

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2024

Fast Decoding of AG Codes

Beelen, Peter; Rosenkilde, Johan; Solomatov, Grigory

Published in:
IEEE Transactions on Information Theory

Link to article, DOI:
10.1109/TIT.2022.3188843

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Beelen, P., Rosenkilde, J., & Solomatov, G. (2022). Fast Decoding of AG Codes. IEEE Transactions on
Information Theory, 68(11), 7215-7232. https://doi.org/10.1109/TIT.2022.3188843

https://doi.org/10.1109/TIT.2022.3188843
https://orbit.dtu.dk/en/publications/424ad153-626f-4bc6-9061-3938abe50631
https://doi.org/10.1109/TIT.2022.3188843

1

Fast Decoding of AG Codes
Peter Beelen, Johan Rosenkilde, and Grigory Solomatov

Abstract—We present an efficient list decoding algorithm in the
style of Guruswami-Sudan for algebraic geometry codes. Our
decoder can decode any such code using Õps`ωµω´1

pn ` gqq
operations in the underlying finite field, where n is the code
length, g is the genus of the function field used to construct the
code, s is the multiplicity parameter, ` is the designed list size and
µ is the smallest positive element in the Weierstrass semigroup
at some chosen place; the “soft-O” notation Õp¨q is similar
to the “big-O” notation Op¨q, but ignores logarithmic factors.
For the interpolation step, which constitutes the computational
bottleneck of our approach, we use known algorithms for
univariate polynomial matrices, while the root-finding step is
solved using existing algorithms for root-finding over univariate
power series.

Index Terms—Algebraic Geometry Codes

I. INTRODUCTION

Containing some of the best error-correcting codes currently
known, algebraic geometry (AG) codes have received a lot
of attention since their introduction by Goppa in [15]. The
celebrated Guruswami-Sudan decoder [16] for these codes
relies on an interpolation step as well as a root-finding step
and is capable of decoding beyond half the designed minimum
distance by returning a list of all codewords within a certain
Hamming distance τ from the received word. In this article, we
present an efficient realization of this decoder, achieving the
best known complexity in the fully general setting of arbitrary
AG codes. Moreover, except for the particularly simple case
of Reed-Solomon codes, our decoder is at least as fast as all
existing decoders which are tailored for specific families of
codes. This article is based on a chapter of the PhD thesis of
the third author [42].

Following the common practice, we will measure algorith-
mic complexity by asymptotically upper-bounding the number
of arithmetic operations in the underlying finite field Fq ,
relying on the big-O notation Op¨q as well as the soft-O
notation Õp¨q, which ignores logarithmic factors. Formally,
Õphq “

Ť8

j“0 Oph logphqjq for any function h : Rě0 Ñ Rě0,
where Rě0 denotes the set of non-negative real numbers.
Analogously to Rě0, we will also write Zě0 and Zą0 for

Peter Beelen is with the Department of Applied Mathematics and Computer
Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
(e-mail: pabe@dtu.dk).

Johan Rosenkilde was with the Department of Applied Mathematics and
Computer Science, Technical University of Denmark (DTU), 2800 Kongens
Lyngby, Denmark. He is now with GitHub Inc., San Francisco, CA 94107
USA (email: jsrn@jsrn.dk).

Grigory Solomatov was with the Department of Applied Mathematics
and Computer Science, Technical University of Denmark (DTU), 2800
Kongens Lyngby, Denmark. He is now with Department Electrical Engi-
neering - Systems, Tel Aviv University, 6997801 Tel Aviv, Israel (email:
grigory93@gmail.com).

The authors would like to acknowledge the support from The Danish
Council for Independent Research (DFF-FNU) for the project Correcting on
a Curve, Grant No. 8021-00030B.

the non-negative and the positive integers respectively. Our
complexity estimates will also involve ω, which denotes some
real number such that the product of any two matrices in
Fmˆmq can be computed using Opmωq operations in Fq . The
naive algorithm for matrix multiplication yields ω “ 3, and
it is clear that ω ě 2 in general; the current record with
ω ă 2.37286 is due to [2].

Our decoder has the complexity Õp`ω`1µω´1pn ` gqq,
however, in a series of remarks throughout the article we
explain how it can be slightly improved to Õps`ωµω´1pn`gqq;
here n is the code length, g is the genus of the function
field used to construct the code, ` is the designed list size,
s ď ` is the multiplicity, and µ is the smallest element in the
Weierstrass semigroup of some rational place P8 which is not
one of the evaluation places. As we will see in Section II-B,
the existence of such P8 can be assumed without any loss of
generality.

A. Related work
As mentioned earlier, the paradigm of Guruswami-Sudan

list decoding revolves around two main steps: interpolation
and root-finding. As former is generally more computationally
demanding, it has historically received the most attention. Sev-
eral authors, including [1], [10], [27], [33], [34], formulated
the interpolation step as a problem of finding a polynomial,
minimal with respect to a weighted monomial order, in a
certain vanishing ideal. Prompted by this, Lee and O’Sullivan
developed a technique for obtaining such a polynomial from
a Gröbner basis (of Fqrxs-modules), that was itself com-
puted starting from a particular generating set – first for RS
codes [25], and then for one-point Hermitian codes [26]. The
complexity of this strategy was further improved by Beelen
and Brander in [4] by utilizing Alekhnovich’s algorithm for
row reduction of polynomial matrices [1]. Furthermore, their
decoder was applicable to the wider family of one-point codes
over Cab curves, making it more general. Specializing back to
one-point Hermitian codes, Rosenkilde and Beelen [32] sped
up this approach even more by delegating the row-reduction
phase to the algorithm by Giorgi, Jeannerod and Villard [13],
which is more efficient than the one by Alekhnovich. Doing
this required additional improvements to keep up with the
new target complexity, including efficient computation of the
initial Fqrxs-basis, as well as a way of handling fractional
weights. The result was the first list-decoder of one-point
Hermitian codes having sub-quadratic complexity in the code
length. In the current article, we generalize the tools from [32]
to be applicable to all AG codes, relying on the conceptual
framework from [24] to represent function field elements using
Apéry systems.

Before shifting our attention to the root-finding step, we
ought to mention the multivariate interpolation algorithm by

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Chowdhury, Jeannerod, Neiger, Schost and Villard [9] – it
was the first to enable the currently best complexity in the
special case of RS codes, albeit in a probabilistic manner. A
deterministic algorithm with the same complexity was later
given in [21].

Some of the earliest root-finding algorithms for Guruswami-
Sudan list-decoding include Roth and Ruckenstein’s [36] as
well as Gao and Shokrollahi’s [12]. Alekhnovich described
in [1] an efficient approach for computing the Fqrrxss-roots
modulo xβ of a polynomial Q P Fqrrxssrzs; its complexity was
shown in [32] to be Õpβ2`q operations in Fq , where ` is the
z-degree of Q. Another technique by Berthomieu, Lecerf and
Quintin [7] achieved the cost Õpβ`2q. In this article, we rely on
the algorithm by Neiger, Rosenkilde and Schost [29], whose
complexity of Õpβ`q operations is provably quasi-optimal.

The complexity of our decoder is at least as good as,
and often faster than, the complexity of previous decoders
based on the Guruswami-Sudan paradigm. As far as we know,
there is only one exception: in the case of RS codes, the
complexity of the algorithms from [9] or [21] is a factor
of `{s better. To illustrate the strength and versatility of our
results, in Section VI, examples are given of the list decoding
of various families of AG codes. One further remark should be
made, namely the case of bounded distance decoding. Setting
s “ ` “ 1 and assuming that g P Opnq, the complexity our
decoder simplifies to Õpµω´1nq. In this case, the decoder can
always correct up to pd˚ ´ 1´ gq{2 errors, where d˚ denotes
the designed minimum distance of an AG code, also known
as the Goppa bound. The same decoding radius is achieved
in [38] with complexity Opµn2q. Since µ ď g and we as-
sumed g P Opnq, our complexity is better. However, Sakata’s
extension of the Berlekamp-Massey decoder [37], [39] yields
a decoding algorithm able to correct up to at least pd˚´ 1q{2
errors. In [18], the complexity in the case of certain so-called
one-point AG codes is Opµn2 ` qt`1pa1 ` ¨ ¨ ¨ ` atq ` tnq

tq,
where a1, . . . , at form a minimal set of generators of the
Weierstrass semigroup at P8. To achieve the same decoding
radius with our decoder, we could choose s and ` in Opgq,
but doing so might not be as efficient, since our complexity
would then increase by a factor of Opgω`1q Ď Opnω`1q.

B. Strategy outline and contributions

With the aim of making the exposition easier in the sub-
sequent sections of the article, we now present an overview
of the main steps in the proposed decoder. This consists of
a way of simplifying the general setting as well as a way of
efficiently carrying out the classical steps of interpolation and
root-finding. The complete decoder is presented in Section VI,
where it is also exemplified for special cases of AG codes.
‚ Simplified setting: In Section II-B, we show how ex-

tending the constant field Fq allows us to make certain
simplifying assumptions. The important takeaway here
is that no generality is sacrificed in the process, while
only a minor penalty is introduced into the computational
complexity. In return, we may assume existence of certain
rational places, as well as existence of a special function
field element x with controlled zeroes and poles. Having

access to additional rational places is useful for a variety
of reasons, among which is efficient multiplication of
function field elements in a pointwise manner; the care-
fully chosen function x acts as a fundamental building
block in the way we represent function field elements.

‚ Interpolation step: This is the most involved part of
the article and requires all of the computational tools
from Section V – except for Section V-F, which deals
with root-finding. In Section IV-A, it is explained how
the interpolation step can be viewed as a problem of
finding a “small” element Q in a certain interpolation
module whose underlying ring consists of all functions
that have no poles except for possibly at a fixed rational
place P8. This ring, denoted by Я, is itself a free
module over Fqrxs, which essentially means that we can
represent everything as tuples of univariate polynomials.
The computational path for obtaining Q boils down to
first constructing a generating set of the interpolation
module over Я, then expanding this to a generating set
over Fqrxs, and finally, using efficient algorithms for
matrices over Fqrxs to reduce this generating set to a
“small” basis that contains a satisfactory Q.

‚ Root-finding step: Structurally, the obtained Q is a
univariate polynomial whose coefficients are function
field elements; and according to the Guruswami-Sudan
paradigm, list decoding reduces to finding the roots of
this polynomial. We accomplish this by expressing the
coefficients of Q as power series in x, which is always
possible in our simplified setting in which x is a local
parameter of some appropriate rational place. An existing
algorithm for root-finding over the ring of power-series
is then used to obtain the sought roots, albeit represented
as power series; the final step of our decoder therefore
consists of converting these roots back to the original rep-
resentation as well as discarding any potential “spurious”
solutions. All of this is detailed in Section V-F.

Our decoder relies on a mixture of new and existing results;
the novel contributions include:

‚ reduction of the fully general setting to a simpler one
(Section II-B),

‚ an algorithm for encoding general AG codes with com-
plexity Õpµnq (Section V-A),

‚ an interpolation algorithm with complexity Õpµω´1pn`
gqq (Section V-B),

‚ a root-finding algorithm with complexity Õp`2µω´1pn`
gqq (Section V-F),

‚ an algorithm for computing an Fqrxs-basis of xhyЯ for
any function h (Section V-D).

Not counting precomputation, all of the algorithms above are
sufficiently efficient to reach our target cost. Although the cost
of precomputation has not been investigated in detail, it is not
expected to be much more expensive than that of Gaussian
elimination. A list of all precomputed objects can be found in
Section VI.

Page 2 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

II. PRELIMINARIES

A. AG codes

Let Fq be a finite field with q elements, where q is a power
of a prime number p. Further, let F be a function field of
genus g and full constant field Fq . As is common, we denote
by PF the set of places of F .

For any divisor A “
ř

i niQi of F , we denote by supppAq
the support of A, which consists of all places Qi such that
ni ‰ 0. A divisor A is called effective, denoted by A ě 0, if
for all i it holds ni ě 0. Further, the degree of A, is defined as
degpAq “

ř

i ni degpQiq, where degpQiq denotes the degree
of the place Qi.

The well-known Riemann-Roch space of a divisor A is
given by

LpAq “ tf P F zt0u | pfq `A ě 0u Y t0u ,

where pfq denotes the divisor of f . The Riemann-Roch space
LpAq is a vector space over Fq , whose dimension will be
denoted by lpAq. The theorem of Riemann-Roch [43, Theorem
1.5.15] implies that lpAq ě degpAq ` 1´ g and that equality
holds if degpAq ě 2g ´ 1. Moreover lpAq “ 0 if degpAq ă 0
since the degree of a principal divisor is zero.

Definition II.1. Assume that F has at least n rational places,
say P1, . . . , Pn and write D “ P1 ` ¨ ¨ ¨ ` Pn. Further, let G
be a divisor of F such that supppGq X supppDq “ H1. Then
we define

CLpD,Gq “ tevDpfq | f P LpGqu Ă Fnq ,

where for any f P LpGq, evDpfq “ pfpP1q, . . . , fpPnqq P Fnq .

For future reference, we state some properties of this code,
see [43, Chapter 2] for details. First of all, it is well-known that
this code has minimum distance at least n´degpGq. Since the
kernel of evD is LpG´Dq, the dimension of the code equals
lpGq ´ lpG´Dq. In particular, CLpD,Gq is the zero code if
degpGq ă 0. Further, using the theorem of Riemann-Roch, we
see that dimpCLpD,Gqq “ n, i.e. CLpD,Gq “ Fnq , whenever
degpGq ě n` 2g ´ 1. Because of this, we may assume

0 ď degpGq ď n` 2g ´ 1. (II.1)

Remark II.2. In his original construction, Goppa considered
AG codes CΩpD,Gq defined using residues of certain differ-
entials. These codes can also be obtained as evaluation codes
[43, Proposition 2.2.10]. Hence our decoder can also handle
codes of the form CΩpD,Gq.

B. Reduction to a simpler setting

In this subsection, we will show that without significant
increase of decoding complexity, we can assume several things
about the function field F and the AG code CLpD,Gq that will
make the exposition of our decoding algorithm simpler later
on. For example, it will be convenient to have an additional
rational place P8 of F that is not used in the evaluation

1The assumption that supppGq X supppDq “ H can be removed [43,
Remark 2.2.15], but doing so does not give new AG codes up to monomial
equivalence.

map evD. In fact, for some of our later algorithms, it will
be convenient to have additional rational places as well. An
easy way out is to increase the constant field Fq to Fqe for
some small value of e, thus introducing new rational places
that can be used as additional rational places. We will denote
by FFqe , the function field obtained from F by extending the
constant field to Fqe .

As far as decoding is concerned, the AG code CLpD,Gq
is in a trivial way a subcode (not Fqe -linear, but Fq-linear)
of the AG code obtained from the function field FFqe using
the divisors ConpDq and ConpGq, where Con denotes the
conorm with respect to FFqe{F , [43, Definition 3.1.8]. Since
all places in supppDq are rational, we may with slight abuse of
notation write ConpDq “ D. Hence if for a given τ , one has a
list decoding algorithm for CLpD,ConpGqq that produces all
codewords at distance at most τ from a received word, one
immediately obtains a list decoding algorithm for CLpD,Gq.
However, since multiplication of two elements in Fqe can be
done in Õpeq operations in Fq [8], the value of e should be
small for complexity reasons. Therefore we now give a series
of lemmas, each aiming to show that for small e, simplifying
assumptions can be made about the function field F and the
code CLpD,Gq.

Lemma II.3. Let F be a function field over Fq of genus
g and denote by Ne the number of rational places of the
function field FFqe over Fqe . If N, e P Zą0 are such that
e ě 2 logq maxtN, 2g ` 1u, then Ne ą N .

Proof. The Hasse-Weil bound |pqe`1q´Ne| ď 2qe{2g implies
that

logq Ne ą logqpq
e ´ 2qe{2gq

“ e{2` logqpq
e{2 ´ 2gq

ě e{2 ě logq N .

Now we show that if the function field F has sufficiently
many rational places, then one of them has particularly simple
local parameter. Recall that a function f P F is called a local
parameter for a place P if vP pfq “ 1, where vP denotes the
valuation at P .

Lemma II.4. Let F be a function field over Fq of genus g hav-
ing a rational place P8. Let µ be the smallest positive element
from the Weierstrass semigroup of P8. Any set containing at
least 3g`1 rational places distinct from P8, contains a place
P0 with local parameter from LpµP8q.

Proof. Let x P LpµP8q be a function satisfying vP8
pxq “

´µ. First of all, note that the extension F {Fqpxq is separable.
Indeed, assume that F {Fqpxq is inseparable. Then by the
general theory of inseparable extensions, we can find an
intermediate field E such that E{Fqpxq is separable and
F {E is purely inseparable. Then by [43, Proposition 3.10.2],
Fqpxq Ď F p “ tfp | f P F u, where p is the characteristic.
Hence x “ yp for some y P F. Since x has a pole at P8 only
of order µ, this would imply that the function y also has a
pole at P8 only of order µ{p. This gives a contradiction with
the minimality of µ.

Page 3 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

The above implies that the Hurwitz genus formula (see
for example [43, Corollary 3.4.14]) applies to the extension
F {Fqpxq. To prove the lemma, we estimate the genus of F
using this formula. We write Q8 “ P8 X Fqpxq, which is
the place at infinity of the rational function field Fqpxq. Since
vP8

pxq “ ´µ and vQ8
pxq “ ´1, we see that epP8|Q8q “ µ.

Now suppose we have N ą 3g rational places distinct from
P8, say P1, . . . , PN . We write Qi “ Pi X Fqpxq for their
restrictions to Fqpxq. For these rational places, we have

vPipx´ xpPiqq “ epPi|QiqvQipx´ xpPiqq “ epPi|Qiq.

Suppose that for every rational place Pi it holds that
epPi|Qiq ě 2.

Since µ “ rF : Fqpxqs by [43, Theorem 1.4.11], the Hur-
witz genus formula combined with the estimate dpPi|Qiq ě
epPi|Qiq ´ 1 implies that

2g ´ 2 ě ´2rF : Fqpxqs ` dpP8|Q8q `
N
ÿ

i“1

dpPi|Qiq

ě ´2µ` pµ´ 1q `Np2´ 1q .

Since µ ď g ` 1, we conclude that N ď 3g, a contradiction.
Hence for one of the places P1, . . . , PN we have vPipx ´
xpPiqq “ 1.

To motivate Lemma II.4, recall from Lemma II.3 that by
extending our base field Fq to Fqe , we can easily “create” as
many new rational places as we need without compromising
our target complexity. By doing this, we can ensure that
there exists a function x P LpµP8q which is also a local
parameter of some rational place P0 not in supppGq. As we
will see in Section V, membership of x P LpµP8q allows
us to impose an Fqrxs-module structure on the interpolation
step of Guruswami-Sudan decoding. In Section V we will use
the assumption that x is a local parameter of P0 to represent
certain functions in F as power series in Fqrrxss, which allows
us to solve the root-finding step efficiently.

Next we consider a lemma showing that we can assume
that the divisor G used to define the AG code CLpD,Gq is
effective unless the code is degenerate. We call a code C
degenerate if there exists i such that ci “ 0 for any codeword
c “ pc1, . . . , cnq P C. In particular the trivial code containing
only the zero codeword is degenerate.

Lemma II.5. Let the function field F and divisors G and D be
as before. Then either, the AG code CLpD,Gq is degenerate
or CLpD,ConpGqq is monomially equivalent over Fqe with
e ě 1` rlogqpnqs, to an AG code CLpD,G1q, where G1 is an
effective divisor of FFqe of degree degpGq.

Proof. Consider the finite field extension Fqe{Fq and for
convenience, let us write C “ CLpD,ConpGqq as well as
Ci “ tc P C | ci “ 0u. If CLpD,Gq is nondegenerate, then
so is C. In this case C ‰ Ci for all i. If every codeword in
C has at least one zero coordinate, then C “

Ťn
i“1 Ci, which

implies that pqeqk ď npqeqk´1 with k “ dim C. We see that
in this case qe ď n, implying e ď logqpnq. This contradiction
shows that C contains a codeword of full Hamming weight
n, say c “ evDpf̃q for some f̃ P LpConpGqq. Since by

construction f̃pPiq ‰ 0 for all i, we see that the codes C
and CLpD,ConpGq ` pf̃qq are monomially equivalent using
the map pc1, . . . , cnq ÞÑ pf̃pP1qc1, . . . , f̃pPnqcnq. Note that
the divisor G1 “ ConpGq ` pf̃q is effective and has support
disjoint from D.

Degenerate codes are not very interesting from the error-
correcting point of view. Indeed, if the i-th coordinate of
all codewords is zero, it is trivial to correct errors in that
position. On the other hand that position does not carry any
information, so one might as well consider the punctured
code where such a position has been removed, which will
have the same dimension and minimum distance. Decoding
a degenerate code can therefore be reduced using puncturing
to decoding a nondegenerate code. Note that since the codes
CLpD,ConpGqq and CLpD,G1q are monomially equivalent,
any (list) decoding algorithm for CLpD,G1q immediately gives
a (list) decoding algorithm for CLpD,ConpGqq. The added
complexity is that of dividing and multiplying with the column
multipliers f̃pPiq, which only costs Opnq operations in Fqe
and hence Õpneq operations in Fq . Moreover, as we will see,
we will be able to choose e so small that it will not affect the
decoding complexity at all in the Õ notation.

Now we state the simplifying assumptions and notation that
will be used in the remainder of this article.

1) We assume that G is an effective divisor, whose degree
satisfies equation (II.1).

2) We assume that apart from the rational places in D “

P1`¨ ¨ ¨`Pn, the function field F has at least one more
rational place P8. The place P8 may or may not be in
supppGq.

3) There exists a rational place P0 of F which has x as a
local parameter, where x P F is a function with pole at
P8 only of minimal pole order µ. The place P0 may be
in supppDq, but is not in supppGq.

Let us quickly assess the size of the needed extension
degree e in order to satisfy all three item simultaneously.
Although one likely can do better, for our purposes it is
sufficient to pick e “ e1e2e3, where e1, e2, e3 are given
below: to satisfy the first item, we extend Fq to Fqe1 , where
e1 “ 1 ` rlogqpnqs, using Lemma II.5. To satisfy the second
item, we apply Lemma II.3 with N “ n ` 1. Hence we
can choose e2 “ r2 logqe1 maxtn ` 1, 2g ` 1us and extend
Fqe1 to Fqe1e2 . For the third item, we need apart from P8
and possible rational places in supppGq, an additional 3g` 1
rational places. Since G is effective, we can apply Lemma II.3
with N “ 1` degpGq ` 3g ` 1, so using equation (II.1), we
can choose e3 “ r2 logqe1e2 p5g ` 1` nqs extending Fqe1e2 to
Fqe . Using that logqf pAq “ logqpAq{f , it is easy to see that

e “ e1e2e3

ď 2 logqp5g ` 1` nq ` e1e2

ď 2 logqp5g ` 1` nq ` 2 logq maxtn` 1, 2g ` 1u ` e1

ď 2 logqp5g ` 1` nq ` 2 logq maxtn` 1, 2g ` 1u

` logqpnq ` 2.

Page 4 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Hence the overall conclusion is that in terms of complexity
only a logarithmic factor in n`g is introduced when reducing
from the general case to the simpler setting. In the remainder
of this article, instead of writing Fqe , we will simply write
Fq and assume q is large enough so that all three simplifying
assumptions stated above are satisfied.

C. Shifted Popov forms of polynomial matrices

Our decoder relies on efficient algorithms for (free) Fqrxs-
submodules of Fqrxsm; in the current subsection, we present
well known results and definitions that we need needed for
our use cases. For a comprehensive introduction, the reader is
referred to [44] and the references within.

We begin with a definition which, among other things,
allows us to measure “size” of elements in Fqrxsm.

Definition II.6. For any polynomial vector v “ pv1, . . . , vmq
P Fqrxsm and any s “ ps1, . . . , smq P Zm (which we refer to
as a shift), we define the s-degree of v as

degs v “ max
k
tdeg vk ` sku .

Furthermore, if k P t1, . . . ,mu is maximal such that deg vk`
sk “ degs v, then we say that vk is the s-pivot of v, and k
is its s-pivot index. If s “ 0, then we might omit writing s
in the above notation, i.e. we might simply write: pivot, pivot
index and degree, denoting the latter by deg v :“ deg0 v.

Any Fqrxs-basis of a submodule V Ď Fqrxsm of rank m
can be described using a nonsingular polynomial matrix V P

Fqrxsmˆm by identifying the basis elements with the rows of
V . This way, V is viewed as the Fqrxs-row space of V . We
will be interested in obtaining the basis whose elements are
“smallest possible”; the following definition makes this notion
precise in the context of polynomial matrices.

Definition II.7. Given a shift s P Zm, a nonsingular matrix
P P Fqrxsmˆm is said to be in s-Popov form if all of the
s-pivots of its rows lie on the diagonal, are monic and have
degrees strictly greater than all other entries in their respective
columns. Furthermore, if P shares its Fqrxs-row space with
some matrix V P Fqrxsrˆm, where m ď r, then P is said to
be the s-Popov form of V .

Below, we summarize a few important structural properties
of shifted Popov forms.

Proposition II.8 ([44, Section 1.1]). For any nonsingular
matrix V P Fqrxsmˆm and any shift s P Zm, there exists
a unique matrix P P Fqrxsmˆm in s-Popov form having
the same Fqrxs-row space as V . Furthermore, P has min-
imal shifted row degrees in the following sense: for any
V P Fqrxsmˆm with the same row space as P , there exists
a bijection between the rows of the two matrices such that
the s-degree of any row of V is no smaller than that of
the corresponding row of P . Finally, for any nonzero vector
v P Fqrxs1ˆm in the row space of P with s-pivot index k it
holds that degs v ě degs p

pkq, where ppkq denotes the k-th
row of P .

We conclude this subsection with a few complexity bounds.

Proposition II.9 ([30, Theorem 1.3]). There is a deterministic
algorithm which for any shift s P Zm computes the s-
Popov form of any nonsingular matrix V P Fqrxsmˆm using
Õpmω degV q operations in Fq , where degV denotes the
maximal degree among all entries in V .

Proposition II.10 ([46]). There is a deterministic algorithm
which for any matrix V P Fqrxsrˆm with m ď r computes
an Fqrxs-basis of the row space of V using Õprmω´1 degV q
operations in Fq .

Combining Proposition II.10 with Proposition II.9, we ob-
tain the following:

Corollary II.11. For any shift s P Zm and any matrix V P

Fqrxsrˆm with rank m ď r, we can compute the s-Popov
form of V using Õprmω´1 degV q operations in Fq .

III. REPRESENTATION OF FUNCTION FIELD ELEMENTS

For any divisor A of F , let ЯpAq “
Ť8

m“´8 LpmP8`Aq
and let Я “ Яp0q. Note that Я is a ring and ЯpAq a Я-
module. In fact more can be said: Я is a Dedekind domain
and ЯpAq is a fractional ideal of Я, [31, Section 1.2].

Modules of the form ЯpAq are essentially already consid-
ered for decoding in [23], also see [5], [24]. As in [24], for any
nonzero a P ЯpAq we denote by δApaq the smallest integer m
such that a P LpmP8 `Aq, i.e. δApaq “ ´vP8

paq ´ vP8
pAq

and let δpaq “ δ0paq “ ´vP8
paq. We will take as convention

that δAp0q “ ´8. Note that for any a P ЯpAq and b P ЯpBq,
one has δA`Bpabq “ δApaq ` δBpbq.

It is well known that any fractional ideal of a Dedekind
domain can be generated by at most two elements [11,
Corollary 2 to Theorem 4], but for our purposes we need to
know some properties of these generators.

Lemma III.1. Let A “
řt
i“1 niQi be a divisor of F and

write a “
ř

i degQi. Then ЯpAq can be generated as a Я-
module by two elements a1 and a2 satisfying δApa1q ď 2g ´
1´ degpAq ` a and δApa2q ď 4g ´ 2´ degpAq ` a.

Proof. Prime ideals of Я correspond exactly to places of
F distinct from P8. Therefore, from the proof of Corol-
lary 2 to Theorem 4 in [11], we see that two elements
a1, a2 P ЯpAq generate ЯpAq as Я-module if and only if
for all places Qi P supppAq distinct from P8, we have
mintvQipa1q, vQipa2qu “ ´ni and for any other place
Q ‰ P8 of F we have mintvQpa1q, vQpa2qu “ 0. We will
construct two such elements.

Write m1 “ 2g´ 1´ degpAq` a. For j “ 1, . . . , t, choose
a
pjq
1 P LpA ´

ř

i‰j Qi ` m1P8qzLpA ´
ř

iQi ` m1P8q.
Note that such apjq1 exist, since by the Riemann-Roch theorem,
lpA´

ř

i‰j Qi `m1P8q ą lpA´
ř

iQi `m1P8q. Defining
a1 “

řt
j“1 a

pjq
1 , we see that vQipa1q “ ´ni for j “ 1, . . . , t,

while vQpa1q ě 0 for any other place Q distinct from P8. In
particular a1 P LpA`m1P8q, whence δApa1q ď m1.

Now suppose that Qt`1, . . . , Qt`s are the zeroes of a1 not
in supppAq Y tP8u. Since a1 P LpA `m1P8q, we see that
řt`s
i“t`1 degpQiq ď degpAq ` m1. Now define m2 “ 2g ´

1 `m1 “ 4g ´ 2 ´ degpAq ` a. Similarly as above, we can

Page 5 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

construct a2 P LpA ` m2P8q, such that vQipa2q “ 0 for
i “ t ` 1, . . . , t ` s. By construction δApa2q ď m2. For i “
1, . . . , t, we have vQipa2q ě ´ni and vQipa1q “ ´ni, whence
mintvQipa1q, vQipa2qu “ ´ni. If Q R supppAqYtP8u is not
a zero of a1, then mintvQpa1q, vQpa2qu “ 0, since vQpa2q ě

0. If Q R supppAqYtP8u is a zero of a1, then vQpa2q “ 0, so
that also in this case mintvQpa1q, vQpa2qu “ 0. Hence a1 and
a2 as constructed above, generated ЯpAq as a Я-module.

As x P ЯzFq , we can also view ЯpAq as a free Fqrxs-
module. Following [24], we consider a special set of generators
of ЯpAq as Fqrxs-module, which they called the Apéry system
of ЯpAq.

Definition III.2. For any divisor A let ypAqi P Ai be such that
δApy

pAq
i q ď δApaq for all a P Ai, where i “ 0, . . . , µ´ 1 and

Ai “ ta P ЯpAq | δApaq ” i mod µu .

We also define yi “ y
p0q
i .

Lemma III.3. For any divisor A it holds that

1) ypAq0 , . . . , y
pAq
µ´1 is an Fqrxs-basis of ЯpAq and

2) ´degA ď δApy
pAq
i q ď 2g ´ 1 ´ degpAq ` µ for i “

0, . . . , µ´ 1.

Proof. The first statement is from [24]. For the convenience of
the reader we give a proof. From the strict triangle inequality
for vP8

, it is clear that the elements ypAq0 , . . . , y
pAq
µ´1 are linearly

independent over Fqrxs. Also, it is clear that Y Ď ЯpAq, where
Y “ xy

pAq
0 , . . . , y

pAq
µ´1yFqrxs. If Y ‰ ЯpAq, then there would

exist a P ЯpAqzY , such that δApaq ą ´8 is minimal. Write
δApaq “ mµ`r and δApy

pAq
r q “ m1µ`r, where m,m1, r P Z

with 0 ď r ă µ. Note that m1 ď m by definition of ypAqr . Since

δApx
m´m1

ypAqr q “ δpxm´m
1

q ` δApy
pAq
r q

“ pm´m1qµ` pm1µ` rq “ δApaq ,

there exists a constant β P Fq such that δApcq ă δApaq,
where c “ a ´ βxm´m

1

y
pAq
r P ЯpAq. The minimality of

δApaq guarantees that c P Y , however, this would imply that
a “ c ` βxm´m

1

y
pAq
r P Y . Hence Y “ ЯpAq, which is a

contradiction.
In the second statement, the lower bound simply follows

from the fact that ypAqi P LpδApypAqi qP8 `Aq ‰ t0u. For the
upper bound it is sufficient to show that for every integer m ą

2g´1´degpAq there exists an a P ЯpAq with δApaq “ m. But
indeed, if m ą 2g´1´degpAq, then degpmP8`Aq ą 2g´1,
and so [43, Theorem 1.5.17] implies that

LpmP8 `Aq ‰ L
`

pm´ 1qP8 `A
˘

,

which concludes the proof.

For later use, we also state the following lemma.

Lemma III.4. If a “
řµ´1
i“0 aiy

pAq
i P ЯpAq, where ai P Fqrxs

and A is a divisor, then

deg ai ď
1

µ
pδApaq ´ δApy

pAq
i qq ď

1

µ
pδApaq ` degAq .

Proof. Simply observe that for i “ 0, . . . , µ´ 1 it holds that

δApaq “ max
j
δApajy

pAq
j q ě δpaiq`δApy

pAq
i q ě δpaiq´degA ,

where the equality follows from the strict triangle inequality
for vP8

and second inequality is given by Lemma III.3. But
then

deg ai “ δpaiq{µ ď
1

µ
pδApaq ´ δApy

pAq
i qq

ď
1

µ
pδApaq ` degAq .

IV. GURUSWAMI-SUDAN DECODING

In this section, we paraphrase the Guruswami-Sudan list
decoding algorithm [17] for CLpD,Gq and formulate it in
terms of Я modules. For the remainder of this paper fix
s, ` P Zą0, s ď `, where s is the multiplicity parameter and
` the designed list size of the Guruswami-Sudan list decoder.
The corresponding list decoding radius will be denoted by τ .

Definition IV.1. Let P be a rational place of F , r P Fq and
Q P F rzs. We will say that “Q has a root of multiplicity s at
pP, rq” if for any local parameter φ of P , there exist ca,b P Fq
such that

Q “
ÿ

a,bě0
a`běs

ca,bφ
apz ´ rqb

with ca,s´a ‰ 0 for at least one 0 ď a ď s.

A consequence of this definition is the following:

Lemma IV.2. If Q P F rzs has a root of multiplicity s at pP, rq
and f P F is such that fpP q “ r, then vP pQpfqq ě s.

Proof. Writing

Qpfq “
ÿ

a,bě0
a`běs

ca,bφ
apf ´ rqb ,

where φ is any local parameter of P and ca,b P Fq , the triangle
inequality directly implies that

vP pQpfqq ě min
a,bě0
a`běs

`

vP pφ
aq ` vP ppf ´ rq

bq
˘

ě min
a,bě0
a`běs

pa` bq

ě s .

For any Q “
ř`
t“0 z

tQptq with Qptq P Яp´tGq we define
δGpQq “ maxt δ´tGpQ

ptqq. Moreover, for a given received
word r “ pr1, . . . , rnq P Fnq , we write

Ms,`pD,Gq “ tQ “
ÿ̀

t“0

ztQptq P F rzs | Qptq P Яp´tGq,

Q has a root of multiplicity at least s at pPj , rjq for all ju.
(IV.1)

Theorem IV.3 (Special case of Guruswami–Sudan [17]). Let r
be a received word and Q PMs,`pD,Gq with δGpQq ă spn´

Page 6 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

τq. If f P LpGq such that the Hamming weight of r´ evDpfq
is at most τ , then Qpfq “ 0.

Proof. Since f t P LptGq and Qptq P Яp´tGq, then f tQptq P
Я, and consequently Qpfq P Я. Furthermore, since δtGpf tq ď
0, then by the triangle inequality

δpQpfqq ď max
t
δ´tGpQ

ptqq “ δGpQq .

We write E “ tj | rj ‰ fpPjqu. Note that the cardinality of
E is at most τ . Since fpPjq “ rj for j R E , it follows from
Lemma IV.2 that Qpfq P Яp´T q, where T “ s

ř

jRE Pj .
Since δGpQq ă spn´ τq ď deg T , we may conclude that

Qpfq P L
`

δGpQqP8 ´ T
˘

“ t0u .

A. Structure of Ms,`pD,Gq as a Я-module

The set Ms,`pD,Gq introduced in equation (IV.1) is easily
seen to be a module over the ring Я. In this subsection, we
determine some of its structural properties. For the remainder
of this article let Gt “ ´tG´maxt0, s´tuD for t “ 0, . . . , `.

Theorem IV.4. Let r “ pr1, . . . , rnq be a received word and
R P ЯpGq be such that RpPjq “ rj for j “ 1, . . . , n. Then it
holds that

Ms,`pD,Gq “
à̀

t“0

pz ´RqtЯpGtq .

Proof. Note that for all j and all h P ЯpGtq, vPj phq ě
maxt0, s ´ tu. Further pz ´ Rqt has a root of multiplicity
t at pPj , rjq, since RpPjq “ rj . Hence any element in
pz´RqtЯpGtq has a root of multiplicity at least s at pPj , rjq.
Moreover, since R P ЯpGq, we see that pz ´ RqtЯpGtq “
´

řt
u“0 z

u
`

t
u

˘

p´Rqt´u
¯

ЯpGtq Ď
Àt

u“0 z
uЯpGuq. Hence

pz ´ RqtЯpGtq Ď Ms,`pD,Gq. Since Ms,`pD,Gq is a Я-
module, this implies that

À`
t“0pz´Rq

tЯpGtq ĎMs,`pD,Gq.
We will prove the reverse inclusion Ms,`pD,Gq Ď

À`
t“0pz ´ RqtЯpGtq by induction on s. Let Q “

ř`
t“0 z

tQptq PMs,`pD,Gq and write Q “
ř`
t“0pz´Rq

tQ̃ptq

for certain Q̃ptq P F . Writing zt “ ppz ´Rq `Rqt and using
Newton’s binomium, we obtain

Q̃ptq “
ÿ̀

u“t

ˆ

u

t

˙

Ru´tQpuq P Яp´tGq, for t “ 0, . . . , `,

since R P ЯpGq. Now observe that Lemma IV.2 implies that
Q̃p0q “ QpRq P ЯpG0q.

Now if we assume s “ 1, then ЯpGtq “ Яp´tGq for t ą 0
and we can conclude from the above that Q P

À`
t“0pz ´

RqtЯpGtq.
If s ą 1, we proceed as follows: using Q̃p0q P ЯpG0q Ď

Ms,`pD,Gq, we conclude

Ms,`pD,Gq Q Q´ Q̃
p0q “ pz ´Rq ¨

`´1
ÿ

t“0

pz ´RqtQ̃pt`1q .

Since z´R has a root of multiplicity one at pPj , rjq for all j,
we see that

ř`´1
t“0pz ´Rq

tQ̃pt`1q has a root of multiplicity at

least s´ 1 at pPj , rjq for all j. Hence
ř`´1
t“0pz´Rq

tQ̃pt`1q P

Ms´1,`pD,Gq. Then using the induction hypothesis for s´1,
we may conclude that Q P

À`
t“0pz ´Rq

tЯpGtq.

Corollary IV.5 (of Theorem IV.4 and Lemma III.1). It holds
that Ms,`pD,Gq “ xB

puq
v |u “ 0, . . . , `, v “ 1, 2yЯ, where

Bpuqv “ pz ´Rqugpuqv “

u
ÿ

r“0

ˆ

u

r

˙

zrp´Rqu´rgpuqv

P
à̀

t“0

ztЯp´tGq,

with gpuq1 , g
puq
2 P ЯpGuq such that xgpuq1 , g

puq
2 yЯ “ ЯpGuq,

δGupg
puq
1 q ď 2g ´ 1` pu` 1qdegpGq `maxt0, s´ u` 1un,

and

δGupg
puq
2 q ď 4g ´ 2` pu` 1qdegpGq `maxt0, s´ u` 1un.

Proof. The first part directly follows from Theorem IV.4
and Lemma III.1. To obtain the stated upper bounds on
δGupg

puq
1 q and δGupg

puq
2 q from Lemma III.1, note that

ř

QPsupppGq degpQq ď degpGq, since G is an effective divisor.
Hence

ř

QPsupppGuq
degpQq ď degpGq ` n if u ă s, while

ř

QPsupppGuq
degpQq ď degpGq if u ě s. The stated upper

bounds are implied by this.

Note that the proof of the corollary actually implies that for
u “ s, the stated upper bounds for δGupg

puq
1 q and δGupg

puq
2 q

can be improved by n.
For computational purposes, we will later view Ms,`pD,Gq

as an Fqrxs module. Since any element from Я is an Fqrxs-
linear combination of y0, . . . , yµ´1, we obtain the following.

Corollary IV.6. It holds that Ms,`pD,Gq “ xyiB
puq
v |i “

0, . . . , µ´ 1, u “ 0, . . . , `, v “ 1, 2yFqrxs.

Remark IV.7. Since Gt “ ´tG for s ď t ď `, a minor modifi-
cation of the proof of Theorem IV.4 shows that Ms,`pD,Gq “
Às

t“0pz ´ RqtЯpGtq ‘
À`

t“s`1pz ´ Rqszt´sЯpGtq. This
shows that the elements B̃puqv “ B

puq
v if u ď s together with

B̃
puq
v pz ´ Rqszt´sg

puq
v if s ă u ď ` form an alternative set

of generators over Я for Ms,`pD,Gq. Likewise the elements
in the set tyiB̃

puq
v |i “ 0, . . . , µ ´ 1, u “ 0, . . . , `, v “ 1, 2u

generate Ms,`pD,Gq as an Fqrxs-module. If s ă `, these
alternative generators can be computed using fewer operations
and are therefore in general preferable.

Remark IV.8. The Я-module Ms,`pD,Gq is an example of a
torsion free, finitely generated module of rank `` 1. Though
we will not need this in the following, it interesting to note
that any torsion free, finitely generated module M of rank r
over a Dedekind domain Я, is isomorphic to a direct product
of r fractional ideals of Я, say M – I1‘ ¨ ¨ ¨‘ Ir. Moreover,
the product I “ I1 ¨ ¨ ¨ Ir of these fractional ideals modulo
principal fractional ideals only depends on the isomorphism
class of M. Therefore the element of the ideal class group
of Я corresponding to I is called the Steinitz invariant of
M. See [11, Section II.4] for more details. Theorem IV.4

Page 7 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

can be reformulated as Ms,`pD,Gq –
À`

u“0 ЯpGuq and in
particular the Steinitz invariant of Ms,`pD,Gq is the element
in the ideal class group of Я corresponding to

ź̀

u“0

ЯpGuq “ Яp
ÿ̀

u“0

Guq “ Яp´
ˆ

`` 1

2

˙

G´

ˆ

s` 1

2

˙

Dq.

Returning to decoding, given a received word r, code
CLpD,Gq, and parameters s, `, the main steps in our algo-
rithmic approach to Guruswami-Sudan list decoding are the
following.

1) Compute a generating set over Я of Ms,`pD,Gq. We
will do this in Subsection V-C

2) Compute a generating set over Fqrxs of Ms,`pD,Gq. We
will address this in Subsection V-D

3) Using fast row reduction over Fqrxs, find a nonzero Q P
Ms,`pD,Gq satisfying δGpQq ă spn´τq. See Subsection
V-E

4) Find the roots of Q in LpGq. See Subsection V-F
As we will see, the main result of this paper is that all these
steps can be done in complexity Õpµω´1`ω`1pn ` gqq and
with a slight variation even in Õpµω´1s`ωpn` gqq.

To simplify the description of the algorithms in the next
sections, it will be convenient to assume that apart from P8,
the function field F contains an additional Z :“ degG `
maxtp``1qdegG`4g`ps`1qn, degG`p``3qp2g´1q`
ps`1qn`2`µu rational places. Even though this will not be
the case in general, the same trick as at the end of Section II,
will allow us to assume this. More precisely, the function field
FFqe with e “ r2 logqpmaxtZ, 2g` 1uqs will contain at least
1 ` Z rational places by Lemma II.3. Since using equation
(II.1), e P Oplogqp`pn` gqqq, this does not interfere with our
target complexity and hence does not result in any loss of
generality. We will suppress the exponent e from the notation
and will from now on write Fq for the finite field we work
over, but assume that F contains all the rational places that
we need to run the algorithms we describe in the next section
(specifically: Algorithm 3 and Algorithm 5).

V. ALGORITHMS

In this section, we present the algorithms that we will use
to execute the Guruswami-Sudan list decoder. We start with
discussing multi-point evaluation and interpolation algorithms
that will form the backbone of the algorithms discussed later
in the section.

A. Multi-Point Evaluation

When defining CLpD,Gq, we used the evaluation map evD.
We will later need to be able to compute evDpfq fast, meaning
we want to be able to evaluate the function f P LpGq in the
multiple points P1, . . . , Pn fast. As a matter of fact, since we
will need a slightly more general setting later on, we phrase
the results in this and the next subsection in terms of a very
similar evaluation map, but avoid to use the divisors D and
G.

Lemma V.1. Let A be a divisor and E “ E1 ` ¨ ¨ ¨ `EN for
distinct rational places E1, . . . , EN of F such that supppAqX

supppEq “ H. Further denote by evE : LpAq Ñ FNq the
evaluation map defined by evEpaq “ papE1q, . . . , apEN qq.
Then

1) evE is injective when degA ă degE,
2) evE is surjective when degA ě degE ` 2g ´ 1.

Proof. For the first item, simply observe that the dimension
of the kernel of evE is lpA´Eq “ 0, since degpA´Eq ă 0.

For the second item, observe that the dimension of the image
of evE is

lpAq ´ lpA´ Eq “ degA´ g ` 1´ pdegA´ degE ´ g ` 1q

“ degE ,

since degpAq ě 2g ´ 1 and degpA ´ Eq ě 2g ´ 1, see [43,
Theorem 1.5.17].

Now we state Algorithm 1, which computes evEpaq using
the representation of function field elements as introduced in
Section III.

Algorithm 1 Evaluatepa,E,A,x,yq

Input:
‚ Divisors A and E “ E1`¨ ¨ ¨`EN , where E1, . . . , EN
P PF ztP8u are distinct rational places and supppAq X
supppEq “ H,

‚ a function a “
řµ´1
i“0 aiy

pAq
i P ЯpAq, where ai P Fqrxs,

‚ evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P Fq ,
‚ evaluations y “ pyi,jq

i“0,...,µ´1
j“1,...,N , where yi,j “

y
pAq
i pEjq P Fq .

Output:
‚ Evaluations evEpaq P FNq .

1: for i “ 0, . . . , µ´ 1 do
2: pai,1, . . . , ai,N q P FNq Ð paipx1q, . . . , aipxN qq
Ź Univariate MPE

3: return
řµ´1
i“0 pai,1yi,1, . . . , ai,Nyi,N q P FNq

Lemma V.2. Algorithm 1 is correct and costs ÕpµN`δApaq`
degAq operations in Fq .

Proof. Correctness simply follows from the fact that for j “
1, . . . , N

µ´1
ÿ

i“0

ai,jyi,j “
µ´1
ÿ

i“0

aipxpEjqqy
pAq
i pEjq “

µ´1
ÿ

i“0

paiy
pAq
i qpEjq

“ apEjq .

For complexity, notice that the total cost of the for-loop on
Line 1 amounts to that of evaluating each of the univariate
polynomials a0, . . . , aµ´1 P Fqrxs on N points. According to
Lemma III.4,

deg ai ď
1

µ
pδApaq ` degAq for i “ 0, . . . , µ´ 1 ,

hence the total cost of the for-loop is bounded by

ÕpµpN `max
i

deg aiqq Ď ÕpµN ` δApaq ` degAq .

Line 3 costs OpµNq, which is subsumed by the cost of the
for-loop.

Page 8 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

B. Interpolation

In this subsection, we address the interpolation problem. We
start with an existence result.

Lemma V.3. Let A be a divisor and E “ E1 ` ¨ ¨ ¨ `EN for
distinct rational places E1, . . . , EN of F different from P8
such that supppAq X supppEq “ H. For any pw1, . . . , wN q P
FNq there exists an a P ЯpAq with

δApaq ď degE ` 2g ´ 1´ degA

such that apEjq “ wj for j “ 1, . . . , N .

Proof. Letting A1 “ pdegE` 2g´ 1´degAqP8`A we get
that degA1 ě degE`2g´1, which according to Lemma V.1
implies that the evaluation map evE : LpA1q Ñ FNq is
surjective.

Definition V.4. If E “ E1`¨ ¨ ¨`EN , where E1, . . . , EN are
distinct rational places different from P8, and U1, . . . , Uµ are
effective divisors satisfying

1) E “ U1 ` ¨ ¨ ¨ ` Uµ,
2) suppUi X suppUj “ H when i ‰ j,
3) |degUi ´ degUj | ď 1 for all i, j P t1, . . . , µu,
4) for any Ej , Ek P suppUi it holds that xpEjq “ xpEkq
ðñ Ej “ Ek,

then we will say that U1, . . . , Uµ is an x-partition of E.

Lemma V.5. If S is a set of places such that xpP q “ xpP 1q
for all P, P 1 P S, then |S| ď µ.

Proof. If α “ xpP q for every P P S, then it is easy to see
that

0 ‰ x´ α P LpµP8 ´
ÿ

PPS
P q .

But if µ ă |S|, then the above Riemann-Roch space has
dimension zero.

Lemma V.6. There exists an x-partition of any divisor of the
form E “ E1 ` ¨ ¨ ¨ ` EN , where E1, . . . , EN are distinct
rational places different from P8.

Proof. We use induction on N . The base case N “ 0 is trivial,
so let us consider the induction step. Suppose U1, . . . , Uµ is
an x-partition of E´EN , and let a, b be such that Ua and Ub
have minimal degree among the elements of tU1, . . . , Uµu and
tUi | xpEjq ‰ xpEN q for all Ej P suppUi, i “ 1, . . . , µu
respectively (b exists due to Lemma V.5). If degUa “ degUb,
then an x-partition of E can be obtained by replacing Ub with
Ub ` EN . If on the other hand degUa ă degUb, then Ua
contains a place Êa with xpÊaq “ xpEN q and Ub contains a
place Êb such that xpÊbq ‰ xpEjq for all Ej P Ua. But then
an x-partition of E can be obtained by replacing Ua with
Ua ´ Êa ` Êb ` EN and Ub with Ub ´ Êb ` Êa.

Definition V.7. For any polynomial matrix A P Fqrxsφˆθ
with columns A1, . . . ,Aθ and any polynomial vector u “

pu1, . . . , uθq P Fqrxsθ define the Fqrxs-module

HupAq “ tv P Fqrxsφ | v ¨Ak ” 0 pmod ukq

for k “ 1, . . . , θu .

The following is a direct adaptation of Theorem 1.7 from
[35]. We also refer to [35] for the definition of the Popov form
and the p´dq-Popov form of a matrix. Note that if u1 ¨ ¨ ¨uθ ‰
0, the rank of HupAq is φ, as u1 ¨ ¨ ¨uθFqrxsφ Ď HupAq Ď
Fqrxsφ. Note that the problem of computing the shifted Popov
basis of HupAq has been studied extensively in the literature.
Earlier references than [35] are for example [20], [21]

Theorem V.8 ([35, Theorem 1.7]). Assume φ, θ P Zě1 are in-
tegers such that φ ě θ. There exists an algorithm which for any
A P Fqrxsφˆθ, u P pFqrxszt0uqθ and d “ pd1, . . . , dφq P Zφě0

can compute a matrix V P Fqrxsφˆφ in p´dq-Popov form,
whose rows form an Fqrxs-basis of HupAq. Furthermore, if
there exists a vector v “ pv1, . . . , vφq P HupAq satisfying the
degree constraints deg vt ă dt for t “ 1, . . . , φ, then at least
one row of V will also satisfy these constraints. The com-
plexity of such an algorithm can be taken to be Õpφω´1θdq
operations in Fq , where d “ maxt dt `maxk deg uk.

For our purposes, we will sometimes need to allow non-
integer shifts d1, . . . , dφ. Non-integer, rational shifts were
handled in [32] essentially by permuting columns in a very
specific way:

Theorem V.9 (Reformulation of Corollary 12 in [32]). Let
V P Fqrxsγˆφ and d “ pd1{µ, . . . , dφ{µq P p

1
µZq

φ, where
d1, . . . , dφ P Z. If π is the permutation on t1, . . . , φu defined
by

πpiq ą πpjq ðñ
pdi rem µq ą pdj rem µq

or
pdi rem µq “ pdj rem µq and i ą j

,

and Ψ : Fqrxsφ Ñ Fqrxsφ is the map

pv1, . . . , vφq ÞÑ pxtdπp1q{µuvπp1q, . . . , x
tdπpφq{µuvπpφqq ,

then V is in d-Popov form if and only if ΨpV q is in Popov
form, where ΨpV q P Fqrxsγˆφ is the matrix created by
applying Ψ to each row of V .

Using the permutation defined in Theorem V.9 in combina-
tion with Theorem V.8, we obtain the following:

Corollary V.10. In the context of Theorem V.8 we can allow
d P p 1

µZq
φ and find the desired matrix V P Fqrxsφˆφ

in complexity Õpφω´1θdq operations in Fq , where d “

maxt |dt| `maxk deg uk.

Proof. Write d “ pd̃1{µ, . . . , d̃φ{µq with d̃t P Z and notice
that Theorem V.9 implies that V P Fqrxsφˆφ is in p´dq-
Popov form if and only if Ṽ P Fqrxsφˆφ is in p´d̃q-Popov
form, where

d̃ “ ptd̃πp1q{µu, . . . , td̃πpφq{µuq P Zφ ,

and Ṽ is matrix obtained from V by permuting its columns
using π from Theorem V.9. By Theorem V.8, for any matrix
A P Fqrxsφˆθ, we can compute the basis Ṽ P Fqrxsφˆφ of
HupÃq in p´d̃q-Popov form, where Ã P Fqrxsφˆθ is obtained
by permuting the rows of A by π, as long as the entries of d̃
are non-negative. By simply adding the constant maxtr|d̃t|{µs

to all coordinates of d̃, we can ensure that this is true without

Page 9 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

breaking the target complexity. Finally, it is trivial to obtain
V from Ṽ by applying π´1 to its columns.

With these algorithmic aspects in place, we turn our atten-
tion again to the interpolation problem. We start with a lemma,
which will give rise to our interpolation algorithm directly.

Lemma V.11. Let A be a divisor and E “ E1`¨ ¨ ¨`EN for
distinct rational places E1, . . . , EN of F different from P8
such that supppAq X supppEq “ H. Let pw1, . . . , wN q P FNq
as well as an x-partition U1, . . . , Uµ of E be given.

Suppose that T “ rTks P Fqrxs1ˆµ and S “ rSi,ks P
Fqrxsµˆµ are such that

TkpxpEjqq “ ´wj for all Ej P supppUkq

and

Si,kpxpEjqq “ y
pAq
i pEjq for all Ej P supppUkq.

If u “ pu1, . . . , uµq P Fqrxsµ, where

uk “
ź

EjPsupppUkq

px´ xpEjqq,

and d “ pd0, . . . , dµ´1, 0q P p
1
µZq

µ`1, where

di “
1

µ
pdegE`2g´degA´δApy

pAq
i qq for i “ 0, . . . , µ´1 ,

then in the p´dq-Popov basis of HupAq, where

A “

„

S
T

P Fpµ`1qˆµ
q ,

there exists a vector a “ pa0, . . . , aµ´1, 1q P Fqrxsµ`1 with
deg ai ă di for i “ 0, . . . , µ´ 1. Moreover, if

a “
µ´1
ÿ

i“0

aiy
pAq
i ,

then δApaq ď degE ` 2g ´ 1 ´ degA and apEjq “ wj for
j “ 1, . . . , N .

Proof. Observe that according to Lemma V.3 there exists a
b P ЯpAq with

δApbq ď degE ` 2g ´ 1´ degA

such that bpEjq “ wj for j “ 1, . . . , N . If we write
b “

řµ´1
i“0 biy

pAq
i , where bi P Fqrxs, then it follows from

Lemma III.4 that

deg bi ď
1

µ
pδApaq ´ δApy

pAq
i qq

“
1

µ
pdegE ` 2g ´ 1´ degA´ δApy

pAq
i qq ă di .

We claim that b :“ pb0, . . . , bµ´1, 1q P HupAq. To see this let
ck “

řµ´1
i“0 biSi,k ` Tk P Fqrxs for k “ 1, . . . , µ and observe

that for any Ej P Uk it holds that

ckpxpEjqq “
µ´1
ÿ

i“0

bipxpEjqqy
pAq
i pEjq´wj “ bpEjq´wj “ 0 ,

which implies that

bAk “ ck ” 0 pmod ukq ,

where Ak P Fqrxspµ`1qˆ1 denotes the k-th column of A. But
then indeed b P HupAq by definition.

Note that in the p´dq-degree, the leading position of b is the
last position. The p´dq-Popov basis of HupAq will contain a
vector a “ pa0, . . . , aµ´1, aµq whose leading coordinate is
the last position as well, and in particular aµ ‰ 0. Since
a has minimal p´dq-degree among all vectors in HupAq
whose leading position is the last position, we conclude that
a satisfies the same degree constraints as b.

To conclude the proof observe that

δApaq “ max
i
pδpaiq ` δApy

pAq
i qq

“ max
i
pµdeg ai ` δApy

pAq
i qq

ă max
i
pµdi ` δApy

pAq
i qq

“ degE ` 2g ´ degA ,

and that for any Ej P Uk, where k “ 1, . . . , µ, it holds that

apEjq ´ wj “
µ´1
ÿ

i“0

aipxpEjqqy
pAq
i pEjq ´ wj

“

µ´1
ÿ

i“0

aipxpEjqqSi,kpxpEjqq ` TkpxpEjqq

“ paAkqpxpEjqq “ 0 ,

since a P HupAq. Consequently, apEjq “ wj for j “

1, . . . , N .

Proposition V.12. Algorithm 2 is correct and costs
Õpµω´1pN ` gqq operations in Fq .

Proof. Correctness is given by Lemma V.11. For complexity
observe that deg uk “ |Uk| ď rN{µs for all k, while for all
i, k, we can choose Si,k, Tk such that

degSi,k,deg Tk ă rN{µs .

Step 2 costs Õpµ2N{µq “ ÕpµNq. Step 3 costs ÕpµN{µq “
ÕpNq using fast univariate interpolation [45, Corollary 10.12],
and Step 4 can be executed within the same cost bound using a
product tree [45, Lemma 10.4]. The computational bottleneck
lies in step 6, which according to Corollary V.10 costs

Õpµω´1µpmax
i
di `max

k
deg ukqq Ď

ÕpµωpdegE ` 2g

µ
`
N

µ
qq “ Õpµω´1pN ` gqq .

Here we used that di ď pdegE`2gq{µ, since by Lemma III.3,
degA` δApy

pAq
i q ě 0.

The output a “
řµ´1
i“0 aiy

pAq
i of Interpolatepw, E,A,x,yq

satisfies δApaq ď degE ` 2g ´ 1 ´ degA as shown in
Lemma V.11. In general this is the best one can expect, but
in specific cases the existence of an interpolation function
b P ЯpAq with δApbq ă ∆ ă degE ` 2g ´ degA may be
known to exist. The following lemma clarifies a property of
the output of Algorithm 2.

Page 10 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Algorithm 2 Interpolatepw, E,A,x,yq

Input:
‚ Divisors A and E “ E1 ` ¨ ¨ ¨ ` EN , where
E1, . . . , EN P PF ztP8u are distinct rational places and
supppAq X supppEq “ H,

‚ interpolation values w “ pw1, . . . , wN q P FNq ,
‚ evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P Fq ,
‚ evaluations y “ pyi,jq

i“0,...,µ´1
j“1,...,N , where yi,j “

y
pAq
i pEjq P Fq .

Output:
‚ a P ЯpAq such that δApaq ď degE ` 2g ´ 1 ´ degA

and apEjq “ wj for j “ 1, . . . , N

1: U1, . . . , Uµ Ð an x-partition of E
2: S “ rSi,ks P Fqrxsµˆµ Ð matrix with Si,kpxjq “ yi,j

for all Ej P Uk
3: T “ rTks P Fqrxsµ Ð row vector with Tkpxjq “ ´wj

for all Ej P Uk
4: u “ pu1, . . . , uµq P Fqrxsµ Ð vector with uk “

ś

EjPUk
px´ xjq

5: d “ pd0, . . . , dµ´1, 1q P p
1
µZq

µ`1 Ð vector with di “
1
µ pdegE ` 2g ´ degA´ δApy

pAq
i qq

6: P P Fqrxspµ`1qˆpµ`1q Ð p´dq-Popov basis matrix of

HupAq, where A “

„

S
T

P Fpµ`1qˆµ
q

7: a “ pa0, . . . , aµ´1, 1q P Fqrxsµ`1 Ð a row of P having
1 as its last entry and satisfying deg ai ă di for i “
0, . . . , µ´ 1

8: return a “
řµ´1
i“0 aiy

pAq
i

Lemma V.13. In the context of Algorithm 2, the output a P
ЯpAq satisfies δApaq ď δApbq for all functions b P ЯpAq with
bpEjq “ wj for j “ 1, . . . , N .

Proof. Consider the map ϕ which sends any function b “
řµ´1
i“0 biy

pAq
i P ЯpAq to the vector pb0, . . . , bµ´1q P Fqrxsµ,

and observe that if bpEjq “ wj for all j, then ϕpa´ bq is in
the row space of the matrix P̃ P Fqrxsµˆµ obtained from the
first µ rows and columns of P . It is clear that P̃ is in p´d̃q-
Popov form, where d̃ “ pd0, . . . , dµ´1q, and that each entry
in ϕpaq has degree strictly smaller than the maximal degree
of the corresponding column in P̃ : otherwise P would not be
in p´dq-Popov form. But if each entry of φpbq has degree no
greater than the corresponding entry in φpaq, then it follows
from Proposition II.8 that ϕpa´ bq “ 0, implying that a “ b
since ϕpa´bq is in the row space of P̃ (see also [22, Theorem
6.3-15] or [44, Lemma 1.24]).

C. Computing a generating set over Я of Ms,`pD,Gq

We now return to the Guruswami-Sudan decoding of the
code CLpD,Gq. In this subsection we use the symbolic ex-
pressions from Corollary IV.5 to compute a generating set over
Я of Ms,`pD,Gq. We start with a lemma.

Lemma V.14. Let a P ЯpAq and b P ЯpBq, where A
and B are divisors, and let E “ E1 ` ¨ ¨ ¨ ` EN , where

E1, . . . , EN are distinct rational places different from P8 and
not contained in supppAqYsupppBq. If c P ЯpA`Bq satisfies

1) δA`Bpcq ă N ´ degpA`Bq and

2) cpEjq “ apEjqbpEjq “ pabqpEjq for j “ 1, . . . , N ,

then c “ ab.

Proof. Note that c P LpCq, where C “ δA`BpcqP8`A`B.
The second condition simply states that evEpcq “ evEpabq,
but since degC ă degE, it follows from Lemma V.1 that
evE : LpCq Ñ FNq is injective. Consequently, c “ ab.

Using Algorithm 1 and Algorithm 2, this lemma allows us
to perform efficient multiplication and hence to compute a
generating set over Я of Ms,`pD,Gq as in Algorithm 3.

Algorithm 3 GeneratorsЯpr, D,G,E,x,y, gq

Input:
‚ Received word r P Fnq ,
‚ the code divisors D and G,
‚ a divisor E “ E1 ` ¨ ¨ ¨ ` EN , where E1, . . . , EN are

distinct rational places of F , not in tP8u Y suppG,
such that N ě p`` 1qdegG` 4g ` ps` 1qn,

‚ evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P Fq ,
‚ evaluations y “ pyi,jq

i“0,...,µ´1
j“1,...,N , where yi,j “

y
pAq
i pEjq P Fq ,

‚ evaluations g “ pg
puq
v,j q, where u “ 0, . . . , `, v “ 1, 2

and j “ 1, . . . , N
such that gpuqv,j “ g

puq
v pEjq P Fq where xgpuq1 , g

puq
2 yЯ “

ЯpGuq, and δGupg
puq
v q ď 4g ´ 1 ` pu ` 1qdegpGq `

ps` 1qn.
Output:
‚ pB

puq
v q

u“0,...,`
v“1,2 such that xBpuqv yЯ “Ms,`pD,Gq.

1: R P ЯpGq Ð Interpolatepr, D,G,x,yq Ź Algorithm 2
2: pr̂

p0q
1 , . . . , r̂

p0q
N q P FNq Ð p1, . . . , 1q

3: pr̂
p1q
1 , . . . , r̂

p1q
N q P FNq Ð Evaluatep´R,E,G,x,yq

Ź Algorithm 1
4: for u “ 2, . . . , ` do
5: pr̂

puq
1 , . . . , r̂

puq
N q P FNq Ð pr̂

p1q
1 r̂

pu´1q
1 , . . . , r̂

p1q
N r̂

pu´1q
N q

6: for u “ 0, . . . , `, r “ 0, . . . , u and v “ 1, 2 do
7: c

puq
r,v P FNq Ð pr̂

pu´rq
1 g

puq
v,1 , . . . , r̂

pu´rq
N g

puq
v,N q

8: c
puq
r,v P Яp´rGq Ð Interpolatepc

puq
r,v , E,´rG,x,yq

9: for u “ 0, . . . , ` and v “ 1, 2 do
10: B

puq
v PMs,`pD,Gq Ð

řu
r“0

`

u
r

˘

zrc
puq
r,v

11: return pBpuqv q
u“0,...,`
v“1,2

Proposition V.15. Algorithm 3 is correct and costs
Õp`3µω´1pn` gqq.

Proof. For correctness first observe that the postulated g
puq
v

exist by Corollary IV.5.

Page 11 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Note that δGpRq ď n ` 2g ´ 1 ´ degG. Using the given
upper bound for δGupg

puq
v q, we obtain that

δ´rGpR
u´rgpuqv q “ δpu´rqG`GupR

u´rgpuqv q

ď pu´ rqpn` 2g ´ 1´ degGq ` 4g ´ 1

` pu` 1qdegG` ps` 1qn

“ pr ` 1qdegG` pu´ r ` 2qp2g ´ 1q

` 1` ps` 1qn
(V.1)

“ pr ` 1qpdegG´ 2g ` 1q

` pu` 3qp2g ´ 1q ` 1` ps` 1qn

ď p`` 1qpdegG´ 2g ` 1q

` p`` 3qp2g ´ 1q ` 1` ps` 1qn

“ p`` 1qdegG` 2p2g ´ 1q ` 1` ps` 1qn

ă p`` 1qdegG` 4g ` ps` 1qn.

Lemma V.13 then implies that Interpolatepcpuqr,v , E,´rG,x,yq
will output a function c

puq
r,v P ЯpGq satisfying δ´rGpc

puq
r,v q ă

p`` 1qdegG` 4g ` ps` 1qn.
To complete the correctness proof, we consider Lemma V.14

for the divisors A “ pu ´ rqG, B “ ´uG and the function
a “ p´Rqu´r, b “ g

puq
v , and c “ c

puq
r,v . By construction,

it is clear that for all Ej P suppE we have c
puq
r,v pEjq “

p´Rqu´rpEjqg
puq
v pEjq. Moreover, degE ě p` ` 1qdegG `

4g ` ps ` 1qn, whence δ´rGpc
puq
r,v q ă degE ď degE ´

degp´rGq. Hence Lemma V.14 implies cpuqr,v “ p´Rqu´rg
puq
v .

The complexity of the algorithm is dominated by the
for loop in Lines 6–8. The Op`2q calls of the algorithm
Interpolatepc

puq
r,v , E,´rG,x,yq cost `2Õp`µω´1pn ` gqq op-

erations. Hence the total complexity is Õp`3µω´1pn`gqq.

Remark V.16. The generating set consisting of B̃
puq
v as

described in Remark IV.7, can be computed slightly faster.
Indeed, since in these generators, the needed powers p´Rqu

have the range u “ 0, . . . , s, the for loop in Lines 6–9 has
Ops`q calls of the algorithm Interpolatepc

puq
r,v , E,´rG,x,yq.

Hence to compute the B̃puqv costs Õps`2µω´1pn` gqq.

D. Computing a generating set over Fqrxs of Ms,`pD,Gq.

In the previous subsection, we saw how to efficiently
compute the generating set tBpuqv u of Ms,`pD,Gq over Я, as
in Corollary IV.5. The next logical step is to compute the set of
products tyiB

puq
v u, which generates Ms,`pD,Gq over Fqrxs

according to Corollary IV.6. Consequently, we now consider
the following problem: given a function a P ЯpAq for some
divisor A, compute y0a, . . . , yµ´1a P ЯpAq. Computing the
yia individually using Algorithm 3 would be too slow for
our purposes. Indeed, obtaining each yiB

puq
v this way would

cost Õp`2µω´1pn ` gqq operations, and we need to compute
2µp`` 1q such terms in total. Therefore, we introduce in this
subsection a more efficient approach, which will allow us to
compute y0a, . . . , yµ´1a simultaneously.

Definition V.17. For any Hpzq P F rzs and any rational place
P P PF that is not a pole of any of the coefficients of Hpzq,

and α P Fq we denote by HpP, αq the evaluation of Hpαq P F
at P .

Definition V.18. Let A be a divisor and E “ E1 ` ¨ ¨ ¨ `EN
for distinct rational places E1, . . . , EN of F different from
P8 such that supppAq X supppEq “ H. For a P ЯpAq, we
define the Fqrxs-module

NA,Epaq “ tH “ H0 `H1z P ЯpAq ‘ zЯ | HpP, apP qq “ 0

for all P P supppEqu .

In the following lemmas, we use the same notation A, E
as in Definition V.18.

Lemma V.19. Let a P ЯpAq. If H “ H0 ` zH1 P NA,Epaq
with

maxtδApH0q, δpH1q ` δApaqu ă degE ´ degA ,

then Hpaq “ 0, i.e. H P xz ´ ayЯ.

Proof. Since H P NA,Epaq, we have Hpaq P ЯpAq. Hence by
definition of δA, we have Hpaq P LpA`δApHpaqqP8q. Since
for all Ej P suppE, we have HpaqpEjq “ 0 and suppE X
psuppAYtP8uq “ H, we may conclude that Hpaq P LpA`
δApHpaqqP8 ´ Eq. Moreover,

δApHpaqq ď maxtδApH0q, δpH1q ` δApaqu ă degE ´ degA ,

which ensures that the aforementioned Riemann-Roch space
is trivial.

Lemma V.20. Let a P ЯpAq. Furthermore, let U1, . . . , Uµ
be an x-partition of E, and let S “ rSi,ks,T “ rTi,ks

be matrices in Fqrxsµˆµ such that Si,kpxpEjqq “ y
pAq
i pEjq

and Ti,kpxpEjqq “ apEjqyipEjq for Ej P Uk. If u “

pu1, . . . , uµq P Fqrxsµ, where uk “
ś

EjPsuppUk
px´ xpEjqq,

then the map

ψ :
µ´1
ÿ

i“0

psiy
pAq
i ` tizyiq ÞÑ ps0, . . . , sµ´1, t0, . . . , tµ´1q

is an Fqrxs-isomorphism between NA,Epaq and HupAq,
where

A “

„

S
T

P F2µˆµ
q .

Proof. Clearly ψ is an Fqrxs-isomorphism between ЯpAq‘zЯ
and Fqrxs2µ, therefore it suffices to show that for any H P

ЯpAq ‘ zЯ it holds that H P NA,Epaq if and only if ψpHq P
HqpAq, i.e. that HpEj , apEjqq “ 0 for all Ej P suppUk and
all k “ 1, . . . , µ if and only if ψpHq ¨Ak ” 0 mod uk, for
k “ 1, . . . , µ, where Ak denotes the k-th column of A. But
this is necessarily true, since for every Ej P Uk the following
identity holds, where α “ xpEjq:

HpEj , apEjqq “
µ´1
ÿ

i“0

`

sipαqy
pAq
i pEjq ` apEjqtipαqyipEjq

˘

“

µ´1
ÿ

i“0

`

sipαqSi,kpαq ` tipαqTi,kpαq
˘

“ pψpHq ¨Akqpαq .

Page 12 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Lemma V.21. In the context of Lemma V.20, if P P

Fqrxs2µˆ2µ is the d-Popov basis of HupAq “ ψpNA,Epaqq,
where degE ě 2g ` µ` δApaq ` degA and

d “
1

µ
pδApy

pAq
0 q, . . . , δApy

pAq
µ´1q,

δpy0q ` δApaq, . . . , δpyµ´1q ` δApaqq P p
1

µ
Zq2µ , (V.2)

then exactly µ rows of P have d-degree less than 1
µ pdegE´

degAq. Furthermore, if P̃ P Fqrxsµˆ2µ is the submatrix
of P consisting of these rows, then the k-th row of P̃ is
ψpYkq for k “ 1, . . . , µ, where Yk “ ´ayk´1 ` zyk´1 P

xz ´ ayЯ Ă NA,Epaq. Consequently, if P̃ “ rP̃1|P̃2s, where
P̃1, P̃2 P Fqrxsµˆµ, then ayk´1 “ ´

řµ´1
i“0 pk,iy

pAq
i , where

ppk,0, . . . , pk,µ´1q is the k-th row of P̃1.

Proof. For any

H “ H0 ` zH1 P NA,Epaq ,

where H0 “
řµ´1
i“0 siy

pAq
i P ЯpAq and H1 “

řµ´1
i“0 tiyi P Я

with si, ti P Fqrxs, it holds that

degd ψpHq “ maxtmax
i
pdeg si `

δApy
pAq
i q

µ
q,

max
i
pdeg ti `

δpyiq ` δApaq

µ
qu

“
1

µ
maxtδApH0q, δpH1q ` δApaqu .

It then follows from Lemma V.19 that

degd ψpHq ă
1

µ
pdegE ´ degAq ùñ H P xz ´ ayЯ ,

which means that at most µ rows of P can have d-degree
less than 1

µ pdegE ´ degAq, because xz ´ ayЯ has rank µ
as an Fqrxs-module. On the other hand, since Y1, . . . , Yµ are
linearly independent over Fqrxs, and since

degd ψpYkq “
1

µ
pδpyk´1q ` δApaqq ă

1

µ
pδApaq ` 2g ` µq

ď
1

µ
pdegE ´ degAq

for k “ 1, . . . , µ, where the strict inequality is due to
Lemma III.3, then at least µ rows of P have d-degree less
than 1

µ pdegE ´ degAq, because P is d-row reduced. This
proves the first claim of the lemma.

For the second claim it is sufficient to show that the d-pivot
index of ψpYkq is µ`k, since this would imply that the matrix
whose rows are ψpYkq is in d-Popov form. To see this, write
Yk “ ´

řµ´1
i“0 wiy

pAq
i ` zyk´1, where wi P Fqrxs, and note

that Ykpaq “ 0 implies that

max
i
δApwiy

pAq
i q “ δAp

µ´1
ÿ

i“0

wiy
pAq
i q “ δApayk´1q

“ δpyk´1q ` δApaq .

Consequently, degd ψpYkq “
1
µ pδpyk´1q ` δApaqq, which

shows that µ` k is indeed the d-pivot index of ψpYkq.

Algorithm 4 BasisProductsFqrxspa,E,A,x,yq

Input:
‚ A divisor A,
‚ a function a P ЯpAq,
‚ a divisor E “ E1 ` ¨ ¨ ¨ ` EN , where E1, . . . , EN P

PF ztP8u are distinct rational places, supppAq X
supppEq “ H and degE ě degA` δApaq ` 2g ` µ,

‚ evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P Fq ,
‚ evaluations y “ pyi,jq

i“0,...,µ´1
j“1,...,N , where yi,j “

y
pAq
i pEjq P Fq .

Output:
‚ Products pay0, ¨ ¨ ¨ , ayµ´1q, where each ayi P ЯpAq.

1: if a “ 0 then
2: return p0, . . . , 0q
3: U1, . . . , Uµ Ð an x-partition of E
4: S “ rSi,ks P Fqrxsµˆµ Ð matrix with Si,kpxjq “
yi,j for Ej P Uk

5: T “ rTi,ks P Fqrxsµˆµ Ð matrix with Ti,kpxjq “
apEjqyi,j for Ej P Uk

6: u “ pu1, . . . , uµq P Fqrxsµ Ð vector with uk “
ś

EjPUk
px´ xjq

7: d P p 1
µZq

2µ Ð 1
µ

`

δApy
pAq
0 q, . . . , δApy

pAq
µ´1q, δpy0q `

δApaq, . . . , δpyµ´1q ` δApaq
˘

8: P P Fqrxs2µˆ2µ Ð d-Popov basis of HupAq, where A “
„

S
T

P Fqrxs2µˆµ

9: rP̃1|P̃2s P Fqrxsµˆ2µ Ð the submatrix of P consisting
of all rows with
d-degree less than 1

µ pdegE ´ degAq, where P̃1, P̃2 P

Fqrxsµˆµ
10: for k “ 1, . . . , µ do
11: ppk,0, . . . , pk,µ´1q P Fqrxsµ Ð k-th row of P1

12: ak P ЯpAq Ð ´
řµ´1
i“0 pk,iy

pAq
i

13: return pa1, . . . , aµq

Lemma V.22. Algorithm 4 is correct and costs Õpµω´1pN `
|degA|qq operations in Fq .

Proof. Correctness is given by Lemma V.21. For complexity,
simply note that the computational bottleneck lies in Step 8,
in which case δApaq ě ´degA because a is nonzero and
a P LpδApaqP8 ` Aq. By assumption, we have that N “

degE ě degA` δApaq ` 2g ` µ, hence by Lemma III.3

´degA ď δApy
pAq
i q ď 2g ´ 1´ degA` µ

ă degE ´ 2 degA´ δApaq ď degE ´ degA .

Since deg uk ď N{µ for k “ 1, . . . , µ, then the total
complexity of the algorithm is given by Corollary V.10 as

Õ
`

µω´1 maxt| degE|, |degE ´ degA|, |degA|u
˘

Ď Õpµω´1pN ` | degA|qq

operations in Fq .

Now we are ready to state Algorithm 5, which computes a
generating set over Fqrxs of Ms,`pD,Gq.

Page 13 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Algorithm 5 GeneratorsFqrxspr, D,G,E,x,y, gq

Input:
‚ Received word r P Fnq ,
‚ divisors D and G for the code CLpD,Gq,
‚ a divisor E “ E1 ` ¨ ¨ ¨ ` EN , where E1, . . . , EN P

PF ztP8u are distinct rational places, supppAq X
supppEq “ H and N ě maxtdegG ` p` ` 3qp2g ´
1q ` ps` 1qn` 2` µ, p`` 1qdegG` 4g` ps` 1qnu,

‚ evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P Fq ,
‚ evaluations y “ pyi,jq

i“0,...,µ´1
j“1,...,N , where yi,j “

y
pAq
i pEjq P Fq ,

‚ evaluations g “ pg
puq
v,j q

u“0,...,`
v“1,2, j“1,...,N , where g

puq
v,j “

g
puq
v pEjq P Fq , xgpuq1 , g

puq
2 yЯ “ ЯpGuq and δGupg

puq
v q

ď 4g´1`pu`1qdegpGq`ps`1qn, as in Corollary IV.5.
Output:
‚ pyiB

puq
v q

u“0,...,`
i“0,...,µ´1, v“1,2, where B

puq
v P Ms,`pD,Gq

are as in Corollary IV.5, i.e. xyiB
puq
v yFqrxs “

Ms,`pD,Gq.

1: pB
puq
v q

u“0,...,`
v“1,2 Ð GeneratorsЯpr, D,G,E,x,y, gq

Ź Algorithm 3
2: for u “ 0, . . . , `, v “ 1, 2 and t “ 0, . . . , u do
3: b

puq
v,t P Яp´tGq Ð the zt-coefficient of Bpuqv

4: pyib
puq
v,t qi“0,...,µ´1

Ð BasisProductsFqrxspb
puq
v,t , E,´tG,x,yq

Ź Algorithm 4
5: for u “ 0, . . . , `, v “ 1, 2 and i “ 0, . . . , µ´ 1 do
6: B

puq
v,i PMs,`pD,Gq Ð

řu
t“0 z

tyib
puq
v,t

7: return pBpuqv,i q
u“0,...,`
v“1,2, i“0,...,µ´1

Proposition V.23. Algorithm 5 is correct and costs
Õp`3µω´1pn` gqq operations in Fq .

Proof. Correctness follows immediately from Corollary IV.6
and Lemma V.22 once we show that the calls
BasisProductsFqrxspb

puq
v,t , E,´tG,x,yq in Line 4 are valid. In

particular, we need to verify that

N ě degp´tGq ` δ´tGpb
puq
v,t q ` 2g ` µ (V.3)

for all appropriate values of u, v and t. Using the notation
from Corollary IV.5 and Algorithm 3, we know that bpuqv,t “
`

u
t

˘

p´Rqu´tg
puq
v , hence by (V.1)

δ´tGpb
puq
r,v q ď pt`1qdegG`pu´t`2qp2g´1q`ps`1qn`1 .

(V.4)
The sought bound (V.3) on N then follows from

´tdegG`δ´tGpb
puq
v,t q ď degG`p``2qp2g´1q`ps`1qn`1 .

For the complexity, we note that Line 1 costs
Õp`3µω´1pn ` gqq operations by Proposition V.15, while
each call BasisProductsFqrxspb

puq
v,t , E,´tG,x,yq in Line

4 costs Õpµω´1pN ` | degp´tGq|qq Ď Õp`µω´1pn ` gqq
operations by Lemma V.22. Since the for-loop in Line 2
has Op`2q iterations, the stated complexity follows – the rest
of the algorithm is memory management and is therefore
“free”.

Remark V.24. Computing the generating set tyiB̃
puq
v u over

Fqrxs of Ms,`pD,Gq can be done in Õps`2µω´1pn ` gqq,
since in that case only Ops`q coefficients of the B̃

puq
v are

nonzero.

E. Finding a nonzero Q P Ms,`pD,Gq satisfying δGpQq ă
spn´ τq

The following lemma introduces notation that may be
needed to describe the decoding algorithm.

Lemma V.25. For any divisor A and any a “
řµ´1
i“0 aiy

pAq
i P

ЯpAq, where ai P Fqrxs, let

OpAqpaq “ pa0, . . . , aµ´1q P Fqrxsµ ,

and for any Q “
ř`
t“0 z

tQptq P
À`

t“0 z
tЯp´tGq let

Oz pQq “ pO
p0qpQp0qq| Op´Gq pQp1qq| ¨ ¨ ¨ | Op´`Gq pQp`qqq

P Fqrxsµp``1q . (V.5)

If Bpuqv P
À`

t“0 z
tЯp´tGq for u “ 0, . . . , ` and v “ 1, 2

are as in Corollary IV.5 and

Ms,` “

«

M
p1q
s,`

M
p2q
s,`

ff

P Fqrxs2µp``1qˆµp``1q ,

where for v “ 1, 2 the matrix M
pvq
s,` is given by

¨

˚

˚

˝

»

—

—

–

Ozpy0B
p0q
v q

...
Ozpyµ´1B

p0q
v q

fi

ffi

ffi

fl

J

¨ ¨ ¨

»

—

—

–

Ozpy0B
p`q
v q

...
Ozpyµ´1B

p`q
v q

fi

ffi

ffi

fl

J
˛

‹

‹

‚

J

,

then Oz is an Fqrxs-isomorphism between Ms,`pD,Gq and
the row space of Ms,`. Moreover, for any Q as before, it holds
that δGpQq “ µdegdOzpQq, where

d “ pdp0q| ¨ ¨ ¨ |dp`qq P p
1

µ
Zqµp``1q

with

dptq “
1

µ

`

δ´tGpy
p´tGq
0 q, . . . , δ´tGpy

p´tGq
µ´1 q

˘

P p
1

µ
Zqµ

for t “ 0, . . . , `.

Proof. Corollary IV.6 immediately implies that Oz is an
Fqrxs-isomorphism between Ms,`pD,Gq and the row space
of Ms,`. Further, writing Qptq “

řµ´1
i“0 Q

ptq
i y

p´tGq
i for t “

0, . . . , `, where Qptqi P Fqrxs, gives that

δGpQq “ max
t
δ´tGpQ

ptqq

“ max
t,i
tδ´tGpQ

ptq
i y

p´tGq
i qu

“ max
t,i
tδpQ

ptq
i q ` δ´tGpy

p´tGq
i qu

“ max
t,i
tµdegQ

ptq
i ` δ´tGpy

p´tGq
i qu

“ µdegdOzpQq .

Page 14 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Lemma V.25 implies that we can find a nonzero Q P

Ms,`pD,Gq satisfying δGpQq ă spn ´ τq, if it exists,
by computing the d-Popov form of the matrix Ms,` P

Fqrxs2µp``1qˆµp``1q. According to Corollary II.11, this can be
achieved with cost Õp`ωµω degMs,`q. To estimate degMs,`,
observe that Lemma III.4 implies that

degMs,` ď
1

µ
max
i,r,v,u

t´r degG` δpyiq ` δ´rGpb
puq
r,v qu .

Then Lemma III.3 and inequality (V.4) imply that

degMs,` ď max
r,u

6g ´ 2` µ` pu´ rqpn` 2g ´ 1q

µ

`
ps` 1qn` degG

µ
P Opµ´1`pn` gqq,

(V.6)
which means that we can compute the d-Popov form of Ms,`

within our target complexity Õplω`1µω´1pn` gqq.

Remark V.26. Using the alternative generating set from
Remark IV.7, we again get an improvement on the running
time. In equation (V.6), the expression u´ r corresponded to
the exponent of ´R in the expression

`

u
r

˘

p´Rqu´rg
puq
v , which

was the coefficient of zr in Bpuqv . Since the exponent of ´R in
a coefficient of B̃puqv never exceeds s, we therefore obtain from
equation (V.6) the improved complexity Õps`ωµω´1pn` gqq.

F. Root-finding

In this subsection, we consider the final computational in-
gredient that we will need for Guruswami-Sudan list-decoding:
given a polynomial Qpzq P Ms,`pD,Gq, compute the set
L “ tf P LpGq | Qpfq “ 0u of all roots of Q. We
accomplish this by changing the representation of Q from
À`

t“0 z
tЯp´tGq to

À`
t“0 z

tFqrrxss, which will allow us to
use the root-finding algorithm from [29].

Let P0 R suppGYtP8u be the fixed rational place of F for
which x is a local parameter. For any nonzero h P F let ph P
xvP0

phqFqrrxss denote the P0-adic power series expansion of h
in x and define p0 “ 0. Furthermore, for any Q “

ř

t z
tQptq P

F rzs let pQ “
ř

t z
t
pQptq. Recall that if Qptq P Яp´tGq for

all t, then δGpQq “ maxt δ´tGQ
ptq. The following definition

is from [29], and it describes the output of their root-finding
algorithm:

Definition V.27. If pQ P Fqrrxssrzs and β P Zě0, then a basic
root set of pQ to precision β is a set tp pfr, αrqumr“1 Ă Fqrxs ˆ
Zě0 with m ď deg pQ such that

1) pQp pfr ` x
αrzq ” 0 pmod xβq for r “ 1, . . . ,m, and

2) pQp pfq ” 0 pmod xβq ðñ pf P
Ťm
r“1p

pfr ` xαrFqrrxssq
for every pf P Fqrrxss.

Our algorithm for computing the sought roots of Q P

Ms,`pD,Gq will fundamentally rely on the following result:

Theorem V.28 ([29, Theorem 1.2]). There is an algorithm
which for any pQ P Fqrrxssrzs and any precision β P Zě0 com-
putes a basic root set of pQ to precision β using Õp`βq deter-
ministic operations in Fq , together with an extra ÕpRFq p`qβq
operations, where RFq p`q is the cost of finding all Fq-roots

of a degree ` polynomial in Fqrzs. Here, we can choose
to use a Las Vegas algorithm with RFq p`q P Õp`q, e.g.
[45, Corollary 14.16], or a deterministic one from [41] with
RFq p`q P Õp`κ2?pq, where |Fq| “ pκ for some prime p.

In order to use Theorem V.28 in our setting, we will need
to address the following:

1) how to choose the precision β,
2) how to convert Q P

À`
t“0 z

tЯp´tGq to pQ P
À`

t“0 z
tFqrrxss and

3) how to obtain the roots f P LpGq of Q from a basic root
set of pQ.

The second item in the above list is the simplest – writing
Q “

ř`
t“0 z

tQptq with Qptq “
řµ´1
i“0 Q

ptq
i y

p´tGq
i , where

Q
ptq
i P Fqrxs, we can compute pQ “

ř`
t“0 z

t
pQptq by simply

relying on the identity pQptq “
řµ´1
i“0 Q

ptq
i py

p´tGq
i . Assuming

that we have precomputed the py
p´tGq
i P Fqrrxss to sufficiently

high precision, this is just basic arithmetic in Fqrxs.
When it comes to the choice of the precision β, then there

are two restrictions that ought to be considered. The first one
comes from making sure that we don’t return “spurious” roots,
i.e. those f P LpGq such that pQp pfq ” 0 pmod xβq while
Qpfq ‰ 0. As we are about to see in the following lemma,
this issue is easily avoided by choosing β ą δGpQq.

Lemma V.29. Let Qpzq “
ř`
t“0 z

tQptq with Qptq P Яp´tGq,
and let f P LpGq. If β ą δGpQq and pQp pfq ” 0 pmod xβq,
then Qpfq “ 0.

Proof. Notice that since f tQptq P Я for all t, then Qpfq P Я.
Furthermore, since

δpf tQptqq “ δtGpf
tq ` δ´tGpQ

ptqq ď δ´tGpQ
ptqq ď δGpQq ,

where the first inequality is due to f P LpGq, then
δpQpfqq ď δGpQq. Combining this with the assumption
that pQp pfq “ zQpfq ” 0 pmod xβq, we may conclude that
Qpfq P LpδGpQqP8 ´ βP0q, and if β ą δGpQq, then this
Riemann-Roch space is trivial.

The second restriction on the precision β is posed by the
task of converting the truncated power series roots of pQ back
to LpGq. Indeed, a basic root set tp pfr, αrqumr“1 describes each
root pfr P Fqrxs of pQ only to precision αr, and if this αr is too
small, then there could exist two distinct functions h1, h2 P

LpGq satisfying ph1 ” ph2 ” pfr pmod xαr q. In Lemma V.31,
we will see how we can indirectly control αr by increasing
β; but first, let us show that conversion from truncated power
series to LpGq is guaranteed to be unambiguous as long as
αr ą degG.

Lemma V.30. If α ą degG, then for any h P Fqrxs it holds
that |LpGq X ph` xαFqrrxssq| ď 1.

Proof. If h1, h2 P LpGq X ph ` xαFqrrxssq, then xh1 ” xh2 ”

h pmod xαq, which means that h1 ´ h2 P LpG ´ αP0q “

t0u.

Now we proceed by showing that the αr from Defini-
tion V.27 can be made arbitrarily large by choosing the
precision β appropriately.

Page 15 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

Lemma V.31. If Qpzq “
ř`
t“0 z

tQptq ‰ 0 with Qptq P

Яp´tGq, and if f P ЯpGq satisfies pQp pf`xαzq ” 0 pmod xβq
for some α P Z, then α ě 1

` pβ ´ δGpQqq ´ δGpfq.

Proof. We begin by defining

T “ Qpz ` fq “
ÿ̀

t“0

pz ` fqtQptq “
ÿ̀

t“0

t
ÿ

u“0

ˆ

t

u

˙

zuf t´uQptq

“
ÿ̀

u“0

zuTu ,

where Tu “
ř`
t“u

`

t
u

˘

f t´uQptq. Since f t´u P Яppt ´ uqGq
and Qptq P Яp´tGq, then Tu P Яp´uGq. Furthermore,
xαu pTu ” 0 pmod xβq for all u because

pQp pf ` xαzq “ pT pxαzq “
ÿ̀

u“0

zuxαu pTu ” 0 pmod xβq .

Letting r P t0, . . . , `u be such that vP0
pTrq ă 8 is maximal,

observe that

α`` vP0
pTrq ě αr ` vP0

pTrq “ vP0
pxαrTrq ě β ,

which implies that α ě 1
` pβ ´ vP0

pTrqq. Finally, noting that

0 ‰ Tr P Lpδ´rGpTrqP8 ´ rG´ vP0
pTrqP0q ,

then the sought conclusion follows from

vP0
pTrq ď δ´rGpTrq ´ r degG ď δ´rGpTrq

“ δ´rG
`

ÿ̀

t“r

ˆ

t

r

˙

f t´rQptq
˘

ď max
t
tδ´rGpf

t´rQptqqu

ď max
t
tpt´ rqδGpfq ` δ´tGpQ

ptqqu

“ `δGpfq ` δGpQq .

Combining Lemma V.31 and Lemma V.30, we obtain the
final restriction

β ě 2`degG` spn´ τq ,

which ensures that unambiguous conversion from the truncated
power series roots of pQ to LpGq is always possible. Indeed,
this bound follows immediately from the fact that δGpfq ď
degG for all f P LpGq and the assumption that δGpQq ă
spn´ τq. Knowing that such conversion is possible, however,
is not enough – we also need to know how to actually carry it
out. In the following simple lemma, we show how to do this.

Lemma V.32. If f P LpGq and
řµ´1
i“0 fipy

pGq
i ” f̂ pmod xαq

for some fi P Fqrxs with deg fi ď ´ 1
µδGpy

pGq
i q and α ą

degG, then
řµ´1
i“0 fiy

pGq
i “ f .

Proof. Since δpfiq “ µdeg fi, then δGpfiy
pGq
i q ď µdeg fi `

δGpy
pGq
i q ď 0. But then

řµ´1
i“0 fiy

pGq
i P LpGq, and the

conclusion follows from Lemma V.30.

Using the notation from Definition V.7 in the context of
Lemma V.32, we see that pf0, . . . , fµ´1, 1q P HxαpAq, where

A “ rpy
pGq
0 , ¨ ¨ ¨ , py

pGq
µ´1,´

pf s P Fqrxs1ˆpµ`1q. Recovering f P

LpGq from pf rem xα thus translates to finding a polynomial
vector f P HxαpAq whose rightmost entry is 1 and degd f “
0, where

d “
1

µ
pδGpy

pGq
0 q, . . . , δGpy

pGq
µ´1q, 0q P p

1
µZq

µ`1 .

But this is easily accomplished by relying on Theorem V.8 and
Corollary V.10. We conclude this subsection by presenting our
root-finding approach in its entirety in Algorithm 6.

Algorithm 6 RootFindingpD,G,Q, pyq

Input:
‚ Divisors D and G for the code CLpD,Gq,
‚ a nonzero Q “

ř`
t“0 z

tQptq P Ms,`pD,Gq with
δGpQq ă spn ´ τq, where Qptq “

řµ´1
i“0 Q

ptq
i y

p´tGq
i

for some Qptqi P Fqrxs,
‚ py “ ppy

p´tGq
i q

t“0,...,`
i“0,...,µ´1 with py

p´tGq
i P Fqrxs such that

vP0
py
p´tGq
i ´ py

p´tGq
i q ě β :“ 2` degG` spn´ τq.

Output:
‚ L “ tf P LpGq | Qpfq “ 0u with |L| ď `.

1: pQptq P Fqrxs Ð
řµ´1
i“0 Q

ptq
i py

p´tGq
i for t “ 0, . . . , `

2: pQ P Fqrxs Ð
ř`
t“0 z

t
pQptq

3: pL Ă Fqrxs Ð all polynomials from a basic root set of pQ
to precision β

4: LÐH

5: d P p 1
µZq

µ`1 Ð 1
µ pδGpy

pGq
0 q, . . . , δGpy

pGq
µ´1q, 0q

6: α P Zą0 Ð degG` 1
7: for pf P pL do
8: F P Fpµ`1qˆpµ`1q

q Ð d-Popov basis of
Hxαprpy

pGq
0 , . . . , py

pGq
µ´1,´

pf sq
9: if F contains a row f “ pf0, . . . , fµ´1, 1q with

degd f “ 0 then
10: LÐ LY t

řµ´1
i“0 fiy

pGq
i u

11: return L

Proposition V.33. Algorithm 6 is correct and costs
Õp`2µω´1pn` gqq operations in Fq .

Proof. For correctness, our goal is to prove that L “ K, where
L is the output of the algorithm and K “ tf P LpGq | Qpfq “
0u. If tp pfr, αrqumr“1 Ă Fqrxs ˆ Zě0 denotes the basic root
set used in Line 3, i.e. pL “ t pfru

m
r“1, then it is clear that

K Ď
Ťm
r“1Kr, where Kr “ LpGq X p pfr ` xαrFqrrxssq and

m ď `. Since δGpQq ă spn ´ τq, δGpphrq ď degG and β “
2`degG` spn´ τq, then Lemma V.31 guarantees that αr ě
1
`

`

β ´ δGpQq
˘

´ δGpphq ě degG ` 1, hence |Kr| ď 1 by
Lemma V.30. Combining this with the fact that each non-
empty Kr necessarily contains an LpGq-root of Q, as implied
by Lemma V.29 because β ą δGpQq, we may conclude that
K “

Ťm
r“1Kr. But due to Lemma V.32

Page 16 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

m
ď

r“1

Kr “ L

“

!

µ´1
ÿ

i“0

f
prq
i y

pGq
i |

µ´1
ÿ

i“0

f
prq
i py

pGq
i ” pfr pmod xαq,

deg f
prq
i ď ´

1

µ
δGpy

pGq
i q, r “ 1, . . . ,m

)

.

For the complexity, computing the p` ` 1qµ products
Q
ptq
i py

p´tGq
i in Line 1 costs Õpµ`βq Ď Õp`2µpn ` gqq. The

basic root set of pQ in Line 3 can be computed with cost
Õpβ degzpQ̂qq Ď Õp`2pn ` gqq due to [29] (see Theo-
rem V.28). Finally, the total cost of computing the d-Popov
bases in line 8 across all of the Op`q iterations in the
surrounding for-loop is Õp`µω´1pn` gqq by Corollary V.10.
The claimed complexity of the algorithm follows.

VI. DECODING CLpD,Gq

We are now ready to state our Guruswami-Sudan list
decoding algorithm for the code CLpD,Gq. We will assume
that the decoding algorithm has access to the following data,
which may be precomputed:

1) divisor E “ E1 ` ¨ ¨ ¨ ` EN , where E1, . . . , EN are
distinct rational places different from P8 not occurring
in suppG and N ě maxtdegG`p``3qp2g´1q`ps`
1qn` 2` µ, p`` 1qdegG` 4g ` ps` 1qnu,

2) evaluations g “ pg
puq
v,j q, where u “ 0, . . . , `, v “ 1, 2 and

j “ 1, . . . , N , such that gpuqv,j “ g
puq
v pEjq P Fq where

xg
puq
1 , g

puq
2 yЯ “ ЯpGuq, as in Corollary IV.5

3) evaluations x “ pxjqj“1,...,N , where xj “ xpEjq P Fq ,
4) evaluations y “ pyi,jq

i“0,...,µ´1
j“1,...,N , where yi,j “

y
pAq
i pEjq P Fq

5) polynomials py “ ppy
p´tGq
i qi,t P Fqrxsµˆp``1q, with i “

0, . . . , µ ´ 1 and t “ ´1, . . . , `, polynomials in Fqrxs
such that vP0

py
p´tGq
i ´ py

p´tGq
i q ě 2`degG ` spn ´ τq

for all i and t,

Then the decoding algorithm becomes as described in Algo-
rithm 7. Note that the decoding algorithm returns the functions
from LpGq giving rise to all codewords within radius τ of the
received word. Since in Line 12, the codeword corresponding
to these function have been calculated, it is trivial to modify
the algorithm to return these codewords instead. Combining
all results from the previous section, we immediately obtain
the following:

Theorem VI.1. The Guruswami-Sudan algorithm for the
AG code CLpD,Gq can be carried out in complexity
Õp`ω`1µω´1pn ` gqq. Using the alternative generating set
from Remark IV.7, we obtain the complexity Õps`ωµω´1pn`
gqq.

Algorithm 7 Decodepr, s, `,D,Gq

Input:
‚ Received word r P Fnq ,
‚ divisors D and G for the code CLpD,Gq,
‚ decoding parameters s, ` P Zą0 with s ď `,
‚ corresponding list-decoding radius τ P Zą0,
Output:
‚ L “ tf P LpGq | dpr, cq ď τu or FAIL

1: pB
puq
v,i q

u“0,...,`
v“1,2, i“0,...,µ´1

Ð GeneratorsFqrxspr, D,G,E,x,y, gq

2: Ms,` P Fqrxs2µp``1qˆµp``1q Ð matrix based on the Bpuqv,i

as in Lemma V.25
3: Bs,` P Fqrxsµp``1qˆµp``1q Ð basis matrix in (unshifted)

Popov form of Ms,`

4: d P p 1
µZq

µp``1q Ð pdp0q| ¨ ¨ ¨ |dp`qq where for t “ 0, . . . , `

dptq “ 1
µ pδ´tGpy

p´tGq
i qq

µ´1
i“0 P p

1
µZq

µ

5: Vs,` P Fqrxsµp``1qˆµp``1q Ð d-Popov form of Bs,`

6: Q “
`

pQ
p0q
i q

µ
i“0| . . . |pQ

p`q
i q

µ
i“0

˘

P Fqrxsµp``1q Ð degd-
minimal row of Vs,`

7: if degd Q ě spn´ τq then
8: return FAIL
9: Q P

À`
t“0 z

tЯp´tGq Ð
ř`
t“0 z

t
řµ´1
i“0 Q

ptq
i y

p´tGq
i

10: LÐ RootFindingpD,G,Q, pyq
11: for f P L do
12: c P Fnq Ð Evaluatepf,D,G,x,yq
13: if dpr, cq ą τ then LÐ Lztfu

14: return L

We now give several examples comparing this result with
previously known results.

A. Examples

Example VI.2. AG codes obtained from the rational function
field Fqpxq are known as generalized Reed-Solomon (GRS)
codes. In this case g “ 0 and µ “ 1, which specializes
the complexity of Algorithm 7 to Õps`ωnq operations in Fq .
The same complexity is achieved for families of function
fields having fixed small genus, e.g. those arising from elliptic
curves. The best known complexity for Guruswami-Sudan list-
decoding of GRS codes is Õps2`ω´1nq [9].

Example VI.3. By definition, any maximal function field
F over Fq attains the Hasse-Weil bound – it has exactly
N1 “ q ` 1 ` 2g

?
q rational places, where q is necessarily

a square. If F is such a function field, then any place
P of F sFq , where sFq denotes the algebraic closure of Fq ,
necessarily contains a positive element no larger than

?
q

in its Weierstrass semigroup [19, Theorem 10.6], i.e. we are
guaranteed that µ ď

?
q in the complexity of Algorithm 7.

Furthermore, it is well known that all maximal function fields
satisfy g ď

?
qp
?
q´ 1q{2 P Opqq. This implies that any code

of length n P Ωpqq over such a function field can be decoded
using no more that Õps`ωqpω´1q{2nq Ď Õps`ωnpω`1q{2q

operations in Fq , which is sub-quadratic in the code length.
Here, and in the rest of the examples, u P Ωpvq if and only if
v P Opuq for any functions u, v : Rě0 Ñ Rě0.

Page 17 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

We obtain even better results for long codes over specific
maximal function fields:

Example VI.4. In the case of Hermitian function field F “
Fq2px1, x2q, where xq2 ` x2 “ xq`1

1 , we have N1 “ q3 ` 1
rational places and genus g “ qpq ´ 1q{2. The usual choice
of P8 in one-point codes of F gives µ “ q. Consequently, we
can decode any such code of length n P Ωpq3q using

Õps`ωqω´1q3q “ Õps`ωqω`2q “ Õps`ωnpω`2q{3q

operations in Fq . For n “ q3, our approach specializes to the
one from [32].

Example VI.5. The Giulietti-Korchmaros function field
Fq6px1, x2, x3q from [14], where xq2 ` x2 “ xq`1

1 and
xq

2
´q`1

3 “ xq
2

1 ´ x1, is also maximal – it has µ ď q3,
g “ pq5 ´ 2q3 ` q2q{2 and N1 “ q8 ´ q6 ` q5 ` 1. In this
case, we can decode any code of length n P Ωpq8q with cost
Õps`ωnp3ω`5q{8q.

Example VI.6. The Suzuki function field F “ Fqpx1, x2q,
where q “ 22e`1 is an odd power of two and xq2 ` x2 “

x2e

1 px
q
1 ` x1q, has genus g “ 2epq ´ 1q and N1 “ q2 ` 1

rational places. Although it is not maximal in the sense of
the Hasse-Weil bound, no other function field with the same
genus and constant field can surpass its number of rational
places [40, Section 5.4]. From [3], it immediately follows that
the Weierstrass semigroup of any place P contains a positive
element no greater than q, i.e. µ ď q. This means that for
any code over F of length n P Ωpq2q, the complexity of
Algorithm 7 specializes to Õps`ωnpω`1q{2q.

Example VI.7. Let F be a function field over Fq having
a rational place P8 whose Weierstrass semigroup can be
generated by two positive integers, say a and b, where a ă b.
Note that necessarily gcdpa, bq “ 1, since otherwise the
semigroup generated by a and b has infinitely many gaps. The
genus of such a function field is pa ´ 1qpb ´ 1q{2, since this
is the number of gaps of the semigroup generated by a and
b. Now let x, y P Я be such that δpxq “ a and δpyq “ b.
Then F “ Fqpx, yq and xb ` αya ` gpx, yq “ 0, where
α P Fqzt0u and gpX,Y q P FqrX,Y s has pa, bq-weighted
degree strictly less then ab. The curve defined by the equation
Xb`αY a`gpX,Y q “ 0 is sometimes called a Cab-curve or
a Miura-Kayima curve [28]; codes defined over such curves
are of particular interest for practical applications, as they
can be encoded efficiently [6]. When it comes to decoding,
the additional assumptions that G “ mP8 and that D´nP8
is a principal divisor were used in [4] to decode the code
CLpD,Gq in complexity Õp`5a3pn` gqq.

Let us compare this to our results. Knowing that F has a
rational point P8 whose Weierstrass semigroup contains two
positive, relatively prime integers a and b, implies that g ď
pa´1qpb´1q{2 and µ ď a. Using this weaker assumption and
not needing the additional requirement that G “ mP8 and
that D´nP8 is a principal divisor, we can decode CLpD,Gq
in complexity Õps`ωaω´1pn`gqq. Hence, our results can both
handle more general settings and decode faster.

REFERENCES

[1] M. Alekhnovich. Linear Diophantine Equations Over Polynomials
and Soft Decoding of Reed–Solomon Codes. IEEE Transactions on
Information Theory, 51(7):2257–2265, July 2005.

[2] J. Alman and V. V. Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 522–539. SIAM, 2021.

[3] D. Bartoli, M. Montanucci, and G. Zini. Weierstrass semigroups at every
point of the Suzuki curve. Acta Arith., 197(1):1–20, 2021.

[4] P. Beelen and K. Brander. Efficient list decoding of a class of
algebraic-geometry codes. Advances in Mathematics of Communica-
tions, 4(4):485–518, Nov. 2010.

[5] P. Beelen and T. Høholdt. The Decoding of Algebraic Geometry Codes.
In E. Martínez-Moro, editor, Advances in Algebraic Geometry Codes,
volume 5. World Scientific Publishing Company, 2008.

[6] P. Beelen, J. Rosenkilde, and G. Solomatov. Fast encoding of ag codes
over cab curves. IEEE Transactions on Information Theory, 67(3):1641–
1655, 2020.

[7] J. Berthomieu, G. Lecerf, and G. Quintin. Polynomial root finding over
local rings and application to error correcting codes. Applicable Algebra
in Engineering, Communication and Computing, 24(6):413–443, July
2013.

[8] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Informatica, 28(7):693–701, July 1991.

[9] M. Chowdhury, C.-P. Jeannerod, V. Neiger, E. Schost, and G. Villard.
Faster Algorithms for Multivariate Interpolation With Multiplicities
and Simultaneous Polynomial Approximations. IEEE Transactions on
Information Theory, 61(5):2370–2387, May 2015.

[10] J. Farr and S. Gao. Grobner bases, pade approximation, and decoding
of linear codes. Contemporary Mathematics, 381:3, 2005.

[11] A. Fröhlich, M. J. Taylor, and M. J. Taylor. Algebraic number theory.
Number 27. Cambridge University Press, 1991.

[12] S. Gao and M. A. Shokrollahi. Computing roots of polynomials over
function fields of curves. In Coding Theory and Cryptography, pages
214–228. Springer, 2000.

[13] P. Giorgi, C. Jeannerod, and G. Villard. On the Complexity of Poly-
nomial Matrix Computations. In International Symposium on Symbolic
and Algebraic Computation, pages 135–142, 2003.

[14] M. Giulietti and G. Korchmáros. A new family of maximal curves over
a finite field. Math. Ann., 343(1):229–245, 2009.

[15] V. D. Goppa. Algebraico-Geometric Codes. Mathematics of the USSR-
Izvestiya, 21(1):75, 1983.

[16] V. Guruswami and M. Sudan. Improved Decoding of Reed–Solomon
and Algebraic-Geometric Codes. In IEEE Annual Symposium on
Foundations of Computer Science, pages 28–37, 1998.

[17] V. Guruswami and M. Sudan. Improved Decoding of Reed–Solomon
Codes and Algebraic-Geometric Codes. IEEE Transactions on Informa-
tion Theory, 45(6):1757–1767, 1999.

[18] T. Høholdt, J. H. van Lint, and R. Pellikaan. Algebraic geometry codes.
In W. C. Huffman and V. S. Pless, editors, Handbook of Coding Theory.
Elsevier Science Inc., 1998.

[19] J. W. P. Hirschfeld, G. Korchmáros, and F. Torres. Algebraic curves
over a finite field. Princeton Series in Applied Mathematics. Princeton
University Press, Princeton, NJ, 2008.

[20] C.-P. Jeannerod, V. Neiger, E. Schost, and G. Villard. Fast Computation
of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts.
In International Symposium on Symbolic and Algebraic Computation,
ISSAC ’16, pages 295–302, New York, NY, USA, 2016. ACM.

[21] C.-P. Jeannerod, V. Neiger, E. Schost, and G. Villard. Computing
minimal interpolation bases. Journal of Symbolic Computation, 83:272–
314, Nov. 2017.

[22] T. Kailath. Linear Systems. Prentice-Hall, 1980.
[23] C. Kirfel and R. Pellikaan. The minimum distance of codes in an array

coming from telescopic semigroups. volume 41, pages 1720–1732. 1995.
Special issue on algebraic geometry codes.

[24] K. Lee, M. Bras-Amoros, and M. O’Sullivan. Unique Decoding
of General AG Codes. IEEE Transactions on Information Theory,
60(4):2038–2053, Apr. 2014.

[25] K. Lee and M. E. O’Sullivan. List Decoding of Reed–Solomon Codes
from a Gröbner Basis Perspective. Journal of Symbolic Computation,
43(9):645 – 658, 2008.

[26] K. Lee and M. E. O’Sullivan. List decoding of Hermitian codes using
Gröbner bases. Journal of Symbolic Computation, 44(12):1662–1675,
2009.

[27] R. McEliece. The Guruswami-Sudan Decoding Algorithm for Reed-
Solomon Codes. IPN progress report, pages 42–153, 2003.

Page 18 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

Preprint dated July 1, 2022

[28] S. Miura and N. Kamiya. Geometric-goppa codes on some maximal
curves and their minimum distance. Proceedings of 1993 IEEE Infor-
mation Theory Workshop, pages 85–86, 06 1993.

[29] V. Neiger, J. Rosenkilde, and E. Schost. Fast Computation of the
Roots of Polynomials Over the Ring of Power Series. In International
Symposium on Symbolic and Algebraic Computation, July 2017.

[30] V. Neiger and T. X. Vu. Computing Canonical Bases of Modules of
Univariate Relations. In International Symposium on Symbolic and
Algebraic Computation, page 8, July 2017.

[31] H. Niederreiter and C. Xing. Rational points on curves over finite fields:
theory and applications, volume 285 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge, 2001.

[32] J. Nielsen and P. Beelen. Sub-Quadratic Decoding of One-Point Her-
mitian Codes. IEEE Transactions on Information Theory, 61(6):3225–
3240, June 2015.

[33] R. R. Nielsen and T. Høholdt. Decoding reed-solomon codes beyond half
the minimum distance. In Coding Theory, Cryptography and Related
Areas, pages 221–236. Springer, 2000.

[34] H. O’Keeffe and P. Fitzpatrick. Gröbner basis solutions of constrained
interpolation problems. Linear algebra and its applications, 351:533–
551, 2002.

[35] J. Rosenkilde and A. Storjohann. Algorithms for simultaneous her-
mite–padé approximations. Journal of Symbolic Computation, 102:279
– 303, 2021.

[36] R. Roth and G. Ruckenstein. Efficient Decoding of Reed–Solomon
Codes Beyond Half the Minimum Distance. IEEE Transactions on
Information Theory, 46(1):246 –257, 2000.

[37] S. Sakata. Extension of the Berlekamp-Massey algorithm to N
dimensions. Information and Computation, 84(2):207–239, 1990.

[38] S. Sakata and M. Fujisawa. Fast Decoding of Multipoint Codes
from Algebraic Curves. IEEE Transactions on Information Theory,
60(4):2054–2064, Apr. 2014.

[39] S. Sakata, H. E. Jensen, and T. Høholdt. Generalized Berlekamp-Massey
Decoding of Algebraic-Geometric Codes up to Half the Feng–Rao
Bound. IEEE Transactions on Information Theory, 41(6):1762–1768,
1995.

[40] J.-P. Serre. Rational points on curves over finite fields, volume 18 of
Documents Mathématiques (Paris).

[41] V. Shoup. A fast deterministic algorithm for factoring polynomials
over finite fields of small characteristic. In Proceedings of the 1991
international symposium on Symbolic and algebraic computation, pages
14–21, 1991.

[42] G. Solomatov. Computational aspects of Algebraic Geometry codes.
PhD thesis, Technical University of Denmark, 2021.

[43] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, 2nd
edition, 2009.

[44] Vincent Neiger. Bases of relations in one or several variables: fast
algorithms and applications. PhD Thesis, ENS Lyon, Nov. 2016.

[45] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 3rd edition, 2012.

[46] W. Zhou and G. Labahn. Computing Column Bases of Polynomial
Matrices. In International Symposium on Symbolic and Algebraic
Computation, ISSAC ’13, pages 379–386, New York, NY, USA, 2013.
ACM.

Peter Beelen received his Master’s degree in Mathematics from the University
of Utrecht, The Netherlands, in 1996. In 2001 he received his Ph.D. degree in
Mathematics from the Technical University of Eindhoven, The Netherlands.
Since October 2004 he has been a staff member of the Technical University
of Denmark (DTU), Kongens Lyngby, Denmark. He has been an assistant
professor at DTU till January 2007 and an associate professor till August
2014. Since September 2014 he has worked at DTU as professor. His research
interests include various aspects of algebra and its applications, notably
algebraic curves and algebraic coding theory.

Johan Rosenkilde received the master’s degree in computer science and the
Ph.D. degree in mathematics from the Technical University of Denmark. He
has been a Research Engineer at GitHub since 2021. Before that, he was
at the Technical University of Denmark, first as an Assistant Professor and
later as an Associate Professor. He was a Post-Doctoral Researcher at both
Ulm University, Germany, and Inria, France. His algebraic research interests
include coding theory and computer algebra.

Grigory Solomatov received a dual master’s degree in mathematics in 2017
from the Norwegian University of Science and Technology and the Technical
University of Denmark. In 2021, he received a Ph.D degree in mathematics
from the latter. Currently, he is holding a post-doctoral position at Tel Aviv
University. His research interests include computer algebra and coding theory.

Page 19 of 19

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3188843

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 12,2022 at 07:36:17 UTC from IEEE Xplore. Restrictions apply.

	I Introduction
	I-A Related work
	I-B Strategy outline and contributions

	II Preliminaries
	II-A AG codes
	II-B Reduction to a simpler setting
	II-C Shifted Popov forms of polynomial matrices

	III Representation of function field elements
	IV Guruswami-Sudan Decoding
	IV-A Structure of Ms,(D,G) as a -module

	V Algorithms
	V-A Multi-Point Evaluation
	V-B Interpolation
	V-C Computing a generating set over of Ms,(D,G)
	V-D Computing a generating set over Fq[x] of Ms,(D,G).
	V-E Finding a nonzero Q Ms,(D,G) satisfying G(Q)<s(n-)
	V-F Root-finding

	VI Decoding CL(D,G)
	VI-A Examples

	References
	Biographies
	Peter Beelen
	Johan Rosenkilde
	Grigory Solomatov

