Determination of thermoelectric properties from micro four-point probe measurements

Guralnik, Benny; Hansen, Ole; Stilling-Andersen, Andreas R; Hansen, Søren E; Borup, Kasper A; Mihiretie, Besira M; Beltrán-Pitarch, Braulio; Henrichsen, Henrik H; Lin, Rong; Shiv, Lior

Total number of authors: 13

Published in:
Measurement Science and Technology

Link to article, DOI: 10.1088/1361-6501/ac88ea

Publication date: 2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Determination of thermoelectric properties from micro four-point probe measurements

Benny Guralnik¹,²,∗, Ole Hansen², Andreas R Stilling-Andersen², Søren E Hansen², Kasper A Borup¹, Besira M Mihiretie¹, Braulio Beltrán-Pitarch¹,², Henrik H Henrichsen¹, Rong Lin¹, Lior Shiv¹, Bo B Iversen³, Peter F Nielsen¹ and Dirch H Petersen⁴

¹ CAPRES—a KLA company, Diplomvej 373, 2800 Kgs. Lyngby, Denmark
² Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
³ Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
⁴ Hot Disk AB, SE-41288 Gothenburg, Sweden

E-mail: benny.guralnik@gmail.com

Received 15 February 2022, revised 25 July 2022
Accepted for publication 11 August 2022
Published 5 September 2022

Abstract
Micro four-point probing is a branch of electrical metrology where electrical (and electromagnetic) properties of charge carriers such as conductance, mobility, and tunneling magnetoresistance can be accurately and precisely determined at the µm scale and below. Here, we propose and demonstrate a novel application of micro four-point probe (M4PP) aimed at quantifying the thermoelectric properties of a sample. Specifically, we show that for an AC current passing through a bulk material at a low angular frequency ω, the voltage drop across the sensing electrodes at 2ω is to first order proportional to the ratio (α/κ) of its Seebeck coefficient (α) to its thermal conductivity (κ). Verified by numerical simulations, our analytic theory is then put into practice on a suite of p- and n-type bulk semiconductors (Si, Ge, and BiTe). The M4PP estimates of the Seebeck coefficient in these materials are characterized both by high accuracy and precision, suggesting a novel in-situ metrology of thermoelectric properties at the µm scale.

Keywords: micro four-point probe, Seebeck coefficient, 2ω method, self-heating effect

(Some figures may appear in colour only in the online journal)

1. Introduction

A key challenge in keeping up with Moore’s law is the overheating of nanoscale electronic devices, which is increasingly exacerbated as device sizes approach the mean free paths (MFPs) of electrons and phonons [1]. To regulate the operating temperature in such devices, an ever-growing focus is set on both describing and engineering the interplay between three key thermoelectric properties [2], namely the electrical conductivity (σ), thermal conductivity (κ), and the Seebeck coefficient (α). The importance of this triad (which, alongside the temperature T, comprise the thermoelectric figure-of-merit $ZT = \sigma \alpha^2 T / \kappa$) reaches far beyond thermal energy conversion, and is arguably at the crux of current technological progress [3]. This is so because thermal budgets of devices have a direct effect on their efficiency, reliability, and lifespan; even a sub-optimal combination of the thermoelectric properties, or their unwarranted spatial variation, can result in device thermal failure, memory cell resetting, faulty logic operations, etc [4, 5].

Of the methods available for the characterization of electrical conductivity σ on the microscale, the micro four-point
probe (M4PP) technique is a well-established metrology requiring only a brief and arguably non-destructive contact between several miniature electrodes (e.g. figure 1(a)) with the surface of the sample [6]. Alongside the standardization of M4PP over the past decades [7], comparable metrologies (in terms of spatial resolution, accuracy, and precision) have also emerged for the determination of the Seebeck coefficient \[8\] and of thermal conductivity [9]. To date, the two different techniques have a narrower in-situ applicability (e.g. imposing constraints on the continuity and layering of the probed materials [10]), while involving a more elaborated experimental setup (e.g. multiple cross-calibrations with reference materials [9]). Thus, a continued improvement of each of the above methods, as well as any potential methodological crossovers, are of high technological and societal value.

Within the field of electrical probing, self-heating effects (SHE) can generally be understood as electrical measurement artefacts related to the probing methodology itself, resulting in biased estimates of the sought electromagnetic properties [11, 12]. In materials which exhibit measurable thermoelectrical effects, SHE can be ascribed to at least three interrelated phenomena, in which \(\sigma, \kappa, \) and \(\alpha\) are tightly intertwined as follows [13]:

(a) Joule heating, in which passage of an electric current of density \(j\) through a conductor of resistivity \(\rho = \sigma^{-1}\) dissipates the power density \(P = j^2 \rho\sigma\), thereby affecting the proximal temperature via \(P/T = R_0(\kappa,\ldots)\), where \(R_0\) is the system’s thermal resistance (itself inversely proportional to the thermal conductivity \(\kappa\)).

(b) Temperature-dependence of \(\sigma(T)\) and \(\kappa(T)\), implying a constant feedback between \(\sigma\) and \(\kappa\) being locally affected by the dissipation of Joule heat, and the amount of Joule heat generated in turn.

(c) Thermoelectric voltage, reaching \(\nabla V = -\alpha \nabla T\) at steady state, in thermoelectric materials subject to a non-uniform temperature distribution. This additional voltage affects \(j\) and thereby \(P\), creating an additional heat flux due to the Peltier and Thomson effects (see section 2), and thus indirectly influencing (a) and (b).

While these effects are often negligible under macroscale four-terminal sensing, recent numerical simulations suggested potential offsets of up to 40% in thermoelectric materials when four-terminal probed with DC on the mm scale [14]. Extending such simulations to the \(\mu\)m scale, it is easy to show that if probed with DC, M4PP measurements of a typical thermoelectric material may result in conductivity estimates that are off by a whole order-of-magnitude.

Recently it has been shown that a limited combination of SHE phenomena above (a, and a subset of b) may be quantified by M4PP [15], and further compensated for by lock-in amplification (LIA) measurements made at low AC frequencies \(I = l_0 \sin(\omega t)\) [16]. Specifically, it has been shown that the magnitude of SHE arising from Joule heat under a linearized \(\Delta \rho \propto \Delta T\) regime (a first-order temperature coefficient of resistance, TCR) is mirrored in both the \(1\omega\) and \(3\omega\) voltages, in a way that enables a linear combination of the two that eliminates the SHE contribution altogether. These studies also demonstrated that the \(1\omega\) and \(3\omega\) voltages can be utilised to characterize the TCR of the material, if its geometry, and the thermoelectric parameters \(\sigma, \kappa, \) and \(\alpha\), are independently known. In the present work, we target the \(2\omega\) voltage, and utilize it for the determination of the \(\alpha/\kappa\) ratio.

Specifically, we demonstrate that during M4PP measurements in thermoelectric materials, Joule and Peltier heating in the vicinity of the current-conducting electrodes may result in considerable temperature differences (up to \(\sim 1\) K) across the voltage-sensing terminals. These gradients can be accurately predicted by a combination of analytical theory and experimental data (two-point transfer resistance measurements). We show that at AC frequencies sufficiently low to avoid either a thermal lag, or an electrostatic disequilibrium, the \(2\omega\) voltage can be measured with high repeatability and precision, and is proportional to the material’s \(\alpha/\kappa\) ratio. Together with the \(1\omega\) voltage (translatable to \(\sigma\)), our presented methodology is the first M4PP application addressing all three thermoelectric parameters \((\sigma, \kappa, \) and \(\alpha)\) from a single \(\mu\text{m-scale}\) electric measurement.

2. Theory

In the absence of an external magnetic field, and negligible internal magnetic fields due to induction, the rate of heat evolution per volume \(Q\) in a homogeneous conductor is [13, 17]:

\[
Q = \frac{j^2}{\sigma} + \nabla \cdot (\kappa \nabla T) - T \mathbf{j} \cdot \nabla \alpha, \tag{1}
\]

where \(j = ||j||\) is the (norm of) electrical current density, \(\sigma\) and \(\kappa\) are coefficients of electrical and thermal conductivity, \(T\) is temperature, and \(\alpha\) the Seebeck coefficient. The first r.h.s. term \(j^2/\sigma\) discloses electrical work production and dissipation (Joule heat). The change in thermal conduction due to heat produced or absorbed is given by \(\nabla \cdot (\kappa \nabla T)\). The final term \(-T \mathbf{j} \cdot \nabla \alpha\) is separable [13] into two contributions \(\mathbf{j} \cdot (\nabla V - \alpha \nabla T)\), of which the first is pure Peltier heat (further affected by a spatial gradient in the Peltier coefficient \(\Pi = \alpha T\)), and the second is the pure Thomson effect (heat production driven solely by a thermal gradient \(\nabla T\)).

To solve equation (1), we consider a thermal steady-state \(Q = 0\) [13], and further assume \(\nabla \kappa \equiv 0\) and \(\nabla \alpha \equiv 0\), which simplifies the differential equation to \(\kappa \nabla^2 V = -j^2/\sigma\) [see 18, 19]. While M4PP sampling involves no internal heat production whatsoever (\(Q = 0\)) [17], the more generalized assumption of \(Q = 0\) leads to exactly the same result [13]. The neglection of the spatial gradients in \(\kappa\) and \(\alpha\) are warranted by the fact, that the Joule heating is extremely localized at the vicinity of the M4PP contacts (with power density being proportional to \(r^{-4}\); see equation (2) below), while the temperature dependencies \(\kappa \sim 1/T\) and \(\alpha \sim \ln(T)\) in the materials under test are insubstantial under the typically modest heating (tens of degrees K; see [15]) that M4PP probing
exerts. These assumptions, as well as all subsequent steps of the derivation, have been further verified against a numerical simulation (figure 1(c) and section 4.1).

To represent a M4PP sample, we consider a thermally insulated half space substrate \((z < 0)\), with a small indented hemisphere of a radius \(b\) at the origin \([20]\), representing an electrode-substrate contact. The surface of this contact acts as a single electrical terminal, injecting a hemispherically symmetric current density \(j = (I / 2πr^2) \hat{r}\) into the substrate (with ground infinitely far away). Following these assumptions, equation (1) can be recast as:

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) = -\frac{P}{4πσκr^3},
\]

subject to the boundary conditions:

\[
T(r \to \infty) = T_0,
\]

\[
κ∇T(b) = αT(b)j(b),
\]

of which the first fixes the undisturbed temperature infinitely far away from the contact, and the second applies Peltier heat at the electrode-substrate interface. It may be shown that equations (2) and (3) are satisfied by:

\[
T(r) = T_0 + \frac{1}{2πκr} \left\{ \frac{P}{4πσb} \left[1 - \frac{b}{r} \left(1 + \frac{αI}{2πκb} \right)^{-1} \right] \right\},
\]

where \(r = |r|, r > b\) is the norm of an arbitrary location vector \(r\) outside of the contact. To isolate the temperature change, we introduce \(ΔT(r) = T(r) - T_0\). Since for a typical M4PP measurement one may expect \(αI / 2πκb << 1\), equation (4) can be simplified via a first-order Taylor series approximation \((1 + \frac{αl}{2πκb})^{-1} ≈ 1 - \frac{αl}{2πκb}\). This simplification, under further substitution of a low-frequency (pseudo-DC) sinusoidal current \(I = Io\sin(ωt)\), rearrangement by increasing harmonic components, and a convenient parametrization for later use, results in:
\[\Delta T(r, b, I_0) \approx \frac{I_0^2}{4\pi R |r|} \left(1 - \frac{\pi b}{2\pi R} + \frac{T_0\alpha^2}{2\pi R b} \right) + \frac{I_0}{2\pi R} \left[T_0\alpha + \frac{3}{4} I_0 \left(\frac{1}{2\pi R b} \right) \right] \sin(\omega t + \pi) + \frac{I_0^2}{4\pi R |r|} \left(1 - \frac{\pi b}{2\pi R b} + \frac{T_0\alpha^2}{2\pi R b} \right) \sin(2\omega t - \pi/2) + \frac{I_0}{8\pi R |r|} \left(\frac{1}{2\pi R b} \right) \sin(3\omega t). \] (5)

To describe the total electric potential \(\Phi \) at \(r \) (granted \(|r| > b \)), we sum up the resistive component \(\Phi_R = I_0 \sin(\omega t) / 2\pi R \) [21], with the thermoelectric component \(\Phi_{TE} = -\alpha \Delta T \) [22]:

\[\Phi(r, b, I_0) = \Phi_R(r, b, I_0) + \Phi_{TE}(r, b, I_0) = \frac{I_0 \sin(\omega t)}{2\pi R |r|} - \alpha \Delta T(r, b, I_0). \] (6)

The potential drop across the voltage probes in a four-point resistivity measurement can be approximated via a linear combination of four instances of equation (6) as follows (figure 1(b)). Let \(r_j \) and \(r_k \) be the locations of current sources \(+I_0 \) and \(-I_0 \), respectively, and \(r_l \) and \(r_t \) the locations of voltage probes of positive \(V \) and negative \(-V \). By superposition of the electric potentials from both sources, and taking the potential difference across probes \(k \) and \(l \), the four-point voltage \(V_{4P} \) is given by [21]:

\[V_{4P} = V_{R,4P} + V_{TE,4P} = \Phi(r_j - r_k, b_j, I_0) + \Phi(r_l - r_t, b_l, -I_0) - \Phi(r_j - r_l, b_j, I_0) - \Phi(r_k - r_t, b_k, -I_0), \] (7)

where \(b_j \) and \(b_k \) are the hemispherical contact radii of the current source and drain. Equation (7) may be expected to be accurate as long as the norms of the vector terms significantly exceed max\((b_j, b_k)\).

3. Methods and materials

3.1. Numerical simulations

The accuracy of equation (4) was verified using symbolic integration of equations (2) and (3) in MATLAB Symbolic Math Toolbox® [23]. Further approximation errors due to the Taylor-series expansion (equation (5)), and source superposition (equation (7)), were studied by generating synthetic datasets, whose voltages was decomposed using a numerical LIA, and cross-checked against a fast Fourier transform. Finite element method simulations were undertaken in COMSOL Multiphysics® [24], using coupled modules of electric currents, heat transfer in solids, and thermoelectric effects. Figure 1(b) shows a not-to-scale sketch of the model, including a sample represented by a large hemisphere, with a thermally insulated top surface. The hemispherical sample extends two orders of magnitude beyond the M4PP footprint, at which we impose an isothermal boundary condition with \(T_0 = 300 \) K. Two current terminals of opposite polarity were represented by two tightly meshed hemispherical indentations of radius \(b_j \) and \(b_k \) into the top surface; the voltage terminals were represented by a surface mesh point each; the electric potential was kept at zero at an arbitrary but convenient reference point (the geometric average of all terminal locations). The time dependent electric potential due to the low-frequency sinusoidal AC current passed between the current terminals at an angular frequency \(\omega = 2\pi f \) was sampled and used as input in the digital LIA.

3.2. Samples

In this study we obtained and studied \(N = 10 \) bulk thermoelectric materials (table 1), further divided into \(N = 5 \) calibration samples (on which M4PP protocols were developed), and \(N = 5 \) test samples (representing challenging materials with further unknowns). The physical sample dimensions were all >1.5 orders of magnitude larger than the largest mean electrode pitch (20 \(\mu \)m) of the selected M4PP, satisfying the semi-infinite substrate per the derivations in equations (1) through (7).

The calibration samples (lab codes 4790, 4791, 785, 1113, and 2167) comprised of single-crystal, Czochralski-grown, uniformly doped, industrial-grade, p- and n-type bulk Si wafers (\(\phi = 100 \) mm, 0.50–0.55 mm thick) bought from commercial suppliers (Okmetic and University Wafer). Reference (independent) values of \(\kappa \) and \(\alpha \) for the calibration samples were obtained as briefly outlined next. Thermal conductivity \(\kappa_{ref} \) was measured using the transient planar source (TPS) method [29], on a Hot Disk TPS-3500 system (ISO22007-2) under the assumptions of thin slab geometry and transient response [30, 31]. The offset-free [32] Seebeck coefficients \(\alpha_{ref} \) were obtained using the slope method [33] on a custom-built apparatus replicating that of Iwanaga et al [34] and measuring under a modified four-point geometry [35]. All macroscale reference values reported in table 1, are associated with standard errors of the mean of 2.5%.

The challenging samples included two industrial-grade Ge wafers bought from University Wafer (lab codes 2575, 2477), an unpolished Si:As wafer provided by Topsis Global Wafers A/S (lab code 2875), and two in-house heat-pressed polycrystalline BiTe ingots (lab codes TEP0, TEN0). The Seebeck coefficients of these samples were characterized as above, while their \(\kappa_{ref} \) were calculated from theory [25–27, 35] due to small and irregular sample size that precluded reproducible TPS measurements.

The Seebeck coefficient of the M4PP probe (\(\alpha_{probe} = -19.8 \mu V K^{-1} \)) was measured on a macroscale split sample from M4PP production, matching standard literature values for bulk Ni.

3.3. Micro four-point probe measurements

Electric resistance measurements were performed using a CAPRES microRSP®-A300 tool, using an extended digital LIA module [16], which logs the two- and four-point transfer resistance \(R_{4P} \) and its phase \(\varphi_{4P} \) up to the third harmonic (\(n = 1, 2, 3 \)) of the input current frequency. All samples were characterized using a low frequency current \(I = I_0 \sin(\omega t) = \)

\[]
\[\sqrt[\text{rms}]{I_{\text{rms}}} \sin(2\pi ft) \] with \(f = 12.06 \text{ Hz} \), using an M4PP with seven equidistant electrodes (figure 1(a)). This probe comprises of 2.3 \(\mu \text{m} \) wide L-shaped silicon cantilevers, uniformly spaced 10 \(\mu \text{m} \) apart, and having one side coated with Ni [36]. The electrical measurements included 158 four-point configurations, sampling all unique four-point sub-probes \((7!/4!(7–4)) = 35 \), between two and eight times each (favouring configurations that maximize the signal of interest, \(V_{4P,2\omega} \)). Ten sets of 158 configurations were measured for seven different r.m.s. currents \(I_{\text{rms}} \), varied in the range 0.5–5 mA, with some repeated for monitoring reproducibility. Measurements were discarded from data fitting if the first harmonic phase shift \(\varphi_{1\omega} \) exceeded \(0^\circ \pm 1^\circ \), and/or the second harmonic phase \(\varphi_{2\omega} \) exceeded \(\pm 90^\circ \pm 2^\circ \), albeit these data are often in accord with their best-fit prediction (cf figure 2).

The experimental data was fitted for each current separately, as follows. At the first step, the filtered four-point, first harmonic resistance data \(R_{4P,1\omega} \) were governed by:

\[
R_{4P,1\omega} = \frac{\varrho}{2\pi} \left(\frac{1}{|r_i - r_k|} + \frac{1}{|r_i - r_l|} - \frac{1}{|r_j - r_k|} - \frac{1}{|r_j - r_l|} \right),
\]

[8] were simultaneously fitted to regress the bulk resistivity \(\varrho \), and the inner electrode in-line positions \(r_i \) through \(r_k \) [37], with \(r_i \) and \(r_l \) fixed to their nominal positions.

At the second step, and with \(\varrho \) fixed to its best-fit value from the previous step, the two-point, first harmonic, load resistance data \(R_{2P,1\omega} \) were governed by:

\[
R_{2P,1\omega} = \frac{\varrho}{2\pi} \left[\left(\frac{1}{b_1} - \frac{1}{|r_j - r_l|} - b_1 \right) + \left(\frac{1}{b_1} - \frac{1}{|r_j - r_l|} - b_1 \right) \right],
\]

[see 38] were simultaneously fitted to regress contact radii \(b_1 \) through \(b_7 \). Prior to the fit, the lead resistances of the electrodes, periodically monitored for drift on a thick Ni film, were subtracted from \(R_{2P,1\omega} \) [39].

At the final step, all the previously fitted parameters (\(\varrho, \varphi_2 \) through \(r_6 \), and \(b_1 \) through \(b_7 \)) were fixed, and the filtered, four-point, second harmonic voltage data \(V_{4P,2\omega} \) were simultaneously fitted to determine the thermoelectric properties. In the simplified approach which demonstrates the dominant proportionality between \(V_{4P,2\omega} \) and \(\alpha/\kappa \), we neglected the \(\alpha/\kappa \) term in equation (5), which enables us to fit the \(\alpha/\kappa \) ratio directly:

\[
V_{4P,2\omega} = -\frac{\alpha}{\kappa} \frac{R_0}{4\pi} \left(\frac{1}{2\pi \sigma b_1 |r_i - r_k|} + \frac{1}{2\pi \sigma b_1 |r_j - r_l|} - \frac{1}{2\pi \sigma b_1 |r_j - r_k|} - \frac{1}{2\pi \sigma b_1 |r_j - r_l|} \right),
\]

(10)

comparing equation (10) with experimental quantities via:

\[
R_{4P,2\omega} = |V_{4P,2\omega}|/I_0,
\]

(11)

\[
\varphi_{4P,2\omega} = -\pi/2 \cdot \text{sgn}(V_{4P,2\omega}).
\]

(12)

In the more accurate approach, accounting for the Seebeck voltage contribution from the probe itself, the M4PP Seebeck coefficients \(\alpha_{\text{M4PP}} \) (table 1) were obtained by fitting data with the full equations (5)–(7), with \(\kappa \) fixed to its macroscale reference value \(\kappa_{\text{ref}} \) (table 1), and the probe’s own Seebeck coefficient substraction via \(\alpha = \alpha_{\text{M4PP}} - \alpha_{\text{probe}} \).

4. Results

4.1. Theory validation

Having verified the exact solution (equation (4)) via symbolic integration of equations (2) and (3)), the accuracy of the approximation equation (5) was further evaluated against equation (4) via numerical lock-in of synthetic data, generated by equations (4) and (5) for a characteristic target material (doped silicon with \(\sigma = 10^{-4} \ \Omega \text{m}, \kappa = 120 \ \text{W} \text{m}^{-1} \text{K}^{-1} \), and \(\alpha = \pm 500 \ \mu \text{V} \text{K}^{-1} \text{m}^{-1} \) and typical M4PP settings (\(r = 10 \ \mu \text{m}, b = 250 \ \mu \text{m}, I_{\text{rms}} = 5 \ \text{mA} \) and \(T_0 = 300 \ \text{K} \)). Under these conditions, the relative error of the obtained amplitudes for \(V_{1\omega} \) and

Subset	Lab code	Type	Material	\(\alpha_{\text{ref}} \) (\(\mu \text{V} \text{K}^{-1} \))	\(\kappa_{\text{ref}} \) (\(\text{W} \text{m}^{-1} \text{K}^{-1} \))	\(\varrho \) (\(\Omega \mu \text{m} \))	\(\alpha_{\text{M4PP}} \) (\(\mu \text{V} \text{K}^{-1} \))	\(\kappa_{\text{M4PP}} \) (\(\text{W} \text{m}^{-1} \text{K}^{-1} \))	
Calibration	4790	P	Si:B	632	128	132.5 ± 0.08	639 ± 3	45.9 ± 0.15	432 ± 12
	4791	P	Si:B	578	126	107.0 ± 0.03	578 ± 4	554.9 ± 0.50	560 ± 41
	785	P	Si:B	251	65	12.8 ± 0.01	267 ± 1	20.5 ± 0.19	89 ± 2
	1113	N	Si:As	−310	84	26.9 ± 0.02	−298 ± 2	14.6 ± 0.10	89 ± 2
	2167	N	Si:P	−349	111	31.1 ± 0.03	−325 ± 3	120 ± 0.08	639 ± 3
Test	2875	N	Si:As	−435	111	45.9 ± 0.15	−432 ± 12		
	2575	P	Ge:Ga	540	58	554.9 ± 0.50	560 ± 41		
	2477	N	Ge:Sb	−662	58	14.6 ± 0.10	89 ± 2		
	TEP0	P	Bi0.1Sb1.7Te3	115	1.2				
	TEN0	N	Bi2Te2S3	−130	1.5				

Table 1. Sample description, macroscale reference values, and the best-fit M4PP results.
Figure 2. Accepted (circles) and rejected (crosses) M4PP data for sample 4790 measured at $I_{\text{rms}} = 4.08$ mA, alongside the best-fit model prediction from equations (8)–(12) (lines). (a) Four-point first harmonic resistance, (b) two-point first harmonic resistance, (c), (d) four-point second harmonic resistance amplitude (c) and phase (d). The coefficient of determination (R^2) is in excess of 0.95 for all the four datasets (see figure 3(a)); all fitting parameters are further shown in figures 3(b)–(d). The order of measurements (the x-axis) has been optimised for reproducibility.

$V_{3\omega}$ is 0.02% on average (with zero error on V_{DC}, and 1.3% on $V_{3\omega}$), perceived as sufficiently accurate for the incorporation of equation (5) in equations (6) and (7).

To test the accuracy of the source superposition approximation in equations (6) and (7) to predict four-point resistance data, a time-dependent finite element model (FEM) was run for $f = 12$ Hz and the same parameters as above, with current terminals $+I$ at $r_1 = [-30, 0]$ and $-I$ at $r_j = [0, 0]$, and voltage terminals $+V$ at $r_2 = [-20, 0]$ and $-V$ at $r_3 = [30, 0]$ (all coordinates in µm). Figure 1(b) is a not-to-scale sketch of the FEM simulation, while figure 1(c) shows the resistive (top panel) and thermoelectric (bottom panel) components of voltage, as simulated numerically (symbols in figure 1(c)) and approximated analytically via equations (5)–(7) (lines in figure 1(c)). The amplitudes and phases obtained via numerical LIA of FEM-simulated voltage, coincided with amplitudes and phases as predicted by equations (5)–(7) to within 0.8% on average, with the second harmonic resistance $R_{2\omega}$ showing an offset of only <0.3%. Recognizing that the accuracy of FEM is limited by mesh quality and numerical tolerance, while equations (5)–(7) are merely an approximation, the high degree (>99%) to which these two approaches agree is noteworthy (the sub-percent mismatch is of the order of magnitude of M4PP precision [37]).

As a final step, we conducted FEM simulations with α ranging 0.1–1 mV K$^{-1}$, converted the resultant voltage to harmonic amplitudes and phases by LIA, and fitted equations (5)–(7) with α as the fitting parameter. Initial analysis, utilizing equations (10)–(12) where the α^2 term is neglected, resulted in α estimates off by up to ~ 8%; direct fitting of equations (5)–(7) yielded far more accurate values of α, offset by ~ 2% at most. Following the latter rigorous testing, we deem equations (5)–(7) suitable for the analysis of experimental data.

4.2. Data reduction

Figure 2 shows the experimental data for sample 4790, as measured at an $I_{\text{rms}} = I_0/\sqrt{2}$ current of 4.08 mA. The order of measurements in figure 2 (the x-axis) is heuristic, in the sense that the number of four-point configurations, as well as their particular order, are subject of choice and optimization by the practitioner. After extensive testing, the particular sequence
shown in figure 2 was adopted after it was found to improve reproducibility to <2.5% (relative standard error of the mean) across different probe engages. The symbols in panels (a)–(d) correspond to experimental data, namely the amplitudes of the first harmonic four-point $R_{4P,1\omega}$ (a) and two-point $R_{2P,1\omega}$ (b) resistances, and the amplitude $R_{4P,2\omega}$ (c) and phase $\varphi_{4P,2\omega}$ (d) of the second harmonic four-point resistance. Note that the corresponding phases of $R_{4P,1\omega}$ and $R_{2P,1\omega}$ are negligibly different from 0° and are thus not shown. These data were collected and fitted as described in section 3.3, with $R_{4P,1\omega}$ being fitted first to obtain resistivity, $R_{2P,1\omega}$ second to obtain contact radii, and finally $R_{4P,2\omega}$ to obtain α/κ. The coefficient of determination (r^2) for the fits in figure 2, alongside all the fitting parameters, are shown in figures 3(a)–(d), respectively, alongside fitting results for several other currents. Measurements at currents $I_{rms} < 2.9$ mA yielding clearly anomalous $R_{4P,2\omega}$ data, and abnormally low $r^2 < 0.9$ for the best-fit models, have been discarded from the zero-current extrapolation of the thermoelectric parameters (see section 5), as described next.

For all samples, the accepted best-fit α/κ ratios trend linearly with current squared (e.g. figure 3(d)), strongly suggesting a TCR effect in play [11, 12]. The theoretical TCR values for the calibration samples vary across an order of magnitude (in the range $0.2–2 \times 10^{-3}$ K$^{-1}$) and were confirmed experimentally via hotplate measurements of $\varrho(T)$ in the 15$^\circ$C–55$^\circ$C range. Initially, a 3ω correction to the transfer resistance data has been considered [11]. However, in the case of a material with a combination of prominent TCR and thermoelectric effects, it is logical to expect that the 3ω signal ($R_{3\omega}$) will contain a mixture of a TCR contribution [11] and a Peltier heat contribution (equation (5)), at a ratio which is difficult to predict analytically [17]. Thus, a standard 3ω correction [11] of e.g. $R_{2P,1\omega}$ data (critical for the determination of the correct amount of heat produced at the contacts) would partially remove the thermoelectric heating effect that we are interested to quantify in the first place. Therefore, we adopted the zero-current extrapolation approach, which is widespread in electrical metrology for detrending TCR effects [11, 12]. The extrapolation of data in figure 3(d) to zero current yields $(\alpha/\kappa)_0 = 5.18 \pm 0.03 \mu$m A$^{-1}$, which is within error of its reference estimate $(\alpha/\kappa)_0 = 4.93 \pm 0.25 \mu$m A$^{-1}$.

The aforementioned $(\alpha/\kappa)_0$ estimate neglects secondary effects proportional to α^2, and further suffers from a voltage offset due to the probe’s own Seebeck coefficient, proportional

Figure 3. Summary of fitting results for sample 4790, plotted against current squared. (a) Coefficients of determination. (b) Best-fit electrode positions from equation (8), expressed as Euclidean distance from the probe’s nominal positions $r_{x,nominal} - r_{x,best-fit}$. (c) Best-fit contact radii from equation (9). (d) Best-fit α/κ ratio from equation (10); the linear trend in the latter data may be extrapolated to zero current (red lines), retrieving TCR-unaffected intercept which within uncertainties overlaps with the independent estimate $\alpha_{ref}/\kappa_{ref}$ (see text for discussion).
to $\alpha_{\text{probe}}/\kappa$, and thus differentially affecting samples with varying thermal conductivity. In fact, the offset magnitude (~5%) between the best-fit M4PP (α/κ) and its independent reference value $\alpha_{\text{ref}}/\kappa_{\text{ref}}$ is fully explainable from our sensitivity analysis where the effect of dropping the α^2 term was tested (see section 4.1). To demonstrate that our methodologically most accurate estimates of thermoelectric parameters match their reference values within an even smaller error, we used the full equations (5)–(7) to fit the data (e.g. figure 2) for each sample, with κ fixed to its macroscale reference value, and α_{M4PP} as the only unknown (where the apparent Seebeck coefficient $\alpha = \alpha_{\text{M4PP}} - \alpha_{\text{probe}}$ accounts for contributions from both the sample and the probe). These M4PP estimates of the Seebeck coefficient (table 1) are plotted against their corresponding reference values in figure 4.

5. Discussion and conclusions

For all the $N = 5$ calibration samples, our methodologically most accurate α_{M4PP} estimates (table 1) are all within error of their independent macroscale estimates (figure 4); so are two of three single-crystal test materials (Si:As and Ge:Ga), the third (Ge:Sb) considered unmeasurable due to a strong Fermi-level pinning [40] that yielded highly rectified spurious signals, none of which could be plausibly fitted by the model considered here (equations (8)–(12)).

M4PP measurements on the p- and n-type bismuth telluride ingots exhibited a considerable scatter (low reproducibility across engages), and were often characterized by a non-3D current transport [see 41]. The anisotropic behaviour of BiTe crystals is well-documented [42], while visible crystal sizes in our BiTe samples were 1–10 μm, making it likely for M4PP probing to conduct current through multiple crystals at once. While our best estimates of the Seebeck coefficient for the BiTe ingots appear 20%–30% off their literature values (table 1), both the Seebeck coefficient and thermal conductivity can vary by a factor 2–3 between thermoelectric properties measured in parallel vs. perpendicular to the ingot pressing direction [42]. Thus, the macroscale reference values measured/estimated for these ingots (table 1) have the polycrystallinity effect all averaged out, while the M4PP measurements are likely to have been highly affected by the orientation of the microcrystal aggregates that the current was conducted through.

The problem of probe offset is not unique to M4PP, as the value of the measured Seebeck coefficient of semiconductors does weakly vary with the work function of the metallic leads that probe it [e.g. 43]. While the unwanted thermoelectric contribution from the Ni leads is relatively low (~19.8 μV K$^{-1}$), the actual voltage offset scales this value by the sample’s thermal conductivity (cf equation (10)), thus making α_{probe} inseparable from sample properties. Optimization of future microprobes, e.g. through the use of platinum coating to bring the absolute Seebeck coefficient of the probe close to zero, or via maximizing the thermal insulation of the metallization from the probe’s mechanical backbone, is underway.

In our conceptual model, all the heating power is presumed to dissipate solely within the substrate, with no heat backflow into the electrodes (‘cold finger effect’). To qualitatively estimate a potential cold finger offset in our samples, consider that the thermal spreading resistance into the sample is $R_{\text{th,sp}} = 1/2\pi kb$, while the thermal resistance of an electrode is $R_{\text{th,el}} = (1/2\pi b + L/A)/\kappa_c$, where L, A and κ_c are the length, cross section area, and thermal conductivity of the electrode’s cantilever, respectively. Taking representative values for a Si sample ($\kappa = 128$ W m$^{-1}$ K$^{-1}$ and $b = 50$ nm; sample 4790) and for the Ni-coated polysilicon cantilevers ($L/A = 10^{-7}$ m$^{-1}$ and $\kappa_c = 30$ W m$^{-1}$ K$^{-1}$), the effective thermal conductivity of sample 4790 would appear offset from its true value by $R_{\text{th,el}}/R_{\text{th,sp}} = 5.7\%$. An even smaller offset (~4%) has been obtained through a FEM simulation, where heat is generated also within the electrode via Joule heating, further reducing the error due to the cold finger effect. Experimentally, the fact that M4PP provides Seebeck coefficient estimates that match their reference values, implies that except for the high-ZT BiTe samples, the systematic cold finger effect in the Si and Ge measurements is likely secondary to negligible (<5%). While a more rigorous investigation of the cold finger effect is outside the scope of the present study, we anticipate that M4PP could be further optimized to have a larger thermal resistance, e.g. through exchanging the polysilicon substrate with SiO$_2$. This would reduce the cold finger effect by more than an order of magnitude, and hopefully make the effect negligible also for high-ZT materials.

A few comments can be made with respect to the degree to which $V_{\text{4P,2m}}$ may be influenced by other effects than Seebeck and Peltier (both included in deriving equation (4)). Since in equation (1), the Thomson effect is proportional only to the first power of current, $V_{\text{4P,2m}}$ may be safely regarded as
insensitive to the Thomson effect altogether [17, 18]. Granted that ΔT at 2ω is proportional to I_m^2 (equation (5)), any component of $V_{4P2\omega}$ arising from the Seebeck effect ($\Delta V = -\alpha \Delta T$) is also expected to be proportional to I_m^2 (equation (10)). At sampling currents $I_m > 2.9$ mA, this proportionality $V_{4P2\omega} \propto I_m^2$ was indeed strictly obeyed (e.g. figures 2 and 3d). However, at $I_m < 2.9$ mA, we observed an unanticipated $V_{4P2\omega} \propto I_m^m$ behaviour, where $-\infty < m \leq 0$. Studying the obtained $I - V_{4P1\omega}$ and $I - V_{4P2\omega}$ curves over the 100 μA–5 mA range, we observe a clear fingerprint of a highly non-linear, metal-semiconductor Schottky contact behaviour at the low current end. Empirically, when the same measurement protocol is applied at currents $I_m < 2$ mA, we observe $V_{4P2\omega}$ whose best-fit Seebeck model (equations (10)–(12)) is up to orders of magnitude away from the measurement points ($r^2 \sim 0$), implying that the signals are contaminated by an oscillating forward/reverse bias of the Schottky contacts at 2ω. A transitional range, where m changes sign and approaches 2 is observed 1 mA $< I_m < 2$ mA, until at $I_m > 2.5$ mA the model’s coefficient of determination is acceptable ($r^2 > 0.9$) to assume signal dominance by the process described by equation (1). Since the range of currents where $V_{4P2\omega} \propto I_m^2$ is easy to experimentally identify, further investigation of the non-linear behaviour of metal-semiconductor contacts at low currents remains outside of the scope of this study.

When the heater size approaches the phonon MFP in the probed material, that material’s thermal conductivity may become supressed due to ballistic heat transport, potentially causing the apparent κ to deviate from its bulk values by orders of magnitude [3, 43]. In bulk crystalline Si, the theoretical phonon MFP is 41 nm at $T = 300$ K [44], which is comparable to our best-fit contact radii b. However, ballistic transport will occur only for MFPs longer than the thermal penetration depth, which for a Joule heating frequency of $2 f$ will be given by $\sqrt{D/2\pi f}$, where D is the thermal diffusivity [45]. For our experimental setup ($f = 12$ Hz) and the Si samples considered (35–68 mm2 s$^{-1}$), the corresponding thermal penetration depths are 680–950 μm, four orders of magnitude longer than the prevailing MFPs. Thus, no apparent reduction of thermal conductivity due to ballistic transport should be expected [46]. While promising, the opportunity to utilize high-frequency M4PP for studying nanoscale heat transport will be considered elsewhere.

As a final cautionary note, we must stress that the presented method is currently only capable of modelling the temperature drop across the two voltage electrodes (cf equation (6)), while the actual temperature drop is not in any way measured. While for the calibration materials studied, our temperature predictions appear to be accurate, temperature fields are increasingly more difficult to model due to Joule heating in multilayered structures [15], or arbitrary nanodevice geometries [47]. Thus, for a successful application of the proposed methodology in a broader context of sample chemistries and geometries, further methodological improvements will be necessary, including independent temperature sensing on the microscale.

To the best of our knowledge, this work is the first four-terminal sensing application to simultaneously address all the thermoelectric parameters σ and α/κ from a single measurement on the microscale. Work to separate α and κ is currently underway and will be reported elsewhere. These efforts continue the methodological expansion of four-terminal sensing beyond its original use for direct sensing of electrical resistance [7; 21], and help establish M4PP as an attractive microscale technique to determine magnetoresistance [48], Hall resistance [49], and thermal properties [15, 16].

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This work has been supported by Innovation Fund Denmark (Grants 8054-0002B, 8057-00010B, and 1045-00029B) and Independent Research Fund Denmark (Grant 8048-00088B). K A B and B B I thank the Villum Foundation for support. We are grateful to our colleagues at DTU (D M A Mackenzie, M L Withoft, T A Marangoni, N Lamba, and V Rosendal) and at CAPRES (L Nørregaard, J D Buron, A Cagliani, F W Østerberg, and M F Hansen) for valuable feedback, and to the reviewers and editors for comments that helped improve the manuscript.

ORCID iDs

Benny Guralnik https://orcid.org/0000-0003-3095-3868
Ole Hansen https://orcid.org/0000-0002-6090-8323
Andreas R Stilling-Andersen https://orcid.org/0000-0001-9847-8093
Søren E Hansen https://orcid.org/0000-0002-3370-2389
Kasper A Borup https://orcid.org/0000-0001-5013-6684
Besira M Mhiretii https://orcid.org/0000-0001-8298-9462
Braulio Beltrán-Pitarch https://orcid.org/0000-0002-4596-9582
Bo B Iversen https://orcid.org/0000-0002-4632-1024
Peter F Nielsen https://orcid.org/0000-0002-0236-0806
Dirch H Petersen https://orcid.org/0000-0002-9309-4186

References

[1] Waldrop M M 2016 The chips are down for Moore’s law Nat. News 530 144

