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A B S T R A C T   

Operating district heating systems with low supply and return temperatures improves heat production and 
distribution efficiency, permitting greater integration of renewable heat sources. Low-temperature district 
heating is viable without compromising comfort, but faults in end-users’ heating systems constrain temperature 
reductions. Such faults include malfunctioning valves, improper hydronic balancing, and excessive supply 
temperature setpoints. Occupants lack the resources to detect and diagnose these faults, so there is a need for 
automated solutions without requiring additional hardware. This paper proposes a method for improving the 
operation of an apartment’s hydronic floor heating system using data from room thermostats, a heat meter and a 
circulation pump to identify a grey-box model of the system. The resulting model virtually senses each room 
loop’s heat flux, flow, return temperature, and flow coefficient. The authors tested the model on a low-energy 
apartment in Denmark, using it to diagnose causes of high return temperatures, including poor hydronic 
balancing and an excessive supply temperature setpoint and pump setting. The authors also used the model to 
predict the minimum permissible supply temperature maintaining comfort, yielding a reduction in the energy- 
weighted supply and return temperatures of 8.6 ◦C and 6.5 ◦C, respectively.   

1. Introduction and background 

1.1. Towards a low-carbon heating sector 

In 2020, the European Commission proposed a legally binding target 
of net-zero greenhouse gas emissions by 2050 [1]. As of 2018, fossil fuels 
still supplied 63% of the European residential heat demand [2]. Heat 
pumps [3] and district heating (DH) provide cost-effective alternatives 
that enable the integration of renewable energy sources and excess heat 
[4]. Thus, Europe can cost-effectively approach its emission goals by 
increasing the use of district heating rather than only relying on elec-
trification [5]. 

The typical operating temperatures of DH networks are roughly 85/ 
45 ◦C [6] (indicating supply and return temperatures of 85 ◦C and 45 ◦C, 
respectively). Scholars have proposed a 4th Generation District Heating 
with temperatures as low as 50/20 ◦C, permitting greater integration of 
large scale heat pumps, solar thermal collectors, and low-temperature 
heat sources while decreasing distribution heat losses [7–11]. Thus, 
DH operators can reduce their primary energy consumption by 

decreasing network temperatures [7–9]. A transition to 
low-temperature district heating (LTDH) would be highly cost-effective 
[12,13]. Lund et al. estimated that for every 1 euro invested in 
decreasing heating system temperatures, district heating investment and 
operation costs would decrease by 4 euros [14]. Such efforts are not 
limited to district heating. Lowered temperatures also improve the 
heating efficiency and capacity in buildings served by local heat pumps, 
expanding its relevance and application [15]. 

Several full-scale research projects have demonstrated the benefits of 
LTDH. A Danish demonstration project reduced the DH supply temper-
atures for 123 homes in three locations to 50 ◦C, 55 ◦C, and 61–66 ◦C 
while refurbishing the pipes and heating systems, leading to 63–75% 
lower heat losses [16]. IEA DHC Annex TS1 showcased LTDH in the UK, 
Germany, Finland, Denmark and Norway and concluded that LTDH is 
key to integrating renewable and waste energy for heating [4]. 
Furthermore, several feasibility studies showed the potential to provide 
thermal comfort with LTDH in both new and existing buildings [17,18], 
while new low-energy dwellings with floor heating are especially suit-
able [11]. 
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1.2. Faults in space heating systems 

Research projects have demonstrated the benefits and feasibility of 
LTDH in central and Northern Europe, but surveys of district heating 
practitioners have highlighted several barriers [19,20]. Non-technical 
barriers include the operators’ fear of occupant dissatisfaction, which 
presides over energy efficiency concerns [20] and can lead building 
operators to increase the space heating supply temperatures in case of 
complaints ([21] provides an example). As a result, the supply temper-
atures in space heating systems are often overly conservative or based on 
outdated best practices [20]. Meanwhile, the presence of faults (e.g., 
malfunctioning valves and imbalances due to incorrect valve 
pre-settings) yield excessive flows through heating elements [6]. These 
high flows decrease heat utilisation, thereby constraining supply tem-
perature reductions and increasing the return temperatures to the DH 
network. High return temperatures provide unnecessary heat losses 
from return pipes and ultimately decrease the utilisation of flue gas 
condensation and excess heat [22]. 

Faults can occur in nearly all DH substations components, such as 
heat exchangers, valves, actuators, sensors, pipes and controllers [23]. 
However, a large number of faults occur in the end-users’ space heating 
systems (representing 60% of the observed faults in a Swedish study 
[24]), and fixing these faults showed great potential to reduce return 
temperatures [25]. These faults include poor balancing of the heating 
circuits giving excessive flows [26], pre-setting errors [20], malfunc-
tioning valves [6,9,27], incorrectly installed valves [28], undersized 
radiators [27], oversized circulation pumps [29], and too-high supply 
temperature setpoints [24]. While DH operators typically monitor heat 
production and distribution infrastructure intently, the monitoring of 
substations and individual heating systems is usually the responsibility 
of end-users, who rarely check for faults as extensively [26,30]. Many 
district heating utilities leave the responsibility of reducing return 
temperatures to the occupants [26] and levy motivation tariffs based on 
the energy-weighted return temperature from heating substations [31]. 
However, not all customers understand the purpose and implications of 
such incentive schemes [32]. If the occupants are responsible for 
detecting faults in heating systems, the faults may persist, obstructing 
the realisation of LTDH. 

1.3. Automated fault detection and diagnosis 

A monitoring system could automatically detect and diagnose the 
faults constraining lower heating temperatures. Automated fault 
detection and diagnosis (FDD) is a growing and promising field of 
research, and faulty operation of building systems is a major cause of the 
energy performance gap [33–35]. However, detecting and diagnosing 
faults in residences is still largely manual during commissioning and 
operation [36]. In residential buildings, occupants typically detect faults 
when they experience discomfort, but they rarely diagnose the cause of 
faults. Meanwhile, many faults affect system performance but not 
comfort, so they persist undetected [37]. The growth in collected 
operational data, whether for control or visualization, makes automated 
FDD methods increasingly relevant and viable. Detecting and correcting 
faults before occupants experience discomfort would increase satisfac-
tion, reduce energy consumption and maintenance costs, and ultimately 
benefit the entire HVAC value chain [37]. 

In a 2005 review, Katipamula and Brambley [36] described the 
different stages of the FDD process: fault detection (monitoring a system 
to detect abnormal operation), fault isolation (determining the type, 
location and timing of the fault), and fault identification (determining 
the magnitude and behaviour of the fault). The latter two stages are 
often carried out together and termed ‘fault diagnosis’. Detecting and 
diagnosing faults continuously, as in ongoing commissioning [38], can 
use a model of a building’s operating conditions with constant updates 
from measurement data. FDD methods fall into three categories [39,40], 
which compare the expected and observed operation:  

• Knowledge-based (‘white-box’) methods, using a priori physical 
knowledge to construct a set of rules and thresholds or a physical 
model of the system.  

• Data-driven (‘black-box’) methods, using statistical models based 
on large datasets. Examples include supervised learning (e.g., 
regression or classification) [41] and unsupervised learning [41,42].  

• Grey-box methods, using operational data to calibrate a physical 
model of the system – i.e., adjusting model parameters to minimise 
the discrepancy between modelled and measured variables. The in-
clusion of physical knowledge reduces the number of parameters and 
improves their validity [43]. However, these models often yield 
lower predictive accuracy than data-driven models [44,45]. 
Grey-box models are often used in HVAC system modelling [44,46, 
47] for predictive control [46–48]. 

Virtual (or ‘soft’) sensors use a model to estimate variables when 
actual sensing is expensive or unreliable, permitting detection of de-
viations from expected operating conditions [49,50]. Researchers have 
used virtual sensors to detect faults in air handling units for air condi-
tioning [38,40,51], heat pumps [52] or ventilation systems [53]. Li et al. 
[49] recommended validating virtual sensors experimentally against 
physical sensors; however, physical sensors may be impractical or 
cost-prohibitive. With grey-box methods, the modelling error between 
modelled and measured variables indicates the reliability of model pa-
rameters and virtual sensors [38,46]. 

1.4. Automated FDD in residential hydronic heating systems 

Commercial building operators have incentives to conserve energy 
and can typically log their operational data, so they are increasingly 
applying FDD algorithms to continuous commissioning [41,42]. 
Conversely, residential heating systems operators rarely access detailed 
data and apply FDD algorithms [6,54,55], requiring new approaches. 
Fault detection in DH networks have mainly focused on DH substations 
using heat metering data [23,30,55–59]. These methods detect tem-
perature faults in DH substations but rarely identify their origins, which 
may occur in the end-users’ heating systems [60]. In a simulation study, 
Brès et al. [60] developed a fault detection algorithm using temperature 
and flowrate measurements from DH substations. Measuring the supply 
and return temperatures on the end-user’s side significantly improved 
the algorithm’s accuracy. The only example using actual data from 
end-users’ hydronic heating systems is from Østergaard et al. [28], who 
developed a knowledge-based fault detection method using indoor air 
temperatures, heat cost allocator data and a thermal radiator model. 
Although it showed robustness issues, the method successfully detected 
radiator malfunctions leading to large return temperatures. To the au-
thors’ knowledge, no other researchers have developed automated FDD 
methods for continuous commissioning of hydronic floor heating sys-
tems, so this paper addresses the research gap. 

1.5. Novelty and objectives 

Existing methods detect temperature faults in DH substations, but 
they do not detect and diagnose faults on the end-users’ side of DH 
networks, likely due to insufficient data [54]. The increasing digital-
isation of heat meters and room thermostats provides new data sources 
on the end-user’s side. Programmable thermostats can provide room 
temperatures and setpoints, while ‘smart’ heat meters can provide 
supply and return temperatures and flowrates. Researchers are starting 
to explore the immense potential of using these data sources to study 
occupant energy-related behaviour [61–64], energy flexibility [65,66], 
and automated control of residential heating systems [67,68], among 
other applications. However, the potential to ensure the 
low-temperature operation of digitalised residential hydronic heating 
systems remains largely unfulfilled. Therefore, this article proposes a 
method using commonly available data sources in new dwellings to 
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achieve the following: 

1. Diagnose faults that prevent lower system temperatures in residen-
tial hydronic floor heating systems;  

2. Evaluate the extent to which these temperatures can be reduced 
without affecting occupant comfort;  

3. Suggest concrete improvement measures to reduce system 
temperatures. 

The proposed and tested method fits readily available data to a grey- 
box model of a heating system. Virtual sensors estimate the heat fluxes, 
flow, return temperatures, and flow coefficients in each room’s floor 
heating loop, indicating any faulty hydronic balancing or high return 
temperatures. The grey-box method enables simulations with improved 
hydronic balance and lower supply temperatures to quantitatively 
indicate the impact of improvements while maintaining thermal com-
fort. The method does not require detailed physical properties of the 
building or heating system, yet it offers FDD and targeted operational 
advice. Overall, the research aims to provide a validated grey-box 
method for continuously commissioning digitalised hydronic floor 
heating systems in new residences. 

2. Proposed grey-box method 

The proposed method uses readily available data from an apart-
ment’s hydronic floor heating system to estimate parameters in a grey- 
box model, with the aim of using these parameters and virtually 
sensed variables for fault detection and diagnosis. Fig. 1 shows a sche-
matic of the entire modelling process, including parameter estimation. 

Section 2.1 describes the physical modelling of a hydronic heating 
systems in the equation-based Modelica language [69] in the simulation 
environment Dymola. The model uses differential equations to describe 
the physical behaviour of virtually sensed variables (inferred) and 
input/output variables (measured). Section 2.2 describes how the 
grey-box method iteratively estimates the model parameters to reduce 
the difference (or residual) between modelled and measured variables. 
Section 2.3 proposes general steps for detecting faults and improving 
operation using the grey-box model and virtually sensed variables. 

2.1. Modelling of hydronic heating 

Our proposed approach models the heating system using the 
equation-based Modelica language using the software Dymola. The 
physical equations describe the following pressure-flow dependencies of 
the fluid. 

Pressure loss in a horizontal section of pipe is composed of frictional 
losses Δpf due to pipe roughness and local losses Δpl due to e.g. bends 
and valves. In cylindrical pipes with a constant diameter, the Dar-
cy–Weisbach equation expresses the frictional losses Δpf , reformulated 
in Eq. (1): 

Δpf = f
L

2DΔρΔA2ṁ2 (1)  

where f is the Darcy friction factor, ρ the density of the water in kg/m3, L 
the pipe length in m, D the pipe diameter in m, A the pipe cross-section 
in m2, and ṁ the mass flowrate in kg/s. The Darcy friction factor depends 
on the pipe roughness and the Reynolds number, which varies with the 
fluid velocity. 

Eq. (2) expresses the local losses Δpl (caused by, e.g., valves) as: 

Δpl =

(
ṁ
Kv

)2

(2)  

where ṁ is the water mass flowrate, and Kv is the valve’s flow coeffi-
cient, given by manufacturers as the mass flowrate under a pressure 
difference of 1 bar. 

The developed method should apply to relatively unknown pipes 
systems, so we assume a constant Darcy friction factor. Eq. (3) expresses 
the combined frictional and local pressure losses Δp in a section of pipe 
as: 

Δp= Δpf +Δpl =
(ṁ

K

)2
(3)  

where ṁ is the mass flowrate, and K is the equivalent flow coefficient, 
representing the circulating mass flowrate under a pressure difference of 
1 bar. 

The proposed method estimates the flow coefficients K and other 
(assumed constant) unknown parameters in the model of the hydronic 
heating system. The method aims to use the estimated flow coefficient to 
guide hydronic balancing and the selection of setpoints for pumps and 
thermostatic devices. 

2.2. Parameter estimation and genetic algorithm 

In the proposed grey-box modelling approach, input and output 
variables are both essentially ‘inputs’ in the parameter estimation pro-
cess. That is, a genetic algorithm iteratively evaluates the model fitness 
by comparing the error between the model variables and the measured 
data while updating the model parameters. Once the parameters are 
sufficiently accurate (i.e. considered to have low enough residual), the 
calibrated grey-box model can simulate and provide ‘virtually sensed’ 
variables for fault detection and diagnosis. 

The open-source Python tool ModestPy, developed by Arendt et al. 
[75], iteratively launches simulations and retrieves results while esti-
mating parameters using a genetic algorithm (GA). The tool simulates an 
imported model as a Functional Mock-Up Unit (FMU). The Functional 
Mock-up Interface (FMI) is a free standard for exchanging dynamic 
models (the FMUs) between software [74]. As input, ModestPy accepts 
an FMU, measured input and output variables, initial guesses, upper and 
lower bounds, and known parameters. The cost function of the genetic 
algorithm is the total Normalised Root Mean Square Error (NRMSE): 

NRMSEtotal =
∑

i

RMSEi

max(Ŷ i) − min(Ŷ i)
(4) 

Fig. 1. Schematic of the full modelling process.  
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where:  

RMSEi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

t=1(Ŷ i(t) − Yi(t))2

N

√

(5) 

The index i represents the output variables of the model (e.g., return 
riser temperature, metered flow, and pump current), N is the number of 
time steps, and Ŷ i(t) and Yi(t) are the measured and modelled values of 
the variable i at time step t, respectively. The algorithm stops when the 
decrease in NRMSE is below a threshold (e.g., 0.001) for a consecutive 
number of generations (e.g., 10) or after reaching the maximum number 
of generations. 

2.3. Fault detection, diagnosis, and improvement 

Simulating the calibrated grey-box model provides virtually sensed 
variables in each room loop (e.g., flowrates, supply/return tempera-
tures, and heat supply). We propose the following processes for diag-
nosis and improvement, which can be iterative: 

1. Analysing the virtual sensor data to detect faults, such as con-
stant flows or suboptimal valve pre-settings leading to poor hydronic 
balance, causing high flows and return temperatures from specific 
loops. 

2. Simulate the grey-box model with realistically improved pa-
rameters, such as lower supply temperature setpoints and improved 
hydronic balancing, to configure the system with greater overall 
efficiency while meeting the demands for comfort. Aggregating the 
heat demand of adjacent rooms may be warranted in some cases, for 
example, if the heater in a room with a high temperature setpoint 
consistently heats adjacent zones with lower setpoints, as this should 
not constrain more efficient operation. 

3. Application to a modern apartment 

Section 3.1 describes a case study apartment with hydronic floor 
heating where the authors tested the proposed method using data from 
the heating system and local heat meter. Section 3.2 describes the model 
representation of the floor heating system in Dymola and the parameter 
estimation procedure using ModestPy. Section 3.3 describes the 
analytical method applied to the case study apartment using the esti-
mated parameters and virtually sensed variables to predict the impact of 
hydronic balancing and supply temperature reduction. 

3.1. Description of the test apartment and collected data 

The apartment is in a DGNB-Gold-certified, multi-family apartment 
building in Copenhagen, Denmark. Constructed in 2017, it has a design 
primary energy demand of 20.2 kWh/m2/year. Its external walls and 
windows have design U-values of 0.12 W/m2K and 0.95 W/m2K, 
respectively. Fig. 2 shows the façade and 85 m2 floorplan of the test 
apartment. 

District heating supplies the hydronic floor heating system in all 
apartments. Each set of supply and return risers distributes heat to six 
apartments. The kitchen/living room has two parallel floor heating 
circuits while all other rooms have one. Fig. 3 shows the system in each 
apartment, modelled in the present work, including the measured and 
virtually-sensed variables. 

A centrifugal pump circulates water through a manifold containing 
open-close valves. Wall-mounted sensors measure each room tempera-
ture, and each valve opens when the room temperature falls below the 
desired setpoint. The risers also supply radiators on the ground floor, 
demanding a relatively high temperature compared to the recom-
mended maximum for floor heating systems (due to the risk of thermal 
discomfort [71] and damage to wooden floors [72]). Therefore, a mixing 
shunt recirculates a share of the return water to reduce the ‘mixed supply 
temperature’ through the floors. A motorised valve controls this tem-
perature according to its setpoint, which the commissioning documents 
specified should not exceed 35 ◦C. The heat meter measures the flowrate 
and supply and return temperatures for water exchanged with the risers, 
computing the heat output. 

Fig. 3 shows the modelling data from the room thermostats, heat 
meter and circulation pump. Table 1 presents the model input and 
output variables. The Status Control Value (SCV) is a boolean variable 
indicating each room’s open-close valve status. The gathered dataset 
included the SCVs, but one could otherwise estimate their values by 
comparing each room’s air temperature and heating setpoint. 

3.2. Grey-box modelling of the hydronic heating system 

Fig. 4 shows the hydronic floor heating system modelled in the 
software Dymola. 

The model did not include the bathroom and toilet loops, as these 
were never active during the data collection period. Occupants typically 
maintain higher air temperature setpoints in these rooms [21], but their 
heat transfer coefficient is often higher due to tiled floors, yielding an 
uncertain effect on return temperatures. Henceforth, ‘all rooms’ or ‘the 

Fig. 2. South-West façade of the building (left, source: [70]) and floor plan of the test apartment (right).  
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entire apartment’ refers to the kitchen/living room and Rooms 1, 2 and 
3. 

The following describes the model of the heating system:  

1. Main circuit and mixing shunt (blue in Figs. 3 and 4). The authors 
modelled the supply and return risers as a fluid source and sink, 
respectively, and provided the measured supply riser temperature as 
an input. Riser pipes are often oversized, limiting their pressure 
losses, so the model assumed a constant pressure difference between 
the risers, dp_riser. A centrifugal pump of type Grundfos Alpha 2 L 
15–60 circulates flow in the apartment, so the pump’s characteristic 
curves in Dymola related the flowrate to the pressure head and pump 
power. The mixing shunt’s flow coefficient, K_checkvalve, depends 
on the unknown pipe diameter and check valve (CV) tuning, so the 
authors identified its value using parameter estimation.  

2. Manifolds and individual loops (orange in Figs. 3 and 4). The 
model assumed a simple flow distributor with no pressure loss for the 
supply manifold and a small mixing volume for the return manifold. 
The actual manifolds have poor thermal insulation, exchanging heat 
with the surrounding air (in the technical closet in the kitchen) and 
between manifolds. In the model, we connected the heat port of the 
return manifold (mixing volume) to the kitchen air temperature and 
supply riser temperature via similar parallel thermal resistances. In 

periods without heat demand, these resistances governed the rate of 
heat loss and the decrease in return riser temperatures. The authors 
estimated relatively high initial resistances and decreased their 
values until the measured and modelled return riser temperatures 
matched during periods without heat demand based on visual in-
spection of the time series data. Each room loop contains a floor 
heating (‘radiant slab’) component from the open-source Modelica 
Buildings Library’s [73], which follows the REHVA floor heating 
modelling scheme [71]. The authors applied typical values for the 
pipe spacing (200 mm), material (PEX), and size (DN12). The test 
building’s documentation provided input data for the modelled floor 
construction: 14 mm wooden floor, 80 mm concrete slab embedding 
the floor heating pipes, 93 mm insulation (λ = 0.046 W/mK) and 
230 mm concrete deck. The authors assumed a constant temperature 
of 23 ◦C below the lowest floor layer to represent the adjacent 
apartment. A boolean SCV signal fully opened or closed each loop’s 
valve. Each loop’s flow coefficient, K_room, depends on the unknown 
pipe properties and valve tuning, so authors identified their values 
using parameter estimation.  

3. Motorised valve and control signal (yellow in Figs. 3 and 4). The 
system regulated flow through a motorised valve (MV) to obtain the 
mixed supply temperature setpoint, T_set_mixed. The model assumed 
a simple proportional controller for the motorised valve due to lack 
of knowledge about the actual controller. The authors assumed that 
its temperature setpoint and proportional gain remained constant 
during the data collection period, using parameter estimation for 
these values and the combined flow coefficient of the return pipe and 
motorised valve, K_motorvalve. 

Table 2 summarises the estimated parameters, including their 
assumed bounds. Manufacturer data sheets provided the basis for the 
initial guess and bounds of the valve flow coefficients. In contrast, the 
estimation bounds for the flow coefficients in each room were deliber-
ately broad to detect poor hydronic balancing. 

Table 3 shows the main parameters of the genetic algorithm. The 
methods applied to the test apartment used data from December 30th, 

2018 to January 30th, 2019. The genetic algorithm ran five times with 
the same initial population (initial guess of the model parameters). The 
mutation and crossover steps can give different generations, increasing 
the chance of reaching the global optimum. The authors trained and 

Fig. 3. Schematic of the modelled heating system with measured and virtually sensed variables.  

Table 1 
Measured data used as model inputs and outputs.  

Variable Description Data granularity Input/output 
of model 

T_supply Supply riser 
temperature (◦C) 

5 min Input 

T_roomX Indoor temperature in 
Room X (◦C) 

5 min and at 
changes >0.5 ◦C 

Input 

SCV_roomX Heating loop valve 
status in Room X 

1 min and at 
changes 

Input 

T_return Return riser 
temperature (◦C) 

5 min Output 

metered_flow Water mass flow from 
riser (kg/s) 

5 min Output 

current Current drawn by the 
pump (A) 

5 min Output  
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validated the model using a 14-day period and subsequent 17-day 
period, respectively. The best of five runs (smallest NRMSE) yielded 
the estimated parameters. 

3.3. Diagnosis and improvement protocol 

The authors ran the calibrated grey-box model using the best- 
estimated parameters to compute the virtually sensed variables (indi-
cated in Fig. 3), offering a virtual heat meter for each room loop 
(including flowrates, supply/return temperatures, and heat supply). The 
diagnosis and improvement procedure occurred in three phases:  

1. Inspecting the virtual sensor data to detect faults. Section 4.2 
compares the virtual sensors’ time-series data to best practice values 
from industry guidelines and design values from the building’s 

Fig. 4. Apartment heating system modelled in Dymola.  

Table 2 
Model parameters estimated in the grey-box model.  

Parameter Description Unit Estimation bounds: 
[guess; min; max] 

K_checkvalve Flow coefficient of shunt kg/s at 
1 bar 

[2.2; 0.4; 7.0] 

K_motorvalve Flow coefficient of return 
pipe 

kg/s at 
1 bar 

[0.6; 0.4; 1.4] 

K_kitchen Flow coefficient of each 
kitchen loop 

kg/s at 
1 bar 

[0.18; 0.07; 10] 

K_room1 Flow coefficient of Room 
1 loop 

kg/s at 
1 bar 

[0.18; 0.07; 10] 

K_room2 Flow coefficient of Room 
2 loop 

kg/s at 
1 bar 

[0.18; 0.07; 10] 

K_room3 Flow coefficient of Room 
3 loop 

kg/s at 
1 bar 

[0.18; 0.07; 10] 

gain Proportional gain of the 
MV controller 

– [0.15; 0.1; 0.25] 

T_set_mixed Mixed supply 
temperature setpoint 

◦C [45; 32; 50] 

dp_riser Riser differential pressure Pa [10,000; 0; 40,000]  

Table 3 
Parameters of the genetic algorithm.  

Simulation parameter Value 

Learning period 14 days 
Validation period 17 days 
Max. number of generations 40 
Population size per generation 50 
Tournament size 7 
Mutation rate 0.01  
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documentation to detect hydronic imbalances (i.e., faulty pre- 
settings).  

2. Lowering the mixed supply temperature setpoint with the 
existing hydronic balance. Section 4.3 presents the feasibility of 
reducing the mixed supply temperature setpoint without changing 
the hydronic balance. Simulating the model with constant flow 
through each room loop (i.e. valves always open) and a lowered 
mixed supply temperature setpoint yields a corresponding maximum 
obtainable heat output in each room. We compared these obtainable 
heat outputs to the original heat demands to identify the lowest 
suitable setpoint that maintains the same heat output.  

3. Lowering the mixed supply temperature setpoint after 
improving the hydronic balance. Section 4.4 presents our model- 
based approach for adjusting the flows to improve the hydronic 
balance – e.g., by adjusting the circulation pump setting or the in-
dividual loop pre-settings on the control valves [76]. A proper hy-
dronic balance is necessary to achieve low return temperatures in 
systems supplied by district heating or heat pumps [77]. The 
balancing strategy included the second step above, minimising the 
mixed supply temperature setpoint while satisfying the heat demand. 
The results in all cases focused on the return riser temperatures. 

The measured supply riser temperature often decreased due to heat 
loss when there was no active flow, corresponding to periods where the 
measured SCV values for all loops were equal to zero (all valves closed). 
When simulating scenarios with constantly open loop valves, we applied 
a 3-h moving average to the supply riser temperature and maintained 
the last value when there was no active flow (i.e., the average supply 
riser temperature over the 3 h before the drop in flow). Fig. 5 shows the 
original and transformed time-series data for the supply riser 
temperature. 

4. Results 

4.1. Estimated parameters 

The five parameter estimation runs (described in Section 3.2) yielded 
the model with the lowest total NRMSE. Each estimation runs calculated 
the NRMSE of the three output variables by dividing the RMSEs by the 
means of the measured data series. The total NRMSE was the sum of the 
three output variables’ NRMSEs. Table 4 presents each NRMSE for the 
model with the lowest total. The return temperature was the variable 
with the highest NRMSE, contributing the most to the cost function, but 
the parameter estimation process could not achieve a lower error. 

Table 5 shows the final parameters and total NRMSE. 
The listed flow coefficient for the kitchen/living room is for one of its 

two identical loops. Therefore, the room’s total flow coefficient is double 
its estimated value, K_kitchen. The grey-box method estimated compa-
rable flow coefficients in all three bedrooms. The estimated riser dif-
ferential pressure was relatively low at only 2 kPa. The estimated flow 
coefficient K_motorvalve connecting the return manifold to the return 
riser was much lower than the shunt loop K_checkvalve, implying a high 
share of recirculation. The estimated mixed supply temperature setpoint 
was 45.6 ◦C, much higher than the design value of 35 ◦C. However, it 
was realistic considering the measured return riser temperature reached 
as high as 42 ◦C. 

Fig. 6 compares the calibrated model with the corresponding 
measured data. The model accurately represented the metered flow and 
pump current but underestimated the return riser temperature. The bias 
was roughly − 3 ◦C at a maximum, and the difference between measured 
and modelled energy-weighted return riser temperatures was − 1.4 ◦C 
for the entire period. The authors could not reduce the bias without 
harming the accuracy of the other two output variables while staying 
within the estimation bounds. Section 5 discusses the consequences of 
this error. The model acceptably represented the metered flow and 
pump current (directly linked to the total flow through the floor loops), 
enabling an evaluation of the system’s hydronic balance. 

4.2. Fault diagnosis comparing virtually sensed variables to expected 
values 

Fig. 7 shows the virtual sensor data in the four main rooms. The 
virtually-sensed return temperature in all three bedrooms reached 
38–40 ◦C when the mixed supply temperature was roughly 41 ◦C, 
indicating low cooling. The virtually-sensed cooling in Room 3 was the 
smallest of all rooms. It was rarely more than 1.5 ◦C, whereas the 
standard dimensioning assumption is generally 5 ◦C for floor heating 
[78]. The return temperature from the kitchen/living room loops was 
lower than from the other rooms, but it never reached a steady-state 
before its flow was deactivated. 

The virtually-sensed flows in Rooms 1, 2 and 3 were always above 
0.1 kg/s, whereas standard dimensioning practice would suggest 0.02 
kg/s (based on their design heat loss and supply/return temperatures of 
35/30 ◦C [79]). Each of the bedrooms’ floor heating outputs peaked 
between 400 and 600 W, and their floor surface temperatures reached 
27–28 ◦C – close to the upper comfort limit [71] and slightly above the 
recommended maximum of 27 ◦C for wooden floors [72]. When active, 
the kitchen/living room’s floor surface temperature reached 26–28 ◦C, Fig. 5. Supply riser temperature data transformation.  

Table 4 
NRMSE of each output variable for the model 
with the lowest total NRMSE.  

Variable NRMSE 

T_return 0.084 
flow_partial 0.037 
current 0.050 
TOTAL 0.171  

Table 5 
Estimated parameters.  

Parameter Unit Estimated value 

K_checkvalve kg/s at 1 bar 2.88 
K_motorvalve 0.44 
K_kitchen 0.17 
K_room1 0.22 
K_room2 0.20 
K_room3 0.22 
dp_riser Pa 2051 
gain – 0.18 
T_set_mixed ◦C 45.6 
NRMSE  0.171  
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and each of its loops peaked at 500–700 W. 
Table 6compares the virtually-sensed values to the design practice 

values. This diagnosis depends on the model’s accuracy, so the sys-
tematic underestimation of the return riser temperature may bias the 
results (further discussed in Section 5). 

4.3. Potential for decreasing the mixed supply temperature setpoint 

The estimated mixed supply temperature setpoint (45.6 ◦C) was 
substantially higher than the design value (35 ◦C). Before reducing this 
setpoint (Section 4.3.2), we must consider whether a high heating in-
tensity was necessary to satisfy abnormal demand (e.g., due to high 
thermal losses or indoor temperature setpoints) and whether a lower, 
more stable heating intensity could satisfy the occupants’ comfort 
requirements. 

4.3.1. Analysis of heat operation and indoor temperature in the rooms 
Fig. 8 shows the measured air temperature, temperature setpoints, 

and floor heating status in the four main rooms over ten days in the 
studied period (January 2019). The programmable thermostat decreases 
the setpoint temporarily in response to rapid decreases in room tem-
perature, so the large drops in the kitchen/living room setpoint are due 
to window openings. 

The mixed supply temperature setpoint yielded a high heating in-
tensity, increasing the air temperature by 1 ◦C over six to 12 h despite 
the high thermal lag of the concrete construction. Other than in Room 3, 
the high heating intensity excessively heated the floors, yielding in-
tervals of 1–2 days between heating periods. Operating the floor heating 
with lower temperatures would allow shorter intervals between heating 
periods, providing a more stable delivery with lower peaks. 

From January 10th to January 15th, Room 3 and the kitchen/living 

room had the same indoor temperatures despite having a 1 ◦C difference 
in setpoints. The floor heating loop was constantly active in Room 3 and 
never active in the kitchen/living room during this period. It seems 
likely that Room 3 heated the adjacent kitchen/living room, perhaps 
explaining why the heat output in Room 3 sustained roughly 400 W for 
periods of several days throughout much of January, as Fig. 7 showed. 

4.3.2. Decrease in mixed supply temperature setpoint 
Fig. 9 compares the results of simulations with lowered mixed supply 

temperature setpoints and constant flow through all loops (red curves) 
to the 2-day moving average of the actual heat demand (cyan curve) – 
two days was roughly the period between open-close cycles. For refer-
ence, the figure includes each room’s design heat demand at an outdoor 
temperature of − 12 ◦C with no internal heat gains (black dashed line). 
Lowering the setpoint could satisfy the demand without compromising 
comfort in all but Room 3. However, Section 4.3.1 indicated that Room 3 
often heated the kitchen/living room. Therefore, limiting Room 3’s heat 
output to its design value would help avoid overheating adjacent rooms, 
forcing the kitchen/living room to heat itself. 

As expected, a mixed supply temperature setpoint of 35 ◦C to 37 ◦C 
could satisfy the design heat demand in each room, which was consistent 
with the construction documents (35 ◦C). Moreover, a supply tempera-
ture of 33 ◦C or less could satisfy the actual heat demand in the kitchen/ 
living room. However, the peaks in actual demand in all three bedrooms 
exceeded the design value, requiring supply temperatures of 37 ◦C, 
40 ◦C, and more than 45.6 ◦C, respectively. In some cases, the cause for 
exceeding the design values was unclear, but indoor temperature set-
points exceeding 20 ◦C (i.e. the design value) could only account for a 
small share of the increase. 

To account for the unintended heating of adjacent rooms, one can 
combine the rooms’ heat demands and repeat the procedure at the 

Fig. 6. Measured and modelled output variables of the model.  
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apartment scale. Fig. 10 shows that a mixed supply temperature setpoint 
close to 33 ◦C and not higher than 35 ◦C should be sufficient to provide 
the required heat throughout January, which was the coldest month of 
the year. 

Table 7 shows the energy-weighted and maximum return riser tem-
peratures with lowered mixed supply temperature setpoints. A mixed 
supply temperature setpoint of 35 ◦C, as suggested by Fig. 10, could 
decrease the return riser temperature to 31.3 ◦C – a reduction of roughly 
6 ◦C from current conditions. 

4.4. Additional strategies for return temperature reduction 

Table 5 showed that the room loops’ virtually-sensed flows were 
much larger than the recommended design practice. Reducing these 
flows could provide ideal cooling and reduce the return riser tempera-
ture, so the authors investigated the following:  

1. Changing the pump curve. The pump operated with a proportional 
relationship between pressure head and flow, but the user could 
choose between two differently sloped curves. Switching to the curve 
with the lower pressure head would reduce the flows in all loops.  

2. Balancing the system by decreasing the flow coefficients of 
specific loops. Assuming that one could change the pre-settings on 

Fig. 7. Times series of the virtually sensed variables.  

Table 6 
Comparison between estimated variables and best practice.  

Variable Virtually-sensed 
values 

Reference 
values 

Reference source 

Mixed supply 
temp. 
setpoint 

45.6 ◦C 35 ◦C Design values 
(construction project 
documentation) 

Cooling in the 
loops 

bedrooms: around 
2 ◦C 
living room: 5 ◦C 

5 ◦C Industry guidelines 
[78] 

Water flows in 
the loops 

0.08–0.13 kg/s 0.01–0.03 
kg/s 

Industry sizing tool 
[79] 

Heat output 
from the 
floor 

bedrooms: 400–600 
W peak, 400 W in 
avg. when active 
living room: 
500–750 W peak, 
360 W in avg. when 
active 

bedrooms: 
250–350 W 
living room: 
460 W 

Design values 
(construction project 
documentation) 

Floor 
temperature 

26 to 29 ◦C 19 to 29 ◦C 
for comfort 
27 ◦C for 
wooden floor 

REHVA guidebook 
[71] 
Floor manufacturer 
[72]  
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Fig. 8. Indoor air temperature, temperature setpoint and floor heating loop status during ten days in January 2019.  

Fig. 9. Modelled heat output delivered with different mixed supply temperature setpoints in each room (with all floor heating loops active), modelled heat demand 
and design heat demand. 
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the return manifold’s control valves, one could reduce the flow co-
efficients of the loops with excessive flows. The authors artificially 
decreased the flow coefficients and corresponding flows until they 
matched the suggested values from a dimensioning tool [79]: 0.022 
kg/s in each kitchen/living room loop, 0.017 kg/s in Room 1 and 
0.012 kg/s in Rooms 2 and 3. Fig. 11 shows the two pump curves and 
the system curve before and after balancing, and it highlights the 
operating points in the three scenarios (with all room loops active). 

Both scenarios repeated the procedure in Section 4.3: lowered mixed 
supply temperature setpoints with all floor heating valves open to find 
the minimum feasible setpoint after aggregating all heat demand. Fig. 12 
provides an overview of each scenario’s energy-weighted return riser 
temperature for the entire period. 

The lower pump curve had a limited impact on the return riser 
temperature without improving the hydronic balance. Balancing the 
system significantly reduced the energy-weighted return riser temper-
ature at any mixed supply temperature. Reducing the mixed supply 
temperature setpoint to 37 ◦C yielded a return riser temperature of 
31 ◦C, which is 6.5 ◦C less than the existing system. Surprisingly, after 
hydronic balancing, the design mixed supply temperature setpoint from 
the construction documents (35 ◦C) did not satisfy the apartment’s heat 
demand. However, the model’s inability to accurately represent the 
shunt operation yielded a discrepancy between the mixed supply tem-
perature setpoint and its realised value. For instance, a setpoint of 35 ◦C 
did not provide a mixed supply temperature higher than 32.5 ◦C, which 
may be too low to satisfy the apartment’s heat demand. Section 5 dis-
cusses this in more detail. 

Moreover, reducing the flows to their design values reduced the 
required pump power by a factor of three. The position of the new 
system curve (far left in Fig. 11) indicates that the pump was likely over- 
dimensioned, so perhaps a smaller model could replace it. 

Reducing a single apartment’s space heating return temperature 
from 37.5 ◦C to 31 ◦C would provide insignificant energy savings on its 
own. However, a similar result for all apartments would decrease dis-
tribution losses and increase heat production efficiencies (e.g., increased 
flue gas condensation in biomass boilers). Using the performance curves 
from Ref. [80] for a biomass boiler with a fuel water content of 0.4 kg/kg 
and a heat exchange efficiency of 85%, we estimate that such a return 
temperature reduction would lead to a 3% increase in the thermal en-
ergy output of the boiler. A more detailed investigation could refine this 
number, adding the impact of lower distribution heat losses from return 
pipes and evaluating the benefits of lower supply temperatures, espe-
cially for low-temperature heating systems based on renewable energy 
sources and excess heat. 

Fig. 10. Modelled heat output delivered with different mixed supply temperature setpoints in the whole apartment (with all floor heating loops active), modelled 
heat demand and design heat demand. 

Table 7 
Energy-weighted and maximum return riser temperatures with lowered mixed 
supply temperature setpoints and all floor heating loops active.  

Mixed supply 
temperature setpoint 
(◦C) 

Energy-weighted mean 
return riser temperature (◦C) 

Maximum return riser 
temperature (◦C) 

45.6 37.5 38.7 
43 36.4 36.9 
40 34.4 34.9 
37 32.5 33.0 
35 31.3 31.8 
33 30.2 31.5  

Fig. 11. Pump curves and operating points of the successive improve-
ment scenarios. 

Fig. 12. Energy-weighted mean return riser temperatures in different flow 
reduction scenarios and with different mixed supply temperature setpoints. 
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5. Discussion 

The virtual sensors’ reliability depended on the model’s accuracy. 
The model needed to ensure a large share of recirculated flow to match 
the measured pump current and return flow, which reduced the mixed 
supply and return riser temperatures. The modelled return riser tem-
perature was systematically 1.4 ◦C lower than was measured. The au-
thors could not eliminate this bias by adjusting the parameters or 
estimation bounds, likely due to assumptions about the heating system’s 
design and control. Reliable information about the operating conditions 
could improve the accuracy and reliability. For example, the model 
combined the measured pump current and modelled pump curve to 
determine the pump’s circulated flow. This proxy required manual 
specification of the pump curves, adding some uncertainty. Moreover, 
the grey-box method estimated the shunt’s control parameters (i.e., 
mixed supply temperature setpoint and controller gain), but someone 
with access to the system and its datasheets could identify these values, 
limiting the number of estimated parameters. In practice, they could 
further improve the parameter estimation process by varying the control 
setpoints to excite the system, thereby expanding the range of operating 
conditions for training the model. Furthermore, decreasing the mixed 
supply temperature setpoint before reiterating the grey-box method 
could improve the model’s accuracy in the range of the lower mixed 
supply temperatures. 

The proposed grey-box method uses data from hydronic heating 
systems, smart heat meters, and smart room thermostats to virtually 
sense the flows and return temperatures from each room loop – a kind of 
virtual heat meter for every room. One can compare a room’s virtually- 
sensed heating power to its dimensioned value to detect overuse (e.g., 
heating adjacent rooms; concurrent heating and ventilative cooling; 
stuck-open valves). Similarly, one can compare a loop’s virtually sensed 
flows, flow coefficients, or cooling to its dimensioned values to detect 
poor hydronic balance, informing specific changes to the valve’s pre- 
settings. The grey-box method can also indicate the minimum mixed 
supply temperatures that satisfy the demand for heating and can readily 
predict the effect of reducing the pump settings – something building 
operators often fear. 

The virtual sensors indicated that the mixed supply temperature and 
individual loops’ flows were excessive, forcing the system to operate 
with a high heating power. One could deduce the same findings by in-
spection. The measured return riser temperature was systematically 
above 40 ◦C when at least one loop was active, showing that the mixed 
supply temperature setpoint was at least 40 ◦C and likely higher than 
42 ◦C. As Fig. 6 shows, on December 30th, 2018, active heating in only 
the kitchen/living room yielded a metered flow of roughly 0.06 kg/s, 
while active heating in only Room 2 yielded a metered flow of roughly 
0.03 kg/s. Adding recirculation, the room loops’ flows must have been 
even greater, exceeding their design flows by a sizable margin (ac-
cording to a dimensioning tool [79]: 0.044 kg/s in the kitchen/living 
room; 0.017 kg/s in Room 2). A rule-based fault detection and diagnosis 
algorithm could identify these faults without requiring the proposed 
grey-box method. However, it would not determine the minimum 
feasible supply temperature and pump setting while predicting the 
impact of specific balancing measures on the energy-weighted return 
temperature. 

In addition to the pump data, the grey-box method required the floor 
area of the different rooms (easy to obtain) and information about the 
floor construction and pipe layout. However, one may apply averages 
for a given building type and construction year. Therefore, one could 
reasonably apply the grey-box method to other buildings. In this study, 
the authors applied the proprietary software Dymola. However, one 
could use open-source Modelica-based software to implement the grey- 
box method. 

6. Conclusion 

This paper presents a novel grey-box method for detecting and 
diagnosing operational faults constraining the low-temperature opera-
tion of hydronic floor heating systems. The grey-box model requires data 
from the room thermostats, heat meter, and circulation pump if one 
exists. It virtually senses the flows, flow coefficients, heat fluxes, and 
return temperatures in each room loop of the heating system. The au-
thors applied the method to a modern Danish apartment. The identified 
grey-box model was reasonably accurate concerning the error between 
the modelled and measured return riser temperatures, metered flows, 
and pump currents, yielding NRMSE values of 0.084, 0.037, and 0.050 
respectively, for a total of 0.171. The return riser temperature was the 
least accurate of the three variables, giving a systematic error (1.4 ◦C on 
average). The virtual sensors indicated excessive supply temperatures 
and poor hydronic balance, causing high return temperatures and flow 
rates in each loop. The grey-box model predicted the impact of 
improvement strategies to reduce these temperatures and flowrates, 
namely reducing the pump setting, decreasing the mixed supply tem-
perature setpoint, and adjusting the valves’ pre-settings to decrease the 
flow coefficients. These improvement measures reduced the modelled 
energy-weighted supply and return temperatures by 8.6 ◦C and 6.5 ◦C 
respectively. In addition to improving heat production and distribution 
efficiency, lowering the system temperatures can help reduce peak loads 
and unintended heating of adjacent rooms while stabilising indoor 
temperatures. Occupants and operators could broadly apply such 
continuous commissioning tools to ensure efficient operation of resi-
dential heating systems. 

Concerning future work, the grey-box method could become more 
accurate with knowledge of the mixed supply temperature setpoint and 
direct measurements of the heating system’s total flows. In a system 
without a local mixing loop in each apartment, the heat meter would 
provide both values and perhaps also the pressure difference (between 
supply and return), demanding a simpler model with fewer estimated 
parameters. The authors are working to establish such models. Ulti-
mately, the grey-box methods could enable an automated service for 
continuous commissioning of hydronic floor heating systems in modern 
apartments, guiding operators with precise instructions to optimise 
performance. Such a tool could minimise the return temperature pen-
alties for end-users and the overall costs for societies’ transition to low- 
temperature district heating based on renewable energy sources. 
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