
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 12, 2024

Equivariant graph neural networks for fast electron density estimation of molecules,
liquids, and solids

Jørgensen, Peter Bjørn; Bhowmik, Arghya

Published in:
npj Computational Materials

Link to article, DOI:
10.1038/s41524-022-00863-y

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jørgensen, P. B., & Bhowmik, A. (2022). Equivariant graph neural networks for fast electron density estimation
of molecules, liquids, and solids. npj Computational Materials, 8(1), Article 183. https://doi.org/10.1038/s41524-
022-00863-y

https://doi.org/10.1038/s41524-022-00863-y
https://orbit.dtu.dk/en/publications/0fd94fd6-6318-4524-9353-3a5d38997343
https://doi.org/10.1038/s41524-022-00863-y
https://doi.org/10.1038/s41524-022-00863-y


ARTICLE OPEN

Equivariant graph neural networks for fast electron density
estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen 1✉ and Arghya Bhowmik 1✉

Electron density ρð r!Þ is the fundamental variable in the calculation of ground state energy with density functional theory (DFT).
Beyond total energy, features and changes in ρð r!Þ distributions are often used to capture critical physicochemical phenomena in
functional materials. We present a machine learning framework for the prediction of ρð r!Þ. The model is based on equivariant
graph neural networks and the electron density is predicted at special query point vertices that are part of the message-passing
graph, but only receive messages. The model is tested across multiple datasets of molecules (QM9), liquid ethylene carbonate
electrolyte (EC) and LixNiyMnzCo(1-y-z)O2 lithium ion battery cathodes (NMC). For QM9 molecules, the accuracy of the proposed
model exceeds typical variability in ρð r!Þ obtained from DFT done with different exchange-correlation functionals. The accuracy on
all three datasets is beyond state of the art and the computation time is orders of magnitude faster than DFT.

npj Computational Materials           (2022) 8:183 ; https://doi.org/10.1038/s41524-022-00863-y

INTRODUCTION
Simulations are as critical as experiments now in materials
discovery. At the atomic scale, quantum mechanics based
simulations are frequently used in the computational search of
novel functional materials and molecules1. Within the well-known
cost-accuracy trade-off associated with such methods, Kohn-Sham
density functional theory (DFT) is the most widely used method
due to the right balance between computational cost and
accuracy. The electron density ρð r!Þ is one of the fundamental
variables in the state of the art iterative scheme of DFT. The
electron density uniquely determines the ground state properties
of a system2. DFT is an O(n3) complexity method and thus is
limited to a few hundred atoms in system size that can be
simulated. System size limits prohibit us from fully exploiting DFT
for simulating critical technologically and scientifically important
systems. For example, one would need large simulation cells for
portraying engineering ceramics (with many types of atoms in
small fractions) or mixed liquid electrolytes (with many compo-
nent molecules and additives). Not just system size, in many
materials design problems, the enormity of phase space to be
explored can also be a bottleneck in using DFT. Total energy is the
most commonly used output from DFT simulations. Significant
recent developments towards high accuracy machine learning
potentials for molecules and condensed matter phases have been
able to provide QM accuracy total energy at a much lower
computational cost3–5. However, for functional materials, electro-
nic structure is important as well. Electronic density distribution
and its modulation due to structural and chemical modifications
are descriptors for many chemical properties. For example, Bader
charge analysis is frequently used to understand redox processes
and related phenomena in intercalation battery cathodes6–9.
Charge densities are critical for solar cell materials properties as
well10,11. Similarly, charge density redistribution is often used to
understand trends in catalytic activity12–15. In liquid electrolytes,
the analysis of gradients and other features in charge density
helps us understand intermolecular interactions16–19. Charge
density also gives us access to functional properties (through
surrogate models) that are costly to calculate directly. For

example, charge density maps can give us direct access to
optimum intercalation sites20 as well as ion migration pathway
and barriers21. We exemplify a few of the many possible ways fast
machine learning prediction of charge density can help us find
new better functional materials. We can explore larger phase
space as well as evaluate functional properties of materials that
require large simulation boxes.
Electron density is inherently more information rich than total

energy and therefore learning from the density could lead to
machine learning models that generalize better from small
datasets. For example,22 and23 both found that learning the
electron density and then predicting the total energy gives better
accuracy when extrapolating from small to large systems in
comparison to direct energy prediction. In the last few years, a
number of articles have been published on electron density
prediction. Pioneering works by24,25 use a basis representation for
the density and predict the basis function coefficients using kernel
ridge regression. The model’s efficacy was demonstrated on
molecular dynamics trajectories of small molecules, but by
construction the model is not transferable to new molecules. A
transferable model based on symmetry-adapted Gaussian process
regression26 (SA-GPR) was introduced later27,28. The transferability
is achieved by decomposing the density into atom-centered
contributions and the local environment around each atom is
mapped to a set of basis coefficients using the SA-GPR framework.
One of the downsides of kernel regression is that the computa-
tional complexity of the model grows cubically with the number
of training examples and in most practical problems we will need
thousands of training examples to cover the system of interest.
Deep neural network models are highly flexible and are

generally well suited for absorbing large datasets. A 3D convolu-
tional neural network has been29 trained with thousands of small
molecules. However, by using a voxel based 3D U-Net30

architecture the model is dependent on the image resolution
and is not equivariant to rotations. Equivariance to rotation has
been achieved in different ways. The aforementioned SA-GPR
model27,28 has symmetry built into its kernel function.
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For deep learning models, equivariance has been achieved by
constructing a fingerprint for every point in space that is invariant
to rotations around the point for which the fingerprint has been
created, but not to rotations around other points31–34.
The models are local, which means that a cutoff distance

defines the range for which the atoms no longer influence the
electron density. Message-passing neural networks35,36 provide a
mechanism for propagating atomic interactions over longer
distances in a computationally efficient manner, by computing
local messages that represents an atom and its environment and
then propagate this information via the edges of a graph
representation of the system. Message-passing neural networks
are also being applied to the electron density prediction problem.
In the work by37 a message-passing network is used as part of the
algorithm, but a new graph, representing the local neighborhood,
is created for every point in space, which makes the method
computationally inefficient and the model was therefore only
trained on a relatively small number of points. A more efficient
approach was later presented by38,39 in which atom-centered
density contributions are predicted with a message passing neural
network. This approach allows the energy of the system to be
calculated analytically, but the accuracy of the density predictions
are inferior to our previously published framework, DeepDFT,
which predicts the densities directly point by point40. In the
previous message passing solutions37–40 an invariant representa-
tion is used. However, in this first generation of message passing
algorithms, the models are unable to resolve angular information
through the message passing41. Recent developments in equiv-
ariant message passing neural networks41–46 make it possible to
propagate directional information through the message passing
steps from which angular information can be extracted. Common
for the equivariant message passing models is that the hidden
states of the graph nodes are now representing directional vectors
(in three dimensions) that rotate with the rotation of the molecule.
In this work, we present the equivariant DeepDFT model, which

is a machine learning model for predicting the electron density
ρð r!Þ. The model is based on equivariant message passing on a
graph and uses special probe nodes inserted into the graph, for
which the density is computed. In contrast to the OrbNet-Equi
model46, which uses features calculated by the GFN-xTB
semiempirical electronic structure method, our method is purely
data driven in the sense that the only inputs required to make a
prediction are the atomic numbers and the coordinates of the
atoms (including the unit cell parameters for periodic structures).
We also do not induce any bias in terms of using a predefined
basis set for the density, i.e., the density is purely learned from
data examples.
Previous models have shown the ability to predict electron

density on a number of different systems, including molecular
dynamics of a single molecule or slab24,32, different hydrocarbon
molecules27,33, large datasets of small organic molecules29,38,46,
carbon nanotubes34, crystalline polymers and zeolites37 and
peptides28,39. To showcase the universal applicability, we bench-
mark the equivariant DeepDFT model on three diverse datasets,
(a) the QM9 dataset47,48 often used for benchmarking molecular
machine learning models, which is a large dataset of 134k small
organic molecules (b) a dataset of mixed transition metal layered
oxide lithium ion battery cathode materials and (c) a dataset
consisting of a molecular dynamics trajectory with ethylene
carbonate molecules—a commonly used organic electrolyte.

RESULTS
Invariant and equivariant message passing models
We have developed and trained two models for charge density
prediction with different architectures, but both work on the
principles of message passing on molecular graphs35. In this

section we will be referring to both of the models—the invariant
DeepDFT model and the equivariant DeepDFT model. A con-
ceptual overview of the equivariant and invariant DeepDFT
models are shown in Fig. 1.
The models use a 3D-embedded graph representation of the

molecule or crystal structure. The graph has a vertex for each atom
in the molecule or for each atom in the crystal structure unit cell.
Edges are defined by a constant cutoff distance, i.e. we draw an
edge between vertices if the distance between them is less than a
certain cutoff distance (chosen here to be 4 Å). The edges may
cross the periodic boundary as in quotient graphs49,50. Special
probe vertices, that only accept incoming edges, are placed at
each query point where electron density prediction is to be made.
Each vertex has a hidden state, which represents the atom or
probe and its environment and the state is initialized based on the
atom type or is zero for the probe vertices. The vertices interact by
receiving messages from other vertices via the incoming edges.
After each exchange of messages, the vertices update their
hidden state based on the sum of incoming messages. Artificial
neural networks (ANN) are used to model - (a) how the content of
the messages depend on sending/receiving vertices and (b) how
the hidden state updates depend on the message sum. ANNs
representing these interactions can be trained using data
examples. After a number of interaction steps T another neural
network is used to map the hidden state of each probe vertex to
the predicted density at that point in space. In the invariant
version of the DeepDFT model, the edge feature is the distance
between the vertices, while in the equivariant version, the
distance as well as the direction of the edges are used as features.
The directional features affect the hidden state of the vertices. To
maintain the directionality of the hidden states, the equivariant
model contains two sets of hidden states, an array of vector
valued features for each vertex in addition to the array of scalar
valued features for each vertex. The equivariance of the hidden
states is preserved by restricting the allowed operations to scaling,
inner products with other equivariant features and the addition of

Fig. 1 Conceptual overview of the two message passing archi-
tectures used in DeepDFT. The left column illustrates the invariant
DeepDFT model and the right column illustrates the equivariant
DeepDFT model.
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linear combinations of other equivariant features. The details of
the invariant DeepDFT model are described in our previous
NeurIPS workshop paper40 and more details of the equivariant
model can be found in the methods section.

Dataset and setup
To assess the models, we use three diverse datasets. The first is the
QM9 dataset47,48 (134k small molecules with up to nine heavy
atoms (CNOF)) that is widely used for benchmarking machine
learning models for molecular property prediction. Additionally,
we also train and test with electron density data from crystalline
and liquid state materials. 1: A class of industrially important
mixed transition metal layered oxide lithium ion battery (LIB)
cathode materials. Configurations are generated through random
crystal site occupation of transition metal ions (Ni/Mn/Co) and
lithium/vacancy to represent varieties of chemistry and lithiation
states. 2: Liquid ethylene carbonate—the most used LIB electro-
lyte. 12000 disordered configurations are generated through high
temperature (3000 K) accelerated molecular identity preserving
molecular dynamics. In all three cases, the electron densities are
obtained using the VASP code51. See the methods section for
more details on the computational setup.

Prediction accuracy
In this numerical experiment we assess the average prediction
accuracy of the model using the three aforementioned datasets.
We split the datasets into training, validation (for model selection)
and test set with uniform random splitting. The sizes of the splits
are shown in Table 1. To evaluate the model’s accuracy in
predicting charge density for a given atomic structure, we
integrate the mean absolute error (MAE) over the whole
simulation box normalized by the total number of electrons
Equation (1) following recently published work27,28. To obtain the
metric for a given test VASP electron density, the model is probed
at every point corresponding to the positions of the electron
density grid saved by VASP, and the integrals are evaluated
numerically as a sum . The DFT calculated density is used as
ground truth ρð r!Þ and the trained models output the predicted

density ρ̂ð r!Þ.

εmae ¼
R
r!2V ρð r!Þ � ρ̂ð r!Þ�� ��
R
r!2V ρð r!Þ�� �� (1)

The MAE of the models are shown in Table 1. As a baseline model
we use the superposition as of atomic densities, which is used by
VASP to initialize the electron densities.
The equivariant DeepDFT achieves notably lower prediction

error than the invariant model, especially for the ethylene
carbonate dataset. Both methods produce roughly two orders of
magnitude lower error than the superposition of atomic densities
baseline . The QM9 accuracy is below that of OrbNet-Equi46, which
uses additional input information, i.e. the results of GFN1-xTB
semiempirical electronic structure method are used as input
features. Thus it can not be considered as a pure data driven
model. As another reference, we also look at the variation in
electron density between DFT simulations performed using
different exchange-correlation functionals in VASP. This can be
seen as an appraisal of variability in DFT derived charge density.
We randomly select 1000 examples of the QM9 test set and
recalculate them with eight different XC functionals in VASP (BEEF,
Perdew-Burke-Ernzerhof, Perdew–Wang 91, Ceperley-Alder, Per-
dew-Zunger, revised Perdew-Burke-Ernzerhof, revPBE, PBE-
sol)52–59. For every grid point, we select the median across the
eight calculated densities as the reference point and compute the
mean absolute deviation around this point as shown in Equation (2).

εmad ¼
R
r!2V

1
K

PK
k¼1 ρkð r!Þ � ρmedianð r!Þ�� ��
R
r!2V ρ1ð r!Þ�� �� (2)

For every molecule, the deviation is numerically integrated over
the simulated volume. This serves as an estimate of inherent
variations in DFT derived density and is analogous to the error
measure Equation (1) used for the machine learning models. The
DFT variation of 1000 molecules is shown along with the
prediction test set (10000 molecules) errors in Fig. 2. The average
DFT variation across molecules is 0.60 %, which is generally higher
than the DeepDFT error.

Table 1. Datasets and prediction errors for invariant and equivariant DeepDFT model. We also compare with OrbNet-Equi and the superposition of
atomic densities as implemented in VASP.

Dataset Splits Test Set Error (εmae%)

Dataset Train Val. Test invDeepDFT eqDeepDFT OrbNet-Equi46 Init VASP

QM9 123835 50 10000 0.36 0.27 0.21 15

LIB Cathode 1450 50 500 0.09 0.06 7.1

Ethylene Carb. 7330 50 4000 0.53 0.18 13

Fig. 2 Histogram of test errors on QM9 in comparison with variations in DFT computed density using different exchange correlations
functional. The markers show bins with a count of one.
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However, notice that the distribution of errors from the
DeepDFT model has a much longer tail than DFT variation. There
is even a single test point with 11 % error (not visible on the
histogram figure). This is not the case for the two other datasets
and is caused by the large chemical and structural variations
within the QM9 dataset. Modeling the uncertainty and detecting
outliers is therefore important for future models. Error isosurfaces
for four example molecules are shown in Fig. 3. We are showing
two very high error examples (Fig. 3a, b), an average error
datapoint (Fig. 3c) and the lowest error example (Fig. 3d) in the
test set. The highest error example (Fig. 3a) is a clear outlier and
has very unnatural bond angles. The ammonia example
(Fig. 3b) is an isolated group and is therefore not well represented
in the training data. The average and lowest error points (Fig. 3c, d
respectively) are well represented in the dataset and especially the
hydrocarbon (Fig. 3d) is easily learned. Previous work focusing
only on hydrocarbons could create models reaching an accuracy
of 1.26 % using <1000 DFT densities33. Our models are more
accurate for hydrocarbons while generalizing to other molecules
as well.
To understand the accuracy of the model from an energy

perspective, we take all the charge densities of the test sets and
replace the density values with those predicted by the equivariant
DeepDFT model (while keeping the PAW augmentation charges
fixed), and run a single-point non-self-consistent energy calcula-
tion using VASP. The obtained energies are compared with the
self-consistent energies and the energy errors are shown in Fig. 4.
The distribution of energy errors is heavily distributed around 0
with a long narrow tail, so we show the distribution in a log–log
histogram. For the QM9 dataset (Fig. 4a) there are three molecules
out of 10,000 with absolute error above 1 × 10−2 V/atom, while the
mean absolute error for the remaining molecules is 8.5 × 10−5 eV/
atom. For the two other datasets (Fig. 4b, c) we observe less
extreme outliers, but the tails are still present. The MAEs are

4.2 × 10−4 eV/atom and 1.2 × 10−4 eV/atom for the LIB cathode
and ethylene carbonate datasets, respectively.

Learning curve
In the sections above, we have looked at the average test errors
for specific training and test set sizes. To better understand the
effectiveness of the learning method and the data efficiency of the
models, it can be very useful to look at learning curves60, i.e. test
error as a function of the training set size plotted on a log–log
scale. The validation and test sets are the same as above, but we
randomly sample a subset of the training data to reduce the
training set size. The result of this numerical experiment is shown
in Fig. 5. Ideally the learning curves should follow a straight line in
the log–log plot and be as steep as possible60. Initially all the
learning curves are steep, but they flatten out with an increasing
number of training examples.
The flattening of a learning curve is usually caused by either

noise in the data, by a non-unique input representation or by lack
of flexibility in the model.
If the saturation was caused by noise we would expect both

models to converge to the same error. In contrast, for all three
datasets, the equivariant models outperform the invariant models.
The input information presented to the equivariant models is the
relative positions of atoms and their atomic numbers, which is
(given a large enough cutoff) enough to distinguish between all
the inputs. This indicates that the model lacks the flexibility to
capture all the details and inter-dependencies modeled by density
functional theory and this is not surprising, given the simpler
architecture of the deep learning models and the approximate
nature of the learned functions. The training curves show
(Supplementary Figs. 1, 2) that with 15000 training examples or
more the model is not able to significantly overfit the QM9
dataset, but in all other cases the root mean squared error (RMSE)

Fig. 3 Prediction error isosurfaces ± 0.001 e Bohr−3 for four example QM9 molecules from the test set with hydrogen (white), carbon
(brown), oxygen (red) and nitrogen (blue). The error percentages in parenthesis denote the normalized mean absolute error εmae for each
molecule. The chosen examples are two very high error molecules (a) and (b), an example with average error (c) and the molecule with the
lowest error of all in the test set (d).
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is lower on the training set than on the validation set. During
development we have briefly tried to double the number of
interaction layers in the equivariant model and increased the
cutoff radius to 5Å, but we did not see an improvement in the
accuracy of the model. However, it might be possible to improve
the model with a more systematic hyperparameter search or by
introducing higher order equivariant internal representations as
used in recently developed interatomic potentials, for example
NequIP61.
Improved models are expected to provide higher accuracy and

our analysis encourages further research and development of
even more expressive deep learning architectures.
Among the three datasets, the ethylene carbonate dataset

shows the largest difference in error between the two models. The
added representation of directionality in the equivariant model is
better at modeling highly polar molecules and the intermolecular
interaction between them, which is further discussed in the
following section.

Intermolecular interactions
To visualize the difference in prediction accuracy between the two
models trained on the liquid ethylene carbonate structures, in
Fig. 6 we show an error isosurface for one of the test set examples.
We see that most of the error is located around the oxygen

atoms (red atoms). To investigate this quantitatively we partition

the electron density into volumes around each atom according to
Bader partitioning62. For the 4000 test examples this leads to 29%,
16%, 55% of the total volume and 12%, 20%, 68% of the total
electron charge to be assigned to H, C, O respectively. To
understand how different elements contribute to the overall error,
we calculate εmae following Equation (1); but for each atom type
we only integrate over the Bader volumes associated with atoms
of that type. Instead of normalizing with respect to the target
density for each atom type in Equation (1), we also normalize with
respect to the total error and calculate the total error share. The
error decomposition for the invariant and equivariant models are
shown in Table 2.
As the error isosurface figure also showed, the majority of the

error is assigned to the oxygen atoms (66% for the invariant
model and 59% for the equivariant model), but most of the target
electron density is also found within the oxygen Bader volumes
(68%). We also notice that out of the three elements it is the
oxygen volume that benefits the most from using the
equivariant model.

Runtime and scalability
To demonstrate the scalability of the model we measure the
runtime for calculating the electron density of systems of
increasing sizes. We use a single cell of 12 atoms Li3Co2NiO6 with
periodic boundary conditions and repeat the unit cell to show
how model run time and DFT run time scales with system size. The
result of the scalability test is plotted in Fig. 7. As expected we
observe a linear trend for DeepDFT and it is therefore much faster
than DFT for large systems, because of the cubic complexity of
DFT. However, DeepDFT is also an order of magnitude faster even
for small systems. Notice that DeepDFT is only running on a single
GPU core and can be optimized to utilize more GPU cores in
parallel for actual deployment towards high throughput tasks. The
model is implemented in PyTorch for research purposes and even
though it is orders of magnitude faster than density functional
theory for large systems, it can still be made to run faster, e.g.
utilizing several GPUs in parallel when making predictions or by
simplifying the readout network, because this part of the network
needs to be run for point in the simulation grid and thus are
completely parallelizable with no communication overhead.

Charge transfer in NMC cathode
Charge transfer in intercalation cathodes is not only a key
descriptor for the ion intercalation process20 and related
energetics, but can also be used as a tool towards capturing
degradation processes like oxygen evolution63. Thus under-
standing the electrochemical properties of cathode materials

Fig. 4 Distribution of energy errors obtained from running non-self-consistent single point energy calculations with VASP using the
predicted DeepDFT charge densities. The distribution of normalized (by number of atoms) energy errors are shown for three different
datasets QM9 (a), LIB Cathode (b) and Ethylene Carbonate (c). The histograms use logarithmic bins and count scale to clearly show both the
heavy concentration around 0 eV/atom and the long, narrow tail of errors.

Fig. 5 Learning curves for invariant (dashed lines) and equivar-
iant (solid lines) models for three different datasets. The plot
shows the average normalized test errors (Equation 1) for the QM9
(blue) LIB Cathode (orange) and Ethylene Carbonate (green)
datasets as functions of the number of training examples, which
are randomly sampled subsets of the full training sets.
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and computational screening for materials need access to charge
density at various lithiated states. In this section we investigate
the applicability of the model to accurately track charge transfer
in NMC cathode materials. To test the accuracy of the trained
DeepDFT model, we randomly sample 30 structures from the
NMC dataset (that are not part of the training dataset), remove
one Li atom and relax the structure with DFT. The DeepDFT
model is then used to predict the electron density of the initial
structure and of the one with one Li removed. If DeepDFT can
capture the electron transfer redox process with good accuracy,
we can use such models for screening optimal NMC composi-
tions. We do note that this numerical experiment is only
meaningful for assessing the ability of the model to track charge

transfer. In a real computational screening setting the structure
relaxation would need to also be replaced by a machine
learning model.
To assign charge to each atom we use the Bader charge of each

atom calculated with the Bader program64. The change in charge
of each atom for all the 30 systems is shown as a histogram in
Fig. 8. Notice that we have two clusters of charge differences in
the dataset. The largest cluster is atoms that are not or very little
affected by the removal of the Li atom. The smaller cluster is the
one that is influenced by the Li removal to a larger degree. The
prediction error is small for both clusters as shown in Fig. 8. This
reinforces the capability of DeepDFT as a practical ML model that
can be deployed for inexpensive large phase space exploration for
high performance materials. Instead of looking at individual errors
we can also compute the total error of each structure. We
calculate the sum of absolute errors in the charge difference
across the unit cell and average across the 30 structures of the test
set:

εtotal ¼ 1
30

X30
i¼1

XQ̂ i

n¼1

kΔqin � Δq̂ink (3)

where i is the index for the 30 systems in the test set, Δqin is the
change in Bader charge of the nth atom of that system and Q̂ i is
the number of atoms in the ith system. The average total error is
0.060 e, which means that on average 6.0 % of the electron charge
is distributed incorrectly. However, a large proportion of that error
is due to fluctuations in charges far away from the removed Li. If
we only consider the near atoms in the inner sum of Equation (3),
the error decreases to 1.0 %.

DISCUSSION
In this work we have presented the equivariant DeepDFT model
which achieves at par or beyond the state of the art prediction
accuracy on three widely different datasets including solid, liquid,
and gas phases. Implementation of the equivariant framework
(improvement on the invariant one40) greatly helped in achieving
high accuracy, especially in liquid state simulations as it helped
learning better representations of inter- and intramolecular
structure variations. Although the training is done on discrete
grid points, the learnt function is fully differentiable and thus can
be used for further mathematical derivations, such as derivative-
based visualization of interactions using Interaction Region
Indicator (IRI)65 or Density Overlap Regions Indicator (DORI)66.
Additionally, the inference mechanism itself is parallelizable and

Fig. 6 Prediction error isosurfaces of ± 0.003 e Bohr−3 with model based on invariant representation to the left and model based on
equivariant representation to the right. The ethylene carbonate molecule contains hydrogen (white), carbon (brown) and oxygen (red).

Table 2. Prediction errors of liquid ethylene carbonate data test set
decomposed into Bader volumes for each atom type.

Model Element εmae Total Error share

H 0.71% 17%

Invariant C 0.41% 16%

O 0.49% 66%

H 0.32% 21%

Equivariant C 0.18% 20%

O 0.16% 59%

Fig. 7 Computation time for VASP running on 2*20 core Intel
Skylake Xeon CPU vs DeepDFT running on a single RTX 3090 GPU.
The dashed lines show the expected asymptotic behaviors ax3 and
ax respectively.
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can be distributed to a larger number of GPUs, which makes
electron density simulation of millions of atoms feasible.
Surrogate models for energy and forces have helped perform

high accuracy molecular simulations at long length and time scale
or conduct high throughput screening at an unprecedented
speed in the last few years. For functional materials discovery (e.g.
battery electrodes, catalysts etc.) combining energy models with
DeepDFT will let us model and improve properties where electron
transfer redox reactions and charge density are critical for better
functionality. Because of the low runtime and linear scaling with
system size DeepDFT will let us explore far larger materials phase
space than it is currently possible with DFT derived charge
densities.
We foresee high throughput screening and large scale

simulations pertaining to redox reactions and charge transfer
properties will be tackled with DeepDFT in the near future.
The error distribution for structures not well represented in the

training data creates a long tail with high errors (as seen for a few
unique molecules in QM9 dataset). For using DeepDFT in high
throughput studies and for building trained models for new
classes of materials in a data efficient manner with active learning,
it would be necessary to also model the uncertainty of the
predictions, e.g. by using an ensemble of models. In future it will
also be beneficial to benchmark the model on other density
derived properties such as the total energy, as utilizing density as
the underlying variable can be more data efficient strategy than
predicting the properties directly. The DeepDFT code is made
available for the community and we are looking forward to seeing
applications of the model in the simulation of materials and
molecules as well as adaption into other models expanding on our
codebase.

METHODS
Equivariant neural message-passing network
In this section we describe more formally and in more detail how neural
message passing is used to model the electron density around atoms. The
DeepDFT density model is framed in the neural message passing
framework devised by35. A simple example graph with four atoms and
three query points is illustrated in Fig. 9. Each vertex has a hidden state
that is updated in a number of interaction steps.
The previously introduced DeepDFT model40 uses an atom-to-atom

interaction architecture very similar to the SchNet model36. However, in
this type of model the hidden states of the vertices are scalar arrays, which
contain no explicit information about directionality and are invariant to
rotations. This for example, means that a change in angles can not be
resolved through message passing steps41. This shortcoming has already
been addressed by graph neural networks using spherical harmonics as
the irreducible representation for the group of rotations in three
dimensions44,45,61. In these cases the hidden states become higher order

tensors and they rotate (equivariantly) with the molecule. A special case of
equivariant neural networks, for which the equivariant states are Cartesian
tensors, was recently introduced by41. In the so called polarizable atom
interaction neural network (PaiNN) model the hidden vertex state contains
a scalar array state as well as a vectorial state. Equivariance of the vectorial
state is conserved by restricting the vectorial states to interact only via
cross products, inner products and scaling. The new version of DeepDFT
uses a variant of the PaiNN architecture as backend and the architectural
details are given in this section. See the article introducing PaINN41 for
more explanation on the method itself.
The input to the model are the atomic numbers z1; � � � ; zNf g 2 N, the

xyz-coordinate of each atom r!1; � � � ; r!N
� � 2 R3 and of each probe

point p!1; � � � ; p!M

� � 2 R3 and in the case of crystal structure the unit cell
vectors are also required C 2 R3´ 3. We use the arrow superscript x! to
emphasize vectors that are treated as geometric vectors, as opposed to
arrays of scalars such as weight matrices.
From this information a directed graph is constructed with a vertex

for each atom and another vertex type for each probe point. The edges
of the graph are drawn between atoms when they are within the cutoff
distance (4 Å) and incoming edges to the probe points are drawn when
they are within the cutoff distance of an atom. The atom scalar nodes
are initialized with a learned embedding for each atom type s0i ¼ azi 2
RF ´ 1 and the vectorial state is initialized to zeros v!0

i ¼ 0
!2 RF ´ 3. The

update in scalar state is given by a sum over messages from
neighboring atoms

Δsmi ¼
X
j2NðiÞ

ϕsðsjÞ �Wsð r!ij

�� ��Þ � f cutð r!ij

�� ��Þ (4)

where ϕ is a 2-layer neural network with hidden layer and output layer size
F, ∘ is element-wise vector multiplication and Wm

s r!ij

�� ��� �
is a continuous

filter function. The feature-wise filter function is implemented as F linear
combinations of the distance expanded in sinc-like radial basis function67

Fig. 8 Analysis of Bader charge difference of remaining atoms when removing a Li atom from NMC cathode. The scatter plot to the left
shows the change in Bader charge for all atoms in the systems as a function of the distance from the Li being removed. The stacked histogram
to the right shows the distribution of prediction errors of the machine learning model.

Fig. 9 Neural message-passing with probe nodes. Neural network
computed messages are exchanged between atom vertices in
several steps while the probe nodes only receive messages. The
contents of the messages depend on the hidden state of the
vertices and the states are updated after each message-passing step.
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sin nπ
rcut

r!ij

�� ��� 	
= r!ij

�� �� with 1 ≤ n ≤ 20. The cutoff function f cutð r!ij

�� ��Þ ¼
0:5ðcosðπ r!ij

�� ��=rcutÞ þ 1Þfor r!ij

�� ��<rcutand0otherwise as proposed by68.
The cutoff function ensures a smooth transition when neighboring atoms
enter the cutoff region. The update in vectorial state is given by:

Δ v!m
i ¼ P

j2NðiÞ
v!j � ϕvvðsjÞ �Wvv r!ij

�� ��� � � f cutð r!ij

�� ��Þ

þ P
j2NðiÞ

ϕvsðsjÞ �Wvs r!ij

�� ��� � r!ij

r!ij

�� �� � f cutð r!ij

�� ��Þ
(5)

The first sum is the convolution of scaled equivariant features v!j � ϕvvðsjÞ
with an invariant (only distance-dependent) filter function. This is the only
operation in the architecture where equivariant features are propagated
through the network. This allows directional information obtained through
previous message passing interactions to propagate through the network.
The second term in Equation (5) is the only operation in the architecture
where new directional information is added to the hidden state. Unit
vectors corresponding to edges between vertices are scaled by ϕvsðsjÞ and
by the invariant filter function Wvs r!ij

�� ��� �
f cutð r!ij

�� ��Þ and added to the
vectorial node state.
For more expressiveness another two update equations are introduced,

which operates atomwise across the scalar and vectorial features. The
updates for the scalar features are as follows

Δsui ¼ assðsi ; V v!i

�� ��Þ þ asv si ; V v!i

�� ��� �hU v!i ;V v!ii (6)

where ( ⋅ , ⋅ ) means concatenation of features and ass and asv are 2-layer
neural networks. The vectorial features use the following update:

Δ v!u
i ¼ avv si ; V v!i

�� ��� �
U v!i (7)

which is a scaling of a linear combination of equivariant vector features.
The message passing algorithm works by computing Equations (4) and (5)
in parallel for all the node vectors and add the computed values to the
current scalar and vectorial states respectively. Then the nodes are
updated by running Equations (6) and (7) in parallel and update the nodes
atomwise. The message passing and update equations are repeated in
several layers with different neural network weights at each layer. In the
PaiNN method and in this work we use three layers of message passing
and update layers.
The hidden state of the special probe vertices are initialized with zeros

(the scalar features are zero and the equivariant features are the zero
vector). They use the same message passing and update equations as for
the atom vertices above, but the neural network weights are not shared
between the two. Furthermore, instead of using the residuals in Equations
(4) and (5) directly, we introduce a gating network that determines which
features of the message sum to include and which part of the features to
ignore.

snewi ¼ GsðΔsmi Þ � si þ ð1� GsðΔsmi ÞÞ � Δsmi (8)

v!new
i ¼ GvðΔsmi Þ � v!i þ ð1� GvðΔsmi ÞÞ � Δ v!m

i (9)

The gating neural networks are two-layer neural networks with SiLU
activation function for the hidden units and a sigmoid output activation
function. This allows the network to ignore parts of the incoming messages
dependent on the total sum of messages. After the final interaction steps
the final state of each probe vertex is mapped to a single scalar for each

probe state si. As in the original PaiNN model we also use a two-layer
neural network with SiLU activation function on the first layer and a linear
activation function on the output layer. In principle the vectorial
representation also enables prediction of vectorial properties at each
probe vertex or higher order tensors constructed from a rank-1 tensor
decomposition, as described in the original PaiNN article41.

Model parameters and training/validation setup
In all experiments we use a feature size F= 128 and cutoff distance
rcut= 4Å. When using the invariant message passing model we set T= 6
and use T= 3 for the equivariant message passing model. The invariant
model then has 2.1 × 106 parameters and the equivariant model 1.5 × 106

parameters. Because of the large memory requirement for the electron
density (CHGCAR) files, we use a rotating pool of 20 atomic configurations
during training. New configurations are continuously loaded from the full
dataset on disk into the rotating pool. In each training step we sample two
atomic structures and for each structure 1000 probe points are uniformly
sampled from the VASP electron density grid. The cost function is the
mean squared error of the probe points. The Adam optimizer is used with
initial learning rate 10−4 and the learning rate is exponentially decayed
during training, i.e. the learning rate is 0:96s�10

�5
at gradient step number s.

The validation set is used for early stopping. The cost on the validation set
is computed every 5000 gradient steps and the final model is the one with
the lowest error on the validation set. To reduce the variance and improve
computational efficiency the probes of the validation set are kept fixed
during the training and we use 5000 probes for each configuration.

Datasets
For all datasets the electron densities are calculated with VASP which is a
projector-augmented wave based implementation of DFT. Four hundred
electronvolt is used for the wavefunction cutoff and a Gaussian smearing
of 0.1 eV is used for the electronic states. The first Brillouin zone is sampled
only at the zone center for QM9 molecules, with a 3 × 3 × 1 Monkhorst-
Pack k-point mesh for NMC data and 2 × 2 × 2 for liquid ethylene
carbonate simulations. Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional is used for all datasets. However to understand the
effect of exchange correlation-functional on the variability of DFT
calculated charge density we did DFT simulations with eight different
functionals for small subset of QM9 molecules. Model training was done
with PBE densities. The electron densities are output on a grid and the grid
spacing is ~0.1Å in all three datasets. The average number of grid points
per configuration is 700 k, 400 k and 1 M for the QM9, NMC and ethylene
carbonate datasets, respectively. The distribution of the data points for
each dataset is shown in Fig. 10. The NMC dataset (Fig. 10b) is the most
dense dataset while the QM9 (Fig. 10a) dataset has a lot of low electron
density data examples. For datasets with even larger areas of “empty
space” than the QM9 dataset it might be beneficial to remove some of the
low density data points or in other ways weight the sampling of the
training examples to avoid biasing the training towards predicting zeros.

QM9 dataset. The geometries for the QM9 dataset47,48 are obtained from
Figshare repository as deposited by69. The VASP package only supports
periodic boundary conditions so we use simulation cells with vacuum
around molecules such that there is a gap of at least 4 Å or more. As
pointed out by a reviewer, the gap is not large enough to avoid all

Fig. 10 Normalized histograms with logarithmic bins for the data examples of the three electron density datasets. QM9 (a) LIB Cathode
(b) and Ethylene Carbonate (c). The histograms use logarithmic bins and show the number of data examples that fall into each bin as a
percentage of the total number of examples.
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interactions between adjacent molecules. To quantify the interaction we
have doubled the size of the unit cell of 1000 test set molecules and
calculated the electron density at the same grid points as in the original
dataset. The average εmae Equation (1) between the recalculated and
original densities is 0.18%.

NMC dataset. This dataset contains charge densities for NMC
2 × 2 × 1 supercell (12 transition metal atoms and 12 Li/vacancy site) with
varying levels of Li content. For each structure we first randomly sample
the number of Mn, Ni and Co atoms given that the total number of
transition metal atoms is 12 and then randomly assign them to the
transition metal positions of the lattice. Similarly the number of vacancies
is uniformly sampled between 0 and 12 and vacancies are assigned to the
Li site. The generated configurations are then relaxed in two steps: First we
relax the atom positions with fixed cell parameters and then we allow both
positions and cell parameters to relax. We keep only the electron density
(CHGCAR) file after the last cell relaxation step. The atoms are relaxed until
forces on each atom are <0.01 eV/Å.

Ethylene carbonate molecular dynamics trajectory. This dataset consists of
charge densities of individual snapshots from a molecular dynamics
trajectory. We insert 8 ethylene carbonate molecules in the simulation box.
To quickly explore a large part of the configurational space we put
Hookean constraints on the molecular bonds(to maintain molecular
identity such that molecules are not torn apart at such high temperature)
and run Langevin molecular dynamics with thermostat temperature of
3000 K. The simulation was run for 12380 steps of 0.5 fs and we discard the
first 1000 steps to reach equilibration.

DATA AVAILABILITY
The datasets are openly accessible at DTU figshare70–72.

CODE AVAILABILITY
A codebase for both models as well as pretrained PyTorch models are available on
Github73.
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