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Abstract—Fully Autonomous vehicles (AV) are estimated to
reach consumers widely in the near future. The manufacturers
will have to be completely sure that AVs can outperform human
drivers, which first of all requires a solid model of the world
surrounding the car. Emerging trends for perception models in
the automobile industry seems to be towards combining the data
from LiDAR and camera in Multi-Sensor Fusion (MSF). Making
the perception model reliable in the event of unforeseen real world
circumstances is tricky enough, but the real challenge comes from
the security issue that arises when ill-intentioned people try to
attack sensors. In this article, we take a deep dive into the possible
attacks and countermeasures for LiDAR and camera. We discuss
it in the context of MSF, and provide a simple framework for
further analysis, which we conclude will be needed in order to
conceptualize a truly safe AV.

Index Terms—Autonomous vehicles, LiDAR, camera, sensors,
attacks, countermeasures, security, Multi-Sensor Fusion.

I. INTRODUCTION

Due to advances in technology in recent years, autonomous
vehicles are becoming more and more realistic on public roads.
Car manufacturers have already dealt with extremely complex
challenges such as self-navigation and collision prevention.
Some places in the US are even beginning to allow self-driving
cars under specific circumstances [14]. There are different
levels describing how autonomous a car is [17], and the
aforementioned cars are examples of category 3 autonomous
cars. Today, the race between manufacturers to become the
first company to release a fully autonomous category 5 car
continues. Considering that the end goal means giving the
AV complete control with no oversight it is important that
no stone is left unturned during testing, to make sure that
the consumer is completely safe. This means that the AVs
will have to withstand not only rigorous testing, but also the
challenges that arise in the real world, where people might
intentionally try to cause crashes.

Researchers, as well as white-hat hacker groups, have been
conducting tests on these cars and their flaws. For example
Keen Security Labs in China demonstrated flaws in security
in a Tesla Model S, that allowed them to remotely hack into
the car, and make it change to the reverse lane [18]. Another
example is found in [10], where researchers managed to
confuse the perception algorithm to have a stop sign classified
as a speed limit sign using stickers.

In this article, we will take a deep dive into attacks,
specifically attacks aimed at the AV’s ability to perceive the
world around it through sensors. Considering all the different
technologies involved in self-driving cars, the complexity
of attacks on AV’s sensors vary wildly. We will focus on
remote attacks on the physical sensors, but also the underlying
algorithms working the sensor data. We assume that attacks
have no access to the vehicle, yet aim to attack the perception
model of the AV, since any attacks here will cascade into all
other decision-making that an AV does.

II. HOW AN AV MODELS ITS’ SURROUNDINGS

There are many variables and obstacles on public roads like
pedestrians, other cars, turns, traffic lights, bicycles and much
more. Before an AV can safely drive on these public roads, the
car first and foremost needs to see better than humans in order
to drive better. This has been a major hurdle for development.
By combining different sensing technologies developers have
created detection systems which can “see” better than human
eyes [15]. The common technologies in AVs used for mapping
the environment are LiDAR (Light Detection and Ranging),
radar (Radio Detection And Ranging) and cameras. Radar and
LiDAR are somewhat interchangeable, as they offer a lot of
the same information with different pros and cons. This has
led to debates in the industry about which is best. Currently,
Google, Uber and Toyota all rely heavily on LiDAR, while
Tesla are the only real advocates for Radar [19]. Because of
this, our focus will be on camera and LiDAR.

A. Camera

AV perception is achieved by many sensors and sensor
systems. One of the first sensors used in driverless cars was the
camera. For AV the camera is used to visualize its surround-
ings. The camera is used for lane detection, horizon/vanishing
point detection, object detection and tracking of vehicles and
pedestrians, traffic sign recognition and headlight detection,
as demonstrated by the colored boxes in Fig 1. Cars can
have multiple cameras covering a 360 degrees view of their
environment. Cameras are very efficient at detecting texture
of objects. For implementation, cameras are more affordable
than lidar and radar sensors. The high pixel quality obtained



by the camera comes with a price of computational power.
Today cameras can take pictures with millions of pixels in
each frame and about 30-60 frames each second. Each of
these frames needs to be processed in real time in order
for the car to make real time decisions, this requires a lot
of computational power [5]. Image quality is important in
order for the system to classify the objects. The quality can
be affected by lenses, windshield, vibration environmental
conditions like snow, rain, fog and light. All these image
disruptions can result in unnoticed objects and increasing
image correction processing time. Some cars use a multi
camera setup where some cameras overlap each other [1].
The camera creates a good representation of the environment,
however the depth perception is not nearly as good as that of
other sensors, which is why LiDAR technology is used.

Fig. 1: An image of an autonomous car using LiDAR as
distance measure and camera as object detection [22]

B. LiDAR

The LiDAR sensor system fills the existing gap between
radar and camera sensors [5]. LiDAR works by emitting
pulses of infrared light and measuring the time taken to reflect
on distant surfaces. These reflections return a point cloud
that represents objects from the environment. Most common
LiDAR lasers use light in the 900 nm wavelength, longer
wavelengths will perform better in poor conditions, such as
fog and rain. Because the LiDAR sensor has a more focused
laser beam it can create a more dense point cloud, resulting in
a high resolution map of the environment [13]. The resolution
obtained by LiDAR is much higher than in radar because
of this more focused laser beam. Precision is important in
LiDAR systems, as lower precision LiDAR sensor originate
noisy point clouds. How precise a LiDAR is says how close
the estimated point is compared to a point in the real world.
There are different architectural techniques for creating the
surroundings of the car. They can be categorized in different
groups of spinning and non spinning (solid state). To get a
horizontal 360 view LiDAR sensors can be combined with a
mechanical part to spin around while measuring the distance
of the surrounding objects, as shown in Fig. 1. This is the most
common LiDAR application currently. If LiDAR technology
is used but there are no moving parts this is called solid state

sensors. With solid state sensors we get a more narrow angle
but usually they are cheaper.

C. Multi-sensor fusion (MSF)

Multi-Sensor fusion, or sometimes just called Sensor Fu-
sion, is a technique where the input from multiple sensors are
combined, in order to leverage the best of both inputs. While it
is a possible to combine several sensor types, current trends in
the automobile industry trends have gone towards combining
camera and LiDAR [5]. This minimises hardware complexity,
as only two sensortypes are involved, and the information from
these complements each other nicely. The obvious advantages
here is the detailed vision of the camera, allowing for object
classification, and LiDAR for accurate object detection and
detailed range measurements.

MSF have been a major factor in helping researchers make
reliable models of an AVs surroundings. Researchers in [5]
cites application of MSF in the detection of objects, grid oc-
cupancy mapping for placing these objects in a model around
the vehicle and lastly for tracking the objects movements
within the model. Their example of an MSF algorithm is
the PointFusion network, used for 3D object detection. This
algorithm achieves sensor fusion by processing each sensors
data with a different neural network (NN), and then feeding
the representations into a new neural network, achieving high-
level fusion as shown in Fig. 2. As seen in the figure, the
separate NNs are PointNet and ResNet handling the pointcloud
and RGB (Red-green-blue) image respectively. Their results
are fed to dense fusion algorithm that for each input point
predicts the spatial offset of the corners relative to the input
[21]. The PointNet and ResNet information is also fed to a
baseline model that directly regresses the box corner locations.
Together, the dense fusion predictions and baseline model
results in the predicted 3D boxes, that an AV would have to
navigate it’s way around.

While this is just one way of doing this, there are many,
many ways to go about it. It really comes down to balancing
the complexity of the mathematics, the computational power
in the vehicle and other factors to design the ’perfect’ sensor
fusion algorithm.

Fig. 2: Overview of the neural networks involved in the
PointFusion MSF algorithm [5].

III. ATTACKS AND COUNTERMEASURES

In this section we will explain different attack types,
documenting examples of successful attacks and suggesting
possible countermeasures. Since our focus is remote attacks,
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our assumption of possible setups to perform these attack will
be categorized into one of two types, described by Petit et. al.
in [1]:

Front/rear/side attacks which involve an attacker who
installs hardware in his own vehicle to perform an attack. This
allows the attacker to keep the hardware within distances of a
target vehicle for longer time.

Roadside attacks which involve a mounted stationary
setup, that allows for greater precision. This type of attack
is not limited to one installation point, but can have several if
need be.

A. Attacks on cameras

1) Blinding Attack: Cameras have built in functions to
decide how much light is let into its’ shutter, in order to take
better photos in all light conditions. This attack type abuses
this function, by shining a strong light source into the camera,
in order to either completely blind the camera, or partially
blind it, causing it to miss objects. In experiments performed
in [6], researchers managed to completely blind a camera for
up to 3 seconds by pointing a laser light directly at the camera,
and caused irreversible damage by doing so for several seconds
from less than 0.5 meters away. They also managed to cause
partial blindness by directing an LED (light emitting diode)
light matrix at the camera, inhibiting the object recognition
and proving that there’s multiple tools to perform this attack.
The researchers performed the testing in stationary setups, but
they also simulated a front/rear/side attack by wobbling the
laser at the camera, which was still successful, though the
blinding was less effective.

2) Adversarial Example (AE): While not physically at-
tacking the camera, this attack type attacks they way the
information from the camera is processed. The perception
models based on machine learning (ML) and deep learning
(DL) have proven vulnerable to carefully crafted adversarial
perturbations. Generally, AEs are classified as ’Appearing
Attacks’ and ’Hiding Attacks’. There have been published
several attacks of this type, where most are evaluated on
stop signs as they are a critical part of decision making in
driving. Researchers in [7] executed such a hiding attack,
where they designed specific black and white stickers that
caused misclassifications of stop signs. In order to fool any
human onlookers, they designed the stickers to look like
graffiti and still managed to make the sign be classified as
a speed limit sign in 87,5% of the tests. In the opposing
category, [10] managed to make innocent looking stickers be
classified as stop signs. There are other examples of real world
applications, such as [4], where researchers 3D printed a traffic
cone that was ignored by cameras, and [12] who designed a
billboard that causes malfunction in the steering angle of AVs.
This attack type appears mostly as a roadside attack.

B. Attacks on LiDAR

1) Spoofing by relaying attack: LiDAR sensors are what is
called active sensors [11]. This means that the LiDAR sensor

in order to detect an object emits light intentionally from its
own sensor and then listen to the echo. Because the speed of
light is constant the LiDAR sensor can calculate the distance
by measuring the ping time of the signal. In spoofing attacks
the attacker uses this signal created by the victim but relays
it back from a different position. The goal of spoofing is to
deceive the victims LiDAR sensor and to create fake point
clouds. The creation off fake points could potentially cause the
AV to make sudden erroneous decisions. These active LiDAR
sensors use particular waveform to differentiate echoes from
the other inbound signals. This means before the attacker can
perform the attack, he needs to obtain the ping waveform.
When the waveform of the victims LiDAR sensor is obtained,
the attacker can now perform the attack by relaying the signal
back to the LiDAR sensor. This attack is effective because the
victim car has a hard time to distinguish what signals are real
or fake and is unaware of the attack, potentially providing
seemingly legitimate but actually erroneous data. There are
two ways to perform this attack. One way is to place the
attacking device on the roadside and then aiming towards
the victim lane [8], however it could also be performed as
a front/rear/side attack, using computer vision to keep track
of the vehicle and to aim precisely. This would however be
significantly more difficult to execute. First some of LiDAR
sensors used in cars are spinning LiDARs. This means that the
victims LiDAR sensor has to be facing the attacking direction.
In order for the attack to work the echos has to hit victims
sensor at the right receiving angle. The second problem is that
LiDAR will only accept echos within a certain delay time.
Because of the delay threshold the distance between attacker
and victim has a big influence on the attack window. Article [1]
performs a spoofing attack, and relates timing to the success
of spoofing.

2) Saturation attack: Typically sensors has a lower and
upper bound for input signals [11]. If signals arrive at the
sensor with a low signal power, the sensor will ignore the
signal, this is also called ”limit of detection”. When the signal
increases it eventually exceed the upper threshold, at this point
the sensor cannot reflect the input changes well. Therefore the
principal of saturation is to expose the target sensor to a signal
of high, making the sensor unable to work properly. Because
the sensor is unable to receive any new signals while under
a saturation attack, this attack is also called DoS (Denial of
Service) or a blinding attack, since it uses light as a medium.
Saturation attacks are powerful because they are unavoidable,
and though it is easy to detect it cannot be prevented. Human
drivers and pedestrians will be unaware of the attack because
LiDAR operate in eye safety wavelength namely infrared light.
In [11] they performed this saturation attack with both weak
and strong light sources. The experiments made was successful
and had different outcome for the weak and strong light.
When the attack was performed with weak light they observed
randomly located fake dots, while with the strong light source,
they observed that the sensor became completely blind in a
sector of FoV (Field of View).
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Attack type Target sensor Method Impact Feasibility

Blinding attack Camera Blinding the camera with some kind of light source,
making the camera unable to guide the Vehicle

Low Easy

Adversarial
Examples

Camera Introduce objects with adversarial perturbations, to
confuse perception model

High Hard

Spoofing attack LiDAR Relaying light pulses in a different position, creating
fake obstacles.

High Medium

Saturation attack LiDAR Jamming or blinding LiDAR sensors by emitting
strong light in same wavelength as the LiDAR sensor.

Low Easy

TABLE I: Overview of attacks

Countermeasure Sensor Method Preventing attack Feasibility

Redundancy Camera Adding more camera with a significant overlap in
view

Blinding attack,
assists MSF at-
tack detection

High

Optics and mate-
rials

Camera Adding smart materials, that can filter out harmful
light

Blinding attack High

Making AE
robust perception
models

Camera Using advanced techniques to make AE attacks more
difficult

Advarsarial
attack

Low

Saturation detec-
tion

LiDAR Builtin Fail-safe mode. Under attack slows down and
pull to the side.

Saturation High

Redundancy and
Fusion

LiDAR Multiple LiDAR setup with overlapping FoV. By
comparing input from multiple overlapping sensors
it is possible to detect and prevent some attacks

Saturation and
spoofing

High

Random probing LiDAR By randomizing LiDAR pulse interval makes spoof-
ing very difficult to perform

Spoofing Medium

Side-channel au-
thentication

LiDAR Using side-channel information as authentication.
Authentication makes it very difficult to spoof a
LiDAR, not knowing the secret key

Spoofing High

Multi-Sensor Fu-
sion

LiDAR and Cam-
era

Use smart MSF to model both LiDAR and camera
data, checking for inconsistencies

Camera blinding,
LiDAR Spoofing,
saturation, relay
and rotation

Medium

TABLE II: Overview of countermeasures

C. Countermeasures on cameras
1) Redundancy: Petit et. al. [1] argues the simple benefit

that more cameras with overlapping view will at the least
make a blinding attack harder to execute. In [6] researcher
emulated a handheld blinding attack by laser, which would
be very hard if several cameras were present. The argument
for more cameras could also be supported by the findings in
[2], which suggests an algorithm for recognizing perception
error attacks in MSF, which requires stereo cameras. This
will be further elaborated on in section III-E. Though this
solutions seems simple, it is important to remember the extra
space and cost associated with it, which are very essential
factors in the highly competitive automotive industry. There
is also an argument that integrating more cameras introduces
more complexity in synchronizing the capturing of frames and
maintaining the same exposure [1], though this should easily
be overcome with todays’ technology.

2) Optics and materials: Petit et. al. [1] argues that remov-
able on-demand near-infrared-cut filter, a feature commonly
found in security cameras, could serve as a defence against
blinding attacks. They argue that such a defence would only be
usable during daytime, as the filter would have to be removed
during nighttime, in order to make use of infrared light for
night vision. Intelligent applications of this countermeasure
should be considered, perhaps by implementing software with
thresholds for when it considers the camera to be under attack.

Another defensive material is photochromic lenses, which
is a type of lenses that change color to filter out specific
types of light. Several types of lenses or coating of lenses
could be considered, but as an example vanadium-doped zinc
telluride will turn more opaque when hit by high-intensity
beams, automatically filtering these without effecting image
quality in low light conditions [1]. Once again the hardware
and development costs should be considered.
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3) Making AE robust perception models: Researchers in
[9] provide a very thorough examination of how to make
adversarially robust ML/DL solutions and their efficiency. This
is a very wide and highly technical topic, which we consider
outside the scope of this article. We will therefore refer the
interested reader to the article, and quickly mention solutions
in simple concepts, as well as the conclusions.

They suggest the possibility of re-training a given classifier
on images including adversarial attacks, thought this approach
is easily criticized for being reactive and vulnerable to attacks
that simply generate new attack types. They also suggest
training an auxiliary model, whose sole purpose is to detect
features commonly found in pictures with AEs and classify a
frame as an outlier if it contains it. They conclude that there are
multiple directions that solutions can go, and that they often
can be combined. More research is needed in order to facilitate
a solid defense, but it is feasible, and a valuable addition to
making safer AVs.

D. Countermeasures on LiDAR

1) Saturation detection: As described in section III-B2
saturation can easily be detected by the sensor system. A
victim vehicle could have an inbuilt fail-safe mode, so when
the car detects saturation, it slows down the car and pull to the
side [11]. This countermeasure could on a crowded road lead
to a dangerous situation. If the car has to pull to the side while
having a jammed LiDAR sensor, its like a person driving with
closed eyes.

2) Redundancy and Fusion: One countermeasure could be
by having multiple LiDARs overlapping some FoV angles
[11]. With redundant LiDAR sensors, the victim car could
under saturation attacks abandon input from the attacked
sensor until the attack is done. Though the car knows when it is
exposed to saturation, it is significantly harder to detect spoof-
ing. The redundant setup will still work better against spoofing
by cross validating the malicious points. If the attacker creates
fake points in the non-overlapping zone, redundancy will have
no effect. LiDAR sensors are expensive so using multiple
sensors will increase the overall cost a lot. This solution is not
bullet proof, because the attacker is still able to attack multiple
sensors at the same time. Another option proposed in [1] is
to take advantage of data intercepted by neighboring AVs.
Victim vehicle could cross-validate its data with neighboring
data to observe inconsistencies. This method only works if
there are other vehicle on the road. V2V (vehicle to vehicle)
solution opens up for more hacking opportunities because one
neighboring vehicle could share incorrect data.

3) Random probing: When making a spoofing attack on
LiDAR sensors, a hacker will be interested in the pulse
interval. This interval is the timing for when the attacker needs
to fire back attacking pulses [16]. By randomizing the interval
it makes it hard for the attacker to synchronize the attack. This
method is problematic for spinning LiDAR systems, as they
require a constant rotation speed and angle of transmission
needs to be known [1]. Another option here is to skip some

pulses, as this will only require some software modification.
When the sensor skip a pulse it is still able to listen to
incoming pulses, making it possible to detect possible spoofing
attacks. If the sensor is skipping some of the pulses, it has to
run with a higher rotation speed, to keep the same resolution
[11]. It is important that the skipped pulses are chosen in a
pseudo-random fashion, where the attacker cannot predict the
skipped pulse.

4) Side-channel authentication: To understand this counter-
measure it is essential to know what is meant by side-channel
information. Side-channel information is physically leaked
information, which could for example be power consumption
or electromagnetic radiation. The suggested side-channel in-
formation in the article [3] comes from a cryptographic device
in the car. The device is making heavy calculations using
AES (Advanced Encryption Standard) on a cryptographic key,
and the electromagnetic radiation during these calculations
are read. This information is then used to modulate and
demodulate the amplitude of the laser. It will then only
accept returning echoes with exactly this modulation. Though
feasible, it becomes very difficult for the attacker to send fake
echoes with the correct modulation, and the car can simply
change the cryptographic key once in a while to have varying
side channel information.

E. Countermeasures via MSF

Evaluating countermeasures via MSF can be difficult, as it
is an emerging research topic with many approaches mathe-
matically. As such, we will base this section on [2], a newly
released paper with meta reflections and criticisms of the
current state of MSF algorithms, as well as a suggested new
approach. An important point they raise, is that most of the
aforementioned attacks are evaluated on a single sensor type.
They argue that today’s AVs does not build their model of
their surroundings based on a single sensor type, but rather
through the combination of data through the use of MSF. This
immediately raises the abstraction level of the discussion, as
physical attacks on sensors needs to be evaluated based on
the whole perception system. As an example, they criticise
the design of some MSF algorithms, as their design seems too
focused on working in non-adversarial settings. The algorithm
F-PointNet uses a cascade approach to fuse LiDAR and camera
data, by generating 2D proposals on the image data, and then
projecting these onto 3D space, refined by the LiDAR data.
This makes it especially vulnerable to camera attacks, as the
detection failures accumulate through to the LiDAR steps of
the fusion algorithm. The researchers conclude that any MSF
built around the idea of projecting either LiDAR or camera
data onto the other, will be significantly more vulnerable to
attacks at the sensor considered to be the ’primary’. To combat
these issues, the researchers designs their own sensor fusion
algorithm, which uses CV and ML to map features on both
the camera and LiDAR data, and analyzing any features that
cannot be mapped to both. The results of their design for
camera attacks yields a 100% detection rate, and for LiDAR
attacks their detection rate for spoofing and saturation are
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97% and 96% respectively. Thus proving that MSF can be
leveraged for a significant defence against attacks on the
sensors providing the data. They do however make a point, that
AEs attacking sensory data processing algorithms of camera
or LiDAR data would not be detected through their algorithm,
as they would not appear as sensor malfunctions.

IV. DISCUSSIONS

There is not doubt that AVs will arrive in the near future,
but it is clear that one of the major hurdles is not just beating
the difficult tasks of modeling the surroundings and navigating
them, but also making the perceived information resistant to
attacks. As noted in [14] a recent study showed that only 14%
of drivers trust an AV to do all the driving, while 54% are
too afraid to try it and 32% are unsure. Convincing people
will require delivering a product that completely delivers on
all safety measures, before public opinion deems AVs to be
too dangerous. In table I and table II we have summed up
our attacks and countermeasures, but it is still difficult to
concretely say that a consumer is sufficiently safe. How do
you come up with guarantees in a field that moves so fast in
so many directions?

In [9] they discuss the possibility of threat modeling, as a
fundamental approach to safety analysis. Here they mention
several important aspects including, but not limited to, Adver-
sarial Knowledge, Adversarial Capabilities and Adversarial
Specificity.

Adversarial Knowledge refers to the required knowledge
for executing an attack. Typically, adversarial attacks are
referred to as either white-box, gray-box, or black-box. White-
box assumes that the attacker has full knowledge of the
underlying systems, be it hardware or software. Gray-box
assumes partial knowledge of the underlying mechanisms and
black-box assumes no knowledge, to the point where they
might not even know which ML algorithm the perception
model they are trying to attack is built on. This is arguably the
most important dimension to consider, especially if you factor
in who’s the perceived target. With the increased tendency
towards cyber-warfare that we are seeing internationally, high-
priority targets like heads-of-state can expect to be targets of
incredibly sophisticated attacks that regular people would have
no need to fear.

Adversarial Capabilities defines the assumed capabilities
of the attacker, which is important scope to consider. This
leans itself towards knowledge as well, but also economic
as in [1], where they specifically focus on attacks requiring
only commodity hardware. They do this under the assumption,
that the attacks requiring the least economic and technical
knowledge will be most common, an argument that can
definitely be extended to our definition as well.

Adversarial Specificity means how specifically targeted an
attack is. This could be a consideration of whether or not the
laser damage to the cameras tested in [1] would translate to
the damage on other cameras, or as mention in [9], that black-
box AEs for one ML/DL model are assumed to affect other

models trained on datasets with a similar distribution as the
original one. It is in the interest of car manufacturers, that
attacks do not generalise well across hardware and software.

With this information in mind, one can start reflecting on
the future of safety precautions, though nothing is set in stone.
We can expect that simple hardware attacks will happen, be
it blinding of cameras and attempts at tricking the LiDAR,
considering just how low knowledge, capability and specificity
requirements are especially for the camera attacks. Whether it
is smartest to adopt some of the novel approaches suggested in
segment III-C and III-D, or trust in the higher level protection
of an MSF that checks for physical attacks is hard to tell.
As with many IT-security questions, the answer probably lies
somewhere in middle by combining both.

State-of-the-art research on MSF have proven that it can
be a valuable tool to detect attacks on sensors [2], but one
should not see this as a excuse to leave them wide open. They
note that attacks are still feasible, however, they would need to
attack both camera and LiDAR simultaneously and gradually,
as sudden shifts would be detected. This raises the knowledge
and capability requirements enormously, to the point where
one could argue that any attacker with such capabilities should
just ram another car into it’s victim to get the same results with
way less effort.

IT-security often becomes an arms race, as researchers have
already tested attacks through adversarial examples, that trick
both camera and LiDAR [4]. This should beat any MSF that
cross-validates, as none of it’s sensors will detect the object.
Researchers in [2] cites exactly adversarial examples as a
weakness, and though this attack appears to have had huge
knowledge and capability requirements to create, the finished
3D model could theoretically be sold on a black market for
very little. This would quickly lower the availability of the
attack to anyone with a 3D printer.

It is clear that an attack like above certainly complicates
things, and it won’t be the last to do so. Though the complexity
of the topic might seem disheartening, we have no doubts that
further research will help increasing safety, to a point where
it’s safe enough. Together, researchers will have to come up
with a definition of what ’safe enough’ even means, and only
the future can tell whether or not it will ever be completely
safe.

V. FUTURE WORK

Considering the already mentioned importance of safety and
security, it will be necessary for the automobile industry to
adopt some sort of safety standards for the AVs perception
models, just as you would consider standards for seat belts. As
the topic we are trying to concretize are quite more complex
than seatbelts, there is a dire need for a solid test environment.
E.g. it needs to be measurable for how many frames an AE
actually tricks a camera, and whether or not angle has any
influence.

In the future, we would like to test a framework which could
help define these standards. The idea would be to not require
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Fig. 3: Overview of the suggested pipeline for the data [20].

a hundred thousand dollar AV just for testing. Instead we will
build a model of an AV. One such test-setup could potentially
be done with the following components:

• Leo Rover Developer Kit 2, to have something driveable
to mount the sensors on

• A sufficiently high resolution camera
• A LiDAR sensor
• Signal processing and computational hardware
Our suggested pipeline of the data follows that of [20] and

considers the processing tasks as follows: First camera video
frames and the depth channel information from the LiDAR
are sent to a Deep Neural Network (DNN) to do the object
detection and road segmentation, since DNNs such as a Fully
Convolutional Network (FCN) have shown better accuracy for
computer vision tasks compared to ML [20].

The second step is to overlaying the point cloud from the
LiDAR with the fused data, before feeding the output to the
control layer of the AV. The entire pipeline of the data can be
seen in Fig. 3. This would set a foundation for testing possible
attacks to see if the AV drives as expected or deviates.

VI. CONCLUSION

We are moving towards a future, where we will soon see
driverless cars available to the common consumer. It is neces-
sary to secure the safety and well-being of the consumers, as
well as earn their trust. To do this, the AVs need to outperform
human driving, which first and foremost require that the car
can build a reliable model of it’s surrounding, before the higher
level algorithms can navigate them. This requires sensor data
that are valid and sensors resistant to attacks, so adversaries
cannot manipulate them to cause accidents. We have given our
resume of the literature concerning attacks on cameras and
LiDAR, two major factors in the current perception models,
and also the two sensors most often combined together in
multi sensor fusion. We have discussed these and their coun-
termeasures in depth, before reviewing them in the context of
multi-sensor fusion.

We have opened a discussion into attack complexity and
suggested a framework to review them in, in order to better
grasp the challenging factors of this issue. It is clear that more
countermeasures are needed, however advancements in MSF
are looking very promising, and some of the state-of-the-art
solutions will be a huge leap in making attacks too complex
to be feasible. It is still important to keep in mind that since
everyone, including heads-of-state, will be driving around in
these cars, complexity alone cannot be seen as a sufficient.
Solid standards need to be adopted.
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