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Abstract

During speech production, the movement of speech articulators creates visual
signals that are temporally aligned with the acoustic speech signal. These vi-
sual speaker cues have been found to facilitate speech perception in humans,
especially in noisy auditory environments such as "cocktail-party" scenarios.
Besides facilitating human speech perception, it is also well established that
machines can learn to utilize visual speaker cues to inform auditory representa-
tions of speech. Visual speaker cues from target speakers have thus been shown
to improve the performance of both automatic speech recognition systems
and speech separation systems in contrast to audio-only systems. However,
while many studies have investigated the temporal correspondences between
auditory and visual signals, there is still a lack of knowledge about the nature of
these audiovisual (AV) cues and how the two modalities are related.

This thesis aimed to contribute to a better understanding of the relation-
ship between auditory and visual cues created during speech production. By
utilizing recent advances in computer vision and data-driven approaches, nat-
ural AV speech was investigated across thousands of speakers. First, using a
linear canonical correlation analysis (CCA), two primary temporal ranges of
envelope fluctuations related to facial motion across speakers were identified.
Amplitude envelope modulations distributed around 3-4 Hz were related to
mouth openings, whereas 1-2 Hz modulations were related to more global face
and head motion. Next, nonlinear neural networks were trained through a
self-supervised learning scheme to learn correlated AV embeddings from natu-
ral AV speech videos. Highly correlated AV features primarily located around
the mouth and jaw were identified. Based on these insights, it was examined
whether the different AV features could assist a speech separation model in
extracting the acoustic speech stream of a target talker from multi-talker audio
mixtures. More correlated AV feature embeddings translated to better speech
separation performance. Notably, the speech separation models achieved a per-
formance comparable to more computational complex systems while showing
promise for real-time implementation.

Overall, this thesis provided new insights into how auditory and visual
speech cues are related and showed their usefulness in audiovisual speech
separation.
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Resumé

Under taleproduktion danner bevægelsen af taleartikulatorer visuelle signaler
som tidsmæssigt matcher variationer i det akustiske talesignal. Disse visuelle
cues har vist sig at fremme taleforståelsen hos mennesker, specielt i lydmæssigt
støjende miljøer såsom "cocktail-party"scenarier. Udover at fremme menneske-
lig taleforståelse, så er det også veletableret at maskiner kan bruge visuelle cues
til at informere auditive repræsentationer af tale. Visuel information om taleren
har således vist at forbedre både automatiske talegenkendelsessystemer og
taleseparationssystemer i modsætning til traditionelle systemer der kun proces-
serer lyden. Mens mange studier har undersøgt de tidsmæssige sammenhænge
mellem audio- og video-signaler, er der stadig mangel på viden om karakteren
af disse audiovisuelle (AV) cues, og hvordan de to modaliteter hænger sammen.

Denne afhandling har til formål at bidrage til en bedre forståelse af sammen-
hængen mellem auditive og visuelle signaler skabt under taleproduktion. Ved at
bruge de seneste fremskridt inden for computervision og datadrevne metoder
kunne naturlig AV-tale undersøges på tværs af tusindvis af talere. Først præ-
senteres en lineær kanonisk korrelationsanalyse, der identificerer to primære
frekvensområder for envelope-fluktuationer, der korrelerer ansigtsbevægelser
på tværs af talere. Amplitude envelope-modulationer fordelt omkring 3-4 Hz var
temporalt associeret med mundåbninger, hvorimod 1-2 Hz modulationer korre-
lerede mere med globale ansigts- og hovedbevægelser. Dernæst blev nonlineære
neurale netværk trænet gennem et self-supervised læringsskema til at lære kor-
relerede AV-embeddings fra naturlig AV-tale video. Højt korrelerede AV-features
blev primært identificeret omkring mund og kæbe. På baggrund af disse fund
blev det undersøgt om forskellige AV-features kunne hjælpe en taleseparations-
model til at udtrække den akustiske talestrøm fra en bestemt taler fra multi-taler
lydblandinger. Højere korrelerede AV-feature-embeddings medførte til en bedre
taleadskillelsesperformance. Navnlig opnåede taleseparationsmodellerne en
performance der kan sammenlignes med mere beregningsmæssige komplekse
systemer og viste samtidigt lovende resultater for realtidsimplementeringer.

Samlet set gav denne afhandling ny indsigt i hvordan auditive og visuelle
cues er relaterede og viste deres anvendelighed i audiovisuel taleseparation.
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1
General introduction

1.1 Audiovisual cues during speech communication

It is well known that seeing a talker’s face can improve the comprehension of

auditory speech compared to listening without visual inputs (Sumby and Pol-

lack, 1954). Especially in noisy settings, speech comprehension is improved if

the talker’s articulatory gestures are visible to the perceiver (Erber, 1975; Helfer,

1997; MacLeod and Summerfield, 1987; Ross et al., 2007; Schwartz et al., 2004)

and improve comprehension when communicating semantically complex mes-

sages (Arnold and Hill, 2001; Reisberg et al., 1987). Seeing the face of a speaker

has also been shown to ease speech recognition in hearing-impaired as well

as cochlear implant listeners (Grant et al., 1998; Rouger et al., 2007; Schorr

et al., 2005). While seeing the face of the talker in many cases benefits the lis-

tener, situations can arise where the visual integration can cause illusory effects

(McGurk and MacDonald, 1976). The "McGurk illusion" represents a famous

illusion of this, which was accidentally discovered when McGurk and MacDon-

ald (1976) observed that an auditory ’ba’ sound presented together with a visual

presentation of a ’ga’ caused the listeners to hear an illusory ’da’ sound.

Access to visual cues does not only help human auditory perception but

can also inform machine hearing. In particular, video information can greatly

enhance the performance of automatic speech recognition (ASR) or speech

separation (SS) systems (Girin et al., 2001; Ochiai et al., 2019; Potamianos et al.,

2003). As in human perception, access to visual information allows artificial

systems to extract representations of a target speech source in a noisy acoustic

background (Afouras et al., 2020). In recent years, AV speech separation systems

based on deep neural networks have outperformed traditional statistical ap-

proaches (Michelsanti et al., 2021). Deep neural network (DNN)-based speech

separation or speech enhancement systems benefit from the abundance of

readily available AV data, which has made it possible to train better performing

and more complex deep learning models (Afouras et al., 2018a,b, 2020; Ephrat

1



2 1. Introduction

et al., 2018).

Nevertheless, while both humans and machines can utilize visual cues to

inform auditory representations of speech, there is still a lack of knowledge

about what those cues are. It is generally assumed that temporal correspon-

dences between auditory and visual signals are pivotal. During speech pro-

duction, the movement of speech articulators creates visual signals that are

temporally aligned with the speech signals. Deciphering the underlying rela-

tionship between the facial movements and the resulting speech has therefore

attracted attention. Using infrared emitting diodes on talking faces, Munhall

and Vatikiotis-Bateson (1998) tracked the face’s movements and found that

vertical facial motions tend to be below 10 Hz. Müller and MacLeod (1982)

found that facial movements during speech tended to be dominated by slow

quasiperiodic motion below 10 Hz. Ohala (1975) studied the jaw motion during

oral reading and concluded that the primary spectral peak of the movements

was around 4 Hz. Although variation across languages and speakers exists,

these results have been found to correspond well with the average rate at which

syllables are produced in natural speech (Goswami and Leong, 2013; Jacewicz

et al., 2009; Pellegrino et al., 2011; Varnet et al., 2017). While the motions related

to speech production usually tend to move at rates around 4 Hz, larger and

slower head movements, such as head nodding and eyebrow movements, have

been found to be related to prosodic speech events (Guaïtella et al., 2009; Hadar

et al., 1984; Hadar et al., 1983; Kim et al., 2014; McClave, 1998). Extraoral facial

movements also provide valuable cues for speaker identification, especially if

oral cues are absent (Thomas and Jordan, 2004).

Generally, the motion of orofacial articulators during speech production

is correlated with amplitude envelope fluctuations in the acoustic speech in

the 1-8 Hz range (Chandrasekaran et al., 2009; Ding et al., 2017; Munhall and

Vatikiotis-Bateson, 1998). Using video data of talking speakers, Chandrasekaran

et al. (2009) estimated the correspondence between wideband envelopes and

the mouth area and found a strong correlation in the range 2-7 Hz. However, it

is not yet well understood at what rates speech modulations correlate to visible

movement in different parts of the talker’s face or head. More generally, the

range of temporal AV correspondences that humans and machines can exploit

is still not well explored.

A more solid knowledge of the AV statistics that underlie human and ma-

chine perception could also lead to better and more lightweight AV feature
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representations. Such feature representations might be vital in implementing

real-time AV speech separation systems in low-resource applications, such as

hearing assistive devices and smart devices.

1.2 Audiovisual speech separation

Both humans and machines experience difficulties in extracting a specific sound

source in noisy environments (Michelsanti et al., 2021; Shinn-Cunningham and

Best, 2008). Thus, potential applications for systems capable of extracting target

sounds from noisy audio mixtures are countless, making it an attractive research

topic.

Audio-only speech separation systems often perform relatively well when

the background noise is stationary, making it easily distinguishable from the

speech (Wang and Chen, 2018). However, audio-only speaker-independent

speech separation systems suffer from the "source permutation problem" that

arises when the separated speech signals are inconsistently assigned to the

sources (Michelsanti et al., 2021). By including the visual information related

to the talker, source separation becomes less of a problem, as the system can

utilize the visual information to extract the target speech. Furthermore, the

visual information typically is unaffected by noisy actions in the acoustic scene,

making it a reliable supporting signal. Similar to what has been observed in

humans, including visual information also makes AV speech separation systems

perform better than audio-only systems (Michelsanti et al., 2021). While early-

generation AV speech separation systems were based on traditional statistical

approaches, the recent amount of readily available AV data have made it easier

to train better performing and more complex deep learning models (Afouras et

al., 2018a,b, 2020; Ephrat et al., 2018). These systems, however, often only work

in offline settings and are too computational heavy to be implemented in low-

resource devices, which greatly reduces the number of potential applications

for such systems.

A general approach to train AV speech separation models is to use carefully

designed low-level AV features, such as Mel Frequency Cepstral Coefficients

(MFCCs) and facial landmark-based features. These low-level AV features are

distilled versions of the original audio and video data that have properties

thought to be beneficial for speech separation models’ ability to perform speech

separation. It is, however, not guaranteed that the low-level AV features are
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optimal for speech separation. Contrary to training on low-level AV features,

recently proposed AV speech separation models based on DNNs have been

trained directly on raw visual and acoustic signals (Ideli et al., 2019; Wu et al.,

2019). When training directly on raw input data, the neural networks are forced

to distill the audio and video information into AV features that enable speech

separation. Training directly on raw input data is usually a computationally

demanding task that requires much training data, but it can potentially lead

to specifically optimized AV features. Analyzing the AV features learned by

the neural networks might, therefore, assist in understanding how the two

modalities are related (Aldeneh et al., 2021; Ravanelli and Bengio, 2018a).

1.3 Overview of the thesis

This thesis aims to contribute to a better understanding of the relationship

between audio and visual cues created during speech production. AV speech

is investigated using data-driven approaches that enable the analysis across

thousands of speakers. It is examined whether visual speech cues that are

correlated with auditory speech can be exploited for better speech separation.

A speech separation system is presented that uses visual speaker cues to extract

the corresponding speech from single-channel audio mixtures.

In Chapter 2, a large-scale analysis of natural AV speech is presented. Canon-

ical correlation analysis (CCA) is used to decompose the facial movements con-

stituting speech production and to identify the modulation transfer function of

each of these decomposed facial movements. CCA is also used to decompose

the audio signal in the envelope domain to investigate which envelope rates are

related to facial movement in different parts of the face. The analysis is based on

recent technological advances in deep learning to estimate three-dimensional

(3D) facial landmarks on two large-scale AV speech datasets, which enables

the analysis of many hours of natural AV speech video. Compared to studies

based on, e.g., manual motion tracking, this approach allows the study of natu-

ral AV statistics on a larger scale and the investigation of how AV correlations

generalize across many speakers.

Chapter 3 extends the linear CCA approach in chapter 2 by using non-linear

neural networks to learn AV correspondences. A self-supervised approach is

presented to train interpretable AV-based convolutional neural networks (CNNs)

directly on raw video and audio inputs. Two AV fusion models are trained and
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compared. Both models are trained to maximize the correlation between AV

feature embeddings when the segments are temporally aligned while trained to

minimize the correlation when the segments are misaligned. In one approach,

standard one-dimensional (1D) convolutions are employed. In the second

approach, sinc-based convolutions are employed to ease the interpretability of

the learned audio filters. Besides analyzing the AV feature representations, the

proposed network architecture also allows the visualization of which aspects of

the raw input data the AV network focuses on.

In Chapter 4, it is investigated how the findings from chapter 2 and chapter 3

can be utilized for automatic speech separation. The AV features learned by CCA

(in chapter 2) and the deep sincnet (from chapter 3) are compared, along with

a novel AV fusion strategy. It is hypothesized that higher AV correlation in the

feature embeddings should provide for a strong input in the downstream task

of speech separation. To test this, speech separation models are trained to use

visual feature embeddings from target speakers as guiding signals to help the

models extract the target speech from single-channel audio mixtures. The per-

formance of the AV speech separation system is evaluated in different acoustic

conditions, and perspectives for real-time implementations are discussed.

Finally, Chapter 5 summarizes the main results, discusses their implications,

and explores future directions for data-driven analyses of AV speech.
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2
Modulation Transfer Functions for

Audiovisual Speecha

Abstract

Temporal synchrony between facial motion and acoustic modu-

lations is a hallmark feature of audiovisual speech. The moving

face and mouth during natural speech are known to be correlated

with low-frequency acoustic envelope fluctuations (below 10 Hz),

but the precise rates at which envelope information is synchro-

nized with motion in different parts of the face are less clear. Here,

we used regularized canonical correlation analysis (rCCA) to learn

speech envelope filters whose outputs correlate with motion in dif-

ferent parts of the speaker’s face. We leveraged recent advances in

video-based 3D facial landmark estimation, allowing us to exam-

ine statistical envelope-face correlations across a large number of

speakers (∼4000). Specifically, rCCA solutions were regularized to

learn modulation transfer functions (MTFs) for the speech enve-

lope that significantly predict correlation with facial motion across

speakers. The AV analysis revealed bandpass speech envelope filters

at distinct temporal scales. A first set of MTFs showed a peak around

3-4 Hz and were correlated with mouth movements. A second set

of MTFs captured envelope fluctuations in the 1-2 Hz range corre-

lated with more global face and head motion. The two distinctive

timescales emerged only as a property of natural AV speech statis-

tics across many speakers. A similar analysis of fewer speakers per-

forming a controlled speech task highlighted only the well-known

temporal modulations around 4 Hz correlated with orofacial mo-

a This chapter is based on Pedersen, N. F., Dau, T., Hansen, L. K., and Hjortkjær, J. “Modulation

Transfer Functions for Audiovisual Speech” (in prep).
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tion. The different bandpass ranges of AV correlation align notably

with the average rates at which syllables (3-4 Hz) and phrases (1-2

Hz) are produced in natural speech. Whereas periodicities at the

syllable rate are evident in the envelope spectrum of the speech sig-

nal itself, slower 1-2 Hz regularities thus become prominent when

considering AV signal statistics. This may indicate a motor origin of

temporal regularities at the timescales of syllables and phrases in

natural speech.

2.1 Author summary

Natural speech signals are dominated by slow fluctuations (<10 Hz) in the acous-

tic speech envelope. A peak in modulation energy around 3-4 Hz corresponds

to the average rate at which syllables are produced in natural speech, but speech

carries temporal information at multiple timescales. Here, we show that audio-

visual speech statistics derived from natural speech across many speakers reveal

different and distinct timescales of envelope fluctuations correlated with differ-

ent kinematic components of the speaker’s face. Using regularized canonical

correlation analysis, we analyzed a comprehensive natural speech video dataset

to derive modulation transfer functions for the speech envelope conditioned on

correlations with facial motion. Distinct timescales of audiovisual correlation

emerged: (i) speech envelope fluctuations around 3-4 Hz correlated with mouth

openings, as expected, and (ii) slower 1-2 Hz envelope fluctuations correlated

with more global face movements. These different envelope frequency regions

align notably with the timescales of syllables and phrases in natural speech

and may point to a motor origin of temporal regularities in speech at these

privileged rates.

2.2 Introduction

Seeing a person’s face is known to influence auditory speech perception (McGurk

and MacDonald, 1976) and can improve speech intelligibility in noisy environ-

ments (Sumby and Pollack, 1954). Visual cues can also inform automatic speech

recognition (Potamianos et al., 2003) or speech separation systems (Ephrat et al.,

2018). Audiovisual speech perception is thought to hinge on temporal corre-

spondences between the auditory and visual signals received by the perceiver.
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Both amplitude envelope fluctuations in the acoustic speech signal and the

motion of orofacial articulators during speech production are dominated by

slow ‘rhythms’ predominant in the 1-8 Hz range (Chandrasekaran et al., 2009;

Ding et al., 2017; Munhall and Vatikiotis-Bateson, 1998). However, the details of

how speech modulations at different rates correlate with visible movement in

different parts of the talker’s face or head are still not fully understood.

Orofacial movements during speech production display relatively slow quasi-

regular kinematics. Studies measuring jaw, lip, or tongue movements during

speech have reported regular motion patterns predominantly below 8 Hz (Ben-

nett et al., 2007; Lindblad et al., 1991; Matsuo and Palmer, 2010; Munhall and

Vatikiotis-Bateson, 1998; Walsh and Smith, 2002). Ohala (1975), for example,

reported histograms of intervals between jaw openings measured during run-

ning speech, showing a peak frequency in the 3-6 Hz range. This corresponds

to the average rate at which syllables are produced in natural speech, although

variation exists across languages and speakers (Jacewicz et al., 2009; Pellegrino

et al., 2011; Varnet et al., 2017). The natural syllable production rate has also

been argued to determine the shape of the modulation spectrum of natural

speech signals (Greenberg et al., 2003), consistently showing a peak frequency

around 4 Hz across different languages and speech corpora (Ding et al., 2017;

Singh and Theunissen, 2003; Varnet et al., 2017).

However, the co-existence of slow periodicities in face movements and in

the produced speech signal does not by itself specify the details of how they

are related. It also does not reveal which dynamic visual cues are available in

audiovisual speech perception or decodable from video inputs of a speaker’s

face. Some periodic movements occurring during speech may not be related

to the production of sound or necessarily correlated with any acoustic events

(e.g., blinking). Conversely, natural speech sounds contain amplitude modula-

tions that may not be directly related to any visible movement available to the

perceiver (such as speech modulations produced predominantly by phonatory

activity). Although the two domains share a temporal axis, the temporal charac-

teristics of the relation between visible motion and speech acoustics remain to

be specified.

Several previous studies have examined correlations between orofacial

movements and different features of the acoustic speech signal (Chandrasekaran

et al., 2009; Kuratate et al., 1999; Munhall and Vatikiotis-Bateson, 1998; Yehia

et al., 2002). Most work has considered temporal envelope representations ex-
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tracted by low-pass filtering the speech audio waveform. Chandrasekaran et al.

(2009) reported a correlation between speech envelopes and the area of mouth

openings extracted from speech videos. To extract the envelope, the speech

signal was first filtered in the audio frequency domain, Hilbert transformed,

and down-sampled to 25 Hz, but the envelope was not decomposed further.

To examine the relation between the mouth area and the speech envelope as a

function of temporal modulation frequency, the spectral coherence between

the audio and video signal features was examined. This suggested that mouth

openings and speech envelopes both contain temporal modulations in the 2-6

Hz range. Alexandrou et al. (2016) reported a similar range of spectral coherence

between speech envelopes and electromyographic lip and tongue recordings.

Coherence analyses of this type demonstrate that auditory and visual signals

display some degree of periodicity in the same spectral range. However, spec-

tral coherence does not extract potential different sources of covariance in the

spectral range where coherence is observed. This requires a decomposition of

the covariance structure in the envelope domain.

The majority of studies have focused on the correlation between speech

acoustics and movements of the mouth. However, other parts of the face or

body move as well during natural speech (Wagner et al., 2014). Some of these

may be coupled with orofacial articulators in speech motor control. Other

gestures performed during naturalistic speech may not be directly involved in

sound production but may nonetheless be consistently correlated with sound

features. Rhythmic head nodding or eyebrow movements during speech, for

instance, have been associated with speech prosody (Guaïtella et al., 2009;

Hadar et al., 1984; Hadar et al., 1983; Kim et al., 2014; McClave, 1998). Head or

body movements may thus also correlate with variations in acoustic features

(Munhall et al., 2004; Pouw et al., 2020b; Yehia et al., 2002) but presumably at

slower rates given the kinematics of head or body motion (Grimme et al., 2011).

More generally, it remains unclear how different parts of the talking face and

head may be correlated with different rates of acoustic variation in the speech

signal during natural speech.

This question is complicated by the fact that different moving parts of the

face are themselves mutually correlated during natural speech. Individual ar-

ticulators do not move independently but are synergistically coordinated via

common neuromuscular control (Vatikiotis-Bateson et al., 1996) or biomechan-

ical coupling (Pouw et al., 2020a). For example, movements of the hyoid, jaw,
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and tongue display a unique and rate-specific degree of coupling during speech,

and the coupling is distinct from other behaviors such as chewing (Ghazan-

far et al., 2012; Hiiemae et al., 2002; Matsuo and Palmer, 2010; Moore et al.,

1988). Since different parts of the speech motor system are coordinated, it is

necessary to consider how different parts of the face form groups with common

kinematics. Data-driven dimensionality reduction techniques have been used

to analyze facial motion data recorded during speech production in order to

identify spatial components that follow shared motion patterns (Kuratate et al.,

2005; Lucero et al., 2005; Lucero and Munhall, 2008; Ramsay et al., 1996). Lucero

& Munhall (2008) used QR factorization to identify groups of linearly dependent

facial markers, revealing a set of kinematic eigenregions in the speaking face

(Lucero and Munhall, 2008). Consistently across two talkers, such eigenregions

were identified for the lower and upper parts of the mouth and each of the

mouth corners. Regions in other non-oral parts of the face were also identified,

such as the left and right eyebrows and the two eyes (Lucero and Munhall, 2008).

Such data-driven analyses of facial markers may capture the spatial degrees of

freedom or dimensionality of facial kinematics during speech production but

may also identify spatial components that are not necessarily related to the

acoustic speech signal.

In the current study, we present an AV analysis approach based on canonical

correlation analysis (CCA) that linearly transforms both visual and audio signals

to capture the correlational structure between them. This approach simultane-

ously segments facial landmarks (as in previous work) while filtering the speech

audio signal in the envelope domain. We adapt an idea originally proposed

for the analysis of electrophysiological responses to speech (Cheveigné et al.,

2018) that uses CCA to learn modulation transfer functions (MTFs) in the au-

dio envelope domain. De Cheveigné et al. (2018) applied a multichannel FIR

filter bank to speech envelopes as input to the CCA (the second input being

EEG brain signals) (Cheveigné et al., 2018). Each component of the CCA then

linearly recombines the envelope subbands to find a filtered audio envelope

that maximizes the correlation with the second input. With an appropriate

choice of filters, the filter bank constitutes a filter basis, and CCA learns optimal

coefficients on that basis (Cheveigné et al., 2018). Here, we adapt this idea to

learn envelope filters that correlate with visual motion in different regions of the

speaker’s face. Specifically, CCA simultaneously learns a set of envelope filters

and a corresponding set of eigenregions of the face. The MTFs of the envelope
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filters learned by CCA can then be used to characterize the range of temporal

modulation frequencies that correlate with different kinematic regions of the

face.

MTFs have traditionally been used to characterize how an acoustic trans-

mission channel, such as a room, attenuates or enhances certain modulation

frequencies in the input sound signal (Houtgast and Steeneken, 1973). MTFs

have also been used to characterize the sensitivity to amplitude modulations

in auditory perception (Dau et al., 1996; Elliott and Theunissen, 2009; Viemeis-

ter, 1979) or physiology (Delgutte et al., 1998; Edwards and Chang, 2013). In

the context of AV speech analysis, we adapt the MTF concept to characterize

the range of envelope frequencies in the speech signal that are correlated with

visual motion. Similar to MTFs in auditory physiology or perception, we spec-

ulated that the relation between the acoustic speech envelope and the visual

face might have a band-pass character, i.e., that narrower ranges of speech

modulation frequencies might be related to visible motion in different parts

of the face. In contrast to its application in room acoustics or perception, the

MTFs of AV speech do not map the acoustic speech signal directly to the visual

signal but instead transform both signals to a latent representation learned by

CCA. This is motivated by the fact that the visual signal is not directly caused by

the acoustic signal or vice versa. Instead, the audio and video signals are both

related to the underlying speech production system (Scholes et al., 2020) and

its neuromuscular control (Fuchs and Perrier, 2005; Vatikiotis-Bateson et al.,

1996).

Here, we analyzed an extensive video dataset of natural speech using CCA.

Our primary analysis was based on the LRS3 (lip-reading sentences) dataset

consisting of single-talker video recordings collected in the wild (videos from

TED and TEDx talks, (Afouras et al., 2018a)). We exploited novel deep learning

techniques to estimate 3D facial landmarks directly from 2D videos of the speak-

ers. In contrast to previous work based on motion tracking, the estimation of

face points from video enabled us to model the statistics of facial kinematics

and their relation to speech envelope variations across a large number of speak-

ers (>4000). Specifically, we used regularized CCA (rCCA) with regularization

parameters optimized to generalize across speakers. This used this approach to

examine patterns of head and face movement that are consistently correlated

with the speech modulations across speakers. We derived audiovisual MTFs

that were predictive across a large number of speakers in the LRS3 dataset. We
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also compared the results to more well-controlled speech recordings (the GRID

dataset, (Cooke et al., 2006)) used in a number of previous AV speech studies.

2.3 Materials and methods

2.3.1 Data

LRS3 dataset

The main analysis was conducted on the LRS3 dataset (Afouras et al., 2018a),

containing in the wild videos of single speakers extracted from TED and TEDx

talks in English. The predefined trainval training dataset consisting of 32,000

videos or approximately 30 hours of video data was used. The dataset is com-

posed of video clips from 4,004 different speakers. The videos were recorded

with a frame rate of 25 fps, an audio sample rate at 16 kHz, and the clips vary

from one to six seconds in duration. Videos were excluded if the face land-

marks could not be estimated, leaving a total of 30,934 videos corresponding to

approximately 29.5 hours of video data.

GRID dataset

For comparison, the analysis was also performed on the GRID dataset (Cooke et

al., 2006), used in a number of previous AV speech studies (e.g., Chandrasekaran

et al. (2009)). In contrast to LRS3, the GRID dataset consists of data from fewer

speakers performing a controlled speech task. The data consists of audio and

video recordings of 34 native English speakers, each reading 1,000 predefined

matrix sentences. Each sentence consists of six monosyllabic words: command,

color, preposition, letter, digit, and adverb, e.g., "place green by D 2 now" out

of a total vocabulary of 51 words. The speaker is situated in front of a neutral

background and facing the camera. All videos have a duration of 3 seconds

and are recorded with a video frame rate of 25 frames per second (fps) and an

audio sample rate of 50 kHz (Cooke et al., 2006). Videos for one of the speakers

(speaker 21) were not available. From the 33,000 available videos, a total of

32,731 videos were included in the analysis, corresponding to approximately 27

hours of video data.
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2.3.2 Feature Extraction

Audio Envelope Extraction

We estimated an envelope representation of the speech audio signals (see

Fig 2.1). First, the audio files were resampled to 16.000 Hz and converted to

mono. The speech waveform signals were passed through a gammatone fil-

terbank (Patterson et al., 1987) consisting of 31 filters spaced from 80 to 8000

Hz. The envelope was then computed in each gammatone subband via the

Hilbert transform. Next, the envelopes in each subband were passed through

a modulation filterbank comprising a set of 25 equally spaced first-order But-

terworth bandpass filters with a bandwidth of 0.75 Hz and a spacing of 0.5 Hz.

Each envelope subband was then averaged across the gammatone filters and

resampled to 25 Hz to match the video framerate.

Visual Feature Extraction

3D-facial landmarks were extracted from the videos on a frame-by-frame basis.

The landmarks were extracted using the deep learning-based face alignment

network presented in Bulat and Tzimiropoulos (2017). The network first per-

forms face identification in a given frame and then estimates the 3D position of

68 facial landmarks (see Fig 2.1). Each landmark is composed of an x , y , and

z coordinate, where the x and y coordinates correspond to the location of a

given landmark in the image frame, and the z coordinate is the estimated depth

location of the landmark.

The landmark time series were first low-pass filtered at 8 Hz to remove jitter

in the frame-to-frame estimation. Energy above this range is unlikely to stem

from speaker motion that can be detected at the 25 Hz sampling rate of the

video (Yehia et al., 2002). The landmarks were finally normalized to have zero

mean and unit variance for each individual video.

2.3.3 Canonical Correlation Analysis

Given two multidimensional datasets, CCA learns linear transforms that maxi-

mize correlation in the shared projected space. Given two zero-mean datasets

XA ∈RT×JA and XV ∈RT×JV , where T denotes time, and JA and JV are the num-

ber of features in the different dataset. CCA estimates two weight matrices

WA ∈ RJA×J0 and WV ∈ RJV ×J0 , where J0 ≤min{JA , JV }, such that linear projec-
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Figure 2.1: Analysis procedure. Regularized CCA (rCCA) combines speech envelope filter outputs
and 3D landmarks of the speaker’s face. Resulting pairs of canonical components (CCs) are linear
combinations of envelope filter outputs for audio (CCA) and facial landmarks for video (CCV).

tions of each dataset XAWA and XVWV are maximally correlated. Pairs of columns

of XAWA and XVWV are denoted the canonical variates or canonical components

(CCs). The first CC pair is the linear transformation of the datasets yielding the

highest correlation. The next J pairs of canonical components have the highest

correlation each orthogonal to the preceding component. The components are

thus ordered with respect to the size of correlation.

The objective function maximized in CCA can be formulated using the sample

cross-covariance ΣAV = XA
ᵀXV and the covariance matrices ΣA = XA

ᵀXA and

ΣV =XV
ᵀXV:

ρ = max
(XA ·WA)ᵀ · (XV ·WV)
‖XA ·WA‖‖XV ·WV‖

= max
WA
ᵀΣAVWV

p

‖WA
ᵀΣAWA‖‖WV

ᵀΣVWV‖
. (2.1a)

Since scaling of WA and WV does not change the correlations, we can add

the constraints that WA
ᵀΣAWA = 1 and WV

ᵀΣVWV = 1, and hence reformulate as

a Lagrangian that can be solved as a generalized eigenvalue problem.

CCA can be regularized to avoid overfitting. An L2 regularization term can
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be incorporated into the objective function in Eq. (2.1a) as follows:

ρ =max
WA
ᵀΣAVWV

p

(WA
ᵀΣAWA+λA‖WA‖2) · (WV

ᵀΣVWV+λV ‖WV‖2)
(2.2)

Note that by adding regularization we effectively relax the orthogonality

constraint of the canonical components.

2.3.4 AV modulation transfer functions

Here we use CCA to simultaneously learn a set of temporal modulation filters

and spatial decompositions of the facial landmarks. The CCA analysis pipeline

is illustrated in Fig 2.1. XA is the data matrix of JA (25) filtered subband audio

envelopes, and XV is the data matrix of visual features of size T × JV , where

JV is the total number of facial landmarks (3*68). We assume that linear com-

binations of audio and video features are correlated by virtue of both being

generated by the same speech production source. Specifically, let XA =AAS+ε

and XV =AVS+ε be a generative forward model, where the same set of speech

production sources S ∈ RT×J0 generate both envelope fluctuations in the au-

dio signal XA and spatial motion in the face points XV. A are filters that map

between the speech source and the observed audio envelopes and video land-

marks, i.e., a spectral filter in AA and spatial filter in AV. Given the audio and

video features, CCA produces two transform matrices, WA and WV, that instead

map ‘backward’ from the observed features to estimate the latent sources (the

CCs). However, the CCA weights cannot be directly interpreted as the filter

parameters A in the corresponding forward model (Haufe et al., 2014). The size

of the CCA weights reflect both a weighting of those features that are correlated

(particular combinations of envelope subbands and spatial landmarks), but

also a suppression of ‘noise’, i.e., envelope fluctuations or visual motion that

are not related to the shared speech source. However, the parameters of the

corresponding generative model can be estimated as A=ΣW (Haufe et al., 2014),

also referred to as the canonical loadings. Unlike the CCA weights, the columns

of the ΣW matrix indicate the correlation between CCs and the input features,

i.e., the strength of the latent speech source in each of the observed features.

For the audio envelope features, each CC learned by CCA represents a

weighted sum of the envelope subbands from outputs of the modulation filter-

bank. Due to the distributivity of convolution, a signal summed at the output
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of an N-channel parallel filterbank with impulse responses h1, h2, .., hN is equiv-

alent to a filter given by the sum of impulse responses h1 +h2+, ..+hN . The

effective modulation transfer function learned by CCA is therefore given by

the weighted sum of the impulse responses of the modulation filterbank. If

H ∈RF ×JA is the set of transfer functions for the modulation filterbank with JA

channels and F frequencies, the effective MTFs learned by CCA is thus given by

HΣAWA.

The MTFs can also be visualized by inspecting the CCs, i.e., the output of

the learned filters XAΣAWA. In the results below, we plot the average spectrum

of XAΣAWA computed per video for each CC (Figs 2.2 and 2.4). This takes the

effective average modulation energy across speakers in the dataset into account,

i.e., it shows the effective outputs of the filtering process learned by CCA.

On the visual side, CCA decomposes the facial landmarks into correlated

groups. The landmarks corresponding to each CC can similarly be visualized

in the face by the canonical loadings, i.e., the CCA weights for each landmark

scaled by the sample covariance: ΣVWV (also shown in Figs 2.2 and 2.4).

2.3.5 Optimization scheme

To identify statistically significant AV correlations that generalize across speak-

ers, we trained the rCCA model using a cross-validation scheme. The dataset

was first split into a test set and a training set consisting of 10% and 90% of

the data, respectively. Cross-validation was then performed on the training set

by further splitting the training data into five folds. Importantly, no speakers

appeared in more than one data split, both for the test and training sets and

for the individual cross-validation folds. This implies that the model was opti-

mized to predict AV correlations across speakers. The rCCA was trained using

a match-mismatch scheme (Cheveigné et al., 2021). During cross-validation,

rCCA models were trained on correctly matching video and audio data on four

of the five folds, and correlations for each rCCA component were computed

on the held-out validation fold. Correlations for each component were then

computed on 1000 mismatching segments of audio and video to generate an

empirical null-distribution. The difference between the median correlation

obtained from the mismatching data and the correlation for the matching data

defined the objective function that was used to optimize the two regularization

parameters. Only matching components exceeding the 95th percentile of the

null-distribution were considered.
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For optimization, Bayesian Optimization via Gaussian Processes was used.

The optimization scheme was implemented using

scikit-opimize.gp_minimize (Head et al., 2018). The search space for

both regularization parameters, RegA and RegV, were chosen to be between

[10−5,100]. The scikit-opimize.gp_minimize algorithm was initialized

with a random search for the two regularization parameters, which were drawn

from a log-uniform distribution with upper and lower bounds defined by the

search space. After evaluating the five random searches, the algorithm approxi-

mated the next five regularization parameters with a Gaussian process estimator

using a Matern kernel. The gp_hedge acquisition function was used, which

chooses probabilistically among the three acquisition functions: lower confi-

dence bound, negative expected improvement, and the negative probability of

improvement, at each iteration. This process was repeated for each of the five

validation folds, and the regularization parameters yielding the highest differ-

ence in correlations across the five-folds were used to train a final rCCA model

on the entire training set. The significant rCCA components of this final rCCA

model were determined on the independent test set. Significant components

were defined as those exceeding the 95th percentile of the null-distribution

obtained with mismatching audio and video.

2.4 Results

We used CCA to relate speech envelope information and facial motion across a

large number of speakers (∼4000). Specifically, CCA learns envelope filterings

that correlate with visual motion in groups of facial landmarks (see Fig 2.1).

Fig 2.2 shows statistically significant canonical components (CCs) with a cor-

relation above 1% for the main analysis on the LRS dataset. Importantly, the

significance of the CCs was determined by whether they generalize across talk-

ers. The left panels show the envelope filters learned by CCA for each CC. The

right panels show the corresponding contribution of facial landmarks visualized

by the 2D projection of the landmark CCA loadings. The color bars indicate the

relative contribution of the x ,y ,z -directions.

A dynamic visualization of the facial CCs for an example speaker can be

seen on GitHub a. This example is not a facial animation but a dynamic plot of

a https://github.com/NicolaiP/cca_facial_animations

https://github.com/NicolaiP/cca_facial_animations
https://github.com/NicolaiP/cca_facial_animations
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the visual CCs back-projected to the input landmark space to aid interpretation

of how CCA decomposes face and head movements during speech.
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Figure 2.2: CCA results for the LRS3 dataset. Left: CCA-derived temporal modulation filters
for the first 5 significant canonical components (CCs). Right: corresponding facial landmark
loadings. Darker red indicates higher weights. The 3D landmarks are shown in 2D projection,
and the colorbar indicates the relative contribution of the x (blue), y (orange), and z (green)
directions.

The first canonical component, CC1 represents the largest correlation be-

tween the AV features. As can be seen in Fig 2.2, CC1 extracts motion of the

lower lip and jaw, mainly in the vertical direction, which is correlated with

speech modulations at rates peaking around 3-4 Hz. CC4 complements CC1 by
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extracting envelope information in a similar envelope frequency range with a

peak around 4 Hz but correlated with vertical movement of the upper lip and

upper parts of the head. Together, CC1 and CC4 represent a modulation transfer

function for the envelope that aligns with the average modulation spectrum for

natural speech, with a peak around 3-4 Hz (Ding et al., 2017; Varnet et al., 2017).

Our analysis indicates that this 4 Hz peak is statistically correlated with two

main sources of visual face motion centered at the lower and the upper parts of

the mouth. The first (CC1) relates to mandibular motion that can be performed

relatively independently of other head movements. The second (CC4) relates

to maxillary movements that are naturally coupled with pitch axis rotations

of the head relative to the mandible. These two components thus appear to

capture two main kinematic dimensions of mouth open-close cycles during

speech production.

The envelope filters associated with mouth openings (CCs 1 and 4) are

relatively broadly distributed around 4 Hz. This may partly reflect differences

in speaking rate across talkers (Jacewicz et al., 2009; Pellegrino et al., 2011). To

investigate this, we computed the spectral peaks of the envelope CCs separately

for each video (and thus for each speaker) in the dataset (see S1 Fig). The

distribution indeed matches the tuning width of the filters learned by CCA,

indicating an influence of individual differences in speaking rate.

Whereas CC1 and CC4 capture mouth openings correlated with envelope

modulations distributed around 3-4 Hz, CCs 2, 3, and 5 capture slower modula-

tions around 1-2 Hz correlated with more global head and face movements. CC3

specifically extracts pitch axis rotations of the head, whereas CC5 relates to rigid

head movements in all spatial directions. The spatial decomposition learned

by CCA thus isolates rigid 3D head rotations by a single component (CC5) while

removing x and z rotations from the remaining components. While CCs 3 and

5 capture head rotations, loadings on oral landmarks are also high, in particular

for CC3. This indicates that head and mouth movements are mutually corre-

lated and together correlated with slower speech envelope information. This

occurs, for instance, when head nods are synchronized with mouth openings

to produce accents on important words, thereby yielding envelope fluctuations

at a slower rate. CC2 combines envelope information at the two rates in one

component.

Together, the visual face and head appear to carry speech envelope infor-

mation at two distinct timescales during natural speech. Envelope fluctuations
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peaking around 4 Hz are specifically associated with mouth openings (CCs 1

and 4), while slower 1-2 Hz modulations are correlated with coordinated motion

across the face and head (CCs 2, 3, 5). For illustration, CC1 and CC3, for an

example talker are plotted in Fig 2.3. As can be seen, modulations around 4

Hz captured by CC1 track speech at the level corresponding to syllable onsets,

while the slower 1-2 Hz modulations of CC3 capture variations at the level of

phrases. Local time shifts between face and envelope CCs can occur, as can be

seen when inspecting CC loadings for individual speakers. For instance, in the

example shown by CC3 in Fig 2.3, a vertical head rotation used to emphasize the

final statement (‘do offer’) precedes the acoustic modulation associated with

the produced stress.

Figure 2.3: CC1 and CC3 for an example speaker. CC projections for the speech envelope
are shown in blue. CC projections of the facial landmarks are shown in red. Vertical lines
indicate word onsets. CC1 represents speech envelope fluctuations corresponding to the onset
of individual syllables, while CC3 tracks slower variations corresponding to words or phrases.

Because of the data-driven nature of the analysis, it is important to deter-

mine the consistency of the learned AV components. To investigate reliability,

we split the dataset into two equal halves and performed the same analysis

separately on each split. None of the speakers overlapped between the two

halves. The results of the split-half analysis are shown in S2 Fig. As can be seen,

the CCA-derived envelope filters and corresponding face loadings are highly

similar in the two separate analyses. This indicates that the observed tempo-

ral regularities are stable when considering AV speech statistics across many

speakers. S3 Fig also illustrates this point by showing MTFs for CCA solutions
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computed with a varying number of speakers. With increasing amounts of data,

the bandpass filter shapes become increasingly stable, in particular for the most

prominent components.

Analysis of the GRID dataset

As a supplemental analysis, we performed the same rCCA analysis on the GRID

speech database. Unlike the LRS videos of natural speech in the wild, the GRID

corpus consists of videos of a smaller number of speakers (34) instructed to

perform simple and syntactically identical monosyllabic sentences (such as ‘put

red at G9 now’) (Cooke et al., 2006). Movements beyond those involved in sound

production are thus minimized in this data. The GRID data is comprised of

numerous videos from each speaker, whereby the total amount of data included

in the GRID analysis was similar to the LRS analysis.

The components learned for the GRID data are shown in Fig 2.4. Again, com-

ponents with a correlation above 1% that generalize significantly across speakers

are shown. As can be seen, CCA again learns envelope filters distributed around

4 Hz. CCs 1, 2, and 5 again capture mouth openings and associated movements

of the lower (CC1, CC2) and upper (CC5) parts of the face, highly similar to CCs

1 and 4 found for the LRS data. Unlike the LRS data, however, all components

for the GRID data have envelope filter peaks in the 3-5 Hz range and relate

more closely to orofacial motion. In addition to the upper and lower part of the

mouth, regions around the two lip corners emerge as separate CCs (CC3, CC4,

CC7). Slower envelope rates in the 1-2 Hz range related to head motion do not

emerge when talkers are not gesturing freely, as in the LRS dataset. Instead, the

GRID data highlights several details of the oral motion.

2.5 Discussion

In the current study, we present a CCA technique to learn speech envelope

filterings that are correlated with visual face motion. Our analysis relates differ-

ent rates of acoustic envelope variation to visual motion in different parts of

the talking face. The main results for the LRS natural speech dataset indicated

two primary temporal ranges of envelope fluctuations related to facial motion

across speakers. The first is distributed around 4 Hz and relates to mouth open-

ings. The second range of modulations peaks around 1-2 Hz and relates to

more global face and head motion. Envelope information at both rates were
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correlated with landmarks distributed across the face, reflecting the fact that

natural speech involves highly coordinated motor activity. This also implies

that envelope cues are not only available from mouth movements but can be

retrieved from non-oral parts of the face and head. Importantly, the derived AV

correlations were predictive across speakers implying that these temporal cues

are consistent in natural AV speech statistics.

Bandpass envelope MTFs

Our analysis revealed modulation transfer functions with a bandpass character.

A number of previous studies have investigated the relation between speech

envelopes and facial movement, e.g., by correlating motion data with the low-

passed Hilbert envelope of the audio waveform (Chandrasekaran et al., 2009;

Kuratate et al., 1999; Munhall and Vatikiotis-Bateson, 1998; Yehia et al., 2002).

However, our analysis indicated that envelope information is correlated with

visual face motion at specific temporal scales. This echoes the sensitivity of the

auditory system to envelope information at different timescales (Poeppel and

Assaneo, 2020). In the auditory domain, bandpass-like modulation sensitivity

has been modeled as a modulation filterbank, with filters acting as AM detectors

at different rates (Dau et al., 1996; Nelson and Carney, 2004). For instance,

accurate prediction of speech intelligibility in fluctuating noise maskers has

been argued to rely on the signal-to-noise ratio in the envelope domain, e.g.,

after modulation-frequency selective filtering (Jørgensen and Dau, 2011). While

sensitivity to higher modulation frequencies may be unique to audition, slower

temporal cues may be processed in a multisensory fashion (Chandrasekaran

et al., 2009; Rosenblum, 2008). Our analyses indicate that AV envelope cues are

available at two distinct timescales below 10 Hz. These are not simply different

low-passed versions of the broadband envelope but bandpass modulation filters

in the 1-2 Hz and 3-7 Hz ranges, respectively. Envelope modulations in these

two distinct ranges were mutually uncorrelated (as a property of CCA) and thus

appear to capture unique sources of AV correlation.

Two rates of AV regularity

These two rates of speech modulations correspond well to the rates at which

syllables (3-4 Hz) and phrases or prosodic features (1-2 Hz) are produced in

natural spoken language (Goswami and Leong, 2013; Inbar et al., 2020). The
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onsets of individual syllables are pronounced energy transitions in a speech sig-

nal, as reflected by the fact that the average modulation spectrum is dominated

by energy around 4 Hz (Greenberg et al., 2003). Acoustic cues for segmenting

a continuous speech signal into phrases are less prominent in the envelope

spectrum, where energy falls off below 3 Hz. However, when considering speech

as an audiovisual signal (rather than a purely acoustic one), slower envelope

rhythms in the 1-2 Hz range emerge as a distinct range of temporal regularity.

AV correspondences at these two different timescales may thus provide cues for

segmenting the continuous speech signals at the level of syllables and phrases.

This might also indicate a motor origin of temporal regularities at these

two distinct timescales. Rhythmic head or limb movements performed during

speech are typically slower than mouth movements involved in syllable produc-

tion. Head nodding or hand gestures during speech have been reported to be

synchronized with envelope or pitch variations below 2 Hz (Krahmer and Swerts,

2007; Munhall et al., 2004; Pouw et al., 2020a,b), consistent with our analysis.

Mouth open-close cycles during speech, on the other hand, matches the natu-

ral syllable production rate around 4 Hz (Chandrasekaran et al., 2009; Ohala,

1975). Different temporal regularities imposed by these oral and non-oral motor

components may emerge in facial communication before language and persist

in speech. It has been proposed that the use of faster mouth movements to

produce acoustic modulations at the syllable rate may be a unique adaptation

in humans (MacNeilage, 1998). MacNeilage (1998) proposed that the motor

capacity for rhythmic orofacial control in speech may have evolved via slower

ingestion-related mandibular cycles. Macaque monkeys can produce rhythmic

vocalizations in the 3-4 Hz range (i.e., vocalizations with modulation spectra

similar to speech) accompanied by a single facial movement trajectory, rather

than by synchronized open-close cycles of the mouth (Ghazanfar and Taka-

hashi, 2014a). Faster cyclic movements of the jaw, lips, and tongue in the 3-7

Hz range are used in non-vocal visuofacial communication (lip smacking, teeth

chattering) in non-human primates (Ghazanfar et al., 2012), and may have been

adapted for vocal behavior in humans (Brown et al., 2021; Ghazanfar and Taka-

hashi, 2014a; Risueno-Segovia and Hage, 2020). A parallel transition between

two rates of vocal production can be observed in human speech development.

In the first year of life, infants begin to produce rhythmic babblings (repeated

consonant-vowel-like sequences like ‘bababa’) synchronized with mouth open-

close cycles that are below 3 Hz (Dolata et al., 2008) and coordinated with
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rhythmic limb movements (Ejiri and Masataka, 1999, 2001; Esteve-Gibert and

Prieto, 2014; Iverson and Fagan, 2004; Iverson and Thelen, 1999). From slower

and more variable vocal rhythms in infancy, faster and more regular envelope-

mouth synchronization above 4 Hz as in adult speech emerge gradually during

development (Smith and Zelaznik, 2004; Walsh and Smith, 2002).

Thus, slower vocalizations coordinated with limb movement can be viewed

as a precursor to faster vocalizations synchronized with mouth openings at

the syllable rate (Ghazanfar and Takahashi, 2014b; Iverson and Thelen, 1999).

However, speech modulations at the syllable rate do not necessarily replace

slower modulations but may be superimposed on them. Our analysis points

to the co-existence of two unique sources of AV correlation, e.g., slower (1-2

Hz) rates of speech modulations synchronized with head and face movement

co-exist with faster mouth-envelope synchronization.

The two distinct rates of AV correlation only emerged when considering

natural speech across many speakers. Analysis of the GRID data highlighted

the well-known synchronized mouth-envelope modulations in the 4 Hz range

(Chandrasekaran et al., 2009). Only the analysis across many speakers in the LRS

dataset revealed the slower timescale to be a consistent source of AV correlation

in natural speech. These differences between datasets suggest an interesting pre-

disposition in AV speech studies. Controlled speech production, as in the GRID

matrix sentences, strips away important gestural features that are prominent in

natural speech. Speech can be produced with minimal gestural movement (But-

terworth and Hadar, 1989), but gestures consistently accompany natural speech

(McNeill, 1992). Gestures occur even in conversations between blind people

(Iverson and Goldin-Meadow, 1998), suggesting a nonincidental association.

Analysis of the GRID data confirmed the prominence of speech modulations

distributed around 4 Hz (Ding et al., 2017; Singh and Theunissen, 2003) cor-

related with mouth open-close cycles (Chandrasekaran et al., 2009), but the

analysis does not fully reflect the prominence of envelope information below

the syllable rate. It also does not fully capture the degree to which envelope

information is consistently correlated with motion in many different parts of

the face. Different data splits within each dataset yielded highly consistent CCA

components (S2 Fig), indicating that differences between the two datasets stem

from differences in the nature of the data. Different speech materials based on

different speech tasks thus appear to implicitly zoom in on particular features

of AV speech.
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AV decomposition of the speaking face

While slower modulations were not found in the analysis of the GRID data, the

GRID data revealed a number of more detailed orofacial components. Decom-

position of the face during speech has been pursued in previous work using

PCA (Kuratate et al., 1999; Ramsay et al., 1996), ICA (Müller et al., 2005) or other

matrix factorization algorithms (Lucero et al., 2005; Lucero and Munhall, 2008).

Lucero et al. (2008) identified independent kinematic components for the up-

per and lower parts of the mouth and the two mouth corners that were also

identified in our CCA analysis of the GRID data (Lucero and Munhall, 2008). In

contrast to previous work, our CCA performs a joint dimensionality reduction

in the visual and auditory domain to identify facial regions that are correlated

with envelope information. The GRID analysis indicated that the different local

kinematic regions of the mouth (upper lip, lower lip, left and right corners), also

found in visual-only face decompositions (Lucero and Munhall, 2008), correlate

with envelope information in the 3-7 Hz range. The independent kinematics

of lip corners could potentially relate to grimacing unrelated to acoustic infor-

mation (e.g., smiling), but this does not appear to be the case. Other spatially

local components, such as the eyes or eyebrows that appear as independent

components in visual-only decompositions of the face (Lucero and Munhall,

2008), were not identified as isolated components in our AV analysis. However,

a number of components showed high loadings on landmarks around the eyes

and upper parts of the face in combination with oral ones. This suggests that

e.g., raising of eyebrows at prosodic events (Graf et al., 2002) is consistently cou-

pled with movement in other parts of the face. While non-oral facial parts, such

as the eyebrows, may display independent kinematics (Lucero and Munhall,

2008), only movements that are coordinated across the face are consistently

correlated with envelope information in our analysis. This high redundancy

also implies that similar envelope information is available from many parts of

the face.

Neural sensitivity

We note that the two distinct modulation frequency regions emerging from our

AV analysis align noticeably with the modulation sensitivity of auditory cortex.

Human auditory cortical activity is known to track envelope fluctuations at

distinct rates below 10 Hz in speech or other natural stimuli (Ding and Simon,
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2014). Speech envelope tracking occurs specifically in the theta (4-8 Hz) and

delta (1-3 Hz) frequency bands of the human electroencephalogram (Ding et al.,

2016; Doelling et al., 2014; Keitel et al., 2018; Rimmele et al., 2021), and syn-

chronization of cortical activity in these bands have been proposed as a neural

mechanism for parsing speech at the level of syllables and phrases (Giraud

and Poeppel, 2012). Yet, the fact that these same modulation frequency ranges

emerge from AV signal statistics could suggest that temporal modulation tuning

in the auditory cortex is adapted to the statistics of natural AV stimuli. The

auditory cortex is known to integrate correlated visual signals (Luo et al., 2010;

Schroeder and Foxe, 2005), and AV correlations at different timescales may have

shaped band-pass modulation selectivity in the auditory cortex, persisting with

auditory-only inputs. Rather than a language-specific mechanism for tracking

syllables and phrases, cortical envelope tracking specifically in the delta and

theta ranges may thus reflect a cortical envelope tuning adapted to temporal

regularities that are ultimately determined by auditory-motor constraints.

Perceptual relevance

Our analyses suggest the availability of temporal cues at distinct rates from

different parts of the face, but not how these are used in perception. It is well

known that viewing a talker’s mouth aids auditory speech perception (Bern-

stein et al., 2004; Sumby and Pollack, 1954). Degrading visual temporal cues,

e.g., by reducing the frame rate in videos of the speaker’s face, reduces the AV

perception benefit (Vitkovitch and Barber, 1996). Non-oral facial movements

also contribute to AV perception, as seen by the fact that AV perception ben-

efits occur when the mouth is visually occluded (Thomas and Jordan, 2004).

Seeing head motion can improve speech intelligibility (Munhall et al., 2004)

and has been argued to provide prosodic speech cues (Guaïtella et al., 2009;

Hadar et al., 1984; Hadar et al., 1983; Kim et al., 2014; McClave, 1998; McNeill,

1992). This is consistent with our analyses indicating an association between

slower envelope information and head movement. While envelope information

distributed around 4 Hz was closely related to mouth openings, these compo-

nents were also correlated with non-oral facial landmarks. This also implies that

envelope information at both timescales is available when only seeing parts

of the face. Temporal modulations at these rates are particularly important

for speech intelligibility (Elliott and Theunissen, 2009), making coordinated

movements across the face a useful perceptual cue. Being distributed across the
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face, temporal modulations are likely not perceived via the motion of individual

speech articulators but as motion patterns of coordinated facial components.

Johnston et al. (2021) recently reported that subjects were highly sensitive to

the degree of synchronicity between mouth and eyebrow motion, suggesting

that coordinated motion across the face facilitates perceptual binding.

Modelling AV speech across speakers

In contrast to much earlier work, our analysis takes a between-speaker approach

to AV speech. The CCA regularization scheme was designed to extract AV statis-

tics that are predictive across many speakers. Much finer details of face-speech

correlation can be observed at the individual level, but speaker-specific analyses

do not reveal which AV patterns generalize across talkers. Ginosar et al. (2019)

recently proposed a deep neural network model that predicts hand gestures of

an individual speaker from speech audio of that speaker. Models were trained

on large amounts of data from a few speakers in order to synthesize the gestu-

ral styles of the individual speakers convincingly. In contrast, we focused our

analysis on little data from a large number of speakers in order to identify AV

speech-face correlations that generalize across speakers. The person-specific

approach of Ginosar et al. (2019) and others was motivated by the argument that

speech gesture is essentially idiosyncratic (McNeill, 1992), and that different

speakers use ‘different styles of motion’ (Ginosar et al., 2019). While speaker-

specific models may indeed capture most variance in speech gesture data, our

between-speaker approach demonstrates that some aspects of AV gesture are

also predictive across talkers. It is perhaps unsurprising that mouth movements

directly associated with speech production generalize across talkers, but also

AV components related to more global gestural head movements appear to

generalize. Although gestures like hand or head movement may have acous-

tic consequences (Pouw et al., 2020b), speech can be produced with limited

gestural movement (Butterworth and Hadar, 1989; McClave, 1998), and their

consistency across speakers must be established empirically.

Applications

Previous work has used CCA for audiovisual applications, such as speech sepa-

ration (Sigg et al., 2007), audiovisual synchronization (Sargin et al., 2007; Slaney

and Covell, 2001), or facial animation (Mariooryad and Busso, 2012). In such
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applications, feature extraction is typically performed to optimize the perfor-

mance of the particular application. Here, we focused on learning generalizable

features that are informative about automatic AV speech, but relevant applica-

tions can also be highlighted. Our approach regularizes the CCA across speakers

to identify features that are consistently correlated across talkers, making the

approach attractive for AV speaker identification. For instance, our approach

can be used to identify which of N separated audio sources (e.g., from an acous-

tic source separation system) belongs to which talking face in multi-talker video

data (see S4 Fig). CCA is a linear technique, and the feature transforms are fast

to compute, making them appealing for real-time applications.

Limitations

Some limitations in the current approach must also be highlighted. First, our

analysis does not account explicitly for time lags between the audio and video.

The degree to which audio might lag visual speech is debated (Chandrasekaran

et al., 2009; Schwartz and Savariaux, 2014). Speech gestures such as head nods

do not have to occur simultaneously with the speech (Butterworth and Hadar,

1989), and time lags may vary between speakers (Kim et al., 2014). This individ-

ual variation is explicitly ignored in our between-speaker approach. CCA can

readily be extended to account for time-lags (Cheveigné et al., 2018), but will

likely require more finely sampled video signals. However, a narrowly spaced

envelope filterbank covering low modulation frequencies is likely to be able to

absorb time shifts between the signals (Cheveigné et al., 2018), at least within the

temporal range normally considered to be relevant for AV integration (Stevenson

and Wallace, 2013).

Speech datasets like the LRS3 enable large-scale studies of AV statistics

across speakers, but the nature of the data also limits such investigations. The

differences between our analysis of natural speech in the LRS dataset and the

GRID dataset illustrate the fact that differences in the data influence the results.

While the recordings of TED talks in the LRS dataset can be considered natural

speech, most natural speech occurs in the form of dialogues or conversations

involving turn-taking. Speech rhythms during turn-taking may be adapted

to the temporal structure of turn-taking behavior (Hadar et al., 1984; Roberts

et al., 2015; Trujillo et al., 2021; Zhang and Ghazanfar, 2020), which may not

be captured when analyzing video of monologues. Unfortunately, large video

speech datasets involving natural communication are currently missing.
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Importantly, CCA is a linear technique, and our approach only considers

linear relations between visual and acoustic features. The relation between

visible articulators and the produced speech signal is non-linear in important

aspects (Scholes et al., 2020; Yehia et al., 2002), and a linear model is therefore

principally limited in capturing these. Yehia et al. (2002) found that a non-

linear neural network outperformed a linear model in predicting head motion

from acoustic features (Kuratate et al., 1999; Yehia et al., 2002). Nonlinearities

may, in principle, be accounted for by appropriately transforming the acoustic

and visual features. However, here, the main goal was to learn these feature

transformations from the AV speech data. The availability of extensive speech

datasets and improved techniques for facial landmark estimation may enable

data-hungry non-linear models to learn feature transformations from more sim-

ple input features. However, this arguably involves a trade-off between model

accuracy and interpretability. In our approach, CCA learns a linear combination

of linear envelope filters, which is itself an envelope filter. This implies that the

components can be investigated directly in the envelope domain, i.e., we can

directly investigate which envelope frequencies relate to motion in different

parts of the face. The fact that results can be linearly related back to the input

space arguably facilitates interpretation.

2.6 Supporting information

S1 Fig. Spectral peak distribution. Distribution of spectral peaks on envelope

CCs for the individual speakers in the LRS dataset. The distribution aligns with

the width of the CCA-derived modulation filter functions (Fig 2.1), suggesting

an influence of individual differences in speaking rate.

S2 Fig. Split-half reliability. The same CCA analysis was performed on two

independent halves of the LRS3 dataset (∼1950 speakers in each split). Envelope

filters (left panels) and spatial decompositions of the visual face (right panels)

learned via CCA were highly similar between the two data splits.

S3 Fig. MTFs for varying number of speakers. MTFs were computed for dif-

ferent amounts of speakers (n=10, 100, 1000, 2000) by subsampling the data. For

a given number of speakers, 9 CCA solutions were computed. As can be seen, a

higher number of speakers lead to more convergent solutions. Regularisation
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parameters were still optimized to predict AV correlation across speakers on the

full dataset.

S4 Fig. Speaker identification. The AV CCA model enables fast speaker iden-

tification. Here, the CCA model is used to identify which of 2 (solid lines) or 3

(dashed lines) different audio segments correspond to 2 or 3 video segments.

The AV pair with the highest correlation on CC1 is chosen as the matching pair.

Only videos not used for training the CCA model were used for speaker iden-

tification. Identification performance is shown as a function of AV segment

duration for the LRS3 (blue) and GRID (orange) data. Shaded regions show ±
SEM.
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Figure 2.4: CCA results for the GRID dataset. CCA-derived envelope filters (left) and correspond-
ing face loadings (right) for the GRID dataset. Unlike in the wild recordings of natural speech such
as the LRS3, the GRID corpus is composed of simple, syntactically identical six-word sentences.
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Figure 2.5: S1 Fig. Spectral peak distribution. Distribution of spectral peaks on envelope CCs
for the individual speakers in the LRS dataset. The distribution matches the width of the CCA-
derived modulation filter functions (Fig 2.1), suggesting an influence of individual differences in
speaking rate.
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Split 1 Split 2

Figure 2.6: S2 Fig. Split-half reliability. The same CCA analysis was performed on two inde-
pendent halves of the LRS3 dataset (∼1950 speakers in each split). Envelope filters (left panels)
and spatial decompositions of the visual face (right panels) learned via CCA were highly similar
between the two data splits.
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Figure 2.7: S3 Fig. MTFs for varying number of speakers. MTFs were computed for different
amounts of speakers (n=10, 100, 1000, 2000) by subsampling the data. For a given number of
speakers, 9 CCA solutions were computed. As can be seen, a higher number of speakers lead
to more convergent solutions. Regularisation parameters were still optimized to predict AV
correlation across speakers on the full dataset.
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Figure 2.8: S4 Fig. Speaker identification. The AV CCA model enables fast speaker identification.
Here, the CCA model is used to identify which of 2 (solid lines) or 3 (dashed lines) different audio
segments correspond to 2 or 3 video segments. The AV pair with the highest correlation on CC1
is chosen as the matching pair. Only videos not used for training the CCA model were used for
speaker identification. Identification performance is shown as a function of AV segment duration
for the LRS3 (blue) and GRID (orange) data. Shaded regions show ± SEM.



3
Self-Supervised Learning of Correlated

Audiovisual Featuresa

Abstract

When producing speech, correlated audiovisual (AV) signals are

generated. Generally, studies concerned with AV speech rely on

AV features to investigate AV correspondences or build applica-

tions such as AV speech separation systems. While the AV features

tend to reflect prior knowledge about the individual modalities,

they are not guaranteed to capture the shared information between

the two modalities. This study proposes a self-supervised learn-

ing approach to train interpretable AV-based convolutional neural

networks (CNNs) directly on raw audio and video inputs. Using

a novel correlation scheme, CNNs are trained on matching and

mismatching AV segments to learn AV features that are correlated

when the AV segments match. We compared AV features and first-

and second-layer audio filters learned by two CNNs trained on

natural AV speech video. One of the CNNs relied on standard one-

dimensional (1D) convolutions, whereas sinc-based convolutions,

specifically designed to learn bandpass filters, were used to ease

interpretation of audio-filters in the other network. Evaluated on

a test dataset, both models achieved almost 100 % accuracy in a

three-speaker identification task, while the average correlation be-

tween the learned AV features was found to be 70 % for matching

AV segments and approximately 0 % for mismatching AV segments.

Moreover, we demonstrated how the AV features could be back-

tracked to the input space revealing the attentional focus of the

a This chapter is based on Pedersen, N. F., Dau, T., and Hjortkjær, J. “Self-Supervised Learning

of Correlated Audiovisual Features” (in prep).
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CNNs in both the auditory and visual domains. In the visual do-

main, both models primarily learned to focus on mouth movements

during speech, while they focused on extraoral face movements dur-

ing periods of silence in the speech. In the audio domain, the audio

features seemed to capture fluctuations in the audio envelope. The

presented method has multiple compelling properties that would

make it useful for both analyses of AV speech and for extraction of

AV features that can be used in downstream tasks such as AV-based

speech separation models or speech recognition models.

3.1 Introduction

Speech perception is fundamentally multisensory. Producing speech generates

temporally aligned visual and auditory signals, and their co-occurrence is an

essential cue for binding them together in perception (Johnston et al., 2021).

Temporal synchronicity of audio and video is also a useful feature for learning AV

feature representations. During speech, it is well known that mouth movements

are linearly correlated with slow amplitude fluctuations in the speech signal (<10

Hz). Yet, the statistics of AV speech are likely much richer and more complex

than what linear correlation statistics capture (Scholes et al., 2020; Yehia et al.,

2002).

In recent years, deep neural networks have been successful in learning latent

AV representations from co-occurrence statistics (Afouras et al., 2018b; Owens

and Efros, 2018). The temporal correspondence between audio and video can be

used efficiently as an objective function to guide learning. Specifically, networks

can be trained in a self-supervised manner to detect temporal misalignment

between audio and video (Afouras et al., 2018b; Owens and Efros, 2018). Dis-

criminating aligned and misaligned (synthetically shifted) audio and video does

not require labeled data, and network training can harness the abundance of

video data. Networks that learn robust AV representations in a self-supervised

manner can, in turn, be used for downstream tasks such as speech separation,

speech enhancement, and speaker identification (Afouras et al., 2018b; Ephrat

et al., 2018; Nagrani et al., 2020; Owens and Efros, 2018).

In this work, we present a self-supervised neural network framework to learn

AV representations directly from raw video pixel and audio waveform inputs.

Raw inputs allow the network to learn any type of correspondence between
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the audio and video signals without prior assumptions about their relation.

The trained network can then, in turn, be inspected to investigate the signal

transformations that lead to shared AV representations. However, when both

inputs are given in their raw form, the networks also face a tremendously chal-

lenging task. They need to account for the enormous variability of the input

data, e.g., the large variability in pose and illumination in the visual domain and

the variability in speaking rate, background noise, pronunciation, etc. in the

audio domain. The network must learn latent invariant representations given

this huge amount of variability at the input level. This is in many ways similar

to the self-supervised learning process during human speech learning, where

infants at an early stage must learn to combine temporally correlated signals

across modalities (Dupoux, 2018). To form common representations, humans

and neural networks are thought to exploit the compositional hierarchies of

natural signals by extracting multiple levels of representations with increasing

complexity (LeCun et al., 2015). Hence, it is intriguing to analyze these represen-

tations learned by neural networks and compare those with prior knowledge

reflecting the properties of the human auditory and visual system.

Advances in AV deep learning have primarily been driven by their usefulness

in applications, e.g., for speech separation. Less energy has been devoted to in-

depth analyses of the interrelationship between the visual and the audio signals

and the feature extraction learned by the networks. Increasing the interpretabil-

ity of these networks is of great importance if we want to better understand how

the networks function and how they might generate signal transformations that

are informative. In recent years, an expanding body of work, aiming at decipher-

ing the DNNs and yielding higher interpretability, has been pursued (Montavon

et al., 2018). These analyses have shown that neural networks learn to exploit

the compositional hierarchies of natural signals, in which higher-level features

are obtained by composing lower-level ones. Analysis of audio networks has,

for example, shown that features like phones and phonemes are extracted in

early layers, whereas later stage layers capture features of, higher abstraction

level, like words and sentences (LeCun et al., 2015). Other approaches, such

as Class Activation Mapping (CAM), have been used to visualize what visual

neural networks learn to attend (Zhou et al., 2016). As a means to increase

the interpretability of the individual filters, Ravanelli and Bengio (2018a,b) pre-

sented SincNet. SincNet filters are bandpass filters parametrized by only two

parameters. SincNets have been shown to yield interpretable frequency trans-
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formations in the first layer of audio-only networks. Here, we extend this to AV

networks with two SincNet layers - an architecture similar to cascaded bandpass

filters (separated by a nonlinearity) that have been proposed in auditory models

(Ewert and Dau, 2000; McWalter and Dau, 2017). The multilayered SincNet

architecture effectively allows the network to learn temporal cascaded envelope

representations in the context of AV signals.

Our previous work found that a linear CCA model can learn speech envelope

filters and face decompositions based on envelope and facial landmark inputs

(Chapter 2). We exploited the fact that a linear combination of FIR filtered

speech envelopes (learned by CCA) is itself a filtered speech envelope. The

analysis showed that different rates of acoustic envelope information in the 1-7

Hz range are correlated with motion in different facial components. A linear

model like CCA with predefined audio and video features allows transparency

and interpretability of the learned features but also potentially neglects many

details of AV signal statistics. In this work, we therefore instead aim to learn AV

representations with non-linear neural networks directly from the raw audio and

video inputs. If the learned signal transformations can be interpreted in terms

of their spatio-temporal filter characteristics, this may yield a more detailed

description of natural AV speech signal statistics. Compared to linear methods,

neural networks may also learn more detailed AV features that are useful for

applications such as speech separation, as discussed in (Chapter 2).

Here, we use multilayered SincNets to learn AV representations from raw

video and audio inputs. The network consists of a video and audio part and an AV

fusion part. We implement a joint AV attention mechanism following Harwath

et al. (2018) that can be visualized in matchmaps. We use the matchmaps

to analyze the filtering and the frequency transformations performed by the

audio branch of the network and the spatial attention performed by the visual

branch. To train the network, we employ a training strategy similar to the

one proposed by Chung et al. (2020), that uses multi-way cross-entropy loss

to correctly identify which audio corresponds to the video. Furthermore, we

introduce a novel correlation method to maximize the correlation between

temporally aligned audio and video segments while minimizing the correlation

between mismatching segments.
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3.2 Methods

The model used in the work consists of a visual network and an audio network

that are fused to learn correlated AV features from raw video and audio signals.

The networks are inspired by the self-supervised networks proposed by Har-

wath et al. (2018). This approach is specifically chosen as it allows for great

interpretability, and the learned representations are distributed both spatially

and temporally, enabling our models to directly co-localize events within both

modalities. However, in contrast to their work, where three different similarity

scores was compared and their network was optimized with a ranking-based

criterion (Karpathy et al., 2014), we introduce a probability-like correlation mea-

sure and, inspired by Chung et al. (2020), use multiway-cross entropy loss to train

the model for speaker identification. Both multi-way and pairwise losses en-

force high similarity between representations of matching AV segments relative

to mismatching AV segments. However, Chung et al. (2020) showed that multi-

way losses lead to more stable learning because the networks are presented

with more mismatching segments. During training, the model is presented

with one video segment and N audio segments, as illustrated in figure 3.1. A

video representation is obtained from the visual network, and similarly N audio

representation are obtained from the shared audio network. The correlation

is then calculated between the video-representation and each of the N audio

representation, resulting in N correlation values. As the cross-entropy loss takes

probability-like inputs, we convert the correlation values from -1 to 1 into prob-

abilities. Each correlation value is scaled to the range 0 to 1: ((1+ corr)/2))3.

The cube term is added to account for the undesirable consequence that zero

correlation is much more preferable than anti-correlations, thus making higher

correlation values even more preferable. Lastly, each scaled correlation value is

converted to probabilities by dividing them by the sum of all correlation values

before using them as input to the multi-way cross-entropy loss (see figure 3.1).

The model then has to identify the audio segment that matches the video seg-

ment. In other words, we directly use a probability-like correlation measure to

train a network to correctly identify which of the N audio segments is matching

the input video. Ideally, the correlations between matching segments should

be as high as possible while being close to zero for non-matching segments.

This would make the representation ideal for downstream tasks like speaker

identification, speaker recognition, and speech separation.
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Figure 3.1: Schematic of the self-supervised approach used to train the AV neural networks.
Presented with a video segment and three audio segments, the visual branch and the shared audio
branch are trained to maximize the correlation between matching AV segments and minimize
the correlation between mismatching segments.

We propose and compare two different models. In both cases, the visual

network remains the same, whereas we compare two audio networks; a network

with sinc-based convolution layers (Ravanelli and Bengio, 2018a,b) in the first

two layers and a network based on standard convolutional layers.

3.2.1 Visual network

The visual network branch, (see table 3.1), is a spatio-temporal VGG-like (Chat-

field et al., 2014) structure comprised of 3D convolutional blocks. All blocks

consist of a 3D convolution with ReLU activation functions, followed by a batch

normalization layer. However, in some blocks, a max-pooling layer is also added.

The network retains the temporal resolution of the input while reducing the

spatial resolution of the input. Similar to Zhou et al. (2016), we apply global

average pooling to the output of the last Conv3dBlock as it enables the recovery
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of spatial activation maps while providing a good accuracy. The output of the

global average pooling layer is finally flattened such that it can be correlated

with the feature representations of the audio network.

3.2.2 Audio network

We compare two different audio networks, (see table 3.2). Both networks take

as input single channel raw audio and are based on 1D convolutional blocks.

The 1D convolutional blocks consist of a 1D convolutional layer followed by

a ReLU activation function and a batch normalization. Similar to the visual

network, some blocks also contain a max-pooling layer. The two networks differ

only in the first two layers. The first audio network, audio-SincNet, contains

two successive sinc-based convolution layers (Ravanelli and Bengio, 2018a,b)

in the very first layers. The sinc-filters provide for a more straightforward inter-

pretation than standard convolutions, and they converge faster. The second

audio network, audio-ConvNet, contains two standard 1D-convolution layers

instead of sinc-based convolutions, but the filter lengths are equal to the filter

lengths of the audio-SincNet. Following the first two convolutional blocks, both

networks are comprised of four 1D convolutional blocks based on standard

1D-convolution layers. The temporal resolution of the input audio is lowered

throughout the network to eventually match the temporal resolution of the

video input. Lastly, the outputs are flattened, making it possible to calculate the

correlation between the audio and video outputs.

Layer Input Output

Conv3DBlock (b,50,224,224,3) (b,50,112,112,64)
Conv3DBlock (b,50,112,112,64) (b,50,112,112,64)
Conv3DBlock (b,50,112,112,64) (b,50,56,56,128)
Conv3DBlock (b,50,56,56,128) (b,50,56,56,128)
Conv3DBlock (b,50,56,56,128) (b,50,56,56,128)
Conv3DBlock (b,50,56,56,128) (b,50,28,28,256)
Conv3DBlock (b,50,28,28,256) (b,50,28,28,256)
Conv3DBlock (b,50,28,28,256) (b,50,28,28,256)
Conv3DBlock (b,50,28,28,256) (b,50,14,14,256)
AveragePooling3D (b,50,14,14,256) (b,50,256)
Flatten (b,50,256) (b,12800)

Table 3.1: Video encoder.
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Layer Input Output
SincNet / ConvNet

SincBlock2 / Conv1DBlock (b,32000,1) (b,32000,64)
mpSincBlock2 /mpConv1DBlock (b,32000,64) (b,10666,64)
mpConv1DBlock (b,10666,64) (b,1777,128)
mpConv1DBlock (b,1777,128) (b,296,128)
Conv1DBlock (b,296,128) (b,148,256)
Conv1DBlock (b,148,256) (b,50,256)
Flatten (b,50,256) (b,12800)

Table 3.2: Audio encoder.

3.3 Experiments

Our goal is to train a deep neural network that, given raw video and audio inputs,

can learn to extract maximally correlated representations in cases where the

video and audio are temporally aligned and minimally correlated when they are

misaligned. This is a desirable property and would make the extracted represen-

tation very suitable for downstream tasks like speech separation. Moreover, the

network structure should enable transparent interpretations. Specifically, we

want to explore which features the networks learn given the task of AV alignment.

What does the visual network learn to focus on in the input videos, and which

type of frequency selectivity does the network learn in the audio domain?

3.3.1 Dataset

The LRS3 dataset (Afouras et al., 2018a), which contains videos with natural

speech extracted from TED and TEDx talks in English, was used to train the

models. Overall, 56,430 videos were used out of the 118,516 videos from the

predefined pre-train dataset. The 56,302 video clips corresponding to ap-

proximately 194 hours of video data come from 4,402 different speakers, and

the clips vary from two seconds to six minutes in duration. To test the model,

we used the predefined test dataset, consisting of 1,321 videos. All videos have

a frame rate of 25 fps, and each frame has dimensions of (224, 224, 3). The audio

is given at a sample rate of 16 kHz.
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3.3.2 Training scheme

The networks are trained to identify the correct audio segment out of N pre-

sented audio segment. Both models were trained on two-second video and

audio segments, corresponding to 50 frames or 32,000 audio samples. To train

the models, we use three audio streams: one where the audio is temporally

aligned with the video, one where the audio is from the same video clip but

temporally misaligned, and one audio segment from a different video. This

approach enforces the networks not only to focus on differences in pitch and

frequency content (male versus female) but also ensures that the extracted

representation contains valuable temporal information. The misaligned audio

segments from the same videos were shifted by a minimum of five frames or 0.2

seconds. Shifting the audio by 0.2 seconds ensures that small misalignment’s in

the original data do not negatively influence the training process. Pixel values

in the videos inputs were normalized according to a global mean and variance.

The videos were randomly flipped during training. The audio was converted

to a mono channel and scaled to the range -1 and 1. To train the network, we

used a Stochastic Gradient Descent (SGD), with a momentum of 0.8 and an

initial learning rate of 0.001 that was lowered by a factor of 0.1 if no progress

was observed on the validation set within three epochs.

3.4 Results

3.4.1 Correlations

Generally, it is desirable if the representations learned by the models are highly

correlated for matching AV segments and close to zero for non-matching seg-

ments. Indeed, as shown in table 3.3, we found that the representations learned

by both models, audio-ConvNet, and audio-SincNet, are highly correlated in

cases where the AV segments match while they are close to zero in cases where

the AV segments are not aligned. Notably, the correlation values are surprisingly

close to zero in the condition where the imposter audio segments come from

different speakers. The same tendency is observed in the mismatch condition

where the imposter audio segments are temporally shifted but originate from

the same talker. The large difference in correlation between the imposter and

matching audio segments suggests that the learned representations are appro-

priate for downstream tasks. With downstream tasks like speaker identification
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and speaker separation in mind, it is interesting to focus on the results where

the imposter audio segments are extracted from different talkers. It is, however,

also relevant to dwell on the performance where the imposter audio segments

are temporally shifted. The noticeable correlation difference indicates that the

learned representations will perform well in cases where reverberation exist in

the audio.

Model Match Mismatch: different video Mismatch: same video

SincNet 68.86 ± 13.00 -0.04 ± 22.08 -5.10 ± 20.38
ConvNet 69.42 ± 14.44 -0.36 ± 21.17 -4.41 ± 20.11

Table 3.3: Comparison of correlation results. For each model the average correlation between AV
features is reported for three different scenarios. Match is the scenario where the AV segments
are temporally aligned and come from the same video. Mismatch is the scenario where the audio
is either temporally misaligned but comes from the same video or simply comes from another
video.

Model Accuracy: different video Accuracy: same video

SincNet 98.56 ± 0.67 99.11 ± 0.67
ConvNet 98.39 ± 0.80 99.17 ± 1.00

Table 3.4: Accuracies from a three-speaker identification task for the two models. Presented with
a video segment and three audio segments (on temporally aligned and two imposter audios),
the correct audio should be identified. In one case, the two imposter audio segments are from
different videos. In the other case, they are from the same video and talker but temporally
misaligned.

3.4.2 Speaker identification

Table 3.4 summarizes the networks’ ability to perform speaker identification

in two different conditions. In the first condition, the networks are presented

with two audio segments from different videos along with the correct audio

segment. In the second condition, the temporally aligned audio segment is

presented along with two temporally misaligned audio segments originating

from the same video. The table compares the performance of our two different

audio networks, audio-ConvNet and audio-SincNet, on both tasks. In both

conditions, both models yield close to 100 percent accuracy at identifying the

corresponding audio segment. Interestingly, both networks perform a little

better in the more difficult condition where all audio segments originate from

the same video and same speaker. The speaker identification accuracies are
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directly comparable to the results presented in (Chapter 2), where Canonical

Correlation Analysis (CCA) was used to identify linear relationships between

facial landmarks and modulation filtered audio signals on the LRS3 dataset.

For two-second segments, the speaker identification accuracy in three talker

scenarios was reported to be approximately 70 %. As anticipated, the speaker

identification accuracies reported here are far superior to the results obtained

using CCA. Not only do we use richer data inputs that can add valuable and

hidden information not captured by the landmarks, but the linear CCA approach

is also incapable of capturing the non-linear relationships that exist between

visual articulators and the produced speech signal (Scholes et al., 2020; Yehia

et al., 2002).

3.4.3 Interpretation of the models: matchmaps

To create matchmaps between the AV segments and hence visualize the spa-

tiotemporal focus of the visual network, we extracted representations from the

last convblock in both the audio network and the visual network, (see table

3.2 and 3.1). Thus, given a video input of size (50, 224, 224, 3), the output rep-

resentation of the visual network, V , is of size (50, 14, 14, 256), meaning that

it retains a 14 by 14 spatial feature map across 256 channels for each frame.

From the audio networks, the audio representations, A, are of size (50, 256)

given an input of size (32000, 1), where 50 corresponds to the number of input

frames. The matchmaps, M , are derived by multiplying the representations

along the feature dimension: M = V AT , resulting in a matchmap of size (50,

14, 14, 50), where the first 50 is the temporal dimension of the video and the

latter 50 is the temporal dimension of the audio. To obtain the visual matchmap,

we compute the mean of the temporal audio dimension followed by the ab-

solute value, leaving us with 50 matchmaps, one for each frame. The spatial

matchmaps can then be mapped back to the original input and plotted on top

of the original frame. Similarly, the audio matchmaps are computed by taking

the mean of the temporal and spatial dimensions of the video, leaving us with

a one-dimensional vector of length 50 that can be plotted together with the

original audio.

Figure 3.2 illustrates the matchmaps in both modalities for both of our

models. The SincNet results are highlighted in blue, whereas the ConvNet

results are highlighted in orange. Generally, most visual attention maps from

other AV speech networks tend to focus more broadly on the entire face (Afouras
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Figure 3.2: AV matchmaps from SincNet (blue) and ConvNet (orange). The two top rows show the
focus from the visual networks in a given frame segment. The lower plot shows the corresponding
audio along with the focus of the audio networks.

et al., 2020; Cheng et al., 2020; Owens and Efros, 2018; Sharma et al., 2020). In

contrast, our models’ attention maps are more narrowly focused, thus making

them more interpretable. As expected, both of the visual networks mainly attend

to the mouth. However, it is worth noting that during silent periods in the audio,

the visual networks also focus on other facial regions, like the eyes, the jaw, and

in some frames it learns to attend to both the upper and the lower parts of the

lips. Also, we found that the networks have learned to focus on the mouth even

when speakers are viewed from the side.

Below the visualizations of the visual attention, the figure illustrates the

focus of the audio networks. Here we see that the focus of both audio networks

resembles the audio envelope. Interestingly, the focus of both networks is

strikingly similar, suggesting that the extracted signals must be very prominent.

The magnitude spectra of the audio matchmaps are displayed in Figure 3.3.

We observe that the two magnitude spectra are close to identical and that they

mainly capture information in the 0-5 Hz range with a peak at 2 Hz. Generally,

the magnitude spectra correspond well with the findings presented in chapter 2

of this thesis, where we also found frequencies below 5 Hz to be associated with

different facial movements. Moreover, we also found larger facial movements

to be associated with 2 Hz modulations in the audio.
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Figure 3.3: Magnitude spectra of the audio matchmaps from both networks.

3.4.4 Analysis of audio network: filters

As mentioned earlier, the only difference between the two audio networks,

audio-ConvNet and audio-SincNet, is the constrained formulation of the con-

volution filter in the first two layers. A comparison of sinc filters and standard

convolution filters was presented by Ravanelli and Bengio (2018a), where the

networks were trained for speaker identification. The setup presented here is in

many ways similar, but in contrast to their work, we apply our self-supervised

training scheme in an AV context. The visual modality adds an interesting con-

straint, as the learned audio filters ultimately will depend on the visual input.

The magnitude frequency responses for the first layer filters are displayed in

figure 3.4a and 3.4b for each network. The plots reveal that both networks seem

to focus on frequency content below 3000 Hz. Also, the bandpass nature of the

sinc filters makes the filters easier to interpret, in contrast to the standard convo-

lution filters that, in many instances, have multi-band shapes. Additionally, it is

worth noting that especially the sinc network learns to focus on some very low-

frequency content. Figure 3.5a shows the cumulative frequency response for the

first layer filters in each network. Similarly, the individual second layer filters are

displayed (see figure 3.4c and 3.4d). Here we observe that both networks mainly

focus on low-frequency content. This becomes even clearer when investigating
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the cumulative frequency response shown in figure 3.5b. As expected, we see

that the networks learn to focus on frequency content below 100 Hz. Recall that

a ReLu activation (half-wave rectifier) is used in the first convolutional block.

The networks therefore essentially learn to extract filtered signal envelopes in

the second layer. This aligns well with the matchmaps, which showed that the

network had learned to extract are envelope-like features.

3.5 Discussion

In the current study, we compared and analyzed feature representations from

two AV neural networks. The two networks both consist of an audio branch and

a visual branch. The visual branch has similar architecture in both networks.

The same is true for the two audio networks, audio-ConvNet and audio-SincNet,

except for the first two layers. The two networks differ in that standard 1D-

convolutions are used in the audio-ConvNet, whereas sinc-based convolutions

are used in the audio-SincNet. Further, we introduce a novel correlation mea-

sure that can be used directly with the multi-way cross-entropy loss to optimize

the models in a self-supervised fashion. Ideally, the fully trained models should

learn highly correlated representations in cases where audio and video segments

match while being uncorrelated when the segments do not match.

The performance of the two networks was measured through a speaker

identification task, where the network was presented with a video segment and

three audio segments. Even when all three audio segments were from the same

speaker, but two of them were temporally misaligned, both models achieved

close to 100 % accuracy. Additionally, we found that in cases where the audio

and video segments matched, the average correlation was approximately 70 %

in contrast to approximately 0 % in mismatching cases. The idea of maximizing

the correlation between representations in a multimodal setting is not new. One

often used approach to analyze AV data is Canonical Correlation Analysis (CCA),

which uses linear transformations to the input data to maximize the correlation

between two views in the latent space. Although the standard CCA provides very

interpretable results, it is limited because it only explores linear relationships be-

tween the inputs. Chandar et al. (2016) presented a Correlation Neural Network

(CorrNet) that to some extent can be thought of as a neural network extension of

CCA. Like CCA, the objective function of CorrNet is to maximize the correlation

between different views. In contrast to both CCA and CorrNet, our proposed
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(a) SincNet, from first layer filter.
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(b) ConvNet, from first layer filter.
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(c) SincNet, from second layer filter.
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(d) ConvNet, from second layer filter.

Figure 3.4: Filter transfer functions from the SincNet model and the ConvNet model from the
first layer filters, a) and b), and the second layer filters, c) and d).
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(a) Summary transfer function of the first layer filters.
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(b) Summary transfer function of the second layer filters.

Figure 3.5: Summary transfer functions of the first layer filters (a), and second layer filter (b) from
both networks.
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probability-like correlation measure more aggressively penalizes lower correla-

tion values and rewards higher correlation values because of the scaling term.

Preliminary results suggest that our approach enforces a bigger difference in

correlation between matching and mismatching pairs than other approaches.

Moreover, since our approach works directly with the multi-way cross-entropy

loss, which allows for more stable learning (Chung et al., 2020), it is an attractive

alternative for learning correlated representations in multi-modal settings.

The architecture of the networks makes it possible to create matchmaps that

allow us to map the output of the networks back to the input space. Unsurpris-

ingly, the matchmaps from both visual networks revealed that they primarily

focus on the mouth region, but also that other facial areas such as the eyes

and jaw seem to carry relevant information. These findings are consistent with

findings in other studies that have shown that movements of the eyes tend to

be associated with prosodic events as a way to put emphasis on specific words

or when people want to emphasize a specific point (Guaïtella et al., 2009; Kim

et al., 2014). Furthermore, many of the same facial areas were identified in our

analysis of the temporal modulations in AV speech presented in chapter 2.

Besides the visual focus, we also analyzed the focus of the audio networks.

By back projecting the output of the audio-ConvNet and audio-SincNet to

the raw speech waveform input, we found that the focus of the networks is

remarkably similar to the audio envelope. Magnitude spectra of the audio

matchmaps, Figure 3.3, furthermore shows that the audio matchmaps tend to

focus on the frequency range from 0-5 Hz with a peak at 2 Hz. These findings

align well with the findings presented in chapter 2, where we also observed a

strong 2 Hz component associated with larger facial movements, while other

components captured facial movements correlated with modulations around

3-4 Hz. Overall the matchmaps align well with previous studies (Alexandrou

et al., 2016; Chandrasekaran et al., 2009) that showed that the audio envelope

is correlated with mouth movements, but the results also assist the findings

presented in chapter 2.

Analyses of the first-layer audio filters reveal that both networks primarily

learn to focus on frequency content below 3000 Hz. This frequency range

captures most of the first and second formant frequencies of vowels produced

by men and women and some third formant frequencies as well (Hillenbrand

et al., 1995). We also observe a noticeable peak in the frequency range from

600-1200 Hz in both networks. This frequency range covers first formants of
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vowels like /ε/, /æ/, /a/, / c/, and / v/, and second formants like / c/, /o/, /u/

(Hillenbrand et al., 1995). However, some differences exist between the filters

learned by the two networks. For example, the filters from the audio-SincNet

have a dominant peak at 100-200 Hz, thus capturing fundamental frequencies,

whereas the same peak is less prominent in audio-ConvNet filters. In many ways,

our first-layer filters are in good agreement with the first-layer filters learned by

audio-only sinc and convolution networks optimized for speaker identification

(Ravanelli and Bengio, 2018a).

Besides training our networks on AV data, we also expand on the work of

Ravanelli and Bengio (2018a) by analyzing the filters in the second layer of the

audio networks. The second layer filters are surprisingly similar across the two

models. In both models, the networks learn to focus on frequency content (well)

below 100 Hz. As a ReLu activation function (a half-wave rectifier) is added to the

output of the first layer, the low-pass nature of the second layer filters enables

the network to perform envelope filtering. As acoustic envelope extraction

is believed to play a vital role in combining audio and visual information in

humans (Yuan et al., 2020), it intuitively makes sense that the networks also learn

to extract envelopes. Furthermore, it is well known that envelope extraction is

crucial for providing temporal cues in the auditory system, which the networks

most likely also benefit from when performing speaker identification.

The approach presented here not only enables comparable performance

in speaker identification scenarios but also facilitates interpretation of the net-

works. Both models presented here, SincNet and ConvNet, learn to extract

visual (mouth, jaw, upper lip) and audio envelope-like representations that

resemble information thought to play a crucial role in combing AV sensory

inputs in humans. Furthermore, the high correlations between audio and video

representations hold promise that the representations would be ideal for other

downstream tasks than speaker identification, such as speech separation.

3.6 Conclusion

This study proposed a self-supervised learning approach and a novel correlation

scheme to train interpretable AV-based CNNs, optimized to extract correlated

AV features from raw audio and video input. Two AV-fusion models were trained,

evaluated, and compared. In a three-speaker identification task, both models

achieved close to 100 % accuracy, and for both models, the average correlation
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between AV features was close to 70 % for matching AV segments, while being

close to 0 % for temporally misaligned AV segments. Investigation of audio filters

from the two first layers of both models showed that the sinc-based convolutions

used in one of the models assisted interpretation, in contrast to the standard 1D

convolutions employed in the other model. Notably, the networks’ architecture

allowed for backtracking of the AV features to the input space, thus allowing for

interpretation of the features. We found that both networks primarily learned

to focus on mouth movements during speech and on extraoral movements

during silence periods. Furthermore, we found that the focus of both audio

networks was related to envelope fluctuations in the range from 0-5 Hz. We

have presented a framework that allowed for the extraction of highly correlated

AV features that could potentially be useful in downstream speech tasks, such

as acoustic speech separation. Moreover, the presented approach facilitated

the interpretation of both filters and AV features, making it compelling as a tool

for analysis of AV speech.
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4
Audiovisual Speech Separation with

Multisensory Featuresa

Abstract

We present a two-stage approach for training speaker-independent

audiovisual (AV) speech separation models to extract target speech

streams from single-channel speech mixtures. In contrast to audio-

only speech separation models, AV models can utilize the visual

speaker information to guide the speech separation process. In this

study, we first present three AV-fusion models, all trained to extract

visual speaker cues from talkers correlated with audio speech fea-

tures. Second, visual cues from the different AV-fusion models are

used to guide the speech separation process of three speech separa-

tion models. We show that, when evaluated on two speaker speech

mixtures from unseen video data, our best performing model on

average achieves an signal-to-distortion ratio (SDR) of 9.81 as op-

posed to an SDR of 9.9 achieved by a more computational heavy

model on the same dataset. In contrast to many other speech sepa-

ration systems that only work in non-causal settings, our proposed

model performs well in causal settings. The proposed method en-

ables the training of computationally efficient AV speech separation

models that work in causal settings, making the approach attractive

for real-time and memory-efficient devices.

a This chapter is based on Pedersen, N. F., Dau, T., Wen, C., Ceolini, E., and Hjortkjær, J. “Audio-

visual Speech Separation with Multisensory Features” (in prep).
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4.1 Introduction

Speech separation is the task of isolating a target speech stream while attenu-

ating or, ideally, canceling out background interference, such as speech from

other talkers or environmental noise. Single-channel separation of speech-

on-speech mixtures is a particularly difficult task due to the similarity of the

statistics of the constituent speech streams. Recently, AV speech separation

methods have shown great promise and outperform audio-only speech sepa-

ration systems (Ephrat et al., 2018; Michelsanti et al., 2021). While audio-only

speaker-independent speech separation models suffer from the "source permu-

tation problem" that arises when the separated speech signals are inconsistently

assigned to the sources, AV speech separation models can utilize visual speaker

cues to guide the separation process and alleviate the permutation problem.

The visual information generally provides a reliable guiding signal, as the talkers

tend to be visually separated, and the visual cues are unaffected by noise in the

acoustic scene.

In recent years, deep learning-based AV speech separation methods have

outperformed the more classical statistical AV speech separation approaches

(Michelsanti et al., 2021). However, many deep learning-based AV speech sepa-

ration models are computationally expensive and employ Bidirectional Long

Short-Term Memory (BLSTM) networks, where the output at a given time step is

dependent on both past and future observations. While this property is advanta-

geous in non-causal settings, it inherently limits such models from functioning

in causal settings such as real-time applications.

Ceolini et al. (2020) introduced a neural network for brain-informed speech

separation from single-channel speech. The approach alleviates the need for

prior information about the number of speakers, as the attended speech enve-

lope can be decoded from the brain signals, electroencephalography via (EEG),

and used to inform the speech separation system about the target speech. The

authors showed that their proposed method works in causal settings while re-

quiring less computational power than many similar systems. However, their

approach is limited by the quality and stability of the EEG signal and is person-

specific due to the variations in individual peoples’ EEG signals.

In contrast to the subject dependent models needed to estimate audio target

envelopes from EEG signals, recent studies investigating AV speech correspon-

dences across many speakers have shown that the face and head movements
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are correlated with slow audio envelope information (Chapter 2, Chapter 3).

Thus, visual speaker cues, correlated with target audio, can be reliably extracted

using a single and speaker-independent AV-fusion model.

Here, we adapt the speaker-dependent brain-informed speech separation

method proposed by Ceolini et al. (2020) to train speaker-independent AV

speech separation networks. Instead of using EEG signals to estimate the audio

envelopes, we use visual features correlated with the target speech to guide the

speech separation process of a speech separation network. We first present

three different AV-fusion models of different sizes and complexities to extract

visual features correlated with audio: (i) a regularized Canonical Correlation

Analysis (rCCA) model (Chapter 2), (ii) a neural network extension of CCA based

on Correlational Neural Networks (CorrNet) (Chandar et al., 2016), and (iii)

AV-SincNet, a self-supervised model optimized for maximizing the correlation

between matching AV segments from raw inputs (Chapter 3). To this end, we

present three speech separation networks that rely on visual features from the

AV-fusion models to extract target speech from single-channel speech mixtures.

Furthermore, we compare the performance of the speech separation models

in both a causal and non-causal setting to investigate real-time perspectives.

We show that our approach allows comparable performance to more complex

speech separation models.

4.2 Methods

This section provides an overview of the different AV-fusion strategies and the

speech separation model used in this work. We introduce three different AV-

fusion strategies, rCCA, CorrNet, and AV-SincNet. As illustrated in figure 4.1, all

three AV-fusion models are trained to extract correlated AV features.

Next, we present a speech separation model that uses visual hints to extract

the target speech from a single-channel speech mixture. A schematic of the

speech separation approach is shown in figure 4.2. The network takes two inputs:

the complex spectrogram of the speech mixture and the visual hint obtained

from a fusion model. The speech separation model’s output is a complex-valued

mask that is used to extract the target speech from the complex spectrogram

mixture.
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Figure 4.1: Schematic of the general fusion model strategy. Using audio and visual inputs, the
fusion models learn to extract correlated AV features.

Figure 4.2: Illustration of the speech separation approach. The speech separation approach used
in this work, take as inputs a complex spectrogram of the speech mixture and a visual hint from
a fusion model. Using information from the visual hint about the target speaker, the speech
separation model outputs a complex-valued mask that used to extract the target speech from the
complex spectrogram mixture.

4.2.1 Audiovisual Fusion Strategies

Regularized Canonical Correlation Analysis

Presented with audio and video the rCCA-based AV fusion model is trained

to learn linear mappings of each modality to a shared space, where they are

maximally correlated. The rCCA approach is thoroughly explained in chapter

2, and the reader is hence referred to that chapter for further information. In
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this study, we train the rCCA model on 3D-facial landmarks and mel-frequency

cepstral coefficients (MFCCs), and then we use the weights of the first five

components to extract correlated AV features.

Correlational Neural Networks

Chandar et al. (2016) proposed CorrNet, an approach that uses multimodal

autoencoders to maximize correlation among the views in a projected space.

Whereas the rCCA approch only explores linear relationships between the in-

puts, multiple layers with non-linearities can be stacked in CorrNets. Besides

maximizing for correlation, CorrNets also include a self-reconstruction loss as

well as a cross-reconstruction loss. Let X ∈Rn×t and Y ∈Rm×t be two views of

some data Z, where zi = (xi , yi ). Then Z′ represents the reconstructed data X′

and Y′. The training objective of CorrNet is to find parameters θ that minimize

the loss function:

C (θ ) =
T
∑

i=1

L (zi , z ′i ) + L (zi , x ′i ) + L (zi , y ′i ))−λcorr(h (X ), h (Y )) (4.1)

corr(h(X), h(Y)) =

∑T
i=1(h (xi )−h (X ))(h (yi )−h (Y ))
Ç

∑T
i=1(h (xi )−h (X ))2

∑T
i=1(h (yi )−h (Y ))2

, (4.2)

where h is the hidden representation, h (X ) and h (Y ) are the mean of the

hidden representations for each view, and λ is a scaling parameter.

The CorrNet used in this study, is trained on 3D-facial landmarks and MF-

FCs. Both the audio and visual branches of the CorrNet encoder consist of

three fully-connected layers. The output from each branch in the encoder is

concatenated and a fully connected layer of size 40 is then used to compute the

hidden representation. Similarly, the decoder block also consists of three fully

connected layers that from the hidden representation tries to reconstruct the

audio and visual features. It is the hidden representation extracted from the

visual input that is used as a hint of the target speech by the speech separation

network. To extract the hidden representations from one modality only, an

all-zero-input is used as input to the other modality.



62 4. Audiovisual Speech Separation with Multisensory Features

AV-SincNet

Our AV-SincNet is an AV-fusion network consisting of two branches: an audio

branch and a visual branch. The network is trained directly on raw audio and

visual inputs in a self-supervised manner. The training objective is to maximize

the correlation between embeddings from both branches when the AV segments

match while minimizing correlation when the segments are misaligned. As the

network is described in detail in chapter 3, we will refer readers to that chapter

for further information.

4.2.2 Speech Separation

Audio Mixture

The audio mixture, y (t ), is obtained by summing the target speaker speech st (t )

with interfering speech or noise si (t ),

y (t ) = st (t ) + si (t ) (4.3)

where t is the time index. The complex spectrogram Y ∈CF ×L is obtained

using the short-time Fourier transform (STFT) of y (t ),

Y ( f , l ) = STFT(y (t )) = St ( f , l ) +Si ( f , l ) (4.4)

where f is the frequency bin indices and l is the time bin indices. Following

(Ephrat et al., 2018), the dynamic range of the complex spectrogram is reduced

with a compression factor of 0.3,

Y c = Y 0.3, (4.5)

where the resulting compressed complex spectrogram Y c ∈CF ×L .

Complex Valued Mask

The approximated target speech is obtained from the complex spectrogram

mixture by estimating and applying a complex-valued mask, M . The mask is

applied to the complex mixture Y c using element-wise multiplication,

Ŝ c
t =M �Y c . (4.6)
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To obtain the target speech ŝt , the estimated target spectrogram is first

decompressed and inverted using the inverse STFT (iSTFT):

Ŝt = (Ŝ
c
t )

3, (4.7)

ŝt = iSTFT(Ŝt ). (4.8)

Speech Separation: Model Architecture

To train the speech separation network, we use a network architecture similar

to the one proposed by Ceolini et al. (2020). The speech separation network

consists of three stages: (i) a hint fusion stage that combines the visual hint H (l )

at the target speech stream with the complex spectrogram mixture Y c ( f , l ); (ii) A

stage consisting of stacks of identical and thereby modular dilated convolutional

layers, that processes the output of the hint fusion stage; lastly (iii) a stage that

applies a complex mask, M , to the compressed complex spectrogram mixture,

Y c , to extract the estimated target speech, ŝt .

In the hint fusion stage, the mixed waveform, y (t ), is first transformed

into the compressed complex spectrogram, Y c , using the STFT. To extend the

channel number of Y c of size 2 × F × L, a 1×1 2D convolution with K channels

is applied, resulting in a tensor of size K × F × L. Likewise, the hint is extended

and a 1× 1 2D convolution is applied to obtain a 3D tensor of size 1 × F × L.

Lastly, the two tensors are concatenated along the channel axis to the resulting

in a tensor of size (K + 1) × F × L.

Following the hint fusion stage, a series of modular stacks of 2D dilated

convolutional layers are applied. The use of dilated convolutional layers is

inspired by the relatively recent success of fully convolutional networks for

speech separation, (Luo and Mesgarani, 2019). Furthermore, dilated CNNs have

proven effective in handling long signals due to a wide receptive field while

using considerably fewer parameters compared to recurrent neural networks.

Each of the S modular stacks consists of N convolutional blocks that each is

made up by a convolution step. Each convolution step consists of three 2D

convolutional layers: a 1 × 1 convolution, a 3 × 3 dilated convolution with a

dilation factor i, and a 1 × 1 convolution, followed by a batch normalization

layer. A ReLu activation is used after each of the first two convolutional layers.

Each convolutional block has two inputs, the output of the previous layer and a
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skip connection input. Besides the skip connections, the convolutional blocks

also contain a residual connection. Each block has two outputs; one is the skip

connection input summed with the output of the convolution step, the other

is the output of the convolution step summed with the residual connection.

Throughout this stage, the network retains the spatial size of the feature input,

thus the output tensor is of size (K + 1) × F × L.

Lastly, in the reconstruction stage, we first derive the complex mask M. We

do that by first reshaping the feature embedding from (K + 1) × F × L to 2 × F ×
L using a 2D convolutional layer. We then apply a hyperbolic tangent function

to map the values in the range [-1,1] and obtain the complex mask. Finally, the

target speech can be estimated using eq. (4.6), (4.7), and (4.8).

The three speech separation networks presented in this study all consisted

of two stacks, S = 2, with six convolutional blocks in each stack, N = 6.

SDR and SI-SDR

The signal-to-distortion ratio (SDR) (Vincent et al., 2006) is a commonly used

measurement to evaluate the performance of speech separation models, and is

calculated as:

SDR= 10 log10

||starget||2

||einterf+ enoise+ eartif||2
, (4.9)

where starget denotes the true source, and einterf, enoise, and eartif are error

terms for interference, noise, and artifacts, respectively. Although SDR is a

widely used evaluation metric, situations can arise where the SDR values are

artificially inflated due to the way that the noise terms are estimated. Le Roux

et al. (2019) introduced a more robust scale-invariant SDR (SI-SDR), where the

amplitude scaling dependence of SDR is mitigated, leading to a more stable

evaluation metric. The SI-SDR is defined as:

SI−SDR= 10 log10
||αs ||2

||αs − ŝ ||2
, (4.10)

where s is the clean speech signals, ŝ estimated speech signals, both with

zero mean, and α is a normalization term defined as:

α=
ŝ>s

||s ||2
. (4.11)



4.3 Experiments 65

4.3 Experiments

The overall aim of our approach is first to train AV-fusion models to learn broadly

applicable AV features that can be beneficial in the downstream task of speech

separation. In the speech separation system, we can then use the learned visual

features as guiding signals to inform the speech separation system about the

target audio. We hypothesize that more correlated AV features should translate

to better performance in the speech separation system.

Dataset

To train the AV-fusion models and the speech separation models, we used the

LRS3 dataset (Afouras et al., 2018a), which contains videos with natural speech

extracted from TED and TEDx talks in English. The talker is visible at all times

during the video. To train the rCCA model and the CorrNet model, we extracted

three-second AV-segments from 74,511 videos corresponding to 62 hours of

video data, from the predefined pre-train and trainval datasets. The AV-

SincNet model was trained with approximately 194 hours of video data from

the pre-train dataset. To test the performance of the fusion models and the

speech separation models, we used the predefined test dataset, consisting of

1,321 videos. All the videos have a frame rate of 25 fps, and each frame has a

dimension of (224, 224, 3). The audio is given at a sample rate of 16 kHz.

4.3.1 AV-fusion models

Audiovisual Features

Both the CorrNet and rCCA fusion models were trained using AV segments of

three-second duration. First, the audio was downsampled to 8,000 Hz before

computing 40-dimensional MFCCs, extracted every 40 ms using a window

length of 64 ms, resulting in a feature dimension of 75 × 40. 3D-face landmarks

similar to the approach presented in chapter 2 were used as visual inputs to the

CorrNet and rCCA model. The landmarks were first low-passed filtered at 8 Hz

to remove jitter originating from the frame-to-frame estimation of the landmark

positions. The visual features of size 75× 68× 3 were then flattened on the third

dimension resulting in a feature size 75 × 204.

The AV-SincNet was trained on the raw audio waveforms and video pixels.

AV segments of two-second duration were used to train the AV-SincNet.
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4.3.2 Speech Separation

For each of the three pretrained AV fusion models, we trained a speech separa-

tion model that uses visual representations from the fusion model to perform

target speaker extraction.

Audiovisual Features

We use single-channel speech mixtures and AV features from the individual

fusion models to train and evaluate the speech separation systems. Two-second

segments were used to evaluate the AV-SincNet-based speech separation model,

whereas three-second segments were used for rCCA-based and CorrNet-based

speech separation models. Hanning windows with a window size of 512 and a

step size of 320 are used to compute the input spectrograms for all three models.

Training strategy

Following Ceolini et al. (2020), we employ a curriculum training scheme to train

the speech separation model. The idea is that since the learned visual features

are only partially correlated with the target audio, the visual features can be

regarded as "noisy" audio features. Therefore, we start by training the speech

separation model with the "clean" audio features and gradually increase the

amount of noise injected into the audio representation. The noisy audio hint is

given by:

HAN =HA +λHN (4.12)

where HAN is the noisy hint, HA is the clean hint, λ is the noise factor, and

HN is the hint noise. Lastly, we train the speech separation models on the visual

feature representations.

The noisy hints are computed using two different approaches. The noise

added to the audio hints from the rCCA-based model is found by computing

the distribution of the residuals between audio and visual features. We then

use a zero-centered Gaussian distribution with σ = 0.3 to approximate the

distribution of the residuals. During training, the λ value is increased in steps

of 0.1 from 0.05 to 0.55. For both the CorrNet model and AV-SincNet model, the

distribution of the residuals cannot be approximated by a Gaussian distribution.

Instead, we add a random phase noise to the audio hint in the frequency domain
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and transform the hint back to the time domain. In both cases, the injected

noise increases in steps of 0.25 from 0.25 to 1.0 before training on the clean

visual hint.

To train the model, we used the SI-SDR as the objective function. The

networks were trained using the Adam optimizer with an initial learning rate of

0.001. If no improvements were observed for three consecutive epochs on the

validation loss, the learning rate was reduced by 10.

4.4 Results

4.4.1 AV-fusion models

Audio feature Visual feature Input length AV correlation

AV-SincNet Raw audio Raw video 2 seconds 0.69
CorrNet MFCCs 3D-landmarks 3 seconds 0.57
rCCA MFCCs 3D-landmarks 3 seconds 0.39

Table 4.1: Fusion strategies.

4.4.2 Comparison of AV fusion models

The fusion models can be compared in terms of the averaged Pearson’s cor-

relation between audio and video features learned by the models on the test

data. The correlation results are compared in table 4.1. The average correlation

for the linear rCCA approach was 0.39, whereas the non-linear CorrNet and

AV-SincNet approaches obtained average correlations at 0.57 and 0.69, respec-

tively. As expected, we see that the two neural network approaches, CorrNet

and SincNet, learned to extract more correlated features than the simpler rCCA

approach. Both neural network approaches learn non-linear projections of the

audio and video input features, and the higher correlations indicate that linear-

only approaches might be limited in capturing important AV correspondences.

Furthermore, we see the AV-SincNet approach yields higher correlations be-

tween AV features than the CorrNet approach. The likely explanation is that

both the 3D-landmarks and the MFCCs (used as input features in the CorrNet)

are reduced representations compared to the raw waveform and pixel data and

that relevant information may be discarded when computing the features. For

instance, MFFCs do not contain phase information.
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4.4.3 Speech Separation

Here we present the results of the three different speaker-independent speech

separation models. The speech separation results for two-talker mixtures are

compared in table 4.2. As can be seen, the best performing model is based

on AV-SincNet features which achieved an SI-SDR of 8.98. Speech separation

of two talkers based on CorrNet features achieved an almost comparable SI-

SDR of 8.09, whereas the rCCA based model achieved a considerably lower

SI-SDR of 5.58. The results align well with the fact that the representations

learned by AV-SincNet and CorrNet are considerably more correlated than those

learned by rCCA. Figure 4.3 shows an example of the speech separation process

with AV-SincNet in a non-causal setting. As can be seen from the figure, the

model correctly learned to attenuate the unwanted speech while convincingly

retaining the target speech. Besides the offline or non-causal setting, we also

trained an AV-SincNet model and CorrNet model in a causal setting. The causal

setting ensured that the outputs at time step t only depend on the previous time

steps, expressed as P (yt |x1, x2, ...x(t−1)). The results for the causal setting are also

shown in table 4.2, here we again observed that the AV-SincNet model performed

better than the CorrNet. Compared to the non-causal setting a performance

drop of almost 1 dB was found for the AV-SicNet based speech separation model

and approximately 0.6 dB for the CorrNet based speech separation model.

We also tested the speech separation performance in even more complex

real-world scenarios. To simulate more complex real-world scenarios, back-

ground noise (e.g. aircraft, kindergarten, etc.) was added to the two speaker

audio mixture. Similar to the two previous cases, we found a performance drop

when changing from the non-causal to the causal setting. In line with the previ-

ous results, we found the AV-SincNet based speech separation model to perform

best. Lastly, we compared the performance (see table 4.3) of the CorrNet and

the AV-SincNet based speech separation models to a model proposed by Ochiai

et al. (2019). Similar to our models, it was also trained on the LRS3 dataset. The

results in table 4.3 are reported in SDR to make them comparable. The best-

performing model, AV-SincNet, achieved comparable performance with 9.81

dB SDR, as opposed to 9.9 dB. This slight performance increase of their model

comes at the expense of a much more computational-heavy model that only

works in non-causal settings. In contrast, our approach showed comparable

performance even with the computational efficient CorrNet fusion approach,
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which produces ’lightweight’ features. Furthermore, our approach works in

both causal and non-causal settings making it more broadly applicable, even in

real-time applications.

Setting Scenario AV-SincNet CorrNet rCCA

Non-causal
2spk 8.98 8.09 5.58
2spk + noise 8.12 7.64 -

Causal
2spk 8.00 7.52 -
2spk + noise 7.31 7.18 -

Table 4.2: Average SI-SDR in dB for three models, tested in different scenarios and settings.

Setting Scenario AV-SincNet CorrNet Ochiai et al. (2019)

Non-causal 2spk 9.81 8.95 9.9
Causal 2spk 8.88 8.56 -

Table 4.3: Comparison between the AV-SincNet model, CorrNet model and a speech separation
model proposed by Ochiai et al. (2019). All results are obtained using the LRS3 test set and is
reported in average SDR in dB.

4.5 Discussion

In the first part of this study, we trained three different AV-fusion models: rCCA,

CorrNet, and AV-SincNet. Presented with audio and video features, the models

all learned correlated audio and video representations. Whereas raw audio and

video inputs were used for the AV-SincNet model, we used MFFCs and 3D-facial

landmarks as inputs to both the CorrNet model and the rCCA model. The perfor-

mance of the fusion models was evaluated via Pearson’s correlation between the

learned AV features. The AV-SincNet model achieved the highest average corre-

lation of 0.69 between the extracted AV representations. The average correlation

value for the CorrNet model and rCCA model was 0.57 and 0.39, respectively.

It is worth noting that while both the CorrNet model and AV-SincNet model

use non-linearities, the rCCA model solely relies on learning linear mappings

between the AV input features. As some of the interrelationships between the

visual articulator and the speech acoustic in key aspects are non-linear (Scholes

et al., 2020; Yehia et al., 2002), the rCCA model is inherently limited in capturing

these relationships. This limitation is probably the main reason why the rCCA
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Figure 4.3: Two-speaker speech separation example with AV-SincNet in a non-causal setting. (a)
shows an audio mixture of two speakers and (b) shows the target speech. (c) displays the mask
that is applied to the mixture to obtain the estimated target speech (d).

model performs worse than the two non-linear methods.

While the AV-SincNet model achieves the highest AV correlation, it is also the

most complex model with respect to the number of parameters. Whereas the AV-

SincNet fusion model has 3.9 M parameters, the CorrNet has 0.5 M parameters,

and the rCCA model has only 1,220 weights as parameters. Moreover, as the AV-

SincNet model is trained directly on the raw audio and video input, it can learn to

extract features that are directly optimized for maximizing the correlation. The

AV-SincNet model can learn to extract phase information, which is disregarded

when computing MFCCs and thus not available for the CorrNet and rCCA fusion

models. Considering these advantages, it is not surprising that the AV-SincNet

model yields the highest correlation values.

Features from the three different fusion models were used to train three AV

speech separation models. The DNN-based speech separation system utilizes

the visual feature information to extract the target speech from a single-channel

audio mixture. Visual embeddings from the three AV fusion models were used

to provide visual information to the speech separation systems, as these were
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optimized to be correlated with the target audio. Our approach shows that

target speech can be extracted from audio mixtures with two speakers and

with two speakers and real-world background noise. We also showed that the

models can be used in non-causal/offline settings and causal settings with only

a minor decrease in performance (0.6-1 SI-SDR in dB). We found that the speech

separation model based on AV-SincNet in all test cases performed best, and

generally, we observed a strong relationship between speech separation quality,

SI-SDR, and how correlated the visual embeddings are with the audio.

In contrast to other approaches with slightly better performing and more

computational heavy models (Ephrat et al., 2018; Ochiai et al., 2019), our ap-

proach showed comparable performance while performing well in causal set-

tings. Especially, the speech separation model based on the CorrNet fusion

model offers good performance while being computationally efficient, making

it a compelling option for use in both low consumption devices and real-time

applications. Compared to the original idea of using EEG signals as the guid-

ing signal to do brain-informed speech enhancement Ceolini et al. (2020), our

AV strategy allows for better performance while additionally being speaker-

independent.

4.6 Conclusion

In this study, we proposed a two-stage approach to train AV speech separation

models, where the AV fusion stage and the speech separation stage can be

optimized independently of each other.

Three speaker-independent AV-fusion models of different complexity were

trained on natural AV speech data to extract correlated AV features. Using visual

speaker cues from the AV-fusion models as guiding signals, three speech sepa-

ration models were trained to extract the target speeches from single-channel

audio mixtures. We found that the correlation of the visual speaker cues with the

target audio was directly related to the performance of the speech separation

model. Further, we observed that even if the speech separation models are

based on relatively simple AV-fusion models, the performance was still compa-

rable to that of much more complex speech separation models. Importantly,

the proposed model performed well in causal or real-time settings, making it

an appealing and potentially widely applicable approach.
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5
General discussion

This thesis presented different data-driven approaches for identifying correlated

audio and visual cues in natural speech signals and investigated the usefulness

of these cues in AV speech separation.

First, using linear analysis of AV speech data from thousands of speakers, we

identified a set of generic facial movements associated with speech production

and the amplitude envelope rates associated with these movements (Chapter

2). Next, the linear analysis was extended with deep neural network-based AV

fusion models, trained to extract correlated AV feature embeddings directly from

raw audio and video data (Chapter 3). Building upon the findings in Chapter 2

and Chapter 3, we finally presented an AV speech separation model that used

visual cues to perform acoustic source separation (Chapter 4). The presented

separation model can work in causal settings while also achieving comparable

performance to computational "heavier" models, raising perspectives for real-

time applications.

5.1 Summary of main results

In our first study (Chapter 2), we used a CCA model to analyze natural AV speech

from many talkers. We estimated 3D facial landmarks directly from videos of

single talkers, allowing us to capture facial motions on a much larger cohort

of talkers than what would have been possible with the traditional and more

cumbersome manual data collection methods. Presented with filtered audio en-

velopes and the 3D facial landmarks extracted from the videos, the CCA model

learned speech envelope filterings correlated with facial motion patterns. Our

results revealed two primary temporal ranges of envelope fluctuations related

to facial motion across speakers. The first is distributed around 3-4 Hz and

relates to mouth openings. The second range of modulations peaks around 1-2

Hz and relates to more global face and head motion. In both cases, we found

the envelope information correlated with landmarks distributed across the face,
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reflecting that natural speech involves highly coordinated motor activity. This

implies that envelope cues are not only available from mouth movements but

can also be retrieved from extraoral parts of the face and head. Notably, the

derived AV correlations were predictive across speakers implying that these tem-

poral cues are consistent in natural AV speech statistics. The relatively simple AV

input features and the linear nature of CCA made the analysis straightforward

and transparent. However, at the same time, the approach could potentially

have overlooked essential non-linear aspects of AV signal statistics.

To address the limitations of the CCA approach, we next analyzed the AV

speech data through the "dissection" of two Convolutional Neural Networks

(CNNs). The networks were trained in a self-supervised manner directly on raw

audio and video to extract correlated AV feature embeddings (Chapter 3). Both

networks achieved close to 100 % accuracy when evaluated in a three-speaker

identification task (compared to 76 % for CCA), and for both networks, the

average correlation value between matching AV segments was close to 70 %

(compared to 22 % for CCA), whereas, for non-matching AV segments, it was

near 0 %. Examination of the audio filters learned by the networks revealed

that the networks learned to extract features akin to envelopes of the speech

audio, providing the models with basic temporal audio information. Moreover,

it was shown that both networks in the visual domain primarily tended to focus

heavily on the mouth region during speech production.

In our third study (Chapter 4), we used the correlated AV feature embeddings

of the AV fusion models presented in the two previous chapters to train an AV

speech separation model that utilized visual speaker information to extract the

corresponding target speech from single-channel audio mixtures. We observed

a strong relationship between the correlation of the AV feature embeddings and

the performance of the speech separation models. Furthermore, we found the

speech separation models to perform well in causal and non-causal settings

under various acoustic conditions.

5.2 Discussion

5.2.1 Analysis of audiovisual speech

Previous studies on AV speech have either focused on facial motion tracking

from a limited number of subjects (Lucero et al., 2005; Lucero and Munhall, 2008;
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Vatikiotis-Bateson et al., 1996; Yehia et al., 2002) or only considered specific

facial regions such as the mouth area (Chandrasekaran et al., 2009). In contrast,

the approach presented in chapter 2 allowed for the analysis of natural speech

across thousands of speakers by capturing facial movements across the entire

face using a deep neural network (Bulat and Tzimiropoulos, 2017) to estimate

3D facial landmarks.

While our analyses highlighted the well-known synchronized mouth-envelope

modulations in the 4 Hz range (Chandrasekaran et al., 2009), it also identified

more global face and head motions related to envelope modulations around 1-2

Hz. Interestingly, the correspondences between larger head motions and slower

envelope modulations were only identified when analyzing natural speech

across many speakers from the LRS3 dataset (Afouras et al., 2018a) but not

when analyzing the simpler GRID dataset (Cooke et al., 2006). As both datasets

contained approximately 30 hours of AV speech data, the differences in the

results must instead arise from the fact that the LRS3 dataset includes many

more individual speakers, a more diverse and complex vocabulary, and that the

speakers move freely. The differences between the two analyses, thus, demon-

strate the importance of choosing the speech material with care, as the findings

ultimately will depend on the speech task in the speech material.

Another important aspect of the first study is that we intentionally restricted

the search for AV cues to focus on envelope amplitude modulation rates corre-

lated with facial movements. Although this made sense to better understand

how modulations are related to facial movements, it also restricted the model

from inspecting audio and visual cues that potentially are even more correlated.

In particular, non-linear aspects of AV speech, such as the relation between

visible articulators and the produced speech signal, are non-linear in essential

aspects (Scholes et al., 2020; Yehia et al., 2002) and can not be captured in the

proposed method.

To capture non-linear relationships, we analyzed AV speech through the

analysis of deep neural networks in chapter 3. Like in chapter 2, the objective

of the models presented in chapter 3 was to identify correlated audio and visual

cues from natural AV speech, but the two approaches are conceptually different.

In contrast to chapter 2, we imposed few restrictions on the AV fusion models

in the second study, enabling the models to freely learn information from the

raw input modalities that would result in correlated audio and visual represen-

tations. The approach undoubtedly made the analysis process less transparent
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and harder to interpret. However, the proposed method still allowed for inter-

pretation of the first two layers of audio filters and enabled backtracking of the

AV cues to the input spaces. Especially, the use of sinc-based convolutions (Ra-

vanelli and Bengio, 2018a) allowed for interpreting the audio filters and which

audio frequency content yielded the most correlated audio cues. Moreover, we

could conclude that the proposed models learned to focus specifically on the

mouth but also on extra-oral parts of the face, supporting the findings from

chapter 2 that visual cues correlated with audio cues are distributed across the

entire face.

While the neural networks can be more challenging to interpret, the ex-

tracted AV cues are significantly more correlated than those obtained with the

CCA approach in chapter 2 (69% for SincNet vs. 22% for CCA). The fact that

the AV cues are more correlated also makes them more attractive for use in a

downstream task like AV speech separation. The approach presented in chapter

3 also resembles an emerging strategy that heavily relies on complex models

to learn from massive datasets, rather than carefully controlling every step of

the analysis (Aldeneh et al., 2021; Ravanelli and Bengio, 2018a). Interpretability

and transparency are, to some extent, compromitted on behalf of better perfor-

mance when using neural networks. However, the neural network’s ability to

learn from that vast amount of available video data combined with clever model

architectures that allow for some interpretation might be a way to identify un-

known AV relationships that are otherwise omitted for the sake of transparency

and simplicity.

5.2.2 Speech separation

Chapter 4 introduced a speaker-independent AV speech separation network

that used visual target speaker cues to extract the corresponding target speech

from single-channel audio mixtures. We adapted the speaker-dependent brain-

informed speech separation network by Ceolini et al. (2020) to rely on visual

speaker cues rather than speech envelopes derived from EEG signals. The use

of visual cues is attractive for several reasons. First, the visual speaker cues are

relatively easy to capture (with video cameras) and naturally correlate with the

audio, making them favorable as guiding signals. Further, the visual scene is

not corrupted by acoustic noise in the auditory scene, thus providing a reliable

guiding signal. Last, visual cues can be obtained from all speakers using a single

pretrained model, alleviating the need to train person-specific models, which is
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needed to estimate speech envelopes from EEG signals.

Whereas several AV speech separation studies rely on the memory-intensive

Bidirectional Long-Short-Term-Memory (BLSTM) networks (Ephrat et al., 2018;

Ochiai et al., 2019), our proposed method only uses 2D convolutions, which

decrease the number of parameters in the model, thus making it more compu-

tationally efficient. Besides being memory efficient and speaker-independent,

the model also performs well in causal settings, suggesting that it could be a

promising approach for real-time applications and low-resource devices such

as hearing aids.

However, real-time implementation is to some extent hindered by the tem-

poral window required to compute the short-time Fourier transform (STFT).

An alternative approach could be to replace the STFT representation with time-

domain representations (Luo and Mesgarani, 2019), which would resolve the

latency issue. It might also be possible to increase the performance and roboust-

ness of our system by including multi-channel audio input, as it can provide

complementary spatial information which has been shown to benefit other AV

speech separation systems, particularly in reverberant settings and when the

talkers face is occluded (Gu et al., 2020; Tan et al., 2020).

5.3 Perspectives

In chapter 2 and chapter 3, we based our analyses on the LRS3 dataset (Afouras

et al., 2018a), which consists of videos captured during TED talks. While this

speech material can be considered as "wild" data or natural speech (Michelsanti

et al., 2021), it does not include conversational speech. We know from several

studies that the speech dynamics change during conversations, as conversa-

tional speech involves turn takings (Donnarumma et al., 2017) and non-verbal

movements related to social interactions (Latif et al., 2014). This type of speech

material has so far been unavailable. However, the EGO4D Consortium has

recently announced that they soon will publish Ego4D (Grauman et al., 2021), a

massive-scale egocentric video dataset containing AV speech from first-person

views. Analyses of this type of data would most likely reveal movements specifi-

cally related to the dynamics of conversational speech, which are not captured

in our analyses. It would therefore be interesting to investigate and compare

differences between the datasets. Moreover, the Ego4D dataset is collected from

nine different countries worldwide, and it would be interesting to investigate
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the differences in conversations based on regions. Such information might be

useful for region- or language-specific speech separation models.

The 3D facial landmarks used in our studies consisted of 68 points per face.

Recently, Grishchenko et al. (2020) published a deep neural network that reliably

estimates facial meshes consisting of 468 facial points while working in real-

time on mobile devices. With the additional information that more landmarks

could provide in real-time implementation, it would be an appealing feature in

future analyses and AV speech separation systems.

Today, standard hearing aids do not utilize visual inputs to improve speech

intelligibility. However, with the emergence of smart glasses with built-in video

cameras, microphones, and eye-trackers, it is possible to imagine hearing-aid

glasses where the user’s eye-gaze controls auditory feedback. More computa-

tional power available in smaller devices in combination with efficient speech

separation models as proposed here may pave the way for such devices in a not

too distant future.
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The end.



To be continued. . .



It is well known that seeing a talker’s face can improve the comprehension of

auditory speech compared to listening without visual inputs. This is especially

observed in noisy settings such as "cocktail-party" scenarios. However, there

is a lack of knowledge of the audiovisual (AV) cues and how the two modalities

are related. This thesis aimed to contribute to a better understanding of the

relationship between auditory and visual cues created during speech production.

The AV relationship was analyzed across thousands of speakers. This being

possible due to recent advances in computer vision and data-driven approaches.

Using canonical correlation analysis we identified two primary temporal ranges

of envelope fluctuations related to facial motions across speakers. Using a self-

supervised learning approach, we trained interpretable nonlinear neural networks to

extract highly correlated AV features. Lastly, we presented an AV speech separation

model that used visual cues to perform acoustic source separation.

Overall, this thesis provided new insights into how auditory and visual speech cues

are related and showed their usefulness in AV speech separation.
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