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ScienceDirect
New measures for reducing atmospheric CO2 are urgently

needed. Formate dehydrogenases (FDHs, EC 1.17.1.9)

catalyze conversion of CO2 to formate (HCOO�) via a reverse

catalytic ability. This enzymatic conversion of CO2 represents a

novel first step approach for biocatalytic carbon capture and

utilization targeting both CO2 reduction and substitution of

petrochemical-based production of important commodity

chemicals. To achieve robust and efficient FDH catalyzed CO2

conversion for sustainable large-scale implementation, it is

critical to focus on the efficacy of the electron donor, enzyme

stabilization, and on how the desired reverse FDH reactivity can

be enhanced. Recent advances include the realization that

NADH, the most common natural cofactor for reverse FDH

catalysis, is an inefficient electron donor for FDH catalyzed CO2

conversion. Improved understanding of the redox reaction

details and structure-function relations of both metal-

dependent and metal-independent FDHs provides the

foundation for achieving rational technological advancements

to promote enzymatic CO2 utilization.
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Introduction
Although the rate of increase of global CO2 emissions

from fossil resource utilization has slowed recently, atmo-

spheric CO2 levels are currently higher than ever, close to

420 ppm, and continue to increase [1]. Clearly, natural

photosynthesis processes are unable to capture the CO2

emissions, and current strategies for CO2 reduction are

mainly emission mitigation strategies [2]. Utilizing CO2

as a carbon source for production of high-in-demand

chemicals represents a double gain by both replenishing

fossil-fuel processes and simultaneously assisting in miti-

gating CO2 accumulation and climate change.
www.sciencedirect.com 
Formic acid/formate (HCOOH/HCOO�) is a consoli-

dated commodity chemical having an annual value of

about 780 million US$. Formic acid is moreover consid-

ered a potential liquid fuel compound and a feedstock for

green synthesis of a range of ‘petro’chemicals including

methanol in the new bioeconomy [3,4,5��]. Formate

dehydrogenases (FDHs, EC 1.17.1.9) naturally catalyze

oxidation (dehydrogenation) of HCOO� to CO2

(HCOO�
@ CO2 + H+ + 2e�). The enzymatic reaction

uses various natural cofactors as electron acceptors, nota-

bly nicotinamide adenine dinucleotide (NAD+) and nic-

otinamide adenine dinucleotide phosphate (NADP+).

FDHs also readily catalyze the reverse one-step CO2

reduction to HCOO� under mild reaction conditions,

that is, CO2 + H+ + 2e� @ HCOO� using NADH (or

NADPH) as electron donor. Whether the actual substrate

for this reverse FDH catalyzed reaction is dissolved CO2

or hydrated species such as HCO3
� has been unclear, but

recent electrochemical experiments have confirmed that

CO2 is the substrate in the reverse FDH catalysis [6].

FDHs are widespread in Nature and found in a broad

range of anaerobic and aerobic bacteria as well as in some

yeasts and plants. (For the sake of completion, the exis-

tence of another group of formate dehydrogenases, cate-

gorized as EC 1.2.2.1, that require cytochrome as accep-

tor, should be mentioned. This latter type is currently not

considered suitable for technical CO2 conversion).

CO2 reduction with FDHs
FDHs are divided into two types: (i) metal-dependent

enzymes that contain molybdenum (Mo) or tungsten (W)

in their active site and (ii) metal-independent enzymes

that function without relying on metal-driven redox

catalysis [7–9]. In general, the metal-dependent FDHs

favor catalyzing the reverse CO2 reduction reaction rela-

tively more than the metal-independent FDHs. The

redox potential for the enzymatic reduction of CO2 to

COO� is E�ʹ = �420 mV, but both types of FDHs mainly

catalyze HCOO� oxidation, hence their dehydrogenase

designation. The difference in catalytic reaction revers-

ibility is due to differences in the catalytic reaction

mechanism and the enzyme structure governing the

energy reorganization during catalysis. However, the

detailed understanding of how the reverse and the for-

ward catalytic reactions are controlled is incomplete.

NADH and NADPH are expensive and unstable

[10��,11,12] and unfit for large-scale technical applica-

tions, despite being the natural and hence the most

frequently applied electron donors (cofactors) in FDH

catalysis studies. FDHs have been intensely studied for

cofactor regeneration (NAD(P)+ @ NAD(P)H) in various

oxidoreductase-driven synthesis reactions [13].
Current Opinion in Biotechnology 2022, 73:95–100
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Electrochemical reduction by alternative
cofactors
During reaction, the metal-dependent FDHs transfer

electrons within the enzyme through a FeS mediated

electron transfer chain. Yet, for the actual FDH catalyzed

conversion of CO2 to HCOO� a balanced regeneration of

reducing equivalents is required to sustain the continued

enzymatic reaction. The metal-dependent FDHs accept

a broader spectrum of electron donors than metal-inde-

pendent FDHs, but appear to be more sensitive to oxy-

gen than the metal-independent FDHs [10��].

Although the redox potential of E�ʹ = �320 mV for the

reaction NADH @ NAD+ + 2e� presents a thermody-

namically favorable half-reaction to FDH catalyzed CO2

reduction, NADH is both expensive and unstable, and

exhibits poor kinetic rates in practical in vitro reactions.

For this reason, a range of artificial cofactors as well as

direct supply of electrons via electrodes have been

explored for electron donation to promote fast and effi-

cient FDH catalyzed CO2 reduction for technical appli-

cations. Methylviologen (MV2+), also known as 1,1-

dimethyl-4,40- bipyridinium dichloride [14,15] (and its

various 2,20-bipyridinium salt derivatives (1,10-dimethyl

(DM), trimethylene (TB), ethylene (DB), and tetra-

methylene (QB)) has been shown to be a particularly

efficient electron vehicle for FDH catalyzed conversion

of CO2 to HCOO� [16,17]. Hence, the FDHs derived

from Desulfovibrio desulfuricans and Acetobacterium woodii
exhibit higher turnover rates (kcat) and higher specificity

constants (kcat/KM) than what is achieved with other

electron donors in other systems, and notably higher than

with NADH (Figure 1). However, the available data

provide a comparison of the inherently more efficient

metal-dependent FDHs with metal-independent FDHs

from Candida boidinii, Candida methylica, Chaetomium ther-
mophilum, Myceliophthora thermophila, and Thiobacillus sp.

KNK65MA (Figure 1). An interesting comparison, how-

ever, is that the catalytic efficiency in A. woodii FDH is

13-fold higher with MV2+ than with H2 (Figure 1), cor-

roborating the significant impact of the electron donor

selection for reverse FDH kinetics.

Stabilization by enzyme immobilization
In addition to high enzymatic turnover rates (kcat) provid-

ing fast CO2 conversion and high catalytic specificity

constants (kcat/KM) supporting efficient CO2 reduction

rates at low CO2 concentrations, enzyme robustness is

a paramount prerequisite for large scale implementation

of FDHs for CO2 utilization. Insight into the structural

features of FDHs are not yet mature enough to guide

enzyme stabilization by rational protein engineering.

Improved recombinant expression, especially of the

metal-dependent FDHs will pave the way for production

of high enzyme yields for further structural studies in turn

allowing robustness improvements by rational enzyme

engineering. Meanwhile experimental enzyme
Current Opinion in Biotechnology 2022, 73:95–100 
immobilization of metal-independent as well as metal-

dependent FDHs has been deployed for stabilization,

often combined with assessment of other electron donors

than NADH or NADPH. From a kinetics point of view,

immobilization of FDHs appears a particularly wise strat-

egy because both the reactants and products of the FDH

catalysis are small, supporting fast mass transfer, although

efficient cofactor contact is an issue.

Covalent immobilization was used to immobilize Desul-
fovibrio vulgaris FdhAB FDH to chemically modified gold

and low-density graphite electrodes. This technology

allowed measuring high electrocatalytic currents by direct

electron transfer for both HCOO� oxidation and CO2

reduction, using electrostatic interactions to favor spa-

tially advantageous immobilization of the enzyme [18].

Recent work has shown that FDH of C. boidinii immo-

bilized covalently with mesoporous silica modified with

glyoxyl groups, exhibited higher thermal stability than

the free enzyme [19].

Immobilization of the FDH from C. boidinii by cross-

linked enzyme aggregate (CLEA) technology using dex-

tran polyaldehyde and glutaraldehyde as cross-linking

reagents increased thermal stability of the enzyme

3.6 times compared to the free enzymes, but the activity

of the CLEA-immobilized enzyme for CO2 reduction was

only 13% of that of the free FDH. Glutaraldehyde sup-

ports have generally been widely studied for enzyme

immobilization, but despite producing stable, covalent

immobilization, the activity of the immobilized FDH is

often vastly reduced compared to free enzyme [20,21].

Recently, the use of polyethyleneimine, which is a com-

mon modifier in the field of CO2 adsorption, with plenty

of amine groups, low volatility and good chemical stabil-

ity, has proven effective for FDH immobilization [22,23].

Direct electrocatalytic FDH mediated reduction of CO2

to C1 compounds by suppling electrons to enzymes

immobilized directly on an electrode has given promising

results, and may be particularly useful for designing in
vitro cascade reactions, for example, catalyzing conver-

sion of CO2 to methanol via co-immobilization of several

enzymes involving reverse FDH catalysis as the first step

[24–27].

FDH protein engineering
Most studies have been focused on engineering of bacte-

rial and yeast FDHs to improve catalytic activity and

chemical and thermal stability [28,29]. The main FDHs

subjected to protein engineering enhancements have

been on metal-independent FDHs derived from for

example, Pseudomonas sp. 101, Granulicella mallensis
MP5ACTX8, Candida bodiini, Burkholderia stabilis
15516, Mycobacterium vaccae N10, and Saccharomyces cere-
visiae, but initial protein engineering has also been done

on the more complex metal-dependent FDHs from
www.sciencedirect.com
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Figure 1

Electron donor

Donor
Concentration

(mM)
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Kinetic properties of FDH catalyzed CO2 reduction for different types of electron donors, discriminated by color and shape of markers. The

compared FHDs are: (M) metal-dependent (i.e. metal-containing) FDHs from: (Ec) Escherichia coli, (Po) Pseudomonas oxilatus, (Cn) Cupriavidus

necator, (Dd) Desulfovibrio desulfuricans, and (Aw) Acetobacterium woodii; (NM): Metal-independent FDHs from: (Mt) Myceliophthora thermophila,

(Ts) Thiobacillus sp. KNK65MA, (Ct) Chaetomium thermophilum, (Cb) Candida boidinii and (Cm) Candida methylica (Figure adapted from Ref.

[10��]).
Escherichia coli, D. vulgaris, Rhodobacter capsulatus, and

Cupriavidus necator. Besides the main aim to improve

the catalytic properties, engineering providing changed

cofactor specificity from NAD+ to NADP+ for improved

cofactor regeneration has been of huge research interest

[30–33]. In this regard, Pseudomonas sp. 101 FDH appears

to be the most promising NADPH regenerator and deter-

mination of the crystal structure of this enzyme has been

used to establish the main residues governing the cofactor

specificity and active site conformation [34,35]. The high

sequence similarity of the metal-independent FDHs now

permit their structural comparison via homology model-

ing. In contrast, the structural details of metal-dependent

FDHs, including the structural features and residues

responsible for cofactor specificity, catalytic activity,

and reaction direction specificity, are not yet fully eluci-

dated, although recently reported structural data for the

Mo-containing R. capsulatus FDH provide important new

insight into the active site structure and notably the

electron transfer pathways in this enzyme [36��]. How-

ever, this new structural insight, achieved by cryo-elec-

tron microscopy, has in fact revealed an unexpected

complexity by showing that the FdsD subunit is retained
www.sciencedirect.com 
as a subunit in the active enzyme, and that the main

electron pathway takes place through five of the seven

Fe–S clusters, and that the functional enzyme appears to

exist as a heterotetrameric dimer that may interconnect

the electron pathway in the enzyme [36��]. Hence,

despite this recent progress, targeted protein engineering

of metal-dependent FDHs remains a huge challenge.

One of the few protein engineering attempts reported for

FDHs aimed for CO2 reduction, was to engineer the

metal-free FDH from C. thermophilum (CtFDH) to

enhance its CO2 reduction activity through directed

evolution. Three variants were identified (G93H/I94Y,

G93H/I94R and R259C) which were characterized in

presence of both aqueous CO2(g) and HCO3
�

[37,38�,39,40]. The three variants exhibited up to three-

fold higher turnover rate (kcat) than the wild-type (WT),

but only the variant G93H/I94Y exhibited an improved

specificity constant (kcat/KM) for CO2 reduction (2.8-fold

improvement) [37,38�,39]. Although it has recently been

proven that a metal-dependent FDH (specifically a W-

dependent FDH from D. vulgaris) indeed catalyzes

reduction of CO2 rather than HCO3
� [6], it should be
Current Opinion in Biotechnology 2022, 73:95–100
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mentioned that the metal-independent C. thermophilum
FDH (CtFDH) has been claimed to catalyze conversion

of HCO3
� to HCOO�, and models of this enzyme shows

that HCO3
� fits the active site [40]. Likewise, the engi-

neered variant G93H/I94Y of the CtFDH enzyme was

reported to show a 5.4-fold increase in kcat/KM for HCO3
�

reduction compared to the WT [37,38�,39,40]. However,

due to the spontaneous interconversion between CO2 and

HCO3
� in aqueous solution and the approximate pKa of

6.4 of the reaction CO2 + H2O @ HCO3
� + H+ it cannot

be ruled out that the reaction kinetics reported for the

enzymatic HCO3
� conversion in reality concerned

CtFDH catalyzed CO2 conversion to HCOO�.

FDHs for in vivo CO2 utilization
Development of in vivo systems, meaning using of micro-

organisms to obtain specific commercial compounds such

as methanol, certain organic acids (lactic and succinic) as

well as L-alanine and L-serine from CO2 is a hot research

area. However, the low solubility of CO2 in water and the

lack of efficient CO2 assimilation pathways are challeng-

ing. Therefore, HCOO� is favorably produced from CO2

using FDHs, and the advantage is that HCOO� presents

a more convenient C-storage compound than CO2

because it is a liquid. In addition, as a carbon source

HCOO� can be assimilated more efficiently than CO2 by

microorganisms [41].

In order to prepare an engineered whole-cell biocatalyst

for producing HCOO�, the FDHs from Clostridium car-
boxidovorans (CcFDH), Pyrococcus furiosus (PfFDH), or

Methanobacterium thermoformicicum (MtFDH) have been

attempted overexpressed in E. coli JM109. The strain

overexpressing PfFDH was able to produce 44 mM of

HCOO� from sodium bicarbonate and gaseous hydrogen

[42].

Despite the existence of native formatotrophs such as

Methylobacterium extorquens that can grow with HCOO� as

sole carbon source, its growth rate is too slow for practical

exploitation. Therefore, different metabolic pathways to

support formatotrophic growth have been designed in

different microorganisms through rational metabolic

engineering, involving new enzymes and/or adaptive

laboratory evolution. Notably, the reductive glycine path-

way (rGlyP), which is a synthetic pathway for formate

assimilation, has become promising after it was shown

that an rGlyP engineered E. coli strain could grow under

formatotrophic conditions [43��]. Furthermore the full

rGlyP was implemented in the bioplastic producer C.
necator and formate assimilation to glycine through the

core module of rGlyP was shown to work in S. cerevisiae
[44,45]. The expression of FDHs to catalyze reduction of

CO2 to HCOO� through synthetic formate assimilation

pathways thus appears as a budding strategy for CO2

reduction with simultaneous bioproduction of new pro-

ducts. In this regard, the production of methyl ketones,
Current Opinion in Biotechnology 2022, 73:95–100 
isoprenoids and terpenes, isobutanol, alkanes and alkenes

from CO2 using C. necator looks particularly promising

[46].

Conclusion
The high atmospheric CO2 levels are of crucial concern in

relation to climate change and global warming and new

strategies for CO2 utilization have to be developed. In this

review, we defined the application of FDHs for conver-

sion of CO2 to HCOO� as a potential and promising

strategy for CO2 utilization. By comparing the kinetic

rates (kcat) and specificity constants (kcat/KM) achieved for

FDH catalyzed CO2 conversion we highlighted the

improvements in catalytic conversion efficiency achiev-

able by alternative electron donors and illustrated that

NADH is in fact a poor electron donor for FDH catalysis.

Immobilization of FDHs to electrodes can also optimize

the FDH catalyzed CO2 conversion kinetics, and pave

the way for using electricity as electron source for FDH

catalyzed CO2 utilization. Such use will allow very large

scale reactions and provide an option for HCOO� pro-

duction by use of excess electricity from for example,

wind turbines. Although HCOO� is a valuable base

chemical, the application of FDHs for multi-enzymatic

cascades to convert CO2 to various high-in-demand che-

micals, including methanol, is of high interest; such

reaction cascades support a dual gain, namely CO2 miti-

gation and substitution of current petrochemical pro-

cesses (methanol is considered a top 10 ‘petrochemical’).

Improved recombinant expression, deeper understanding

of structural features of FDHs, notably of metal-depen-

dent FDHs, and provision of robust enzymes and fast

reactions via proper electron donor development, will

pave the way for practical use of FDHs in enzymatic

CO2 conversion processes.
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