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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Level of required data completeness and 
quality varies across application 
domains. 

• Method able to assess the quality of 
chemical data based on a set of criteria. 

• We derive a unique nominal value with 
its uncertainty from a set of data points. 

• Intrinsic variability and uncertainty may 
differ across chemicals data sources. 

• Standardized methods are needed to 
systematically curate data across 
properties.  
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A B S T R A C T   

Chemical data for thousands of substances are available for safety, risk, life cycle and substitution assessments, as 
submitted for example under the European Registration, Evaluation, Authorisation and Restriction of Chemicals 
(REACH) Regulation. However, to widely disseminate reported physicochemical properties as well as human and 
ecological exposure and toxicological data for use in various science and policy fields, systematic methods for 
data harmonization and selection are necessary. In response to this need, we developed a semi-automated 
method for deriving appropriate substance property values as input for various assessment frameworks with 
different requirements for resolution and data quality. Starting with data reported for a given substance and 
property, we propose a set of aligned data selection and harmonization criteria to obtain a representative mean 
value and related confidence intervals per chemical-property combination. The proposed method was tested on a 
set of octanol-water partition coefficients (Kow) for an illustrative set of 20 substances, reported under the REACH 
regulation as example data source. Our method is generally applicable to any set of substances, and can assess 
specific distributions in quality and variability across reported data. Further research can likely extend our 
method for mining information from text fields and adapt it to available data reported or collected from other 
sources and other substance properties to improve the reliability of input data for risk and impact assessments.   

1. Introduction 

Over the past two decades, the need for high-quality data supporting 

reliable input for chemicals management and sustainability assessment 
frameworks of various complexity and spatiotemporal granularity has 
increased (Persson et al., 2022; Schenker et al., 2005). At the same time, 
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new data sources for physicochemical substance properties, degrada
tion, human and ecological exposure and toxicological effects (hereafter 
referred to as chemical property information) are increasingly becoming 
available, covering tens of thousands of chemicals (e.g., Bolton et al., 
2008; Dorne et al., 2017; Pence and Williams, 2010; Sobanska and Le 
Goff, 2014; Williams et al., 2017). Nevertheless, for using such infor
mation in decision support frameworks, it is essential to address current 
concerns related to reliability and quality of the various reported 
experimental data and their application without meaningful prior data 
interpretation and curation (Fantke et al., 2018, 2021b; Igos et al., 2014; 
Mansouri et al., 2016; Müller et al., 2017). 

For example, under the European Registration, Evaluation, Author
isation, and Restriction of Chemicals (REACH) Regulation (EC) 1907/ 
2006, chemical property information has been collected for more than 
20,000 substances in the International Uniform Chemical Information 
Database (IUCLID) (Fantke et al., 2020). The potential applicability of 
IUCLID data in different science and policy fields (e.g., chemical sub
stitution, life cycle impact assessment, health impact assessment, 
chemical prioritization, high-throughput risk screening, exposure 
assessment) has been widely discussed (Askham, 2012; Fantke et al., 
2018; Igos et al., 2014; Luechtefeld et al., 2016; Müller et al., 2017; 
Saouter et al., 2017a, 2017b). Findings from these discussions suggest 
that, in practice, it remains unclear how to select from any data source 
the appropriate values for a given chemical property information 
(Luechtefeld et al., 2016; Przybylak et al., 2012). To choose appropriate 
values for a given assessment or decision context, it is considered 
essential to identify the level of required data representativeness and 
quality, which both differ as function of the scope and resolution of the 
performed assessments (e.g., site-specific versus global supply chain 
assessment, or single-chemical risk assessment versus prioritization 
across thousands of chemicals). 

More than one value can be reported for a given chemical property 
information in the different available chemical databases since experi
mental results in a database are usually directly reported as they were 
gathered from diverse sources. Thereby, test results are often obtained 
under specific test conditions (e.g., pH, temperature) and methods. In 
some databases, also values estimated from quantitative structure- 
activity relationships (QSAR) or read-across methods are reported in 
addition to experimental data, with new-approach methods (NAM) and 
machine-learning methods as emerging extrapolation approaches (e.g., 
Hou et al., 2020; Wambaugh et al., 2019). As a result, the available 
(experimental or estimated) data for a given chemical property infor
mation of a specific substance often vary in numerical values, data 
quality, and information completeness. Then, how do we select the 
appropriate result from all the available data for a given substance 
property and chemical? Unquestionably, standardized methods are ur
gently needed for systematically harmonizing and selecting the various 
available data to arrive at representative input values for the different 
application fields and models, including consideration of the uncertainty 
around these values for a reliable interpretation (Fantke et al., 2020; Li 
et al., 2003). 

Yet few studies offer methods for systematically selecting or 
harmonizing data from publicly available databases. For example, 
Saouter et al. (2019a, 2019b) describe how to choose values for multiple 
chemical properties from data in IUCLID, the OpenFoodTox database 
(Barbaro et al., 2015), and the Pesticide Properties Database (PPDB) 
(Lewis et al., 2016). Mansouri et al. (2016) propose methods for finding 
and correcting errors in chemical identifier representations. Beyer et al. 
(2002) present an approach for selecting values of chemical properties 
subject to thermodynamic constraints, subsequently updated to mini
mize the adjustment required for thermodynamic consistency (Li et al., 
2003; Schenker et al., 2005; Xiao et al., 2004). Other studies propose 
methods for specific aspects, such as deriving hazard properties for 
selected substances (e.g., Stieger et al., 2014), curating chemicals and 
biological data (e.g., Fourches et al., 2016), or obtaining freshwater 
ecotoxicological effect endpoints from measured data reported in 

IUCLID (Aurisano et al., 2019). However, these methods commonly use 
fixed filters to screen out data based on predefined criteria thresholds (e. 
g., for data reliability), which often do not exploit the reported data’s 
full potential for the various assessment frameworks with their different 
input data requirements. Furthermore, existing methods do not consider 
the intrinsic variability and uncertainty across reported data, which may 
differ widely across chemicals and data sources, and which is important 
for correctly interpreting any data harmonization and selection results 
(Posthuma et al., 2019). 

To address this gap, we propose a systematic and flexible data 
harmonization and selection method for deriving suitable substance 
property values as input for various risk and impact assessment frame
works with different resolution and data quality requirements. Our goal 
is to exploit reported chemical data’s potential fully and to allow an 
appropriate interpretation of the results by characterizing related un
certainties. To achieve this goal, we focus on three specific objectives: (i) 
to define a set of flexible criteria for consistently evaluating reliability, 
quality, completeness, variability, and uncertainty of reported data for a 
given substance property; (ii) to develop a data harmonization and se
lection workflow based on the context-specific set of criteria to derive an 
appropriate value, along with a confidence interval, from the available 
data for a substance property; and (iii) to apply the data harmonization 
and selection workflow in a case study to derive octanol-water partition 
coefficient (Kow) values for a set of 20 test chemicals registered under 
REACH and covering a wide physicochemical property space, for 
application in high-throughput risk screening, Life Cycle Impact 
Assessment (LCIA) and chemical substitution. 

2. Materials and methods 

2.1. Quality criteria definition 

Since different data application domains require different minimum 
quality levels, flexible approaches are needed for the data harmoniza
tion and selection process to ensure an appropriate application of the 
results in the given context (Przybylak et al., 2012). For example, a strict 
selection of only high-quality data is required in a regulatory safety 
assessment context, disregarding low-quality information. Likewise, 
only high-quality data are considered when developing extrapolations 
for substances without available information, i.e., predictive approaches 
(Aurisano et al., 2019; Cronin and Schultz, 2003; Posthuma et al., 2019). 
A more inclusive approach (i.e., high data coverage but reduced average 
data quality) is suitable for screening level prioritization or substitution 
of chemicals across thousands of substances or for characterizing hun
dreds of chemicals associated with a given product life cycle (Aurisano 
et al., 2021a, 2021b, 2022; Fantke et al., 2020, 2021a; Tickner et al., 
2019). To match the available data to the different application re
quirements, we propose to assess the quality and completeness of each 
reported experimental or estimated result (hereafter defined as data 
point) against quality criteria. 

For quality criteria, we propose using the categorization in the 
original databases as a starting point, where available. For example, in 
REACH, quality criteria applicable to a wide range of substance prop
erties include data reliability (Klimisch score) and Type of Information 
(adequacy) outlining a data point’s origin (e.g., experimental study, 
read-across) (European Commission, 2006; Sobanska et al., 2014; Tar
azona et al., 2014). 

Each reported data point usually comes with information regarding 
different data quality criteria, qi, i ∈ {1, …, Q}, with for example q1 =

‘reliability’, q2 = ‘type of information’. We define the different options 
for each quality criterion qi as classes, ni,j, j ∈ {1,…,N}. For example, 
classes of the criterion q1, according to the Klimisch score used in 
REACH, include n1,1 = ‘1 (reliable without restriction)’, n1,2 = ‘2 (reli
able with restrictions)’, n1,3 = ‘3 (not reliable)’, n1,4 = ‘4 (not assign
able)’, n1,5 = ‘Other’, and n1,6 = ‘Missing data’ (Klimisch et al., 1997). 
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Depending on the data quality requirements of a given assessment 
framework or purpose, some classes might be grouped for a single cri
terion, n′

i,j, j ∈ {1,…,N′

}. For example n′

1,1 = ‘reliable’ (i.e., n′

1,1 ∈ {n1,1,

n1,2}), and n′

1,2 = ‘unreliable’ (i.e., n′

1,2 ∈ {n1,3, n1,4, n1,5, n1,6}). Finally, 
these grouped classes (n′

i,j) are combined across considered quality 

criteria into unique combinations of aggregate-criteria classes cq,n′

k ,

k ∈ {1,…,K}. For example cq,n′

1 = ‘reliable, experimental’ represents 
data with a specific combination of grouped classes for each of the 

criteria ‘reliability’ (q1) and ‘type of information’ (q2). Once cq,n′

k are 
defined, each available data point for a specific substance and chemical 

property can be allocated to the respective cq,n′

k , reflecting its underlying 
data quality and information completeness. An illustrative example of 

the calculation of cq,n′

k is presented in SI (Table S1). 

2.2. Variability in reported values 

Across different data sources, chemical property information can be 
reported either as individual numerical values or as ranges (i.e., boun
ded or unbounded intervals). To harmonize such information, we define 
for each reported test result a nominal value (x) together with a Confi
dence Interval (CI). If for a given data point the test result is reported as a 
range with two bounds, we define x as the arithmetic mean of the range 
and consider the two reported values as CIl (lower CI limit) and CIu 

(upper CI limit). If reported as a single value, we consider the reported 
value as x, and multiply and divide by a variability factor (FV) for 
defining its CI, S1 summarizes the defined rules for test results reported 
with relational operators (qualifiers). FV is derived from the variability 
of all data in the entire considered dataset to introduce additional 
conservatism in the assessment when only a single numerical value is 
reported. 

After defining for each data point x and CI, we derive for each 

combination of aggregate-criteria classes cq,n′

k a xc and its CIc based on 
the pool of data points allocated to the same combination, where xc is 
calculated as the arithmetic mean across reported data points(x) in the 

same combination cq,n′

k and the related CIc is estimated as the highest CIu 

and the lowest CIl across data points allocated to that combination. S2 
presents an example of deriving xc and its CIc based on the pool of data 
points allocated to the same combination for an arbitrary substance. 

2.3. Uncertainty quantification 

We combine two types of uncertainty, expressed as squared geo
metric standard deviation (GSD2), to characterize the uncertainty 

around xc. For each combination of aggregate-criteria classes cq,n′

k , base 
uncertainty (GSD2

base,c) reflects reported or otherwise default variability 
in xc (Frischknecht et al., 2005), and criteria uncertainty (GSD2

criteria,c) 
reflects the quality and completeness of the available data points (Beyer 
et al., 2002). 

We assume approximately log-normally distributed values for 
strictly non-negative physicochemical properties, such as Kow (MacLeod 
et al., 2002; Schenker et al., 2009). For some properties, other distri
butions might apply (e.g., Wender et al., 2018). Uncertainty can be 
expressed for a parameter as the 95% CIc range with the 2.5th and 97.5th 

percentiles obtained from the geometric mean of xc, generalized as x*
c ∈

P, and the related GSD2≜e2×σ with σ ∈ P, σ > 0 as standard deviation of 
the natural logarithm of xc and the probability 
{x*

c /GSD2 < xc < x*
c ×GSD2} ≈ 0.95 (Fantke et al., 2012; Hong et al., 

2010; Slob, 1994; Stylianou et al., 2021). A GSD2 = 2, for instance, 
denotes that the distribution of 95% of all values fall within half and 
twice of xc. Whenever the exact distribution is not reported, we assume a 

standard log-normal distribution, where GSD2
base,c is derived from CIl

c and 

CIu
c around xc for each combination of aggregate-criteria classes cq,n′

k as 
(Rosenbaum et al., 2018): 

GSD2
base,c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

CIu
c

/
CIl

c

√

(1) 

GSD2
criteria,c is derived from applying the Pedigree matrix approach, 

which was first introduced using qualitative criteria, and further refined 
to derive quantitative uncertainty classes as a function of categories for 
base and parameter uncertainty (Ciroth et al., 2016; Muller et al., 2016; 
Weidema and Wesnæs, 1996). In the Pedigree matrix, we assign to each 
grouped class of a given criterion (n′

i,j) an uncertainty factor (GSD2
criteria,cn

), 
reflecting quality and completeness of its elements. GSD2

criteria,c for the 
combination of distinct quality and completeness across 
aggregate-criteria classes is then quantified by combining the different 
GSD2

criteria,cn
: 

GSD2
criteria,c = e

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

cn
(ln GSD2

criteria,cn )
2

√

(2) 

The combination of the base uncertainty and the criteria uncertainty 
yields the overall uncertainty (GSD2

c ) around xc for each combination of 
aggregate-criteria classes (Ciroth et al., 2016; Frischknecht et al., 2005; 
Slob, 1994): 

GSD2
c = e

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ln GSD2
base,c)

2
+(ln GSD2

criteria,c)
2

√

(3) 

By estimating both xc and GSD2
c , we can provide a nominal value 

with related uncertainty per cq,n′

k for a specific substance property. 

2.4. Weighting processes 

Since, in some cases, results from more than one combination of 
aggregate-criteria classes are suitable for a given application context, we 
developed a weighting process for deriving a unique nominal value (xw) 
and related GSD2

w across available combinations of aggregate-criteria 
classes. For estimating xw, we first assign to each combination of 
aggregate-criteria classes a quality weight (wQ,c), derived from 
GSD2

criteria,c and thus directly considering its earlier defined quality and 
completeness as weights: 

wQ,c =
1

GSD2
criteria,c

(4) 

The higher the GSD2
criteria,c of a given combination of aggregate-criteria 

classes, the lower its wQ,c and, thus, the lower its influence on the final 
xw. Next, we rank wQ,c and derive combined quality/variability weights 
(wV,c), scaled based on the variability distribution P of available xc: 

wV,c = wQ,c ×
xP

c

xc,max
(5) 

Since wV,c is a function of both the number of combinations of 
aggregate-criteria classes and their respective quality, we normalized 
wV,c to determine the overall weight for each xc: 

wnorm
V,c =

wV,c
∑

cwV,c
(6) 

Finally, wnorm
V,c are combined with xc to yield a xw across combinations 

of aggregate-criteria-classes: 

xw =
∑

c

(
xc × wnorm

V,c

)
(7) 

For estimating related GSD2
w of xw, we applied the sensitivity factors 

(S) as described by MacLeod et al. (2002). S is calculated for each 

available cq,n′

k as (ΔO /O)/(ΔI /I), where O is the output and I is the input 

N. Aurisano and P. Fantke                                                                                                                                                                                                                    



Chemosphere 302 (2022) 134886

4

variable of interest. With that, GSD2
w across available cq,n′

k is calculated as 
(MacLeod et al., 2002; Slob, 1994): 

GSD2
w = e

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

c
S2

c(GSD2
c)

2
√

(8) 

GSD2
w describes the spread of data around their geometric mean, and 

more specifically indicates that 95% of the data fall within the weighted 
nominal value (xw) divided by GSD2

w and multiplied by GSD2
w. For 

example, a GSD2
w = 10 indicates that the 95% CI of xw span over two 

orders of magnitude. 
Fig. 1 graphically summarizes the presented workflow for deriving a 

weighted nominal value (xw) and related uncertainty (GSD2
w) from a set 

of data points with different quality and completeness information for a 
specific substance property. An illustrative example of the calculation of 
xw and GSD2

w is presented in SI, Table S2 for an arbitrary substance 

across five different cq,n′

k . 

2.5. Case study: source, chemical property, and test substances selection 

As an illustrative case study to test our proposed workflow, we focus 
on REACH-IUCLID as data source and Kow as an example chemical 
property as an important predictor of variables relevant for estimating 
environmental fate, exposure, and (eco-)toxicological effects for most 
organic substances. In IUCLID, the substance registration dossiers follow 
a standardized structure and are divided into sections (e.g., ‘Physical & 
Chemical properties’) and sub-sections (e.g., ‘Partition coefficient’). Per 
sub-section, one or more test results for a given substance property could 
be gathered. Each test result presents various supporting information 
together with a reported value, such as test method, experimental con
ditions, and administrative information. We gathered data from the 

‘Partition coefficient’ (i.e., Kow) sub-section for all REACH registration 
dossiers and built a dataset composed of 30,312 data points covering 
11,053 unique substances (see SI, Fig. S1 for more statistics on the built 
dataset). 

To select a set of representative chemical compounds covering a wide 
range of physicochemical property space, we matched the CAS numbers 
of the list of substances registered under REACH against the scientific 
consensus model USEtox (Rosenbaum et al., 2008). For the matching 
substances, we retrieved fate and exposure information covering 
half-life in air (DT50air) and soil (DT50soil), Kow, Kaw (air-water partition 
coefficient), and estimated iF (the human intake fraction) from usetox. 
org and annual tonnage bands (i.e., 1–10, 10–100, 100–1000, or 
1000+ tonnes/year production/import/export volume in the European 
Economic Area) from REACH (European Commission, 2006). We binned 
the matching substances into nine categories based on their DT50air and 
DT50soil. The two-dimensional binning was performed using the bivar
iate histogram bin counts function histcounts2 (X, Y) in MATLAB. This 
function uses a set of automatic binning algorithms, including Scott’s 
normal reference rule (Scott, 2010) and the Freedman–Diaconis’ rule 
(Freedman and Diaconis, 1981), applied depending on the structure of 
the data to be binned. This function returns uniform bins chosen to cover 
the range of values in X (i.e., DT50soil) and Y (i.e., DT50air) and reveals 
the underlying shape of the distribution. From the binning results, we 
selected 20 substances from the nine bins to cover the spectrum of 
chemicals as widely as possible, as well as all the annual tonnage bands 
reported under REACH. During the selection of the 20 test substances, 
we filtered out chemicals with the potential to ionize (dissociate), since 
for these substances (i.e., ionizable organic chemicals), the 
octanol-water distribution is a function of pH and hence the Kow does not 
apply (IUPAC, 1997). 

Fig. 1. Graphical overview for deriving weighted nominal values (xw) with uncertainty (GSD2
w) from a set of data points across combinations of aggregate-criteria 

classes cq,n’

k for a specific substance property. 
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3. Results 

3.1. Data harmonization and selection workflow 

Before applying the developed workflow for deriving per chemical 
weighted nominal values with uncertainty for a given substance prop
erty (Fig. 1), data from specific sources might require pre-processing, 
including structuring, interpretation, and harmonization. In our illus
trative case study, pre-processing tasks included: disregarding double 
entries, harmonizing units and reported values (e.g., conversion of all 
the reported log-scale Kow values into normal scale), and matching and 
checking the reported CAS number with the actual tested substance (i.e., 
test material information). This aspect is crucial to consider, depending 
on the context in which REACH data are to be used, since REACH dos
siers may contain data from very similar yet distinct molecules (struc
tural analogue or surrogate substance) to, e.g., minimize laboratory 
experiments and support reported results. In these cases, it is essential to 
update the registered CAS number of the reported substance with the 
CAS number of the tested substance (Aurisano et al., 2019). Another 
pre-processing step specific to this case study on Kow is to filter out 
chemicals with the potential to ionize, as applied for the selection of the 
20 test substances. Other filtering steps might be needed for other 
chemical properties, depending on the specific parameter 
characteristics. 

As first part of the proposed workflow, data quality criteria qi and 

related combinations of aggregate-criteria classes cq,n′

k were defined. We 
defined three data quality criteria for our case study: Reliability, Purpose 
Flag, and Type of Information. Data reliability is evaluated with the 
Klimisch scoring system, from 1 (reliable without restrictions) to 4 (not 
assignable) (Klimisch et al., 1997). We note that the Klimisch scoring 
system was initially developed for evaluating experimental toxicological 
and ecotoxicology data, but may be extended to evaluate 
physical-chemical properties data, including Kow, in certain regulatory 
settings (e.g., European Chemicals Agency, 2011; Ingre-Khans et al., 
2019). However, when a high precision for specific decision contexts is 
required, we recommend to include the specific, relevant test conditions 
into our criteria-based approach rather than relying on more generic 
scoring systems. The quality criterion Purpose Flag (relevance) defines 
within REACH the usefulness of data for hazard/risk assessment pur
poses, and Type of Information (adequacy) outlines a data point’s origin 
(European Commission, 2006; Przybylak et al., 2012; Sobanska et al., 
2014). The available options when registering a substance through 
ECHA’s IUCLID system for the three considered data quality criteria qi 
were directly used to define the classes ni,j that are summarized in SI 
(Table S3). For the qi Purpose Flag, examples of ni,j include Key study, 
Weight of Evidence (WoE), and Supporting study, among others. 
Table S3 furthermore presents the grouping of the different ni,j into 
grouped classes n′

i,j, while the 18 defined combinations of 
aggregate-criteria classes are listed in Table S4. 

Not all the information reported for a given data point is necessary 
for our proposed method. For example, in our case study, the informa
tion summarized is CAS number, Reliability, Purpose Flag, Type of In
formation, Test material in raw data, Test Method, Good Laboratory 
Practice (GLP), Temperature, pH, physicochemical property value (or 
range), and qualifiers. The information considered may vary across 
different substance properties of interest and sources; as a basic rule, at 
least the information relevant for and covering the data quality criteria 
should be gathered. 

In addition, we propose an optional filtering process. More specif
ically, during the filtering, only data points respecting the boundary 
conditions, purpose, and reliability tolerance of the application context 
are kept (e.g., only experimental results) by considering data points 

belonging only to specific cq,n′

k . Moreover, other filters distinct from the 

defined cq,n′

k can be applied. Examples include considering only test re

sults conducted under specific experimental conditions (e.g., certain pH, 
temperature), and following an appropriate, standardized testing 
method (e.g., ‘shake-flask’ method (OECD 107) for substances with log 
Kow < 4 or ‘slow-stirring’ method (OECD 123) for substances with log 
Kow ≥ 5), or data from tests that follow GLP. We highlight that the 
filtering per se will not influence the actual harmonization process nor 
the pre-processing but is restricting (or expanding) the availability of 
data points based on the case-specific application requirements. All 18 

cq,n′

k are considered in our case study not to disregard a priori any data 
point regardless of its quality (see SI, Table S4). 

Once all relevant combinations of aggregate-criteria classes cq,n′

k are 
defined, the proposed workflow can be implemented. First, each avail

able data point is allocated to the proper cq,n′

k . In parallel, a nominal 
value (x) and its CI are derived for each data point, applying a variability 
factor FV for estimating CI in cases where raw values are not reported 
already as ranges. In our case study, FV = 15.85 was implemented based 
on the statistical analysis on the Kow variability in the entire Kow REACH- 
IUCLID dataset (~6000 data points as range and ~25,000 as single 
values) covering the entire chemical space of substances registered 
under REACH. With that, FV represents an average variability in re
ported Kow values across all combination of aggregate-criteria classes. 

Second, for each combination of aggregate-criteria classes cq,n′

k , a xc and 
its CIc are estimated based on the data points available for the same 

combination. Third, for each defined cq,n′

k , both base uncertainty 
(GSD2

base,c, Eq. (1)) and criteria uncertainty (GSD2
criteria,c, Eq. (2)) are 

estimated and combined to quantify the overall uncertainty (GSD2
c , Eq. 

(3)) around xc. The Pedigree matrix of criteria uncertainty factors used 
for quantifying GSD2

criteria,c in our case study is presented in Table 1. In the 
Pedigree matrix, we assign to each grouped class an uncertainty factor 
reflecting its quality and completeness. Note that using a criteria un
certainty factor of 1 in case of high-quality (e.g., Reliability: K 1, 2) is 
adding no criteria-related uncertainty. 

Fourth, the results are summarized and reported per combination of 
aggregate-criteria classes. With that, the final case study results 
comprise the set of originally reported raw data (values and related key 
information), as well as xc, its related GSD2

c and the number of data 
points on which each xc is based. By providing in the results also the set 
of originally reported values (i.e., raw data), we ensure traceability as 
well as reproducibility of the curated values and help practitioners to put 
them in perspective of the underlying available data. 

The weighting process is implemented as a last step to deliver a 
unique nominal value (xw, Eq. (7)) and its related uncertainty (GSD2

w, Eq. 
(8)) across considered combinations of aggregate-criteria classes. 
Table 2 summarizes the quality weights (wQ,c) calculated for each 

Table 1 
Pedigree matrix with uncertainty factors for calculating the criteria related 
uncertainty (GSD2

criteria,c) for our illustrative case study on Kow.  

Criterion Grouped classes (n’
i,j) Criteria uncertainty factors* 

Reliability K 1, 2 1 
K 3, 4 & other 10 

Purpose Flag Key study 1 
Supporting, WoE 5 
Other Study 10 

Type of Information Experimental 1 
Calculated, estimated 5 
Other 10 

Uncertainty factors based on expert judgment follow the approach by Frisch
knecht et al. (2005). When other information on data quality becomes available, 
such default uncertainty factors can be refined accordingly (Slob, 1994). WoE: 
Weight of Evidence. Purpose flag “Other Study” and Type of Information 
“Other” include missing or not specified information (see Tables S3 for more 
examples). 
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combination for estimating xw for the substances in our case study. As 
can be seen from Table 2, the higher the GSD2

criteria,c, the lower its wQ,c 

and, thus, the lower its influence on the final xw. 
Finally, Fig. 2 summarizes the complete harmonization and selection 

workflow applied in our illustrative case study, from the pre-processing 
of the dataset and optional filtering, the variability and uncertainty 
quantification and, the weighting process, to ultimately deriving for 
each considered substance a single Kow and related uncertainty ranges as 
a function of the quality and completeness of the underlying, substance- 
specific raw data. 

3.2. Case study results 

3.2.1. Selected test substances 
The 1125 substances registered under REACH and available in 

USEtox, constituting the test dataset for our illustrative case study, were 
binned into nine different categories based on their DT50soil and 
DT50air. Specific ranges were assigned to DT50s to obtain a balanced 
distribution of substances, i.e., <0.2 days, 0.2–1 days, and >1 day for 
DT50air and <30 days, 30–75 days, and >75 days for DT50soil. One to 
two substances were then selected from each bin. To simplify the se
lection of the test substances, we created a 3 × 3 matrix of contour plots 
displaying the considered physicochemical and fate/exposure informa
tion retrieved from USEtox (i.e., DT50air, DT50soil, Kow, Kaw, and human 
intake fraction). The matrix of contour plots is presented in Fig. 3, while 
the list of selected case study substances, their yearly tonnage band, and 
the number of data points available in REACH are presented in Table 3. 
The selected substances range from low yearly produced/imported 
volume with less than 10 tonnes/year (e.g., Tetradecylamine CAS: 2016- 
42-4) to high-volume chemicals with more than 1000 tonnes/year (e.g., 
Diisononyl phthalate CAS: 28,553-12-0). Furthermore, different cate
gories of chemicals are represented, ranging from industrial fungicides 
(e.g., Captan CAS: 133-06-2) to food and flavor ingredients (e.g., 2,4- 
Dimethylphenol CAS: 105-67-9). As a general trend, we observed in 
the REACH-IUCLID database that the higher the tonnage band, the 
higher the number of data points available. 

3.2.2. Workflow results 
We applied the data harmonization and selection workflow to derive 

octanol-water partition coefficient (Kow) values for 20 test substances. 

For these substances, a total of 65 data points were available in REACH- 
IUCLID. As a first step of the pre-processing, we checked the consistency 
between the reported substances and the actual test material. There was 
a mismatch for around 35% of the gathered data points, and thus n = 23 
data points were disregarded during the pre-processing. It is worth 
mentioning that this high mismatch rate is due to the fact that REACH 
dossiers are allowed to contain data from similar yet structurally 
different chemicals, which must be filtered when such data are used to 
provide a curated dataset that should only contain data for the specif
ically assessed chemicals as in our case study. No filtering was imposed 
in the case study; thus, all the 42 pre-processed data points were 
selected, potentially considering all defined combinations of aggregate- 
criteria classes (see SI, Table S4). 

The weighted Kow, i.e., the harmonization and selection process re
sults with quantified uncertainty for the 20 test substances are sum
marized in Table 3. We acknowledge that in our specific example of 
using REACH dossiers as data source, the quantified uncertainty reflects 
compliance with standardized testing methods rather than actual ac
curacy or quality of the underlying data. Where appropriate, we suggest 
using other or additional quality-related criteria. 

Across the weighted results, characterized GSD2
w range from 2.82 

(Diisononyl phthalate CAS: 28553-12-0) to 44.25 (2,2’-(ethylenedioxy) 
diethanol CAS: 112-27-6). For the former, the low GSD2

w is driven by the 
high quality of the two available data points yielding low individual 
GSD2

c . For the substance 4-methyl-1,3-dioxolan-2-one (CAS: 108-32-7), 
no high-quality data points (i.e., experimental – reliable – key study) 
were available; nevertheless, the high number of data points available 
(n = 4) and their low variability yielded a GSD2

w = 9.86. Indeed, GSD2
w is 

a function of various factors, including the number and quality of the 
available combinations of aggregate-criteria classes (the higher their 
quality, the lower the GSD2

w), and the variability across curated Kow 

values (the lower their variability, the lower the GSD2
w). When for a 

substance, only one high-quality data point (i.e., experimental – reliable 
– key study) is available with Kow reported as a single value, the reported 
GSD2

w = 15.85 directly reflects FV , since the three quality-related criteria 
provide no additional uncertainty on top of uncertainty related to the 
data variability. Thus, in such cases, the results could also be provided 
without the need for an actual weighting process and full uncertainty 
characterization. This correctly reflects lower confidence in reported 
point estimates, which could be both mean or outlier values, hence the 
high associated default variability. 

The weighted Kow results are presented in Fig. 4 together with the 
underlying raw data found in SI (Table S5), differentiating between 
high-quality data points (i.e., experimental – reliable - key study) and 
other data. Fig. 4 highlights the importance of considering a 95% CI 
around the weighted values for putting the results into perspective and 
how high-quality data drive the final results via the weighting process. 
The weighted Kow from 2 data points (allocated to different aggregate- 

criteria classes cq,n′

k ) for Diisononyl phthalate (CAS: 28553-12-0) is a 
clear example of this effect. As graphically represented in Fig. 4, the 
estimated value is mainly driven by the available high-quality data point 
(black cross). 

Finally, the reported data for any substance (including our 20 test 
substances) under REACH may be updated by registrants at any time 
after we retrieved the data used in the present study in July 2021 
(Sobanska et al., 2014). If such additional data become available, our 
results can be updated following the same procedure as outlined for our 
case study. 

4. Discussion 

4.1. Applicability of the proposed method 

Our workflow should be seen as a first step to create a standardized 

Table 2 
Set of quality weights (wQ,c), calculated as inverse of GSD2

criteria,c, and as used in 
our illustrative case study. wQ,c are assigned to each of the 18 combinations of 
aggregate-criteria classes for calculating a unique xw across combinations.  

Reliability Purpose Flag Type of Information GSD2
criteria,c 

wQ,c 

K 1, 2 Key Study Experimental 1.0 1.00 
K 1, 2 Key Study Calculated, estimated 5.0 0.20 
K 1, 2 Key Study Other 10.0 0.10 
K 1, 2 Supporting, WoE Experimental 5.0 0.20 
K 1, 2 Supporting, WoE Calculated, estimated 9.7 0.10 
K 1, 2 Supporting, WoE Other 16.6 0.06 
K 1, 2 Other Study Experimental 10.0 0.10 
K 1, 2 Other Study Calculated, estimated 16.6 0.06 
K 1, 2 Other Study Other 26.0 0.04 
K 3, 4 & other Key Study Experimental 10.0 0.10 
K 3, 4 & other Key Study Calculated, estimated 16.6 0.06 
K 3, 4 & other Key Study Other 26.0 0.04 
K 3, 4 & other Supporting, WoE Experimental 16.6 0.06 
K 3, 4 & other Supporting, WoE Calculated, estimated 25.5 0.04 
K 3, 4 & other Supporting, WoE Other 37.8 0.03 
K 3, 4 & other Other Study Experimental 26.0 0.04 
K 3, 4 & other Other Study Calculated, estimated 37.8 0.03 
K 3, 4 & other Other Study Other 54.0 0.02 

WoE: Weight of Evidence. Purpose flag “Other Study” and Type of Information 
“Other” include missing or not specified information (see Tables S3 for more 
examples). 
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method for harmonizing and selecting chemical property information 
across different data sources and when more than one data point is re
ported. The criteria and related uncertainty factors presented in this 
study apply to Kow data available in REACH-IUCLID (since we focused 
our case study on this specific data source and chemical property). Even 
though our selected data source has a standardized structure, additional 
criteria and related uncertainty factors might need to be defined for 
applying the proposed workflow to other chemical properties within the 
same data source. For example, additional criteria need to be considered 
for oral toxicity data, such as exposure duration or species tested, which 
are critical for the interpretation of this property (Fantke et al., 2021a). 
Another example is the octanol-water distribution ratio (Dow), relevant 
for ionizable organic chemicals, for which additional test parameters, 
such as pH, need to be considered (IUPAC, 1997). 

Similarly, criteria and related uncertainty factors need to be defined 
when adapting the proposed workflow to other data sources. For 
example, Reliability or Purpose Flag are not provided in results reported 
in the US-EPA CompTox Chemistry Dashboard (Williams et al., 2017) or 
ChemSpider (Pence and Williams, 2010). For these databases, the source 
of the reported information is potentially a criterion since systematically 
provided. No adaptations would be needed for the filtering and the 
weighting processes since these processes are independent of the 
included data sources. 

The implementation of the filtering process enables practitioners to 
apply our harmonization and selection workflow in different contexts. 
This includes, for example, Life Cycle Impact Assessment (LCIA), where 
numerous chemicals have to be characterized, using a wide range of 
underlying data of varying quality, or the development of QSAR models, 
where only the most reliable experimental results are usually considered 
for model-building (Cherkasov et al., 2014; Cronin and Schultz, 2003). 
The final weighting process additionally enables to account for differ
ences across data points in terms of their data quality and completeness. 
However, the weighting process is only needed in cases where results 
from more than one combination of aggregate-criteria classes fit the 
relevant application context. 

4.2. Limitations of our workflow 

The proposed workflow comes with limitations. For example, the 
final results are dependent on the criteria considered for assessing the 
quality of each data point and on the criteria-related uncertainty factors 
(i.e., pedigree matrix) applied to quantify their confidence interval. 
More precisely, the assessed ‘quality’ of the data reflects compliance and 
consistency with reporting and standardized test guidelines; thus, it does 
not necessarily express the actual accuracy (even though standardized 
and well-conducted tests are more likely to be accurate). Vice versa, data 

Fig. 2. Flow chart presenting the harmonization and selection workflow applied in our illustrative case study to derive a unique nominal value (xw) and its un
certainty (GSD2

w) across combinations of aggregate-criteria classes from a set of raw data points of different quality and completeness. 
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points with low assessed quality, driven by, e.g., missing reporting in
formation or tests not conducted according to GLP, do not necessarily 
deliver inaccurate results (Ingre-Khans et al., 2020; Przybylak et al., 
2012). Consequently, the results of the quality assessment performed in 
our study represent a measure of confidence in the processed results 
rather than accuracy of the delivered values. For example, specific to the 
REACH-IUICLID data source, it has been recently highlighted that the 

reported Klimisch scores are mainly based on studies complying with 
GLP and test guidelines, with the risk of considering GLP and guideline 
studies being reliable by default and overlooking non-GLP and non-test 
guideline data that might be of high-quality (Ingre-Khans et al., 2019). 

Currently, we included broad criteria that account for test conditions 
of reported data (e.g., Klimisch score), where specific conditions (e.g., 
certain pH range or temperature) are not considered separately. This 
could influence uncertainty estimates around parameter results (Beyer 
et al., 2002; Lei et al., 2004; OECD, 2006; Sangster, 1989). Where 
appropriate, such specific test conditions could be explicitly accounted 
for in our approach as separate criteria, by, e.g., filtering reported data 
points to consider only results conducted under specific experimental 
conditions or in compliance with specific standard testing guidelines. 
For example, when a chemical property information varies widely as a 
function of test conditions, such as pH, the large variability in test results 
will propagate into wider confidence intervals when a generic value is 
required for a given decision context. In contrast, a pH-specific value 
could be reported for specific contexts, where pH itself could then be 
used as a criterion to determine variability, and related confidence 
ranges across reported test data. 

We have applied our proposed approach to a rather small number of 
test chemicals in our case study. However, our workflow can generally 
be applied to a large number of chemicals and data depending on the 
data source conditions. This is possible since the different data points are 
allocated to the different criteria classes and weighted results are 
automatically derived after quality criteria are defined manually (hence, 
semi-automated). 

Our derived log Kow = 0.03 for CAS: 7173-62-8 is derived from a 
weighted average across structurally-related compounds, with an orig
inally reported experimental value of log Kow = 0 specifically for our 
target chemical with CAS: 7173-62-8. We note that the reported 
experimental result for this chemical is very different from predicted 
values, which are in the range of log Kow = 7.08 to 8.63 (Mansouri et al., 
2018). We observe similar discrepancies also for CAS: 5567-15-7 with 
predicted log Kow = 4.73 to 9.45 (Mansouri et al., 2018). In cases where 

Fig. 3. Multidimensional space maps for physicochemical properties covered by the 1125 substances present in both USEtox and REACH. Black stars: Selected test 
substances for our illustrative case study (n = 20). White dots: remaining 1108 substances. DT50soil is increasing from left to right plots, and DT50air is increasing 
from bottom to top plots. In each subplot, log10 Kaw (y-axes) is plotted against log10 Kow (x-axes). Intake fractions, log iF, provide an additional dimension and are 
represented by colors. The number of substances present per bin is shown in each subplot. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 3 
Results of Kow weighted based on applying the proposed harmonization and 
selection workflow for the 20 test substances in our illustrative case study.  

CAS Number data 
pointsa 

Tonnage band [tonnes/ 
y]b 

log Kow GSD2
w 

106-46-7 4 1000+ 3.37 10.66 
108-32-7 4 1000+ − 0.45 9.86 
2016-42-4 4 1–10 5.91 29.32 
112-27-6 3 1000+ − 1.83 44.25 
94-36-0 3 1000+ 3.24 9.22 
7173-62-8 2 1000+ 0.03 10.63 
28553-12- 

0 
2 1000+ 9.25 2.82 

112-92-5 2 1000+ 7.38 13.17 
78-84-2 2 1000+ 0.77 12.94 
67-68-5 2 1000+ − 1.34 11.95 
732-26-3 2 100–1000 7.09 15.78 
133-06-2 2 100–1000 2.54 17.18 
100-55-0 2 1–10 − 0.86 12.64 
105-67-9 2 – 2.46 33.47 
5567-15-7 1 1000+ 0.02 15.85 
51-03-6 1 1000+ 4.80 15.85 
117-80-6 1 10–100 2.90 15.85 
7212-44-4 1 10–100 4.50 15.85 
109-21-7 1 1–10 2.16 15.85 
26140-60- 

3 
1 – 5.86 41.44  

a After the pre-processing. 
b For the yearly tonnage band, in case of confidential information, the cell is 

left empty. 
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such discrepancies occur between measured and predicted data, we 
emphasize the need for further research to better understand where 
these differences are coming from, which includes refinement of pre
diction models as well as additional experimental testing, including full 
reporting of specific test conditions. The range in which the true value 
for a property will lie could be constrained by using information for all 
partitioning properties simultaneously rather than one at a time. This 
could be adapted based on available approaches (e.g., Cole and Mackay, 
2000; Ma et al., 2010; Wenger et al., 2012; Xiao et al., 2004). 

In addition, there are still fields in the registration dossiers where 
additional information can be submitted via free text. In the proposed 
method, we do not implement any data mining tool, disregarding all 
information in free text fields and thus might miss relevant additional 
information for some data points. 

Finally, combinations of aggregate-criteria classes were also created 
for treating non-experimental data points (e.g., QSARs). We acknowl
edge that for some parameters and decision contexts, robust QSAR es
timates might be more appropriate than individual experimental results 
reported for specific, not necessarily representative test conditions 
(Fantke et al., 2014). We further acknowledge that QSARs differ in terms 
of compliance with recommended validation approaches, applicability 
domain and predictive power—information that is unfortunately not 
always provided. Where needed, such aspects should hence be included 
in our approach as explicit QSAR-related quality criteria, which could 
also be done by considering reported uncertainty ranges for specific 
QSARs. 

4.3. Recommendations and future research needs 

From this first step toward developing overarching principles and 
methods for pre-processing, harmonizing, and selecting chemical 
property data from different data sources for various application fields, 
we recommend that results should always contain the set of raw data 
that was used to derive any processed result to ensure traceability as 
well as reproducibility. We note that where this is not possible when 
using, for example, any proprietary or otherwise protected data, this 
comes at the expense of data transparency. Furthermore, we recommend 
including uncertainty estimates around any processed data as it reflects 
differences in quality and completeness of the underlying raw data and 
ensures maximum interpretability. 

Future research needs include identifying and developing sets of 
quality criteria to derive uncertainty factors for other substance prop
erties and other available data sources (e.g., US-EPA CompTox Chem
istry Dashboard, ChemSpider). In addition, the default uncertainty 
factors, currently based on expert judgment and used to quantify 
criteria-related uncertainty (GSD2

criteria,c) and quality weights (wQ,c), 
should be refined when more specific information on data quality be
comes available, starting from available approaches to derive uncer
tainty from data quality and relevance such as the framework for 

quantitative weight-of-evidence analysis developed by Bridges et al. 
(2017). 

Moreover, further research could extend the proposed method for 
mining and interpreting information from text fields and other un
structured yet relevant information, as used in some data sources, 
including REACH-IUCLID. However, when potentially relevant data are 
reported in “free text” sections, additional pre-processing, interpreta
tion, and harmonization is needed since possible typos, ambiguity, or 
irrelevance in the information reported might occur. 

Finally, even if we considered a small set of test substances in our 
illustrative case study, we have identified few discrepancies between the 
reported experimental values and other sources reporting predicted 
values. At the same time, we have also observed a lack of data 
completeness and transparency in the considered dossiers for some of 
the test substances. These inconsistencies are urging for REACH data to 
be subject to a significant quality review based on a clearly defined set of 
criteria to increase the consistency and robustness of any related data 
used in assessments and decision support (Fantke et al., 2020; Ingre-
Khans et al., 2020). 

5. Conclusions 

We developed a criteria-based method to enable the use of reported 
chemical property information of different quality and provide quanti
tative uncertainty information around the resulting values. With that, 
our proposed workflow may serve as starting point for systematically 
developing data harmonization and selection tools that build on criteria 
and uncertainty estimates tailored toward the specific characteristics of 
different chemical properties and data sources. We tested our method for 
deriving Kow values and related confidence intervals for 20 test sub
stances from a set of underlying raw data of different quality. Our pro
posed workflow is suitable to assess both high- and low-information 
substances as input to various modeling approaches with different res
olution and data quality requirements, from life cycle impact assessment 
to chemical substitution and high-throughput risk screening. 
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