally, or act rationally.30 The
Turing test discussed above required the machine to act
humanly, for instance. However, clearly the definition of what is
acting or thinking humanly/rationally is in constant evolution,
and it is not linked to computer science alone. It is rather
interconnected to other disciplines such as philosophy,
psychology, neurobiology, logic, and mathematics, just to cite
a few.30 AI could also be defined as “the science and engineering of
making computers behave in ways that, until recently, we thought
required human intelligence”.63 However, similarly to the previous
case, which behaviors we classify as requiring human intelligence
or not are time and society dependent. Some decades ago, it
would have been believed by many that playing games or
interpreting human behaviors to send personalized feeds would
require human intelligence, while today these are tasks that we
recognizemachines can do.43,64 All the abovemakes AI amoving
target, whose exact definition is not trivial. However, the
majority of AI systems in current use have in common the
capability of learning from experience. The most widely adopted
approach to make machines doing so is through algorithm
architectures known as ML,30 which are the ones employed
nowadays in battery R&D and will be the main subject of this
Review. These algorithms have tremendous capabilities to assess
multidimensional data sets (i.e., data sets containing multiple
variables), discover patterns in data, and unlock applications that
are difficult to exploit by using other approaches.23,27,65−67 This
is of high relevance for the fields of battery material discoveries
or battery manufacturing optimization, in which a multitude of
parameters should be considered simultaneously.68 The
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discovery capabilities of modern ML algorithms rely on the
quantity, quality, and veracity of data. Therefore, the first step for
any ML-based approach is to build a suitable and complete
enough data set.27 Afterward, the ML model should be trained
and, when possible, evaluated. In the most common case
(supervised models), this is achieved by using a part of the data
set to train the algorithm (training step), whose predictive
capability is assessed by comparing values predicted by the
model and data that were not used for the training step. This is
generally referred to as a test step. If the so-obtained model
proves to be trustable along this step, the supervised ML
algorithm is ready to be used (Figure 1).
ML algorithms can be classified as supervised, unsupervised, or

semisupervisedmethods.69,70 Supervised approaches employ data
sets that are pretreated to define certain variables as inputs and
others as outputs. This prior information is missing for the case
of unsupervised ML algorithms, whose goal is to find patterns in
the data set. Within supervised ML, it is possible to distinguish
between regression and classification, where the latter indicates a
ML approach analyzing the data set in terms of classes, while the
former analyzes it in terms of continuous values. The classes
used for a supervisedML can come from the operator or from an
unsupervisedML. Semisupervised approaches are somewhere in
between the two and utilize data sets containing both labeled
and unlabeled data. Besides the type used, classical ML
algorithms rely on data and are rather agnostic to physics,
meaning that they could aim, for instance, to determine the
relationship between different variables interpolating the
training data, rather than offering any physical interpretation
of such a relationship. However, physical-informed ML
approaches exist, for example, when using ML algorithms to
solve or discover partial differential equations,71−73 among
others.74−76

1.2. About the Importance of Data and Good Practices

All ML algorithms rely on data, which are vital to develop
accurate ML models. As widely known, the amount of data is
critical, and it is typically believed that higher amounts of data
leads to more accurate MLmodels. Even though this is generally
true, the data quality is not a negligible factor and it should be
considered, as well. Data sets containing too little data or
containing poor quality data (e.g., data difficult to reproduce or
affected by significant errors) can lead to wrong ML predictions,
biasing the associated result interpretation. In this context, the
first step to develop a reliable ML model is building a data set

representative of the problem under analysis. Good exper-
imental practices in terms of both design of experiments77 and
experimental procedures78,79 are needed to ensure the reliability
of data sets and ML results. Defining effective experimental
strategies is even more critical when applying ML-driven
methods to rare failure scenarios, as recently highlighted by
Finegan et al.80 In terms of variables to be considered, it is a good
practice to consider asmany variables as possible to have a global
perspective on the problem under study. However, to simplify
the ML model development for the case of multivariable
problems, unsupervised techniques, such as principal compo-
nent analysis (PCA), can be used. In particular, PCA is able to
project the original data onto a low-dimensional subspace
identified by convenient axes, also known as principal
components, arising from linear combinations of the original
variables, ordered by the variance they represent in the data set.
Once the principal components accounting for the vast majority
of the variance are identified, theMLmodel can be trained using
these instead of the original variables, leading to a dimensionality
reduction.81

Similar to experimental measurements, AI algorithms
themselves should be subjected to good standards and protocols
to ensure that no bias is made during data processing and
predictions. For instance, the data set and how the quality of the
trained model was evaluated (if this was possible) should be
systematically disclosed. The latter is relatively easy for the case
of supervisedmodels (themost commonly employed ones in the
battery field), but evaluating the quality of unsupervised ones
can be rather challenging, as it will be shortly discussed in the
next subsection. Taking the case of supervised methods, the
model accuracy can be assessed by comparing the outputs
predicted by the ML model when considering inputs not used
during the training step and the real outputs, which were
previously measured. The data set used to carry out this
procedure is typically known as a test set. If the results predicted
by the ML algorithm are equal, or close enough, to the real
outputs, themodel can be considered correct and can be used for
predictions. A simple way to quantify this is through regression
plots, which are obtained by plotting the data in the test set (true
results) and the predictions coming from the trained ML model
(predicted results). The predictive accuracy of the model can be
quantified as the R-square82 of the points obtained when
compared to the first bisector (true results = predicted results)
of the regression plot. As is intuitive, an R-square ranging from 0

Figure 1. Overall working principles of a ML approach for supervised/unsupervised and classification/regression methods. For simplicity, here
classification is represented as the only application of unsupervised ML, despite other applications, for instance dimensionality reduction, existing.
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to 1 stands for a predictive accuracy ranging from 0 to 100%.
However, the use of only the R-square as a metric to evaluate the
predictive accuracy could lead to errors in certain cases. An
example of this is when using a ML algorithm to predict the
energy of a molecule (section 2) while the energy of the system
is shifted for instability (or others) reasons, which could lead to
high R-square and high mean-squared error (that, on the
contrary, should be minimized). Therefore, other metrics, such
as the root-mean-square error or the mean absolute error, can be
substituted for or can be associated with theR-square, in order to
better verify the predictive accuracy of the model. In addition, it
should be stressed here that each model has a limit of validity
that should be taken in mind. Indeed, if the model is used to
predict results associated with inputs that are significantly
different from the ones used for the training and test steps, it is
likely that the predictions will not be as accurate as desired. For a
more detailed discussion on the importance of good practices in
machine learning, the interested readers are referred to ref 83.

1.3. Supervised and Unsupervised Methods

Supervised ML algorithms aim to identify the relationships
between inputs and outputs building a numerical model based
on the data used during the training process. The algorithm
architecture used to develop such a model varies as a function of
the ML method used (as will be discussed more in detail
afterward), but the result of any supervised ML approach is a
numerical model linking some outputs yi

÷◊ to certain inputs (xi
÷◊÷ ).

Both inputs and output(s) can be either continuous values or
classes. This distinguishes supervised ML algorithms as
classification (classes) or regression (continuous) methods, as
schematized in the right column of Figure 1.
To better understand the philosophy behind this approach, it

is useful to compare how ML algorithms learn and how the
human brain learns. Typically, humans learn through examples.
In other words, the brain collects information from the external
environment through the sensory apparatus. It elaborates this
information in order to identify patterns, which are stored to use
this knowledge when needed. As an example, learning that a wild
animal is dangerous allows one to react as fast as possible when
such an animal is in your proximity, increasing the chances to
escape and survive. Similarly, ML algorithms learn through
examples that are given in the form of data. These data are used
to numerically identify patterns and develop a numerical model
able to describe these patterns. Once that model is obtained, it is
possible to use this knowledge to predict new results. However,
these predictions can lead to errors from time to time. How
often, and then how trustable the model is, depends on the
model accuracy, discussed in the previous subsection.
Several regression methods were applied in the LIB literature

up to date. The most known and widely adopted approaches are
briefly discussed in subsection 1.5, but some of them were
excluded for the sake of shortness. This small paragraph aims to
offer a short list of the approaches not discussed in detail,
allowing the readers to recognize these techniques when cited in
the Review and offering references where the interest readers
can find more detailed information. As mentioned above,
regression-based methods aim to fit the training high-dimen-
sional data (xi) and the output (y) by searching an
approximation of the relationship between the two. In that
sense, this process can be simplified as searching an appropriate
functional form (herein called f), where y≈ f(x). Several famous
techniques are based on this approach, such as multiple linear
regression84 (MLR) or multivariate curve resolution alternating

least squares85 (MCR-ALS), least absolute shrinkage and
selection operator86 (LASSO), and ridge and kernel ridge
regression87 (KRR). The differences between these approaches
rely on the underlying mathematical approach used to find the
best functional to describe the data set provided. Other
approaches able to deal with high-dimensional data sets are
least-angles regression88 (LAR) and sure independent screening
and sparsifying operators89 (SISSO), based on linear and
nonlinear regression, respectively. Lastly, other approaches do
not fit the complete training data with a certain functional, but
they divide the data set into different pieces and fit each of them
with a certain functional. An example of this is the multivariate
adaptive regression splines90 (MARS) model.
Contrary to supervised ML methods, unsupervised ones use

unlabeled data sets. These methods are typically used for: (i)
identifying groups of data (also called clustering methods) or
(ii) dimensionality reduction to identify the most relevant/
impactful variables. In that sense, the difference between
unsupervised classification (i.e., clustering) and its supervised
counterpart is that the former does not require indicating in the
data set what is input and what is output. However, the
advantage of using approaches that do not require any previous
knowledge about the relationship between data is counter-
balanced by the lack of information about the nature of the
clusters identified and the difficulty to assess the quality of the
trained model. In other words, after the clustering through
unsupervised ML, it is up to the human operator to assign each
identified cluster its physicochemical meaning, and the quality
assessment of the clustering or dimensionality reduction
performed largely depends on the specific scope for which
unsupervised ML is used and it is not always possible. An
example in which quality evaluation is possible is clustering,
where the distance between elements of the same cluster
(intracluster distance) and the distance between different
clusters (intercluster distance) can be used as metrics. If using
such a metric, the higher the intercluster distance and the lower
the intracluster distance (i.e., the clusters are well-defined and
separated), the better the model.
As mentioned in the Introduction of this Review, the amount

of human-produced data is growing exponentially. However, the
majority of these data are not preprocessed, making
unsupervised ML particularly suited for their analysis. An
example of this is text mining applied to material discovery, for
which unsupervised ML methods can be used to classify texts
based on similarities between words and sentences.91,92

1.4. Hyperparameters

The reliability of any ML approach depends not only on the
method employed but also on its hyperparameters (HPs), which
are controllable by the operator and specific to each ML
architecture. HPs are defined as parameters influencing the
training process, which ultimately affect the model reliability.
Therefore, HPs should be optimized for the specific model
developed to avoid both underfitting and overfitting. Under-
fitting refers to a MLmodel that it too simplistic for the problem
under analysis, such as a model not trained enough, while
overfitting refers to a model that is too specific, e.g., describing
correctly the training data only and having low predictive
capability.30,93 A classic example of HP is the number of layers in
a neural network (NN), affecting the error propagation in the
NN architecture during the training step. In order to optimize
the model’s HPs, optimization techniques as particle swarm
optimization94 (PSO), artificial bee colony95 (ABC), and
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genetic algorithms96 (GAs) can be used. The algorithm
architectures behind these approaches differ; however, the
basic idea behind them is similar and typically relies on
minimizing a cost function (linked to the model error) by
changing the HP value. In addition, cross-validation (CV) is a
useful procedure to assess the quality of the HPs employed. CV
is typically based on the k-folds approach,97 which splits the
training data set into k subsets. Afterward, the model is trained k
times by using k − 1 subsets and tested on the remaining one,
where at each iteration the subsets used for the training and test
change in order to consider all of the possible combinations.
This approach allows testing deeply the prediction capability of
the MLmodel, minimizing the risk of underfitting or overfitting.
Even if based on the same principle, it should be mentioned that
other CV approaches have been developed, such as stratified k-
fold CV98 or leave-one-out CV.68

1.5. Most Used Machine Learning Methods

In the following, we describe the working principles of the most
used ML methods in battery R&D. All of these methods are
referred to in the application sections 2, 3, 4, 5, and 6.
1.5.1. Neural Networks. A NN algorithm architecture

reproduces in silico the working principles of a human
brain.31,99−101 Each neuron contains just a small piece of the
global information, which is shared between the different
neurons through their interconnections (synapses) and trans-
mitted through electrical pulses. Similarly, the NN algorithm
architecture relies on interconnected “neurons,” hereafter
referred to as nodes, each of them storing just one small piece
of the global information. The nodes are divided into layers,
which can be classified as input, output, or hidden layers. The
number of nodes in the input layer is equal to the number of
model inputs, while the output layer consists of one node for
each output. The hidden layer(s) are composed by n nodes. The
number of hidden layers and the number of nodes for each layer
are HPs that have to be optimized for the case under study.
The training procedure of a generic NN algorithm (Figure 2a)

can be described as follows. The value of each node (except for

the input ones) is defined as the sum of the value of each node
belonging to the previous layer multiplied by a coefficient, which
is specific to each node and is adjusted during the training. Each
node has a value associated to it that depends on the sum of the
value of each node belonging to the previous layer(s) multiplied
by a coefficient (except for the input ones). This coefficient is
specific to each node and is adjusted throughout the training.
This value is then used as argument of the activation function
(one HP of the model), which outputs the final value associated
to this specific node. This operation is accomplished for all the
nodes, going from the input to the output ones. Once the output
node values are calculated by the NN, they are compared to the
output values in the training data set. Following a back-
propagation process, the difference between the predicted and
real results is used to modify the coefficient matrix, i.e., the
coefficient associated to each node. This process is performed n
times (where n is a HP) in order to find the optimal coefficient
matrix that numerically describes the relationships between
inputs and outputs. The values of the coefficients at the
beginning of the training process are chosen randomly, while the
values associated with the input nodes are the values associated
with the inputs in the training data set.
In the following, we discuss briefly the most used NN

architectures in the battery field. However, it should be stressed
that different definitions with respect to the ones discussed here
can be found in the literature, as the nomenclature of different
NN techniques is not well standardized among the ML
community. The simplest NNmodel is known as the perceptron
NN, containing several inputs and only one output and without
any hidden layer. If only one or more hidden layer(s) is (are)
used, the method is generally referred to as artificial neural
network (ANN) or multi-layer perceptron (MLP) and deep
neural network (DNN), respectively. The difference between
MLP and DNN is that MLP use only “classical” nodes in its
hidden layers (the ones discussed above), while DNN is more
generic and can encompass more complex mechanisms, for
instance convolutional layers, which are discussed below. In
addition, all the nodes can be connected (i.e., they share

Figure 2.Workflows of some of the most common ML techniques: (a) neural network; (b) decision tree; (c) support vector machine; (d) k-nearest
neighbors (k-NN).
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information with other nodes) or not. The procedure used to
“disconnect” (typically randomly) certain nodes is generally
referred to as dropout.
A special class of NNs, of particular interest for image analysis,

is the convolutional neural network (CNN). The main
difference between CNN and other NNs is the use of
convolutional layers (CLs) together with classical hidden layers.
CLs are able to recognize specific patterns in images, which
makes them particularly suited for tasks as object recognition.
The pattern identification is performed through filters
embedded in the nodes of the CLs. These filters are constituted
of matrixes of dimension n × m, and, instead of analyzing the
image pixel by pixel, the CLs analyze blocks of n × m pixels.
Thanks to these characteristics, if the filter is well developed and
trained, it can be used to recognize automatically specific
patterns in images, enabling, for instance, distinguishing
between different phases (as active material, carbon-binder
domain, and pores) in electrode tomography images, automatiz-
ing and easing the segmentation procedure. An alternative to
classical CNN is the Bayesian convolutional neural network102

(BCNN), which offers information about the error on the
predicted output. Another NN method of interest is known as
wavelet neural network103 (WNN), whose main characteristic is
that its inputs are curves and not multivariate data.
Even more complex NN architectures can be developed. For

instance, recurrent neural network104 (RNN) and long−short-
term memory105 (LSTM) were conceived to “remember”
information during the training step. The first difference
between these two approaches and the ones discussed above
is that the inputs can be linked, meaning that they are not
independent, as in Figure 2a. An example could be the use of
RNN for reproducing texts, in which one word and the following
one are linked. Concerning LSTM, this technique is more suited
to time-dependent data, which can be of interest for operando
applications. Lastly, another approach of interest is the extreme
learning machine (ELM), which is a NN using a single hidden
layer with better generalization performance than the classical
back-propagation NN.106

1.5.2. Decision Tree, Random Forest, Boosting, and
Bagging Approaches. The basic idea of a decision tree (DT)
is to divide a complex problem into n smaller ones through a
treelike structure. In this representation, each node of the tree
represents one small subproblem, while the tree as a whole
constitutes the solution to the overall problem.36 At the
beginning of the training process, the data contained in the
data set is injected in the root, i.e., the first node in the upper part
of the DT (top of Figure 2b). Afterward, the algorithm searches
for the input that best discriminates between the outputs. In
other words, it searches which value (ci) of which variables splits
the initial data set in such a way to separate as many outputs as
possible, minimizing the associated error in the meantime. This
leads to the bifurcation of the node (and of the data set) into two
“paths”, one for values of the selected inputs lower than ci and the
second one for values higher than ci. Iterating this procedure
leads to a series of paths linking each possible input to a certain
output, resulting in the tree shape reported in Figure 2b. One of
the main advantages of this approach is that it produces a self-
speaking and easy-to-understand representation of the links
between inputs and output (X and Y in Figure 2b). However,
this approach is often too simplistic to allow reaching high
prediction accuracy. For this reason, the random forest (RF)
method was developed to combine the simplicity of DT with an
improved predictive capability. The idea behind RF is that, if a

single DT is not enough to obtain stable/accurate results, the
results obtained averaging the outputs of a multitude of DTs can
lead to more trustable predictions. This results in a significant
increase of the prediction accuracy, which makes RF-suited to
solve complex problems.70,99,107

Boosting and bagging approaches are based on the same idea
as RF, i.e., using several DTs to reduce the bias and the variance
of the model while improving its predictive accuracy. The main
difference between RF and boosting/bagging is the sampling
method used,108 while the bagging and boosting approaches are
differentiated by the procedure adopted for the training step.

1.5.3. Support Vector Machine. Support vector machine
(SVM) aims at finding the best hyperplane(s) (i.e., multidimen-
sional plane) to separate the inputs as a function of their
associated output(s).70 In other words, SVM identifies which
hyperplanes better separate the hyperspace of inputs and
outputs in n zones (where n depends on the number of initial
classes), while minimizing the associated model error and
maximizing the probability that each zone is well separated from
the others (Figure 2c). The degree of separation of these zones
can be modulated by some HPs of the SVM method, typically
referred to as cost, gamma, and the kernel used.98 During the last
decades, different methods based on SVMs were developed, as
for example the multikernels support vector machine109

(MSVM), which does not use one single kernel but a linear
combination of kernels. Other examples could be the support
vector regression110 (SVR), applied for quantitative supervised
learning, and least squares support vector machines111

(LSSVMs) or relevance vector machines112 (RVMs), that
were specifically developed to solve linear equations and to use
Gaussian kernels, respectively.

1.5.4. k-Nearest Neighbors. k-Nearest neighbors (kNN) is
a well-known ML method applied for both regression and
classification, relying on variable similarity in the data set.70 This
is quantified by calculating the distances between the raw data
points in the multidimensional feature space, i.e., the space
defined by each input feature. Data that are close enough in the
feature space are grouped together, which allows identifying
clusters of data. Once the different groups are defined through
the training data set, this method allows predicting the class or
the output associated with new inputs by comparing them to the
“k” nearest neighbors in the multidimensional feature space. As
an example, for the case of a classification algorithm that uses a k
value of 3, the three nearest neighbors will be considered, and if
at least two out of three nearest neighbors belong to a certain
class, the new input is classified accordingly (Figure 2d). The
optimal value of k is typically identified by maximizing and
minimizing the intergroup and intragroup variance, respectively,
aiming to obtain well separated clusters.

1.5.5. Probabilistic-Based Approaches.The most known
and most used probabilistic models are the ones based on
Bayesian approaches. These approaches use the a priori
probability on the distribution of the training data (in a certain
sense, the error associated with the data) to calculate the a
posteriori probability (related to the error of the output) to
enhance the output prediction and offer information on its
associated variance. Therefore, Bayesian models offer an
estimation of the error associated to the predicted outputs,
which is rare in theML field and extremely valuable for assessing
the limit of validity of the MLmodel. The theoretical baseline of
this approach relies on the Bayes theorem, which links the a
priori and a posteriori probability. The simplest approach is
generally referred to as naive Bayes113 (NB), which simplifies
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the calculation of the a posteriori probabilities by considering
that the a priori probabilities of the inputs are independent. A
more complex approach is known as Bayesian Monte Carlo114

(BMC), in which no approximations are done. In this case, the
resolution of the integrals arising from the lack of any
approximation is simplified through a Monte Carlo approach.
Another important approach is the Gaussian process115 (GP),
typically applied to regression. The working principle of this
approach is similar to the Bayesian one, but it approximates as
Gaussian the a priori probability distribution. An example of
predicted function is plotted for six observations (red points) in
Figure 3. The predicted function does not only aim to fit the data

(observations); it also offers a measure of the error (light gray
zone) associated to the predicted function. The prior
information about the GP is usually specified in terms of a
kernel function k(x1, x2), which gives the covariance between

two data points (x1 and x2). Generally speaking, kernel
approaches refer to a feature transformation of the initial data
in a specific feature space. They allow dot products of vectors
and are often called generalized dot products. In simplified
words, kernel functions are mathematical functions applied to
vectors (as the training data), which are used for data processing.
For the sake of offering a practical example to the readers, a
useful example is the case of an exponential kernel. This uses two
vectors (x1 and x2) and outputs a numerical value that is equal to

e x x /21 2
2 σ∥ − ∥ (i.e., k(x1, x2) = e x x /21 2

2 σ∥ − ∥ ), where e is Euler’s
number and σ is linked to the variance of the input data (training
data set). Several other kernel types exist, which could lead to
more complex mathematical transformations, but the overall
idea is the one exemplified above. In terms of the most used
kernels, the squared exponential (SE) kernel is a popular choice
for vectorial inputs, while, for molecular data (section 2), the
smooth overlap of atomic positions (SOAP) kernel116 is widely
employed, among many other possible alternatives.117

Another probabilistic-based approach of interest is known as
Bayesian optimization118 (BO), which does not only output a
certain function and the associated probability distribution after
the training process, but it also aims to identify the “optimal
values” of that function, making it particularly suited for
optimization purposes.
Lastly, other methods using probabilistic theory are

discriminant analysissuch as linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), partial least
squares discriminant analysis (PLS-DA), or shrinkage discrim-
inant analysis (SDA)119and logistic regression120 (LR).

1.5.6. Generative Models and Inverse Design. Gen-
erative models are a class of unsupervised ML algorithms that
can be used to generate data similar to the ones used for the
training. As an example, given a data set of electrode material
crystal structures, the trained generative model can be queried to
generate more examples that look like the materials in the data
set. Similarly, it is possible to use electrode mesostruc-
tures121−123 or, in principle, any other battery-related
information, instead of crystal structures. This is a useful

Figure 3. Example of GP regression. The standard deviation refers to
the error associated with the predictions.

Figure 4. Deep learning architectures for generative modeling.
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alternative to high-throughput screening where it can be
inefficient, or even impossible, to consider all the possible
material candidates even when using cheap surrogate (i.e.,
simplified) physical models. Traditionally, hand-coded rules or
genetic algorithms have been used to generate new material
crystals or nanoparticles,124 but in recent years there has been a
shift toward deep learning models, particularly variational
autoencoders (VAEs),125,126 adversarial autoencoders (AAEs),
generative adversarial networks (GANs),121−123,127,128 and
reinforcement learning (RL), shown schematically in Figure 4.
In a VAE, one tries to learn an encoder and a decoder, which are
both DNNmodels that map, for example, battery active material
crystals into a (latent) vector space and from this space back into
the original space, respectively. To generate new material
crystals, it is possible to sample new points from the latent space
and map them back to the input representation. In a GAN, the
generator network gets a sample and is asked to generate a “fake”
one that looks real. Another network (the discriminator) is
trained to distinguish between real and fakes, forcing the
generator to make more and more realistic its “fake” samples. In
the context of batteries, the samples can be, upon others,
electrode microstructures or crystal structures, as will be
presented in sections 2 and 4. The AAE combines the idea of
VAE and GAN and uses a discriminator to inform whether the
encoded sample comes from the prior distribution or from the
encoder. Finally, in a RL setting, a sample is thought as being
produced by a number of steps taken by an agent. After the
creation of the material crystal, the agent is provided with a
reward or penalty based on the properties of the generated
sample.
The generative architectures described above are often used

for inverse design purposes (Figure 5), where the goal is to
identify the conditions, such as the material to use or
manufacturing/cycling protocol to implement, needed to obtain
a desired property.129,130 In RL, one can directly incorporate the
desired property in the reward signal given to the generating
agent, while VAEs, GANs, and AAEs link the latent space to the
sample of interest (crystal structure, microstructures, etc.).
Then, it is possible to map the latent space searching for a
desired optimum. Some of the most popular search methods for
this application are gradient descent and Bayesian optimization.
It is also possible to train a generator to be directly conditioned
on a property.
1.6. Programming Languages and Platforms

All of theML examples discussed above need to be built by using
a programming language. In this subsection, the most used
programming languages are discussed together with their
advantages and disadvantages in terms of developing a ML
algorithm.

• Python: Widely used open-source language, particularly
appreciated by the AI/ML community due to several
dedicated easy-to-implement libraries. Created in 1989 in

reference to the famous Monty Python’s Flying Circus
British TV show,134 this programming language offers
many tools to easily manipulate big data sets, displaying
results, etc. In addition to these basic features, several
Python libraries are specifically devoted to ML
algorithms, as Scikit-Learn, Tensorf low, or Keras, just to
mention a few. Another advantage of Python is its
popularity, thanks to which many dedicated forums and
Web sites on the topic are already available.131−133

Generally, Python algorithms are executed under cross-
platforms called integrated development environments
(IDEs), such as Spyder, Pycharm, and Jupyter Notebook.
The last one is attracting increasing attention due to its
friendly interface and the possibility of interacting with
several other programming languages.

• R: Developed during the last decade of the 20th century,
R is particularly popular in statistics science. Compared to
Python, R is less used to buildML algorithms. However, it
offers fully dedicated statistical libraries such as MASS,
stats, fdata, car, or glmnet. In addition, the Comprehensive
R Archive Network135 (CRAN) reports all the details
needed to help users understand how to utilize each
specific library/package.

• C++ and FORTRAN: Considered as the modern
pioneers of programming languages, they are widely
used as high-performance languages. The implementation
of ML codes by using C++ and FORTRAN is typically
more difficult compared to R or Python, and it requires
taking care of the memory management (contrary to
Python, which is already optimized for it). Nevertheless,
famous C++ libraries for ML, such as SHARK or
MLPACK, exist.

In terms of computational resources, they are becoming more
affordable thanks to platforms created by computer giants like
Google Cloud ML Engine,136 Microsof t Azure Machine Learn-
ing,137 and IBM Watson Machine Learning,138 which allow
launching in cloud ML algorithms requiring extensive training.
In addition, those platforms offer “ready to use” codes that can
be particularly useful for nonexpert users or companies.
1.7. Outline/Scope

The first section presented the concepts of AI and ML, briefly
introduced some key points of their history, and discussed in an
accessible manner the most used ML techniques in the battery
field. Numerous applications in battery research exist, which are
discussed in detail in the following sections, covering the
following aspects: materials design and synthesis (section 2),
electrode and cell manufacturing (section 3), electrode
architecture and materials characterization (section 4), battery
cell diagnosis and prognosis (section 5), and surrogate
modeling, recycling, second-life, and text mining (section 6).
Each of these sections can be read on its own or in combination
with the others, allowing modulation of the reading as a function

Figure 5. Inverse design with deep learning models.
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of the readers' interests. In addition, Figure 6 shows that the
battery community did not grant the same attention to each of
them, with prognosis/diagnosis (∼40%) and materials design
and synthesis (∼27%) being the most studied ones, followed by
material and electrode characterization (∼17%) and manufac-
turing (∼6%), while the rest (∼10%) is accounted for by other
applications. Lastly, section 7 presents the overall conclusions
and indicates challenges and opportunities for further
application of AI/ML in the battery field.

2. APPLICATION TO MATERIALS DESIGN AND
SYNTHESIS

In this section, we review current advances on the intersection
between AI techniques (mainly from the subdomain ofML) and
the design and synthesis of battery materials. We first provide in
subsection 2.1 a brief overview on recent efforts to develop
appropriate materials descriptors, which are often the first
difficulty toward implementing meaningful and accurate ML
models. Then, we present a variety of examples whereML-based
studies are contributing to accelerate the screening and
prediction of new battery materials with specific targeted
properties. The examples are classified in three main groups: (i)
active electrode materials, (ii) solid electrolytes, and (iii) liquid
electrolytes. In subsection 2.2, we discuss how ML algorithms
are also creating new opportunities for materials simulations, by
helping to tackle increasingly complex chemistries, larger length
and time scales, and multiscale modeling. In ssubection 2.3, we
move to the synthesis of newmaterials and, in particular, how AI

can be applied to effectively plan experiments and mitigate the
combinatorial explosion problem associated with the exhaustive
rendering of chemical and physical spaces in typical high-
throughput (HT) approaches. In this context, we show howML
algorithms are applied to identify relations between variables
and to speculate about the outcome of new experiments. Finally,
in subsection 2.4, we provide perspectives and identify key
future challenges on the use of AI/ML for materials design and
synthesis.

2.1. Materials Discovery

Informatics-aided materials discovery and optimization is
becoming a powerful tool to analyze experimental and
theoretical data and extract key structure−property relation-
ships of functional materials, in general, and battery materials, in
particular (recent review articles on the topic include refs 129,
139−148). Current approaches in this direction typically
combine HT screening and ML, aiming to find new active
electrode and electrolyte materials for next generation batteries.
Common ML methods include DTs, BO, SVM, and ANNs,
among others (Figure 7); for a brief and accessible description of
the applicability of these methods within the wider domain of
materials science, the interested reader can consult refs 139, 140,
149, and 150.
Based on the utilization of high-fidelity data from physical-

based simulations, experiments, or both, ML methods are used
to find complex nonlinear relationships among a relatively large
number of variables. This ultimately helps classify materials with

Figure 6. Percentage of reviewed articles applying AI orML to the different battery-related topics discussed in this Review. This analysis was performed
on ∼200 scientific articles.

Figure 7. Infographic on theMLmethods recently used in the literature to search for new battery materials with specific target properties, including the
corresponding nature (calculated vs experimental data) of the employed databases.
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similar characteristics or predict target properties in new
materials.
In the case of active electrode materials, typical properties of

interest are discharge capacity, capacity retention, volume
change, Coulombic efficiency, voltage profile, or redox potential.
In the case of electrolytes, current efforts are focused on the
search of inorganic solid-state ion conductors with high ionic
conductivities and good mechanical properties. A table is
provided in the Supporting Information (Table S1) which
summarizes recent works in the literature for different materials,
data sources, target properties, and employedMLmethods. This
provides a quick overview of the current research efforts in the
area that will be described in detail in the following.
Access to sufficient reliable training data is the first obvious

bottleneck for implementing any ML model. Not only does the
size of the data set significantly impact the accuracy, but the
quality of the data is also paramount. In particular, it is crucial to
have properly sanitized data that does not introduce errors in the
training process which could prevent a correct fitting of the data
or that may later affect the performance of the model. No matter
the source of the data, curation is therefore crucial and sine qua
non condition for creating an as objective as possible correct
database.151,152 High-quality data implies that the real world
target property needs to be accurately reproduced by the
corresponding experiment or simulation (high fidelity).
However, high-fidelity data is often scarce because it is costly
to obtain. Moreover, in contrast with scientists’ tendency to
report in the literature only the best performing materials, there
is also a general need for including poorly performing materials
or failed experiments in databases in order to enrich the training
sets.

Another key element in ML methods applied to materials
science is the underlying mathematical description of different
compounds, which needs to be sufficiently rigorous to enable
the comparison of different structures and chemistries across
large data sets. A critical challenge to apply ML models to a
materials science problem is precisely the selection of
appropriate descriptors that lead to sufficiently accurate
predictions of the intended target property.153 In fact, poor
descriptors unrelated to target properties often lower the
prediction accuracy of a given MLmodel. Proposals of materials
descriptors are abound in the literature (see, for example, Figure
8): histogram descriptors,154 fingerprints,155 Coulomb ma-
trix,156 atom−atom radial distribution functions,157 and
substructure fragmenting based on Voronoi-cell local partition-
ing,158 among others. However, complete atomic representa-
tions of broad chemical spaces are currently a work in progress
and finding universal representations that work for all properties
remains elusive.126

It is also germane to point out that AI-aided materials
discovery is a rapidly growing field, with several potential
research directions ahead. One of those is inverse design to
accelerate the discovery of ultrahigh-performance batteries. The
so-called Battery Interface Genome (BIG) and the Materials
Acceleration Platform (MAP) are promising initiatives in this
quest.129 By combining data from multiple experimental
techniques and simulation methods, BIG-MAP aims at
deploying deep generative models126 capable of generating
new data with the target property and, specifically, enable
inverse design of high-performance interphases in batteries.

2.1.1. Active ElectrodeMaterials.Min et al. considered an
experimental data set andML-aided analysis to establish optimal
synthesis parameters and fulfill target specifications for Ni-rich

Figure 8. Eight different material descriptors to represent a 9,10-antraquinone-2,7-disulfonic acid (AQDS) molecule used in organic redox flow
batteries.126 Figure reproduced with permission from ref 126. Copyright 2018 American Association for the Advancement of Science.
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NMC cathode materials (Figure 9).159 Input variables included,
among others, calcination temperatures, Ni content, primary
particle size, coating materials, and washing conditions, whereas
output variables were initial capacity, cycle life, and amount of
residual Li after synthesis. The authors assessed the performance
of a range of different ML models (SVM, DT, RF, ridge
regression (RR), ERT, and ANN), concluding that extremely
randomized tree (ERT) yielded the smallest errors for
predicting all of the output variables. In addition, the authors
proposed optimal experimental parameters by conducting
inverse design, which they successfully validated with additional
experiments. In a more recent study, Kireeva and Pervov also
considered experimental data sets to identify synthesis and
electrochemical property relationships in Li-rich layered oxide
cathodes using a SVM model.160 In this case, input variables
included composition, synthesis method, Li and transition metal
sources, Li excess, temperature, and time of calcination and
sintering; whereas initial discharge capacity and Coulombic
efficiency were set as output variables. ML analysis allowed for
identifying key parameters affecting tailored characteristics such
as some processing conditions, Li excess, or the ratio between Li
and transition metals.
Using density-functional-theory (DFT)-calculated lattice

constants for fully lithiated and delithiated structures and

aiming at designing low-strain cathode materials, Wang et al.
built a partial least squares (PLS) model for predicting the
percentage of volume change of spinel- and layered-type
oxides.161 They found that the most important descriptors to
predict accurate volume changes were the radius of transition
metal ions and transition metal octahedron distortion. Using
DFT-calculated voltages reported in theMaterials Project (MP)
database, Joshi et al. targeted the prediction of voltage profiles of
a broad range of active electrode materials for Li-, Mg-, Ca-, Al-,
Zn-, and Y-ion batteries (Figure 10).162 In this case, the
considered materials descriptors included the nature and
concentration of the intercalation cation, the crystal lattice
type, and space group numbers as well as other elemental
properties of the atomic constituents in each particular
compound. The study helped identify potential new electrode
materials for Na- and K-ion batteries when considering known
Li-based active electrode materials that were not yet proposed
for other chemistries.
In the search of organic electrode materials, Allam et al.

constructed a DFT-based database for a selected set of different
organic molecules.163 The authors considered both computed
electronic properties and optimized geometrical information as
input variables for a ANN-based prediction of redox potentials.
Using linear correlation analysis based on calculating Pearson

Figure 9. Schematic representation of the procedure followed by Min et al. to establish optimal synthesis parameters for Ni-rich NMC cathode
materials.159 Figure adapted with permission from ref 159. Copyright 2018 Springer.
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correlation coefficients (capturing how linear is the correlation
between two variables), 10 main input variables were identified:
electron affinity, highest occupied molecular orbital (HOMO),
lowest unoccupied molecular orbital (LUMO), HOMO−
LUMO gap, and the number of H, C, B, O, and Li atoms and
aromatic rings in the molecule. The approach showed a good
capability for predicting accurate redox potentials with respect
to DFT-computed values when considering molecules not
included in the training set.
ML can also be used to classify data sets into specified classes

(supervised learning). In this context, Attarian Shandiz et al.
considered several algorithms (LDA, QDA, SDA, ANN, SVM,
kNN, RF, and ERT) and data from the Materials Project to

predict the type of crystal system (monoclinic, orthorhombic,
and triclinic) of Li-ion silicate-based cathodes containing Mn,
Fe, and Co.164 It was found that RF and ERT classifiers yielded
the lowest overall errors and that the crystal volume, number of
sites, formation energy, energy above hull, and band gap were
the most relevant descriptors.

2.1.2. Solid Electrolytes. The application of ML models to
screen battery materials is particularly active in the domain of
solid electrolytes. One of the first studies, in 2012, combined
computed data with PLS analysis to propose novel olivine-type
oxide solid electrolytes with low ionic conductivity.165

Specifically, the authors used the nudged elastic band (NEB)
method to compute with DFT Li+ migration energies for a range

Figure 10. Schematic representation of the working procedure followed by Joshi et al.162 and some examples of results. Figure adapted with permission
from ref 162. Copyright 2019 American Chemical Society.

Figure 11. Schematic workflow of a BO-based model to search for DFT-computed Li- and Na-ion migration energies (Eb) in tavorite AMXO4Z
compounds.167 Figure reproduced with permission from ref 167. Copyright 2018 Springer.
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of ordered LiMXO4 structures within the main group M2+−X5+

andM3+−X4+ pairs. By predicting the existence of materials with
Li+ migration energies lower than 0.3 eV, several promising new
compositions were proposed, as for example Mg−As, Sc−Ge,
In−Ge, and Mg−P as well as Al−X, Ga−X, In−X, and Ca−X
pairs, in general. Using instead an ANN model, Jalem et al. also
investigated tavorite-type LiMTO4F (with M3+−T5+ and M2+−
T6+ pairs) solid electrolytes.166 Predicted compositions with low
migration energies included, for example, LiMgSeO4F,
LiMgSO4F, or LiGaPO4F. Follow-up studies have shown that
BO-based models are a very effective search algorithm to screen
fast ion conductors (Figure 11), including Li- andNa-containing
tavorite-type compounds167 as well as other Li- and Zn-
containing oxides.153 Moreover, in this last study, the authors
applied bond-valence-force-field (BVFF)-based calculations
instead of DFT to generate the computed database; as compared
with DFT, BVFF-based calculations are much less computa-
tionally expensive, which facilitates the massive screening of
large data sets.168

Alternatively, Kireeva and Pervov considered a diverse set of
experimental data of garnet-type oxide solid electrolytes,
including total Li-ion conductivities and associated activation
energies, synthesis parameters, pellet densities, among others.169

Using a SVM model, the authors targeted the prediction of the
ionic conductivity of compounds with general formula
A3B2(XO4)3. By combining theoretical and experimental data
sets, Fujimura et al. directly assessed the ionic conductivity of
Li8−cAaBbO4 LISICONs using the SVMmethod.170 The authors
identified several compositions with higher ionic conductivities
than known to date LISICONs. In this case, the theoretical data
was also obtained at the DFT level, including formation energies
and diffusion coefficients extracted from molecular dynamics
(MD) simulations, whereas the experimental data involved ionic
conductivity measurements at different temperatures. Consid-
ering instead an unsupervised learning approach, Zhang et al.171

employed agglomerative hierarchical clustering to group
materials in the ICSD with similar experimental X-ray data
representations of anion structures and successfully trained the
model to cluster compounds into groups of high and low Li-ion
conductivity. In another example, combining theoretical data
from the Materials Project database with experimental data
reported in the literature, Sendek et al. used a classification LR
analysis to distinguish between superionic and non-superionic
Li-containing solid electrolytes.172 Special attention was paid to
assess the predictive power offered by a range of simple atomistic
descriptors and combinations of them, concluding that only
multidescriptor schemes achieved good enough predictive
accuracy. In addition, a follow-up data-driven analysis173

revealed nontrivial correlations between different performance
metrics and properties (ionic conductivity, electrochemical
stability window, band gap, oxidation potential, reduction
potential, materials cost, and anion electronegativity) in a
diverse range of solid electrolytes, which highlights the need to
tackle the complex problem of battery materials design from
different perspectives to successfully identify high-performance
outliers.
All of the previously discussed studies focus on ion mobility

(migration energies or conductivities) as a target property.
However, this is not the only important facet of applicable solid
electrolytes; suppressing dendrite growth is an additional
requirement that needs to be considered. In this regard,
Ahmad et al. conducted a DFT-based computational screening
of thousands of inorganic solids assessing their potential ability

to suppress dendrite initiation in contact with Li metal.174 To
this end, the authors trained the crystal graph convolutional
neural network (CGCNN) and KRRmodels on calculated shear
and bulk moduli as well as elastic constants. They found that
promising candidates capable of suppressing dendrite growth
are generally soft and highly anisotropic, with large mass density,
ratio of Li, and sublattice bond ionicity.

2.1.3. Liquid Electrolytes. Liquid electrolytes are, unlike
solid electrolytes, highly disordered, making ML studies of
energies and electronic and structural properties less straightfor-
ward. Hence, there are significantly fewer papers using ML
methods on liquid electrolytes. Nevertheless, ML methods can
be useful for a variety of purposes also for liquid electrolytes, and
in the following, we highlight a few cases. Nakayama et al.175

considered a range of commercially available organic solvent
molecules and applied the exhaustive search with a GP (ES-GP)
method to predict the cation−solvent interaction energies
within liquid electrolytes for LIBs. The interaction energy is a
convenient proxy for the Li-ion transport in the electrolytes, as
solvation and desolvation of Li-ions at the electrolyte−electrode
interfaces are key processes often limiting the overall mass
transport. Additionally, Sodeyama et al., using an exhaustive
search with linear regression (ES-LiR) model, included the
melting point as a target property, which is an important
parameter in terms of a wide LIB operating temperature
window.176 While the ES-LiR model provided a good balance
between prediction accuracy and computational cost as
compared to the multiple linear regression (MLR) and least
absolute shrinkage and selection operator (LASSO) ap-
proaches,176 the ES-GP method is significantly more accurate
than ES-LiR.175

A less direct approach is to use ML methods to accelerate the
search of the sampling space, for example, ML-enhanced MD
simulations to allow simulation of more extreme types of liquid
electrolytes. One particular use is when dipole polarization plays
a major role for the dynamics, for example, highly concentrated
electrolytes (HCE) and ionic-liquid (IL)-based electrolytes.
The most direct approach implemented is to learn the
polarization term in a cost efficient way by NNs, e.g., refs 177
and 178, but also the surrounding neighborhood can be used to
give an atom wise description of the system in order to evaluate
the forces acting on a particle (as, for instance, a molecule) using
Deep Tensor NN.179,180 This provides an efficient way to
generate data, with the caveat that information on the physical
interactions is lost. Similar approaches have been used to study
electrolytes of Zn2+ in water showing that it is possible to apply
ANN to learn an effective physical potential even for highly
disordered systems.181 However, it is yet to be proven how this
method performs when the system complexity is increased by
including both anions and cations, as well as solvent(s).
Preliminary results from the Johansson group (Chalmers
University of Technology, Sweden) working together with the
MIT group179,180,182 indicate that the method works well. They
have trained the network on a HCE of LiTFSI in ACN. The
network data presented in Figure 12 show a small mean average
error (MAE) of 1.2 kcal mol−1 Å−1, which is small, but a larger
training data set is needed to comfort the results before
publication.
Even if too often forgotten, ML can be applied to electrolyte

studies not only from the computational point of view but also
from the experimental one. There are several ways ML can be
used to aid or enhance experimental studies of electrolytes,
ranging from ANN to be applied to interpreting spectroscopy
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data to (ideas of) fully automated laboratories.183−185 This
approach indeed opens up for more efficient experimental
studies of liquid electrolytes as well as a solution to many of the
problems with simulating complex electrolytes and comparisons
with experimental data.
2.2. Accelerated Multiscale Modeling of Materials

From a physical-based modeling viewpoint, first-principles
methods from quantum mechanics (e.g., DFT) are the most
accurate simulation approaches. These methods are very useful
to elucidate specific molecular-scale mechanisms, which we
could only speculate on when addressed through experimental
techniques. However, the application regime of these methods is
nowadays limited to systems consisting of a small number of
atoms, mainly due to high computational cost associated with
first-principles calculations. First-principles methods are essen-
tially limited in terms of accounting for the length and time
scales of relevant phenomena affecting cell performance (e.g.,
space charge layer formation, interfacial ion transport,
degradation reactions, defects formation, etc.). Steady advances
in computational power will help to partially mitigate this issue

in the future, and simulating larger length and time scales than
possible today will eventually be affordable.144 This should
enable the consideration of more realistic materials models,
ultimately capable of accounting for the underlying chemical and
physical mechanisms that often operate at multiple scales
simultaneously in battery materials and associated phenomena
such as interphase formation and evolution (Figure 13) or ionic
transport in composite electrodes.
However, accurate first-principles methods will probably be

still too computationally costly to be routinely and timely
applied and a much less computationally intensive alternative,
the so-called interatomic potentials, which are sets of para-
metrized functions, are available. Interatomic potentials depend
on several parameters that need to be fitted empirically to
available experimental or high-level quantum mechanical
calculations. However, two main limitations of interatomic
potentials are their low transferability and nonreactivity.
Essentially, this means that a given interatomic potential set is
only valid and accurate for the specific model system for which it
was fitted. Extending the use of existing interatomic potentials to
other systems of interest (even of the same chemical
composition) should always require thorough validation and
re-parametrization, which is not always possible because of a lack
of available experimental or accurate theoretical data. In
addition, depending on the functional form used in the
interatomic potentials, including chemical reactions may not
always be feasible.
The implementation of ML techniques in materials science

workflows50 can certainly help accelerate current computational
efforts. In particular, ML-assisted approaches could help
improve the representation of the local chemical environment
used in many-body interatomic potentials.129 In this context,
Deringer and Csańyi proposed a Gaussian approximation
potential (GAP) model to construct interatomic potentials
from a ML representation of DFT potential energy surfaces.186

They applied the method to MD simulations of liquid and
amorphous carbon materials, including the study of high-
temperature surface reconstructions. With an overall perform-

Figure 12. Preliminary results of an ANN trained on HCE LiTFSI in
ACN by Johansson’s and MIT groups.179,180,182

Figure 13. Complexity of a typical battery solid electrolyte interphase (SEI) increases continuously, from the molecular level to the macroscale.
Assessing the state of the interphase requires therefore the combination of a range of simulation (blue), electrochemical (orange), and characterization
(green) approaches.129 Figure reproduced with permission from ref 129. Copyright 2019 Elsevier.
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ance somehow between DFT and state-of-the-art interatomic
potentials, the proposed GAP model showed therefore
promising capabilities for large-scale atomistic simulations of
amorphous simple materials. Engaged in similar efforts, Li et al.
trained an ANN potential using tens of thousands of DFT-
computed Li3PO4 structures.

187 The resulting ANN potential
yielded accurate predictions of Li vacancy formation energies,
Li+ migration energies, and diffusion coefficients of crystalline
and large-scale amorphous Li3PO4, with predicted activation
energies in very good agreement with experimental measure-
ments. In spite of the success of these two studies, it is important
to remark that long-ranged electrostatics in ionic systems still
remain a challenge for interatomic potentials machine-learned
from local structural descriptors. During a recent effort to solve
this issue, Deng et al. introduced a new approach that combined
a so-called spectral neighbor analysis potential (SNAP)
formalism with electrostatic interactions, which the authors
named eSNAP.188 Taking as a case study a Li superionic
conductor, Li3N, the study showed that the eSNAPmodel yields
significantly better predictive power than traditional Coulomb−
Buckingham interatomic potentials when assessing multiple
properties, such as lattice constants, elastic constants, phonon
dispersion curves, as well as long-time, large-scale Li ionic
kinetics. In liquid electrolytes, Shao et al. showed that the ANN
potential enables MD simulations of concentration-dependent
ionic conductivity in alkaline electrolyte solutions, which are
otherwise not feasible with brute-force DFT/MD simulations.
In particular, they showed how the ion transport changes from
the structural diffusion (Grotthuss mechanism) at the low
concentration to the vehicular mechanism at the high
concentration.189

The previously discussed studies certainly demonstrate the
ability of ML potentials to enable large-scale simulations of
complex compounds such as amorphous materials. However,
ML-potential-assisted sampling requires evaluating a large
amount of reference data points, especially when increasing
the number of different chemical species to be considered and
dealing at the same time with highly disordered or amorphous
structures. Trying to mitigate this issue, Artrith et al. proposed a
specific ML potential trained on a much reduced set of DFT
calculations that were used to sample exclusively low-energy
atomic configurations with a ANN-potential-assisted genetic
algorithm.190 For the case study of amorphous LixSi alloys, the
authors showed that such an approximated sampling approach

was able to accurately reproduce a fully first-principles phase
diagram, reducing the number of training first-principles data
points by at least 2 orders of magnitude with respect to the
construction of a completely converged general ML potential
(Figure 14).
ML-assisted development of interatomic potentials has also

been applied to estimate the local properties of active electrode
materials through cluster expansion (CE) methods. ML is
particularly useful to increase the sampling efficiency (smaller
clusters) when compared to conventional CE Hamiltonians of
complex multibody interactions, as Natarajan and Van der Ven
demonstrated by implementing a ANN model to reproduce
DFT site energies of Li-vacancies in disordered LiTiS2.

191

Similarly, Chang et al. have also integrated ML techniques into
the general purpose CE code CLEASE.192 This approach is, in
principle, generalizable to the prediction of any scalar property
(e.g., formation energy, volume, bulk moduli, etc.) of multi-
component systems as a function of site occupation distribution,
making it particularly useful to describe alloys and disordered
intercalation compounds.
Jørgensen et al. have developed DeepDFT, a deep learning

model formulated as a neural message passing on a graph,
consisting of interacting atom vertices to predict the charge
density of large systems very fast but still achieve QM accuracy.
The model has been tested for NMC cathodes (with any level of
Ni:Mn:Co ratio and varying level of lithiation) as well as liquid
electrolyte (EC).193

Finally, ML techniques can also help analyze and interpret
results of conventional MD simulations. To this end,
unsupervised learning methods are particularly suitable. For
example, Chen et al. developed a density-based clustering of
trajectories (DCT) method to elucidate complex Li diffusion
mechanisms from MD simulations of Li7La3Zr2O12 solid
electrolyte.194 By calculating nuclear densities from MD
trajectories, the DCT was able to recognize lattice sites, classify
them into different types, and identify Li+ hopping events.
Further spatiotemporal correlation analysis revealed the
existence of long-ranged diffusivity or dominance of back-and-
forth jumps as a function of the crystal structure (cubic or
tetragonal) and Li-vacancy concentration. This information was
relevant to identify the uncorrelated (correlated) Li diffusion in
cubic (tetragonal) Li7La3Zr2O12.

Figure 14. Schematic workflow of an ANN-potential-assisted genetic algorithm used to construct the phase diagram of amorphous LixSi.
190 Figure

reproduced with permission from ref 190. Copyright 2018 AIP publishing.
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2.3. Experimental Planning, Materials Screening, and
Synthesis

While computational HT battery materials screening is
developing at a sustained pace, experimental validation has
become the main bottleneck for materials discovery. The
traditional experimental process, based on researchers’ chemical
intuition and trial-and-error single-batch experiments scheme, is
inherently slow and economically expensive. To overcome this
limitation, several groups have proposed to use HT synthesis
methodsmost of them consisting of combinatorial ap-
proachesto screen both compositional spaces and synthesis
conditions. Examples of combinatorial screenings of battery
materials include exploration of composition ranges in negative
electrode Si−M (M = Cr, Ni, Fe, Mn) thin films using physical
vapor deposition methods,195 investigation of different prep-
aration conditions on LiNi1/3Mn1/3Co1/3O2,

196 mapping of the
phase diagrams of the systems Li−Ni−Mn−Co−O,197−199 Na−
Fe−Mn−O,200 and Li−Fe−M−PO4 (M = Mg, Mn),201,202 and
using sol−gel ceramic synthesis routes. This shift from single-
batch to parallel synthesis requires designing alternative
synthesis setups, ideally operating automatically, but it also
requires a paradigm shift in terms of sample handling and
characterization, as well as data analysis. HT experimental
approaches enable production of large and complex exper-
imental data sets, which can be analyzed to extract correlations
between synthesis conditions, and sample chemical nature,
purity and properties. ML models can be used for this purpose,
even though they are not yet widely applied in the battery field.
Similarly, robotics combined with AI or ML is a promising
candidate for autonomous material synthesis and electrode/cell
optimization. However, few examples of this approach have
been reported so far in the battery field,185,203 calling for further
studies in this direction.
Beal and co-workers produced thin-film sample libraries of Li-

ion electrolyte material Li3xLa2/3−xTiO3 solid solution and
surrounding compositional space on different substrates.204

They used HT physical vapor deposition (PVD) with off-axis
evaporator sources to obtain thin films with gradient
compositions. Crystalline materials were obtained after thermal
treatment. Samples were analyzed combining laser ablation
inductively coupled plasma mass spectroscopy (LA-ICP-MS),
spectroscopic ellipsometry, spectroscopic impedance, and X-ray

diffraction (XRD). XRD data were analyzed by PCA and MCR-
ALS to determine the crystalline phase distribution diagrams of
thin films as a function of composition. The authors first
employed a data-mining technique to get an overview of the
large data set (6276 fields): recursive partition analysis enabled
one to produce a DT classifying the importance of synthetic
parameters (substrate, thickness deposition, and annealing
temperatures) and elemental composition. Then, an ANN
including a model data matrix (MDM) was used to analyze the
influence of eight parameters on the impedance behavior and
enabled it to determine the composition presenting the
optimum total ionic conductivity (Figure 15).
Alternatively, literature data (or text) mining is another AI-

aided approach that can contribute to improve knowledge about
materials synthesis. In a project not specifically focused on but
including battery materials, Ceder’s group examined the
synthesis conditions for various metal oxides and sulfides across
tens of thousands journal articles.205 In each selected paper, the
experimental sections were analyzed using parse trees, from
which synthesis step parameters were extracted thanks to NN
word labeling. The resulting text-mined synthesis conditions
database is publicly available at ref 206. A simple analysis of this
database enabled the authors to show the relationships between
synthesis temperature and the compositional complexity of the
metal oxides. For instance, quaternary lithiummanganese nickel
oxides are statistically produced at a higher annealing temper-
ature than binary oxides such as alumina. The authors then used
feature selection and classification techniques to identify the key
factors that drive synthesis outcomes. They trained a DT across
22,065 journal articles on titania nanotube synthesis over 27
synthesis variables, and they showed for example that the NaOH
precursor concentration is a determinant parameter in the
hydrothermal synthesis of titania nanotubes. Finally, they
compared a nonlinear Gaussian kernel SVM to a linear heuristic
classifier in the prediction of the tetragonal phase formation in
BaTiO3 and BiFeO3 and on the 2D-like morphology of ZnS and
CdS. However, the authors of this study pointed out the
necessity to improve ML models to retrieve information from
the whole articles, including all sections of the main manuscript
but also tables, figures, and Supporting Information; the lack of
standardization on the presentation of the results is a big
challenge for text mining. The general disregard for negative

Figure 15. (A) Recursive partitioning analysis of the effect of synthetic parameters (elemental compositions, annealing, and deposition temperatures)
on the percentage of Li3xLa2/3−xTiO3 observed within the samples deposited. (B) NN-based predicted total ionic conductivities in Li3xLa2/3−xTiO3 as a
function of composition using empirical results as a training data set. Figure reproduced with permission from ref 204. Copyright 2011 American
Chemical Society.
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result reports is also a considerable limitation for the
development of this approach; failed syntheses and unexcep-
tional materials properties measurements would indeed
constitute valuable data for literature data-mining-driven
syntheses.139 Additional discussions in relation to text mining
can be found in section 6 of this Review.

2.4. Perspectives and Challenges

The traditional experimentation process is based on a
researcher’s chemical intuition and trial-and-error testing.
However, this approach is inherently slow and economically
expensive. HT experimentation, where a pool of candidates are
first synthesized massively and then characterized, can mitigate
in part this issue, especially when candidate materials are
selected for experimental validation upon previous fast
computational screening. However, the compositional space
offered by the periodic table for the search for new battery
materials is colossal. And the applicability of HT approaches is
limited because of their inherent systematic search of chemical
spaces, which often yields a combinatorial explosion and makes
impractical the exhaustive rendering of a given candidate space.
AI-aided approaches can help overcome this issue. The

central idea of this emerging new methodology is moving from
pure HT exploration to navigating the candidate space in a
selective manner and, by so doing, significantly reducing the
number of required experiments or intensive computations. In
other words, bring down the test matrix from many options to a
select number of options and, therefore, provide unprecedented
time reduction on current trial-and-error approaches in battery
materials research. Essentially, this new paradigm reformulates
the traditional discovery process as an optimization problem,
where unbiased data-driven algorithms intend to emulate the
researcher’s chemical intuition.
If successful, this new paradigm will allow the overall design of

materials toward next battery generations in a quicker, cheaper,
and more reproducible way than with conventional HT
methods. In this section, we reviewed a representative number
of recent examples of how AI-based techniques can indeed
contribute to battery materials discovery. However, important
challenges remain and will certainly be the focus of future work:

(1) Universal materials descriptors. The efficiency and,
ultimately, the success of a ML model relies on the
selection of appropriate descriptors. Descriptors that
encode as much as possible of relevant physics tend to
generalize better. However, despite progress in recent

years,207 automatic schemes capable of providing
universal descriptors suitable for any arbitrary target
property are still far from systematic. Solving this problem
will certainly require large doses of creativity.

(2) Data scarcity. While the number of descriptors in ML
procedures can be large, the size of training data sets could
be relatively small. This unbalance might, in general, lead
to overfitting issues. To mitigate this, future research
directions should consider the development of ML
algorithms specifically geared for small data sets (e.g.,
hierarchical ML, reinforced learning, sequential learning,
etc.). A useful additional strategy could be the use of
transfer learning by incorporating theoretical data to
experimental data, applying experimental-based correc-
tive factors to computed data (e.g., bias learning).

(3) Immature representation. AI methods do not incorporate
physical laws governing complex materials attributes, and
therefore, error propagation within the models is
uncertain. Cross-validation of different ML models can
help quantify such uncertainty by, for example, perform-
ing extensive calibration tests considering experimental or
computational campaigns based on the same benchmark
data. However, any training and cross-validation scheme
requires a sample that is representative of the full chemical
space under exploration. Truly representative samples are
indeed very difficult to obtain, and in general, we need
better methods to assess the error bars and transferability
of ML models.

(4) A lack of standardization. Missing agreed-upon data
standards in materials not only hinder data to be shared
and mined but also hamper data curation and
interoperability, which is crucial to improve the predictive
power of ML models and their efficient training. There is
therefore a general need for convening working groups to
address this issue and promulgate data standards among
as diverse as possible stakeholders. Additionally, the
proposal and consolidation of standardized theoretical
and experimental test sets could be highly beneficial to
help users identify the best ML method for each specific
task as well as aid experts in developing new algorithms
against established approaches.

Figure 16. Infographic on theMLmethods recently used in the literature to optimize and/or better understandmanufacturing processes, including the
corresponding nature (simulated vs experimental data) of the employed databases.
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3. APPLICATION TO ELECTRODE AND CELL
MANUFACTURING

Battery electrode and cell manufacturing constitute an emerging
field of application for ML-based approaches, and it constitutes
the focus of this section. In subsection 3.1, we recall the
constitutive elements of traditional industrial-scale manufactur-
ing process of LIBs. Then, in subsection 3.2, we review the main
approaches that have been proposed for data recovery, with
particular attention to the industrial scale, in the context of
building trustable and big enough data sets to be analyzed
through ML algorithms. Afterwards, in subsection 3.3 we
present the current applications of ML algorithms in the field of
battery manufacturing (schematic overview in Figure 16).
Lastly, subsection 3.4 offers a perspective on future applications

of AI/ML in the context of advanced manufacturing processes
and industry 4.0.

3.1. Traditional Manufacturing Processes

The main drivers for the development and improvement of LIB
electrode manufacturing processes are the need of higher energy
densities and lower costs to meet rising consumer demands.
From a practical point of view, this lies mostly on the ability to
significantly increase the electrode volume ratio of active
materials (AMs) and thickness. To reach this goal, the
manufacturing processes as a whole should be optimized to
produce electrode architectures, assuring good electrical and
ionic conductivities and adhesion with the current collector
despite low additive volume ratio. Current LIB electrodes are
usually manufactured by mixing the electrode components
together with a solvent, forming a particle suspension called a

Figure 17. Schematic of typical LIB electrode and cell manufacturing processes.209 Reprinted with permission from “The Future of Battery Production
for Electric Vehicles”. Copyright 2018 The Boston Consulting Group Inc. All rights reserved.
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slurry that is coated onto a metallic current collector (copper
and aluminum for the anode and cathode, respectively). The
coating process is followed by a drying step to remove the
solvent and a calendering step to compress the electrodes to the
desired thickness/porosity (Figure 17).
Homogeneous coating requires a stable and processable

slurry, for which the slurry formulation, mixing procedure and
rheological properties are of paramount importance. Rheology
measurements, for instance, shear-rate viscosity curves, can give
a good indication of both slurry stability and processability.208

On the one hand, high viscosity for low shear rate (static
condition) is desirable, because a highly viscous medium
hampers particle aggregation and precipitation, which are the
main reasons of slurry instability. On the other hand, the slurry
viscosity should be as low as possible for the range of shear rates
applied during coating, typically tens to hundreds of Hz, which
eases the slurry processability. The electrode drying is a complex
process involving solvent evaporation, additive migration, and
particle sedimentation. The calendering (roll-pressing) step
aims to reduce electrode thickness/porosity, promoting
electronic conductivity, enhancing thickness homogeneity, and
increasing electrode volumetric energy density, but at the cost of
decreasing the active surface (AM surface in contact with the
electrolyte) and electrode ionic conductivity.
With regard to the cell assembly, once the electrodes have

been slit, calendered, and further dried to minimize moisture
and leftover solvent, the electrodes are cut to match the shape of
the desired cell format (Figure 17). This cutting step usually
leaves some uncoated tabs that will serve to make electrical
connections within the cell, usually carried out by ultrasonic or
laser welding. Three cell formats are typically employed: pouch,
cylindrical, and prismatic. The main advantages of pouch and
cylindrical cells are the low production costs and high energy
density at the cell level. By contrast, the prismatic cell format can
lead to advantages in terms of energy density at the pack level.
Once the electrodes are packaged into the cell housing, the

liquid electrolyte is added under a weak vacuum in extremely dry
conditions and tightly controlled temperatures. During the
filling process, metering precision, foaming, and the proportion
of electrolyte evaporation should be considered to guarantee a
homogeneous distribution of the electrolyte within the cell.
Next, the housing is sealed and the batteries are stored under
temperature-controlled conditions to enhance wetting and gas
diffusion.
The cell is finalized through the formation process. In this

time-consuming step, the final cell properties are established.
The solid electrolyte interphase (SEI) is formed in a controlled
manner at the anode, typically graphite-based ones, together
with some gas release that needs to be removed, sometimes by
reopening the cell before its final closing. The formation step is
characteristic of each manufacturer and generally comprises
some wetting time and slow (low C-rate) charging and
discharging, each taking several hours. Lastly, the cells are
stored in controlled environments to identify micro-short
circuits, a step referred to as aging that requires devoted storing
rooms in the manufacturing plant and lasts up to several weeks.
LIB electrode and cell manufacturing relies on highly complex

processes with many parameters to be optimized: electrode and
slurry formulation, chemical nature of AM(s), additive(s) and
solvent(s), times and speed of the powders premixing and slurry
mixing, coating speed and comma gap, evaporation time and
temperature, calendering pressure, types of machinery used,
formation protocol, etc. In addition, manufacturing optimiza-

tion is further complicated by the lack of fundamental
knowledge on the underlying physics behind some manufactur-
ing processes and their interconnections. As an example, the
viscosity of electrode slurries could be one of the critical
parameters affecting coating and drying processes. All the above
suggest that LIB electrode and cell manufacturing optimization
is difficult and highly costly in terms of time and resources for
both well-known and new chemistries. In this context,ML-based
approaches have strong potential to accelerate and guide
manufacturing optimization, as they can handle multidimen-
sional data sets and provide a better understanding of
manufacturing parameter interdependencies.210

3.2. Data Collection

The first step for developing a data-driven approach consists of
the implementation of suitable data acquisition and data
management (data warehouse) systems, allowing valuable data
sets to be built, e.g., using autonomous workflows. The data can
then be analyzed through ML algorithms aiming to disclose
hidden trends and build new knowledge, which can ease battery
manufacturing understanding and optimization. However, as
briefly discussed above, battery manufacturing is an extremely
complex and multivariable problem, where electrochemical
performances should be considered together with safety, cost,
life-cycle analysis, environmental footprint, and raw material
supply chain, among other factors. To address this complexity
through ML-based approaches, it is not possible to rely only on
data quantity, but particular emphasis should be placed on data
quality and veracity. Indeed, a wrong definition of the problem
or the use of incomplete/not suited data sets could easily lead to
wrong ML predictions. A statistical tool particularly suited to
avoid this is design of experiments (DoE),77,211 whose aim is to
define an experimental plan that both maximizes the statistical
relevance of the so-obtained data and minimizes the number of
experiments to be performed. Rynne et al. recently discussed this
approach in detail for the case of electrode formulation, showing
the potential of this technique in terms of building valuable LIB
manufacturing data sets, which can be analyzed through classical
statistical tools or ML algorithms.77 Particularly, by combining
DoE and statistical analytical tools, the authors of the
aforementioned works identified the best formulations, in
terms of mass percentage of AM, electronic conductive additive,
and binder, for high power applications. This was performed for
two different AM chemistries (LFP and LTO) and considering
two different electronic conductive additives (C65 and carbon
nanofibers) and binders (PVdF and TPE), as illustrated in
Figure 18. Overall, this work shows the potential of DoE, as
claimed by the authors, in the context of LIB manufacturing
optimization and calls for an upgraded version of this approach
combining DoE and ML tools to disclose complex nonlinear
relationships between manufacturing processes and electrode
properties.
Even if DoE is a valid tool for both academia and industries,

the complexity of data recovering and the amount of data
produced are significantly higher for the case of industries. The
rising demand for large-format lithium-ion cells will lead to
expansion and new developments of manufacturing capacities,
as well as to an increasing pressure to provide high-quality cells
at low cost.212 However, the complexity of LIB process chain
and the unknown interdependencies between process parame-
ters, intermediate product properties, and quality characteristics
are likely to lead to high scrap rates and great efforts for quality
control.30 In particular, the cumbersome formation and aging
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procedures before final quality check contributes significantly to
the manufacturing costs.213 Therefore, the identification of
quality relevant parameters is crucial for cell manufacturers and
plant engineering. Even if expert-based methods for quality
parameter identification have been successfully applied to the
ramp-up of battery production facilities,214 fundamental
evidence on the relevant interdependencies in battery
manufacturing can only be gained by experimental valida-
tion215−217 and data-driven methods.218,219 Due to the large
number of processes and interactions in LIB process chain, a
comprehensive experimental analysis of the production process
is likely to be particularly challenging.39 In contrast, data mining
methods have already demonstrated to be an efficient tool to

improve manufacturing processes, for example in the semi-
conductor industry.220,221 In this context, Turetskyy et al.
recently developed and reported a data-driven concept to
automatically or manually acquire relevant data along the
production line, process, store, and efficiently manage this data
and finally analyze it through ML algorithms, as summarized in
Figures 19 and 20.107 It should be underlined that the
aforementioned work was focused on product quality criteria,
but their procedure can be applied to other relevant industrial
challenges, for instance, reducing energy consumption, environ-
mental footprints, and costs. In addition, other critical aspects of
industrial data recovery, management, and analysis link to the
prosperous fields of sensor technologies, cyber-physical systems

Figure 18. Electrode capacity at 15C vs formulation for (top) 0 wt %, (middle) 10 wt %, and (bottom) 20 wt % of carbon black (C65). LiFePO4 (LFP)
formulations are reported on the first and second columns, while Li4Ti5O12 (LTO) formulations are reported on the third and fourth ones.
Polyvinylidene fluoride (PVdF) is used as a binder in the first and third columns, while polyethylene-co-ethyl acrylate-co-maleic anhydride (TPE), in
the second and fourth ones. The lines are iso-capacities with values given inmAhg−1, where the electrode weight without the current collector is used to
normalize the capacity. The empty areas are out of the study boundaries.77 Figure reproduced with permission from ref 77. Copyright 2020 American
Chemical Society.

Figure 19. Schematic of a LIB manufacturing process chain utilizing a data-driven approach.107 Figure reproduced with permission from ref 107.
Copyright 2020 Wiley.
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(CPS) and industrial internet of things (IIoT), as will be
discussed in more detail afterward.
Another critical aspect that should be considered when

discussing data recovery and analysis of battery manufacturing is
the uncertainty on the process parameters. Schmidt et al.222

proposed a model to describe and evaluate uncertainties along
battery production, showing that manufacturing uncertainties
significantly impact battery performance. Besides the results
achieved by the aforementioned work, it is of interest to
underline here the importance of uncertainties in battery
manufacturing and the difficulty to consider them explicitly in
classical ML models as NNs. Indeed, these models often use

numerical values (typically the average ones) without explicit
consideration of the associated error. This clearly points out a
limit of classic ML-based approaches, which should be taken in
mind when they are used. To tackle this limit, there are mainly
two possible strategies: (i) work with data as accurate as
possible, i.e., trustable data characterized by low error and high
statistical significance, or (ii) implement more complex
algorithm architectures to consider data uncertainties. (i)
necessitates systematic repetitions of experiments, while (ii)
requires the developments of probabilistic models as the ones
based on Bayesian inference or ML models trained and built to
output the average and the associated error.223 If none of these
approaches is used, the limits of validity and the reliability of the
ML model should be carefully assessed prior to its use.
3.3. Current Application

The first work addressing the use of ML for LIB electrode
manufacturing at the laboratory/prototyping scale was reported
by Cunha et al.224 In their work, the performance of three ML
algorithms (DT, SVM, and DNN) in terms of predicting
electrode properties as a function of manufacturing parameters
is compared. The authors analyzed the impact of the slurry main
characteristics (its active material weight ratio (wt %), solid
contenthere referred to as solid-to-liquid [S-to-L] ratioand
viscosity at the applied shear rate) over the dried electrode mass
loading and porosity. The slurries considered were made of
LiNi0.33Mn0.33Co0.33O2 (NMC), PVdF, and carbon black in
NMP solvent. It was found that SVM combines high accuracy
with a straightforward graphical analysis of the results, allowing
to easily identify trends between electrode features and
fabrication parameters. In particular, several trends linking the
electrode mass loading and porosity to the slurry characteristics
were disclosed, and all of them were explained in terms of the
slurry viscoelastic behavior. Some examples of results are shown
in Figures 21 and 22.
The results reported in Figure 22 offer the possibility to briefly

discuss an aspect of major importance in terms of manufacturing
optimization through ML. Indeed, the trends disclosed for the
electrode mass loading (Figure 21) can be easily explainable
considering the effect of slurry viscosity and composition on the

Figure 20.Concept of a LIB factory data warehouse and its connection
to data mining.107 Figure reproduced with permission from ref 107.
Copyright 2020 Wiley.

Figure 21. SVM classification in terms of the dried electrode mass loading levels (low, medium, or high) as a function of the slurry viscosity and S-to-L
ratio for different AM amounts: (A) 92.7%, (B) 94%, (C) 95%, and (D) 96%.224 Figure reproduced/adapted with permission from ref 224. Copyright
2020 Wiley.
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coating process, and the trends observed through the ML
algorithm can be easily noted by using the raw experimental
data, as well, while this was not the case for the electrode
porosity. The mismatch between the trends observed through
ML and through 2D plots of the raw experimental data leads to a
deeper study of the slurry rheological properties by means of
oscillation measurements. This leads to the understanding that
the trends observed through the ML-based approach were
correct and that they were linked to the effect of slurry storage
and loss modulus on the electrode porosity. It is of interest to
mention that, if from one side devoted experimental measure-
ments were needed to confirm the trends disclosed by the SVM
model, such trends would have been unnoticed if using the raw
experimental data only. In addition, the high accuracy reached
by using a small data set (82 data points) suggests that, if the data
quality is high enough, it is possible to get reliable information
from a ML algorithm trained with a small data set. In the case
above, for example, all of the data used to train the ML model
were obtained by averaging several experimental repetitions, all
performed by the same expert operator.
The data set developed and freely provided by Cunha et al.224

was recently used by Liu et al.225 In their work, Liu et al. focused
on the effect of the active material wt %, solid content, viscosity,
and comma gap (i.e., the gap used during the coating process)
on the electrode mass loading after the evaporation step. This
study was carried out through Gaussian process regression
(GPR)models (subsection 1.5.5) by using four different kernels.
The main differences compared to Cunha et al. are that (i) they
used regression algorithms instead of classification ones, (ii)
they were not interested in analyzing the effect of manufacturing
parameters on the electrode properties (as in Figures 21 and 22)
but rather in disclosing the relative importance of the analyzed
manufacturing parameters on the mass loading (i.e., which
parameter affects the mass loading the most ) in a quantitative
manner. In terms of accuracy, the exact predictive accuracy was
not disclosed, but it can be observed from the figures reported in
their publication that a high (most likely >90%) predictive
accuracy was obtained. In terms of results, they showed that the
comma gap is the key parameter controlling the mass loading, as

expected. However, they also showed that the solid content
affects the mass loading slightly more that the active material wt
% for all four kernels used. This stresses once more the crucial
role of the amount of solvent used during LIB electrode
manufacturing.
A similar approach was recently proposed by Chen et al.226 to

study the manufacturing of thin solid-state electrolytes, which
are promising candidates to avoid the risk of cell flammability. In
this context, principal components analysis, k-means clustering,
and SVM (F1-score = 0.94) were used to automatically guide the
manufacturing of Li6PS5Cl electrolytes. Similarly to the case of
Cunha et al.,224 2D graphs were used as a metric to understand
how formulation, amount, and kind of solvent affects the
electrolyte ionic conductivity and film uniformity/homogeneity,
guiding toward the optimal manufacturing conditions. This
approach has led to the manufacturing of LiNi0.8Co0.1Mn0.1O2
∥Li6PS5Cl ∥ LiIn cells that demonstrated a cyclability of 100
cycles at room temperature. In addition, the data set developed
during this work was published and it can be reused for further
analysis.
Thiede et al.227 introduced a data-driven approach focused on

the entire LIB cell production process chain, with quality check
as main focus. The goal of this approach is to identify critical
factors in the manufacturing chain, understand their impact on
the final battery performance, and avoid further production of
bad quality parts or adapt the process parameters in order to
bring back these parts to an acceptable tolerance range. The
method proposed is based on data mining, defined here as the
ensemble of procedures adopted to extract data along battery
manufacturing, and data analysis,218,227,228 as will be described
step by step in the following.
The first step followed by the authors was defining the cell

production process parameters (PPs) to be considered, and the
intermediate product features (IPFs) and final product proper-
ties (FPPs) to be characterized. For each PP variation
considered at least seven cells were made, underlining the
importance of working with highly accurate data, as commented
above when discussing the work of Schmidt et al.222 The second
step consisted of acquiring the data, either manually through a

Figure 22. SVM classification in terms of the dried electrode porosity (low, medium, or high) as a function of the slurry viscosity and S-to-L ratio for
different AM (NMC) weight contents: (A) 92.7%, (B) 94%, (C) 95%, and (D) 96%. Panels A′ and D′ provide the interpretation on the lack of low
porous electrodes in panel A and their existence in panel D, respectively.224 Figure reproduced/adapted with permission from ref 224. Copyright 2020
Wiley.
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web interface or automatically through data acquisition systems,
as, for instance, through the supervisory control and data
acquisition system (SCADA) or manufacturing execution
system (MES), similarly to the approach firstly proposed by
Turetskyy et al.107 Once the data was obtained, three steps were
followed to develop the final ML model: data cleaning, feature
selection, and hyperparameter optimization. Data cleaning
consisted of removing from the data set the columns with a
high number of missing data and the IPF columns with zero or
low variance, and replacing the missing values of the remaining

columns with average values. Then, the number of IPFs should
be reduced in order to keep only the most influencing ones,
which in this study was performed combining a LASSO
model229 with least-angle regression (LARS). Even if the
aforementioned step surely decreased the complexity of the
problem under analysis, increasing the ML model accuracy and
lowering the computational cost, this should be performed
carefully to avoid discarding features significantly affecting
manufacturing process and battery performance. Lastly, the
LASSO−LARSmodel is trained by using 80% of the so-obtained

Figure 23. Multicriterial analysis of influencing factors on three FPPs studied by Thiede et al.227 Figure reproduced with permission from ref 227.
Copyright 2019 Elsevier.

Figure 24.Overall workflow of the hybrid methodology presented in ref 21. Experimental and/or physics-based modeling results capturing the impact
of manufacturing parameters on electrode mesostructure properties (A) are embedded in a D-DEMG algorithm (B) that generates electrode
mesostructure associated to specific manufacturing conditions. These mesostructures are analyzed, building the data set (C) that is used to train and
validate ML algorithms. This allows describing mathematically the correlations between electrode properties and process variables as manufacturing
conditions (D). Dark gray arrows represent the steps considered along the case study presented in ref 21, while light gray ones indicate future
perspectives of this methodology. Figure reproduced with permission from ref 21. Copyright 2020 Elsevier.
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data set, by utilizing optimized hyperparameters, and tested with
the remaining 20%.
As a first case study, this methodology was applied to analyze

the effect of calendering, laser cutting, and z-folding (i.e., the
PPs) on 11 selected electrochemical IPFs and FPPs, as capacity
loss after the first cycle or self-discharge during aging, with a data
set obtained by producing 172 z-folded lithium-ion pouch cells.
The authors performed a one-way analysis of variance (one-way
ANOVA) to check the influence of each PP on the selected
FPPs, offering interesting insight into their relationships over the
process chain. An example is the significant influence of laser
cutting procedure on several FPPs. Figure 23a reports the
correlations that have been found between PPs and three FPPs,
while Figure 23b shows a combination of regression coefficients
and p-values (a p-value <0.05 stands for high statistical
significance). The latter representation is particularly conven-
ient, because it allows evaluating at one glance both the degree of
correlation between PPs and FPPs analyzed, i.e., the higher the
coefficient, the higher the correlation, and the statistical
relevance of such a correlation. As a result, the correlations in
quadrant (I) significantly affect the FPPs and they are
statistically confirmed, the ones in quadrants (II) and (III) call
for additional data acquisition to be correctly evaluated, and the
correlations in quadrant (IV) have low relevance.
The lackings of this work are the use of the LASSO−LARS

method as the only ML technique employed and the inner
difficulty of transferring this approach to different industrial
plants. Regarding the former, as claimed by the authors
themselves, other ML techniques, such as NNs and RF, should
be implemented in this methodology. Concerning the latter, the
differences among industrial (or preindustrial) plants call for
models to be developed considering the specific plant
instruments and infrastructures. Nevertheless, the model
developed by Thiede et al. can be used as a strong foundation
to build these models, which is the reason this work was
discussed in so much detail here. The same group recently
extended this approach, building a computational infrastructure
relying on CPSs and MLmodels to determine the IPFs required
to reach the target FPPs and for decision support.230 Even
though the size and veracity of the data set used should be
increased for applications to larger-scale production (they
considered 155 NMC | graphite pouch cells), this promising

approach can be generalized to other chemistries and cell
formats.
In addition to experimental results, data coming from physics-

based models can also feed ML algorithms. Duquesnoy et al.21

recently published a work whose objective is to combine the HT
of stochastically generated electrode mesostructures, allowing to
build rapidly big data sets, and the high reliability of
experimental and physics-based modeling results. In other
words, the authors proposed a hybrid methodology (Figure 24)
encompassing experiments, physics-based modeling, in silico
generated electrode mesostructures, and ML. In this context,
experimental results are used to quantify the evolution of
macroscopic electrode properties, such as porosity, thickness,
and mass loading, during a certain manufacturing process while
physics-based modeling results can be used to quantify the
evolution of the electrode mesostructures, such as percentage of
contacts and active surface, during the same manufacturing
process. Then, these trends are described in the form of
mathematical equation(s) through fitting or ML algorithms.
The second step (Figure 24, step B) consists of informing a data-
driven stochastic electrode mesostructure generator (D-
DEMG) about these trends through the mathematical
equation(s). In particular, here the D-DEMG algorithm is
capable of generating electrode mesostructures (electrode
volume in the order of 105 μm3), which are built by following
the trends disclosed experimentally and/or computationally. As
an example, knowing the AM particle size distribution and the
evolution of mass loading and porosity as a function of the
evaporation conditions, the D-DEMG algorithm is capable of
generating electrode mesostructures matching these properties,
linking electrode mesostructure and manufacturing condition.
In addition, a stochastic algorithm defines the macro/
mesostructure features that are not known from experiments
or modeling. The third step (Figure 24, step C) consists of
analyzing the features of the so-generated electrode meso-
strutures, as their tortuosity and effective conductivity, in order
to build a data set linking process variables, i.e., the
manufacturing condition, and the properties of the D-DEMG
mesostructures. To take into account the partially stochastic
nature of these structures, 10 or more electrode mesostructures
are generated for each condition and the data set is built by using
the average values. This is possible thanks to the low cost and
high throughput of the D-DEMG algorithm, as discussed in

Figure 25. (A) Example of outputs (for the case of the electrolyte tortuosity) from Duquesnoy et al.21 εinit stands for the electrode porosity prior the
calendaring, the color scale indicates the AMwt %, and the values reported in the graph indicate the electrode porosity after the calendering for certain
calendering pressure. (B) Correlations between calender pressure and electrode properties before calendering and several mesoscale properties studied
by Duquesnoy et al.21 Green and red colors represent direct and inverse relations, respectively, while the size of the circles indicates the degree of
correlation (i.e., big circles, strong correlation) obtained by a PCA-based study. The last column indicates the sense to which the property should be
tuned (i.e., maximize or minimize the property) in order to increase the energy density. Figure adapted with permission from ref 21. Copyright 2020
Elsevier.
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more detail in ref 21. Lastly, this data set is processed through
ML algorithms to find mathematical correlations between
manufacturing conditions and electrode properties, which can
also be used to construct human interpretable graphs mapping
these correlations (Figure 24, step D).
The methodology described in Figure 24 constitutes the core

of the ERC-funded ARTISTIC project, which aims to establish a
predictive digital twin of LIB manufacturing, allowing both
direct and reverse engineering.15 In the publication by
Duquesnoy et al.,21 a simpler version of this hybrid methodology
was applied to a first case study. In particular, the authors
focused on the calendering step and used only experimental data
(active material particle size distribution and evolution of
electrode porosity upon calendering) to feed the D-DEMG
algorithm. The ML-based analysis relied on a data set with >800
data points, each of them arising from the average properties of
10 D-DEMG electrode mesostructures, and studied the effect of
calendering pressure, electrode composition, and initial thick-
ness on several mesostructural electrode properties. The
summary of their findings is reported in Figure 25. This first
study demonstrated that this methodology is faster compared to
the state of the art and can lead to a more rational understanding
of the electrode-manufacturing correlations.
Gao et al.22,231 recently presented another approach based on

the idea of combining multiscale modeling and AI. This
approach, named cyber hierarchy and interactional network
based multiscale electrode design (CHAIN-MED), aim to map
the relationships between physical and virtual world to optimize
electrode design and manufacturing conditions. Particular
attention is also posed in linking the different scales of interest
for LIBs, i.e., nano, micro and macro features. Overall, the
CHAIN-MED approach is surely of interest for manufacturers
and researchers, but its main limitation is the need for a large

amount of data, requiring tremendous storage and computa-
tional resources.
Coming back to more classical approaches, Primo et al.232

recently analyzed the calendering step through an experimental
approach supported by advanced statistics (ANCOVA and
PCA) and ML classification based on k-means clustering. This
work analyzed 28 different calendering conditions, in terms of
applied pressure, roll temperature, and speed, for electrodes of
possible industrial interest, i.e., containing a high weight fraction
of AM (96 wt %). It was found that calendering pressure is the
parameter that mainly controls electrode porosity and
mechanical properties, while the roll temperature mainly affects
electrode electronic conductivity. This innovative procedure
was also able to propose an optimal range of temperature and
pressure, between 60 and 75 °C and from 60 to 120 MPa, for
maximizing the electrode volumetric capacity at 1 C (170
mA g−1). Even if these optimal ranges depend on the specific
machinery used, the proposed approach is transferable to other
manufacturing processes, machineries, and conditions.
The interest in physic-based models focused on one or more

manufacturing step(s) is rising, as previously reviewed in ref 233.
In addition, it has started to be demonstrated that the
parametrization of these models can be sped up through ML-
based approaches.
Lombardo et al.234 developed a coarse grained molecular

dynamics (CGMD) physics-based model to simulate LIB
electrode slurries and used a combination of DNN and particle
swarm optimization (PSO)235 to ease the force field (FF)
parametrization. The final aim of this work was to set up
appropriate metrics to validate simulated 3D slurry meso-
structures by using experimental results as a reference.
Particularly, the proposed approach relies on the comparison
of experimental and simulated slurry density and shear-viscosity
(η−γ) curves, which critically affects the coating and mixing

Figure 26. (A) Schematic of the particle swarm optimization algorithm developed by Lombardo et al.234 Left, initial guesses of the PSO algorithm in
terms of FF parameter values for the CGMD simulations (linked to their associated 3D slurry structures). Right, the PSO algorithm converged to the
FF parameter values needed to match the targeted experimental results. For each set of FF parameter values, a schematic of the associated slurry 3D
structure is reported as well. In Lombardo et al.,234 eight CGMD simulations were launched in parallel for each iteration. (B) PSOmerged with a DNN
algorithm to speed up the algorithm convergence. For each iteration, dots represent FF parameter values tested by the PSO, while the star indicates the
ones predicted by the DNN. All the results of each iteration were added to the data set in order to improve the DNN accuracy. At the end right, a
comparison of experimental (line) and simulated (dots) results is reported. Figure adapted with permission from ref 234. Copyright 2020 Wiley.
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processes and the electrode properties after coating and drying.
The simulated η−γ curves were obtained by using as inputs the
experimental slurry composition and active material particle size
distribution, while the fitting with respect to the experimental
results was carried out by parametrization of the FFs used for the
CGMD model.
Even if the results obtained allowed demonstrating the

correctness of both the model used and the parametrization
performed, the high computational cost of the proposed
approach could hamper its wide adoption. Therefore, the
authors developed several optimization algorithms based on
PSO theory to accelerate the model parametrization. Figure 26A
shows a schematic of its working principle. Briefly, in its simpler
version the PSO algorithm is able to launch several CGMD
simulations in parallel, recover and analyze their results by
comparing the simulated slurry density and η−γ curve to their
experimental counterparts, and finally guess the FF parameter
values needed to fit the targeted experimental results. This
procedure is performed iteratively until the PSO converges to
the actual FF parameter values needed to fit the experimental
slurry density and η−γ curve. Another approach (ML-driven
PSO) relies on a combination of PSO and DNN (Figure 26B),
where the identification of the most promising parameters is
performed by the PSO and DNN in parallel, which allows to
further speed up the parametrization. The results of both PSO
and DNN are added to the DNN data set at the end of each
iteration, aiming to improve its accuracy during the optimization
procedure.

3.4. Opportunities for Advanced Manufacturing and
Industry 4.0

As discussed above, data-driven methods are valuable tools to
boost the understating and optimization of a single manufactur-
ing process224 or the complete manufacturing process
chain.107,227

Industrial manufacturing is more standardized than the
academic-oriented materials research discussed in section 2,
and have the capabilities needed to build big data sets,
suggesting that AI/ML applied to this field has a strong
potential and can be helpful for accelerating process
optimization.12 Academic or national laboratories disposing of
battery manufacturing prototyping units can contribute in the
methodology development and demonstration, while lab-scale
research can contribute by developing ML-based tools and data
infrastructures aiming to bring new knowledge in the field.
However, the application of ML-based approaches to important
aspects such as recyclability and material availability remains
understudied, calling for actions in this direction.
To exploit to its maximum the ML and AI potential when

applied to battery manufacturing there is still an important piece
of the puzzle that is missing: the enhancement of industrial
production machineries and production processes to go from
modern industries to smart manufacturing or Industry 4.0. In
other words, the battery industry needs a paradigm shift on
production systems based on data recovery, storage, and
communication, combined with AI/ML-based model imple-
mentation and data analysis. A possible advantage of this shift
could be on the f ly optimization of the production processes as a
function of external stimuli, for instance, higher or lower amount
of resources or costs, different ambient conditions, or variation
in market demands. The rapid adaptation of cell production
chains could be particularly critical considering the price
fluctuation of key elements as cobalt and lithium236 or the

sensibility of certain cell components to water and oxygen
content, among others. The term “Industry 4.0” was introduced
for the first time at the Hannover Messe Trade Fair established
by the German government in 2011.237 Even if it is difficult to
find a universally accepted definition of Industry 4.0, common
features are interconnectivity between physical and cybernetic
domains, decentralized decisions, and humans-robots collabo-
ration.238 To reach such a visionary goal, manufacturing plants
should overcome four main challenges: (i) the capability of
performing real-time measurements all along the manufacturing
chain, (ii) being able to interact with the physical industrial
environment through digital infrastructures, (iii) well-estab-
lished communication procedures able to connect machines,
operators, and data management systems, and (iv) the
computational capability to store, clean, and analyze the so-
obtained data.
The first challenge could be addressed thanks to sensors239

able to measure critical fabrication parameters and intermediate
product features in the context of continuous manufacturing,
together with manual data recovery when automatic approaches
are not possible. The second challenge is linked to CPS,240 i.e.,
systems enabling intercommunications between digital and
physical worlds, allowing recovery of critical information coming
from the manufacturing line and taking actions to adjust on the
f ly the manufacturing protocol. The third challenge is associated
with the field of IIoT,241 which should allow interconnecting all
the information coming from sensors and production
machineries to the operators and servers, enabling their real
time analysis and easing decision-making. Lastly, the fourth
challenge is a function of the computational resources available
in situ or in cloud and to the algorithms available to analyze the
data, in which ML-based algorithms are likely to play a critical
role. In addition, it should be stressed that the computational
platforms developed in the context of Industry 4.0 should also
consider the product end of life and recyclability, which is
becoming of increased interest in countries with few raw
materials. In this context, life cycle assessment analyses are likely
to play a key role in the future.242−244 Other key technologies
that will likely play a role in this revolution are digital twins245

and augmented/virtual reality. The former can be based on a
combination of multiphysics, surrogates, and ML-based models
to reproduce manufacturing processes in silico, assisting the
production of targeted electrode mesostructure/electrochem-
ical performance,15,16 while the latter can be used for support,
user-friendly usage, or training. Lastly, cybersecurity will be
critical as well and a possible contribution could come from the
blockchain technology, among others.246

4. MATERIALS AND ELECTRODE ARCHITECTURE
CHARACTERIZATION

In this section, we review how AI/ML methods can assist
electrodes and materials characterizations in the preprocessing
and segmentation of data, the feature detection, the pattern
identification, and to conduct characterization experiments in
real time. Characterization-related data production nowadays is
several orders of magnitude higher than a few decades ago,
mainly due to the rapid growth around the fast detector
technologies. Improvement of computing power and emergence
of ML algorithms allow scientists to build data-driven
frameworks to automate the management of big data acquired.
The early age of AI based on DNN algorithms was essentially
focused on image processing, with the final aim of identifying
specific image features and separating them via the segmentation
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step. CNNs have gained tremendous success in solving complex
inverse problems, which are the main difficulties of the
reconstruction steps for tomography and ptychography
techniques. ML can also be used to assist the complex analysis
of spectra and diffraction patterns, and in particular for the

analysis of HT and in situ/operando data. In the following, we
review the applications of ML to the characterization of battery
materials (subsection 4.1) and electrode architectures (sub-
section 4.2). We also refer to relevant works whose ML
methodologies could be easily applied to battery materials,

Figure 27. Infographic on the ML methods recently applied to materials and electrode characterization, including the corresponding nature
(calculated vs experimental data) of the employed databases.

Figure 28. Performance of five ML classifiers (kNN, RF, CNN, MLP, and SVC) on coordination environment classification. (A) Accuracy and (B)
Jaccard score for the five ML classifiers broken down by elemental categories, namely, alkali metals, alkaline earth metals, transition metals (TMs),
post-transition metals, metalloids, and carbon. (C) Relationship between the RFmodel’s classification accuracy and the data set size. (D) Relationship
between the RF model’s classification accuracy and the training label entropy. Cation elements with a classification accuracy less than 0.85 are labeled
in parts C and D. Figure reproduced with permission from ref 249. Copyright 2020 Elsevier.
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Figure 29. (a) NN data architecture and workflow for crystal space group determination from experimental high-resolution atomic images and
diffraction profiles. Seeding the prediction of crystallography is a hierarchical classification using a one-dimensional CNN model.252 (b) XRD data
preparation protocol. Comparison between experimental and simulated XRD patterns for Al2O3, Li2O, SrO, and SrAl2O4. Green and brown lines stand
for experimental and simulated XRD patterns, respectively.253 (c) A scheme of the automated determination of crystal symmetry based on diffraction
experiments.254 (d) The ratio of correctly classified structures versus space-group number from the CNN model. Marker size reflects the relative
frequency of the space group in the training set.255 (e) This CNN model trained by the data augmentation technique would not only open numerous
potential applications for identifying XRD patterns for different materials.256 (a) Figure adapted with permission from ref 252. Copyright 2019
American Association for the Advancement of Science. (b) Figure reproduced with permission from ref 253. Copyright 2020 Springer. (c) Figure
reproduced with permission from ref 254. Copyright 2020 Springer. (d) Figure reproduced with permission from ref 255. Copyright 2019
International Union of Crystallography. (e) Figure reproduced with permission from ref 256. Copyright 2020 American Chemical Society.
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components, and electrode characterization discussing possible
future applications of ML in the field (subsection 4.3). Figure
Figure 27 depicts a schematic of the ML methods employed in
material and electrode architecture characterization, their
frequency, and the nature of the data set used.

4.1. Materials Characterization

4.1.1. Spectroscopy Techniques (XAS). XAS is frequently
used to characterize electrode materials, as it enables one to
determine the oxidation state of the redox elements in the
electroactive compounds but also provides information on the
local environment of the probed elements. The analysis of XAS
data is however not straightforward. Typical analysis relies on
comparisons of the spectra of interest with those of well-known
reference compounds. Open libraries of experimental data are
rare. Therefore, the development of ML tools for the advanced
and accelerated analysis of spectroscopic characterization data
is, here also, hampered by the availability of reliable data sets.
ML analysis of experimental data is usually done on narrow sets
of chemistries. The progressive change of public institutions’
policies toward open access data could favor the creation of
high-quality open access experimental databases, in particular
for these costly and limited-access characterization spectro-
scopic techniques which require synchrotron or neutron
sources.247 Public databases of raw data are indeed being
progressively built thanks to limited-time (typically 3 years)
embargo policies on the data obtained from such public
institutions. However, the usability of these data will depend on
the availability and reliability of the associated metadata
provided by the users. Meanwhile, ML methods are developed
on larger data sets and broader chemical space using computed
data (cf. section 2). However, it remains still unclear to what
extent ML models trained on computed data can be applied to
experimental situations.
The Materials Project database has hence been used to

generate a large public database (XASBD) of 58,0000+ K-edge
XAS spectra of 52,000+ crystal structures.248 From this database,
Ong’s group assessed five ML models (kNN, RF, MLP, CNN,
support vector classifier (SVC)] for the identification of the
coordination number and coordination motifs of 33 cations
using a training set of ∼190,000 site-specific K-edge XANES of
∼22,500 oxides.249 The best results were obtained using RF
models, which enabled one to determine the coordination
number and coordination motif of a given metal with accuracies
and Jaccard score as high as 85.4 and 81.8%, respectively; these
scores outperform the baseline of a systematic assignation of the
known preferential coordination environment for each cation.
The RF classifiers were then applied to 28 XANES spectra and
successfully identified the coordination environments of 23 of
them [prediction accuracy of 82.1% and Jaccard score (a statistic
index used to compare the similarities between samples, i.e., the
higher the value, the higher the similarities) of 80.4%,
comparable to the computational test set] (Figure 28).
4.1.2. Diffraction Pattern Analysis. Experimental X-ray or

neutron powder diffraction (XRD and NPD) patterns are
typically analyzed using peak positions, intensities, and full
widths at half-maximum (fwhm) of peaks. Scientists usually use
open or paid databases, such as the Crystallography Open
Database250 (COD) or the Inorganic Crystal Structures
Database (ICSD)251 to identify from the XRD patterns the
crystalline phases present in the analyzed samples. For electron
diffraction (which is usually repeatedly performed on many
single crystals), the data analysis follows a similar tedious

workflow of comparing the experimental patterns with predicted
ones. This procedure is laborious and time-consuming due to
the manual analysis. A robust and automated tool to determine
crystal symmetry turns out to be of importance in material
characterization and analysis. It becomes urgent to develop new
data processing tools with automation and recommendation
functions. Recently, AI models based on CNN algorithms have
shown great potential in managing the large volumes of
characterization data for rapidly and automatically identifying
composition and phase maps as well as constructing structure
and property relationships. Here recent studies reported that
deep learning methods can effectively reveal the correlations
between X-ray or electron-beam diffraction patterns and crystal
symmetry. A CNN can help in reliable classification of crystal
structures from a small amount of TEM images and electron
diffraction patterns, allowing phase identification of the
constituent phases in a multiphase inorganic mixture, predicting
the space group of a structure given a calculated or measured
atomic pair distribution function (PDF) and quickly identify the
experimental XRD patterns of metal−organic frameworks.
Aguiar et al.252 developed a CNN model for reliable

classification of crystal structures from small amounts of TEM
images and electron diffraction patterns (Figure 29a). Their
model, using a deep-learning nested framework, can extract
crystallographic information from high-resolution image and
electron diffraction data to effectively extend the limits of
human-centric analysis. The CNNmodel is trained on a data set
consisting of diffracted peak positions simulated from over
538,000 materials with representatives from each space group.
As a result, even peaks in diffracted low-signal to noisy images
can potentially be extracted. The simplicity and efficiency of the
method, capable of predicting crystallographic structures,
reduce artifacts and robustly address the need for efficient
cross-validation, surpassing limitations in the crystallography of
unknown materials.
Lee et al.253 developed CNN models allowing phase

identification of the constituent phases in a multiphase inorganic
mixture sample consisting of Sr, Li, Al, and O (Figure 29b).
They simulated 1,785,405 synthetic powder XRD patterns by
combinatorically mixing the simulated powder XRD patterns of
170 inorganic compounds. The CNNmodels use this large data
set for training steps. Networkmodels are built and trained using
this large prepared data set. The fully trained CNN model
accurately identifies the constituent phases in complex multi-
phase inorganic samples. A test with real experimental XRD data
returns an accuracy of nearly 100% for phase identification and
86% for three-step-phase-fraction quantification.
Tiong et al.254 used a combined approach of shaping 2D X-ray

and electron diffraction patterns and implementing them in a
specific NN model, called MSDN, which substantially improves
the accuracy of classification (Figure 29c). They demonstrated
that the multistream DenseNet (MSDN) model, which uses a
data set of 108,658 individual crystals sampled from 72 space
groups, achieves 80.2% space group classification accuracy,
outperforming conventional benchmark models by 17−27
percentage points. The pattern shaping strategy, used to
differentiate close symmetrical crystal systems, appears to
enhance the classification accuracy. Furthermore, the novel
MSDN architecture is advantageous for capturing patterns in a
richer but less redundant manner relative to conventional CNN.
This new CNN model enables accurate classification of space
groups and makes the identification of crystal symmetry easier.
In a perspective point of view, defects exist in a large variety of
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forms in the crystals such as grain boundaries, dislocations,
voids, and local inclusions and may have a large impact on
material properties. Identifying the crystal symmetry of defected
materials based on the same type of model would be intensively
explored in the next few years.
A CNN model, presented in the paper of Liu et al.,255

successfully predicted the space group of a structure given a
calculated or measured atomic PDF powder pattern of that
structure. It can identify space groups for 12 out of 15
experiments of PDF. The model has been trained on more than
100,000 PDFs calculated from structures in the 45 most heavily
represented space groups. Figure 29d shows the ratio of
correctly classified structures versus space-group number from
the CNNmodel. This model, which is implemented with Keras,
can reach an accuracy of 91.9% from the top 6 predictions when
it is evaluated against the testing data. This preliminary success
of the CNN model seems to show the possibility of model-
independent assessment of PDF data on a wide class of
materials.
Wang et al.256 proposed a CNN model for fast identification

of experimental powder XRD patterns of metal−organic
frameworks (MOFs). The network was trained based on
theoretical data and very limited experimental data. Data
augmentation for training the model uses noise merged with the
main peaks extracted from theoretical patterns to produce new
patterns (Figure 29e). The optimized CNN model showed the
highest identification accuracy of 96.7% for the top 5 rankings
among a data set of 1012 XRD patterns. This CNNmodel opens
numerous potential applications for identifying XRD patterns
for different materials but also paves avenues to autonomously
analyze data by other characterization tools such as Fourier
transform infrared (FTIR) spectroscopy, Raman, and nuclear
magnetic resonance (NMR) spectroscopies.
Ceder’s group257 recently developed a probabilistic deep

learning algorithm to identify complex multiphase mixtures in
powder XRD patterns. The CNN was trained on simulated
patterns of 140 reference phases of the Li−Mn−Ti−O−F
chemical space, which includes some battery materials of
interest such as spinel and rocksalt phases. The training set was
augmented with physics-informed perturbations to account for
experimental artifacts that can arise during experimental sample
preparation and synthesis (i.e., strain, texture, and domain size),
as well as with off-stoichiometry perturbations to account for
hypothetical solid solutions, resulting in ∼20k patterns. The
trained algorithm was tested against thousands of simulated
patterns and dozens of experimental patterns, both achieving
high accuracy (92−94%) for the phase identification. The
authors highlight that the method is not intended to replace
Rietveld refinements, but it can provide a rapid phase
identification to support HT and autonomous experiments,
and to serve as a starting point for further Rietveld analyses.
4.1.3. AI-Aided Data Analysis of in Situ/Operando

Experiments.The continuous development of the state-of-the-
art instrumentation and software, the improvement of time,
energy and spatial resolution, and the acceleration of data
acquisition rate, in particular at large-scale facilities, have
generalized the use of in situ and operando experiments to
study the mechanisms involved, for example, in synthesis
reactions, battery operation, or battery material abuse
conditions. Such experiments usually produce large data sets,
containing several tens or hundreds of spectra or patterns. The
traditional approach consisting of a point-by-point or spectrum-
to-spectrum analysis becomes then inefficient, or sometimes

simply unfeasible. In addition, the access to cutting-edge
facilities, such as synchrotron or neutron sources, is usually
granted for punctual experiments. Therefore, as pointed out by
Aoun et al.,258 a quick and effective evaluation of the results “on
the fly” of the experiment is highly desirable to enable the
research team to decide for eventual experiment modifications
depending of the results observed live, and thus get the most of
the granted beamtime.
To rapidly extract relevant information and analyze such large

data sets, which can most of the time be described as a series of
ranked correlated data, informatics tools and in particular
chemometrics methods have proven to be efficient (chemo-
metrics is an interdisciplinary area between analytical chemistry
and statistics). Although developed since the beginning of
computer and automated data acquisition in the 1970s, these
methods have been applied to the battery field in the last 15
years. Fehse et al. have recently published a short review about
the application of PCA and MRC-ALS to analyze the large data
sets of operando XAS, full-field transmission soft X-ray
microscopy, or Mössbauer spectroscopy experiments to under-
stand the reaction mechanism of battery materials.259 These two
methods rely on decomposing the series of spectra into
independent components, whose linear combination enables
them to describe each single spectrum. Since these methods do
not require extensive information as input except for the data set,
they are usually free from experimenter bias for the detection of
the different components, and hence sometimes enable
unexpected features to be unveiled. As an example of application
to the battery field, PCA and MCR-ALS analysis were then
employed to isolate elusive intermediate and transient phases
formed upon reaction of intermetallic compounds with Li and
Na260−262 or to decouple partially overlapping cationic and
anionic processes in Li-rich materials.263 As for in situ
synchrotron XRD experiments, Aoun et al. studied the solid-
state reaction mechanism involved in the synthesis of the
cathode material LiNi0.7Mn0.15Co0.15O2 using a method based
on Pearson’s correlation functions and statistical scedasticity
formalism to analyze the series of synchrotron XRD patterns
(scedasticity consists of the analysis of whether the residuals vary
with the signal level).258

These methods can be completed by ML methods for a faster
and more advanced analysis of the experimental data. As an
example taken from the catalysis field, Guda et al.264 have used
ML methods based on ensembles of DT and RR to predict the
interaction distance and molecule orientation of NO, CO, and
CO2molecules absorbed on theNi active center of a CPO-27-Ni
MOF upon gas adsorption. They compared the results of two
different approaches: (i) in the indirect approach, they use the
training data set to establish the correspondence from geometry
(input) to XANES spectrum (target function), predict the
XANES spectra for given geometries, and compare them to the
experimental spectra, while, (ii) in the direct approach, they use
the training data set to establish the reversed correlation from
the XANES spectrum (input) to the geometry (target function)
and submit the experimental spectra as an input to predict the
corresponding geometry. Such approaches could, for instance,
be used to monitor the local environment of redox species upon
battery operation.

4.2. Electrode Architecture Characterization

The hierarchical architecture of composite electrodes plays a
crucial role in the performance of LIB electrodes in which it
affects the effective electronic and ionic transport properties, the
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electrochemical kinetics via the interfacial area between phases,
and the mechanical properties. Therefore, it is crucial to have a
deep insight into the correlation between the complex
microstructure of porous electrodes and their electrochemical
performance. X-ray tomography allows spatial analysis on the
microstructural properties, and thus, it gives access to their
inhomogeneities, causing degradation, macroscopic failures,
nonuniformity of electrochemical kinetics, and mechanical
properties. The knowledge of the complex 3D architectures
goes through two inevitable and critical processes, reconstruc-
tion and segmentation, both being sources of information
uncertainty. Spectroscopy techniques such as Raman and XAS
can also provide interesting information about electrode
microstructures and their inhomogeneities.
4.2.1. Tomography and Ptychography Reconstruc-

tion. The X-ray tomography is a robust characterization, for
which the battery research shows tremendous interest during the
past decade and that continuously exhibits its potential and
uniqueness by providing a deeper understanding of the battery
with material morphological and spatial information.265 Being
beneficial from its compelling noninvasive property, operando
and in situ experiments were developed and revealed important
dynamic aspects of battery materials, such as 3D distribution266

and displacement,267 steric changes,268 and dimensional
oxidation evolution.269 The micro-computed tomography
(CT) offers the capability of characterizing large volumes to
visualize the entire battery device, whereas the transmission X-
ray tomography (TXM) nanoCT provides a spatial resolution
below 50 nm allowing access properties at the nanoscale.
However, it is a data-massive technique that raises challenges in
terms of processing speed and accuracy. For instance, in the
synchrotron facilities, one tomography acquisition generates
hundreds of projections in a series (usually around a thousand
frames of 2000× 2000 pixels, from 0 to 180°), called a sinogram,
which has a size of 16 Gb. It is then reconstructed into a stack of
tomograms and further seized into a representative cuboid that
remains a few billions of voxels (pixels in 3D space) for the
analysis (1000 × 1000 × 1000 voxels in length, width, and
height, respectively).
The blooming of ML in the recent years has triggered

disparate interesting applications in tomography data processing
and analysis. For the tomographic reconstruction, the inverse
problem algorithm usually induces the formation of artifacts in
the resulting tomogram due to optical line defect, missing
wedge, and unsteady rotation. DifferentML approaches turn out
to be efficient to improve this crucial processing in 3D imaging.
A recent study reported that generative adversarial networks
(GANs) could also achieve the reconstruction of X-ray
ptychographic tomography data.270 In this work, the algorithm
uses a GAN network to solve an inverse problem, i.e.,
tomography reconstruction, using the Radon transform. The
workflow works with a self-training reconstruction procedure
based on the physics model, where the GAN network fits the
input sinogram with the model sinogram generated from the
predicted reconstruction, as shown in Figure 30a. The algorithm
exhibits significant improvements in the tomography recon-
struction accuracy. Ding et al.271 present a model based on the
GAN network to recover information in the missing-wedge
sinogram of electron tomography and reduce the artifacts after
the reconstruction steps (Figure 30b). They built a sinogram
filling model based on residual-in-residual dense blocks and a U-
net structured GAN to reduce the residual artifacts. Their
approach offers superior peak signal-to-noise ratio and structural

Figure 30. (a) The workflow of the GAN reconstruction (GANrec)
algorithm. The input is a tomography sonogram (X-ray ptychographic
tomography data), which is transformed into a candidate reconstruc-
tion by the GAN generator. The candidate reconstruction is projected
to amodel sinogram by a Radon transformation. Themodel sinogram is
compared with the input sinogram by the discriminator of the GAN, in
which a GAN loss is obtained based on this comparison. The weights of
the generator and discriminator of the GAN evolved by optimizing the
GAN loss.270 (b) The missing-wedge problem in electron tomography
is solved using GAN.271 (c) Two different reconstructions of a noisy
simulated data set, on the left, the results of conventional reconstruction
with a high level of noise and, on the right, the same image after de-
noising with TomoGAN.272 (a) Figure reproduced with permission
from ref 270. Copyright 2020 International Union of Crystallography.
(b) Figure reproduced with permission from ref 271. Copyright 2019
Springer. (c) Figure reproduced with permission from ref 272.
Copyright 2020 The Optical Society.
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similarity index measure (SSIM) compared with the traditional
methods, notably for acquisitions with missing angle even for
45°. In their study, Liu et al. designed an algorithm as-called
TomoGAN, which is a de-noising technique based on GANs, to
improve the reconstructed image quality for low-dose experi-
ments (Figure 30c).272 Their approach can drastically reduce
the noise in reconstructed images, and the quality of the
reconstructed images using filtered back projection and the de-
noising approach exceeds that of iterative reconstruction
techniques.
4.2.2. Image Segmentation. Semantic segmentation of 2D

images or 3D volume is one of the key problems in the computer
vision field. Many applications, such as autonomous driving,
augmented reality, and facial recognition systems, need accurate
and efficient segmentation steps.273 The rise of AI approaches in
the field of computer vision coincides with the strong demand

around semantic segmentation of a large variety of data sets. In
the tomography workflow, after the sinogram reconstruction,
the 3D analysis is usually preceded by a step of segmentation in
which each voxel of the raw stack is digitally partitioned into
different phases according to its value and environment. The
basic method using a threshold on the gray level distribution
does not allow in most cases an accurate segmentation. This is
mainly due to the overlapping of greyscales, especially with
materials with similar X-ray absorbance and X-ray computed
tomography (XCT) data exhibiting reconstruction artifacts and
camera noise. Strictly partitioning different phases in the image
using thresholding is applicable only if the histogram is
distinctively multimodal. One of the widespread efficient
methods used by scientists to segment tomography data is
based on the coupling of fixed feature extractors and a RF
classifier (Weka-FIJI).274 However, more recently, encoder−

Figure 31. (a) Subsurface porosity mapmeasured through the depth of the sample for the pristine and the failed electrolyte pellet.275 (b) Cross section
through the EBSD image of NMC depicting grain boundaries using FIB-EBSD. Segmentation result of the watershed algorithm in which each region is
colored individually after removing regions outside of the considered NMC particle.276 (c) A depth-dependent particle fracturing profile in the Ni-rich
NMC electrode revealed by X-ray computed tomography. The scale bar is 20 μm. (d) The 3D image of the segmentation results over two regions of
interest, with the carbon binder domain (CBD) set to be transparent for a better visualization of the NMC particle (orange) and the pores (gray−
blue).277 (e) Results on the graphite electrode with a map of Bayesian CNN uncertainty, which is focused around the light gray edges of the material in
the original slice, while theMonte Carlo dropout network uncertainty is pixelated.278 (a) Figure adapted with permission from ref 275. Copyright 2020
American Chemical Society. (b) Figure adapted with permission from ref 276. Copyright 2021 Elsevier. (c, d) Figure reproduced/adapted with
permission from ref 277. Copyright 2020 Springer. (e) Figure reproduced with the authors’ permission from ref 278.
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decoder CNNs were shown to be able to automatically learn the
features and compute the segmentation.
Dixit et al.275 used in situ X-ray tomography to study solid-

state electrolyte versus lithiummetal in Li | LLZO | Li cells. They
combined low-contrast image processing andCNN-based image
segmentation to quantitatively track morphological modifica-
tions in Li metal electrodes and buried solid/solid interfaces
during stripping and plating processes. The NN was trained on
800 images obtained by using one electrode during a single
electrochemical cycle, and validated by using 200 additional
images from the same electrode. The individual slice
segmentation time was approximately 0.3 s, for a segmentation
confidence greater than 80%, comparable to the segmentation
confidence obtained by state-of-the-art networks on standard
data sets. The image processing enables quantifying local
hotspots in Li metal correlated with microstructural anisotropy
in the solid electrolyte. The porosity and tortuosity maps
through the depth of the sample revealed the difference between
the pristine pellet and the failed electrolyte pellet (Figure 31a).
Furat et al.276 computed NMC secondary particle segmenta-

tion of image data using a combination of the ML technique and
conventional image processing. ML segmentation facilitated
identification and labeling of distinct particles in 3D. The 3D
segmented image was used for the quantification of subparticle
grain architectures. In this study, focused ion beam (FIB) slicing
in sequence with electron backscatter diffraction (EBSD) is used
to accurately quantify intraparticle grain morphologies in 3D
(Figure 31b). They used a CNN network as-called 3D U-net
reducing the amount of preprocessing needed prior to the
segmentation step. The loss function has been modified so that
the network can be performed with just a few labeled slices.

Jiang et al.277 investigated the degradation of NMC material
resulting from the cycling with a derived CNN approach (Figure
31c,d). The segmented volume of XCT can be used as input for
electrochemical models to simulate the electrochemical
performance, which helps to understand the transport
phenomena in the electrode and design better electrodes.
LaBonte et al.278 presented a deep learning approach for the

segmentation of 3D XCT scans of graphite electrodes for
lithium-ion batteries (Figure 31e). They design a novel 3D
Bayesian CNN (BCNN) to quantify the uncertainty of binary
segmentations. Inside the network, the uncertainty is measured
in the weight space. The BCNN allows good interpretation and
comprehensive uncertainty quantification in 3D segmentations,
which outperforms the state-of-the-art Monte Carlo dropout
technique. Establishing the credibility of these segmentations
requires uncertainty quantification to identify problematic areas
and where the confidence is low.
An interesting GAN-based application in the field of

tomography images was recently published by Gayon-
Lombardo et al.121 In this work, the authors developed a GAN
trained with tomography images (workflow reported in Figure
32A), which was demonstrated to be able to reproduce (in a few
seconds, once the model has been trained) electrode micro-
structures comparable to the experimental ones. Considering
the high cost (in terms of time and resources) of obtaining
experimentally trustable 3D microstructures (typically through
FIB-SEM or tomography), such a kind of application could
represent the first step of an important leapfrog in micro-
structure characterization and optimization. In addition, this
approach allows getting electrode microstructures as big as
desired (contrary to their experimental counterpart) and the

Figure 32. (A) Workflow of the GAN-based model proposed by Gayon-Lombardo et al.121 able to learn and reproduce 3D electrode microstructures.
(B) Workflow of the GAN-based model developed by Kench et al.,122 unlocking the use of 2D images to build 3D electrode microstructures. (A)
Figure reproduced with permission from ref 121. Copyright 2020 Springer. (B) Figure reproduced with permission from ref 122. Copyright 2021
Springer.
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authors demonstrated of being able to apply periodic boundary
conditions, which is particularly relevant in the context of using
these structures as input for electrochemical models. However,
this approach requires 3D images (typically in the form of a
series of 2D slices) to be trained. Those can be obtained either
through imaging techniques or through physics-basedmodeling,
but it is not always straightforward to access such structures. On
the contrary, 2D images are easier to obtain experimentally. The
same group, in the work published by Kench et al.,122 further
improved their approach by developing sliceGAN, which is able
to reproduce 3D microstructures from high-fidelity 2D images
(Figure 32B).
4.2.3. Degradation Detection. How the particle micro-

structure of a LIB electrode influences a potential thermal
runaway can be investigated based on the structural changes
observed in cracked particles. Statistically significant analysis
necessitates a large database that can be obtained from

tomographic 3D image data.66 A key goal would be to analyze
which particles are more likely to crack and thus aggravate
thermal runaway, as smaller particle sizes with higher specific
surface area lead to more intense runaway.
Instead of manual visual inspection which is time-consuming

and tedious even for a relatively small system, a supervised ML-
based classifier, which detects particles that are the result of
breakages and related fragments, can be both expeditious and
have higher accuracy (Figure 33c).66 Such a ML-based classifier
can be trained in a semisupervised manner so that relatively
small numbers of labeled data can be used, lowering further the
human effort during model building.
Deep-learning-based computer vision methods can also help

in evaluating the quality of LIB electrodes by automated
detection of microstructural defects from light microscopy
images. Going away from expert knowledge based on statistical
image processing tools, where handcrafted-feature-based

Figure 33. (a) The four misclassified examples of micrographs with defects by the VGG19 fine-tuned model.279 (b) Overview of the model
development. The following three classes of particle pairs are differentiated: BROKEN: The particle pair belonged to the same particle before it broke
apart during the thermal runaway. WATERSHEDSEP: The particle pair corresponds to two touching particles in the tomographic image, which are
split by the watershed transformation. PARTICLESEP: The particle pair consists of unrelated, separate particles, i.e., a pair which is neither BROKEN
nor WATERSHEDSEP.66 (c) Detailed view on the gap between two voxelated particles. Steps for extracting the sample particle pairs using a graph to
memorize the class labels. 3D rendering of a BROKEN particle pair.66 (a) Figure reproduced/adapted with permission from ref 279. Copyright 2020
Springer. (b, c) Figure reproduced with permission from ref 66. Copyright 2017 Elsevier.
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shallow learning techniques are not sufficiently discriminative,
convolution-based deep learning can automatically learn and
work with defect patterns that are not well consolidated once a
large data set is provided (Figure 33b). Transfer learning
methods can further improve the performance of these models
and reduce data requirements, as shown by Badmos et al.279

using an automated/unsupervised workflow in the context of
defect detection in LIB cells. Even if particularly promising, such
an approach holds some limitations, as the risk of misclassifi-
cation showed in Figure 33a, calling for further improvements.
The microstructure of a composite electrode determines how

individual battery particles behave during the charge−discharge
process, and the degree of particle detachment from carbon/
binder correlates to capacity loss. Microstructural character-
ization of the composite electrode with required precision and
reliability is challenging especially to obtain statistical relevance

in complex, many-particle electrodes. ML models can perform
such an identification and quantification task efficiently through
a workflow approach once trained for data processing (Figure
34). ML-based large-scale, many-particle approaches provide
unbiased characterization results that conventional image
techniques cannot achieve due to the limited number of
particles tracked.277 Such deep convolution-based methods are
also better in identifying broken particles to the original one than
feature-based ML methods.

4.2.4. Hyperspectral Image Processing. Models for
hyperspectral imaging [a technique that analyzes for each pixel
a wide electrochemical spectrum instead of just assigning a single
feature (as, for instance, red, green, or blue) to each pixel] are
complex and usually hand coded based on a specific system and
set of statistical techniques. For large-scale experimentation, one
wants to automate those statistical operations so that processing

Figure 34.Over 650 unique particles of different size, shape, position, and degree of cracking were successfully identified and isolated from the imaging
data in an automatic manner. (a) Workflow of the ML-based segmentation. (b) Comparison of conventional segmentation results and the machine-
learning-assisted segmentation results for a few representative particles. Different colors denote different particle labels. (c) Schematic illustration of
the herein developed ML model based on the Mask R-CNN for particle identification and segmentation. The scale bar in part a is 50 μm.277 Figures
reproduced with permission from ref 277. Copyright 2020 Springer.
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across differentmaterials and classes of spectroscopic techniques
necessitates limited human effort. Key aspects of such an
automated framework would be (i) an intelligent preprocessing
of the data set, (ii) an automated and reliable extraction of
spectral signatures and data labeling intended for supervised
learning, (iii) a ML model training to identify labels in new data
sets, and (iv) interoperability/reusability adjustments of an
already trained model to be used in a completely different LIB
specimen for inline real-time analytics.280 A range of techniques
such as PCA, MCR-ALS, independent component analysis,
partial least-squares discriminant analysis, voxel component
analysis, and non-negative matrix factorization have been
applied for the identification/clustering of significant spectral
signatures, while MCR-ALS has been used specifically for
batteries in conjunction with a NN classifier.280 Baliyan et al.281

showed that the analysis of hyperspectral Raman for LIB
electrodes can be conducted in an automatic way with almost no
human assistance. The NMF-ARD (non-negative matrix
factorization automatic relevance determination) algorithm
was well suited to automatically identifying components in the
hyperspectral Raman data set (Figure 35). For the case of LIB
electrodes, the interoperability of the NNmodel was found to be
strongly consistent with major constituents (carbon and NMC).
This approach could be used to evaluate the LIB electrode
degradation by monitoring the retention coefficient.
Hyperspectral methods can also be used with ML tools to

identify new battery degradation mechanisms.282 Unsupervised
clustering algorithms identify chemical signature clusters from
large quantities of spatially resolved X-ray absorption near edge
structure (XANES) data that are not from anticipated lithiation/
delithiation but from side reactions through which the
degradation mechanisms occur during battery cell operation.

4.3. Conclusions and Perspectives

In the last years, the development of most characterization
techniques led to a tremendous enhancement in terms of both
resolution and acquisition times. From one side, this unlocked
the possibility of more precise and more insightful analysis; from
the other side, it led to an exponential growth in terms of raw
data generation, which cannot be analyzed anymore through
classical data analysis only. This is due to the concomitant
evolution of rapid (and sensitive) detectors and to the
improvement of beam source in terms of brightness, coherence,
and shape. Therefore, the new generation of instruments should
be developed considering those aspects and optimizing the
design, execution, processing, and data transfer. In addition, data
scientists and analysts should be strongly involved in the
integration of tools helping to manage large multidimensional
data sets and to represent them using meaningful descriptors.
In this context, ML methods can be helpful for different

purposes: (i) data treatment (e.g., image segmentation,
reconstruction), (ii) data fitting (e.g., spectra analysis), and
(iii) determining correlations between results obtained from
different techniques. ML-assisted procedures are already
employed in image segmentation and reconstruction,277,283

crack,66 and defect279 detection of electrode materials. Speeding
up and automatizing important steps as image segmentation and
reconstruction is not just a time savings for researchers, but it
can also (and it is already) help(ing) in solving important
challenges in the field, such as discriminating between AM,
CBD, and pore phases in tomography images. In addition, the
use of ML-based approaches can unlock the study of operando
dynamic processes, for example, the evolution of microstructure
during manufacturing284,285 or Li dendrite formation and
growth.286,287

Figure 35. (a) Illustration of hyperspectral images (3D data cubes). The spatial information is collected in theX−Y plane, and the spectral information
is represented in the Z-direction. Hierarchical cluster analysis (HCA) of the pristine data set. The clusters were assigned unique class labels depending
on their spectral signature. Primarily three clusters were identified: (1) carbon, (2) NMC, (3) background. (b) Results from three types of analytics are
compared for the 500_Out LIB sample: human, unsupervised, and supervised intelligence.281 (a, b) Figure adapted with permission from ref 281.
Copyright 2019 Springer.
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ML-assisted imaging brings the promise of assisting data
acquisition and decision-making for complex and multimodal
observations, which can allow a significant upgrade of the
current experimental workflow (Figure 36). In the present
workflow, data acquisition is made in a specific region of interest,
whereas, in the future, it could be done in multiple zones using a
multidimension detection mode, spatial resolution, and image
magnification. Today, features selection is done through human
eye and interpretation, while, in the near future, it is highly
probable that features detection and multidimensional correla-
tion will be carried out by AI/ML algorithms. Additionally, ML
will likely assist the development of multidimensional models
and simulations using as a starting point electrode structures
obtained by imaging techniques.
Another breakthrough that ML can bring in materials

characterization is the generation of “fake” but highly reliable
electrode meso- or microstructures through generative ML
algorithms, as VAEs or GANs. These methods require being
trained with previously obtained images, coming either from

experimental imaging techniques, such as tomography, or FIB-
SEM, or from 2D or 3D physics-based modeling, but, once
trained, they can generate a whole spectrum of realistic electrode
meso- or microstructures in seconds or minutes. The validity of
these structures should be carefully assessed and compared to
real ones to verify their exactitude, but the accuracy recently
demonstrated by the group of Sam Cooper121,122 promises an
important leapfrog in HT microstructure characterization and
optimization.
At the industrial level, automatic robotic inspection systems

for quality control can also be assisted by ML for defect
classification and anomaly detection.288−290 Integrating CNN
models would enable higher flexibility on the type of feature to
be detected when compared to earlier machine vision
mathematical models. One-class learning (OCL) and GAN
models can also be implemented to mitigate inaccuracy issues
caused by limited training data sets (e.g., data sets with not
enough examples of material defects). In addition, strategies
developed for metal crack detections or printing inspections are

Figure 36. Schematic exhibiting present (green) and future (orange) workflows about conducting experiment, data acquisition, interpretation, and
model extraction/simulation. The large and increasing amount of data generated using modern characterization techniques, new generation of
detectors, and the emergence of AI/ML methods are likely to transform the way experiments are performed and data analyzed.

Figure 37. Infographic on the ML methods recently applied to battery cell diagnosis and prognosis, including the corresponding nature (calculated vs
experimental data) of the employed databases.
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transferable to online inspection of battery electrode manu-
facturing. A short list of available industrial imaging software
packages including ML solutions is given in ref 289.

5. APPLICATION TO BATTERY CELL DIAGNOSIS AND
PROGNOSIS

The prediction of the battery performance and lifetime as well as
the identification of the main sources of battery performance
limitations and aging are major concerns while integrating
batteries in applications, such as electric vehicles (EVs). They
constitute the aspects in whichML has been applied the most, in
comparison to the other domains described in this Review.
Figure37 depicts a schematic of the ML methods employed in
battery cell diagnosis and prognosis, their frequency and the
nature of the data set used. In this section, we first recall the
approaches that are typically used to characterize battery
performance and aging in the engineering field (subsection
5.1). Then, we discuss applications of ML in performance and
safety analysis (subsection 5.2), aging and remaining useful life
(RUL) predictions (subsection 5.3), as well as online estimation
(subsection 5.4). Finally, major conclusions are underlined and
future trends are presented in subsection 5.5.

5.1. Overview

Nowadays, there is high interest in developing highly accurate
aging models allowing earlier failure prediction, greater
interpretability, and broader application to a wide range of
cycling conditions. Well-trained ML techniques can potentially
combine high accuracy and low computational cost, making it
highly interesting for aging models and accurate predictions of
battery lifetime.24

To ensure the reliability of LIBs over their entire service life,
an accurate diagnosis in real time, based on its electrochemical
characterization, is of paramount importance. To do so, different
battery state parameters are considered. Among these, the
battery state of charge (SOC), state of health (SOH), and RUL
focus the major efforts from both industries and academics,
particularly for automotive applications.291

The SOC of a LIB is defined as the percentage of remaining
charge with respect to the fully charged condition. Accurate
SOC estimation is essential to optimize operating strategies and
balancing of battery cells in a battery pack. Extensive research
efforts have been devoted to SOC estimation, based on
electrochemical techniques. The Coulomb counting method is
one of the most effective approaches to obtain the battery SOC.
Alternatively, the battery open circuit voltage (OCV) is the base
of many proposed SOC estimators. Furthermore, electro-
chemical impedance spectroscopy (EIS) can be used to
determine it by means of electrochemical impedance
models.292,293

The SOH reflects the current capability of the battery to store
and supply energy relative to the one at the beginning of its life,
which make it suitable to evaluate its degree of degradation. It
can be quantified estimating the ratio of the actual cell capacity
with respect to its initial capacity. This, together with the battery
resistance, are the two parameters typically adopted to calculate
the SOH of LIB.
The RUL, together with the SOH, is one of the main LIB

parameters to evaluate its current health condition. It can be
defined as the remaining load cycles (or time) until the battery
reaches its end of life (EoL) or, alternatively, until its SOH
reaches 0%.

The determination of the aforementioned parameters (SOC,
SOH, RUL) is based on electrochemical characterization
techniques. Thus, the recording of charge and discharge voltage
vs specific capacity curves is of paramount importance. In
academia, cycling is usually (but not always)291 carried out at
constant current, despite testing protocols more similar to real
life applications (as constant power) being more preferable.
Another widely used diagnostic tool is EIS, which records the
response (typically current) to a small sinusoidal perturbation
(typically voltage) at varying frequencies. This technique gives
information on the impedance of the cell at different time scales,
and it can also provide information about the possible
degradation mechanisms of the battery. Alternatively, current
pulses are also used to determine the cell resistance and its
evolution along the cell usage.294

With regard to the aging prediction, over the past decade,
extensive efforts were carried out to achieve battery lifetime
predictions from off-line experimental analysis. Here, off-line (or
offline) estimation refers to those algorithms using previously
collected data, while on-line (or online) estimation refers to
algorithms embedded in the battery management system and
using data collected along the battery operation. Bloom et al.295

and Broussely et al.296 performed early works based on
semiempirical models to predict power and capacity losses.
Since then, many authors have proposed physical and
semiempirical models accounting for diverse degradation
mechanisms, such as the SEI growth,297,298 lithium plat-
ing,299,300 active material loss,301,302 and impedance in-
crease.303−305 These physics-based models have successfully
described cell capacity retention and impedance increase, while
providing a full understanding on the limiting mechanisms
under relevant operating conditions. However, the development
of a fully comprehensive model remains challenging, given the
variety of degradation modes and their coupling to ther-
mal306,307 and mechanical297,308 heterogeneities within a
cell,299,309,310 which lead to high computational cost. The
prediction of RUL is another topic of interest. The online
estimation approaches typically rely on electrochemical,311−314

semiempirical,315,316 and equivalent circuit models317,318 and
some recursive observers, such as the Kalman filtering319,320 and
particle filtering (PF).321 These approaches aim to capture and
update the battery parameters (as capacity and SOC) based on
the analysis of the data obtained along cycling. Other specialized
diagnostic measurements, such as Coulombic efficiency322,323

and EIS,324−326 are also used for lifetime estimation. It is worth
mentioning that the main constraints of such approaches are the
difficulty to estimate the parameters for equivalent circuit-based
models and the inherent open-loop nature of semiempirical
models, which compromises their generalization and trans-
ferability, particularly for long-term predictions.
The implementation of ML methods in the diagnosis and

prognosis of LIBs has been recently addressed in the literature.
In the following, we intend to highlight the main scientific
articles according to their different purposes, as lifetime
prediction, performance, online estimation, and safety. It is
interesting to highlight that the vast majority of the articles
related to ML applied to diagnosis and prognosis are focused on
online estimation (48%) or lifetime prediction (44%), while the
ones dealing with performance and safety are a minority (both
4%), as shown in Figure S1, giving an indication of the battery
community habits and interests in this field of research.
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5.2. Performance and Safety Prediction

This subsection describes the most relevant articles implement-
ing ML for cell performance prediction and safety.
Regarding cell performance prediction, Tang et al.327

proposed a model based on the ELM method to predict the
evolution of battery temperature, voltage, and power. The
predicted values were then compared to the ones observed
experimentally. It was also proposed to replace the function of
activation by a set of models to further enhance the long-term
prediction performance. The implementation of such an
approach allowed the improvement of the ELM model in
terms of current at different temperatures.
Battery safety is also crucial for any LIB application and of

major concern for EVs. The main safety hazard of LIBs is linked
to exothermic phenomena; that is why several studies are
focused on analyzing the battery thermal behavior.
Li et al.328 proposed a powerful tool based on ML to develop

the safety envelope of lithium-ion pouch battery cells (Figure
38) and showed its possible applications in the EV and battery
industries. A total of 2672 numerical simulations were
conducted based on a three-dimensional finite element (FE)
model capable to predict accurately both the force−displace-
ment response and the fractured geometry of the lithium-ion
pouch battery cell during indentations. Two indentation tests at
the cell level were carried out under the quasi-static loading
condition to validate the FEmodel. The fracture of the separator
was used as a criterion of electric short-circuit. The results
obtained though the FE model were then used to train a
classification and a regressionML algorithm. The former made a
quick judgment on whether the given indenter and loading
condition could lead to an electric short circuit, and the latter
predicted quantitatively the intrusion, force, and kinetic energy
of the indenter to cause this short circuit. Three different ML
algorithms, namely DT, SVM, and ANN, were used to develop
classification models, while the last two were used to develop
regression ones.

5.3. Aging and Health Prediction

Thanks to the rise of computational power, ML has emerged as a
powerful method for RUL predictions based on a large amount
of data. In this sense, several data sets have been created and
stored in repositories for model training and validation purposes.
Table S4 shows the characteristics of themain data sets that have
been published in the scientific literature. It can be clearly seen
that the most used data set is the “battery data set” from NASA
Ames Research Center (ca. 60% of the references included in the
table). In this context, the most used data inputs are based on
capacity evolution along cycling. The rest of the data sets
reported in Table S4 have been used in a more particular sense
and are generally based on the testing of a variable number of
commercial cells, up to 138, under cycling conditions. It is worth
mentioning that only a required data input, associated with a
data set generated by the testing of 12 commercial graph-
ite | LCO at different temperature and discharge rates, is based
on EIS data. In addition, all data are not available, which restricts
their reutilization by other potential users.
Furthermore, several kinds of ML algorithms have been used,

including ANN,329−332 SVM,329,333 relevance vector machine
(RVM),334 and probability estimation, such as GPR,334−337

among others, bringing new knowledge and insight and leading
to a better understanding of battery performance and failure
processes. Based on the analyzed articles, probability estimation
approaches constitute the most used methods (27%), followed
by support vector and NN families (both 23%), linear
approaches (14%), ensemble learning (9%), and DT-based
algorithms (4%).
Zhu et al.338 used a set of DT algorithms to analyze the

lifetime of batteries. Based on a database consisting of 138 sets of
data recorded on commercial LFP | graphite A123
APR18650M1A cells (1.1 Ah and nominal voltage 3.3 V), the
model classifies with an accuracy of 95.2% whether the battery
can maintain above 80% initial capacity after 550 cycles. From
the selected data set, several features of the initial two cycles

Figure 38. Flow-chart of the data-driven safety envelope using the ML algorithm.328 Figure adapted with permission from ref 328. Copyright 2019
Elsevier.
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the charge/discharge capacity, the internal resistance, and the
cell temperaturewere identified. Through the interpretation
of DT, it was found that the discharge capacity difference
between the initial two cycles was the most important factor for
the battery life feature. Zhu et al. also compared the DT
predicted results with other supervised algorithms, such as
neighbors, GP, and SVM, and found that the DT algorithm
achieved the highest accuracy.
As described in section 1, ML models can also perform a

regression to provide quantitative output(s). In this regard,
Severson et al.65 tackled the challenge of developing linear
modelselastic net339that accurately predict the cycle life of
commercial lithium iron phosphate (LFP) | graphite cells using
early cycle data, with no prior knowledge on the degradation
mechanisms (Figure 39). Specifically, a data set of 124 cells with
lifetime ranging from 150 to 2300 cycles (i.e., the number of
cycles until 80% of nominal capacity was attained) and
containing 72 different fast-charging conditions was created.
The developed feature-based model predicted cell cycle life with
errors of 9.1%, using only data from the first 100 cycles.
Interestingly, during these cycles, most batteries did not exhibit
yet significant capacity degradation, showing the capability of
ML to identify trends not observable when using raw

experimental data only. Considering that experiments aiming
to determine battery cycle life can last months or years340 and
that many different conditions (different manufacturing
procedures, charge/discharge protocols, etc.) should be tested,
this approach can lead to a significant gain in time and resources.
Furthermore, using the data from the first five cycles only, they
demonstrated classification into low and high lifetime achieving
a misclassification test error of 4.9%. These results clearly
illustrate the power of combining experimental data with data-
driven modeling to predict the behavior of complex systems far
into the future.
More recently, Attia et al.341 overcame the results presented

by Severson et al.65 by predicting the battery cycle life using only
the first 20−50 cycles, while achieving comparable or improved
accuracy. This was achieved by improving features engineering
and applyingmore advancedMLmethods. In particular, features
capturing voltage data were selected carefully in order to create a
successful predictive model of cell lifetime, applying three
different regression models: elastic net, RF regression, and
AdaBoost (“adaptive boosting”) regression. The results showed
that RF regression enabled achieving high accuracy at low cycle
number, outperforming regularized linear regression.

Figure 39. Schematic representation of the approach used by Severson et al.65 allowing to predict battery cycle life from only its first ∼100 cycles.
Figure adapted with permission from ref 65. Copyright 2019 Springer.

Figure 40. (A) Schematic of the CLO system developed by Attia et al.343 (B) Example of the result showing the optimization time needed for different
CLO protocols. Reprinted from Attia et al.342,343 Figure reproduced with permission from ref 343. Copyright 2020 Nature Publishing Group.
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In view of the key challenge to reduce both the number and
the duration of the experiments required for maximizing battery
lifetime,342 Attia et al.343 developed and demonstrated a closed
loop optimization (CLO) ML methodology, depicted in Figure
40, to efficiently optimize a parameter space specifying the
current and voltage profiles of six-step, 10 min fast-charging
protocols. In order to reduce the optimization cost, they
combined an early prediction model based on an elastic net (as
that implemented by Severson et al.65) to reduce the time per
experiment, by predicting the final cycle life using data from the
first 100 cycles and a BO algorithm.344,345

This CLO method reduces the required optimization time
compared to the baseline optimization approaches. For instance,
a procedure without early outcome prediction that simply
selects protocols randomly for testing obtains a competitive
performance level after about 7700 battery hours of test. To
achieve a similar level of performance, CLO with both early
outcome prediction and BO algorithm only requires 500 battery
hours of testing.
SVM-based algorithms have also become very popular for the

estimation of the health of batteries and RUL prediction. Gao et
al.333 proposed a MSVM based on polynomial and radial basis
kernel functions to predict battery RUL. Moreover, a PSO
algorithm was used to optimize the kernel parameters, the
penalty factor, and the weight coefficient of theMSVMmodel. It
was observed that, thanks to the PSO optimization, not only do
the model prediction accuracy and generalization ability
increase but also the computational cost associated with the
training process (performed using the NASA battery data set346)
decreases. In a similar way, Qin et al.347 applied the PSO to
obtain the parameters of the SVR kernel. This model can grasp
the global degradation trend without focusing on local
fluctuations, and it can provide satisfactory results in terms of
RUL estimation. Wei et al.348 proposed PF and SVR models to
predict the RUL of LIBs. Particularly, they used SVR to simulate
a battery aging, while employing PF to optimize the impedance
degradation parameters, which allowed them to get accurate
RUL predictions. Dong et al.349 presented a similar method for
battery SOH monitoring. A SVR-PF algorithm was imple-
mented in the research to improve the standard PF against the
degeneracy phenomenon. (In the context of the PF algorithm,

the condition degeneracy phenomenon refers to the fact that,
after a few iterations, some of the particle weights will tend
toward zero. This implies that a large computational effort is
devoted to update particles whose contribution is almost zero.)
The RUL prediction was based on the SOH monitoring results,
and the percentage of nominal capacity was used to represent
the battery SOH. Wang et al.350 developed a new SVR-based
battery capacity degradation model to estimate the battery aging
performance. In this case, an artificial bee colony (ABC)
algorithm was used to optimize SVR parameters and facilitate
the RUL prediction of LIBs. The model was trained and tested
by using the first batch of LIB degradation data sets from NASA
Prognostics Center of Excellence PCoE,346 achieving accurate
and stable RUL predictions. Specifically, the root-mean-square
errors (RMSEs) of the ABC-SVR method were less than 0.05,
indicating that the proposed model can accurately predict the
RUL of LIBs.
The ANN method has been demonstrated to be a good

candidate to correlate nonlinear dynamic problems.351 Zhou et
al.329 presented a cycle life forecast method (applied to a
lithium-ion polymer type battery) without requirements of
contact measurement devices and long-time testing, by
combining the data coming from infrared thermography and
two different supervised learning techniques, ANN and SVM.
Infrared images were captured at 1 frame/min during a period of
70 min of charging, followed by 60 min of discharging for 410
cycles. The surface temperature profiles during either charging
or discharging were used as input for the ANN and SVMmodels.
The obtained results demonstrated that the arising ANN model
could estimate the current cycle life of the studied cell with an
error <10% by using 10 min of testing time. The accuracy of
SVM-based forecast models was similar to that of ANN but
generally required a larger testing time.
Choi et al.330 developed a ML model exploiting multichannel

charging profiles of voltage (V), current (I), and surface
temperature of lithium-ion cell (T) for predicting LIB capacity,
using a data set obtained from NASA. In particular, they used
NN, CNN, and LSTM algorithms, demonstrating that a wide
spectrum of data improved substantially the estimation
accuracy. Figure 41 depicts an overview of the proposed
framework for estimating the battery capacity, which consists of

Figure 41.Overall framework of the proposed capacity estimation by Choi et al.330 Figure reproduced with permission from ref 330. Copyright 2019
IEEE.
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three steps: data preprocessing, training, and estimation.
Specifically, in the preprocessing step, anomalous data is
removed by applying data cleaning andmin−max normalization.
Then, the data set is divided into training, validation, and test
sets. In the second step, training and validation sets are utilized
to select a proper model based on FNN, CNN, and LSTM,
respectively. In the third step, the battery capacity estimation
and evaluation of the performance of the proposed methods is
done, using capacity estimation models that are determined in
the previous step.
According to the obtained results, between the benchmarked

ML methods, LSTM showed the best accuracy, followed by
FNN and CNN.
Ren et al.331 proposed an integrated DNN approach, called

autoencoder-DNN (ADNN), for RUL prediction of multiple
LIBs, by integrating autoencoder within DNN. A 21-dimen-
sional feature extraction method with autoencoder model was
built to represent the battery health degradation, while the
DNN-based RUL prediction model was trained for multibattery
remaining cycle life estimation. The proposed approach was
applied to a data set of LIB cycle life from NASA, and the
experimental results showed the effectiveness of the proposed
approach, as the RUL prediction curve was in good agreement
with the observed data, obtaining values of 11.80 and 88.20% for
RMSE and accuracy, respectively.
The implementation of a RNN is very well-established in

many fields, like in battery performance predictions, where Zhou
et al.352 used a temporal convolutional network (TCN) model
based on causal convolution architecture to predict the LIBs
SOH and RUL with capacity as the index. Specifically, after
many experiments and analysis, it was observed that the TCN
model combined the ability to capture local regeneration
phenomena and higher accuracy and robustness, compared with
LSTM, gated recurrent unit (GRU), and CNNmodels, in terms
of SOH monitoring and RUL prediction.
Kwon et al.353 tested different ML algorithms applied to

various experimental analyses on 20 Ah NMC-based LIBs with
different ratios of Ni, Co, and Mn (specifically, 5:2:3 and 6:2:2).
An accelerated deterioration test was carried out by applying a
constant current of 80 A (corresponding to a C-rate of 4 C), and
the differential capacity curves were analyzed under varying
aging conditions. The impedance features for a given SOC and
deterioration level were analyzed through EIS characterizations.
Different ML algorithms, such as MLR and RNN, were
benchmarked with the final goal of estimating the RUL of the
NMC-based LIBs. In general, the estimation performance
provided with the MLR model was poor, except for NMC532 at
25 °C at which the learning data was relatively linear; however,
in the case of using the RNN, the obtained error was lower than
7%, predicting the RUL of all of the batteries.
Similarly, Liu et al.354 used an adaptive recurrent neural

network (ARNN) algorithm for the state prediction. The
ARNN algorithm used the recurrent Levenberg−Marquardt
method to rectify the weights of the RNN architecture, which
allowed satisfying results to be reached in terms of LIB RUL
estimation. The data used in this study were obtained from Gen
2 18650-size lithium-ion cells that were tested at 60% SOC and
temperatures of 25 and 45 °C.355 The results of Liu’s
investigation showed that the ARNN technique could effectively
learn system states from a limited number of measurements to
update the data-driven nonlinear prediction model. In fact, it
outperforms the classical RNN and the recurrent neural fuzzy
system RNF in battery RUL predictions.356

ML methods based on Bayesian theory were also applied in
the field of LIB aging predictions. Ng et al.357 proposed a NB
model for lifetime prediction under different conditions. They
showed that, under constant discharge environments, the RUL
of LIBs can be predicted with the NB model under different
operating conditions, in a stable and competitive manner with
respect to otherMLmethods, like SVM. In the same way, Cheng
et al.358 proposed a method based on functional PCA (FPCA)
and Bayesian theory for RUL prediction of LIBs. FPCAwas used
to construct a LIB degradation model and the Bayesian model
allowed to update/optimize the FPCA hyperparameters to carry
out the LIB RUL forecast.
The model migration method, whose basic idea is illustrated

in Figure 42, was initially developed and demonstrated by Lu et
al.359 in 2008 to reduce experimental efforts when modeling
similar processes.

The idea behind such a model is that, if an old process, also
known as the base process, has been modeled carefully with a
sufficient amount of data, then it can be integrated into a new
model to describe a similar process in which only few data are
available. In other words, a ML model built for the old process
would be applied to the new ones by using just a few extra data.
This method was generalized for the case in which process
attribute values may be unknown and in which the concept of
process similarity was introduced and classified.360 Tang et al.321

applied such a methodology to predict the battery aging
evolution and RUL with the minimum possible experimental
requirements. Accelerated aging tests under different stress
factors were designed to build the data set, while the normal-
speed aging process was considered as the new process to
generate a few data for training the new model. The model
hyperparameters were selected by combining nonlinear least-
squares and BMCmethods. The proposed prediction algorithm
was validated against a large number of experiments conducted
on three types of commercial LIB cells.
GPR models, deriving from the Bayesian framework, have

been widely applied to prognostic problems due to their
advantages of being non-parametric and probabilistic, as
described by Li et al.25 The expression of a non-parametric
model is naturally adapted to the complexity of data. Therefore,
this type of model has the advantage of being more flexible than
the parametric ones. The Bayesian approach allows the GPR to
directly incorporate the uncertainty estimations into predic-
tions, enabling the model to acknowledge the varying
probabilities of a range of possible future health values, rather
than just giving a single predicted value. In addition, the

Figure 42. Block diagram of the model migration by ref 360. Figure
reproduced with permission from ref 360. Copyright 2009 Wiley.
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structure of the GPR is quite simple, as its performance is
dictated by a mean function and a covariance function. Peng et
al.361 developed a hybrid data-driven approach to predict battery
capacities, combining the wavelet de-noising approach and the
GPR. This method can remove effectively the noise from useful
data, enhancing the prediction accuracy of the model as a whole.
Furthermore, the key features are also distilled, which guarantees
the significance of de-noise data. The proposed method is
formulated with the hybrid Gaussian process function regression
(HGPFR)model, and the hyperparameters are optimized by the
maximization of the log-likelihoodmethod. Based on the voltage
curve registered at constant current and historical capacity data,
Richardson et al.335 proposed the conventional covariance-
function-based GPR models to predict battery cyclic capacities
and RUL. The authors also highlighted the importance of
selecting the correct kernel function and the advantages of using
compound kernel functions compared to the other ones they
benchmarked.
Furthermore, Yang et al.334 applied the GPR technique to

estimate the battery SOH, constructing four input features from
the constant current−constant voltage charging curves. The gray
relational analysis method was applied to analyze the degree of
correlation between the selected features and SOH. Covariance
function design and the similarity measurement of input
variables were modified to improve the SOH estimation
accuracy and to be adapted to the case of multidimensional
input. Several aging data from the NASA data repository346 were
used for demonstrating the prediction accuracy of the proposed
method.
All of the publications discussed above strongly support the

effectiveness of the GPR techniques in battery cyclic capacity
predictions, also considering the added uncertainty quantifica-
tion offered by such a kind of approach, which is typically
missing by using other ML techniques. Nevertheless, most
studies fit the GPR-based models to the aging data obtained
under similar cyclic conditions, ignoring different cases of stress
factors, such as temperature and depth-of-discharge (DOD)
level. In this regard, Liu et al.336 presented a novel data-driven
approach for predicting the cyclic capacity of the 21 Ah NMC |
graphite pouch batteries under various temperature and DOD
operational conditions and by providing the corresponding
uncertainty quantification. The authors proposed two modified
GPR models to study the underlying relationship among
degraded battery capacity, cyclic temperatures, and DODs:
“Model A” is the one that modified the basic SE kernel with the
automatic relevance determination (ARD) structure, while
“model B” considered the electrochemical and empirical
elements of the battery aging. The related components within
a kernel function were optimized separately to reflect all of the
model inputs, including the operating conditions. Through
coupling the Arrhenius law and the polynomial equation into a
compositional kernel within GPR, the authors demonstrated
that “model B” was reliable in predicting the capacity
degradation and quantifying its associated uncertainty, consid-
ering various cycling conditions.
Features derived from the charging and discharging curves are

by far the most commonly used inputs in these mod-
els.337,362−366 Compared with the usual current−voltage data,
EIS provides the impedance over a wide range of frequencies by
measuring the current response to a voltage perturbation, or vice
versa. Zhang et al.367 showed that GPR can also accurately
estimate the capacity and RUL by using the EIS spectrum, being
key indicators of the SOH of a battery. The developed model

was trained by using over 20,000 EIS spectra of commercial LIBs
(LCO | graphite), and it was capable of estimating the capacity
and RUL of batteries, cycled at three constant temperatures, and
at any stage of its life from a single impedance measurement.

5.4. Online Estimation

Research on battery SOX (either SOC, SOH, or SOT)
monitoring and prediction is rather intensive, and a relevant
amount of estimation models/techniques have been reviewed so
far in the scientific literature.26,368 Currently, these methods are
grouped into two categories: model-based and data-driven. The
model-based methods mainly include the electrochemical and
equivalent circuit models.312,369−371 The data-driven models are
based on the analysis of the data about a specific system, and this
approach includes a mainly linear approach, NN family,
ensemble learning, support-vector-based, probability estima-
tion, and DT-based. Furthermore, as shown in Table S5, several
data sets have been created and stored in repositories for model
training and validations purposes. More than 30% of references
included in Table S5 used the “battery data set” from NASA
Ames Prognostics Data Repository, with the capacity fade being
the required data input. It is worthmentioning that only this data
set is really available.
From the relevant scientific articles found in the literature

(applied to online estimation), the ones based on support-
vector-based models account for 37% of the total, followed by
the neural network family (26%), probability-estimation-based
models (21%), and ensemble learning (11%). Almost all of the
works considered above are based on supervised ML, while only
5% used unsupervised ML models. Lastly, so far linear
approaches and DT-based ML models have not been
implemented yet for online estimation applications.
It is clear that SVM is nowadays one of the most used ML

algorithms for the online estimation of SOH and RUL. Patil et
al.372 proposed a real-time RUL estimation method for LIBs,
based on the SVM algorithms to accomplish both classification
and regression. The proposed method used a two-stage process:
in the first stage, a coarse RUL is estimated using a classification
technique, while, in the second stage, a regression algorithm is
used to estimate quantitatively the RUL. The proposed
approach reduces the number of input parameters set to a
minimal set of critical features and enables the regression to be
much accurate. Particularly, the training was performed by
considering different working conditions of LIB cycles sourced
from the publicly available repository from the Prognostics
Center of Excellence (PCoE) at Ames Research Center
(NASA)346 and extracting the key features from the voltage
and temperature curves. Klass et al.373 compared the SOH that
was determined in two different procedures, as shown in Figure
43. The conventional procedure, which serves as a validation,
consists of the derivation of performance values from direct
measurements with standard performance tests. The alternative
procedure relies on the SOH estimation method from Klass et
al.,374 in which a two-step procedure of SVM training and virtual
tests is applied to battery data generated with a typical EV
current profile. In a first step, a SVM is trained with current,
temperature, and SOC as input and the cell voltage as output.
This SVM model is then used as a voltage look-up table for
hypothetical current/temperature/SOC-input, predicting the
results of virtual tests, which can subsequently be used to derive
the cell resistance and capacity as in real standard performance
tests.
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The SVM can also be applied to regression problems,
although regression needs inherently bigger data sets than
classification. In this context, Nuhic et al.375 used SVR, which
was trained to learn/predict the degradation behavior of LIB
cells. The validation of such a model showed very satisfactory
results in the diagnosis of the cell state. It was also shown that the
developed estimationmethod could also be used for simple RUL
prognosis. Dong et al.349 reported a SVR approach able to
predict the RUL by online monitoring of SOH, where the
percentage of nominal capacity was used to represent the battery
SOH. Weng et al.363 proposed a battery SOH monitoring
scheme based on partially charging data. Through the analysis of
battery aging cycle data, a robust signature associated with the
battery aging was identified through incremental capacity
analysis (ICA). The use of SVR provided the accurate results
with moderate computational load. These authors showed that
the SVRmodel, built upon the data from one single cell, was able
to predict the capacity fading of seven other cells within 1% error
bound. In addition, they extended the ICA-based SOH
monitoring approach from single cells to battery modules,364

consisting of battery cells with various aging conditions. In order
to achieve on-board implementation, an incremental capacity
(IC) peak tracking approach based on SVR was proposed. (The
ICA can be defined as a method used to investigate the capacity
state of health of batteries by tracking the charging/discharging
capacity over the battery voltage. Aging mechanisms can be
extracted from the peak amplitude and position of the arising
curve.) Recently, Guo et al.376 extracted relevant health features
from the charging voltage, current, and temperature curves. The
nine extracted features with the highest correlation were
selected, and their dimensionality was reduced through PCA.
The remaining capacity estimation was performed by RVM. The
validation of different working conditions was made by taking
into account six battery data sets, from the NASA Prognostics

Center of Excellence.346 The results proved the high efficiency
and robustness of the proposed method.
Yang et al.377 proposed a novel state-of-health estimation for

LIBs based on statistical knowledge. An improved battery
model, which combines the open-circuit-voltage modeling and
the Thevenin equivalent circuit model, was proposed to improve
accuracy and to study the relation between internal parameters
and states of the battery. The joint extended Kalman filter-
recursive-least-squares algorithm was employed to estimate
battery SOC and to identify the model parameters and open-
circuit voltage simultaneously. Then, a PSO-least square support
vector regression (LSSVR) approach was employed to give a
reliable state-of-health estimation with good generalization
ability. In order to verify the accuracy of the proposed method,
static and dynamic current profile tests were carried out on
lithium iron phosphate batteries at different aging levels. The
experimental results indicated that the proposed method was
suitable for state-of-health estimation given its high accuracy.
On the other hand, the GPR method is also an emerging ML

approach in the field. As discussed in section 1, it is applicable to
complex regression problems due to their high dimensionality,
small available data sets, and nonlinearity.378 Since the battery
aging is a complex nonlinear process, the GPR is then of interest
for LIB SOH estimation. However, up to now, only a limited
number of works dealt with the GPR model devoted to SOH
estimation and prediction. Yang et al.334 extracted four features
from the charging curve, analyzed the correlation degree with
gray correlation,379 and predicted the SOH by means of a GPR
model. Several aging data from the NASA data repository were
used to demonstrate the accuracy and robustness of the
developed model. Liu et al.380 also used the GPR method to
perform SOH prediction and described its associated
uncertainty. According to the experimental results presented
in their work, the SOH prediction accuracy was not as high as
desired. On the other hand, Peikun et al.381 demonstrated that
GPs effectively exploited correlations between data from
different cells, showing accurate SOH estimations. In particular,
along this work, a multi-island genetic algorithm-GPR (MIGA-
GPR) model was used to study the relationship between battery
cell charge performance and SOH.
Furthermore, Richardson et al.337,382 presented a GPR model

for in situ capacity estimation (GP-ICE), which estimates battery
capacity using voltage measurements over short periods of
galvanostatic operation. The authors combined offline and
online study, as it can be seen in the flowchart of Figure 44.
The proposed GP-ICE does not rely on interpreting the

voltage−time data in terms of IC or differential voltage (DV)
curves; instead, it operates directly on the voltage vs time data
itself. This fact overcomes the need to differentiate the voltage−
time data (a process which amplifies measurement noise) and
the requirement that the range of voltage measurements
encompasses the peaks in the IC/DV curves. GP-ICE was
applied in this case to two data sets, consisting of 8 and 20 cells,
respectively. In each case, only 10 s of galvanostatic operation,
within certain voltage ranges, enabled capacity estimations with
approximately 2−3% RMSE.
Hu et al.383 proposed a data-driven forecasting model by

combining sample entropy and sparse Bayesian predictive
modeling, which was used to describe the correspondence
between the voltage-sequence sample entropy and the battery
capacity with an average error less than 1.2% at each
temperature.

Figure 43. Schematic overview of the scope of the work of Klass et al.373

Performance measures of an EV battery cell are determined and
compared from real tests as well as from EV battery usage data via SVM-
based models and virtual tests (I = current, U = voltage, T =
temperature, SOC = state-of-charge, m = measured, c = calculated, h =
hypothetical, e = estimated). Figure reproduced with permission from
ref 373. Copyright 2014 Elsevier.
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ML algorithms based on NNs, and particularly DNNs, can
predict nonlinear problem performance. WNN is one of the
most widely used networks in the field, which allows good
prediction performance to be achieved.384 Dong et al.385 used a
WNN-based battery model and PF to estimate the state of
energy. Specifically, the WNN-based battery model was used to
simulate the entire dynamic electrical characteristics of batteries.
The temperature and discharge rate were also considered to
improve the model accuracy. Besides, in order to suppress the
noise of the measured current and voltage, a PF estimator was
used to estimate the cell state of energy. Experimental results of

LiFePO4 batteries indicated that the WNN-based battery model
simulated battery dynamics robustly with high accuracy and that
the estimation value based on the PF estimator converged to the
real state of energy within an error of ±4%.
NN is broadly used as a ML method in the statistical model

because of its facile realization and its ability of developing
nonlinear models.386 Wu et al.387 analyzed the battery terminal
voltage curves at different cycles during charging and proposed
an online method using NN and importance sampling to
estimate the RUL of LIBs. A three-layer NN consisting of an
input layer, one hidden layer, and an output layer was proposed.

Figure 44. GP-ICE flow diagram by Richardson et al.382 The data used in these plots is only for illustration purposes. Figure reproduced with the
authors permission from ref 382.
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Moreover, a Levenberg−Marquardt-based gradient descent
back-propagation algorithm was used to train the NN model.
The mean absolute error and mean-square error of Wu’s
proposed method in the prediction of the RUL was 29.4218 and
1.6184 × 103, respectively, in about 2000 cycles.
The state of temperature (SOT) estimation has also been

investigated through various ML techniques. According to the
mechanism analysis, battery temperatures can be quantitatively
calculated by multiphysics models, which was the approach
followed by Feng et al.,388 who developed an electrochemical-
thermal-neural-network (ETNN) to estimate the battery SOC
and SOT for a wide range of temperature and current conditions
(Figure 45).
A simplified single particle model (SPM) and a lumped

thermal model were used as submodels of the ETNN to predict
the core temperature and to provide an approximate terminal
voltage. A NN was later incorporated to enhance the
performance of the submodels. Figure 45b illustrates the
architecture of the NN used, having two hidden layers with
five nodes each. According to the extensive experiments
performed, the ETNN model was able to accurately estimate
battery voltage and core temperature under ambient temper-
atures of −10−40 °C at a discharge rate of 10 C. Afterward, an
unscented Kalman filter was integrated within the ETNN to
achieve reliable coestimation of SOC and SOT.
In recent years, most of the developed NN models have

mainly been based on the LSTM approach and have proven to
be excellent for battery cell prediction. For instance, Qu et al.332

implemented a NN-based method that combined a LSTM
network with PSO (that Qu et al. named PA-LSTM) for RUL
prediction and SOH monitoring of LIBs, as illustrated in Figure
46.
Before predicting the RUL of LIBs, the authors used the

complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) method to reduce the noise of
the raw data, which can lead to improved prediction accuracy. A
real-life cycle data set of LIBs from NASA was used to evaluate
the proposed method and to show that this method had higher
accuracy, with respect to other methods, such as RNN, LSTM,
and RVM, where the average error and RMSE values of LSTM,
RNN, RVM, and PA-LSTM on different data sets and different
start cycles were −19, −11, −15, and −3 and 0.0549, 0.0775,
0.0554, and 0.0362, in that order.
Zhang et al.389 employed the LSTM-RNN to predict the RUL

of LIBs. The LSTM-RNN was adaptively optimized using the
resilient mean-square back-propagation method, and a dropout

technique was used to avoid overfitting. The developed LSTM-
RNN model was able to capture the underlying long-term
dependencies among the degraded capacities, allowing con-
struction of an explicitly capacity-oriented RUL predictor,
whose long-term learning performance outperforms the ones of
SVM, the PF, and the simple RNN models. The developed
LSTM-RNN predictor includes four main components: a
LSTM-NN architecture, a network parameter optimization
using the RMSpropmethod, a drop-out technique to prevent the
NN from overfitting, and a Monte Carlo (MC) simulator to
generate prediction uncertainties. In a similar way, You et al.390

proposed a LSTM-RNN, where the LSTM block embeds
multiple gated into the hidden nodes of the RNN, which allows
keeping the information for a long period. A data set of seventy
18650 LIB cells, cycled partially and dynamically with more than
10 driving profiles to mimic realistic EV scenarios, was used to
validate their ML framework, demonstrating that it was highly
effective in dynamic environments, with an average error of
≤0.0765 Ah (2.46%) in all of the experimental settings tested.
In a recent study, Chen et al.391 used a novel end-to-end

unsupervised ML approach for a more effective real-time
prediction of battery life and failure. This model enabled
unsupervised real-time automatic extraction of latent physical
factors that control the performance of Na-ion batteries,
classifying them as having good or bad cycling performance,
using only the voltage profile of the first cycle. For this purpose,
62 Na-ion batteries from 14 different kinds of layered NaTMO2
cathode materials with O3 oxygen stacking were tested for 16
cycles. The automatically extracted features by PCA were then

Figure 45. (a) Electrochemical thermal NN (ETNN) model structure and (b) NN detail by Feng et al.388 (a, b) Figure reproduced with permission
from ref 388. Copyright 2020 Elsevier.

Figure 46. Architecture of the LSTM cell by Qu et al.332 Figure
reproduced with permission from ref 332. Copyright 2019 IEEE.
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used to build a ML classifier, with more than 80% classification
accuracy of good or bad cycling performance for batteries with
up to 50 cycles. In addition, this model was also able to monitor
the safety of Li-metal battery systems by giving warnings when
the battery was approaching failure. In particular, considering
the data coming from the voltage profiles of 87 Li-metal anode
battery tests with a cycle life longer than 100 before the failure,
and using the developed autoencoder NN, the model provided
automatic anomaly warnings close to battery failures (see Figure
47).

Shen et al.392 proposed an automatized learning process using
a deep learning model. This avoids the manual feature extraction
that relies heavily on human labor, with the intrinsic risk of
dropping useful information in the charge data. Shen presented a
deep learning method based on a deep convolutional neural
network (DCNN, i.e., a CNN with more than one hidden layer)
for cell-level capacity estimation based on voltage, current, and
charge capacity measurements during a partial charge cycle. The
unique features of DCNN included the local connectivity and
shared weights, which enabled the model to accurately estimate
the battery capacity using the measurements performed during
charge. To test the performance of the proposed model, 10-year
daily cycling data from eight LIB cells and half-year cycling data
from twenty 18650 Li-ion cells were used. Compared to other
MLmethods, such as shallowNNs and RVM, the proposed deep
learning method leads to higher accuracy and robustness for the
online estimation of LIB capacity.
On the other hand, ensemble learning is a ML method that

groups multiple base learners to achieve better learning than a
single learner. In other words, the effect of model training is
equivalent to multiple decision makers working together on the
same problem. For instance, Li et al.393 used a NN as a base
learner to form differential data samples through the
AdaBoost.RT algorithm. Then, differentiated data samples
generated by different weight values were used to train base
learners and to form a series of differentiated base learners.
Finally, the outputs of the base learner were synthesized by a
certain method, and a new strong learner was generated.
Naha et al.394 developed an algorithm for online detection of

the mechanical abuse induced internal short circuit (ISC) in the
smartphone LIBs using a RF classifier. The authors built an
Android application to log the battery charge−discharge data
inside the smartphones, allowing transfer of the recorded data to
a computer for further processing. First, a set of eight features
was extracted in terms of current and voltage during cycle for
classification purposes. A total of 290 faulty cycles of different

magnitudes of external short (150−500 Ω) and 53 healthy
cycles were used to train the RF classifier and generate the
confusion matrices. The performance of the classifier for the
training data for a SOC cutoff of 5% was found to be normally
normal = 100%, faulty in fault = 99.66%, false alarm = 0.0%, and
miss detection = 0.34%. A total of 129 faulty (ISC induced by
mechanical abuse) and 148 healthy charge−discharge cycles
from five different batteries were used for testing. The proposed
methodology was tested successfully with 100% normal in
normal and 98.45% fault in fault accuracy for the complete
discharge cases (end of discharge SOC = 5%).
The MARS approach has been recently applied in many

studies,395−402 leading to accurate and precise predictionmodels
based on statistical learning, as, for instance, ANN used in a time
series, i.e., a series of data points indexed in time. MARS is a
multivariate non-parametric regression analysis technique that
was introduced by Friedman in 1991.403,404 The main advantage
of MARS is the lack of any prior assumptions for setting up a
functional relationship between the dependent and independent
variables. Thanks to this, MARS is recognized as one of the most
prominent methods for grading and regression in highly
nonlinear systems. However, limited works using MARS have
been reported in the field of battery SOC prediction, due to
problems associated with pruned data. Vyas et al.405 adopted the
PCA to mitigate the problem related to a very large number of
input variables and outcome targets, without admitting sufficient
observations. In his research study, the MARS technique was
used to predict the SOC of a nickel−cobalt rechargeable
18650PF LIB (3.6 V/2700 mAh). This technique was
successfully implemented for predicting battery SOC using
voltage current and temperature as input variables. In particular,
voltage, current, and temperature were considered as continuous
independent variables, while SOC was considered as a
continuous dependent variable, achieving a prediction relative
error <1% for discharge profiles of 0.3 and 0.5 C for SOC ranging
between 20% and 95%.

5.5. Conclusions and Future Trends

The electrochemical characterization of LIBs is fundamental to
guarantee their lifetime reliability, providing an accurate
diagnosis of their state through different parameters, like the
SOC, SOH, and RUL, among others. In this line, lifetime battery
predictions, resulting from off-line experimental analysis, have
been addressed by means of physical and semiempirical models,
with limited success considering the variety of degradation
modes and their coupling to thermal and mechanical
phenomena inside a battery cell, which makes it challenging to
develop models having reasonable computational cost.
To overcome the aforementioned drawbacks, ML methods

have been implemented in the electrochemical characterization
of LIBs to assess online estimation, lifetime prediction,
performance, and safety. A variety of custom-made models
have been developed to address these topics, whose pros and
cons were analyzed thoroughly in this section in terms of battery
physical properties, parametrization, training, and uncertainty.
In terms of performance and safety prediction, an ELM

method has been proposed to model the battery and predict the
evolution of its temperature, voltage, and power. Furthermore,
safety issues have been addressed simulating by analyzing the
battery thermal behavior by means of an ANN model.
With regard to aging prediction, the rise of the computational

resources available unlocks the use of ML and deep learning
utilizing a large amount of data for RUL predictions. Current

Figure 47. (a) Autoencoder anomaly detector for failure prediction:
schematics of an autoencoder NN and (b) cycles before the last 30 and
within the last 30 show distinct features indicated by the reconstruction
error of the autoencoder.391 (a, b) Figure reproduced with permission
from ref 391. Copyright 2019 Wiley.
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data-driven approaches in battery aging predictions include
supervised and unsupervised algorithms, such as time series
analysis, ANN, SVM, RVM, and probability estimation, like
GPR, among others. The most used ones are those based on
probabilistic estimation, SVM, and NN family, in that order. All
of them have brought (and will bring in the future) new insights
beyond the current expert level, leading to a better under-
standing of battery performance and failure processes. In
particular, we believe that regression algorithms based on time
series will make a mark in the near future, given the large amount
of data that they deal with. However, in a long-term perspective,
we think that algorithms capable of making accurate and realistic
predictions with a much more limited amount of data will
ultimately prevail, thanks to their lower requirements in terms of
resources needed to build the data set and for the training step.
Online estimation, i.e., SOX monitoring and prediction of

LIBs by data-driven models, is typically based on the analysis of
the data generated by specific battery systems. The scientific
articles revised herein allow concluding that the most used ML
methods for LIB online estimation are SVM, NN family,
probability estimation, and ensemble learning techniques. In
particular, SVM is the most popular one for online estimation of
SOH and RUL.
Other advanced data-driven models applied to the electro-

chemical characterization, aging, and temperature evolution,
among other aspects, are being developed for LIBs. It is expected
that the reduction of the input parameters to a minimal set of
critical features will lead to an increased accuracy, together with
a decrease of the overall simulation time. Nevertheless, these
models need a large amount of data for proper training, leading
to a relatively high computational cost for the training step.
Despite this, after the training process a highly accurate model
could provide information about LIB SOX and RUL at
extremely low computational cost. Another aspect that needs
to be considered is the lack of any physical insight of the data-
driven models, which partially hampers their application. These
drawbacks can be overcome combining the advantages that
bring different model approaches, for instance, physical-based
and data-driven models, in the so-called hybrid approaches.

6. OTHER BATTERY-RELATED APPLICATIONS

This section compiles other battery-related application domains
of AI/ML, beyond the ones described above. This includes the
derivation of surrogate mathematical models, able to describe
battery cell behavior with significantly less computational costs
than traditional physical-based models, and the demonstration
of approaches able to automatically mine data from the literature
and other sources. Figure 48 depicts a schematic of the ML
methods employed for the applications covered in this section,
their frequency and the nature of the data set used.

6.1. Surrogate Models

Physics-based and ML-based models can be combined together
to enhance the applicability and the completeness of both of the
approaches (i.e., based on physics or data only). On one hand,
physics-based models can provide a complementary under-
standing of the trends obtained by ML-driven models. On the
other hand, this can make physics-based modeling more
accessible in terms of computational resources needed, easing
its widespread use in both industries and academia. In this
context, the ML-based approach can be used to develop force
fields able to accelerate simulations based on DFT or MD,
among others (cf. section 2), to accelerate their parametrization
(section 3), or directly combined with physical models to
significantly support and ease the use of surrogate models, as will
be discussed below.
A straightforward approach to increase the cell energy density

is to optimize the cell electrode design and electrolyte transport
properties. For this purpose, a fast but still reliable model can be
used to test different cell or electrode designs in order to give
indications on the most interesting ones to test experimentally.
The pseudo-two-dimensional (P2D)model is themost reported
model in the literature406,407 due to its balance between accuracy
and relatively low computational cost. The P2Dmodel describes
the electrochemical reaction kinetics that takes place in the
electrodes, by means of the well-known Butler−Volmer
equation. It also makes a description of the transport
phenomena, and it is able to obtain concentration and potential
distributions along the thicknesses of the electrodes. Diffusion is
assumed as the only phenomenon driving transport of lithium in
the active material. The concentrated solution theory describes

Figure 48. Infographic on the ML methods recently used in the literature for applications to surrogate models, battery recycling/second life, and text
mining, including the corresponding nature (calculated vs experimental data) of the employed databases.
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the transport in the electrolyte. The active material in a porous
electrode is composed of numerous particles, and this is why a
second pseudo-dimension representing the radial diffusion on
the particles is used, giving the name to the model.
Despite its already demonstrated strong applications in the

battery field,408−412 the computational cost of P2Dmodels when
directly applied to battery design can be prohibitively high.
Indeed, in simulation-based battery design, thousands of
simulations are often required to determine the optimal design
variables. Moreover, the complex nonlinear nature of the battery
model may result in convergence problems under some sets of
design variables. In this scenario, the sensitivity of the design
variables is also difficult to analyze, because of their high
computational cost. In this context, a surrogate model based on
ML algorithms would reduce the computational burden of
battery design by several orders of magnitude.
Within this sense, Dawson-Elli et al.413 created a ML-based

surrogate model of a LIB cell. A flowchart representing their
methodology is shown in Figure 49. They implemented
developed DTs, RFs, and gradient-boosted-machine (GBM)-
based surrogate models and examined their abilities to predict
the dynamic behavior of the physics-based model. The P2D
model was used to create the data set for this study, and the
results were analyzed in terms of accuracy and execution time.
Trade-offs among training time, execution time, and accuracy for
different ML algorithms were reported.
Dawson proved that the surrogate models performed

exceptionally well predicting voltage, but they had no ability
to function at current densities different from 2C and
chemistries that were dissimilar to the ones of the training
data set, then showing poor prediction capabilities. According to
the obtained results, in spite of optimal voltage predictions, the
SOC estimation was fairly poor, due to the large variance in the
end times of the simulated discharge curves. It is worth
mentioning that the variability that allows for high-accuracy
voltage prediction causes a higher error in SOC estimations. By
restructuring the data set, it was possible to improve the SOC
estimations, which was found to be highly dependent on the
discharge history of the battery cell. This example then shows
the importance of a comprehensive training data set for the
correct development of surrogate battery models.

Dawson et al. also proposed to embed in the proposed
procedure more complex ML algorithms, such as ANNs, with
longer training but similar execution time. The aim of this was to
reach superior interpolation performance with respect to the
ones obtained through DT, RF, and GBM. Even if this is
reasonable, it should be tested and demonstrated, recalling the
importance of benchmarking as muchML algorithms as possible
in order to define the ones with the best prediction capabilities in
terms of reproducing the system under analysis.
Wu et al.414 presented a systematic approach based on ANN

to reduce the computational burden of battery design by several
orders of magnitude. TwoNNs were constructed using the finite
element simulation results from a P2D model. The first NN
served as a classifier to predict whether a set of input variables is
physically correct, while the secondNN provided predictions on
its specific energy and power. Both NNs were validated using
extra P2D model simulations not considered during the training
(test set). With a global sensitivity analysis performed by using
these NNs, Wu et al. quantified the effect of several input
parameters (thickness, solids volume ratio, C-rate, particle
radius, electrolyte concertation, etc.) on specific energy and
power. The evaluation of large combinations of these input
parameters would have been computationally prohibitive for the
full P2D model simulations, showing the potential of ML-based
surrogate models. Among the parameters tested, the applied C-
rate had the largest influence on specific power, while the
electrode thickness and porosity were the dominant factors
affecting the specific energy. Thanks to these findings, Wu et al.
generated a design map of the conditions allowing the desired
specific energy and power to be reached. This study then
highlighted the potential of NN in handling the nonlinear,
complex, and computationally expensive problem of battery
design and optimization.
Compared to the P2D models, the multidimensional

multiphysics (MDMP) models415 can simulate and predict the
cell performance by considering cell design parameters under
more realistic operating conditions, making their results more
trustable. For example, various authors416,417 have developed
MDMP models to simulate the distribution of surface
temperature and lithium concentration in large format prismatic
cells. These detailed simulations consider the battery hetero-

Figure 49. Process flowchart for the creation of surrogate models from simulated data.413 Figure reproduced with permission from ref 413. Copyright
2018 IOPScience.
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geneity and nonlinearity within real cell components and
geometry. At the same time, MDMP models are directly related
to and determined by their parameters, including cell design and
the physical properties of the materials used. The intensive study
of parameter sensitivities is essential for a detailed understanding
(and then better optimization) of cell performance and safety
among other important characteristics. However, most studies
about sensitivity analysis of LIBs frequently rely on scenario
analysis418 and local studies,419 which investigates only minor
parameter changes, exploring narrow ranges of the entire
parameter space. The main reason for this is the high
computational cost of the numerical quantification of the
parameter sensitivities. Surrogate models using ML algorithms
able to predict the effect of the aforementioned parameters can
then be useful to perform broader parameter sensitivity analysis
by keeping reasonable the associated computational cost.
Within that spirit, Yamanaka et al. developed a computational

framework for performing multiobjective optimization at a
reasonable computational cost using ML methods.420 With this
framework, an inverse analysis of optimal LIB design conditions,
including safety conditions, is performed. Nail penetration
simulations on different input conditions are performed so as to
build a database for battery design conditions/test conditions
(descriptors) and safety/performance (predictors). As a result,
of analyzing the relationship between descriptors and predictors,
a high correlation between fire spread and negative electrode
active material diameter is confirmed. Furthermore, a regression

model to predict the database is created with a GPM. Using the
model and a genetic algorithm, the authors identified the design
conditions offering the highest safety and performance.
Bao et al.23 proposed a computational workflow that couples

data-driven modeling with physical modeling to provide insights
on the relationship between the electrode microstructure at the
pore scale and the electrochemical reaction uniformity at the
device scale in operating redox flow batteries (Figure 50). The
authors train and validate a DNNmodel by using more than 100
pore-scale simulations providing a quantitative relationship
between redox flow battery operating conditions (electrolyte
inlet velocity, current density, electrolyte concentration) and
uniformity of the surface reaction at the pore scale. The
extracted information is upscaled at the cell level simulation.
Based on the multiscale model results, a time-varying
optimization of electrolyte inlet velocity is proposed, leading
to a significant reduction in pump power consumption for
targeted surface reaction uniformity but little reduction in
electric power output for discharging.

6.2. Recycling and Second Life Assessments

Secondary battery utilization is a key strategy to solve the
problem of battery recycling in the future. For instance, a retired
battery pack from an EV is not directly reusable due to the poor
consistency of the cells in the pack after usage. The application of
ML techniques to assist in the decision making of which cells to
reuse has been emerging very recently. ML gives the promise of

Figure 50. Graphical representation of the 1D device-scale simulation and multiscale model flowchart developed by Bao et al.23 The insert within the
box enclosed by the dashed blue border reports the DNN scheme used for learning the relationship between flow-battery operating conditions and
surface reaction uniformity. Figure adapted with permission from ref 23. Copyright 2020 Wiley.
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increasing the reliability in the cell choice and to accelerate the
overall battery recycling cycle.
Zhou et al. reported recently a screening method for retired

cells based on SVM. The authors dissembled cells (240) from
retired battery packs and measured their capacity and
resistance.421 Then, a multiclass model based on SVM was
trained to classify the retired cells. The model accurately
separated the retired cells into four classes with very high
accuracy (above 96%). The authors demonstrated that this
model permits a faster classification and a greater screening
efficiency than the traditional manual classification method
(Figure 51).
A similar study was reported by Garg et al.422 where a

systematic clustering method of retired LIB cells is proposed.
The method is mainly divided into three stages: (i) fast
screening of voltage and internal resistance, (ii) retired battery
SOH detection, (iii) retired battery clustering method based on
a self-organizing map (SM) NN. The authors show their
proposed screening scheme can quickly identify the initial state
of retired batteries and provide a solid basis for further decision-
making. Experimental results discussed by the authors show that
the capacity and potential cycle numbers of reuse packs
manufactured by SOM clustering are 25 and 50% more than
those of reuse packs manufactured by randomly selected retired
batteries.
In the same spirit of the works above, Senthilselvi et al.423

recently reported a study of mobile phone recycling. The
authors used a MEPH (magnetic separation, Eddy current,
pyrometallurgical, and hydrometallurgical) process for metal
separation, metal extraction, and purification. The purifiedmetal

is captured through a camera, and the captured image is subject
to noise removal and given as input to a CNN for classification
and better assessment of the recycling process.

6.3. Text Mining

In recent decades, battery science is facing big data difficulties
because of the large amount of raw battery data. A similar
tendency is noticed in the battery literature, which nowadays
contains more than 298,00018 and grows exponentially each
year, making the task of reviewing the literature a challenging
and time-consuming task. Hence, this information needs to be
effectively extracted and analyzed in order to be useful. Text
mining (TM) methods are the best candidates to handle textual
data. ML provides tools that can assist the information
extraction in the TM as well as the analysis of the extracted
data, as it proves its use in a variety of domains.424−428

The text corpus from the literature is mainly (∼80%)
unstructured,429 which makes it unclear and difficult to
manipulate from an algorithm point of view. TM uses a
nonconventional retrieval method to extract the information of
interest from a large textual set, as shown in the classical TM
workflow reported in Figure 52. This workflow can be
summarized as being composed of the following steps:

1. Collecting unstructured data with different formats as
plain text, pdf, html, xml, or web pages, among others.

2. Preprocessing step aiming to clean and prepare the text
(removing tags, advertisements, etc.) and convert it into
an easily readable format (typically plain text).

Figure 51. Schematic representation of how the SVM-based approach proposed by Zhou et al.421 could assist the second life of EV battery for
application as stationary applications. Figure adapted with permission from ref 421. Copyright 2020 Elsevier.

Figure 52. Overall process of text mining.
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3. The resulting text is ready to be analyzed, starting with
converting unstructured data into structured data, as a
table of data which can be used to train a ML algorithm.

4. Save the extracted information into a database.
During the past decades, several TM techniques have

emerged, such as the following:

• Information extraction: It is the most used TM technique,
which aims to extract the information of interest from a
large textual data set. This technique basically focuses on
identifying relevant entities as well as the relationships
within them.

• Categorization: It is a supervised ML method, in which
the algorithm uses typically human-generated input data
(as the position in text in which certain information is
reported) to learn from it, aiming to be able to classify
autonomously new observations (as the location of the
same information in a not previously analyzed article).

• Clustering: This method is used to identify clusters of
documents with one or more common feature(s).

• Summarization: This method aims to reduce the length
and remove details from specific text in an automatic way,
while holding the valuable information and general
meaning.

TM is a powerful tool that can be used to mine information
and knowledge from textual data, and it starts to be applied in
the battery field. Torayev et al.430 used TM techniques to
promote the reviewing process of scientific publications and

applied it to Li−O2 batteries. Using over 1800 papers on Li−O2

batteries, the authors screened the reported discharge capacities
according to the publication year, which helps to reveal the
progress that has been made in recent years. The authors
focused essentially on the stability−cyclability, the low practical
capacity, and the rate capability of the batteries, using
bibliometric analysis of the literature. The analysis proved that
researchers in the field moved from carbonate-based electrolytes
to glymes (dimethoxyethane, diglyme, triglyme, tetraglyme) and
dimethyl sulfoxide-based ones. The results also showed that the
majority of papers aim to improve either cyclability, stability, or
catalysis aspects.
Ghadbeigi et al.431 used a database created by manually

screening information from over 200 publications to predict the
capacity of battery materials using aML approach. Nevertheless,
the limited dimension of their data set limits the trustability of
the so-obtained results. Hence, it is crucial to build automated
systems that are capable of building databases from all available
literature, especially for well assessed fields (as LIBs) for which
thousands of articles should be considered to obtain results that
can be considered representative of the real state of the art.
Thanks to TM and natural language processing (NLP), it is

nowadays possible to collect data of interest from unstructured
text, which can unlock the possibility of predicting new patterns,
trends, and dependencies through the data already available.
Tshitoyan et al.92 showed that it is possible to gather material
science information from the published literature without

Figure 53. Percentages of LIB articles in which selected electrode and cell features were found through the text mining algorithm developed by El-
Bousiydy et al.20 For the case of mass loading, porosity, and thickness, it was calculated as well how frequently those properties are reported as exact or
approximate/range of values. Figure reproduced with permission from ref 20. Copyright 2021 Wiley.
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human supervision by using word embedding. Word embedding
makes textual data understandable to TM and NLP algorithms
by converting the words to a mathematical representation (as a
vector). The idea behind this approach is that similar words will
have similar surroundings, meaning in mathematical terms that
the two generated vectors will be similar as well, easing their
classification. In their work, Tshitoyan et al. used a word-
embedding approach applied to material science, focusing on
structure−property relationships as well as the underlying
structure of the periodic table. These results were obtained using
∼3.3 million scientific abstracts from over 1000 journals,
without giving to the model any chemical knowledge to start
with. The authors proved that the unsupervised approach is
capable of predicting new materials for useful applications based
only on the previous published literature. This work proved that
unsupervised word embedding can be used not only to capture
the known information from text but also to reveal previously
unknown knowledge about materials properties. In addition, the
predictions of their word embedding models were compared to
the results of ab initio DFT calculations and experimental data
sets, in order to check the validity of their results. By retraining
the model using only abstracts published before 2009 and
comparing the resulting predictions with the following 10 years
of published abstracts, the authors found that their model was
able to predict some of the best thermoelectric materials
reported in the past decade, by using information reported years
before their actual discovery. Such a model can be an important
piece of future material discoveries, allowing to save time and
boost research in the field.
TM was also used recently by El-Bousiydy et al.20 to disclose

LIB scientists’ habits in terms of how often certain basic, yet
critical, electrode and cell features are reported in the scientific
literature. The TM algorithm developed in this work is based on
specific libraries based on keyword search linked to logical
operators, complex enough to extract in the most complete and
accurate way the searched information. The accuracy of this
algorithm, which was used to analyze a data set of ∼13,000 LIB
and sodium-ion battery scientific publications, was assessed by
comparing the results extractable by the TM algorithm and the
ones extracted by expert research in 1000 randomly selected
articles, showing good accuracy for all of the electrode and cell
features analyzed (F1-score >80% for the vast majority of them).
Their findings (summarized in Figure 53) show a lack of
systematic reporting for certain key electrode features, as their
thickness, porosity, electrolyte volume, and surface area. A
critical, yet unexpected, finding is that the majority of articles did
not report the mass loading and, when reported, >50% was
reported as approximate or a range of values, hampering the
validity of reporting a rate capability test.
These findings are highly problematic in terms of complete-

ness of the data disclosed, which links to the difficulty of
reproducing certain experimental results, making it sometimes
challenging to discern hype from reality. This work aimed not
only to raise attention within the battery community to the lack
of key data in the scientific literature, but it also proposed a
practical solution: stronger standardization of the field. This
should be implemented in a way not seen as a burden by the
scientific community, but as a tool to further support and ensure
the creativity process, maximizing simultaneously researchers’
freedom and efficiency.432

Among the most used TM and NLP tools for chemical
information extraction and text processing, ChemDataExtractor
can automatically detect and collect chemical information from

large unstructured corpora, as scientific literature. ChemDa-
taExctractor was initially developed by Swain et al.,433 which
aimed to build an unsupervised word clustering based on a large
volume of chemistry scientific articles. In that context,
ChemDataExtractor proved to be a flexible and accurate tool
(F-score >85%, which stands for a trustable extraction
procedure) in terms of text processing, tokenization, and part-
of-speech tagging, for recognizing and capturing chemical
entities, the associated properties, and their interdependencies.
Huang et al.434 exploited a modified ChemDataExtractor435

to generate automatically information from over 229,000 papers
associated with battery research. The aim of this work was to
build a large database of battery materials to study five material
properties: capacity, voltage, conductivity, Coulombic effi-
ciency, and energy.
Kononova et al.436 built a fully autogenerated open source

data set, which is retrieved from over 53,000 solid-state synthesis
paragraphs. This data set contains more than 19,000 chemical
reaction procedures. The authors used an automated extraction
pipeline by using TM and NLP tools to recover the targeted
materials information, starting compounds, synthesis steps, and
conditions. Therefore, they converted this information into a
chemical equation summarizing the synthesis procedures used.
Kuniyoshi et al.437 built a corpus, named SynthASSBs, by

analyzing 243 ASSB articles and extracting the synthesis
procedures reported herein. SynthASSBs contain synthetic
parameters (as temperature, chemical nature, etc.) and their
links (for instance, which components are mixed under which
conditions). This corpus was used to train a deep-learning-based
sequence-tagging model with a rule-based approach to develop a
ML model able to extract automatically the synthesis procedure
out of the experimental section. Their model can identify the
entities (i.e., in this case, the synthetic procedure) with an F-
score of 0.826, while the rule-based relation extractor achieved
an F-score of 0.887, both indicating good model accuracy.
Amazingly, an AI-based algorithm similar to text mining has

been recently used to write an entire book about lithium-ion
batteries published by Springer.438 Such an algorithm, the
book’s author named it multi-island genetic algorithm “beta
writer”, collected numerous abstracts and keywords from
scientific publications on the subject and compiled them in an
organized fashion. Despite a (sometimes) approximate writing
and the miss of important reference citations, the result is
promising, showing that AI has strong potential to ease battery
data organization, which in turn can ease the state-of-the-art
assessment by battery scientists.
In conclusion, until today, only few works based on TM were

focused on the battery field, while TM is already a well assessed
technique for domains such as biomedicine.424−427 In this
regard, and as TM algorithms are increasingly accessible, we
hope that TM will be more and more adopted by the battery
community. Indeed, by exploiting the enormous corpus of
knowledge that is (almost) fully digitized in the battery scientific
literature, today it is possible to build large databases, which have
the potential of offering major insights into a highly complex
field as the one of battery R&D. In addition, TM could also help
in identifying the most critical results in the scientific literature,
helping researchers’ in identifying the most promising field of
research for the future and which reported results should be
subjected to further investigation or targeted replication efforts.
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7. OVERALL CONCLUSIONS, CHALLENGES, AND
PERSPECTIVES

AI for batteries is not hype. AI in general, and ML in particular,
lead the promise of overcoming the main limitations of battery
optimization, which often yields a combinatorial explosion and
makes impractical the exhaustive rendering of chemical and
electrode/cell manufacturing spaces. ML-based methods can
allow navigating such chemical, formulation, and operation
condition spaces in a selective manner and promises to reduce
the number of required experiments and/or computations.
From a theoretical viewpoint, ML can support the development
of highly efficient force fields, creating new opportunities for
material simulations and reliable surrogate models. This could
also boost the development of multiscale modeling frameworks
with reasonable computational costs, as discussed in sections 2
and 6. In addition, ML has the potential to become a powerful
experimental enhancing tool in terms of identifying reaction
mechanisms directly from electrochemical results (as cyclic
voltammetry).439 On the one hand, someML applications in the
battery field have already been extensively investigated in the
scientific literature, as online and offline estimation of battery
SOH, SOC, and RUL, as discussed in section 5. On the other
hand, several promising applications of AI/ML are surprisingly
understudied in the battery field. Among them, battery
manufacturing (section 3) and battery material characterization
(section 4) are clear examples. The use of data-driven
approaches will profoundly influence the industrial facilities of
modern societies, guiding toward the Industry 4.0 revolution.
Battery manufacturing will not be an exception, and dedicated
data warehouses will be needed in the near future. Despite this
clear trend, academic studies on the subject are still rare in the
literature, calling for stronger efforts in this direction. Academia
should offer to industries new data-driven approaches, assisting
them in overcoming this revolution. Similar remarks can be
made for the case of battery materials characterization, for which
scientific literature is still scarce. One of the first and more
important applications of ML techniques is image analysis,
making ML particularly suited for tomography image
segmentation, a field in which ML algorithms are expected
playing a predominant role in the forthcoming future. Another
field in which AI is expected to play a key role in battery research
is text mining (section 6), in terms of both data retrieval and
analysis. This could give access to vast data sets “just” recovering
the information already available in the scientific literature,
which would significantly ease the analysis of the chemical and
electrode/cell manufacturing spaces discussed at the beginning
of this section. However, a severe concern for its applicability is
the systematic lack of data on critical electrode and cell
properties, for instance, electrode porosity, electrolyte volume,
or electrochemical testing protocols, to name a few, which are
likely to be too often neglected in scientific reports, as recently
demonstrated by El-Bousiydy et al. mining 13,000 battery-
related scientific articles.20 In addition, despite the challenges
ahead, ML brings the promise of boosting the emergence of self-
driving battery laboratories to automate experiments and data
collection, as it starts to be seen in other chemistry-related
fields.185,440

Despite all of the promises and hopes on AI and ML, a long
way is still needed before reaching a widespread use of data-
driven approaches in the battery field. Challenges that should be
addressed can be summarized as (i) descriptors, (ii) data scarcity

and error determination, (iii) lack of standards and immature
representations, (iv) user-friendly tools, and (v) bridging scales:

• Descriptors: The efficiency and, ultimately, the success of
any ML model relies on the selection of appropriate
descriptors. Defining the most suited descriptors for a
certain ML model and identifying descriptors that could
be generalized is far from being straightforward. Even
though the importance of good descriptors is largely
discussed in the field ofML applied to material design and
synthesis, the same problem applies to all of the other
fields discussed here, from manufacturing to material
characterization, where the consideration of different
parameters can potentially lead to significantly different
results and conclusions.

• Data scarcity and error determination: If from one side
the number of possible descriptors/parameters to be
considered in any ML procedure can be large, from the
other side the size of training data sets could be relatively
small, especially at the lab scale. This imbalance might, in
general, lead to overfitting issues. To mitigate this, future
research directions should consider the development of
ML algorithms specifically geared to small data sets (e.g.,
hierarchical ML, reinforced learning, sequential learning,
etc.). Other useful strategies could be the use of transfer
learning by incorporating theoretical data to experimental
ones, guiding the training process (e.g., bias learning), and
the development of hybrid approaches, combining
experiments, modeling, and ML. Additionally, ML
techniques capable of determining or estimating the
error associated with the ML predictions will be strongly
beneficial, allowing to assess the limit of applicability of a
specific ML model for which a wider adoption of
Bayesian-based ML approaches would be favorable.
Cross-validation of different ML models could also help
quantify uncertainty by, for example, performing
extensive calibration tests considering experimental or
computational campaigns based on the same benchmark
data. It is also important to stress here the critical
importance of further developing freely accessible battery-
related databases, similarly to the ones of the Material
Project441 and NASA,346 the ones developed in the
context of the ARTISTIC,15 DEFACTO,16 and BIG-
MAP17 projects, or the ones existing in other fields.442

• Lack of standards and immature representations: Missing
agreed-upon data standards in the battery field not only
hinders data from being shared and mined, but it also
hampers data curation and interoperability, which is
crucial to improve the predictive capability of ML models
and make their training more efficient. Stronger efforts
from the battery community to agree upon broadly
accepted standards in terms of material synthesis and
electrode/cell manufacturing and characterization have
the potential to ease comparison of results, helping to
discriminate hypes from reality and assisting the develop-
ment of ML models, which could rely on trustable and
more accessible data. Recent actions in this directions
were recently undertaken in the battery field.20,78,79,443 In
addition, a standardized way of referring to the different
ML techniques would be beneficial to ease the discussion
between different groups worldwide and make the
associated scientific literature more accessible.
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• User-friendly tools: Stronger collaboration between AI’s
specialist and battery experts from both the experimental
and computational point of view is crucial to exploit the
full potential of AI or ML approaches applied to battery
R&I. A possible strategy to ease a wider adoption of data-
driven approaches in a battery researcher’s routine could
be the development of AI- or ML-based user-friendly
tools. These tools should aim to assist researchers in their
daily work, which would lead them to feed those tools
with as much data as possible, possibly mitigating the
challenges associated with data scarcity.

• Bridging scales: ML has an important role to play for the
development of multiscale models (from atomistic to
system level) to make predictive models accounting for all
scales and their interactions. For instance, the use of ML-
based imaging techniques can provide valuable insights
regarding the dynamics of interfacial processes, with Li
dendrite formation and growth being one of the most
detrimental among these phenomena. In addition, the
combination of ML-assisted imaging, or high-fidelity in
silico mesostructures121,122, and physics-based modeling
can open up new frontiers in understanding the
mesostructure−properties relationship. Other important
contributions of ML-assisted multiscale modeling could
come from fast screening of the manufacturing−
mesostructure−properties relationships,21 coupling de-
vice and pore/molecular scales (as reported in the context
of redox flow batteries)23 or tackling the problem of
polysulfide formation and transport in Li−S batteries.
Such models could lead to a more holistic view of the
battery optimization problem, opening new frontiers in
battery R&D&I.

Today it is clear that the capabilities and potential of AI in
general and ML in particular are attracting a growing interest to
attain new insights on batteries at all scales: frommaterial design
and synthesis to manufacturing, and from material to electro-
chemical characterization. Many hopes are pinned on data-
driven approaches applied to batteries, yet significant progress in
the field is needed before leading to the revolution that AI
promises. Creative and innovative AI solutions are emerging in
other fields, as in music creation where a composer can request

an AI to compose music by mixing predefinedmusic styles.444 In
a not so distant future, these solutions may become adapted for
the battery field as support of researchers’ creativity; for example,
we can imagine AI algorithms building multiscale models by
picking up automatically from the literature a collection of
models with the degree of fidelity desired. Another example is
Alpha fold, an AI network that recently demonstrated being able
to determine the 3D structure of proteins starting from their
amino-acid sequence. Similar approaches can be envisioned for
batteries, as computational frameworks able to indicate how
cell/electrode components organize in the space as a function of
their chemical nature, ratio, and manufacturing conditions, as
well as how the arising 3Dmesostructure affects the cell lifetime,
electrochemical, and mechanical properties.
All of the AI discussed above is also categorized as “weak AI”

in computer science, i.e,. a set of informatics programs
mimicking human intelligence. Since Alan Turing’s times,
strong debate persists about the possibility or not of designing
AIs which can think and have genuine understanding and
conscious thoughts, i.e., the so-called “strong AI”. If strong AI
emerges one day, it will revolutionize even more the battery
field.445 Still, ethical aspects should be carefully considered in
their design, for both “weak” and “strong” AIs446 to ensure
strong synergies between humans and machines (Figure 54).
Overall, to become an unavoidable driving force to foster

innovation, AI experts should mandatorily and strongly
collaborate with battery experts from both an experimental
and computational point of view. If the battery community will
be able to successfully integrate data-driven approaches in their
routine work, data could open the door to new fascinating
discoveries in the field at an unseen rate, boosting the
development of the new generation of batteries.
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learning models, Fabian Åreń is a third year Ph.D. candidate under the
supervision of Prof. Dr. Patrik Johansson. With a background in
theoretical physics, his work primarily focuses on how knowledge of a
materials bond graph enables a deeper understanding at scales. Also
cofounding the startup Compular, this work has received traction
outside of academia.

Oceanographer and chemist, Alfonso Gallo-Bueno did his master in
theoretical chemistry and computational modelling in 2011−2013 and
obtained his Ph.D. in 2016 studying the chemical bonds in molecules
and solids with topological indices from the QTAIM theory. The thesis
was in close cooperation with the Max Planck Institute for Chemical
Physics of Solids, where Alfonso Gallo-Bueno did part of the Ph.D.
Afterwards, he was a postdoc in the IOCB of the Czech Academy of
Sciences (Czech Republic) in the group of Noncovalent Interactions
(Pavel Hobza) in 2017, participating in the development of the PM8
semiempiric method for the MOPAC code. He continued his career in
ITENE, an institute of technology located in Valencia, Spain, managing
the chemical and nanomaterials modeling area, developing databases,
and QSAR and machine learning models to chemical systems. Since
March 2018, he has been a postdoc at the Modelling and
Computational Simulation group in CIC energiGUNE, applying
quantum chemical and machine learning tools to the development of
new materials for electrochemical energy storage.

Peter Bjørn Jørgensen received his B.Sc. (2011) in Electronics
Engineering and IT and M.Sc. (2013) in Wireless Communication
Systems from Aalborg University, Denmark. He obtained his Ph.D. in
Machine Learning at Technical University of Denmark. His thesis is on
deep learning methods for screening of molecules and materials.
Currently, P.B.J. is a postdoctoral researcher at Technical University of
Denmark. His research interests include deep learning on graphs,
probabilistic modeling, and generative models with applications in
materials discovery.

Arghya Bhowmik is a researcher at Technical University of Denmark
leading a group applying deep learning toward the design of energy
materials like catalysts and batteries. His research spans computational
modelling combining physics-based and data-driven approaches. He
applies machine learning models to enable long time and length scale
simulations, probabilistic generative models for inverse design of
materials at multiple time and length scales, as well as explainable deep
learning toward uncovering chemical laws from big data. He obtained
his Ph.D. in Energy Conversion and Storage from the Technical
University of Denmark (2017).

Arnaud Demortier̀e has been a CNRS researcher at the Laboratoire de
Reáctivite ́ et Chimie des Solides (LRCS - France) and the RS2E
network (Amiens, France) since 2015. His research focuses on the
development of in situ and operando experiments to monitor and study
the dynamics of (de)lithiation at different scales. The spatiodynamics
investigations of lithium composition in individual primary grains,
secondary particles, and composite electrodes are based on advanced
methodologies using liquid electrochemical TEM, FIB/SEM tomog-
raphy, and nano-computed tomography. His team at LRCS is also

heavily involved in image processing using artificial neural networks for
semantic segmentation and structural pattern identification. He
received his Ph.D. in Nanoscience in 2007 from Sorbonne University
(Paris, France). After a CNRS postdoc at IPCMS laboratory
(Strasbourg, France), he joined in 2010 Argonne National Laboratory
(Chicago, USA) as a postdoc for 5 years. Since 2015, he has been the
manager of the (e-/X) microscopy platform of the RS2E network. He is
involved in several national and European projects in the field of
batteries and advanced characterizations such as ANR-DestiNa-
ion_Operando and BIG-MAP.

Elixabete Ayerbe is leading the Modelling and Post-mortem Group of
the Materials for Energy Unit, coordinating the activities related to
multiphysics and data-driven models, as well as the parametrization and
post-mortem analysis for Li-ion and advanced Li-ion batteries. She is
currently coordinating H2020 DEFACTO project and coordinated in
the past the FP7 SHEL project. In addition, she represents the
multiphysics modelling activity of CIDETEC in several H2020 EU
projects, such as SPICY, HIFI ELEMENTS, SPIDER, CoFBAT, BIG-
MAP, and Battery2030PLUS, and leads the area ofManufacturability in
Battery 2030+ initiative.

Francisco Alcaide holds a Ph.D. in Chemistry (Electrochemistry,
Physical Chemistry) from the University of Barcelona (2002). He has
25 years of experience in electrochemical technologies, especially in
batteries, fuel cells, and hydrogen technologies. He is specialized in
electrodics and electrocatalysis at the electrochemical interfaces. He has
participated in about 45 R&I projects and contracts with companies at
the national, European, and international level (20 as PI) and in
technology transfer and innovation. He has been involved in several
European projects: ZEOCELL, SUSHGEN, ARTEMIS, DEMSTACK,
COBRA, SPIDER, HIFI-ELEMENTS, DEFACTO, BIG-MAP, and
Battery 2030PLUS. Dr. Alcaide currently works as Principal
Investigator - Project manager at CIDETEC Energy Storage.

Marine Reynaud is an experimental Chemist and a researcher of the
Advanced Electrode Materials group at CIC energiGUNE. She
currently leads a team working on innovative strategies to accelerate
the discovery of new battery materials. She has extensive experience in
inorganic syntheses and materials characterizations, in particular using
diffraction techniques. She focuses her research on understanding of the
correlations between composition, (micro)structure, and perform-
ances. Dr. Reynaud completed her Ph.D. inMaterials Science in 2013 at
the University of Picardie Jules Verne (France), for which she obtained
the doctoral dissertation award from her University. She was awardee of
the Spanish Juan de la Cierva fellowship (2016). She is currently leader
of the work package dedicated to materials selection in the H2020 EU
project 3beLiEVe.

Javier Carrasco has led the Modelling and Computational Simulation
group at the CIC energiGUNE since 2013. His research aims at
understanding atomic scale phenomena in surface science, materials
science, and nanoscience in the energy field. Using concepts from
quantum mechanics, solid-state physics, statistical mechanics, and
machine learning, he applies and develops methods and computer
simulations to study processes of relevance to energy materials.
Rechargeable batteries and thermochemical energy storage are major
focuses of his work. Dr. Carrasco obtained his Ph.D. in Theoretical
Chemistry from the University of Barcelona (2006). He is an awardee
of Alexander vonHumboldt (2007), Newton International (2009), and
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ANN = artificial neural network
ARNN = adaptive recurrent neural network
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CBD = carbon binder domain
CE = cluster expansion
CEEMDAN = complete ensemble empirical mode decom-
position with adaptive noise
CGCNN = crystal graph convolutional neural network
CGMD = coarse grained molecular dynamics
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CHAIN-MED = cyber hierarchy and interactional network-
based multiscale electrode design
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DoE = design of experiments
D-DEMG = data-driven stochastic electrode mesostructure
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DFT = density functional theory
DCNN = deep convolutional neural network
DNN = deep neural network
DOD = depth-of-discharge
DT = decision tree
DV = differential voltage
EIS = electrochemical impedance spectroscopy
ELM = extreme learning machine
ERT = extremely randomized tree
ES-GP = exhaustive search with a Gaussian process
ES-LiR = exhaustive search with linear regression
ETNN = electrochemical thermal neural network
EV = electric vehicle
FE = finite element
FF = force field
FPCA = functional principal component analysis
FTIR = Fourier transform infrared
GAP = Gaussian approximation potential
GAN = generative adversarial network
GP = Gaussian process
GPR = Gaussian process regression
HT = high throughput
ICA = incremental capacity analysis
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ICSD = Inorganic Crystal Structure Database
IIoT = industrial internet of things
ISC = internal short circuit
k-NN = k-nearest neighbors
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LASSO = least absolute shrinkage and selection operator
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LARS = least-angles regression
LIB = lithium-ion battery
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LSSVR = least squares support vector machines regression
MAE = mean average error
MARS = multivariate adaptive regression splines
MCR-ALS = multivariate curve resolution-alternating least
squares
MD = molecular dynamics
MIGA = multi-island genetic algorithm
ML = machine learning
MLP = multilayer perceptron
MLR = multiple linear regression
MOF = metal−organic framework
MP = Materials Project
MSDN = multistream dense net
MSVM = multikernel support vector machine
NB = naive Bayes
NEB = nudged elastic band

NIPALS = nonlinear iterative partial least square
NLP = natural language processing
NMC = nickel−manganese−cobalt oxide
NMR = nuclear magnetic resonance
NN = neural network
OCL = one-class learning
PCA = principal component analysis
PDF = pair distribution function
PF = particle filter
PLS = partial least squares
PLS-DA = partial least square discriminant analysis
PSO = particle swarm optimization
QDA = quadratic discriminant analysis
R&D = research and development
R&D&I = research and development and innovation
R&I = research and innovation
RF = random forest
RMSE = root-mean-square error
RNN = recurrent neural network
RR = ridge regression
RUL = remaining useful life
RVM = relevance vector machine
SDA = shrinkage discriminant analysis
SE = squared exponential
SOAP = smooth overlap of atomic positions
SOC = state of charge
SOH = state of health
SOT = state of temperature
SPM = single particle model
SSIM = structural similarity index measure
SVC = support vector classifier
SVM = support vector machine
SVR = support vector regression
TCN = temporal convolutional network
TXM = transmission X-ray tomography
VAE = variational autoencoder
WNN = wavelet neural network
XANES = X-ray absorption near edge structure
XAS = X-ray absorption spectroscopy
XRD = X-ray diffraction
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(157) Schütt, K. T.; Glawe, H.; Brockherde, F.; Sanna, A.; Müller, K.
R.; Gross, E. K. U. How to Represent Crystal Structures for Machine
Learning: Towards Fast Prediction of Electronic Properties. Phys. Rev.
B: Condens. Matter Mater. Phys. 2014, 89, 205118.
(158) Yang, L.; Dacek, S.; Ceder, G. Proposed Definition of Crystal
Substructure and Substructural Similarity. Phys. Rev. B: Condens. Matter
Mater. Phys. 2014, 90, 054102.
(159) Min, K.; Choi, B.; Park, K.; Cho, E. Machine Learning Assisted
Optimization of Electrochemical Properties for Ni-Rich Cathode
Materials. Sci. Rep. 2018, 8, 15778.
(160) Kireeva, N.; Pervov, V. S. Materials Informatics Screening of Li-
Rich Layered Oxide Cathode Materials with Enhanced Characteristics
Using Synthesis Data. Batter. Supercaps 2020, 3, 427−438.
(161) Wang, X.; Xiao, R.; Li, H.; Chen, L. Quantitative Structure-
Property Relationship Study of Cathode Volume Changes in Lithium
Ion Batteries Using Ab-Initio and Partial Least Squares Analysis. J.
Mater. 2017, 3, 178−183.
(162) Joshi, R. P.; Eickholt, J.; Li, L.; Fornari, M.; Barone, V.; Peralta, J.
E. Machine Learning the Voltage of Electrode Materials in Metal-Ion
Batteries. ACS Appl. Mater. Interfaces 2019, 11, 18494−18503.
(163) Allam, O.; Cho, B. W.; Kim, K. C.; Jang, S. S. Application of
DFT-Based Machine Learning for Developing Molecular Electrode
Materials in Li-Ion Batteries. RSC Adv. 2018, 8, 39414−39420.
(164) Attarian Shandiz, M.; Gauvin, R. Application of Machine
Learning Methods for the Prediction of Crystal System of Cathode
Materials in Lithium-Ion Batteries.Comput. Mater. Sci. 2016, 117, 270−
278.
(165) Jalem, R.; Aoyama, T.; Nakayama, M.; Nogami, M. Multivariate
Method-Assisted Ab Initio Study of Olivine-Type LiMXO 4 (Main
Group M 2+-X 5+ and M 3+-X 4+) Compositions as Potential Solid
Electrolytes. Chem. Mater. 2012, 24, 1357−1364.
(166) Jalem, R.; Kimura, M.; Nakayama, M.; Kasuga, T. Informatics-
Aided Density Functional Theory Study on the Li Ion Transport of
Tavorite-Type LiMTO4F (M3+-T5+, M2+-T6+). J. Chem. Inf. Model.
2015, 55, 1158−1168.
(167) Jalem, R.; Kanamori, K.; Takeuchi, I.; Nakayama, M.; Yamasaki,
H.; Saito, T. Bayesian-Driven First-Principles Calculations for
Accelerating Exploration of Fast Ion Conductors for Rechargeable
Battery Application. Sci. Rep. 2018, 8, 5845.
(168) Katcho, N. A.; Carrete, J.; Reynaud, M.; Rousse, G.; Casas-
Cabanas, M.; Mingo, N.; Rodríguez-Carvajal, J.; Carrasco, J. An
Investigation of the Structural Properties of Li and Na Fast Ion
Conductors Using High-Throughput Bond-Valence Calculations and
Machine Learning. J. Appl. Crystallogr. 2019, 52, 148−157.
(169) Kireeva, N.; Pervov, V. S. Materials Space of Solid-State
Electrolytes: Unraveling Chemical Composition-Structure-Ionic Con-
ductivity Relationships in Garnet-Type Metal Oxides Using Chem-

informatics Virtual Screening Approaches. Phys. Chem. Chem. Phys.
2017, 19, 20904−20918.
(170) Fujimura, K.; Seko, A.; Koyama, Y.; Kuwabara, A.; Kishida, I.;
Shitara, K.; Fisher, C. A. J.; Moriwake, H.; Tanaka, I. Accelerated
Materials Design of Lithium Superionic Conductors Based on First-
Principles Calculations and Machine Learning Algorithms. Adv. Energy
Mater. 2013, 3, 980−985.
(171) Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A. M.; Roberts, C.
A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Unsupervised
Discovery of Solid-State Lithium Ion Conductors.Nat. Commun. 2019,
10, 5260.
(172) Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K. A. N.; Cui,
Y.; Reed, E. J. Holistic Computational Structure Screening of More
than 12 000 Candidates for Solid Lithium-Ion Conductor Materials.
Energy Environ. Sci. 2017, 10, 306−320.
(173) Sendek, A. D.; Cheon, G.; Pasta, M.; Reed, E. J. Quantifying the
Search for Solid Li-Ion Electrolyte Materials by Anion: A Data-Driven
Perspective. J. Phys. Chem. C 2020, 124, 8067−8079.
(174) Ahmad, Z.; Xie, T.; Maheshwari, C.; Grossman, J. C.;
Viswanathan, V. Machine Learning Enabled Computational Screening
of Inorganic Solid Electrolytes for Suppression of Dendrite Formation
in Lithium Metal Anodes. ACS Cent. Sci. 2018, 4, 996−1006.
(175) Nakayama, T.; Igarashi, Y.; Sodeyama, K.; Okada, M. Material
Search for Li-Ion Battery Electrolytes through an Exhaustive Search
with a Gaussian Process. Chem. Phys. Lett. 2019, 731, 136622.
(176) Sodeyama, K.; Igarashi, Y.; Nakayama, T.; Tateyama, Y.; Okada,
M. Liquid Electrolyte Informatics Using an Exhaustive Search with
Linear Regression. Phys. Chem. Chem. Phys. 2018, 20, 22585−22591.
(177) Heid, E.; Fleck, M.; Chatterjee, P.; Schröder, C.; Mackerell, A.
D. Toward Prediction of Electrostatic Parameters for Force Fields That
Explicitly Treat Electronic Polarization. J. Chem. Theory Comput. 2019,
15, 2460−2469.
(178) Bedrov, D.; Piquemal, J. P.; Borodin, O.; MacKerell, A. D.;
Roux, B.; Schröder, C. Molecular Dynamics Simulations of Ionic
Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev.
2019, 119, 7940−7995.
(179) Xie, T.; France-Lanord, A.; Wang, Y.; Shao-Horn, Y.;
Grossman, J. C. GraphDynamical Networks for Unsupervised Learning
of Atomic Scale Dynamics in Materials. Nat. Commun. 2019, 10, 2667.
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Driven Electrochemical Modeling and Systematic Parameterization for
a Lithium-Ion Battery Cell. J. Power Sources 2010, 195, 5071−5080.
(420) Yamanaka, T.; Takagishi, Y.; Yamaue, T. A Framework for
Optimal Safety Li-Ion Batteries Design Using Physics-Based Models
and Machine Learning Approaches. J. Electrochem. Soc. 2020, 167,
100516.
(421) Zhou, Z.; Duan, B.; Kang, Y.; Shang, Y.; Cui, N.; Chang, L.;
Zhang, C. An Efficient Screening Method for Retired Lithium-Ion

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00108
Chem. Rev. 2022, 122, 10899−10969

10968

https://doi.org/10.1109/TIE.2015.2461523
https://doi.org/10.1109/TIE.2015.2461523
https://doi.org/10.1109/TIE.2015.2461523
https://doi.org/10.1109/78.388860
https://doi.org/10.1109/78.388860
https://doi.org/10.1016/j.energy.2015.07.120
https://doi.org/10.1016/j.energy.2015.07.120
https://doi.org/10.1016/j.energy.2015.07.120
https://doi.org/10.1016/j.apenergy.2016.04.057
https://doi.org/10.1016/j.apenergy.2016.04.057
https://doi.org/10.1016/j.apenergy.2016.04.057
https://doi.org/10.1016/j.jpowsour.2020.227935
https://doi.org/10.1016/j.jpowsour.2020.227935
https://doi.org/10.1016/j.jpowsour.2020.227935
https://doi.org/10.1016/j.jpowsour.2020.227935
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1109/TIE.2017.2674593
https://doi.org/10.1109/TIE.2017.2674593
https://doi.org/10.1002/aisy.201900102
https://doi.org/10.1002/aisy.201900102
https://doi.org/10.1002/aisy.201900102
https://doi.org/10.1016/j.est.2019.100817
https://doi.org/10.1016/j.est.2019.100817
https://doi.org/10.1016/j.est.2019.100817
https://doi.org/10.1109/ACCESS.2019.2891063
https://doi.org/10.1109/ACCESS.2019.2891063
https://doi.org/10.1038/s41598-020-58021-7
https://doi.org/10.1038/s41598-020-58021-7
https://doi.org/10.1038/s41598-020-58021-7
https://doi.org/10.1080/01621459.1991.10475126
https://doi.org/10.1080/01621459.1991.10475126
https://doi.org/10.1016/S0378-7753(99)00502-9
https://doi.org/10.1016/S0378-7753(99)00502-9
https://doi.org/10.1016/S0378-7753(99)00502-9
https://doi.org/10.1111/j.1472-4642.2007.00340.x
https://doi.org/10.1111/j.1472-4642.2007.00340.x
https://doi.org/10.1111/j.1472-4642.2007.00340.x
https://doi.org/10.1016/j.ecolmodel.2006.05.022
https://doi.org/10.1016/j.ecolmodel.2006.05.022
https://doi.org/10.1016/j.ecolmodel.2006.05.022
https://doi.org/10.1111/j.1365-2427.2005.01448.x
https://doi.org/10.1111/j.1365-2427.2005.01448.x
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1111/j.1365-2486.2008.01679.x
https://doi.org/10.1111/j.1365-2486.2008.01679.x
https://doi.org/10.1111/j.1365-2486.2008.01679.x
https://doi.org/10.3390/s91109011
https://doi.org/10.3390/s91109011
https://doi.org/10.3390/s91109011
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1177/096228029500400303
https://doi.org/10.1177/096228029500400303
https://doi.org/10.1002/est2.147
https://doi.org/10.1002/est2.147
https://doi.org/10.1002/est2.147
https://doi.org/10.1149/2.0341506jes
https://doi.org/10.1149/2.0341506jes
https://doi.org/10.1149/2.0341506jes
https://doi.org/10.1002/aic.690210103
https://doi.org/10.1002/aic.690210103
https://doi.org/10.1149/2.0321602jes
https://doi.org/10.1149/2.0321602jes
https://doi.org/10.1007/s10800-017-1047-4
https://doi.org/10.1007/s10800-017-1047-4
https://doi.org/10.1149/2.0301807jes
https://doi.org/10.1149/2.0301807jes
https://doi.org/10.1149/2.0301807jes
https://doi.org/10.1149/2.036308jes
https://doi.org/10.1149/2.036308jes
https://doi.org/10.1149/2.1141706jes
https://doi.org/10.1149/2.1141706jes
https://doi.org/10.1149/2.1391714jes
https://doi.org/10.1149/2.1391714jes
https://doi.org/10.1149/2.1391714jes
https://doi.org/10.1016/j.jpowsour.2018.05.040
https://doi.org/10.1016/j.jpowsour.2018.05.040
https://doi.org/10.1149/2.1301805jes
https://doi.org/10.1149/2.1301805jes
https://doi.org/10.1016/j.jpowsour.2013.03.170
https://doi.org/10.1016/j.jpowsour.2013.03.170
https://doi.org/10.1016/j.jpowsour.2013.08.040
https://doi.org/10.1016/j.jpowsour.2013.08.040
https://doi.org/10.1016/j.jpowsour.2013.08.040
https://doi.org/10.1016/j.jpowsour.2010.02.029
https://doi.org/10.1016/j.jpowsour.2010.02.029
https://doi.org/10.1016/j.jpowsour.2010.02.029
https://doi.org/10.1149/1945-7111/ab975c
https://doi.org/10.1149/1945-7111/ab975c
https://doi.org/10.1149/1945-7111/ab975c
https://doi.org/10.1016/j.jclepro.2020.121882
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00108?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Batteries Based on Support Vector Machine. J. Cleaner Prod. 2020, 267,
121882.
(422) Garg, A.; Yun, L.; Gao, L.; Putungan, D. B. Development of
Recycling Strategy for Large Stacked Systems: Experimental and
Machine Learning Approach to Form Reuse Battery Packs for
Secondary Applications. J. Cleaner Prod. 2020, 275, 124152.
(423) Senthilselvi, A.; Sellam, V.; Alahmari, S. A.; Rajeyyagari, S.
Accuracy Enhancement in Mobile Phone Recycling Process Using
Machine Learning Technique and MEPH Process. Environ. Technol.
Innov. 2020, 20, 101137.
(424) Zhu, F.; Patumcharoenpol, P.; Zhang, C.; Yang, Y.; Chan, J.;
Meechai, A.; Vongsangnak, W.; Shen, B. Biomedical Text Mining and
Its Applications in Cancer Research. J. Biomed. Inf. 2013, 46, 200−211.
(425) Krallinger, M.; Leitner, F.; Valencia, A. Analysis of Biological
Processes and Diseases Using Text Mining Approaches; Springer: 2009.
(426) Krallinger, M.; Erhardt, R. A. A.; Valencia, A. Text-Mining
Approaches in Molecular Biology and Biomedicine. Drug Discovery
Today 2005, 10, 439−445.
(427) Roberts, P. M. Mining Literature for Systems Biology. Briefings
Bioinf. 2006, 7, 399−406.
(428) Nuzzo, A.; Mulas, F.; Gabetta, M.; Arbustini, E.; Zupan, B.;
Larizza, C.; Bellazzi, R. Text Mining Approaches for Automated
Literature Knowledge Extraction and Representation. Stud. Health
Technol. Inform. 2010, 160, 954−958.
(429) Structured vs Unstructured Data. Available at https://www.
datamation.com/big-data/structured-vs-unstructured-data.html (ac-
cessed June 2020).
(430) Torayev, A.; Magusin, P. C. M. M.; Grey, C. P.; Merlet, C.;
Franco, A. A. Text Mining Assisted Review of the Literature on Li-O 2

Batteries. J. Phys. Mater. 2019, 2, 044004.
(431) Ghadbeigi, L.; Sparks, T. D.; Harada, J. K.; Lettiere, B. R. Data-
Mining Approach for Battery Materials. 2015 IEEE Conf. Technol.
Sustain. SusTech 2015 2015, 239−244.
(432) https://chemistry-europe.onlinelibrary.wiley.com/doi/10.
1002/batt.202100076 (accessed in May 2021).
(433) Swain, M. C.; Cole, J. M. ChemDataExtractor: A Toolkit for
Automated Extraction of Chemical Information from the Scientific
Literature. J. Chem. Inf. Model. 2016, 56, 1894−1904.
(434) Huang, S.; Cole, J. M. A Database of Battery Materials Auto-
Generated Using ChemDataExtractor. Sci. Data 2020, 7, 260.
(435) http://chemdataextractor.org/ (accessed November 2020).
(436) Kononova, O.; Huo, H.; He, T.; Rong, Z.; Botari, T.; Sun, W.;
Tshitoyan, V.; Ceder, G. Text-Mined Dataset of Inorganic Materials
Synthesis Recipes. Sci. Data 2019, 6, 203.
(437) Kuniyoshi, F.; Makino, K.; Ozawa, J.; Miwa, M. Annotating and
Extracting Synthesis Process of All-Solid-State Batteries from Scientific
Literature. 2020, arXiv:2002.07339. arXiv.org e-Print archive. https://
arxiv.org/abs/2002.07339.
(438) Writer, B. Lithium-Ion Batteries: A Machine-Generated Summary
of Current Research; Springer: 2019.
(439) Kennedy, G. F.; Zhang, J.; Bond, A. M. Automatically
Identifying Electrode Reaction Mechanisms Using Deep Neural
Networks. Anal. Chem. 2019, 91, 12220−12227.
(440) Flores-Leonar, M. M.; Mejía-Mendoza, L. M.; Aguilar-Granda,
A.; Sanchez-Lengeling, B.; Tribukait, H.; Amador-Bedolla, C.; Aspuru-
Guzik, A. Materials Acceleration Platforms: On the Way to
Autonomous Experimentation. Curr. Opin. Green Sustain. Chem.
2020, 25, 100370.
(441) https://materialsproject.org/ (accessed November 2020).
(442) Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data-Driven
Materials Science: Status, Challenges, and Perspectives. Adv. Sci. 2019,
6, 1900808.
(443) Stephan, A. K. Standardized Battery Reporting Guidelines. Joule
2021, 5, 1−2.
(444) https://www.flow-machines.com (accessed November 2020).
(445) Majid al-Rifaie, M. Weak and Strong Computational Creativity.
Computational Creativity Research: Towards Creative Machines; Spring-
er: 2014.

(446) Nath, R.; Sahu, V. The Problem of Machine Ethics in Artificial
Intelligence. AI Soc. 2020, 35, 103−111.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00108
Chem. Rev. 2022, 122, 10899−10969

10969

https://doi.org/10.1016/j.jclepro.2020.121882
https://doi.org/10.1016/j.jclepro.2020.124152
https://doi.org/10.1016/j.jclepro.2020.124152
https://doi.org/10.1016/j.jclepro.2020.124152
https://doi.org/10.1016/j.jclepro.2020.124152
https://doi.org/10.1016/j.eti.2020.101137
https://doi.org/10.1016/j.eti.2020.101137
https://doi.org/10.1016/j.jbi.2012.10.007
https://doi.org/10.1016/j.jbi.2012.10.007
https://doi.org/10.1016/S1359-6446(05)03376-3
https://doi.org/10.1016/S1359-6446(05)03376-3
https://doi.org/10.1093/bib/bbl037
https://www.datamation.com/big-data/structured-vs-unstructured-data.html
https://www.datamation.com/big-data/structured-vs-unstructured-data.html
https://doi.org/10.1088/2515-7639/ab3611
https://doi.org/10.1088/2515-7639/ab3611
https://doi.org/10.1109/SusTech.2015.7314353
https://doi.org/10.1109/SusTech.2015.7314353
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202100076
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202100076
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41597-020-00602-2
https://doi.org/10.1038/s41597-020-00602-2
http://chemdataextractor.org/
https://doi.org/10.1038/s41597-019-0224-1
https://doi.org/10.1038/s41597-019-0224-1
https://arxiv.org/abs/2002.07339
https://arxiv.org/abs/2002.07339
https://doi.org/10.1021/acs.analchem.9b01891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b01891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b01891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cogsc.2020.100370
https://doi.org/10.1016/j.cogsc.2020.100370
https://materialsproject.org/
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1016/j.joule.2020.12.026
https://www.flow-machines.com
https://doi.org/10.1007/s00146-017-0768-6
https://doi.org/10.1007/s00146-017-0768-6
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00108?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

